Sample records for variable immune deficiency

  1. Immune Disorder HSCT Protocol

    ClinicalTrials.gov

    2017-11-17

    Immune Deficiency Disorders; Severe Combined Immunodeficiency; Chronic Granulomatous Disease; X-linked Agammaglobulinemia; Wiskott-Aldrich Syndrome; Hyper-IgM; DiGeorge Syndrome; Chediak-Higashi Syndrome; Common Variable Immune Deficiency; Immune Dysregulatory Disorders; Hemophagocytic Lymphohistiocytosis; IPEX; Autoimmune Lymphoproliferative Syndrome; X-linked Lymphoproliferative Syndrome

  2. Sequential Cadaveric Lung and Bone Marrow Transplant for Immune Deficiency Diseases

    ClinicalTrials.gov

    2018-02-06

    Severe Combined Immunodeficiency (SCID); Immunodeficiency With Predominant T-cell Defect, Unspecified; Severe Chronic Neutropenia; Chronic Granulomatous Disease (CGD); Hyper IgE Syndromes; Hyper IgM Deficiencies; Wiskott-Aldrich Syndrome; Mendelian Susceptibility to Mycobacterial Disease; Common Variable Immune Deficiency (CVID)

  3. Hypogammaglobulinemia factitia- Munchausen syndrome masquerading as common variable immune deficiency

    PubMed Central

    2013-01-01

    Background We describe the first case of a patient with factitious disorder who closely simulated a primary immune deficiency disorder – Common Variable Immune Deficiency (CVID), by surreptitiously ingesting non-steroidal anti-inflammatory agents. Case description He was treated with several expensive and potentially dangerous drugs before the diagnosis was established through collateral information. In retrospect he did not meet the proposed new criteria for CVID. These criteria may prove useful in distinguishing cases of CVID from secondary hypogammaglobulinemia. Conclusion It is imperative clinicians recognise patients with factitious disorder at the earliest opportunity to prevent iatrogenic morbidity and mortality. PMID:24341706

  4. [Small airway diseases and immune deficiency].

    PubMed

    Burgel, P-R; Bergeron, A; Knoop, C; Dusser, D

    2016-02-01

    Innate or acquired immune deficiency may show respiratory manifestations, often characterized by small airway involvement. The purpose of this article is to provide an overview of small airway disease across the major causes of immune deficiency. In patients with common variable immune deficiency, recurrent lower airway infections may lead to bronchiolitis and bronchiectasis. Follicular and/or granulomatous bronchiolitis of unknown origin may also occur. Bronchiolitis obliterans is the leading cause of death after the first year in patients with lung transplantation. Bronchiolitis obliterans also occurs in patients with allogeneic haematopoietic stem cell transplantation, especially in the context of systemic graft-versus-host disease. Small airway diseases have different clinical expression and pathophysiology across various causes of immune deficiency. A better understanding of small airways disease pathogenesis in these settings may lead to the development of novel targeted therapies. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  5. Presence of immune deficiency increases the risk of hospitalization in patients with norovirus infection.

    PubMed

    Sacco, Keith A; Pongdee, Thanai; Binnicker, Matthew J; Espy, Mark; Pardi, Darrell; Khanna, Sahil; Joshi, Avni Y

    2018-04-01

    Norovirus is an emerging pathogen causing gastroenteritis. We sought to identify factors associated with clinical outcomes in a cohort of patients with laboratory-confirmed norovirus infection. We performed a retrospective chart review of patients with positive norovirus polymerase chain reaction in stool between October 1, 2015, and May 31, 2016. 128 unique patients were identified during the study period, 64 of whom had immune deficiency, of which only 3 patients had a primary immune deficiency (common variable immune deficiency), while 61 patients had a secondary immune deficiency. 50% of patients with immune deficiency were hospitalized as compared to only 30% of the non-immune-deficient cohort (odds ratio: 2.1 (1.1-4.18, P=0.04). One-third (32.8%) of the patients had a polymicrobial stool infection, and 21.1% had concurrent Clostridium difficile infection. Initial mean total leukocyte count was higher in the hospitalized group at 8.40×109/L versus 6.31×109/L in the nonhospitalized group (P=0.049). All 13 patients presenting with fever had symptomatic resolution (P=0.002). The presence of C. difficile infection was correlated with persistent symptoms (OR 2.30 [0.95-5.58], P=0.067). The overall mortality rate among our cohort was 3.13% (4 patients). All deceased patients had secondary immune deficiency, and none had C. difficile coinfection. Presence of an immune deficiency increases the risk of hospitalization with norovirus infection. Absence of fever is associated with lower resolution and possibly may contribute to a persistent infectious state. Presence of concomitant C. difficile infection is correlated with a lower overall mortality rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Genetics Home Reference: common variable immune deficiency

    MedlinePlus

    ... CVID. Immune cells can accumulate in other organs, forming small lumps called granulomas. Approximately 25 percent of ... N, Enright V, Du L, Salzer U, Eibel H, Pfeifer D, Veelken H, Stauss H, Lougaris V, ...

  7. Allogeneic Hematopoietic Stem Cell Transplant for Patients With Primary Immune Deficiencies

    ClinicalTrials.gov

    2018-04-24

    SCID; Omenn's Syndrome; Reticular Dysgenesis; Wiskott-Aldrich Syndrome; Bare Lymphocyte Syndrome; Common Variable Immunodeficiency; Chronic Granulomatous Disease; CD40 Ligand Deficiency; Hyper IgM Syndrome; X-linked Lymphoproliferative Disease; Hemophagocytic Lymphohistiocytosis; Griscelli Syndrome; Chediak-Higashi Syndrome; Langerhan's Cell Histiocytosis

  8. Spectrum of primary immunodeficiency disorders in Sri Lanka

    PubMed Central

    2013-01-01

    Background While primary immunodeficiencies (PID has been recognized in the west for decades, recognition has been delayed in the third world. This study attempts to detail the spectrum of PID, the therapy provided, and constraints in the diagnosis and treatment in a middle income country such as Sri Lanka. Methods Nine hundred and forty two patients with recurrent infections and features suggestive of immune deficiency, referred from the entire country in a 4 year period, to the sole immunology unit in Sri Lanka were included. The following tests were performed. Full blood counts, serum Immunoglobulin and complement C3 and C4 levels, functional antibody levels, enumeration of lymphocyte subsets, in vitro and in vivo T cell functional assays,, nitroblue tetrazolium assay to diagnose chronic granulomatous disease, hair shaft assay to diagnose Griscelli syndrome. Sequencing of the common gamma chain to identify x linked severe combined immune deficiency, and X linked agammaglobulinemia was confirmed by assaying for Btk mutations by single sequence conformation polymorphism. HIV/AIDS was excluded in all patients. Results Seventy three patients were diagnosed with a primary immune deficiency. The majority (60.27%) had antibody deficiency. Common variable immune deficiency was the commonest (28.76%), followed by X linked agammaglobulinemia (XLA) (20.54%). Five patients had possible hyper IgM syndrome. Ten patients had severe combined immune deficiency (SCID), including 2 with x linked SCID, in addition to DiGeorge syndrome (2), ataxia telangiectasia (6), autosomal dominant hyper IgE syndrome (2), chronic granulomatous disease (4), leucocyte adhesion deficiency type 1 (2) and Griscelli syndrome (3). Patients with autoinflammatory, innate immune and complement defects could not be identified due to lack of facilities. Conclusions Antibody deficiency is the commonest PID, as in the west.IgA deficiency is rare. Autoinflammatory diseases, innate immune and complement deficiencies could not be identified due to lack of diagnostic facilities. Lack of awareness of PID among adult physicians result in delay in treatment of adult patients. While treatment of antibody deficiencies provided in state hospitals has extended life expectancy, there is no treatment available for severe T cell defects. PMID:24373416

  9. Depressed immune surveillance against cancer: role of deficient T cell: extracellular matrix interactions.

    PubMed

    Górski, A; Castronovo, V; Stepień-Sopniewska, B; Grieb, P; Ryba, M; Mrowiec, T; Korczak-Kowalska, G; Wierzbicki, P; Matysiak, W; Dybowska, B

    1994-07-01

    Although T cells infiltrate malignant tumors, the local immune response is usually inefficient and tumors escape destruction. While extracellular matrix proteins strongly costimulate T cell responses in normal individuals, our studies indicate that peripheral blood T cells from cancer patients and tumor infiltrating cells respond poorly or are resistant to stimulative signals mediated by collagen I and IV and fibronectin. Moreover, the adhesive properties of cancer T cells are markedly depressed. Those functional deficiencies are paralleled by variable deficits in integrin and non-integrin T cell receptors for extracellular matrix. Immunotherapy with BCG causes a dramatic but transient increase in T cell: ECM interactions.

  10. Flu Vaccine Guidance for Patients with Immune Deficiency

    MedlinePlus

    ... Vaccine Guidance for Patients with Immune Deficiency Share | Flu Vaccine Guidance for Patients with Immune Deficiency This ... is the best tool for prevention of the flu, should patients with immune deficiency be given the ...

  11. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency.

    PubMed

    Maglione, Paul J; Cols, Montserrat; Cunningham-Rundles, Charlotte

    2017-10-05

    Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.

  12. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency

    PubMed Central

    Maglione, Paul J.; Cols, Montserrat

    2018-01-01

    Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches. PMID:28983810

  13. Profile of the patients who present to immunology outpatient clinics because of frequent infections

    PubMed Central

    Aldırmaz, Sonay; Yücel, Esra; Kıykım, Ayça; Çokuğraş, Haluk; Akçakaya, Necla; Camcıoğlu, Yıldız

    2014-01-01

    Aim: We aimed to determine the rate of primary immune deficiency (PID) among children presenting to our immunology outpatient clinic with a history of frequent infections and with warning signs of primary immune deficiency. Material and Methods: The files of 232 children aged between 1 and 18 years with warning signs of primary immune deficiency who were referred to our pediatric immunology outpatient clinic with a complaint of frequent infections were selected and evaluated retrospectively. Results: Thirty-six percent of the subjects were female (n=84) and 64% were male (n=148). PID was found in 72.4% (n=164). The most common diagnosis was selective IgA deficiency (26.3%, n=61). The most common diseases other than primary immune deficiency included reactive airway disease and/or atopy (34.4%, n=22), adenoid vegetation (12.3%, n=8), chronic disease (6.3%, n=4) and periodic fever, aphtous stomatitis and adenopathy (4.6%, n=3). The majortiy of the subjects (90.5%, n=210) presented with a complaint of recurrent upper respiratory tract infection. PID was found in all subjects who had bronchiectasis. The rates of the diagnoses of variable immune deficiency and Bruton agammaglubulinemia (XLA) were found to be significantly higher in the subjects who had lower respiratory tract infection, who were hospitalized because of infection and who had a history of severe infection compared to the subjects who did not have these properties (p<0.05 and p<0.01, respectively). Growth and developmental failure was found with a significantly higher rate in the patients who had a diagnosis of severe combined immune deficiency or hyper IgM compared to the other subjects (p<0.01). No difference was found in the rates of PID between the age groups, but the diagnosis of XLA increased as the age of presentation increased and this was considered an indicator which showed that patients with XLA were being diagnosed in a late period. Conclusions: It was found that the rate of diagnosis was considerably high (72.4%), when the subjects who had frequent infections were selected by the warning signs of PID. PMID:26078665

  14. Microbiota-Induced Changes in Drosophila melanogaster Host Gene Expression and Gut Morphology

    PubMed Central

    Buchon, Nicolas

    2014-01-01

    ABSTRACT To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. PMID:24865556

  15. Detection and Characterization of Infections and Infection Susceptibility

    ClinicalTrials.gov

    2018-06-26

    Immune Disorders; Chronic Granulomatous Disease; Genetic Immunological Deficiencies; Hyperimmunoglobulin-E Recurrent Infection Syndrome; Recurrent Infections; Unknown Immune Deficiency; GATA2 Deficiency (MonoMAC); Nontuberculous Mycobacterial Infections; Hyper IgE (Job s) Syndrome; Leukocyte Adhesion Deficiency; Susceptibility to Disseminated Infections; Primary Immune Deficiency Disease (PIDD)

  16. Bronchiectasis: Current Concepts in Pathogenesis, Immunology, and Microbiology.

    PubMed

    Boyton, Rosemary J; Altmann, Daniel M

    2016-05-23

    Bronchiectasis is a disorder of persistent lung inflammation and recurrent infection, defined by a common pathological end point: irreversible bronchial dilatation arrived at through diverse etiologies. This suggests an interplay between immunogenetic susceptibility, immune dysregulation, bacterial infection, and lung damage. The damaged epithelium impairs mucus removal and facilitates bacterial infection with increased cough, sputum production, and airflow obstruction. Lung infection is caused by respiratory bacterial and fungal pathogens, including Pseudomonas aeruginosa, Haemophilus, Aspergillus fumigatus, and nontuberculous mycobacteria. Recent studies have highlighted the relationship between the lung microbiota and microbial-pathogen niches. Disease may result from environments favoring interleukin-17-driven neutrophilia. Bronchiectasis may present in autoimmune disease, as well as conditions of immune dysregulation, such as combined variable immune deficiency, transporter associated with antigen processing-deficiency syndrome, and hyperimmunoglobulin E syndrome. Differences in prevalence across geography and ethnicity implicate an etiological mix of genetics and environment underpinning susceptibility.

  17. Current Features of Secondary (Acquired) Types of Immune Deficiency.

    PubMed

    Kovalchuk, Leonid V.; Pinegin, Boris V.

    1999-12-01

    Secondary (acquired) types of immune deficiencies (SID) take a leading place in practice of modern clinical immunology. The causes for SID development are extremely variable. Special attention is concerned with accumulating facts about target action of microorganisms, and first of all viruses, on certain processes in immune system. Damageable action of HIV-1 on cell elements expressing CD4 molecules is known in most precise manner. It is noteworthy that the search of real molecular defects, induced by microorganisms in immune system is required. It is not to be ruled out that the increased level of apoptosis of immune system cells is one of the causes of SID. The basis of it is disbalance between positive and negative activation processes of immunocompetent cells. Multiple factors may serve as apoptogens, including drugs (glucocorticoids etc.), xenobiotics, physical factors (radiation) and many others. In practice of clinical laboratories a certain spectrum of immunological investigations is recommended that allows to diagnose the degree of immunopathology. At present, in clinical practice these methods are focused around flow cytometry (immunophenotyping), immunodiffusion and immunoenzyme tests (determination of immunoglobulins, cytokines, other soluble components of immune system), tests of estimation of immunocompetent cell activation, proliferation and differentiation. As a prospective, some methods, based on identification of molecular defects in cells and soluble factors of immune system, may be taken into consideration.

  18. Economic impact of routine opt-out antenatal human immune deficiency virus screening: A systematic review.

    PubMed

    Ibekwe, Everistus; Haigh, Carol; Duncan, Fiona; Fatoye, Francis

    2017-12-01

    To evaluate the economic impact of routine testing of human immune deficiency virus in antenatal settings. Many children are being infected with human immune deficiency virus through mother-to-child transmission of the virus. Most of these infections are preventable if the mothers' human immune deficiency virus status is identified in a timely manner and appropriate interventions put in place. Routine human immune deficiency virus testing is widely acclaimed as a strategy for universal access to human immune deficiency virus testing and is being adopted by developed and developing poor income countries without recourse to the economic impact. A systematic review of published articles. Extensive electronic searches for relevant journal articles published from 1998-2015 when countries began to implement routine antenatal HIV testing on their own were conducted in the following databases: Science Direct, MEDLINE, SCOPUS, JSTOR, CINAHL and PubMed with search terms as listed in Box 2. Manual searches were also performed to complement the electronic identification of high-quality materials. There were no geographical restrictions, but language was limited to English. Fifty-five articles were retrieved; however, ten were eligible and included in the review. The findings showed that many programmes involving routine human immune deficiency virus testing for pregnant women compared to the alternatives were cost-effective and cost saving. Data from the reviewed studies showed cost savings between $5,761.20-$3.69 million per case of previously undiagnosed maternal human immune deficiency virus-positive infection prevented. Overall, cost-effectiveness was strongly associated with the prevalence rate of human immune deficiency virus in the various settings. Routine human immune deficiency virus testing is both cost-effective and cost saving compared to the alternatives. However, there are wide variations in the methodological approaches to the studies. Adopting standard reporting format would facilitate comparison between studies and generalisability of economic evaluations. (i) Healthcare decision-makers should understand that routine antenatal screening for human immune deficiency virus is both cost-effective and cost saving. (ii) Addressing late identification of prenatal human immune deficiency virus is crucial to reducing mother-to-child transmission at minimal healthcare spending. © 2017 John Wiley & Sons Ltd.

  19. Complex pattern of immune evasion in MSI colorectal cancer.

    PubMed

    Ozcan, Mine; Janikovits, Jonas; von Knebel Doeberitz, Magnus; Kloor, Matthias

    2018-01-01

    Mismatch repair (MMR)-deficient cancers accumulate multiple insertion/deletion mutations at coding microsatellites (cMS), which give rise to frameshift peptide neoantigens. The high mutational neoantigen load of MMR-deficient cancers is reflected by pronounced anti-tumoral immune responses of the host and high responsiveness towards immune checkpoint blockade. However, immune evasion mechanisms can interfere with the immune response against MMR-deficient tumors. We here performed a comprehensive analysis of immune evasion in MMR-deficient colorectal cancers, focusing on HLA class I-mediated antigen presentation. 72% of MMR-deficient colorectal cancers of the DFCI database harbored alterations affecting genes involved in HLA class I-mediated antigen presentation, and 54% of these mutations were predicted to abrogate function. Mutations affecting the HLA class I transactivator NLRC5 were observed as a potential new immune evasion mechanism in 26% (6% abrogating) of the analyzed tumors. NLRC5 mutations in MMR-deficient cancers were associated with decreased levels of HLA class I antigen expression. In summary, the majority of MMR-deficient cancers display mutations interfering with HLA class I antigen presentation that reflect active immune surveillance and immunoselection during tumor development. Clinical studies focusing on immune checkpoint blockade in MSI cancer should account for the broad variety of immune evasion mechanisms as potential biomarkers of therapy success.

  20. Effects of Vitamin B6 Deficiency on the Composition and Functional Potential of T Cell Populations.

    PubMed

    Qian, Bingjun; Shen, Shanqi; Zhang, Jianhua; Jing, Pu

    2017-01-01

    The immune system is critical in preventing infection and cancer, and malnutrition can weaken different aspects of the immune system to undermine immunity. Previous studies suggested that vitamin B6 deficiency could decrease serum antibody production with concomitant increase in IL4 expression. However, evidence on whether vitamin B6 deficiency would impair immune cell differentiation, cytokines secretion, and signal molecule expression involved in JAK/STAT signaling pathway to regulate immune response remains largely unknown. The aim of this study is to investigate the effects of vitamin B6 deficiency on the immune system through analysis of T lymphocyte differentiation, IL-2, IL-4, and INF- γ secretion, and SOCS-1 and T-bet gene transcription. We generated a vitamin B6-deficient mouse model via vitamin B6-depletion diet. The results showed that vitamin B6 deficiency retards growth, inhibits lymphocyte proliferation, and interferes with its differentiation. After ConA stimulation, vitamin B6 deficiency led to decrease in IL-2 and increase in IL-4 but had no influence on IFN- γ . Real-time PCR analysis showed that vitamin B6 deficiency downregulated T-bet and upregulated SOCS-1 transcription. This study suggested that vitamin B6 deficiency influenced the immunity in organisms. Meanwhile, the appropriate supplement of vitamin B6 could benefit immunity of the organism.

  1. Influenza Vaccination in Patients with Common Variable Immunodeficiency (CVID).

    PubMed

    Mieves, Jan F; Wittke, Kirsten; Freitag, Helma; Volk, Hans-Dieter; Scheibenbogen, Carmen; Hanitsch, Leif G

    2017-10-05

    Vaccination against influenza in patients with primary antibody deficiency is recommended. Common variable immunodeficiency (CVID) is the most frequent and clinically relevant antibody deficiency disease and is by definition characterized by an impaired vaccination response. The purpose of this review is to present the current knowledge of humoral and cellular vaccine response to influenza in CVID patients. Studies conducted in CVID patients demonstrated an impaired humoral response upon influenza vaccination. Data on cellular immune response are in part conflicting, with two out of three studies showing responses similar to healthy controls. Available data suggest a benefit from influenza vaccination in CVID patients. Therefore, annual influenza vaccination in patients and their close household contacts is recommended.

  2. [Malabsorption is a leading clinical sign of small bowel disease].

    PubMed

    Parfenov, A I; Krums, L M

    The paper presents a variety of clinical manifestations of malabsorption syndrome (MAS) in celiac disease, collagenous sprue, Whipple's disease, Crohn's disease, intestinal lymphangiectasia, amyloidosis, common variable immune deficiency, and treatment of short bowel syndrome. It shows the specific features of the pathophysiology, diagnosis, and treatment of MAS in small bowel diseases.

  3. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  4. Prevention of infection in children and adolescents with primary immunodeficiency disorders.

    PubMed

    Papadopoulou-Alataki, Efimia; Hassan, Amel; Davies, E Graham

    2012-12-01

    Primary Immunodeficiency diseases (PIDs) are a heterogenous group of inherited disorders that may involve one or multiple components of the immune system. PIDs are uncommon, chronic and severe disorders, in which patients cannot mount a sufficiently protective immune response, leading to an increased susceptibility to infections. This review addresses the current practices for the prevention of infection in children and adolescents with PIDs, particular covering immunisations and antimicrobial prophylaxis. Over recent years, there have been major advances in molecular and cellular understanding in the field of PIDs. Many different disorders are recognised with variable spectra of infection susceptibility depending on the particular aspects of the immune response that are affected. Immunoglobulin prophylaxis is the mainstay of treatment for PIDs and provides passive protection. Prophylactic antimicrobials are efficacious in children and adolescents with predominant defects in primary T cell immunodeficiency diseases and phagocytic disorders, and also with predominant defects in antibody production. Prophylactic antibiotics are suggested for patients with antibody deficiency diseases if recurrent infections exceed three per year, if severe infections occur despite adequate immunoglobulin replacement and in hypogammaglobulinaemic patients who have bronchiectasis. Certain immunisations are effective in antibody deficiencies, T cell deficiencies, complement deficiencies and phagocytic disorders. There are remarkably few published data relating to clinical management aimed at preventing infectious complications in children and adolescents with PIDs. The cornerstones of the prevention of infection in most PID patients are: antimicrobial prophylaxis, appropriate vaccination, immunoglobulin replacement, for the more severe cases, and regular ongoing follow-up.

  5. Human IL-21 and IL-21R deficiencies: two novel entities of primary immunodeficiency.

    PubMed

    Kotlarz, Daniel; Ziętara, Natalia; Milner, Joshua D; Klein, Christoph

    2014-12-01

    This review highlights the recent identification of human interleukin-21 (IL-21) and interleukin-21 receptor (IL-21R) deficiencies as novel entities of primary immunodeficiency. We recently described the first patients with IL-21R deficiency who had cryptosporidial infections associated with chronic cholangitis and liver disease. All IL-21R-deficient patients suffered from recurrent respiratory tract infections. Immunological work-up revealed impaired B cell proliferation and immunoglobulin class-switch, reduced T cell effector functions, and variable natural killer cell dysfunctions. Recently, these findings have been extended by the discovery of one patient with a mutation in the IL21 gene. This patient predominantly manifested with very early onset inflammatory bowel disease and recurrent respiratory infections. Laboratory examination showed reduced circulating B cells and impaired B cell class-switch. Human IL-21 and IL-21R deficiencies cause severe, primary immunodeficiency reminiscent of common variable immunodeficiency. Early diagnosis is critical to prevent life-threatening complications, such as secondary liver failure. In view of the critical role of IL-21 in controlling immune homeostasis, early hematopoietic stem cell transplantation might be considered as therapeutic intervention in affected children.

  6. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice. [X Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-04-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F/sub 1/ (BLCF/sub 1/) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF/sub 1/ mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (..mu..-suppressed) BLCF/sub 1/ mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the ..mu..-suppressed mice that resisted a sporozoite challenge suggests amore » minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF/sub 1/ mice against a P. berghei sporozoite infection.« less

  7. Haematopoietic development and immunological function in the absence of cathepsin D

    PubMed Central

    Tulone, Calogero; Uchiyama, Yasuo; Novelli, Marco; Grosvenor, Nicholas; Saftig, Paul; Chain, Benjamin M

    2007-01-01

    Background Cathepsin D is a well-characterized aspartic protease expressed ubiquitously in lysosomes. Cathepsin D deficiency is associated with a spectrum of pathologies leading ultimately to death. Cathepsin D is expressed at high levels in many cells of the immune system, but its role in immune function is not well understood. This study examines the reconstitution and function of the immune system in the absence of cathepsin D, using bone marrow radiation chimaeras in which all haematopoietic cells are derived from cathepsin D deficient mice. Results Cathepsin D deficient bone marrow cells fully reconstitute the major cellular components of both the adaptive and innate immune systems. Spleen cells from cathepsin D deficient chimaeric mice contained an increased number of autofluorescent granules characteristic of lipofuscin positive lysosomal storage diseases. Biochemical and ultrastructural changes in cathepsin D deficient spleen are consistent with increased autolysosomal activity. Chimaeric mice were immunised with either soluble (dinitrophenylated bovine gamma globulin) or particulate (sheep red blood cells) antigens. Both antigens induced equivalent immune responses in wild type or cathepsin D deficient chimaeras. Conclusion All the parameters of haematopoietic reconstitution and adaptive immunity which were measured in this study were found to be normal in the absence of cathepsin D, even though cathepsin D deficiency leads to dysregulation of lysosomal function. PMID:17897442

  8. A novel DNMT1 mutation associated with early onset hereditary sensory and autonomic neuropathy, cataplexy, cerebellar atrophy, scleroderma, endocrinopathy, and common variable immune deficiency.

    PubMed

    Fox, Robin; Ealing, John; Murphy, Helen; Gow, David P; Gosal, David

    2016-09-01

    DNA methyltransferase 1 (DNMT1) is an enzyme which has a role in methylation of DNA, gene regulation, and chromatin stability. Missense mutations in the DNMT1 gene have been previously associated with two neurological syndromes: hereditary sensory and autonomic neuropathy type 1 with dementia and deafness (HSAN1E) and autosomal dominant cerebellar ataxia, deafness, and narcolepsy (ADCA-DN). We report a case showing overlap of both of these syndromes plus associated clinical features of common variable immune deficiency, scleroderma, and endocrinopathy that could also be mutation associated. Our patient was found to be heterozygous for a previously unreported frameshift mutation, c.1635_1637delCAA p.(Asn545del) in the DNMT1 gene exon 20. This case displays both the first frameshift mutation described in the literature which is associated with a phenotype with a high degree of overlap between HSAN1E and ADCA-DN and early age of onset (c. 8 years). Our case is also of interest as the patient displays a number of new non-neurological features, which could also be DNMT1 mutation related. © 2016 Peripheral Nerve Society.

  9. Lower Selenoprotein T Expression and Immune Response in the Immune Organs of Broilers with Exudative Diathesis Due to Selenium Deficiency.

    PubMed

    Pan, Tingru; Liu, Tianqi; Tan, Siran; Wan, Na; Zhang, Yiming; Li, Shu

    2018-04-01

    The objective of the present study was to investigate whether dietary selenium (Se) deficiency would affect the expression of selenoprotein T (SelT) and immune response in the immune organs of broilers. Changes in expression of inflammatory cytokines and oxidative stress response caused by Se deficiency can lead to organism damage, which in turn leads to immune response. Sixty (1-day-old) broilers were divided into the control group and Se-deficiency group. Animal models with exudative diathesis were duplicated in the broilers by feeding them Se-deficient diet for 20 days. After the Se-deficient group exhibited symptoms of exudative diathesis, all the broilers were euthanized, and their immune organs were taken for analysis. The tissues including spleen, bursa of Fabricius, and thymus were treated to determine the pathological changes (including microscopic and ultramicroscopic), the messenger RNA (mRNA) expression levels of SelT and its synthetase (SecS and SPS1), cytokine mRNA expression levels, and antioxidant status. The microscopic and ultramicroscopic analyses showed that immune tissues were obviously injured in the Se-deficient group. The mRNA expression of SelT was decreased compared with that in the control group. Meanwhile, the mRNA expression levels of SecS and SPS1 were downregulated. In the Se-deficient group, the mRNA expression levels of IL-1R and IL-1β were higher than those of three control organs. Additionally, the IL-2 and INF-γ mRNA expression levels were lower than those of the control group. The activity of CAT was decreased, and the contents of H 2 O 2 and •OH were increased due to Se deficiency. Pearson method analysis showed that the expression of SelT had a positive correlation with IL-2, INF-γ, SecS, and SPS1 and a negative correlation with IL-1R and IL-1β. In summary, these data indicated that Se-deficient diet decreased the SelT expression and its regulation of oxidative stress, and it inhibited a pleiotropic mechanism of the immune response.

  10. Homologous recombination deficiency and host anti-tumor immunity in triple-negative breast cancer.

    PubMed

    Telli, M L; Stover, D G; Loi, S; Aparicio, S; Carey, L A; Domchek, S M; Newman, L; Sledge, G W; Winer, E P

    2018-05-07

    Triple-negative breast cancer (TNBC) is associated with worse outcomes relative to other breast cancer subtypes. Chemotherapy remains the standard-of-care systemic therapy for patients with localized or metastatic disease, with few biomarkers to guide benefit. We will discuss recent advances in our understanding of two key biological processes in TNBC, homologous recombination (HR) DNA repair deficiency and host anti-tumor immunity, and their intersection. Recent advances in our understanding of homologous recombination (HR) deficiency, including FDA approval of PARP inhibitor olaparib for BRCA1 or BRCA2 mutation carriers, and host anti-tumor immunity in TNBC offer potential for new and biomarker-driven approaches to treat TNBC. Assays interrogating HR DNA repair capacity may guide treatment with agents inducing or targeting DNA damage repair. Tumor infiltrating lymphocytes (TILs) are associated with improved prognosis in TNBC and recent efforts to characterize infiltrating immune cell subsets and activate host anti-tumor immunity offer promise, yet challenges remain particularly in tumors lacking pre-existing immune infiltrates. Advances in these fields provide potential biomarkers to stratify patients with TNBC and guide therapy: induction of DNA damage in HR-deficient tumors and activation of existing or recruitment of host anti-tumor immune cells. Importantly, these advances provide an opportunity to guide use of existing therapies and development of novel therapies for TNBC. Efforts to combine therapies that exploit HR deficiency to enhance the activity of immune-directed therapies offer promise. HR deficiency remains an important biomarker target and potentially effective adjunct to enhance immunogenicity of 'immune cold' TNBCs.

  11. Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit W-sh/W-sh mice.

    PubMed

    Piconese, Silvia; Costanza, Massimo; Musio, Silvia; Tripodo, Claudio; Poliani, Pietro L; Gri, Giorgia; Burocchi, Alessia; Pittoni, Paola; Gorzanelli, Andrea; Colombo, Mario P; Pedotti, Rosetta

    2011-04-01

    Mast cell (MC)-deficient c-Kit mutant Kit(W/W-v) mice are protected against experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, suggesting a detrimental role for MCs in this disease. To further investigate the role of MCs in EAE, we took advantage of a recently characterized model of MC deficiency, Kit(W-sh/W-sh). Surprisingly, we observed that myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced chronic EAE was exacerbated in Kit(W-sh/W-sh) compared with Kit(+/+) mice. Kit(W-sh/W-sh) mice showed more inflammatory foci in the central nervous system (CNS) and increased T-cell response against myelin. To understand whether the discrepant results obtained in Kit(W-sh/W-sh) and in Kit(W/W-v) mice were because of the different immunization protocols, we induced EAE in these two strains with varying doses of MOG(35-55) and adjuvants. Although Kit(W-sh/W-sh) mice exhibited exacerbated EAE under all immunization protocols, Kit(W/W-v) mice were protected from EAE only when immunized with high, but not low, doses of antigen and adjuvants. Kit(W-sh/W-sh) mice reconstituted systemically, but not in the CNS, with bone marrow-derived MCs still developed exacerbated EAE, indicating that protection from disease could be exerted by MCs mainly in the CNS, and/or by other cells possibly dysregulated in Kit(W-sh/W-sh) mice. In summary, these data suggest to reconsider MC contribution to EAE, taking into account the variables of using different experimental models and immunization protocols.

  12. Genetics Home Reference: activated PI3K-delta syndrome

    MedlinePlus

    ... link) National Institute of Allergy and Infectious Diseases: Primary Immune Deficiency Diseases Educational Resources (6 links) American Academy of Allergy, Asthma, and Immunology: Recurrent Infections Cancer.Net: Lymphoma--Non-Hodgkin Immune Deficiency Foundation: The Immune System MalaCards: ...

  13. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells

    PubMed Central

    Frencher, James T.; Shen, Hongbo; Yan, Lin; Wilson, Jessica O.; Freitag, Nancy E.; Rizzo, Alicia N.; Chen, Crystal Y.; Chen, Zheng W.

    2014-01-01

    Whereas infection or immunization of humans/primates with microbes coproducing HMBPP/IPP can remarkably activate Vγ2Vδ2 T cells, in vivo studies have not been done to dissect HMBPP- and IPP-driven expansion, pulmonary trafficking, effector functions, and memory polarization of Vγ2Vδ2 T cells. We define these phosphoantigen-host interplays by comparative immunizations of macaques with the HMBPP/IPP-coproducing Listeria ΔactA prfA* and HMBPP-deficient Listeria ΔactAΔgcpE prfA* mutant. The HMBPP-deficient ΔgcpE mutant shows lower ability to expand Vγ2Vδ2 T cells in vitro than the parental HMBPP-producing strain but displays comparably attenuated infectivity or immunogenicity. Respiratory immunization of macaques with the HMBPP-deficient mutant elicits lower pulmonary and systemic responses of Vγ2Vδ2 T cells compared with the HMBPP-producing vaccine strain. Interestingly, HMBPP-deficient mutant reimmunization or boosting elicits enhanced responses of Vγ2Vδ2 T cells, but the magnitude is lower than that by HMBPP-producing listeria. HMBPP-deficient listeria differentiated fewer Vγ2Vδ2 T effector cells capable of coproducing IFN-γ and TNF-α and inhibiting intracellular listeria than HMBPP-producing listeria. Furthermore, HMBPP deficiency in listerial immunization influences memory polarization of Vγ2Vδ2 T cells. Thus, both HMBPP and IPP production in listerial immunization or infection elicit systemic/pulmonary responses and differentiation of Vγ2Vδ2 T cells, but a role for HMBPP is more dominant. Findings may help devise immune intervention. PMID:25114162

  14. Retinoic Acid as a Modulator of T Cell Immunity

    PubMed Central

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  15. Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology.

    PubMed

    Broderick, Nichole A; Buchon, Nicolas; Lemaitre, Bruno

    2014-05-27

    To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. The guts of animals are in constant association with microbes, and these interactions are understood to have important roles in animal development and physiology. Yet we know little about the mechanisms underlying the establishment and function of these associations. Here, we used the fruit fly to understand how the microbiota affects host function. Importantly, we found that the microbiota has far-reaching effects on host physiology, ranging from immunity to gut structure. Our results validate the notion that important insights on complex host-microbe relationships can be obtained from the use of a well-established and genetically tractable invertebrate model. Copyright © 2014 Broderick et al.

  16. Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID): Molecular Pathogenesis and Clinical Manifestations.

    PubMed

    Bradford, Kathryn L; Moretti, Federico A; Carbonaro-Sarracino, Denise A; Gaspar, Hubert B; Kohn, Donald B

    2017-10-01

    Deficiency of adenosine deaminase (ADA, EC3.5.4.4), a housekeeping enzyme of purine metabolism encoded by the Ada gene, is a cause of human severe combined immune deficiency (SCID). Numerous deleterious mutations occurring in the ADA gene have been found in patients with profound lymphopenia (T - B - NK - ), thus underscoring the importance of functional purine metabolism for the development of the immune defense. While untreated ADA SCID is a fatal disorder, there are multiple life-saving therapeutic modalities to restore ADA activity and reconstitute protective immunity, including enzyme replacement therapy (ERT), allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) with autologous gene-corrected hematopoietic stem cells (HSC). We review the pathogenic mechanisms and clinical manifestations of ADA SCID.

  17. [Indicators of the persistent pro-inflammatory activation of the immune system in depression].

    PubMed

    Cubała, Wiesław Jerzy; Godlewska, Beata; Trzonkowski, Piotr; Landowski, Jerzy

    2006-01-01

    The aetiology of depression remains tentative. Current hypotheses on the aetiology of the depressive disorder tend to integrate monoaminoergic, neuroendocrine and immunological concepts of depression. A number of research papers emphasise the altered hormonal and immune status of patients with depression with pronounced cytokine level variations. Those studies tend to link the variable course of depression in relation to the altered proinflammatory activity of the immune system. The results of the studies on the activity of the selected elements of the immune system are ambiguous indicating both increased and decreased activities of its selected elements. However, a number of basic and psychopharmacological studies support the hypothesis of the increased proinflammatory activity of the immune system in the course of depression which is the foundation for the immunological hypothesis of depression. The aim of this paper is to review the functional abnormalities that are observed in depression focusing on the monoaminoergic deficiency and increased immune activation as well as endocrine dysregulation. This paper puts together and discusses current studies related to this subject with a detailed insight into interactions involving nervous, endocrine and immune systems.

  18. Hospital admissions for vitamin D related conditions and subsequent immune-mediated disease: record-linkage studies

    PubMed Central

    2013-01-01

    Background Previous studies have suggested that there may be an association between vitamin D deficiency and the risk of developing immune-mediated diseases. Methods We analyzed a database of linked statistical records of hospital admissions and death registrations for the whole of England (from 1999 to 2011). Rate ratios for immune-mediated disease were determined, comparing vitamin D deficient cohorts (individuals admitted for vitamin D deficiency or markers of vitamin D deficiency) with comparison cohorts. Results After hospital admission for either vitamin D deficiency, osteomalacia or rickets, there were significantly elevated rates of Addison’s disease, ankylosing spondylitis, autoimmune hemolytic anemia, chronic active hepatitis, celiac disease, Crohn’s disease, diabetes mellitus, pemphigoid, pernicious anemia, primary biliary cirrhosis, rheumatoid arthritis, Sjogren’s syndrome, systemic lupus erythematosus, thyrotoxicosis, and significantly reduced risks for asthma and myxoedema. Conclusions This study shows that patients with vitamin D deficiency may have an increased risk of developing some immune-mediated diseases, although we cannot rule out reverse causality or confounding. Further study of these associations is warranted and these data may aid further public health studies. PMID:23885887

  19. Neonatal bone marrow transplantation of ADA-deficient SCID mice results in immunologic reconstitution despite low levels of engraftment and an absence of selective donor T lymphoid expansion

    PubMed Central

    Carbonaro, Denise A.; Jin, Xiangyang; Cotoi, Daniel; Mi, Tiejuan; Yu, Xiao-Jin; Skelton, Dianne C.; Dorey, Frederick; Kellems, Rodney E.; Blackburn, Michael R.

    2008-01-01

    Adenosine deaminase (ADA)–deficient severe combined immune deficiency (SCID) may be treated by allogeneic hematopoietic stem cell transplantation without prior cytoreductive conditioning, although the mechanism of immune reconstitution is unclear. We studied this process in a murine gene knockout model of ADA-deficient SCID. Newborn ADA-deficient pups received transplants of intravenous infusion of normal congenic bone marrow, without prior cytoreductive conditioning, which resulted in long-term survival, multisystem correction, and nearly normal lymphocyte numbers and mitogenic proliferative responses. Only 1% to 3% of lymphocytes and myeloid cells were of donor origin without a selective expansion of donor-derived lymphocytes; immune reconstitution was by endogenous, host-derived ADA-deficient lymphocytes. Preconditioning of neonates with 100 to 400 cGy of total body irradiation before normal donor marrow transplant increased the levels of engrafted donor cells in a radiation dose–dependent manner, but the chimerism levels were similar for lymphoid and myeloid cells. The absence of selective reconstitution by donor T lymphocytes in the ADA-deficient mice indicates that restoration of immune function occurred by rescue of endogenous ADA-deficient lymphocytes through cross-correction from the engrafted ADA-replete donor cells. Thus, ADA-deficient SCID is unique in its responses to nonmyeloablative bone marrow transplantation, which has implications for clinical bone marrow transplantation or gene therapy. PMID:18356486

  20. Neonatal bone marrow transplantation of ADA-deficient SCID mice results in immunologic reconstitution despite low levels of engraftment and an absence of selective donor T lymphoid expansion.

    PubMed

    Carbonaro, Denise A; Jin, Xiangyang; Cotoi, Daniel; Mi, Tiejuan; Yu, Xiao-Jin; Skelton, Dianne C; Dorey, Frederick; Kellems, Rodney E; Blackburn, Michael R; Kohn, Donald B

    2008-06-15

    Adenosine deaminase (ADA)-deficient severe combined immune deficiency (SCID) may be treated by allogeneic hematopoietic stem cell transplantation without prior cytoreductive conditioning, although the mechanism of immune reconstitution is unclear. We studied this process in a murine gene knockout model of ADA-deficient SCID. Newborn ADA-deficient pups received transplants of intravenous infusion of normal congenic bone marrow, without prior cytoreductive conditioning, which resulted in long-term survival, multisystem correction, and nearly normal lymphocyte numbers and mitogenic proliferative responses. Only 1% to 3% of lymphocytes and myeloid cells were of donor origin without a selective expansion of donor-derived lymphocytes; immune reconstitution was by endogenous, host-derived ADA-deficient lymphocytes. Preconditioning of neonates with 100 to 400 cGy of total body irradiation before normal donor marrow transplant increased the levels of engrafted donor cells in a radiation dose-dependent manner, but the chimerism levels were similar for lymphoid and myeloid cells. The absence of selective reconstitution by donor T lymphocytes in the ADA-deficient mice indicates that restoration of immune function occurred by rescue of endogenous ADA-deficient lymphocytes through cross-correction from the engrafted ADA-replete donor cells. Thus, ADA-deficient SCID is unique in its responses to nonmyeloablative bone marrow transplantation, which has implications for clinical bone marrow transplantation or gene therapy.

  1. Bruton’s tyrosine kinase deficiency inhibits autoimmune arthritis but fails to block immune complex-mediated inflammatory arthritis

    PubMed Central

    Nyhoff, Lindsay E.; Barron, Bridgette; Johnson, Elizabeth M.; Bonami, Rachel H.; Maseda, Damian; Fensterheim, Benjamin A.; Han, Wei; Blackwell, Timothy S.; Crofford, Leslie J.; Kendall, Peggy L.

    2017-01-01

    Objective Bruton’s Tyrosine Kinase (BTK) is a B cell signaling protein that also contributes to innate immunity. BTK-inhibitors prevent autoimmune arthritis, but have off-target effects, and the mechanisms of protection remain unknown. These studies used genetic deletion to investigate the role of BTK in adaptive and innate immune responses that drive inflammatory arthritis. Methods Btk-deficient K/BxN mice were generated to study the role of BTK in a spontaneous model that requires both adaptive and innate immunity. The K/BxN serum transfer model was used to bypass the adaptive system and elucidate the role of BTK in innate immune contributions to arthritis. Results Btk-deficiency conferred disease protection to K/BxN mice, confirming BTK-inhibitor outcomes. B lymphocytes were profoundly reduced, more than in other Btk-deficient models. Subset analysis revealed loss at all developmental stages. Germinal center B cells were also decreased, with downstream effects on T follicular helper numbers, and greatly reduced autoantibodies. In contrast, total IgG was only mildly decreased. Strikingly, and in contrast to small molecule inhibitors, Btk-deficiency had no effect on the serum transfer model of arthritis. Conclusions BTK contributes to autoimmune arthritis primarily via its role in B cell signaling, not innate immune components. PMID:26945549

  2. Dietary selenium in adjuvant therapy of viral and bacterial infections.

    PubMed

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. © 2015 American Society for Nutrition.

  3. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections12

    PubMed Central

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. PMID:25593145

  4. Infectious diseases and immunological responses in adult subjects with lifetime untreated, congenital GH deficiency.

    PubMed

    Campos, Viviane C; Barrios, Mônica R; Salvatori, Roberto; de Almeida, Roque Pacheco; de Melo, Enaldo V; Nascimento, Ana C S; de Jesus, Amélia Ribeiro; Aguiar-Oliveira, Manuel H

    2016-10-01

    Growth hormone is important for the development and function of the immune system, but there is controversy on whether growth hormone deficiency is associated to immune disorders. A model of isolated growth hormone deficiency may clarify if the lack of growth hormone is associated with increased susceptibility to infections, or with an altered responsiveness of the immune system. We have studied the frequency of infectious diseases and the immune function in adults with congenital, untreated isolated growth hormone deficiency. In a cross-sectional study, 35 adults with isolated growth hormone deficiency due to a homozygous mutation in the growth hormone releasing hormone receptor gene and 31 controls were submitted to a clinical questionnaire, physical examination serology for tripanosomiasis, leishmaniasis, HIV, tetanus, hepatitis B and C, and serum total immunoglobulin G, M, E and A measurement. The immune response was evaluated in a subset of these subjects by skin tests and response to vaccination for hepatitis B, tetanus, and bacillus Calmette-Guérin. There was no difference between the groups in history of infectious diseases and baseline serology. Isolated growth hormone deficiency subjects had lower total IgG, but within normal range. There was no difference in the response to any of the vaccinations or in the positivity to protein Purified Derived, streptokinase or candidin. Adult untreated isolated growth hormone deficiency does not cause an increased frequency of infectious diseases, and does not alter serologic tests, but is associated with lower total IgG levels, without detectable clinical impact.

  5. Vitamin D Deficiency in a Multiethnic Healthy Control Cohort and Altered Immune Response in Vitamin D Deficient European-American Healthy Controls

    PubMed Central

    Shah, Hemangi B.; Robertson, Julie M.; Fife, Dustin A.; Maecker, Holden T.; Du, Hongwu; Fathman, Charles G.; Chakravarty, Eliza F.; Scofield, R. Hal; Kamen, Diane L.; Guthridge, Joel M.; James, Judith A.

    2014-01-01

    Objective In recent years, vitamin D has been shown to possess a wide range of immunomodulatory effects. Although there is extensive amount of research on vitamin D, we lack a comprehensive understanding of the prevalence of vitamin D deficiency or the mechanism by which vitamin D regulates the human immune system. This study examined the prevalence and correlates of vitamin D deficiency and the relationship between vitamin D and the immune system in healthy individuals. Methods Healthy individuals (n = 774) comprised of European-Americans (EA, n = 470), African–Americans (AA, n = 125), and Native Americans (NA, n = 179) were screened for 25-hydroxyvitamin D [25(OH)D] levels by ELISA. To identify the most noticeable effects of vitamin D on the immune system, 20 EA individuals with severely deficient (<11.3 ng/mL) and sufficient (>24.8 ng/mL) vitamin D levels were matched and selected for further analysis. Serum cytokine level measurement, immune cell phenotyping, and phosphoflow cytometry were performed. Results Vitamin D sufficiency was observed in 37.5% of the study cohort. By multivariate analysis, AA, NA, and females with a high body mass index (BMI, >30) demonstrate higher rates of vitamin D deficiency (p<0.05). Individuals with vitamin D deficiency had significantly higher levels of serum GM-CSF (p = 0.04), decreased circulating activated CD4+ (p = 0.04) and CD8+ T (p = 0.04) cell frequencies than individuals with sufficient vitamin D levels. Conclusion A large portion of healthy individuals have vitamin D deficiency. These individuals have altered T and B cell responses, indicating that the absence of sufficient vitamin D levels could result in undesirable cellular and molecular alterations ultimately contributing to immune dysregulation. PMID:24727903

  6. Bruton's Tyrosine Kinase Deficiency Inhibits Autoimmune Arthritis in Mice but Fails to Block Immune Complex-Mediated Inflammatory Arthritis.

    PubMed

    Nyhoff, Lindsay E; Barron, Bridgette L; Johnson, Elizabeth M; Bonami, Rachel H; Maseda, Damian; Fensterheim, Benjamin A; Han, Wei; Blackwell, Timothy S; Crofford, Leslie J; Kendall, Peggy L

    2016-08-01

    Bruton's tyrosine kinase (BTK) is a B cell signaling protein that also contributes to innate immunity. BTK inhibitors prevent autoimmune arthritis but have off-target effects, and the mechanisms of protection remain unknown. We undertook these studies using genetic deletion to investigate the role of BTK in adaptive and innate immune responses that drive inflammatory arthritis. BTK-deficient K/BxN mice were generated to study the role of BTK in a spontaneous model that requires both adaptive and innate immunity. The K/BxN serum-transfer model was used to bypass the adaptive system and elucidate the role of BTK in innate immune contributions to arthritis. BTK deficiency conferred disease protection to K/BxN mice, confirming outcomes of BTK inhibitors. B lymphocytes were profoundly reduced, more than in other models of BTK deficiency. Subset analysis revealed loss of B cells at all developmental stages. Germinal center B cells were also decreased, with downstream effects on numbers of follicular helper T cells and greatly reduced autoantibodies. In contrast, total IgG was only mildly decreased. Strikingly, and in contrast to small molecule inhibitors, BTK deficiency had no effect in the serum-transfer model of arthritis. BTK contributes to autoimmune arthritis primarily through its role in B cell signaling and not through innate immune components. © 2016, American College of Rheumatology.

  7. A Tumor Profile in Primary Immune Deficiencies Challenges the Cancer Immune Surveillance Concept.

    PubMed

    Satgé, Daniel

    2018-01-01

    Under the concept of cancer immune surveillance, individuals with primary immune deficiencies would be expected to develop many more malignancies and show an excess of all types of cancers, compared to people with a normal immune system. A review of the nine most frequent and best-documented human conditions with primary immune deficiency reveals a 1.6- to 2.3-fold global increase of cancer in the largest epidemiological studies. However, the spectrum of cancer types with higher frequencies is narrow, limited mainly to lymphoma, digestive tract cancers, and virus-induced cancers. Increased lymphoma is also reported in animal models of immune deficiency. Overstimulation of leukocytes, chronic inflammation, and viruses explain this tumor profile. This raises the question of cancers being foreign organisms or tissues. Organisms, such as bacteria, viruses, and parasites as well as non-compatible grafts are seen as foreign (non-self) and identified and destroyed or rejected by the body (self). As cancer cells rarely show strong (and unique) surface antibodies, their recognition and elimination by the immune system is theoretically questionable, challenging the immune surveillance concept. In the neonatal period, the immune system is weak, but spontaneous regression and good outcomes occur for some cancers, suggesting that non-immune factors are effective in controlling cancer. The idea of cancer as a group of cells that must be destroyed and eliminated appears instead as a legacy of methods and paradigms in microbiological medicine. As an alternative approach, cancer cells could be considered part of the body and could be controlled by an embryonic and neonatal environment.

  8. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model.

    PubMed

    Zhang, Baihao; Chikuma, Shunsuke; Hori, Shohei; Fagarasan, Sidonia; Honjo, Tasuku

    2016-07-26

    PD-1 (programmed-death 1), an immune-inhibitory receptor required for immune self-tolerance whose deficiency causes autoimmunity with variable severity and tissue specificity depending on other genetic factors, is expressed on activated T cells, including the transcription factor FoxP3(+) Treg cells known to play critical roles in maintaining immune tolerance. However, whether PD-1 expression by the Treg cells is required for their immune regulatory function, especially in autoimmune settings, is still unclear. We found that mice with partial FoxP3 insufficiency developed early-onset lympho-proliferation and lethal autoimmune pancreatitis only when PD-1 is absent. The autoimmune phenotype was rescued by the transfer of FoxP3-sufficient T cells, regardless of whether they were derived from WT or PD-1-deficient mice, indicating that Treg cells dominantly protect against development of spontaneous autoimmunity without intrinsic expression of PD-1. The absence of PD-1 combined with partial FoxP3 insufficiency, however, led to generation of ex-FoxP3 T cells with proinflammatory properties and expansion of effector/memory T cells that contributed to the autoimmune destruction of target tissues. Altogether, the results suggest that PD-1 and FoxP3 work collaboratively in maintaining immune tolerance mostly through nonoverlapping pathways. Thus, PD-1 is modulating the activation threshold and maintaining the balance between regulatory and effector T cells, whereas FoxP3 is sufficient for dominant regulation through maintaining the integrity of the Treg function. We suggest that genetic or environmental factors that even moderately affect the expression of both PD-1 and FoxP3 can cause life-threatening autoimmune diseases by disrupting the T-cell homeostasis.

  9. Nonoverlapping roles of PD-1 and FoxP3 in maintaining immune tolerance in a novel autoimmune pancreatitis mouse model

    PubMed Central

    Zhang, Baihao; Chikuma, Shunsuke; Hori, Shohei; Fagarasan, Sidonia; Honjo, Tasuku

    2016-01-01

    PD-1 (programmed-death 1), an immune-inhibitory receptor required for immune self-tolerance whose deficiency causes autoimmunity with variable severity and tissue specificity depending on other genetic factors, is expressed on activated T cells, including the transcription factor FoxP3+ Treg cells known to play critical roles in maintaining immune tolerance. However, whether PD-1 expression by the Treg cells is required for their immune regulatory function, especially in autoimmune settings, is still unclear. We found that mice with partial FoxP3 insufficiency developed early-onset lympho-proliferation and lethal autoimmune pancreatitis only when PD-1 is absent. The autoimmune phenotype was rescued by the transfer of FoxP3-sufficient T cells, regardless of whether they were derived from WT or PD-1–deficient mice, indicating that Treg cells dominantly protect against development of spontaneous autoimmunity without intrinsic expression of PD-1. The absence of PD-1 combined with partial FoxP3 insufficiency, however, led to generation of ex-FoxP3 T cells with proinflammatory properties and expansion of effector/memory T cells that contributed to the autoimmune destruction of target tissues. Altogether, the results suggest that PD-1 and FoxP3 work collaboratively in maintaining immune tolerance mostly through nonoverlapping pathways. Thus, PD-1 is modulating the activation threshold and maintaining the balance between regulatory and effector T cells, whereas FoxP3 is sufficient for dominant regulation through maintaining the integrity of the Treg function. We suggest that genetic or environmental factors that even moderately affect the expression of both PD-1 and FoxP3 can cause life-threatening autoimmune diseases by disrupting the T-cell homeostasis. PMID:27410049

  10. Autosomal recessive PGM3 mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment

    PubMed Central

    Zhang, Yu; Yu, Xiaomin; Ichikawa, Mie; Lyons, Jonathan J.; Datta, Shrimati; Lamborn, Ian T.; Jing, Huie; Kim, Emily S.; Biancalana, Matthew; Wolfe, Lynne A.; DiMaggio, Thomas; Matthews, Helen F.; Kranick, Sarah M.; Stone, Kelly D.; Holland, Steven M.; Reich, Daniel S.; Hughes, Jason D.; Mehmet, Huseyin; McElwee, Joshua; Freeman, Alexandra F.; Freeze, Hudson H.; Su, Helen C.; Milner, Joshua D.

    2014-01-01

    Background Identifying genetic syndromes that lead to significant atopic disease can open new pathways for investigation and intervention in allergy. Objective To define a genetic syndrome of severe atopy, elevated serum IgE, immune deficiency, autoimmunity, and motor and neurocognitive impairment. Methods Eight patients from two families who had similar syndromic features were studied. Thorough clinical evaluations, including brain MRI and sensory evoked potentials, were performed. Peripheral lymphocyte flow cytometry, antibody responses, and T cell cytokine production were measured. Whole exome sequencing was performed to identify disease-causing mutations. Immunoblotting, qRT-PCR, enzymatic assays, nucleotide sugar and sugar phosphate analyses along with MALDI-TOF mass spectrometry of glycans were used to determine the molecular consequences of the mutations. Results Marked atopy and autoimmunity were associated with increased TH2 and TH17 cytokine production by CD4+ T cells. Bacterial and viral infection susceptibility were noted along with T cell lymphopenia, particularly of CD8+ T cells, and reduced memory B cells. Apparent brain hypomyelination resulted in markedly delayed evoked potentials and likely contributed to neurological abnormalities. Disease segregated with novel autosomal recessive mutations in a single gene, phosphoglucomutase 3 (PGM3). Although PGM3 protein expression was variably diminished, impaired function was demonstrated by decreased enzyme activity and reduced UDP-GlcNAc, along with decreased O- and N-linked protein glycosylation in patients’ cells. These results define a new Congenital Disorder of Glycosylation. Conclusions Autosomal recessive, hypomorphic PGM3 mutations underlie a disorder of severe atopy, immune deficiency, autoimmunity, intellectual disability and hypomyelination. PMID:24589341

  11. Regulation of contact sensitivity in non-obese diabetic (NOD) mice by innate immunity.

    PubMed

    Szczepanik, Marian; Majewska-Szczepanik, Monika; Wong, Florence S; Kowalczyk, Paulina; Pasare, Chandrashekhar; Wen, Li

    2018-06-25

    Genetic background influences allergic immune responses to environmental stimuli. Non-obese diabetic (NOD) mice are highly susceptible to environmental stimuli. Little is known about the interaction of autoimmune genetic factors with innate immunity in allergies, especially skin hypersensitivity. To study the interplay of innate immunity and autoimmune genetic factors in contact hypersensitivity (CHS) by using various innate immunity-deficient NOD mice. Toll-like receptor (TLR) 2-deficient, TLR9-deficient and MyD88-deficient NOD mice were used to investigate CHS. The cellular mechanism was determined by flow cytometry in vitro and adoptive cell transfer in vivo. To investigate the role of MyD88 in dendritic cells (DCs) in CHS, we also used CD11c MyD88+  MyD88 -/- NOD mice, in which MyD88 is expressed only in CD11c + cells. We found that innate immunity negatively regulates CHS, as innate immunity-deficient NOD mice developed exacerbated CHS accompanied by increased numbers of skin-migrating CD11c + DCs expressing higher levels of major histocompatibility complex II and CD80. Moreover, MyD88 -/- NOD mice had increased numbers of CD11c +  CD207 -  CD103 + DCs and activated T effector cells in the skin-draining lymph nodes. Strikingly, re-expression of MyD88 in CD11c + DCs (CD11c MyD88+  MyD88 -/- NOD mice) restored hyper-CHS to a normal level in MyD88 -/- NOD mice. Our results suggest that the autoimmune-prone NOD genetic background aggravates CHS regulated by innate immunity, through DCs and T effector cells. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. HIV Disease: Current Concepts.

    ERIC Educational Resources Information Center

    Keeling, Richard P.

    1993-01-01

    Describes human immunodeficiency virus (HIV), newly characterized human retrovirus which causes chronic, progressive, immune deficiency disease, the most severe phase of which is Acquired Immune Deficiency Syndrome (AIDS). Reviews most important current epidemiologic, clinical, and virologic information about HIV and HIV disease and provides…

  13. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity.

    PubMed

    Chen, Shasha; Cai, Chenxu; Li, Zehua; Liu, Guangao; Wang, Yuande; Blonska, Marzenna; Li, Dan; Du, Juan; Lin, Xin; Yang, Meixiang; Dong, Zhongjun

    2017-02-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (T FH ) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in T FH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient T FH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. © 2017 Chen et al.

  14. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity

    PubMed Central

    Cai, Chenxu; Liu, Guangao; Wang, Yuande; Du, Juan; Lin, Xin; Yang, Meixiang

    2017-01-01

    Signaling lymphocytic activation molecule (SLAM)–associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. PMID:28049627

  15. Quadruple Burden of HIV/AIDS, Tuberculosis, Chronic Intestinal Parasitoses, and Multiple Micronutrient Deficiency in Ethiopia: A Summary of Available Findings

    PubMed Central

    Amare, Bemnet; Moges, Beyene; Mulu, Andargachew; Yifru, Sisay; Kassu, Afework

    2015-01-01

    Human immunodeficiency virus (HIV), tuberculosis (TB), and helminthic infections are among the commonest public health problems in the sub-Saharan African countries like Ethiopia. Multiple micronutrient deficiencies also known as the “hidden hunger” are common in people living in these countries either playing a role in their pathogenesis or as consequences. This results in a vicious cycle of multiple micronutrient deficiencies and infection/disease progression. As infection is profoundly associated with nutritional status resulting from decreased nutrient intake, decreased nutrient absorption, and nutrient losses, micronutrient deficiencies affect immune system and impact infection and diseases progression. As a result, micronutrients, immunity, and infection are interrelated. The goal of this review is therefore to provide a summary of available findings regarding the “quadruple burden trouble” of HIV, TB, intestinal parasitic infections, and multiple micronutrient deficiencies to describe immune-modulating effects related to disorders. PMID:25767808

  16. Quadruple burden of HIV/AIDS, tuberculosis, chronic intestinal parasitoses, and multiple micronutrient deficiency in ethiopia: a summary of available findings.

    PubMed

    Amare, Bemnet; Moges, Beyene; Mulu, Andargachew; Yifru, Sisay; Kassu, Afework

    2015-01-01

    Human immunodeficiency virus (HIV), tuberculosis (TB), and helminthic infections are among the commonest public health problems in the sub-Saharan African countries like Ethiopia. Multiple micronutrient deficiencies also known as the "hidden hunger" are common in people living in these countries either playing a role in their pathogenesis or as consequences. This results in a vicious cycle of multiple micronutrient deficiencies and infection/disease progression. As infection is profoundly associated with nutritional status resulting from decreased nutrient intake, decreased nutrient absorption, and nutrient losses, micronutrient deficiencies affect immune system and impact infection and diseases progression. As a result, micronutrients, immunity, and infection are interrelated. The goal of this review is therefore to provide a summary of available findings regarding the "quadruple burden trouble" of HIV, TB, intestinal parasitic infections, and multiple micronutrient deficiencies to describe immune-modulating effects related to disorders.

  17. Inherited BCL10 deficiency impairs hematopoietic and nonhematopoietic immunity

    PubMed Central

    Torres, Juan Manuel; Martinez-Barricarte, Rubén; García-Gómez, Sonia; Mazariegos, Marina S.; Itan, Yuval; Boisson, Bertrand; ρlvarez, Rita; Jiménez-Reinoso, Anaïs; del Pino, Lucia; Rodríguez-Pena, Rebeca; Ferreira, Antonio; Hernández-Jiménez, Enrique; Toledano, Victor; Cubillos-Zapata, Carolina; Díaz-Almirón, Mariana; López-Collazo, Eduardo; Unzueta-Roch, José L.; Sánchez-Ramón, Silvia; Regueiro, Jose R.; López-Granados, Eduardo; Casanova, Jean-Laurent; Pérez de Diego, Rebeca

    2014-01-01

    Heterotrimers composed of B cell CLL/lymphoma 10 (BCL10), mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), and caspase recruitment domain–containing (CARD) family adaptors play a role in NF-κB activation and have been shown to be involved in both the innate and the adaptive arms of immunity in murine models. Moreover, individuals with inherited defects of MALT1, CARD9, and CARD11 present with immunological and clinical phenotypes. Here, we characterized a case of autosomal-recessive, complete BCL10 deficiency in a child with a broad immunodeficiency, including defects of both hematopoietic and nonhematopoietic immunity. The patient died at 3 years of age and was homozygous for a loss-of-expression, loss-of-function BCL10 mutation. The effect of BCL10 deficiency was dependent on the signaling pathway, and, for some pathways, the cell type affected. Despite the noted similarities to BCL10 deficiency in mice, including a deficient adaptive immune response, human BCL10 deficiency in this patient resulted in a number of specific features within cell populations. Treatment of the patient’s myeloid cells with a variety of pathogen-associated molecular pattern molecules (PAMPs) elicited a normal response; however, NF-κB–mediated fibroblast functions were dramatically impaired. The results of this study indicate that inherited BCL10 deficiency should be considered in patients with combined immunodeficiency with B cell, T cell, and fibroblast defects. PMID:25365219

  18. Case report: Noonan-like multiple central giant cell granuloma syndrome.

    PubMed

    Bitton, Natalie; Alexander, Stanley; Ruggiero, Salvatore; Parameswaran, Ashish; Russo, Antonino; Ferguson, Fred

    2012-01-01

    The purpose of this report was to: summarize the care of a child between the ages of 12 to 16 years old born with Noonan-like central giant cell syndrome and unrelated common variable immune deficiency; provide information on the dental management of patients with Noonan's syndrome; and present a brief discussion of the recent associated genetic findings. A review of the common features of Noonan syndrome and Noonan-like central giant cell syndrome is also provided.

  19. Algorithms For Integrating Nonlinear Differential Equations

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  20. Infection-derived lipids elicit a novel immune deficiency circuitry in arthropods

    USDA-ARS?s Scientific Manuscript database

    The insect Immune Deficiency (IMD) pathway resembles the tumor necrosis factor receptor network in mammals and senses diaminopimelic-type peptidoglycans present in Gram-negative bacteria. Whether unidentified chemical moieties elicit the IMD signaling cascade remains unknown. Here, we disclose thoug...

  1. Cold Urticaria, Immunodeficiency, and Autoimmunity Related to PLCG2 Deletions

    PubMed Central

    Ombrello, Michael J.; Remmers, Elaine F.; Sun, Guangping; Freeman, Alexandra F.; Datta, Shrimati; Torabi-Parizi, Parizad; Subramanian, Naeha; Bunney, Tom D.; Baxendale, Rhona W.; Martins, Marta S.; Romberg, Neil; Komarow, Hirsh; Aksentijevich, Ivona; Kim, Hun Sik; Ho, Jason; Cruse, Glenn; Jung, Mi-Yeon; Gilfillan, Alasdair M.; Metcalfe, Dean D.; Nelson, Celeste; O'Brien, Michelle; Wisch, Laura; Stone, Kelly; Douek, Daniel C.; Gandhi, Chhavi; Wanderer, Alan A.; Lee, Hane; Nelson, Stanley F.; Shianna, Kevin V.; Cirulli, Elizabeth T.; Goldstein, David B.; Long, Eric O.; Moir, Susan; Meffre, Eric; Holland, Steven M.; Kastner, Daniel L.; Katan, Matilda; Hoffman, Hal M.; Milner, Joshua D.

    2012-01-01

    Background Mendelian analysis of disorders of immune regulation can provide insight into molecular pathways associated with host defense and immune tolerance. Methods We identified three families with a dominantly inherited complex of cold-induced urticaria, antibody deficiency, and susceptibility to infection and autoimmunity. Immunophenotyping methods included flow cytometry, analysis of serum immunoglobulins and autoantibodies, lymphocyte stimulation, and enzymatic assays. Genetic studies included linkage analysis, targeted Sanger sequencing, and next-generation whole-genome sequencing. Results Cold urticaria occurred in all affected subjects. Other, variable manifestations included atopy, granulomatous rash, autoimmune thyroiditis, the presence of antinuclear antibodies, sinopulmonary infections, and common variable immunodeficiency. Levels of serum IgM and IgA and circulating natural killer cells and class-switched memory B cells were reduced. Linkage analysis showed a 7-Mb candidate interval on chromosome 16q in one family, overlapping by 3.5 Mb a disease-associated haplotype in a smaller family. This interval includes PLCG2, encoding phospholipase Cγ2 (PLCγ2), a signaling molecule expressed in B cells, natural killer cells, and mast cells. Sequencing of complementary DNA revealed heterozygous transcripts lacking exon 19 in two families and lacking exons 20 through 22 in a third family. Genomic sequencing identified three distinct in-frame deletions that cosegregated with disease. These deletions, located within a region encoding an autoinhibitory domain, result in protein products with constitutive phospholipase activity. PLCG2-expressing cells had diminished cellular signaling at 37°C but enhanced signaling at subphysiologic temperatures. Conclusions Genomic deletions in PLCG2 cause gain of PLCγ2 function, leading to signaling abnormalities in multiple leukocyte subsets and a phenotype encompassing both excessive and deficient immune function. (Funded by the National Institutes of Health Intramural Research Programs and others.) PMID:22236196

  2. Postnatal Innate Immune Development: From Birth to Adulthood

    PubMed Central

    Georgountzou, Anastasia; Papadopoulos, Nikolaos G.

    2017-01-01

    It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed. PMID:28848557

  3. AIDS Federal Policy Act of 1987. Hearings on S. 1575: To Amend the Public Health Service Act To Establish a Grant Program To Provide for Counseling and Testing Services Relating to Acquired Immune Deficiency Syndrome and To Establish Certain Prohibitions for the Purpose of Protecting Individuals with Acquired Immune Deficiency Syndrome or Related Conditions. Committee on Labor and Human Resources. United States Senate, One Hundredth Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.

    This document presents the text from two Senate hearings on the AIDS Federal Policy Act of 1987 which concerns voluntary testing for AIDS virus, education and counseling to stop the spread of AIDS (Acquired Immune Deficiency Syndrome), and confidentiality and discrimination against AIDS victims. In the first hearing, opening statements are…

  4. Prediction of selenoprotein T structure and its response to selenium deficiency in chicken immune organs.

    PubMed

    You, Lu; Liu, Ci; Yang, Zi-Jiang; Li, Ming; Li, Shu

    2014-08-01

    Selenoprotein T (SelT) is associated with the regulation of calcium homeostasis and neuroendocrine secretion. SelT can also change cell adhesion and is involved in redox regulation and cell fixation. However, the structure and function of chicken SelT and its response to selenium (Se) remains unclear. In the present study, 150 1-day-old chickens were randomly divided into a low Se group (L group, fed a Se-deficient diet containing 0.020 mg/kg Se) and a control group (C group, fed a diet containing sodium selenite at 0.2 mg/kg Se). The immune organs (spleen, thymus, and bursa of Fabricius) were collected at 15, 25, 35, 45, and 55 days of age. We performed a sequence analysis and predicted the structure and function of SelT. We also investigated the effects of Se deficiency on the expression of SelT, selenophosphate synthetase-1 (SPS1), and selenocysteine synthase (SecS) using RT-PCR and the oxidative stress in the chicken immune organs. The data showed that the coding sequence (CDS) and deduced amino acid sequence of SelT were highly similar to those of 17 other animals. Se deficiency induced lower (P < 0.05) levels of SelT, SPS1, and SecS, reduced the catalase (CAT) activity, and increased the levels of hydrogen peroxide (H2O2) and hydroxyl radical (-OH) in immune organs. In conclusion, the CDS and deduced amino acid sequence of chicken SelT are highly homologous to those of various mammals. The redox function and response to the Se deficiency of chicken SelT may be conserved. A Se-deficient diet led to a decrease in SelT, SecS, and SPS1 and induced oxidative stress in the chicken immune organs. To our knowledge, this is the first report of predictions of chicken SelT structure and function. The present study demonstrated the relationship between the selenoprotein synthases (SPS1, SecS) and SelT expression in the chicken immune organs and further confirmed oxidative stress caused by Se deficiency. Thus, the information presented in this study is helpful to understand chicken SelT structure and function. Meanwhile, the present research also confirmed the negative effects of Se deficiency on chicken immune organs.

  5. Pi (Spleen)-deficiency syndrome in tumor microenvironment is the pivotal pathogenesis of colorectal cancer immune escape.

    PubMed

    Sun, Xue-Gang; Lin, Xiao-Chang; Diao, Jian-Xin; Yu, Zhi-Ling; Li, Kun

    2016-10-01

    Cancer immunoediting consists of three sequential phases: elimination, equilibrium, and escape. For colorectal adenoma-carcinoma sequence, the adenoma dysplastic progression may represent an equilibrium phase and the cancer stage as escape phase. Immune system eliminates transformed enterocytes by destroying them at first, sculpts them at the same time and selects the variants subsequently that are no longer recognized and insensitive to immune effectors, and finally induces immunosuppressive state within the tumor microenvironment that facilitates immune escape and tumor outgrowth. Immunosuppression and inflammation are the two crucial features of Pi (Spleen)-deficiency. Classic quotations, immune evidence and clinical observations suggest that Spleen (but not other organs) deficiency is the key pathogenesis of colorectal cancer (CRC) microenvironment. Weakness of old age, immunosuppressive cytokines from chronic inflammation, tumor-derived immunosuppressive factors and surrendered immune cells-regulatory T cells, myeloid-derived suppressor cells and tumor associated macrophages (TAMs) constitutes CRC microenvironment of Pi-deficiency. Furthermore, excess in superficiality, such as phlegm stagnation, blood stasis and toxin accumulation are induced by chronic inflammation on the basis of asthenia in origin, an immunosuppressive state. Great masters of Chinese medicine emphasize that strengthen Pi is the chief therapeutic principle for CRC which receives good therapeutic effects. So, Pi-deficiency based syndrome is the pivotal pathogenesis of tumor microenvironment. The immunosuppressive microenvironment facilitates immune escape which play an important role in the transition from adenoma to adenocarcinoma. There are some signs that strengthen Pi based treatment has potential capacity to ameliorate tumor environment. It might be a novel starting point to explore the mechanism of strengthen Pi based therapy in the prevention and treatment of CRC through regulation of tumor environment and immunoediting.

  6. Conocimiento de Transmision de SIDA y Percepcion Hacia los Ninos con SIDA en el Salon de Clases de los Maestros de Educacion Especial (Knowledge of AIDS Transmission and Special Education Teachers' Attitudes towards Children with AIDS in the Classroom).

    ERIC Educational Resources Information Center

    Lopez de Williams, Milka

    This Spanish-language master's thesis presents a study which measured special education teachers' knowledge of AIDS (Acquired Immune Deficiency Syndrome) virus transmission and their attitudes toward children with AIDS in schools. Attitudes were then related to social variables such as sex, teacher's age, and knowing someone with AIDS. A survey of…

  7. Robust TLR4-induced gene expression patterns are not an accurate indicator of human immunity

    PubMed Central

    2010-01-01

    Background Activation of Toll-like receptors (TLRs) is widely accepted as an essential event for defence against infection. Many TLRs utilize a common signalling pathway that relies on activation of the kinase IRAK4 and the transcription factor NFκB for the rapid expression of immunity genes. Methods 21 K DNA microarray technology was used to evaluate LPS-induced (TLR4) gene responses in blood monocytes from a child with an IRAK4-deficiency. In vitro responsiveness to LPS was confirmed by real-time PCR and ELISA and compared to the clinical predisposition of the child and IRAK4-deficient mice to Gram negative infection. Results We demonstrated that the vast majority of LPS-responsive genes in IRAK4-deficient monocytes were greatly suppressed, an observation that is consistent with the described role for IRAK4 as an essential component of TLR4 signalling. The severely impaired response to LPS, however, is inconsistent with a remarkably low incidence of Gram negative infections observed in this child and other children with IRAK4-deficiency. This unpredicted clinical phenotype was validated by demonstrating that IRAK4-deficient mice had a similar resistance to infection with Gram negative S. typhimurium as wildtype mice. A number of immunity genes, such as chemokines, were expressed at normal levels in human IRAK4-deficient monocytes, indicating that particular IRAK4-independent elements within the repertoire of TLR4-induced responses are expressed. Conclusions Sufficient defence to Gram negative immunity does not require IRAK4 or a robust, 'classic' inflammatory and immune response. PMID:20105294

  8. Toll-like receptor 2 deficiency increases resistance to Pseudomonas aeruginosa pneumonia in the setting of sepsis-induced immune dysfunction.

    PubMed

    Pène, Frédéric; Grimaldi, David; Zuber, Benjamin; Sauneuf, Bertrand; Rousseau, Christophe; El Hachem, Carole; Martin, Clémence; Belaïdouni, Nadia; Balloy, Viviane; Mira, Jean-Paul; Chiche, Jean-Daniel

    2012-09-15

    Sepsis is characterized by a dysregulated inflammatory response followed by immunosuppression that favors the development of secondary infections. Toll-like receptors (TLRs) are major regulators of the host's response to infections. How variability in TLR signaling may impact the development of sepsis-induced immune dysfunction has not been established. We sought to establish the role of TLR2, TLR4, and TLR5 in postseptic mice with Pseudomonas aeruginosa pneumonia. We used an experimental model of sublethal polymicrobial sepsis induced by cecal ligation and puncture (CLP). Wild-type, tlr2(-/-), tlr4(-/-), tlr5(-/-), tlr2 4(-/-) mice that underwent CLP were secondarily subjected to P. aeruginosa pulmonary infection. Postseptic wild-type and tlr4(-/-) and tlr5(-/-) mice displayed high susceptibility to P. aeruginosa pneumonia. In contrast, TLR2-deficient mice, either tlr2(-/-)or tlr2 4(-/-), that underwent CLP were resistant to the secondary pulmonary infection. As compared to wild-type mice, tlr2(-/-) mice displayed improvement in bacterial clearance, decreased bacteremic dissemination, and attenuated lung damage. Furthermore, tlr2(-/-) mice exhibited a pulmonary proinflammatory cytokine balance, with increased production of tumor necrosis factor α and decreased release of interleukin 10. In a model of secondary P. aeruginosa pneumonia in postseptic mice, TLR2 deficiency improves survival by promoting efficient bacterial clearance and restoring a proinflammatory cytokine balance in the lung.

  9. Granzyme A Deficiency Breaks Immune Tolerance and Promotes Autoimmune Diabetes Through a Type I Interferon-Dependent Pathway.

    PubMed

    Mollah, Zia U A; Quah, Hong Sheng; Graham, Kate L; Jhala, Gaurang; Krishnamurthy, Balasubramanian; Dharma, Joanna Francisca M; Chee, Jonathan; Trivedi, Prerak M; Pappas, Evan G; Mackin, Leanne; Chu, Edward P F; Akazawa, Satoru; Fynch, Stacey; Hodson, Charlotte; Deans, Andrew J; Trapani, Joseph A; Chong, Mark M W; Bird, Phillip I; Brodnicki, Thomas C; Thomas, Helen E; Kay, Thomas W H

    2017-12-01

    Granzyme A is a protease implicated in the degradation of intracellular DNA. Nucleotide complexes are known triggers of systemic autoimmunity, but a role in organ-specific autoimmune disease has not been demonstrated. To investigate whether such a mechanism could be an endogenous trigger for autoimmunity, we examined the impact of granzyme A deficiency in the NOD mouse model of autoimmune diabetes. Granzyme A deficiency resulted in an increased incidence in diabetes associated with accumulation of ssDNA in immune cells and induction of an interferon response in pancreatic islets. Central tolerance to proinsulin in transgenic NOD mice was broken on a granzyme A-deficient background. We have identified a novel endogenous trigger for autoimmune diabetes and an in vivo role for granzyme A in maintaining immune tolerance. © 2017 by the American Diabetes Association.

  10. ADA (adenosine deaminase) gene therapy enters the competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culliton, B.J.

    Around the world, some 70 children are members of a select and deadly club. Born with an immune deficiency so severe that they will die of infection unless their immune systems can be repaired, they have captured the attention of would-be gene therapists who believe that a handful of these kids--the 15 or 20 who lack functioning levels of the enzyme adenosine deaminase (ADA)--could be saved by a healthy ADA gene. A team of gene therapists is ready to put the theory to the test. In April 1987, a team of NIH researchers headed by R. Michael Blaese and W.more » French Anderson came up with the first formal protocol to introduce a healthy ADA gene into an unhealthy human. After 3 years of line-by-line scrutiny by five review committees, they have permission to go ahead. Two or three children will be treated in the next year, and will be infused with T lymphocytes carrying the gene for ADA. If the experiment works, the ADA gene will begin producing normal amounts of ADA. An interesting feature of ADA deficiency, that makes it ideal for initial gene studies, is that the amount of ADA one needs for a healthy immune system is quite variable. Hence, once inside a patient's T cells, the new ADA gene needs only to express the enzyme in moderate amounts. No precise gene regulation is necessary.« less

  11. Signaling Pathways in Pathogenesis of Diamond Blackfan Anemia

    DTIC Science & Technology

    2014-10-01

    specificity of innate immune changes that we observed in rps19 morphants is that we saw analogous changes in rpl11 mutants and in human cells with RPS19...a TGFβ family member activin in RP-deficient zebrafish and in RPS19-deficient human cells , which include a lymphoid cell line from a DBA patient... cells with varying conclusions. Therefore, understanding the precise role of not only adaptive immunity but also innate immunity in regulation of

  12. Immunologic reconstitution during PEG-ADA therapy in an unusual mosaic ADA deficient patient.

    PubMed

    Liu, Ping; Santisteban, Ines; Burroughs, Lauri M; Ochs, Hans D; Torgerson, Troy R; Hershfield, Michael S; Rawlings, David J; Scharenberg, Andrew M

    2009-02-01

    We report detailed genetic and immunologic studies in a patient diagnosed with adenosine deaminase (ADA) deficiency and combined immune deficiency at age 5 years. At the time of diagnosis, although all other lymphocyte subsets were depleted, circulating CD8(+) T cells with a terminally differentiated phenotype were abundant and expressed normal ADA activity due to a reversion mutation in a CD8(+) T cell or precursor. Over the first 9 months of replacement therapy with PEG-ADA, the patient steadily accumulated mature naïve CD4(+) and CD8(+) T cells, as well as CD4(+)/FOXP3(+) regulatory T cells, consistent with restoration of a functional cellular immune system. While CD19(+) naïve B cells also accumulated in response to PEG-ADA therapy, a high proportion of these B cells exhibited an immature surface marker phenotype even after 9 months, and immunization with neoantigen bacteriophage varphiX174 demonstrated a markedly subnormal humoral immune response. Our observations in this single patient have important implications for gene therapy of human ADA deficiency, as they indicate that ADA expression within even a large circulating lymphocyte population may not be sufficient to support adequate immune reconstitution. They also suggest that an immature surface marker phenotype of the peripheral B cell compartment may be a useful surrogate marker for incomplete humoral immune reconstitution during enzyme replacement, and possibly other forms of hematopoietic cell therapies.

  13. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection.

    PubMed

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host-virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 ( ne219 ) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 ( ne219 ) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 ( ne219 ) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  14. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection

    PubMed Central

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R.; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response. PMID:28611740

  15. A survey of children affected by ectomermal dysplasia syndromes shows an increased prevalence of atopic disorders and immune deficiency

    USDA-ARS?s Scientific Manuscript database

    Ectodermal dysplasia (ED) syndromes are rare genetic disorders that affect the development of tissues derived from the embryonic ectoderm. Studies and anecdotal experience have indicated that atopic disorders (AD) and immune deficiencies (ID) may be associated with ED in children. Some ED genotypes ...

  16. Acquired Immune Deficiency Syndrome, AIDS: A Selected Bibliography of Federal Government Publications. Research Guide 90 104.

    ERIC Educational Resources Information Center

    Alexander, Margaret

    This research guide presents a selected bibliography of federal government publications about the Acquired Immune Deficiency Syndrome (AIDS). These documents are listed in five categories: (1) Bibliographies (7); (2) Congressional Publications (69 hearings and reports); (3) Executive Branch Publications (43 reports); (4) Federal Government…

  17. Immune deficiency in mouse models for inherited peripheral neuropathies leads to improved myelin maintenance.

    PubMed

    Schmid, C D; Stienekemeier, M; Oehen, S; Bootz, F; Zielasek, J; Gold, R; Toyka, K V; Schachner, M; Martini, R

    2000-01-15

    The adhesive cell surface molecule P(0) is the most abundant glycoprotein in peripheral nerve myelin and fulfills pivotal functions during myelin formation and maintenance. Mutations in the corresponding gene cause hereditary demyelinating neuropathies. In mice heterozygously deficient in P(0) (P(0)(+/-) mice), an established animal model for a subtype of hereditary neuropathies, T-lymphocytes are present in the demyelinating nerves. To monitor the possible involvement of the immune system in myelin pathology, we cross-bred P(0)(+/-) mice with null mutants for the recombination activating gene 1 (RAG-1) or with mice deficient in the T-cell receptor alpha-subunit. We found that in P(0)(+/-) mice myelin degeneration and impairment of nerve conduction properties is less severe when the immune system is deficient. Moreover, isolated T-lymphocytes from P(0)(+/-) mice show enhanced reactivity to myelin components of the peripheral nerve, such as P(0), P(2), and myelin basic protein. We hypothesize that autoreactive immune cells can significantly foster the demyelinating phenotype of mice with a primarily genetically based peripheral neuropathy.

  18. Zinc in Infection and Inflammation

    PubMed Central

    Gammoh, Nour Zahi; Rink, Lothar

    2017-01-01

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli. PMID:28629136

  19. Zinc in Infection and Inflammation.

    PubMed

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  20. Nippostronglylus brasiliensis infection in the rat: effect of iron and protein deficiency and dexamethasone on the efficacy of benzimidazole anthelmintics.

    PubMed Central

    Duncombe, V M; Bolin, T D; Davis, A E; Kelly, J D

    1977-01-01

    Malnutrition, anaemia, and gut parasites are commonly interrelated. Using the Nippostrongylus brasiliensis-rat model, the effect of iron and protein deficiency on the efficacy of benzimidazole anthelmintics was studied. It was demonstrated that the anthelmintics mebendazole and fenbendazole were significantly less effective in eradicating parasites when animals were deficient in iron and protein. This decreased efficacy of anthelmintics in iron and protein deficiency could not be overcome by intraperitoneal administration of the drug. Since nutritional deficiencies may act via impairment of the immune response, anthelmintic efficacy was determined in adequately nourished rats treated with the immunosuppressive drug dexamethasone. A similar decrease in efficacy of mebendazole was shown when these animals were treated with dexamethasone. Thus it is possible that lowered anthelmintic efficacy in iron and protein deficient animals is mediated by immune deficiency. These findings may be relevant to anthelmintic programmes in malnourished communities. PMID:590849

  1. Impaired human responses to tetanus toxoid in vitamin A-deficient SCID mice reconstituted with human peripheral blood lymphocytes.

    PubMed Central

    Molrine, D C; Polk, D B; Ciamarra, A; Phillips, N; Ambrosino, D M

    1995-01-01

    Vitamin A deficiency is associated with increased childhood morbidity and mortality from respiratory and diarrheal diseases. In order to evaluate the effect of vitamin A on human antibody responses, we developed a vitamin A-deficient severe combined immunodeficient (SCID) mouse model. Vitamin A-deficient mice were produced by depriving them of vitamin A at day 7 of gestation. Mice were reconstituted with human peripheral blood lymphocytes (huPBL) from tetanus toxoid immune donors at 6 weeks of age and immunized with tetanus toxoid at 6 and 8 weeks of age. Secondary human antibody responses were determined 10 days later. The geometric mean human anti-tetanus toxoid immunoglobulin G concentrations were 3.75 micrograms/ml for the deficient mice and 148 micrograms/ml for controls (P = 0.0005). Vitamin A-deficient mice had only a 2.9-fold increase in human anti-tetanus toxoid antibody compared with a 74-fold increase in controls (P < 0.01). Supplementation with vitamin A prior to reconstitution restored human antibody responses to normal. These data suggest that vitamin A deficiency impairs human antibody responses. We speculate that impaired responses could increase susceptibility to certain infections. Furthermore, we propose that effects of other nutritional deficiencies on the human immune system could be evaluated in the SCID-huPBL model. PMID:7622207

  2. A Functional Toll-Interacting Protein Variant Is Associated with Bacillus Calmette-Guérin-Specific Immune Responses and Tuberculosis.

    PubMed

    Shah, Javeed A; Musvosvi, Munyaradzi; Shey, Muki; Horne, David J; Wells, Richard D; Peterson, Glenna J; Cox, Jeffery S; Daya, Michelle; Hoal, Eileen G; Lin, Lin; Gottardo, Raphael; Hanekom, Willem A; Scriba, Thomas J; Hatherill, Mark; Hawn, Thomas R

    2017-08-15

    The molecular mechanisms that regulate tuberculosis susceptibility and bacillus Calmette-Guérin (BCG)-induced immunity are mostly unknown. However, induction of the adaptive immune response is a critical step in host control of Mycobacterium tuberculosis. Toll-interacting protein (TOLLIP) is a ubiquitin-binding protein that regulates innate immune responses, including Toll-like receptor signaling, which initiate adaptive immunity. TOLLIP variation is associated with susceptibility to tuberculosis, but the mechanism by which it regulates tuberculosis immunity is poorly understood. To identify functional TOLLIP variants and evaluate the role of TOLLIP variation on innate and adaptive immune responses to mycobacteria and susceptibility to tuberculosis. We used human cellular immunology approaches to characterize the role of a functional TOLLIP variant on monocyte mRNA expression and M. tuberculosis-induced monocyte immune functions. We also examined the association of TOLLIP variation with BCG-induced T-cell responses and susceptibility to latent tuberculosis infection. We identified a functional TOLLIP promoter region single-nucleotide polymorphism, rs5743854, which was associated with decreased TOLLIP mRNA expression in infant monocytes. After M. tuberculosis infection, TOLLIP-deficient monocytes demonstrated increased IL-6, increased nitrite, and decreased bacterial replication. The TOLLIP-deficiency G/G genotype was associated with decreased BCG-specific IL-2 + CD4 + T-cell frequency and proliferation. This genotype was also associated with increased susceptibility to latent tuberculosis infection. TOLLIP deficiency is associated with decreased BCG-specific T-cell responses and increased susceptibility to tuberculosis. We hypothesize that the heightened antibacterial monocyte responses after vaccination of TOLLIP-deficient infants are responsible for decreased BCG-specific T-cell responses. Activating TOLLIP may provide a novel adjuvant strategy for BCG vaccination.

  3. Myelin/oligodendrocyte glycoprotein–deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice

    PubMed Central

    Delarasse, Cécile; Daubas, Philippe; Mars, Lennart T.; Vizler, Csaba; Litzenburger, Tobias; Iglesias, Antonio; Bauer, Jan; Della Gaspera, Bruno; Schubart, Anna; Decker, Laurence; Dimitri, Dalia; Roussel, Guy; Dierich, Andrée; Amor, Sandra; Dautigny, André; Liblau, Roland; Pham-Dinh, Danielle

    2003-01-01

    We studied the immunological basis for the very potent encephalitogenicity of myelin/oligodendrocyte glycoprotein (MOG), a minor component of myelin in the CNS that is widely used to induce experimental autoimmune encephalomyelitis (EAE). For this purpose, we generated a mutant mouse lacking a functional mog gene. This MOG-deficient mouse presents no clinical or histological abnormalities, permitting us to directly assess the role of MOG as a target autoantigen in EAE. In contrast to WT mice, which developed severe EAE following immunization with whole myelin, MOG-deficient mice had a mild phenotype, demonstrating that the anti-MOG response is a major pathogenic component of the autoimmune response directed against myelin. Moreover, while MOG transcripts are expressed in lymphoid organs in minute amounts, both MOG-deficient and WT mice show similar T and B cell responses against the extracellular domain of MOG, including the immunodominant MOG 35–55 T cell epitope. Furthermore, no differences in the fine specificity of the T cell responses to overlapping peptides covering the complete mouse MOG sequence were observed between MOG+/+ and MOG–/– mice. In addition, upon adoptive transfer, MOG-specific T cells from WT mice and those from MOG-deficient mice are equally pathogenic. This total lack of immune tolerance to MOG in WT C57BL/6 mice may be responsible for the high pathogenicity of the anti-MOG immune response as well as the high susceptibility of most animal strains to MOG-induced EAE. PMID:12925695

  4. Teaching AIDS. A Resource Guide on Acquired Immune Deficiency Syndrome. Third Edition.

    ERIC Educational Resources Information Center

    Quackenbush, Marcia; Sargent, Pamela

    The first edition of this resource guide for educators on how to teach students about Acquired Immune Deficiency Syndrome (AIDS) was published in 1986. Since then, basic facts about the transmission and prevention of the AIDS virus have not changed substantially. The terminologies about the disease, however, have changed and the changing…

  5. Select Personality Characteristic Differences between Caregivers for Persons with Acquired Immune Deficiency Syndrome and Caregivers for Other Types of Illness.

    ERIC Educational Resources Information Center

    Angel, Daniel Scott; Heritage, Jeannette

    The purpose of this study was to analyze select personality characteristics of individuals working within the Acquired Immune Deficiency Syndrome (AIDS) population in comparison to non-AIDS caregivers by using two personality assessment instruments. Subjects were from two health care provider populations. Two hundred research packets were…

  6. Surgeon General's Report on Acquired Immune Deficiency Syndrome.

    ERIC Educational Resources Information Center

    Office of the Surgeon General (DHHS/PHS), Washington, DC.

    This report on Acquired Immune Deficiency Syndrome (AIDS) offers information on: (1) the medical definition of AIDS; (2) signs and symptoms; (3) the present situtation regarding the number of cases of AIDS and how the disease is transmitted; (4) how to protect oneself from AIDS; (5) what behavior is safe; and (6) what is currently understood about…

  7. AIDS: Acquired Immune Deficiency Syndrome, Information and Procedural Guidelines for Providing Services to Persons with AIDS/HTLV-III.

    ERIC Educational Resources Information Center

    Montana State Dept. of Health and Environmental Sciences, Helena.

    This manual presents information about the disease, Acquired Immune Deficiency Syndrome (AIDS), and guidelines for service delivery to Montana residents who have been diagnosed with AIDS or related disorders. The first section describes the disease's causes, symptoms, and transmission; risk factors; high-risk populations; prevention suggestions;…

  8. Acquired Immune Deficiency Syndrome: A Preliminary Examination of the Effects on Gay Couples and Coupling.

    ERIC Educational Resources Information Center

    Carl, Douglas

    1986-01-01

    The Acquired Immune Deficiency Syndrome (AIDS) epidemic significantly influences attitudes about life and lifestyles. Homosexuals have to give increased consideration to coupling, the nature of coupled relationships, sex and intimacy, and death long before the normal time. Discusses impact of AIDS on the early stages of gay coupling and on the…

  9. Immune deficiency as a risk factor in Epstein-Barr virus-induced malignant diseases.

    PubMed Central

    Purtilo, D T; Okano, M; Grierson, H L

    1990-01-01

    Epstein-Barr virus (EBV) is a ubiquitous DNA virus that normally infects silently, establishing lifelong latency. Substantial empirical observations support the view that immunodeficiency is permissive in EBV-induced lymphoproliferative diseases (LPD). Primary immune deficient patients such as those with X-linked lymphoproliferative disease and individuals with acquired immune deficiency secondary to immunosuppressive drugs for organ transplantation or individuals infected with human immunodeficiency virus are also at very high risk for lethal LPD. The importance of immunodeficiency and EBV in the development of head and neck carcinomas and uterine cervical carcinoma is less clear. Methods are available for detecting immunodeficiency and EBV genome and thus preventive strategies are being developed to preclude LPD from occurring. PMID:2176975

  10. CVID-associated TACI mutations affect autoreactive B cell selection and activation

    PubMed Central

    Romberg, Neil; Chamberlain, Nicolas; Saadoun, David; Gentile, Maurizio; Kinnunen, Tuure; Ng, Yen Shing; Virdee, Manmeet; Menard, Laurence; Cantaert, Tineke; Morbach, Henner; Rachid, Rima; Martinez-Pomar, Natalia; Matamoros, Nuria; Geha, Raif; Grimbacher, Bodo; Cerutti, Andrea; Cunningham-Rundles, Charlotte; Meffre, Eric

    2013-01-01

    Common variable immune deficiency (CVID) is an assorted group of primary diseases that clinically manifest with antibody deficiency, infection susceptibility, and autoimmunity. Heterozygous mutations in the gene encoding the tumor necrosis factor receptor superfamily member TACI are associated with CVID and autoimmune manifestations, whereas two mutated alleles prevent autoimmunity. To assess how the number of TACI mutations affects B cell activation and tolerance checkpoints, we analyzed healthy individuals and CVID patients carrying one or two TACI mutations. We found that TACI interacts with the cleaved, mature forms of TLR7 and TLR9 and plays an important role during B cell activation and the central removal of autoreactive B cells in healthy donors and CVID patients. However, only subjects with a single TACI mutation displayed a breached immune tolerance and secreted antinuclear antibodies (ANAs). These antibodies were associated with the presence of circulating B cell lymphoma 6–expressing T follicular helper (Tfh) cells, likely stimulating autoreactive B cells. Thus, TACI mutations may favor CVID by altering B cell activation with coincident impairment of central B cell tolerance, whereas residual B cell responsiveness in patients with one, but not two, TACI mutations enables autoimmune complications. PMID:24051380

  11. Immunologic reconstitution during PEG-ADA therapy in an unusual mosaic ADA-deficient patient

    PubMed Central

    Liu, Ping; Santisteban, Ines; Burroughs, Laurie M.; Ochs, Hans D.; Torgerson, Troy R.; Hershfield, Michael S.; Rawlings, David J.; Scharenberg, Andrew M.

    2009-01-01

    We report detailed genetic and immunologic studies in a patient diagnosed with adenosine deaminase (ADA) deficiency and combined immune deficiency at age 5 years. At the time of diagnosis, although all other lymphocyte subsets were depleted, circulating CD8+ T cells with a terminally differentiated phenotype were abundant and expressed normal ADA activity due to a reversion mutation in a CD8+ T cell or precursor. Over the first 9 months of replacement therapy with PEG-ADA, the patient steadily accumulated mature naïve CD4+ and CD8+ T cells, as well as CD4+/FOXP3+ regulatory T cells, consistent with restoration of a functional cellular immune system. While CD19+ naïve B cells also accumulated in response to PEG-ADA therapy, a high proportion of these B cells exhibited an immature surface marker phenotype even after 9 months, and immunization with neoantigen bacteriophage φX174 demonstrated a markedly subnormal humoral immune response. Our observations in this single patient have important implications for gene therapy of human ADA deficiency, as they indicate that ADA expression within even a large circulating lymphocyte population may not be sufficient to support adequate immune reconstitution. They also suggest that an immature surface marker phenotype of the peripheral B cell compartment may be a useful surrogate marker for incomplete humoral immune reconstitution during enzyme replacement, and possibly other forms of hematopoietic cell therapies. PMID:18952502

  12. Arginine and Citrulline and the Immune Response in Sepsis

    PubMed Central

    Wijnands, Karolina A.P.; Castermans, Tessy M.R.; Hommen, Merel P.J.; Meesters, Dennis M.; Poeze, Martijn

    2015-01-01

    Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target. PMID:25699985

  13. Polio as a platform: using national immunization days to deliver vitamin A supplements.

    PubMed Central

    Goodman, T.; Dalmiya, N.; de Benoist, B.; Schultink, W.

    2000-01-01

    In 1988 the 41st World Health Assembly committed WHO to the goal of global eradication of poliomyelitis by 2000 "in ways which strengthen national immunization programmes and health infrastructure". The successful use of polio National Immunization Days (NIDs) to deliver vitamin A is an example of how polio eradication can serve as a platform to address other problems of child health. Importantly, this integration is helping to achieve the World Summit for Children goal of eliminating vitamin A deficiency by the year 2000. It is estimated that between 140 million and 250 million preschool children are at risk of subclinical vitamin A deficiency. In 1998 more than 60 million children at risk received vitamin A supplements during polio national immunization days (NIDs). While food fortification and dietary approaches are fundamental to combating vitamin A deficiency, the administration of vitamin A supplements during NIDs helps raise awareness, enhance technical capacity, improve assessment and establish a reporting system. Moreover, polio NIDs provide an entry point for the sustainable provision of vitamin A supplements with routine immunization services and demonstrate how immunization campaigns can be used for the delivery of other preventive health services. PMID:10812726

  14. An update on the association of vitamin D deficiency with common infectious diseases.

    PubMed

    Watkins, Richard R; Lemonovich, Tracy L; Salata, Robert A

    2015-05-01

    Vitamin D plays an important role in modulating the immune response to infections. Deficiency of vitamin D is a common condition, affecting both the general population and patients in health care facilities. Over the last decade, an increasing body of evidence has shown an association between vitamin D deficiency and an increased risk for acquiring several infectious diseases, as well as poorer outcomes in vitamin D deficient patients with infections. This review details recent developments in understanding the role of vitamin D in immunity, the antibacterial actions of vitamin D, the association between vitamin D deficiency and common infections (like sepsis, pneumonia, influenza, methicillin-resistant Staphylococcus aureus, human immunodeficiency virus type-1 (HIV), and hepatitis C virus (HCV)), potential therapeutic implications for vitamin D replacement, and future research directions.

  15. Human NF-κB1 Haploinsufficiency and Epstein-Barr Virus-Induced Disease-Molecular Mechanisms and Consequences.

    PubMed

    Hoeger, Birgit; Serwas, Nina Kathrin; Boztug, Kaan

    2017-01-01

    Nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κB1)-related human primary immune deficiencies have initially been characterized as defining a subgroup of common variable immunodeficiencies (CVIDs), representing intrinsic B-cell disorders with antibody deficiency and recurrent infections of various kind. Recent evidence indicates that NF-κB1 haploinsufficiency underlies a variable type of combined immunodeficiency (CID) affecting both B and T lymphocyte compartments, with a broadened spectrum of disease manifestations, including Epstein-Barr virus (EBV)-induced lymphoproliferative disease and immediate life-threatening consequences. As part of this review series focused on EBV-related primary immunodeficiencies, we discuss the current clinical and molecular understanding of monoallelic NFKB1 germline mutations with special focus on the emerging context of EBV-associated disease. We outline mechanistic implications of dysfunctional NF-κB1 in B and T cells and discuss the fatal relation of impaired T-cell function with the inability to clear EBV infections. Finally, we compare common and suggested treatment angles in the context of this complex disease.

  16. Human NF-κB1 Haploinsufficiency and Epstein–Barr Virus-Induced Disease—Molecular Mechanisms and Consequences

    PubMed Central

    Hoeger, Birgit; Serwas, Nina Kathrin; Boztug, Kaan

    2018-01-01

    Nuclear factor kappa-light-chain-enhancer of activated B cells 1 (NF-κB1)-related human primary immune deficiencies have initially been characterized as defining a subgroup of common variable immunodeficiencies (CVIDs), representing intrinsic B-cell disorders with antibody deficiency and recurrent infections of various kind. Recent evidence indicates that NF-κB1 haploinsufficiency underlies a variable type of combined immunodeficiency (CID) affecting both B and T lymphocyte compartments, with a broadened spectrum of disease manifestations, including Epstein–Barr virus (EBV)-induced lymphoproliferative disease and immediate life-threatening consequences. As part of this review series focused on EBV-related primary immunodeficiencies, we discuss the current clinical and molecular understanding of monoallelic NFKB1 germline mutations with special focus on the emerging context of EBV-associated disease. We outline mechanistic implications of dysfunctional NF-κB1 in B and T cells and discuss the fatal relation of impaired T-cell function with the inability to clear EBV infections. Finally, we compare common and suggested treatment angles in the context of this complex disease. PMID:29403474

  17. Leishmania Uses Mincle to Target an Inhibitory ITAM Signaling Pathway in Dendritic Cells that Dampens Adaptive Immunity to Infection.

    PubMed

    Iborra, Salvador; Martínez-López, María; Cueto, Francisco J; Conde-Garrosa, Ruth; Del Fresno, Carlos; Izquierdo, Helena M; Abram, Clare L; Mori, Daiki; Campos-Martín, Yolanda; Reguera, Rosa María; Kemp, Benjamin; Yamasaki, Sho; Robinson, Matthew J; Soto, Manuel; Lowell, Clifford A; Sancho, David

    2016-10-18

    C-type lectin receptors sense a diversity of endogenous and exogenous ligands that may trigger differential responses. Here, we have found that human and mouse Mincle bind to a ligand released by Leishmania, a eukaryote parasite that evades an effective immune response. Mincle-deficient mice had milder dermal pathology and a tenth of the parasite burden compared to wild-type mice after Leishmania major intradermal ear infection. Mincle deficiency enhanced adaptive immunity against the parasite, correlating with increased activation, migration, and priming by Mincle-deficient dendritic cells (DCs). Leishmania triggered a Mincle-dependent inhibitory axis characterized by SHP1 coupling to the FcRγ chain. Selective loss of SHP1 in CD11c + cells phenocopies enhanced adaptive immunity to Leishmania. In conclusion, Leishmania shifts Mincle to an inhibitory ITAM (ITAMi) configuration that impairs DC activation. Thus, ITAMi can be exploited for immune evasion by a pathogen and may represent a paradigm for ITAM-coupled receptors sensing self and non-self. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Natural killer cell biology illuminated by primary immunodeficiency syndromes in humans.

    PubMed

    Voss, Matthias; Bryceson, Yenan T

    2017-04-01

    Natural killer (NK) cells are innate immune cytotoxic effector cells well known for their role in antiviral immunity and tumor immunosurveillance. In parts, this knowledge stems from rare inherited immunodeficiency disorders in humans that abrogate NK cell function leading to immune impairments, most notably associated with a high susceptibility to viral infections. Phenotypically, these disorders range from deficiencies selectively affecting NK cells to complex general immune defects that affect NK cells but also other immune cell subsets. Moreover, deficiencies may be associated with reduced NK cell numbers or rather impair specific NK cell effector functions. In recent years, genetic defects underlying the various NK cell deficiencies have been uncovered and have triggered investigative efforts to decipher the molecular mechanisms underlying these disorders. Here we review the associations between inherited human diseases and NK cell development as well as function, with a particular focus on defects in NK cell exocytosis and cytotoxicity. Furthermore we outline how reports of diverse genetic defects have shaped our understanding of NK cell biology. Copyright © 2015. Published by Elsevier Inc.

  19. Coping Strategies of Patients with Haemophilia as a Risk Group for AIDS (Acquired Immune Deficiency Syndrome). Brief Research Report.

    ERIC Educational Resources Information Center

    Naji, Simon; And Others

    1986-01-01

    Plans are described for a 2-year project whose major focus is the identification of ways in which patients with hemophilia and their families assimilate, interpret, and act on information about Acquired Immune Deficiency Syndrome (AIDS). Findings will be related to perceived risk, anxiety levels, and the development of coping strategies.…

  20. AIDS: Acquired Immune Deficiency Syndrome; Information and Procedural Guidelines for Providing Services to Persons with AIDS/HIV. Revised.

    ERIC Educational Resources Information Center

    Montana State Dept. of Health and Environmental Sciences, Helena. Health Education Bureau.

    This volume consists of updated information to be inserted into a Montana AIDS Project manual on providing services to persons with acquired immune deficiency syndrome/human immunodeficiency virus (AIDS/HIV), originally published in December 1985. The updates are mainly statistics and terminology, along with the addition of several new sections.…

  1. PRIMARY IMMUNE DEFICIENCY TREATMENT CONSORTIUM (PIDTC) UPDATE

    PubMed Central

    Griffith, Linda M.; Cowan, Morton J.; Notarangelo, Luigi D.; Kohn, Donald B.; Puck, Jennifer M.; Shearer, William T.; Burroughs, Lauri M.; Torgerson, Troy R.; Decaluwe, Hélène; Haddad, Elie

    2016-01-01

    The Primary Immune Deficiency Treatment Consortium (PIDTC) is a collaboration of 41 North American centers studying therapy for rare primary immune deficiency diseases (PID) including Severe Combined Immune Deficiency (SCID), Wiskott-Aldrich syndrome (WAS) and chronic granulomatous disease (CGD). An additional 3 European centers have partnered with the PIDTC to study CGD. Natural history protocols of the PIDTC analyze outcomes of treatment for rare PID in multicenter longitudinal retrospective, prospective and cross-sectional studies. Since 2009, participating centers have enrolled over 800 subjects on PIDTC protocols for SCID, and enrollment on the studies in WAS and CGD is underway. Four pilot projects have been funded and 12 junior investigators have received fellowship awards. Important publications of the consortium describe outcomes of hematopoietic cell transplantation (HCT) for SCID during 2000–2009, diagnostic criteria for SCID, and the pilot project of newborn screening (NBS) for SCID in the Navajo Nation. The PIDTC Annual Scientific Workshops provide an opportunity to strengthen collaborations with junior investigators, patient advocacy groups and international colleagues. Funded by the NIAID and ORDR, NCATS, the PIDTC has recently received renewal for another 5 years. Here, we review accomplishments of the group, projects underway, highlights of recent workshops and challenges for the future. PMID:27262745

  2. No evidence of a role for mitochondrial complex I in Helicobacter pylori pathogenesis.

    PubMed

    Ng, Garrett Z; Ke, Bi-Xia; Laskowski, Adrienne; Thorburn, David R; Sutton, Philip

    2017-06-01

    Complex I is the first enzyme complex in the mitochondrial respiratory chain, responsible for generating a large fraction of energy during oxidative phosphorylation. Recently, it has been identified that complex I deficiency can result in increased inflammation due to the generation of reactive oxygen species by innate immune cells. As a reduction in complex I activity has been demonstrated in human stomachs with atrophic gastritis, we investigated whether complex I deficiency could influence Helicobacter pylori pathogenesis. Ndufs6 gt/gt mice have a partial complex I deficiency. Complex I activity was quantified in the stomachs and immune cells of Ndufs6 gt/gt mice by spectrophotometric assays. Ndufs6 gt/gt mice were infected with H. pylori and bacterial colonization assessed by colony-forming assay, gastritis assessed histologically, and H. pylori -specific humoral response quantified by ELISA. The immune cells and stomachs of Ndufs6 gt/gt mice were found to have significantly decreased complex I activity, validating the model for assessing the effects of complex I deficiency in H. pylori infection. However, there was no observable effect of complex I deficiency on either H. pylori colonization, the resulting gastritis, or the humoral response. Although complex I activity is described to suppress innate immune responses and is decreased during atrophic gastritis in humans, our data suggest it does not affect H. pylori pathogenesis. © 2017 John Wiley & Sons Ltd.

  3. Heterogeneity of humoral immune abnormalities in children with Nijmegen breakage syndrome: an 8-year follow-up study in a single centre

    PubMed Central

    Gregorek, H; Chrzanowska, K H; Michałkiewicz, J; Syczewska, M; Madaliński, K

    2002-01-01

    During an 8-year period of observation, defects of immune responses were characterized and monitored in 40 of 50 Polish children with Nijmegen breakage syndrome referred to the Children's Memorial Health Institute in Warsaw. The following parameters were determined at diagnosis: (1) concentrations of serum IgM, IgG, IgA; (2) concentrations of IgG subclasses; and (3) lymphocyte subpopulations. In addition, naturally acquired specific antibodies against Streptococcus pneumoniae were determined in 20 patients with a history of recurrent respiratory infections. During follow-up, total serum immunoglobulins and IgG subclasses were monitored systematically in 17 patients who did not receive immunomodulatory therapy. Moreover, anti-HBs antibody response was measured after vaccination of 20 children against HBV. We found that the immune deficiency in NBS is profound, highly variable, with a tendency to progress over time. Systematic monitoring of the humoral response, despite good clinical condition, is essential for early medical intervention. PMID:12390322

  4. Effects of vector backbone and pseudotype on lentiviral vector-mediated gene transfer: studies in infant ADA-deficient mice and rhesus monkeys.

    PubMed

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-10-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options.

  5. Alterations in early cytokine-mediated immune responses to Plasmodium falciparum infection in Tanzanian children with mineral element deficiencies: a cross-sectional survey

    PubMed Central

    2010-01-01

    Background Deficiencies in vitamins and mineral elements are important causes of morbidity in developing countries, possibly because they lead to defective immune responses to infection. The aim of the study was to assess the effects of mineral element deficiencies on early innate cytokine responses to Plasmodium falciparum malaria. Methods Peripheral blood mononuclear cells from 304 Tanzanian children aged 6-72 months were stimulated with P. falciparum-parasitized erythrocytes obtained from in vitro cultures. Results The results showed a significant increase by 74% in geometric mean of TNF production in malaria-infected individuals with zinc deficiency (11% to 240%; 95% CI). Iron deficiency anaemia was associated with increased TNF production in infected individuals and overall with increased IL-10 production, while magnesium deficiency induced increased production of IL-10 by 46% (13% to 144%) in uninfected donors. All donors showed a response towards IL-1β production, drawing special attention for its possible protective role in early innate immune responses to malaria. Conclusions In view of these results, the findings show plasticity in cytokine profiles of mononuclear cells reacting to malaria infection under conditions of different micronutrient deficiencies. These findings lay the foundations for future inclusion of a combination of precisely selected set of micronutrients rather than single nutrients as part of malaria vaccine intervention programmes in endemic countries. PMID:20470442

  6. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    PubMed

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Autoimmune Dysregulation and Purine Metabolism in Adenosine Deaminase Deficiency

    PubMed Central

    Sauer, Aisha Vanessa; Brigida, Immacolata; Carriglio, Nicola; Aiuti, Alessandro

    2012-01-01

    Genetic defects in the adenosine deaminase (ADA) gene are among the most common causes for severe combined immunodeficiency (SCID). ADA-SCID patients suffer from lymphopenia, severely impaired cellular and humoral immunity, failure to thrive, and recurrent infections. Currently available therapeutic options for this otherwise fatal disorder include bone marrow transplantation (BMT), enzyme replacement therapy with bovine ADA (PEG-ADA), or hematopoietic stem cell gene therapy (HSC-GT). Although varying degrees of immune reconstitution can be achieved by these treatments, breakdown of tolerance is a major concern in ADA-SCID. Immune dysregulation such as autoimmune hypothyroidism, diabetes mellitus, hemolytic anemia, and immune thrombocytopenia are frequently observed in milder forms of the disease. However, several reports document similar complications also in patients on long-term PEG-ADA and after BMT or GT treatment. A skewed repertoire and decreased immune functions have been implicated in autoimmunity observed in certain B-cell and/or T-cell immunodeficiencies, but it remains unclear to what extent specific mechanisms of tolerance are affected in ADA deficiency. Herein we provide an overview about ADA-SCID and the autoimmune manifestations reported in these patients before and after treatment. We also assess the value of the ADA-deficient mouse model as a useful tool to study both immune and metabolic disease mechanisms. With focus on regulatory T- and B-cells we discuss the lymphocyte subpopulations particularly prone to contribute to the loss of self-tolerance and onset of autoimmunity in ADA deficiency. Moreover we address which aspects of immune dysregulation are specifically related to alterations in purine metabolism caused by the lack of ADA and the subsequent accumulation of metabolites with immunomodulatory properties. PMID:22969765

  8. Iron deficiency beyond erythropoiesis: should we be concerned?

    PubMed

    Musallam, Khaled M; Taher, Ali T

    2018-01-01

    To consider the key implications of iron deficiency for biochemical and physiological functions beyond erythropoiesis. PubMed was searched for relevant journal articles published up to August 2017. Anemia is the most well-recognized consequence of persisting iron deficiency, but various other unfavorable consequences can develop either before or concurrently with anemia. Mitochondrial function can be profoundly disturbed since iron is a cofactor for heme-containing enzymes and non-heme iron-containing enzymes in the mitochondrial electron transport chain. Biosynthesis of heme and iron-sulfur clusters in the mitochondria is inhibited, disrupting synthesis of compounds such as hemoglobin, myoglobin, cytochromes and nitric oxide synthase. The physiological consequences include fatigue, lethargy, and dyspnea; conversely, iron repletion in iron-deficient individuals has been shown to improve exercise capacity. The myocardium, with its high energy demands, is particularly at risk from the effects of iron deficiency. Randomized trials have found striking improvements in disease severity in anemic but also non-anemic chronic heart failure patients with iron deficiency after iron therapy. In vitro and pre-clinical studies have demonstrated that iron is required by numerous enzymes involved in DNA replication and repair, and for normal cell cycle regulation. Iron is also critical for immune cell growth, proliferation, and differentiation, and for specific cell-mediated effector pathways. Observational studies have shown that iron-deficient individuals have defective immune function, particularly T-cell immunity, but more evidence is required. Pre-clinical models have demonstrated abnormal myelogenesis, brain cell metabolism, neurotransmission, and hippocampal formation in iron-deficient neonates and young animals. In humans, iron deficiency anemia is associated with poorer cognitive and motor skills. However, the impact of iron deficiency without anemia is less clear. The widespread cellular and physiological effects of iron deficiency highlight the need for early detection and treatment of iron deficiency, both to ameliorate these non-erythropoietic effects, and to avoid progression to iron deficiency anemia.

  9. Postchallenge Administration of Brincidofovir Protects Healthy and Immune-Deficient Mice Reconstituted with Limited Numbers of T Cells from Lethal Challenge with IHD-J-Luc Vaccinia Virus

    PubMed Central

    McCullough, Kevin Tyler; Cruz, Stephanie; Thomas, Antonia; Diaz, Claudia G.; Keilholz, Laurie; Grossi, Irma M.; Trost, Lawrence C.; Golding, Hana

    2015-01-01

    ABSTRACT Protection from lethality by postchallenge administration of brincidofovir (BCV, CMX001) was studied in normal and immune-deficient (nude, nu/nu) BALB/c mice infected with vaccinia virus (VACV). Whole-body bioluminescence imaging was used to record total fluxes in the nasal cavity, lungs, spleen, and liver and to enumerate pox lesions on tails of mice infected via the intranasal route with 105 PFU of recombinant IHD-J-Luc VACV expressing luciferase. Areas under the flux curve (AUCs) were calculated for individual mice to assess viral loads. A three-dose regimen of 20 mg/kg BCV administered every 48 h starting either on day 1 or day 2 postchallenge protected 100% of mice. Initiating BCV treatment earlier was more efficient in reducing viral loads and in providing protection from pox lesion development. All BCV-treated mice that survived challenge were also protected from rechallenge with IHD-J-Luc or WRvFire VACV without additional treatment. In immune-deficient mice, BCV protected animals from lethality and reduced viral loads while animals were on the drug. Viral recrudescence occurred within 4 to 9 days, and mice succumbed ∼10 to 20 days after treatment termination. Nude mice reconstituted with 105 T cells prior to challenge with 104 PFU of IHD-J-Luc and treated with BCV postchallenge survived the infection, cleared the virus from all organs, and survived rechallenge with 105 PFU of IHD-J-Luc VACV without additional BCV treatment. Together, these data suggest that BCV protects immunocompetent and partially T cell-reconstituted immune-deficient mice from lethality, reduces viral dissemination in organs, prevents pox lesion development, and permits generation of VACV-specific memory. IMPORTANCE Mass vaccination is the primary element of the public health response to a smallpox outbreak. In addition to vaccination, however, antiviral drugs are required for individuals with uncertain exposure status to smallpox or for whom vaccination is contraindicated. Whole-body bioluminescence imaging was used to study the effect of brincidofovir (BCV) in normal and immune-deficient (nu/nu) mice infected with vaccinia virus, a model of smallpox. Postchallenge administration of 20 mg/kg BCV rescued normal and immune-deficient mice partially reconstituted with T cells from lethality and significantly reduced viral loads in organs. All BCV-treated mice that survived infection were protected from rechallenge without additional treatment. In immune-deficient mice, BCV extended survival. The data show that BCV controls viral replication at the site of challenge and reduces viral dissemination to internal organs, thus providing a shield for the developing adaptive immunity that clears the host of virus and builds virus-specific immunological memory. PMID:25589648

  10. Immunoglobulin therapy in hematologic neoplasms and after hematopoietic cell transplantation.

    PubMed

    Ueda, Masumi; Berger, Melvin; Gale, Robert Peter; Lazarus, Hillard M

    2018-03-01

    Immunoglobulins are used to prevent or reduce infection risk in primary immune deficiencies and in settings which exploit its anti-inflammatory and immune-modulatory effects. Rigorous proof of immunoglobulin efficacy in persons with lympho-proliferative neoplasms, plasma cell myeloma, and persons receiving hematopoietic cell transplants is lacking despite many clinical trials. Further, there are few consensus guidelines or algorithms for use in these conditions. Rapid development of new therapies targeting B-cell signaling and survival pathways and increased use of chimeric antigen receptor T-cell (CAR-T) therapy will likely result in more acquired deficiencies of humoral immunity and infections in persons with cancer. We review immunoglobulin formulations and discuss efficacy and potential adverse effects in the context of preventing infections and in graft-versus-host disease. We suggest an algorithm for evaluating acquired deficiencies of humoral immunity in persons with hematologic neoplasms and recommend appropriate use of immunoglobulin therapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. TPL-2 restricts Ccl24-dependent immunity to Heligmosomoides polygyrus

    PubMed Central

    Kannan, Yashaswini; Entwistle, Lewis J.; Pelly, Victoria S.; Perez-Lloret, Jimena; Ley, Steven C.

    2017-01-01

    TPL-2 (COT, MAP3K8) kinase activates the MEK1/2-ERK1/2 MAPK signaling pathway in innate immune responses following TLR, TNFR1 and IL-1R stimulation. TPL-2 contributes to type-1/Th17-mediated autoimmunity and control of intracellular pathogens. We recently demonstrated TPL-2 reduces severe airway allergy to house dust mite by negatively regulating type-2 responses. In the present study, we found that TPL-2 deficiency resulted in resistance to Heligmosomoides polygyrus infection, with accelerated worm expulsion, reduced fecal egg burden and reduced worm fitness. Using co-housing experiments, we found resistance to infection in TPL-2 deficient mice (Map3k8–/–) was independent of microbiota alterations in H. polygyrus infected WT and Map3k8–/–mice. Additionally, our data demonstrated immunity to H. polygyrus infection in TPL-2 deficient mice was not due to dysregulated type-2 immune responses. Genome-wide analysis of intestinal tissue from infected TPL-2-deficient mice identified elevated expression of genes involved in chemotaxis and homing of leukocytes and cells, including Ccl24 and alternatively activated genes. Indeed, Map3k8–/–mice had a significant influx of eosinophils, neutrophils, monocytes and Il4GFP+ T cells. Conditional knockout experiments demonstrated that specific deletion of TPL-2 in CD11c+ cells, but not Villin+ epithelial cells, LysM+ myeloid cells or CD4+ T cells, led to accelerated resistance to H. polygyrus. In line with a central role of CD11c+ cells, CD11c+ CD11b+ cells isolated from TPL-2-deficient mice had elevated Ccl24. Finally, Ccl24 neutralization in TPL-2 deficient mice significantly decreased the expression of Arg1, Retnla, Chil3 and Ear11 correlating with a loss of resistance to H. polygyrus. These observations suggest that TPL-2-regulated Ccl24 in CD11c+CD11b+ cells prevents accelerated type-2 mediated immunity to H. polygyrus. Collectively, this study identifies a previously unappreciated role for TPL-2 controlling immune responses to H. polygyrus infection by restricting Ccl24 production. PMID:28759611

  12. The Innate Immune Receptor CD14 Mediates Lymphocyte Migration in EAE.

    PubMed

    Halmer, Ramona; Davies, Laura; Liu, Yang; Fassbender, Klaus; Walter, Silke

    2015-01-01

    Multiple sclerosis is the most common autoimmune disease of the central nervous system in young adults and histopathologically characterized by inflammation, demyelination and gliosis. It is considered as a CD4+ T cell-mediated disease, but also a disease-promoting role of the innate immune system has been proposed, based e.g. on the observation that innate immune receptors modulate disease severity of experimental autoimmune encephalomyelitis. Recent studies of our group provided first evidence for a key role of the innate immune LPS receptor (CD14) in pathophysiology of experimental autoimmune encephalomyelitis. CD14-deficient experimental autoimmune encephalomyelitis mice showed increased clinical symptoms and enhanced infiltration of monocytes and neutrophils in brain and spinal cord. In the current study, we further investigated the causes of the disease aggravation by CD14-deficiency and examined T cell activation, also focusing on the costimulatory molecules CTLA-4 and CD28, and T cell migration capacity over the blood brain barrier by FACS analysis, in vitro adhesion and transmigration assays. In the results, we observed a significantly increased migration of CD14-deficient lymphocytes across an endothelial monolayer. In contrast, we did not see any differences in expression levels of TCR/CTLA-4 or TCR/CD28 and lymphocyte adhesion to endothelial cells from CD14-deficient compared to wildtype mice. The results demonstrate an important role of CD14 in migration of lymphocytes, and strengthen the importance of innate immune receptors in adaptive immune disorders, such as multiple sclerosis. © 2015 The Author(s) Published by S. Karger AG, Basel.

  13. Systemic Lupus Erythematosus and Deficiencies of Early Components of the Complement Classical Pathway

    PubMed Central

    Macedo, Ana Catarina Lunz; Isaac, Lourdes

    2016-01-01

    The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the classical, alternative, or lectin pathways. Biological functions, such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, and solubilization and clearance of immune complex and cell lysis, are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in autoimmune diseases. Paradoxically, the deficiency of early complement proteins from the classical pathway (CP) is strongly associated with development of systemic lupus erythematous (SLE) – mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the CP (C1q, C1r, C1s, C4, and C2) proteins in SLE patients. PMID:26941740

  14. Disruption of TNFα/TNFR1 function in resident skin cells impairs host immune response against cutaneous vaccinia virus infection

    PubMed Central

    Tian, Tian; Dubin, Krista; Jin, Qiushuang; Qureshi, Ali; King, Sandra L.; Liu, Luzheng; Jiang, Xiaodong; Murphy, George F.; Kupper, Thomas S.; Fuhlbrigge, Robert C.

    2012-01-01

    One strategy adopted by vaccinia virus (VV) to evade the host immune system is to encode homologs of TNF receptors (TNFR) that block TNFα function. The response to VV skin infection under conditions of TNFα deficiency, however, has not been reported. We found that TNFR1−/− mice developed larger primary lesions, numerous satellite lesions and higher skin virus levels after VV scarification. Following their recovery, these TNFR1−/− mice were fully protected against challenge with a lethal intranasal dose of VV, suggesting these mice developed an effective memory immune response. A functional systemic immune response of TNFR1−/− mice was further demonstrated by enhanced production of VV-specific IFNγ and VV-specific CD8+ T cells in spleens and draining lymph nodes. Interestingly, bone marrow (BM) reconstitution studies using WT BM in TNFR1−/− host mice, but not TNFR1−/− BM in WT host mice, reproduced the original results seen in TNFR1−/− mice, indicating that TNFR1 deficiency in resident skin cells, rather than hematopoietic cells, accounts for the impaired cutaneous immune response. Our data suggest that lack of TNFR1 leads to a skin-specific immune deficiency and that resident skin cells play a crucial role in mediating an optimal immune defense to VV cutaneous infection via TNFα/TNFR1 signaling. PMID:22318381

  15. Immune System

    EPA Science Inventory

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  16. Iron deficiency or anemia of inflammation? : Differential diagnosis and mechanisms of anemia of inflammation.

    PubMed

    Nairz, Manfred; Theurl, Igor; Wolf, Dominik; Weiss, Günter

    2016-10-01

    Iron deficiency and immune activation are the two most frequent causes of anemia, both of which are based on disturbances of iron homeostasis. Iron deficiency anemia results from a reduction of the body's iron content due to blood loss, inadequate dietary iron intake, its malabsorption, or increased iron demand. Immune activation drives a diversion of iron fluxes from the erythropoietic bone marrow, where hemoglobinization takes place, to storage sites, particularly the mononuclear phagocytes system in liver and spleen. This results in iron-limited erythropoiesis and anemia. This review summarizes current diagnostic and pathophysiological concepts of iron deficiency anemia and anemia of inflammation, as well as combined conditions, and provides a brief outlook on novel therapeutic options.

  17. Update on gene therapy for immunodeficiencies.

    PubMed

    Kohn, Donald B

    2010-05-01

    Primary immune deficiencies (PID) are due to blood cell defects and can be treated with transplantation of normal hematopoietic stem cells (HSC) from another person (allogeneic). Gene therapy in which a patient's autologous HSC are genetically corrected represents an alternative treatment for patients with PID, which could avoid the immunologic risks of allogeneic HSCT and confer similar benefits. Recent clinical trials using gene therapy have led to immune restoration in patients with X-linked severe combined immune deficiency (XSCID), adenosine deaminase (ADA)-deficient SCID and chronic granulomatous disease (CGD). However, severe complications arose in several of the patients in whom the integrated retroviral vectors led to leukoproliferative disorders. New approaches using safer integrating vectors or direct correction of the defective gene underlying the PID are being developed and may lead to safer and effective gene therapy for PID. Copyright 2009 Elsevier Inc. All rights reserved.

  18. [Effect of AÇaí (Euterpe oleracea) on lipid metabolism, immune substances and endocrine hormone in rats with deficiency-heat and deficiency-cold syndrome].

    PubMed

    Wang, Zi-Chen; Zhang, Jian-Jun; Zhu, Ying-Li; Qu, Yan; Fei, Wen-Ting; Wang, Sha; Wang, Jing-Xia; Wang, Lin-Yuan

    2017-07-01

    To study the effects of AÇaí(Euterpe oleracea) on lipid metabolism, immune substances and endocrine hormone level in rats with deficiency-heat and deficiency-cold syndrome. SD rats were divided into blank control group, deficiency-heat model group, deficiency-heat & Phellodendri Cortex group, deficiency-heat & AÇaí high dose and low dose groups, deficiency-cold model group, deficiency-cold & Cinnamomi Cortex group, deficiency-cold & AÇaí high dose and low dose groups. The rats received intramuscular injection of dexamethasone sodium phosphate (0.35 mg) or hydrocortisone sodium succinate (20 mg) for 21 days to set up deficiency-heat models and deficiency-cold models. Then the changes in fatmetabolism levels (FFA, LPL, HL) and immune indexes (IgG, IgM, C3 and C4) were detected by colorimeter; and the levels of endocrine hormone indexes (CORT, E2 and T) were detected by radioimmunoassay. The levels of FFA, LPL and HL in serum were reduced (P<0.01 or P<0.001); levels of IgG, IgM and C3 in serum were increased (P<0.05 or P<0.001); level of CORT in serum was increased (P<0.05) and the level of E2, E2/T in serum were reduced in the AÇaí high dose group (P<0.05). The effect of high dose AÇaí on fat metabolism was not obvious in deficiency-cold models, but the levels of IgG, IgM, C3 and CORT in serum were increased (P<0.05 or P<0.001). AÇaí was showed the same effect trend with Phellodendri Cortex in adjusting the levels of deficiency-heat rats; but unlike Cinnamomi Cortex, AÇaí was showed no obvious effect in adjusting the levels of deficiency-cold rats. In this experiment, homogeneous comparison and heterogeneous disproof were used to verify the cold nature of Çaí. Copyright© by the Chinese Pharmaceutical Association.

  19. Effects of Vector Backbone and Pseudotype on Lentiviral Vector-mediated Gene Transfer: Studies in Infant ADA-Deficient Mice and Rhesus Monkeys

    PubMed Central

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I.; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-01-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options. PMID:24925206

  20. [EFFICACY OF IVIG TREATMENT IN BRONCHIECTASIS ASSOCIATED WITH IGG SUBCLASS DEFICIENCY].

    PubMed

    Shostak, Yael; Kramer, Mordechai R

    2017-11-01

    Bronchiectasis is characterized by an abnormal dilatation of the bronchi leading to a chronic inflammatory process, airway blockage and impaired clearance of secretions. The damage to the airways is usually progressive and is the result of several pathogenic processes. In the past, healing of infections (especially pulmonary tuberculosis) was the main cause of airway dilatation and progression of chronic inflammation. Today, congenital illnesses, anatomical defects and immune deficiency play an important role in the pathogenesis of bronchiectasis formation. The immunoglobulin repertoire is vital for effective host protection against a wide variety of pathogens. Primary antibody deficiency diseases are defects of the humoral arm of the immune system and involve an absence/reduced levels of one or more immunoglobulin classes/subclasses or defects of specific antibody formation. Immunoglobulin G (IGG) subclass deficiency can occur in a healthy person and could be without clinical significance. However, in recent years there is emerging evidence that in patients with recurrent infections, early diagnosis of antibody deficiency affects the prognosis and prevention of ongoing lung damage. The use of IVIG has contributed significantly to the survival rate in primary antibody deficiencies. There is limited literature on the treatment of IVIG for patients with IGG subclass deficiency. However, all studies presented so far demonstrated that immunoglobulin therapy reduced the rate of bacterial infections, days of antibiotic usage, hospital admissions and significantly increased patients' quality of life. Therefore, in the appropriate clinical setting, ie: a patient with bronchiectasis and recurrent infections, it is justified to test whether there are humoral immune defects such as IGG subclass deficiency. In a patient with proven deficiency, we should recommend to start IVIG treatment until clinical benefit is achieved.

  1. Differences in the Importance of Mast Cells, Basophils, IgE, and IgG versus That of CD4+ T Cells and ILC2 Cells in Primary and Secondary Immunity to Strongyloides venezuelensis.

    PubMed

    Mukai, Kaori; Karasuyama, Hajime; Kabashima, Kenji; Kubo, Masato; Galli, Stephen J

    2017-05-01

    There is evidence that mast cells, basophils, and IgE can contribute to immune responses to parasites; however, the relative levels of importance of these effector elements in parasite immunity are not fully understood. Previous work in Il3 -deficient and c- kit mutant Kit W / W-v mice indicated that interleukin-3 and c-Kit contribute to expulsion of the intestinal nematode Strongyloides venezuelensis during primary infection. Our findings in mast cell-deficient Kit W-sh / W-sh mice and two types of mast cell-deficient mice that have normal c- kit ("Hello Kit ty" and MasTRECK mice) confirmed prior work in Kit W / W-v mice that suggested that mast cells play an important role in S. venezuelensis egg clearance in primary infections. We also assessed a possible contribution of basophils in immune responses to S. venezuelensis By immunohistochemistry, we found that numbers of basophils and mast cells were markedly increased in the jejunal mucosa during primary infections with S. venezuelensis Studies in basophil-deficient Mcpt8 DTR mice revealed a small but significant contribution of basophils to S. venezuelensis egg clearance in primary infections. Studies in mice deficient in various components of immune responses showed that CD4 + T cells and ILC2 cells, IgG, FcRγ, and, to a lesser extent, IgE and FcεRI contribute to effective immunity in primary S. venezuelensis infections. These findings support the conclusion that the hierarchy of importance of immune effector mechanisms in primary S. venezuelensis infection is as follows: CD4 + T cells/ILC2 cells, IgG, and FcRγ>mast cells>IgE and FcεRI>basophils. In contrast, in secondary S. venezuelensis infection, our evidence indicates that the presence of CD4 + T cells is of critical importance but mast cells, antibodies, and basophils have few or no nonredundant roles. Copyright © 2017 American Society for Microbiology.

  2. The Hayflick Limit and Age-Related Adaptive Immune Deficiency.

    PubMed

    Gill, Zoe; Nieuwoudt, Martin; Ndifon, Wilfred

    2018-01-01

    The adaptive immune system (AIS) acquires significant deficiency during chronological ageing, making older individuals more susceptible to infections and less responsive to vaccines compared to younger individuals. At the cellular level, one of the most striking features of this ageing-related immune deficiency is the dramatic loss of T-cell diversity that occurs in elderly humans. After the age of 70 years, there is a sharp decline in the diversity of naïve T cells, including a >10-fold decrease in the CD4+ compartment and a >100-fold decrease in the CD8+ compartment. Such changes are detrimental because the AIS relies on a diverse naïve T-cell pool to respond to novel pathogens. Recent work suggests that this collapse of naïve T-cell diversity results from T cells reaching the Hayflick limit and being eliminated through both antigen-dependent and -independent pathways. The progressive attrition of telomeres is the molecular mechanism that underlies this Hayflick limit. Therefore, we propose that by measuring the telomere lengths of T cells with high resolution, it is possible to develop a unique biomarker of immune deficiency, potentially much better correlated with individual susceptibility to diseases compared to chronological age alone. © 2017 S. Karger AG, Basel.

  3. Progranulin Protects Hippocampal Neurogenesis via Suppression of Neuroinflammatory Responses Under Acute Immune Stress.

    PubMed

    Ma, Yanbo; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2017-07-01

    Immune stress is well known to suppress adult neurogenesis in the hippocampus. We have demonstrated that progranulin (PGRN) has a mitogenic effect on neurogenesis under several experimental conditions. We have also shown that PGRN suppresses excessive neuroinflammatory responses after traumatic brain injury. However, the role of PGRN in modulating neurogenesis under acute immune stress is yet to be elucidated. In the present study, we evaluated the involvement of PGRN in neurogenesis and inflammatory responses in the hippocampus using a lipopolysaccharide (LPS)-induced immune stress model. Treatment of mice with LPS significantly increased the expression of PGRN in activated microglia and decreased neurogenesis in the dentate gyrus of the hippocampus. PGRN deficiency increased CD68-immunoreactive area and exacerbated suppression of neurogenesis following LPS treatment. The expression levels of lysosomal genes including lysozyme M, macrophage expressed gene 1, and cathepsin Z were higher in PGRN-deficient than in wild-type mice, while PGRN deficiency decreased mammalian target of rapamycin (mTOR) mRNA levels, suggesting that PGRN suppresses excessive lysosomal biogenesis by promoting mTOR signaling. LPS treatment also increased the expression of proinflammatory genes such as interleukin (IL)-1β, tumor necrosis factor-α, and microsomal prostaglandin E synthase-1 (mPGES-1) in the hippocampus, and PGRN deficiency further enhanced gene expression of IL-6 and mPGES-1. These results suggest that PGRN plays a protecting role in hippocampal neurogenesis at least partially by attenuating neuroinflammatory responses during LPS-induced acute immune stress.

  4. IFN Regulatory Factor 8 Represses GM-CSF Expression in T cells to Affect Myeloid Cell Lineage Differentiation

    PubMed Central

    Paschall, Amy V.; Zhang, Ruihua; Qi, Chen-Feng; Bardhan, Kankana; Peng, Liang; Lu, Geming; Yang, Jianjun; Merad, Miriam; McGaha, Tracy; Zhou, Gang; Mellor, Andrew; Abrams, Scott I.; Morse, Herbert C.; Ozato, Keiko; Xiong, Huabao; Liu, Kebin

    2015-01-01

    During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN Regulatory Factor 8 (IRF8) accumulate CD11b+Gr1+ myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. Here we report an intriguing finding that although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b+Gr1+ MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF-deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to represses GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo. PMID:25646302

  5. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    NASA Astrophysics Data System (ADS)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  6. Selective IgA Deficiency

    MedlinePlus

    ... more about PIDDs visit the Immune Deficiency Foundation website . Look to the experts The AAAAI’s Find an Allergist / Immunologist service is a trusted resource to help you find a specialist close ...

  7. Why AIDS? The Mystery of How HIV Attacks the Immune System.

    ERIC Educational Resources Information Center

    Christensen, Damaris

    1999-01-01

    Reviews differing theories surrounding the mystery of how human immunodeficiency virus (HIV) attacks the immune system. Claims that understanding how HIV triggers immune-cell depletion may enable researchers to block its effects. New knowledge could reveal strategies for acquired immune deficiency syndrome (AIDS) therapies that go beyond the drugs…

  8. Acquired Immune Deficiency Syndrome (AIDS) and the Veterans' Administration. Hearing before the Subcommittee on Hospitals and Health Care of the Committee on Veterans' Affairs. House of Representatives, One Hundredth Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Veterans' Affairs.

    This document presents witness testimony and prepared statements from the Congressional hearing called to examine the issue of acquired immune deficiency syndrome (AIDS) and the role of the Veterans' Administration (VA) in combating AIDS. Opening statements are included from Representatives G. V. Montgomery, J. Roy Rowland, Joseph P. Kennedy, II,…

  9. Immune deficiency vs. immune excess in inflammatory bowel diseases-STAT3 as a rheo-STAT of intestinal homeostasis.

    PubMed

    Leppkes, Moritz; Neurath, Markus F; Herrmann, Martin; Becker, Christoph

    2016-01-01

    Genome-wide association studies have provided many genetic alterations, conferring susceptibility to multifactorial polygenic diseases, such as inflammatory bowel diseases. Yet, how specific genetic alterations functionally affect intestinal inflammation often remains elusive. It is noteworthy that a large overlap of genes involved in immune deficiencies with those conferring inflammatory bowel disease risk has been noted. This has provided new arguments for the debate on whether inflammatory bowel disease arises from either an excess or a deficiency in the immune system. In this review, we highlight the functional effect of an inflammatory bowel disease-risk allele, which cannot be deduced from genome-wide association studies data alone. As exemplified by the transcription factor signal transducer and activator of transcription 3 (STAT3), we show that a single gene can have a plethora of effects in various cell types of the gut. These effects may individually contribute to the restoration of intestinal homeostasis on the one hand or pave the way for excessive immunopathology on the other, as an inflammatory "rheo-STAT". © Society for Leukocyte Biology.

  10. Transient immune deficiency in patients with acute Epstein-Barr virus infection.

    PubMed

    Junker, A K; Ochs, H D; Clark, E A; Puterman, M L; Wedgwood, R J

    1986-09-01

    To study the effect of primary Epstein-Barr virus (EBV) infection on antigen-specific antibody production, we immunized 17 college students who had developed acute infectious mononucleosis with the T-cell dependent neoantigen bacteriophage phi X174. During the early phase of infectious mononucleosis, the proportion of peripheral blood lymphocytes displaying Ia and T8 (CD8) phenotypes was increased and the T helper/suppressor (T4/T8) ratio was decreased (less than 1). These abnormalities disappeared during the convalescent phase. Correlating with EBV-induced changes in T lymphocytes, we demonstrated depressed humoral immune responses to bacteriophage phi X174 both in vivo and in vitro. In vitro coculture experiments indicated that the Ia+ suppressor T cells could inhibit antibody production and isotype switch. Removal of T8+ lymphocytes from patient T cells normalized in vitro antibody synthesis. In addition, impaired B-cell function was shown to be in part responsible for deficient antibody production. These studies demonstrate that infection with EBV affects both B and T lymphocytes and causes a broad-based transient immune deficiency in patients with uncomplicated infectious mononucleosis.

  11. Impacts of different expressions of PA-X protein on 2009 pandemic H1N1 virus replication, pathogenicity and host immune responses

    PubMed Central

    Lee, Jinhwa; Yu, Hai; Li, Yonghai; Ma, Jingjiao; Lang, Yuekun; Duff, Michael; Henningson, Jamie; Liu, Qinfang; Li, Yuhao; Nagy, Abdou; Bawa, Bhupinder; Li, Zejun; Tong, Guangzhi; Richt, Juergen A.; Ma, Wenjun

    2017-01-01

    Although several studies have investigated the functions of influenza PA-X, the impact of different expressions of PA-X protein including full-length, truncated or PA-X deficient forms on virus replication, pathogenicity and host response remains unclear. Herein, we generated two mutated viruses expressing a full-length or deficient PA-X protein based on the A/California/04/2009 (H1N1) virus that expresses a truncated PA-X to understand three different expressions of PA-X protein on virus replication, pathogenicity and host immune responses. The results showed that expression of either full-length or truncated PA-X protein enhanced viral replication and pathogenicity as well as reduced host innate immune response in mice by host shutoff activity when compared to the virus expressing the deficient PA-X form. Furthermore, the full-length PA-X expression exhibited a greater effect on virus pathogenicity than the truncated PA-X form. Our results provide novel insights of PA-X on viral replication, pathogenicity and host immune responses. PMID:28142079

  12. Pediatric recurrent respiratory tract infections: when and how to explore the immune system? (About 53 cases).

    PubMed

    El-Azami-El-Idrissi, Mohammed; Lakhdar-Idrissi, Mounia; Chaouki, Sanae; Atmani, Samir; Bouharrou, Abdelhak; Hida, Moustapha

    2016-01-01

    Recurrent respiratory tract infections are one of the most frequent reasons for pediatric visits and hospitalization. Causes of this pathology are multiple ranging from congenital to acquired and local to general. Immune deficiencies are considered as underlying conditions predisposing to this pathology. Our work is about to determine when and how to explore the immune system when facing recurrent respiratory infections. This was based on the records of 53 children hospitalized at the pediatrics unit of Hassan II University Hospital, Fez Morocco. Thirty boys and 23 girls with age ranging from 5 months to 12 years with an average age of 2 years were involved in this study. Bronchial foreign body was the main etiology in children of 3 to 6 year old. Gastro-esophageal reflux, which in some cases is a consequence of chronic cough, as well as asthma were most frequent in infants (17 and 15% respectively). Immune deficiency was described in 7.5% of patients and the only death we deplored in our series belongs to this group. Recurrent respiratory tract infections have multiple causes. In our series they are dominated by foreign body inhalation and gastroesophageal reflux, which in some cases is a consequence of a chronic cough. Immune deficiency is not frequent but could influence the prognosis. Therefore immune explorations should be well codified.

  13. Outer membrane vesicles from flagellin-deficient Salmonella enterica serovar Typhimurium induce cross-reactive immunity and provide cross-protection against heterologous Salmonella challenge.

    PubMed

    Liu, Qiong; Liu, Qing; Yi, Jie; Liang, Kang; Hu, Bo; Zhang, Xiangmin; Curtiss, Roy; Kong, Qingke

    2016-10-04

    Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection of multiple serotypes Salmonella. In this study, a flagellin-deficient S. Typhimurium mutant was constructed. Lipopolysaccharide profiles, protein profiles and cryo-electron microscopy revealed that there were no significant differences between the wild-type and mutant OMVs, with the exception of a large amount of flagellin in the wild-type OMVs. Neither the wild-type OMVs nor the non-flagellin OMVs were toxic to macrophages. Mice immunized with the non-flagellin OMVs produced high concentrations of IgG. The non-flagellin OMVs elicited strong mucosal antibody responses in mice when administered via the intranasal route in addition to provoking higher cross-reactive immune responses against OMPs isolated from S. Choleraesuis and S. Enteritidis. Both intranasal and intraperitoneal immunization with the non-flagellin OMVs provided efficient protection against heterologous S. Choleraesuis and S. Enteritidis challenge. Our results indicate that the flagellin-deficient OMVs may represent a new vaccine platform that could be exploited to facilitate the production of a broadly protective vaccine.

  14. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.

  15. Mast Cells Mediate the Immune Suppression Induced by Dermal Exposure to JP-8 Jet Fuel

    PubMed Central

    Limón-Flores, Alberto Y.; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E.

    2009-01-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell–mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel–induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell “knock-in mice”) restored JP-8–induced immune suppression. When, however, mast cells from prostaglandin E2 (PGE2)–deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell–derived PGE2 was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8–induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel–induced immune suppression. PMID:19726579

  16. The immunocompromised district in dermatology: A unifying pathogenic view of the regional immune dysregulation.

    PubMed

    Ruocco, Vincenzo; Ruocco, Eleonora; Piccolo, Vincenzo; Brunetti, Giampiero; Guerrera, Luigi Pio; Wolf, Ronni

    2014-01-01

    Besides the systemic immune deficiency, a sectorial default in immune control may occur in immunocompetent subjects. This regional immune defect can appear and remain confined to differently damaged skin areas, lately labeled immunocompromised districts (ICDs). An ICD is a skin area more vulnerable than the rest of the body for genetic or acquired reasons. Its vulnerability mainly consists in a local dysregulation of the immune control, which often facilitates (but sometimes hinders) the local onset of immunity-related eruptions or skin disorders. The factors responsible for localized immune dysregulation are multifarious, being represented by chronic lymphatic stasis, herpetic infections, ionizing or ultraviolet (UV) radiations, burns, all sorts of trauma (especially amputation), tattooing, intradermal vaccinations, and others of disparate nature (eg, paralytic stroke, poliomyelitis). Whatever the cause, in time an ICD may become a vulnerable site, prone to developing opportunistic infections, tumors, or dysimmune reactions (often of granulomatous type), strictly confined to the district itself; however, the opposite may also occur with systemic immune disorders or malignancies that selectively spare the district. In any case, the immunologic behavior of an ICD is different from that of the rest of the body. The pathomechanisms involved in this sectorial immune destabilization may reside in locally hampered lymph drainage that hinders the normal trafficking of immunocompetent cells (eg, chronic lymphedema, posttraumatic lymph stasis) or in a damage to sensory nerve fibers that release immunity-related peptides (eg, herpetic infections, carpal tunnel syndrome), or in both conditions (eg, amputation stump, radiation dermatitis). The ICD is a conceptual entity with no definite shape or dimension. It may take an extremely variable form and extent depending on the causative agent, ranging from a minimal area (eg, intradermal vaccination) or a small area (eg, herpes simplex infection), through a wide area (eg, radiotherapy), a bandlike segment (eg, skin mosaicism, herpes zoster infection), or an acral area (eg, carpal tunnel syndrome), up to a whole limb (eg, Stewart-Treves syndrome) or even an entire half body (eg, brain stroke). Varied newly coined terminology can be used to indicate the specific cause each time that it is responsible for a regional immune dysregulation. The advantage of the umbrella term ICD is that it encompasses all the possible causes involved in a local immune destabilization. An ICD may have a congenital or a postnatal origin, and interesting similarities between the two forms exist. An ICD may also take place in patients with a preexisting systemic immune deficiency, thus creating a more vulnerable site in an already vulnerable patient. Identifying a cutaneous ICD in a given patient is an important standpoint for both diagnostic and prevention purposes. This can be proven by the educative clinical examples that are reported here. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Antibody deficiency in patients with frequent exacerbations of Chronic Obstructive Pulmonary Disease (COPD).

    PubMed

    McCullagh, Brian N; Comellas, Alejandro P; Ballas, Zuhair K; Newell, John D; Zimmerman, M Bridget; Azar, Antoine E

    2017-01-01

    Chronic Obstructive Pulmonary Disease is the third leading cause of death in the US, and is associated with periodic exacerbations, which account for the largest proportion of health care utilization, and lead to significant morbidity, mortality, and worsening lung function. A subset of patients with COPD have frequent exacerbations, occurring 2 or more times per year. Despite many interventions to reduce COPD exacerbations, there is a significant lack of knowledge in regards to their mechanisms and predisposing factors. We describe here an important observation that defines antibody deficiency as a potential risk factor for frequent COPD exacerbations. We report a case series of patients who have frequent COPD exacerbations, and who were found to have an underlying primary antibody deficiency syndrome. We also report on the outcome of COPD exacerbations following treatment in a subset with of these patients with antibody deficiency. We identified patients with COPD who had 2 or more moderate to severe exacerbations per year; immune evaluation including serum immunoglobulin levels and pneumococcal IgG titers was performed. Patients diagnosed with an antibody deficiency syndrome were treated with either immunoglobulin replacement therapy or prophylactic antibiotics, and their COPD exacerbations were monitored over time. A total of 42 patients were identified who had 2 or more moderate to severe COPD exacerbations per year. Twenty-nine patients had an underlying antibody deficiency syndrome: common variable immunodeficiency (8), specific antibody deficiency (20), and selective IgA deficiency (1). Twenty-two patients had a follow-up for at least 1 year after treatment of their antibody deficiency, which resulted in a significant reduction of COPD exacerbations, courses of oral corticosteroid use and cumulative annual dose of oral corticosteroid use, rescue antibiotic use, and hospitalizations for COPD exacerbations. This case series identifies antibody deficiency as a potentially treatable risk factor for frequent COPD exacerbations; testing for antibody deficiency should be considered in difficult to manage frequently exacerbating COPD patients. Further prospective studies are warranted to further test this hypothesis.

  18. Antibody deficiency in patients with frequent exacerbations of Chronic Obstructive Pulmonary Disease (COPD)

    PubMed Central

    McCullagh, Brian N.; Comellas, Alejandro P.; Ballas, Zuhair K.; Newell, John D.; Zimmerman, M. Bridget

    2017-01-01

    Chronic Obstructive Pulmonary Disease is the third leading cause of death in the US, and is associated with periodic exacerbations, which account for the largest proportion of health care utilization, and lead to significant morbidity, mortality, and worsening lung function. A subset of patients with COPD have frequent exacerbations, occurring 2 or more times per year. Despite many interventions to reduce COPD exacerbations, there is a significant lack of knowledge in regards to their mechanisms and predisposing factors. We describe here an important observation that defines antibody deficiency as a potential risk factor for frequent COPD exacerbations. We report a case series of patients who have frequent COPD exacerbations, and who were found to have an underlying primary antibody deficiency syndrome. We also report on the outcome of COPD exacerbations following treatment in a subset with of these patients with antibody deficiency. We identified patients with COPD who had 2 or more moderate to severe exacerbations per year; immune evaluation including serum immunoglobulin levels and pneumococcal IgG titers was performed. Patients diagnosed with an antibody deficiency syndrome were treated with either immunoglobulin replacement therapy or prophylactic antibiotics, and their COPD exacerbations were monitored over time. A total of 42 patients were identified who had 2 or more moderate to severe COPD exacerbations per year. Twenty-nine patients had an underlying antibody deficiency syndrome: common variable immunodeficiency (8), specific antibody deficiency (20), and selective IgA deficiency (1). Twenty-two patients had a follow-up for at least 1 year after treatment of their antibody deficiency, which resulted in a significant reduction of COPD exacerbations, courses of oral corticosteroid use and cumulative annual dose of oral corticosteroid use, rescue antibiotic use, and hospitalizations for COPD exacerbations. This case series identifies antibody deficiency as a potentially treatable risk factor for frequent COPD exacerbations; testing for antibody deficiency should be considered in difficult to manage frequently exacerbating COPD patients. Further prospective studies are warranted to further test this hypothesis. PMID:28212436

  19. Genetics Home Reference: transcobalamin deficiency

    MedlinePlus

    ... also have a shortage of white blood cells (neutropenia), which can lead to reduced immune system function. ... deficiency Seattle Children's Hospital: Anemia Seattle Children's Hospital: Neutropenia Washington University, St. Louis: Neuromuscular Disease Center: Vitamin ...

  20. The clinical syndrome of specific antibody deficiency in children.

    PubMed

    Boyle, R J; Le, C; Balloch, A; Tang, M L-K

    2006-12-01

    Specific antibody deficiency (SAD) is an immune deficiency which has been reported in adults and children with recurrent respiratory tract infections; however, the clinical features of SAD are not well described. This study evaluated formally the clinical syndrome of SAD, by comparing the clinical features of children with SAD and those of children with recurrent infection but normal immune function tests. SAD was defined as an adequate IgG antibody response to less than 50% of 12 pneumococcal serotypes tested following 23-valent unconjugated pneumococcal immunization. An adequate IgG antibody response was defined as a post-immunization titre of >or= 1.3 microg/ml or >or= four times the preimmunization value. Seventy-four children with recurrent infection were evaluated where immune deficiencies other than SAD had been excluded. Eleven (14.9%) of these children had SAD. Clinical features differed between the group with SAD and the group with normal antibody responses. A history of otitis media, particularly in association with chronic otorrhoea was associated with SAD [relative risk (RR) of SAD in those with chronic otorrhoea 4.64 (P = 0.02)]. SAD was associated with allergic disease, particularly allergic rhinitis [RR of SAD in those with allergic rhinitis 3.77 (P = 0.04)]. These two clinical associations of SAD were independent in this study [RR of chronic otorrhoea in those with allergic rhinitis 0.85 (P = 0.28)]. SAD was not an age-related phenomenon in this population. SAD has a distinct clinical phenotype, presenting as recurrent infection associated with chronic otorrhoea and/or allergic disease, and the condition should be sought in children with these features.

  1. Vitamin A supplementation increases ratios of proinflammatory to anti-inflammatory cytokine responses in pregnancy and lactation

    PubMed Central

    Cox, S E; Arthur, P; Kirkwood, B R; Yeboah-Antwi, K; Riley, E M

    2006-01-01

    Vitamin A supplementation reduces child mortality in populations at risk of vitamin A deficiency and may also reduce maternal mortality. One possible explanation for this is that vitamin A deficiency is associated with altered immune function and cytokine dysregulation. Vitamin A deficiency in pregnancy may thus compound the pregnancy-associated bias of cellular immune responses towards Th-2-like responses and exacerbate susceptibility to intracellular pathogens. We assessed mitogen and antigen-induced cytokine responses during pregnancy and lactation in Ghanaian primigravidae receiving either vitamin A supplementation or placebo. This was a double-blind, randomized, placebo-controlled trial of weekly vitamin A supplementation in pregnant and lactating women. Pregnancy compared to postpartum was associated with a suppression of cytokine responses, in particular of the proinflammatory cytokines interferon (IFN)-γ and tumour necrosis factor (TNF)-α. Mitogen-induced TNF-α responses were associated with a decreased risk of peripheral parasitaemia during pregnancy. Furthermore, vitamin A supplementation was significantly associated with an increased ratio of mitogen-induced proinflammatory cytokine (IFN-γ) to anti-inflammatory cytokine (IL-10) during pregnancy and in the postpartum period. The results of this study indicate that suppression of proinflammatory type 1 immune responses and hence immunity to intracellular infections, resulting from the combined effects of pregnancy and vitamin A deficiency, might be ameliorated by vitamin A supplementation. PMID:16734607

  2. Concerted Activity of IgG1 Antibodies and IL-4/IL-25-Dependent Effector Cells Trap Helminth Larvae in the Tissues following Vaccination with Defined Secreted Antigens, Providing Sterile Immunity to Challenge Infection

    PubMed Central

    Hewitson, James P.; Filbey, Kara J.; Esser-von Bieren, Julia; Camberis, Mali; Schwartz, Christian; Murray, Janice; Reynolds, Lisa A.; Blair, Natalie; Robertson, Elaine; Harcus, Yvonne; Boon, Louis; Huang, Stanley Ching-Cheng; Yang, Lihua; Tu, Yizheng; Miller, Mark J.; Voehringer, David; Le Gros, Graham; Harris, Nicola; Maizels, Rick M.

    2015-01-01

    Over 25% of the world's population are infected with helminth parasites, the majority of which colonise the gastrointestinal tract. However, no vaccine is yet available for human use, and mechanisms of protective immunity remain unclear. In the mouse model of Heligmosomoides polygyrus infection, vaccination with excretory-secretory (HES) antigens from adult parasites elicits sterilising immunity. Notably, three purified HES antigens (VAL-1, -2 and -3) are sufficient for effective vaccination. Protection is fully dependent upon specific IgG1 antibodies, but passive transfer confers only partial immunity to infection, indicating that cellular components are also required. Moreover, immune mice show greater cellular infiltration associated with trapping of larvae in the gut wall prior to their maturation. Intra-vital imaging of infected intestinal tissue revealed a four-fold increase in extravasation by LysM+GFP+ myeloid cells in vaccinated mice, and the massing of these cells around immature larvae. Mice deficient in FcRγ chain or C3 complement component remain fully immune, suggesting that in the presence of antibodies that directly neutralise parasite molecules, the myeloid compartment may attack larvae more quickly and effectively. Immunity to challenge infection was compromised in IL-4Rα- and IL-25-deficient mice, despite levels of specific antibody comparable to immune wild-type controls, while deficiencies in basophils, eosinophils or mast cells or CCR2-dependent inflammatory monocytes did not diminish immunity. Finally, we identify a suite of previously uncharacterised heat-labile vaccine antigens with homologs in human and veterinary parasites that together promote full immunity. Taken together, these data indicate that vaccine-induced immunity to intestinal helminths involves IgG1 antibodies directed against secreted proteins acting in concert with IL-25-dependent Type 2 myeloid effector populations. PMID:25816012

  3. The immune system: a target for functional foods?

    PubMed

    Calder, Philip C; Kew, Samantha

    2002-11-01

    The immune system acts to protect the host from infectious agents that exist in the environment (bacteria, viruses, fungi, parasites) and from other noxious insults. The immune system is constantly active, acting to discriminate 'non-self' from 'self'. The immune system has two functional divisions: the innate and the acquired. Both components involve various blood-borne factors (complement, antibodies, cytokines) and cells. A number of methodologies exist to assess aspects of immune function; many of these rely upon studying cells in culture ex vivo. There are large inter-individual variations in many immune functions even among the healthy. Genetics, age, gender, smoking habits, habitual levels of exercise, alcohol consumption, diet, stage in the female menstrual cycle, stress, history of infections and vaccinations, and early life experiences are likely to be important contributors to the observed variation. While it is clear that individuals with immune responses significantly below 'normal' are more susceptible to infectious agents and exhibit increased infectious morbidity and mortality, it is not clear how the variation in immune function among healthy individuals relates to variation in susceptibility to infection. Nutrient status is an important factor contributing to immune competence: undernutrition impairs the immune system, suppressing immune functions that are fundamental to host protection. Undernutrition leading to impairment of immune function can be due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients. Often these occur in combination. Nutrients that have been demonstrated (in either animal or human studies) to be required for the immune system to function efficiently include essential amino acids, the essential fatty acid linoleic acid, vitamin A, folic acid, vitamin B6, vitamin B12, vitamin C, vitamin E, Zn, Cu, Fe and Se. Practically all forms of immunity may be affected by deficiencies in one or more of these nutrients. Animal and human studies have demonstrated that adding the deficient nutrient back to the diet can restore immune function and resistance to infection. Among the nutrients studied most in this regard are vitamin E and Zn. Increasing intakes of some nutrients above habitual and recommended levels can enhance some aspects of immune function. However, excess amounts of some nutrients also impair immune function. There is increasing evidence that probiotic bacteria improve host immune function. The effect of enhancing immune function on host resistance to infection in healthy individuals is not clear.

  4. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease123

    PubMed Central

    Prasad, Ananda S.

    2013-01-01

    The essentiality of zinc in humans was established in 1963. During the past 50 y, tremendous advances in both clinical and basic sciences of zinc metabolism in humans have been observed. The major factor contributing to zinc deficiency is high phytate-containing cereal protein intake in the developing world, and nearly 2 billion subjects may be zinc deficient. Conditioned deficiency of zinc has been observed in patients with malabsorption syndrome, liver disease, chronic renal disease, sickle cell disease, and other chronic illnesses. Major clinical problems resulting from zinc deficiency in humans include growth retardation; cell-mediated immune dysfunction, and cognitive impairment. In the Middle East, zinc-deficient dwarfs did not live beyond the age of 25 y, and they died because of intercurrent infections. In 1963, we knew of only 3 enzymes that required zinc for their activities, but now we know of >300 enzymes and >1000 transcription factors that are known to require zinc for their activities. Zinc is a second messenger of immune cells, and intracellular free zinc in these cells participate in signaling events. Zinc has been very successfully used as a therapeutic modality for the management of acute diarrhea in children, Wilson’s disease, the common cold and for the prevention of blindness in patients with age-related dry type of macular degeneration and is very effective in decreasing the incidence of infection in the elderly. Zinc not only modulates cell-mediated immunity but is also an antioxidant and anti-inflammatory agent. PMID:23493534

  5. Septicaemia models using Streptococcus pneumoniae and Listeria monocytogenes: understanding the role of complement properdin.

    PubMed

    Dupont, Aline; Mohamed, Fatima; Salehen, Nur'Ain; Glenn, Sarah; Francescut, Lorenza; Adib, Rozita; Byrne, Simon; Brewin, Hannah; Elliott, Irina; Richards, Luke; Dimitrova, Petya; Schwaeble, Wilhelm; Ivanovska, Nina; Kadioglu, Aras; Machado, Lee R; Andrew, Peter W; Stover, Cordula

    2014-08-01

    Streptococcus pneumoniae and Listeria monocytogenes, pathogens which can cause severe infectious disease in human, were used to infect properdin-deficient and wildtype mice. The aim was to deduce a role for properdin, positive regulator of the alternative pathway of complement activation, by comparing and contrasting the immune response of the two genotypes in vivo. We show that properdin-deficient and wildtype mice mounted antipneumococcal serotype-specific IgM antibodies, which were protective. Properdin-deficient mice, however, had increased survival in the model of streptococcal pneumonia and sepsis. Low activity of the classical pathway of complement and modulation of FcγR2b expression appear to be pathogenically involved. In listeriosis, however, properdin-deficient mice had reduced survival and a dendritic cell population that was impaired in maturation and activity. In vitro analyses of splenocytes and bone marrow-derived myeloid cells support the view that the opposing outcomes of properdin-deficient and wildtype mice in these two infection models is likely to be due to a skewing of macrophage activity to an M2 phenotype in the properdin-deficient mice. The phenotypes observed thus appear to reflect the extent to which M2- or M1-polarised macrophages are involved in the immune responses to S. pneumoniae and L. monocytogenes. We conclude that properdin controls the strength of immune responses by affecting humoral as well as cellular phenotypes during acute bacterial infection and ensuing inflammation.

  6. Atypical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid.

    PubMed

    Chandran, Divya; Rickert, Joshua; Huang, Yingxiang; Steinwand, Michael A; Marr, Sharon K; Wildermuth, Mary C

    2014-04-09

    In plants, the activation of immunity is often inversely correlated with growth. Mechanisms that control plant growth in the context of pathogen challenge and immunity are unclear. Investigating Arabidopsis infection with the powdery mildew fungus, we find that the Arabidopsis atypical E2F DEL1, a transcriptional repressor known to promote cell proliferation, represses accumulation of the hormone salicylic acid (SA), an established regulator of plant immunity. DEL1-deficient plants are more resistant to pathogens and slightly smaller than wild-type. The resistance and size phenotypes of DEL1-deficient plants are due to the induction of SA and activation of immunity in the absence of pathogen challenge. Moreover, Enhanced Disease Susceptibility 5 (EDS5), a SA transporter required for elevated SA and immunity, is a direct repressed target of DEL1. Together, these findings indicate that DEL1 control of SA levels contributes to regulating the balance between growth and immunity in developing leaves. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The impaired intestinal mucosal immune system by valine deficiency for young grass carp (Ctenopharyngodon idella) is associated with decreasing immune status and regulating tight junction proteins transcript abundance in the intestine.

    PubMed

    Luo, Jian-Bo; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu

    2014-09-01

    This study investigated the effects of dietary valine on the growth, intestinal immune response, tight junction proteins transcript abundance and gene expression of immune-related signaling molecules in the intestine of young grass carp (Ctenopharyngodon idella). Six iso-nitrogenous diets containing graded levels of valine (4.3-19.1 g kg(-)(1) diet) were fed to the fish for 8 weeks. The results showed that percentage weight gain (PWG), feed intake and feed efficiency of fish were the lowest in fish fed the valine-deficient diet (P < 0.05). In addition, valine deficiency decreased lysozyme, acid phosphatase activities and complement 3 content in the intestine (P < 0.05), down-regulated mRNA levels of interleukin 10, transforming growth factor β1, IκBα and target of rapamycin (TOR) (P < 0.05), and up-regulated tumor necrosis factor α, interleukin 8 and nuclear factor κB P65 (NF-κB P65) gene expression (P < 0.05). Additionally, valine deficiency significantly decreased transcript of Occludin, Claudin b, Claudin c, Claudin 3, and ZO-1 (P < 0.05), and improved Claudin 15 expression in the fish intestine (P < 0.05). However, valine did not have a significant effect on expression of Claudin 12 in the intestine of grass carp (P > 0.05). In conclusion, valine deficiency decreased fish growth and intestinal immune status, as well as regulated gene expression of tight junction proteins, NF-κB P65, IκBα and TOR in the fish intestine. Based on the quadratic regression analysis of lysozyme activity or PWG, the dietary valine requirement of young grass carp (268-679 g) were established to be 14.47 g kg(-1) diet (4.82 g 100 g(-1) CP) or 14.00 g kg(-1) diet (4.77 g 100 g(-1) CP), respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Suicide Inhibitors of Reverse Transcriptase in the Therapy of AIDS and Other Retroviruses

    DTIC Science & Technology

    1989-07-01

    Acquired Immun Deficiency Syndrome (AIDS) (7-8). The most recent evaluation of the AIDS epidemic in the U.S. (4) indicates that the currer total of...are shown below. One of the first, [N-(L-3-tran carboxyxiran-2-carbonyl)-L-leucyl]-amido (4-guanido) butane was isolated from Asperg /II japonicus and...risk of acquired immune deficiency syndrome (AIDS). Science. 2.4: 497- 500 (1983). 9. Kopkrowski H., De Freitas E.C., Harper M.E., Woliheim S.M

  9. Glucocorticoid-dependent hypoadrenocorticism with thrombocytopenia and neutropenia mimicking sepsis in a Labrador retriever dog

    PubMed Central

    Snead, Elisabeth; Vargo, Cheryl; Myers, Sherry

    2011-01-01

    Glucocorticoid-deficient hypoadrenocorticism (GDH) with immune-mediated-neutropenia (IMN) and -thrombocytopenia (IMT) were diagnosed in a 3-year-old Labrador retriever dog. Glucocorticoid-deficient hypoadrenocorticism is rare and diagnostically challenging as clinical signs and laboratory abnormalities are often nonspecific. Immune-mediated cytopenias and other autoimmune disorders, as part of an autoimmune polyglandular syndrome have been reported with hypoadrenocorticism in humans. This is the first reported case of hypoadrenocorticism and bicytopenia in a dog. PMID:22467971

  10. Leptin and zinc relation: In regulation of food intake and immunity

    PubMed Central

    Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim

    2012-01-01

    Leptin is synthesized and released by the adipose tissue. Leptin, which carries the information about energy reserves of the body to the brain, controls food intake by acting on neuropeptide Y (NPY), which exercises a food-intake-increasing effect through relevant receptors in the hypothalamus. Zinc deficiency is claimed to result in anorexia, weight loss, poor food efficiency, and growth impairment. The fact that obese individuals have low zinc and high leptin levels suggests that there is a relation between zinc and nutrition, and consequently also between zinc and leptin. Leptin deficiency increases the predisposition to infections and this increase is associated with the impairments in the production of cytokines. Zinc has a key role in the sustenance of immune resistance against infections. Dietary zinc deficiency negatively affects CD+4 cells, Th functions, and consequently, cell-mediated immunity by causing a decrease in the production of IL-2, IF-γ, and TNF-α, which are Th1 products. The relation between zinc and the concerned cytokines in particular, and the fact that leptin has a part in the immune responses mediated by these cytokines demonstrate that an interaction among cellular immunity, leptin and zinc is inevitable. An overall evaluation of the information presented above suggests that there are complex relations among food intake, leptin and zinc on one hand and among cellular immunity, leptin and zinc on the other. The aim of the present review was to draw attention to the possible relation between zinc and leptin in dietary regulation and cellular immunity. PMID:23565497

  11. Peripheral blood monocyte and T cell subsets in children with specific polysaccharide antibody deficiency (SPAD).

    PubMed

    Otero, C; Díaz, D; Uriarte, I; Bezrodnik, L; Finiasz, M R; Fink, S

    2016-01-01

    Specific polysaccharide antibody deficiency (SPAD) is a well reported immunodeficiency characterized by a failure to produce antibodies against polyvalent polysaccharide antigens, expressed by encapsulated microorganisms. The clinical presentation of these patients involves recurrent bacterial infections, being the most frequent agent Streptococcus (S.) pneumoniae. In SPAD patients few reports refer to cells other than B cells. Since the immune response to S. pneumoniae and other encapsulated bacteria was historically considered restricted to B cells, the antibody deficiency seemed enough to justify the repetitive infections in SPAD patients. Our purpose is to determine if the B cell defects reported in SPAD patients are accompanied by defects in other leukocyte subpopulations necessary for the development of a proper adaptive immune response against S. pneumoniae. We here report that age related changes observed in healthy children involving increased percentages of classical monocytes (CD14++ CD16- cells) and decreased intermediate monocytes (CD14++ CD16+ cells), are absent in SPAD patients. Alterations can also be observed in T cells, supporting that the immune deficiency in SPAD patients is more complex than what has been described up to now. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  12. Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity.

    PubMed

    Westerterp, Marit; Gautier, Emmanuel L; Ganda, Anjali; Molusky, Matthew M; Wang, Wei; Fotakis, Panagiotis; Wang, Nan; Randolph, Gwendalyn J; D'Agati, Vivette D; Yvan-Charvet, Laurent; Tall, Alan R

    2017-06-06

    Autoimmune diseases such as systemic lupus erythematosus (SLE) are associated with increased cardiovascular disease and reduced plasma high-density lipoprotein (HDL) levels. HDL mediates cholesterol efflux from immune cells via the ATP binding cassette transporters A1 and G1 (ABCA1/G1). The significance of impaired cholesterol efflux pathways in autoimmunity is unknown. We observed that Abca1/g1-deficient mice develop enlarged lymph nodes (LNs) and glomerulonephritis suggestive of SLE. This lupus-like phenotype was recapitulated in mice with knockouts of Abca1/g1 in dendritic cells (DCs), but not in macrophages or T cells. DC-Abca1/g1 deficiency increased LN and splenic CD11b + DCs, which displayed cholesterol accumulation and inflammasome activation, increased cell surface levels of the granulocyte macrophage-colony stimulating factor receptor, and enhanced inflammatory cytokine secretion. Consequently, DC-Abca1/g1 deficiency enhanced T cell activation and T h 1 and T h 17 cell polarization. Nlrp3 inflammasome deficiency diminished the enlarged LNs and enhanced T h 1 cell polarization. These findings identify an essential role of DC cholesterol efflux pathways in maintaining immune tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Quantitative reduction of the TCR adapter protein SLP-76 unbalances immunity and immune regulation.

    PubMed

    Siggs, Owen M; Miosge, Lisa A; Daley, Stephen R; Asquith, Kelly; Foster, Paul S; Liston, Adrian; Goodnow, Christopher C

    2015-03-15

    Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies. Copyright © 2015 by The American Association of Immunologists, Inc.

  14. Characterization and functional analysis of cellular immunity in mice with biotinidase deficiency.

    PubMed

    Pindolia, Kirit; Li, Hong; Cardwell, Cisley; Wolf, Barry

    2014-05-01

    Biotinidase deficiency is an autosomal recessively inherited metabolic disorder that can be easily and effectively treated with pharmacological doses of the vitamin, biotin. Untreated children with profound biotinidase deficiency may exhibit neurological, cutaneous and cellular immunological abnormalities, specifically candida infections. To better understand the immunological dysfunction in some symptomatic individuals with biotinidase deficiency, we studied various aspects of immunological function in a genetically engineered knock-out mouse with biotinidase deficiency. The mouse has no detectable biotinidase activity and develops neurological and cutaneous symptoms similar to those seen in symptomatic children with the disorder. Mice with profound biotinidase deficiency on a biotin-restricted diet had smaller thymuses and spleens than identical mice fed a biotin-replete diet or wildtype mice on either diet; however, the organ to body weight ratios were not significantly different. Thymus histology was normal. Splenocyte subpopulation study showed a significant increase in CD4 positive cells. In addition, in vitro lymphocyte proliferation assays consistently showed diminished proliferation in response to various immunological stimuli. Not all symptomatic individuals with profound biotinidase deficiency develop immunological dysfunction; however, our results do show significant alterations in cellular immunological function that may contribute and/or provide a mechanism(s) for the cellular immunity abnormalities in individuals with biotinidase deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Development of chronic colitis is dependent on the cytokine MIF.

    PubMed

    de Jong, Y P; Abadia-Molina, A C; Satoskar, A R; Clarke, K; Rietdijk, S T; Faubion, W A; Mizoguchi, E; Metz, C N; Alsahli, M; ten Hove, T; Keates, A C; Lubetsky, J B; Farrell, R J; Michetti, P; van Deventer, S J; Lolis, E; David, J R; Bhan, A K; Terhorst, C; Sahli, M A

    2001-11-01

    The cytokine macrophage-migration inhibitory factor (MIF) is secreted by a number of cell types upon induction by lipopolysaccharide (LPS). Because colitis is dependent on interplay between the mucosal immune system and intestinal bacteria, we investigated the role of MIF in experimental colitis. MIF-deficient mice failed to develop disease, but reconstitution of MIF-deficient mice with wild-type innate immune cells restored colitis. In addition, established colitis could be treated with anti-MIF immunoglobulins. Thus, murine colitis is dependent on continuous MIF production by the innate immune system. Because we found increased plasma MIF concentrations in patients with Crohn's disease, these data suggested that MIF is a new target for intervention in Crohn's disease.

  16. Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi, elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination.

    PubMed

    de Alencar, Bruna C G; Persechini, Pedro M; Haolla, Filipe A; de Oliveira, Gabriel; Silverio, Jaline C; Lannes-Vieira, Joseli; Machado, Alexandre V; Gazzinelli, Ricardo T; Bruna-Romero, Oscar; Rodrigues, Mauricio M

    2009-10-01

    A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4(+) and CD8(+) T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4(+) and CD8(+) T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-gamma) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8(+) T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-gamma or IFN-gamma/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-gamma in the presence of highly cytotoxic T cells. Vaccinated IFN-gamma-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-gamma in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy.

  17. Perforin and Gamma Interferon Expression Are Required for CD4+ and CD8+ T-Cell-Dependent Protective Immunity against a Human Parasite, Trypanosoma cruzi, Elicited by Heterologous Plasmid DNA Prime-Recombinant Adenovirus 5 Boost Vaccination▿

    PubMed Central

    de Alencar, Bruna C. G.; Persechini, Pedro M.; Haolla, Filipe A.; de Oliveira, Gabriel; Silverio, Jaline C.; Lannes-Vieira, Joseli; Machado, Alexandre V.; Gazzinelli, Ricardo T.; Bruna-Romero, Oscar; Rodrigues, Mauricio M.

    2009-01-01

    A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4+ and CD8+ T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4+ and CD8+ T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-γ) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8+ T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-γ or IFN-γ/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-γ in the presence of highly cytotoxic T cells. Vaccinated IFN-γ-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-γ in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy. PMID:19651871

  18. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells

    PubMed Central

    Lafaille, Fabien G; Pessach, Itai M.; Zhang, Shen-Ying; Ciancanelli, Michael J.; Herman, Melina; Abhyankar, Avinash; Ying, Shui-Wang; Keros, Sotirios; Goldstein, Peter A.; Mostoslavsky, Gustavo; Ordovas-Montanes, Jose; Jouanguy, Emmanuelle; Plancoulaine, Sabine; Tu, Edmund; Elkabetz, Yechiel; Al-Muhsen, Saleh; Tardieu, Marc; Schlaeger, Thorsten M.; Daley, George Q.; Abel, Laurent; Casanova, Jean-Laurent; Studer, Lorenz; Notarangelo, Luigi D.

    2012-01-01

    In the course of primary infection with herpes simplex virus 1 (HSV-1), children with inborn errors of TLR3 immunity are prone to HSV-1 encephalitis (HSE) 1–3. We tested the hypothesis that the pathogenesis of HSE involves non hematopoietic central nervous system (CNS)-resident cells. We derived induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of TLR3- and UNC-93B-deficient patients and from controls. These iPSCs were differentiated into highly purified populations of neural stem cells (NSCs), neurons, astrocytes and oligodendrocytes. The induction of IFN-β and/or IFN-γ1 in response to poly(I:C) stimulation was dependent on TLR3 and UNC-93B in all cells tested. However, the induction of IFN-β and IFN-γ1 in response to HSV-1 infection was impaired selectively in UNC-93B-deficient neurons and oligodendrocytes. These cells were also much more susceptible to HSV-1 infection than control cells, whereas UNC-93B-deficient NSCs and astrocytes were not. TLR3-deficient neurons were also found to be susceptible to HSV-1 infection. The rescue of UNC-93B- and TLR3-deficient cells with the corresponding wild-type allele demonstrated that the genetic defect was the cause of the poly(I:C) and HSV-1 phenotypes. The viral infection phenotype was further rescued by treatment with exogenous IFN-α/β, but not IFN-γ1.Thus, impaired TLR3- and UNC-93B-dependent IFN-α/β intrinsic immunity to HSV-1 in the CNS, in neurons and oligodendrocytes in particular, may underlie the pathogenesis of HSE in children with TLR3 pathway deficiencies. PMID:23103873

  19. Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice.

    PubMed

    Furuya, Yoichi; Kirimanjeswara, Girish S; Roberts, Sean; Racine, Rachael; Wilson-Welder, Jennifer; Sanfilippo, Alan M; Salmon, Sharon L; Metzger, Dennis W

    2017-09-05

    We report that IgA -/- mice exhibit specific defects in IgG antibody responses to various polysaccharide vaccines (Francisella tularensis LPS and Pneumovax), but not protein vaccines such as Fluzone. This defect further included responses to polysaccharide-protein conjugate vaccines (Prevnar and Haemophilus influenzae type b-tetanus toxoid vaccine). In agreement with these findings, IgA -/- mice were protected from pathogen challenge with protein- but not polysaccharide-based vaccines. Interestingly, after immunization with live bacteria, IgA +/+ and IgA -/- mice were both resistant to lethal challenge and their IgG anti-polysaccharide antibody responses were comparable. Immunization with live bacteria, but not purified polysaccharide, induced production of serum B cell-activating factor (BAFF), a cytokine important for IgG class switching; supplementing IgA -/- cell cultures with BAFF enhanced in vitro polyclonal IgG production. Taken together, these findings show that IgA deficiency impairs IgG class switching following vaccination with polysaccharide antigens and that live bacterial immunization can overcome this defect. Since IgA deficient patients also often show defects in antibody responses following immunization with polysaccharide vaccines, our findings could have relevance to the clinical management of this population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Instability of Helios-deficient Tregs is associated with conversion to a T-effector phenotype and enhanced antitumor immunity.

    PubMed

    Nakagawa, Hidetoshi; Sido, Jessica M; Reyes, Edwin E; Kiers, Valerie; Cantor, Harvey; Kim, Hye-Jung

    2016-05-31

    Expression of the transcription factor Helios by Tregs ensures stable expression of a suppressive and anergic phenotype in the face of intense inflammatory responses, whereas Helios-deficient Tregs display diminished lineage stability, reduced FoxP3 expression, and production of proinflammatory cytokines. Here we report that selective Helios deficiency within CD4 Tregs leads to enhanced antitumor immunity through induction of an unstable phenotype and conversion of intratumoral Tregs into T effector cells within the tumor microenvironment. Induction of an unstable Treg phenotype is associated with enhanced production of proinflammatory cytokines by tumor-infiltrating but not systemic Tregs and significantly delayed tumor growth. Ab-dependent engagement of Treg surface receptors that result in Helios down-regulation also promotes conversion of intratumoral but not systemic Tregs into T effector cells and leads to enhanced antitumor immunity. These findings suggest that selective instability and conversion of intratumoral CD4 Tregs through genetic or Ab-based targeting of Helios may represent an effective approach to immunotherapy.

  1. Leptin receptor signaling in T cells is required for Th17 differentiation.

    PubMed

    Reis, Bernardo S; Lee, Kihyun; Fanok, Melania H; Mascaraque, Cristina; Amoury, Manal; Cohn, Lillian B; Rogoz, Aneta; Dallner, Olof S; Moraes-Vieira, Pedro M; Domingos, Ana I; Mucida, Daniel

    2015-06-01

    The hormone leptin plays a key role in energy homeostasis, and the absence of either leptin or its receptor (LepR) leads to severe obesity and metabolic disorders. To avoid indirect effects and to address the cell-intrinsic role of leptin signaling in the immune system, we conditionally targeted LepR in T cells. In contrast with pleiotropic immune disorders reported in obese mice with leptin or LepR deficiency, we found that LepR deficiency in CD4(+) T cells resulted in a selective defect in both autoimmune and protective Th17 responses. Reduced capacity for differentiation toward a Th17 phenotype by lepr-deficient T cells was attributed to reduced activation of the STAT3 and its downstream targets. This study establishes cell-intrinsic roles for LepR signaling in the immune system and suggests that leptin signaling during T cell differentiation plays a crucial role in T cell peripheral effector function. Copyright © 2015 by The American Association of Immunologists, Inc.

  2. Impaired local immune response in vitamin A-deficient rats.

    PubMed Central

    Sirisinha, S; Darip, M D; Moongkarndi, P; Ongsakul, M; Lamb, A J

    1980-01-01

    The functional integrity of the local immune system in vitamin A-deficient (A-) rats was investigated. Secretory IgA levels in the intestinal fluid of A- rats were significantly lower than in controls. This and the decrease in intensity of immunofluorescent staining for secretory component (SC) in the intestinal cells was related to the duration of vitamin A deprivation. IgG levels in the intestinal fluid, and serum IgA and IgG levels were unaffected in deficiency. Moreover, when the response of animals to DNP50-BGG was evaluated, the local anti-DNP response in the intestine was markedly depressed. These defects may result from impaired synthesis of SC by epithelial cells. On the other hand, the serum antibody response in deficient animals was not noticeably different from that of the controls; if any, htere was a slight reduction in the affinity of antibody. PMID:7389210

  3. The Evolving View of IL-17-Mediated Immunity in Defense Against Mucocutaneous Candidiasis in Humans.

    PubMed

    Soltész, Beáta; Tóth, Beáta; Sarkadi, Adrien Katalin; Erdős, Melinda; Maródi, László

    2015-01-01

    The discovery of interleukin (IL)-17-mediated immunity has provided a robust framework upon which our current understanding of the mechanism involved in host defense against mucocutaneous candidiasis (CMC) has been built. Studies have shed light on how pattern recognition receptors expressed by innate immune cells recognize various components of Candida cell wall. Inborn errors of immunity affecting IL-17+ T cell differentiation have recently been defined, such as deficiencies of signal transducer and activator of transcription (STAT)3, STAT1, IL-12Rβ1 and IL-12p40, and caspase recruitment domain 9. Impaired receptor-ligand coupling was identified in patients with IL-17F and IL-17 receptor A (IL17RA) deficiency and autoimmune polyendocrine syndrome (APS) type 1. Mutation in the nuclear factor kappa B activator (ACT) 1 was described as a cause of impaired IL-17R-mediated signaling. CMC may be part of a complex clinical phenotype like in patients with deficiencies of STAT3, IL-12Rβ1/IL-12p40 and APS-1 or may be the only or dominant phenotypic manifestation of disease which is referred to as CMC disease. CMCD may result from deficiencies of STAT1, IL-17F, IL-17RA and ACT1. In this review we discuss how recent research on IL-17-mediated immunity shed light on host defense against mucocutaneous infection by Candida and how the discovery of various germ-line mutations and the characterization of associated clinical phenotypes have provided insights into the role of CD4+IL-17+ lymphocytes in the regulation of anticandidal defense of body surfaces.

  4. Protective role of adenylate cyclase in the context of a live pertussis vaccine candidate.

    PubMed

    Lim, Annabelle; Ng, Jowin K W; Locht, Camille; Alonso, Sylvie

    2014-01-01

    Despite high vaccination coverage, pertussis remains an important respiratory infectious disease and the least-controlled vaccine-preventable infectious disease in children. Natural infection with Bordetella pertussis is known to induce strong and long-lasting immunity that wanes later than vaccine-mediated immunity. Therefore, a live attenuated B. pertussis vaccine, named BPZE1, has been developed and has recently completed a phase I clinical trial in adult human volunteers. In this study, we investigated the contribution of adenylate cyclase (CyaA) in BPZE1-mediated protection against pertussis. A CyaA-deficient BPZE1 mutant was thus constructed. Absence of CyaA did not compromise the adherence properties of the bacteria onto mammalian cells. However, the CyaA-deficient mutant displayed a slight impairment in the ability to survive within macrophages compared to the parental BPZE1 strain. In vivo, whereas the protective efficacy of the CyaA-deficient mutant was comparable to the parental strain at a vaccine dose of 5 × 10(5) colony forming units (CFU), it was significantly impaired at a vaccine dose of 5 × 10(3) CFU. This impairment correlated with impaired lung colonization ability, and impaired IFN-γ production in the animal immunized with the CyaA-deficient BPZE1 mutant while the pertussis-specific antibody profile and Th17 response were comparable to those observed in BPZE1-immunized mice. Our findings thus support a role of CyaA in BPZE1-mediated protection through induction of cellular mediated immunity. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. TTSS2-deficient hha mutant of Salmonella Typhimurium exhibits significant systemic attenuation in immunocompromised hosts

    PubMed Central

    Vishwakarma, Vikalp; Pati, Niladri Bhusan; Ray, Shilpa; Das, Susmita; Suar, Mrutyunjay

    2014-01-01

    Non-typhoidal Salmonella (NTS) infections are emerging as leading problem worldwide and the variations in host immune status append to the concern of NTS. Salmonella enterica serovar Typhimurium is one of the causative agents of NTS infections and has been extensively studied. The inactivation of Salmonella pathogenicity island 2 (SPI2) encoded type-III secretion system 2 (TTSS2) has been reported rendering the strain incapable for systemic dissemination to host sites and has also been proposed as live-attenuated vaccine. However, infections from TTSS2-deficient Salmonella have also been reported. In this study, mutant strain MT15 was developed by inactivation of the hemolysin expression modulating protein (hha) in TTSS2-deficient S. Typhimurium background. The MT15 strain showed significant level of attenuation in immune-deprived murine colitis model when tested in iNos−/−, IL10−/−, and CD40L−/− mice groups in C57BL/6 background. Further, the mutation in hha does not implicate any defect in bacterial colonization to the host gut. The long-term infection of developed mutant strain conferred protective immune responses to suitably immunized streptomycin pre-treated C57BL/6 mice. The immunization enhanced the CD4+ and CD8+ cell types involved in bacterial clearance. The serum IgG and luminal secretory IgA (sIgA) was also found to be elevated after the due course of infection. Additionally, the immunized C57BL/6 mice were protected from the subsequent lethal infection of Salmonella Typhimurium. Collectively, these findings implicate the involvement of hemolysin expression modulating protein (Hha) in establishment of bacterial infection. In light of the observed attenuation of the developed mutant strain, this study proposes the possible significance of SPI2-deficient hha mutant as an alternative live-attenuated vaccine strain for use against lethal Salmonella infections. PMID:24401482

  6. Acute and Subacute Oral Toxicity of Periodate in Rats

    DTIC Science & Technology

    2014-11-17

    presence of decreased TSH, a pattern associated with uremia. Sodium periodate exposed rats exhibited both activation of the innate immune system and...associated with kidney disease are characterized by activation of the innate immune system coupled with immune deficiency. Sodium periodate exposed rats...exhibited both activation of the innate immune system and lymphocyte depletion; however, the pattern of effects was more indicative of a stress leukogram

  7. p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation.

    PubMed

    Huang, Y; Yu, P; Li, W; Ren, G; Roberts, A I; Cao, W; Zhang, X; Su, J; Chen, X; Chen, Q; Shou, P; Xu, C; Du, L; Lin, L; Xie, N; Zhang, L; Wang, Y; Shi, Y

    2014-07-17

    p53 is one of the most studied genes in cancer biology, and mutations in this gene may be predictive for the development of many types of cancer in humans and in animals. However, whether p53 mutations in non-tumor stromal cells can affect tumor development has received very little attention. In this study, we show that B16F0 melanoma cells form much larger tumors in p53-deficient mice than in wild-type mice, indicating a potential role of p53 deficiency in non-tumor cells of the microenvironment. As mesenchymal stem cells (MSCs) are attracted to tumors and form a major component of the tumor microenvironment, we examined the potential role of p53 status in MSCs in tumor development. We found that larger tumors resulted when B16F0 melanoma cells were co-injected with bone marrow MSCs derived from p53-deficient mice rather than MSCs from wild-type mice. Interestingly, this tumor-promoting effect by p53-deficient MSCs was not observed in non-obese diabetic/severe combined immunodeficiency mice, indicating the immune response has a critical role. Indeed, in the presence of inflammatory cytokines, p53-deficient MSCs expressed more inducible nitric oxide synthase (iNOS) and exhibited greater immunosuppressive capacity. Importantly, tumor promotion by p53-deficient MSCs was abolished by administration of S-methylisothiourea, an iNOS inhibitor. Therefore, our data demonstrate that p53 status in tumor stromal cells has a key role in tumor development by modulating immune responses.

  8. Loss of T Cell and B Cell Quiescence Precedes the Onset of Microbial Flora-Dependent Wasting Disease and Intestinal Inflammation in Gimap5-Deficient Mice

    PubMed Central

    Barnes, Michael J.; Aksoylar, Halil; Krebs, Philippe; Bourdeau, Tristan; Arnold, Carrie N.; Xia, Yu; Khovananth, Kevin; Engel, Isaac; Sovath, Sosathya; Lampe, Kristin; Laws, Eleana; Saunders, Amy; Butcher, Geoffrey W.; Kronenberg, Mitchell; Steinbrecher, Kris; Hildeman, David; Grimes, H. Leighton; Beutler, Bruce; Hoebe, Kasper

    2015-01-01

    Homeostatic control of the immune system involves mechanisms that ensure the self-tolerance, survival and quiescence of hematopoietic-derived cells. In this study, we demonstrate that the GTPase of immunity associated protein (Gimap)5 regulates these processes in lymphocytes and hematopoietic progenitor cells. As a consequence of a recessive N-ethyl-N-nitrosourea–induced germline mutation in the P-loop of Gimap5, lymphopenia, hepatic extramedullary hematopoiesis, weight loss, and intestinal inflammation occur in homozygous mutant mice. Irradiated fetal liver chimeric mice reconstituted with Gimap5-deficient cells lose weight and become lymphopenic, demonstrating a hematopoietic cell-intrinsic function for Gimap5. Although Gimap5-deficient CD4+ T cells and B cells appear to undergo normal development, they fail to proliferate upon Ag-receptor stimulation although NF-κB, MAP kinase and Akt activation occur normally. In addition, in Gimap5-deficient mice, CD4+ T cells adopt a CD44high CD62Llow CD69low phenotype and show reduced IL-7rα expression, and T-dependent and T-independent B cell responses are abrogated. Thus, Gimap5-deficiency affects a noncanonical signaling pathway required for Ag-receptor–induced proliferation and lymphocyte quiescence. Antibiotic-treatment or the adoptive transfer of Rag-sufficient splenocytes ameliorates intestinal inflammation and weight loss, suggesting that immune responses triggered by microbial flora causes the morbidity in Gimap5-deficient mice. These data establish Gimap5 as a key regulator of hematopoietic integrity and lymphocyte homeostasis. PMID:20190135

  9. IRF4 Deficiency Abrogates Lupus Nephritis Despite Enhancing Systemic Cytokine Production

    PubMed Central

    Lech, Maciej; Weidenbusch, Marc; Kulkarni, Onkar P.; Ryu, Mi; Darisipudi, Murthy Narayana; Susanti, Heni Eka; Mittruecker, Hans-Willi; Mak, Tak W.

    2011-01-01

    The IFN-regulatory factors IRF1, IRF3, IRF5, and IRF7 modulate processes involved in the pathogenesis of systemic lupus and lupus nephritis, but the contribution of IRF4, which has multiple roles in innate and adaptive immunity, is unknown. To determine a putative pathogenic role of IRF4 in lupus, we crossed Irf4-deficient mice with autoimmune C57BL/6-(Fas)lpr mice. IRF4 deficiency associated with increased activation of antigen-presenting cells in C57BL/6-(Fas)lpr mice, resulting in a massive increase in plasma levels of TNF and IL-12p40, suggesting that IRF4 suppresses cytokine release in these mice. Nevertheless, IRF4 deficiency completely protected these mice from glomerulonephritis and lung disease. The mice were hypogammaglobulinemic and lacked antinuclear and anti-dsDNA autoantibodies, revealing the requirement of IRF4 for the maturation of plasma cells. As a consequence, Irf4-deficient C57BL/6-(Fas)lpr mice neither developed immune complex disease nor glomerular activation of complement. In addition, lack of IRF4 impaired the maturation of Th17 effector T cells and reduced plasma levels of IL-17 and IL-21, which are cytokines known to contribute to autoimmune tissue injury. In summary, IRF4 deficiency enhances systemic inflammation and the activation of antigen-presenting cells but also prevents the maturation of plasma cells and effector T cells. Because these adaptive immune effectors are essential for the evolution of lupus nephritis, we conclude that IRF4 promotes the development of lupus nephritis despite suppressing antigen-presenting cells. PMID:21742731

  10. Hyperthyroidism caused by acquired immune deficiency syndrome.

    PubMed

    Wang, J-J; Zhou, J-J; Yuan, X-L; Li, C-Y; Sheng, H; Su, B; Sheng, C-J; Qu, S; Li, H

    2014-01-01

    Acquired immune deficiency syndrome (AIDS) is an immune deficiency disease. The etiology of hyperthyroidism, which can also be immune-related, is usually divided into six classical categories, including hypophyseal, hypothalamic, thyroid, neoplastic, autoimmune and inflammatory hyperthyroidism. Hyperthyroidism is a rare complication of highly active antimicrobial therapy (HAART) for human immunodeficiency virus (HIV). Hyperthyroidism caused directly by AIDS has not been previously reported. A 29-year-old man who complained of dyspnea and asthenia for 1 month, recurrent fever for more than 20 days, and breathlessness for 1 week was admitted to our hospital. The thyroid function test showed that the level of free thyroxine (FT4) was higher than normal and that the level of thyroid-stimulating hormone (TSH) was below normal. He was diagnosed with hyperthyroidism. Additional investigations revealed a low serum albumin level and chest infection, along with diffuse lung fibrosis. Within 1 month, he experienced significant weight loss, no hand tremors, intolerance of heat, and perspiration proneness. We recommended an HIV examination; subsequently, AIDS was diagnosed based on the laboratory parameters. This is the first reported case of hyperthyroidism caused by AIDS. AIDS may cause hyperthyroidism by immunization regulation with complex, atypical, and easily ignored symptoms. Although hyperthyroidism is rare in patients with AIDS, clinicians should be aware of this potential interaction and should carefully monitor thyroid function in HIV-positive patients.

  11. Protection of mice deficient in mature B cells from West Nile virus infection by passive and active immunization

    PubMed Central

    Draves, Kevin E.; Young, Lucy B.; Bryan, Marianne A.; Dresch, Christiane; Diamond, Michael S.; Gale, Michael

    2017-01-01

    B cell activating factor receptor (BAFFR)-/- mice have a profound reduction in mature B cells, but unlike μMT mice, they have normal numbers of newly formed, immature B cells. Using a West Nile virus (WNV) challenge model that requires antibodies (Abs) for protection, we found that unlike wild-type (WT) mice, BAFFR-/- mice were highly susceptible to WNV and succumbed to infection within 8 to 12 days after subcutaneous virus challenge. Although mature B cells were required to protect against lethal infection, infected BAFFR-/- mice had reduced WNV E-specific IgG responses and neutralizing Abs. Passive transfer of immune sera from previously infected WT mice rescued BAFFR-/- and fully B cell-deficient μMT mice, but unlike μMT mice that died around 30 days post-infection, BAFFR-/- mice survived, developed WNV-specific IgG Abs and overcame a second WNV challenge. Remarkably, protective immunity could be induced in mature B cell-deficient mice. Administration of a WNV E-anti-CD180 conjugate vaccine 30 days prior to WNV infection induced Ab responses that protected against lethal infection in BAFFR-/- mice but not in μMT mice. Thus, the immature B cells present in BAFFR-/- and not μMT mice contribute to protective antiviral immunity. A CD180-based vaccine may promote immunity in immunocompromised individuals. PMID:29176765

  12. Spontaneous Pneumocystis carinii pneumonia in immunodeficient mutant scid mice. Natural history and pathobiology.

    PubMed Central

    Roths, J. B.; Marshall, J. D.; Allen, R. D.; Carlson, G. A.; Sidman, C. L.

    1990-01-01

    The opportunistic pathogen Pneumocystis carinii (Pc) poses a major clinical health problem in individuals with immune deficiency, including those patients with human immunodeficiency (HIV)-associated acquired immune deficiency disease (AIDS). Heretofore, in vivo investigations of the biology of Pc and pathogenesis of pneumocystosis have generally employed steroid-induced immune suppression with antibiotic prophylaxis and protein deprivation. This approach has many drawbacks, chief among them being the widespread, multiple interacting effects caused by the inducing agents. Athymic (nude) mice and rats have been used, but are less than ideal, as the immune defect primarily affects T lymphocytes. This article describes the natural history, pathobiology, and environmental effects on Pc pneumonitis in nonaxenically housed mice homozygous for the autosomal recessive mutation 'severe combined immunodeficiency' (scid), which almost totally lack both cell-mediated and antibody-mediated immune functions. The predictability, unequivocal expression, high morbidity, and well-defined genetic basis make scid/scid mutant mice the model of choice for in vivo studies of spontaneous pneumocystosis. Images Figure 3 Figure 6 PMID:2349968

  13. Zinc in human health: effect of zinc on immune cells.

    PubMed

    Prasad, Ananda S

    2008-01-01

    Although the essentiality of zinc for plants and animals has been known for many decades, the essentiality of zinc for humans was recognized only 40 years ago in the Middle East. The zinc-deficient patients had severe immune dysfunctions, inasmuch as they died of intercurrent infections by the time they were 25 years of age. In our studies in an experimental human model of zinc deficiency, we documented decreased serum testosterone level, oligospermia, severe immune dysfunctions mainly affecting T helper cells, hyperammonemia, neurosensory disorders, and decreased lean body mass. It appears that zinc deficiency is prevalent in the developing world and as many as two billion subjects may be growth retarded due to zinc deficiency. Besides growth retardation and immune dysfunctions, cognitive impairment due to zinc deficiency also has been reported recently. Our studies in the cell culture models showed that the activation of many zinc-dependent enzymes and transcription factors were adversely affected due to zinc deficiency. In HUT-78 (T helper 0 [Th(0)] cell line), we showed that a decrease in gene expression of interleukin-2 (IL-2) and IL-2 receptor alpha(IL-2Ralpha) were due to decreased activation of nuclear factor-kappaB (NF-kappaB) in zinc deficient cells. Decreased NF-kappaB activation in HUT-78 due to zinc deficiency was due to decreased binding of NF-kappaB to DNA, decreased level of NF-kappaB p105 (the precursor of NF-kappaB p50) mRNA, decreased kappaB inhibitory protein (IkappaB) phosphorylation, and decreased Ikappa kappa. These effects of zinc were cell specific. Zinc also is an antioxidant and has anti-inflammatory actions. The therapeutic roles of zinc in acute infantile diarrhea, acrodermatitis enteropathica, prevention of blindness in patients with age-related macular degeneration, and treatment of common cold with zinc have been reported. In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF pathway, decreases NF-kappaB activation, leading to decreased gene expression and generation of tumor necrosis factor-alpha (TNF-alpha), IL-1beta, and IL-8. We have reported recently that in both young adults and elderly subjects, zinc supplementation decreased oxidative stress markers and generation of inflammatory cytokines.

  14. Diagnosis and management of small intestinal bacterial overgrowth.

    PubMed

    Bohm, Matthew; Siwiec, Robert M; Wo, John M

    2013-06-01

    Small intestinal bacterial overgrowth (SIBO) can result from failure of the gastric acid barrier, failure of small intestinal motility, anatomic alterations, or impairment of systemic and local immunity. The current accepted criteria for the diagnosis of SIBO is the presence of coliform bacteria isolated from the proximal jejunum with >10(5) colony-forming units/mL. A major concern with luminal aspiration is that it is only one random sampling of the small intestine and may not always be representative of the underlying microbiota. A new approach to examine the underlying microbiota uses rapid molecular sequencing, but its clinical utilization is still under active investigation. Clinical manifestations of SIBO are variable and include bloating, flatulence, abdominal distention, abdominal pain, and diarrhea. Severe cases may present with nutrition deficiencies due to malabsorption of micro- and macronutrients. The current management strategies for SIBO center on identifying and correcting underlying causes, addressing nutrition deficiencies, and judicious utilization of antibiotics to treat symptomatic SIBO.

  15. Dectin-1 is required for β-glucan recognition and control of fungal infection

    PubMed Central

    Taylor, Philip R; Tsoni, S Vicky; Willment, Janet A; Dennehy, Kevin M; Rosas, Marcela; Findon, Helen; Haynes, Ken; Steele, Chad; Botto, Marina; Gordon, Siamon; Brown, Gordon D

    2007-01-01

    β-Glucan is one of the most abundant polysaccharides in fungal pathogens, yet its importance in antifungal immunity is unclear. Here we show that deficiency of dectin-1, the myeloid receptor for β-glucan, rendered mice susceptible to infection with Candida albicans. Dectin-1-deficient leukocytes demonstrated significantly impaired responses to fungi even in the presence of opsonins. Impaired leukocyte responses were manifested in vivo by reduced inflammatory cell recruitment after fungal infection, resulting in substantially increased fungal burdens and enhanced fungal dissemination. Our results establish a fundamental function for β-glucan recognition by dectin-1 in antifungal immunity and demonstrate a signaling non–Toll-like pattern-recognition receptor required for the induction of protective immune responses. PMID:17159984

  16. Reduced bone density in androgen-deficient women with acquired immune deficiency syndrome wasting.

    PubMed

    Huang, J S; Wilkie, S J; Sullivan, M P; Grinspoon, S

    2001-08-01

    Women with acquired immune deficiency syndrome wasting are at an increased risk of osteopenia because of low weight, changes in body composition, and hormonal alterations. Although women comprise an increasing proportion of human immunodeficiency virus-infected patients, prior studies have not investigated bone loss in this expanding population of patients. In this study we investigated bone density, bone turnover, and hormonal parameters in 28 women with acquired immune deficiency syndrome wasting and relative androgen deficiency (defined as free testosterone < or =3.0 pg/ml, weight < or =90% ideal body weight, weight loss > or =10% from preillness maximum weight, or weight <100% ideal body weight with weight loss > or =5% from preillness maximum weight). Total body (1.04 +/- 0.08 vs. 1.10 +/- 0.07 g/cm2, human immunodeficiency virus-infected vs. control respectively; P < 0.01), anteroposterior lumbar spine (0.94 +/- 0.12 vs. 1.03 +/- 0.09 g/cm2; P = 0.005), lateral lumbar spine (0.71 +/- 0.14 vs. 0.79 +/- 0.09 g/cm2; P = 0.02), and hip (Ward's triangle; 0.68 +/- 0.14 vs. 0.76 +/- 0.12 g/cm2; P = 0.05) bone density were reduced in the human immunodeficiency virus-infected compared with control subjects. Serum N-telopeptide, a measure of bone resorption, was increased in human immunodeficiency virus-infected patients, compared with control subjects (14.6 +/- 5.8 vs. 11.3 +/- 3.8 nmol/liter bone collagen equivalents, human immunodeficiency virus-infected vs. control respectively; P = 0.03). Although body mass index was similar between the groups, muscle mass was significantly reduced in the human immunodeficiency virus-infected vs. control subjects (16 +/- 4 vs. 21 +/- 4 kg, human immunodeficiency virus-infected vs. control, respectively; P < 0.0001). In univariate regression analysis, muscle mass (r = 0.53; P = 0.004) and estrogen (r = 0.51; P = 0.008), but not free testosterone (r = -0.05, P = 0.81), were strongly associated with lumbar spine bone density in the human immunodeficiency virus-infected patients. The association between muscle mass and bone density remained significant, controlling for body mass index, hormonal status, and age (P = 0.048) in multivariate regression analysis. These data indicate that both hormonal and body composition factors contribute to reduced bone density in women with acquired immune deficiency syndrome wasting. Anabolic strategies to increase muscle mass may be useful to increase bone density among osteopenic women with acquired immune deficiency syndrome wasting.

  17. Immune Deficiency State in a Girl with Eczema and Low Serum IgM

    PubMed Central

    Evans, D. I. K.; Holzel, A.

    1970-01-01

    This report concerns an immune deficiency disorder in a girl with eczema. She has had recurrent infections including three severe attacks of herpes simplex and five attacks of pneumococcal meningitis. There is a moderate lymphopenia, dysgammaglobulinaemia with high IgG, high IgA, and low IgM; lymphocyte transformation with phytohaemagglutinin is impaired. Production of circulating antibody is abnormal, as are delayed hypersensitivity reactions. Although there is no thrombocytopenia, the resemblance to the Wiskott-Aldrich syndrome is discussed. ImagesFIG. 1.FIG. 2.FIG. 3 PMID:5506938

  18. Impaired Calcium Entry into Cells Is Associated with Pathological Signs of Zinc Deficiency12

    PubMed Central

    O’Dell, Boyd L.; Browning, Jimmy D.

    2013-01-01

    Zinc is an essential trace element whose deficiency gives rise to specific pathological signs. These signs occur because an essential metabolic function is impaired as the result of failure to form or maintain a specific metal-ion protein complex. Although zinc is a component of many essential metalloenzymes and transcription factors, few of these have been identified with a specific sign of incipient zinc deficiency. Zinc also functions as a structural component of other essential proteins. Recent research with Swiss murine fibroblasts, 3T3 cells, has shown that zinc deficiency impairs calcium entry into cells, a process essential for many cell functions, including proliferation, maturation, contraction, and immunity. Impairment of calcium entry and the subsequent failure of cell proliferation could explain the growth failure associated with zinc deficiency. Defective calcium uptake is associated with impaired nerve transmission and pathology of the peripheral nervous system, as well as the failure of platelet aggregation and the bleeding tendency of zinc deficiency. There is a strong analogy between the pathology of genetic diseases that result in impaired calcium entry and other signs of zinc deficiency, such as decreased and cyclic food intake, taste abnormalities, abnormal water balance, skin lesions, impaired reproduction, depressed immunity, and teratogenesis. This analogy suggests that failure of calcium entry is involved in these signs of zinc deficiency as well. PMID:23674794

  19. Intrahepatic T cell receptor β immune repertoire is essential for liver regeneration.

    PubMed

    Liang, Qing; Liu, Zeyuan; Zhu, Chao; Wang, Bin; Liu, Xiaoke; Yang, Yanan; Lv, Xue; Mu, Haiyu; Wang, Kejia

    2018-04-27

    T lymphocytes synergize with the cellular immune system to promote hepatocyte regeneration. The T cell receptor (TCR) immune repertoire is closely associated with the host immune response and regenerative proliferation. High-throughput sequencing of TCR provides deep insight into monitoring the immune microenvironment. Here, we aimed to determine the role of the TCRβ immune repertoire in liver regeneration. We investigated the hepatic regeneration in TCRβ chain-deficient (Tcrb -/- ) mice by two-thirds partial hepatectomy (PHx) method. Our results demonstrated that Tcrb -/- mice revealed a reduced capacity for liver regeneration, which was characterized by impaired hepatocyte proliferation and enhanced hepatocyte apoptosis. Dysregulation of inflammatory signalling activation and inflammatory factors was observed in regenerated Tcrb -/- livers. Simultaneously, significantly altered immunocyte levels and aberrant cytokine levels were observed during hepatic regeneration. In addition, we first determined the profile of the TCRβ immune repertoire during liver regeneration, indicating that PHx resulted in remarkably lower TCRβ diversity in intrahepatic T lymphocytes. Taken together, our data suggest that TCRβ deficiency gives a rise to aberrant intrahepatic immune microenvironment that impairs liver regeneration, and the TCRβ reconstitution is required for hepatic immunocyte recruitment and activation during liver regeneration. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  20. Iron Biology, Immunology, Aging, and Obesity: Four Fields Connected by the Small Peptide Hormone Hepcidin12

    PubMed Central

    Dao, Maria Carlota; Meydani, Simin Nikbin

    2013-01-01

    Iron status and immune response become impaired in situations that involve chronic inflammation, such as obesity or aging. Little is known, however, about the additional burden that obesity may place on the iron status and immune response in the elderly. This question is relevant given the rising numbers of elderly obese (BMI >30 kg/m2) individuals and the high prevalence of iron deficiency worldwide. Iron is necessary for proper function of both the innate and adaptive immune system. Hepcidin, a peptide hormone that regulates cellular iron export, is essential for the maintenance of iron homeostasis. Therefore, since immune cells require iron for proper function hepcidin may also play an important role in immune response. In this review, we summarize the evidence for hepcidin as a link between the fields of gerontology, obesity, iron biology, and immunology. We also identify several gaps in knowledge and unanswered questions pertaining to iron homeostasis and immunity in obese populations. Finally, we review studies that have shown the impact of weight loss, focusing on calorie restriction, iron homeostasis, and immunity. These studies are important both in elucidating mechanistic links between obesity and health impairments and identifying possible approaches to target immune impairment and iron deficiency as comorbidities of obesity. PMID:24228190

  1. Absence of γ-Chain in Keratinocytes Alters Chemokine Secretion, Resulting in Reduced Immune Cell Recruitment.

    PubMed

    Nowak, Karolin; Linzner, Daniela; Thrasher, Adrian J; Lambert, Paul F; Di, Wei-Li; Burns, Siobhan O

    2017-10-01

    Loss-of-function mutations in the common gamma (γc) chain cytokine receptor subunit give rise to severe combined immunodeficiency characterized by lack of T and natural killer cells and infant death from infection. Hematopoietic stem cell transplantation or gene therapy offer a cure, but despite successful replacement of lymphoid immune lineages, a long-term risk of severe cutaneous human papilloma virus infections persists, possibly related to persistent γc-deficiency in other cell types. Here we show that keratinocytes, the only cell type directly infected by human papilloma virus, express functional γc and its co-receptors. After stimulation with the γc-ligand IL-15, γc-deficient keratinocytes show significantly impaired secretion of specific chemokines including CXCL1, CXCL8, and CCL20, resulting in reduced chemotaxis of dendritic cells and CD4 + T cells. Furthermore, γc-deficient keratinocytes also exhibit defective induction of T-cell chemotaxis in a model of stable human papilloma virus-18 infection. These findings suggest that persistent γc-deficiency in keratinocytes alters immune cell recruitment to the skin, which may contribute to the development and persistence of warts in this condition and would require different treatment approaches. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Effect of dietary selenium and cancer cell xenograft on peripheral T and B lymphocytes in adult nude mice

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is known to regulate tumorigenesis and immunity at nutritional and supranutritional levels. Because the immune system provides critical defenses against cancer and the athymic, immune-deficient NU/J nude mice are known to gradually develop CD8+ and CD4+ T cells, we asked whether B and ...

  3. Nutritional and supranutritional levels of selenate differentially suppress prostate tumor growth in adult but not young nude mice

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is known to regulate carcinogenesis and immunity at nutritional and 26 supranutritional levels. Because the immune system provides critical defenses against 27 cancer and the athymic, immune-deficient NU/J nude mice are known to gradually develop 28 CD8+ and CD4+ T cells extrathymicall...

  4. Phenotyping of congenic dipeptidyl peptidase 4 (DP4) deficient Dark Agouti (DA) rats suggests involvement of DP4 in neuro-, endocrine, and immune functions.

    PubMed

    Frerker, Nadine; Raber, Kerstin; Bode, Felix; Skripuletz, Thomas; Nave, Heike; Klemann, Christian; Pabst, Reinhard; Stephan, Michael; Schade, Jutta; Brabant, Georg; Wedekind, Dirk; Jacobs, Roland; Jörns, Anne; Forssmann, Ulf; Straub, Rainer H; Johannes, Sigrid; Hoffmann, Torsten; Wagner, Leona; Demuth, Hans-Ulrich; von Hörsten, Stephan

    2009-01-01

    Treatment of diabetes type 2 using chronic pharmacological inhibition of dipeptidyl peptidase 4 (DP4) still requires an in-depth analysis of models for chronic DP4 deficiency, because adverse reactions induced by some DP4 inhibitors have been described. In the present study, a novel congenic rat model of DP4 deficiency on a "DP4-high" DA rat genetic background was generated (DA.F344-Dpp4(m)/ SvH rats) and comprehensively phenotyped. Similar to chronic pharmacological inhibition of DP4, DP4 deficient rats exhibited a phenotype involving reduced diet-induced body weight gain and improved glucose tolerance associated with increased levels of glucagon-like peptide-1 (GLP-1) and bound leptin as well as decreased aminotransferases and triglycerides. Additionally, DA.F344-Dpp4(m)/SvH rats showed anxiolytic-like and reduced stress-like responses, a phenomenon presently not targeted by DP4 inhibitors. However, several immune alterations, such as differential leukocyte subset composition at baseline, blunted natural killer cell and T-cell functions, and altered cytokine levels were observed. While this animal model confirms a critical role of DP4 in GLP-1-dependent glucose regulation, genetically induced chronic DP4 deficiency apparently also affects stress-regulatory and immuneregulatory systems, indicating that the use of chronic DP4 inhibitors might have the potential to interfere with central nervous system and immune functions in vivo.

  5. Immunopharmacological properties of noopept.

    PubMed

    Kovalenko, L P; Shipaeva, E V; Alekseeva, S V; Pronin, A V; Durnev, A D; Gudasheva, T A; Ostrovskaja, R U; Seredenin, S B

    2007-07-01

    Noopept, a peptide analog of piracetam, enhanced phagocytic activity of mouse peritoneal macrophages, stimulated humoral and cellular immune response to various antigens, and markedly increased spontaneous proliferative activity of splenocytes. In animals with secondary immune deficiency caused by cyclophosphamide, noopept exhibited immunocorrector properties.

  6. METHODS FOR ISOLATION AND CHARACTERIZATION OF NONTUBERCULOUS MYCOBACTERIA IN POTABLE WATER, CCL

    EPA Science Inventory

    Nontuberculous mycobacteria (NTM) are opportunist pathogens that usually infect individuals with impaired immunity, such as Acquired Immune Deficiency Syndrome (AIDS) patients, the elderly or those undergoing immunosuppressive drugs or chemotherapy. The sources of infection are ...

  7. Trained immunity: a program of innate immune memory in health and disease

    PubMed Central

    Netea, Mihai G.; Joosten, Leo A.B.; Latz, Eicke; Mills, Kingston H.G.; Natoli, Gioacchino; Stunnenberg, Hendrik G.; O’Neill, Luke A.J.; Xavier, Ramnik J.

    2016-01-01

    The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed trained immunity or innate immune memory. Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, for new therapeutic strategies for the treatment of immune deficiency states, and for modulation of exaggerated inflammation in autoinflammatory diseases. PMID:27102489

  8. Coping with uncertainty: Nutrient deficiencies motivate insect migration at a cost to immunity

    USDA-ARS?s Scientific Manuscript database

    Migration is often associated with movement away from areas with depleted nutrients or other resources, and yet migration itself is energetically demanding. Migrating Mormon crickets Anabrus simplex (Orthoptera: Tettigoniidae) lack nutrients, and supplementation of deficient nutrients slows migrator...

  9. Anaemia, iron deficiency and susceptibility to infections.

    PubMed

    Jonker, Femke A M; Boele van Hensbroek, Michaël

    2014-11-01

    Anaemia, iron deficiency and infections are three major causes of childhood morbidity and mortality throughout the world, although they predominantly occur in resource limited settings. As the three conditions may have the same underlying aetiologies, they often occur simultaneously and may interact. Being an essential component in erythropoiesis, iron is also essential for proper functioning of the host immune system as well as an essential nutrient for growth of various pathogens, including non-typhoid salmonella. This has resulted in a treatment dilemma in which iron is needed to treat the iron deficient anaemia and improve the immune system of the host (child), but the same treatment may also put the child at an increased, potentially fatal, infection risk. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  10. Autonomous role of Wiskott-Aldrich syndrome platelet deficiency in inducing autoimmunity and inflammation.

    PubMed

    Sereni, Lucia; Castiello, Maria Carmina; Marangoni, Francesco; Anselmo, Achille; di Silvestre, Dario; Motta, Sara; Draghici, Elena; Mantero, Stefano; Thrasher, Adrian J; Giliani, Silvia; Aiuti, Alessandro; Mauri, Pierluigi; Notarangelo, Luigi D; Bosticardo, Marita; Villa, Anna

    2018-02-06

    Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency characterized by eczema, infections, and susceptibility to autoimmunity and malignancies. Thrombocytopenia is a constant finding, but its pathogenesis remains elusive. To dissect the basis of the WAS platelet defect, we used a novel conditional mouse model (CoWas) lacking Wiskott-Aldrich syndrome protein (WASp) only in the megakaryocytic lineage in the presence of a normal immunologic environment, and in parallel we analyzed samples obtained from patients with WAS. Phenotypic and functional characterization of megakaryocytes and platelets in mutant CoWas mice and patients with WAS with and without autoantibodies was performed. Platelet antigen expression was examined through a protein expression profile and cluster proteomic interaction network. Platelet immunogenicity was tested by using ELISAs and B-cell and platelet cocultures. CoWas mice showed increased megakaryocyte numbers and normal thrombopoiesis in vitro, but WASp-deficient platelets had short lifespan and high expression of activation markers. Proteomic analysis identified signatures compatible with defects in cytoskeletal reorganization and metabolism yet surprisingly increased antigen-processing capabilities. In addition, WASp-deficient platelets expressed high levels of surface and soluble CD40 ligand and were capable of inducing B-cell activation in vitro. WASp-deficient platelets were highly immunostimulatory in mice and triggered the generation of antibodies specific for WASp-deficient platelets, even in the context of a normal immune system. Patients with WAS also showed platelet hyperactivation and increased plasma soluble CD40 ligand levels correlating with the presence of autoantibodies. Overall, these findings suggest that intrinsic defects in WASp-deficient platelets decrease their lifespan and dysregulate immune responses, corroborating the role of platelets as modulators of inflammation and immunity. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. The Occurrence and Prevention of Foodborne Disease in Vulnerable People

    PubMed Central

    O'Brien, Sarah J.

    2011-01-01

    Abstract In developed countries, such as the United Kingdom and the United States, between 15% and 20% of the population show greater susceptibility than the general population to foodborne disease. This proportion includes people with primary immunodeficiency, patients treated with radiation or with immunosuppressive drugs for cancer and diseases of the immune system, those with acquired immune-deficiency syndrome and diabetics, people suffering from liver or kidney disease or with excessive iron in the blood, pregnant women, infants, and the elderly. Malnutrition and use of antacids, particularly proton-pump inhibitors, also increase susceptibility. We review the occurrence of infection by foodborne pathogens in these groups of people and measures to prevent infection. The nature and use of low microbial diets to reduce the risk of foodborne disease in immunocompromised patients are very variable. Diets for vulnerable people in care should exclude higher-risk foods, and vulnerable people in the community should receive clear advice about food safety, in particular avoidance of higher-risk foods and substitution of safer, nutritious foods. PMID:21561383

  12. [Study of serum levels of interlukin-2 and its receptor, interlukin-6, sICAM-1, sVCAM-1 in patients with recurrent genital herpes].

    PubMed

    Zhang, Min; Zhang, Yizhi

    2003-01-01

    To study cellular immunity status and serum levels of adhesion molecules of patients with recurrent genital herpes. Serum levels of interlukin-2 and its soluble receptor, interlukin-6, sICAM-1, sVCAM-1 were measured by ELISA in 34 patients with recurrent genital herpes. The serum levels of IL-2 and IL-6 were significantly lower in patients than in healthy controls (P < 0.01). The levels of sIL-2R, sICAM-1 and sVCAM-1 were significantly higher in patients than in controls (P < 0.05). No significant differences were seen in all variables of patients in relapse phase and remission phase (P > 0.05). There are cellular immunity deficiency and high serum levels of adhesion molecules in patients with recurrent genital herpes, and these changes may be related to therecurrence of genital herpes and the development of inflammatory reaction.

  13. Feasibility of Measuring Immune Resp, Activation in Foreskin/Mucosa in HIV-, Uncircumcised High-HIV-risk MSM, Lima Peru

    ClinicalTrials.gov

    2015-12-10

    HIV Infections; Acquired Immunodeficiency Syndrome; Lentivirus Infections; Retroviridae Infections; RNA Virus Infections; Virus Diseases; Sexually Transmitted Diseases, Viral; Sexually Transmitted Diseases; Immunologic Deficiency Syndromes; Immune System Diseases; Slow Virus Diseases

  14. Mannose-binding lectin and the balance between immune protection and complication

    PubMed Central

    Takahashi, Kazue

    2012-01-01

    The innate immune system is evolutionarily ancient and biologically primitive. Historically, it was first identified as an element of the immune system that provides the first-line response to pathogens, and increasingly it is recognized for its central housekeeping role and its essential functions in tissue homeostasis, including coagulation and inflammation, among others. A pivotal link between the innate immune system and other functions is mannose-binding lectin (MBL), a pattern recognition molecule. Multiple studies have demonstrated that MBL deficiency increases susceptibility to infection, and the mechanisms associated with this susceptibility to infection include reduced opsonophagocytic killing and reduced activation of the lectin complement pathway. Results from our laboratory have demonstrated that MBL and MBL-associated serine protease (MASP)-1/3 together mediate coagulation factor-like activities, including thrombin-like activity. MBL and/or MASP-1/3-deficient hosts demonstrate in vivo evidence that MBL and MASP-1/3 are involved with hemostasis following injury. Staphylococcus aureus-infected MBL null mice developed disseminated intravascular coagulation, which was associated with elevated blood IL-6 levels (but not TNF-α) and systemic inflammatory responses. Infected MBL null mice also develop liver injury. These findings suggest that MBL deficiency may manifest as disseminated intravascular coagulation and organ failure with infection. Beginning from these observations, this review focuses on the interaction of innate immunity and other homeostatic systems, the derangement of which may lead to complications in infection and other inflammatory states. PMID:22114968

  15. Deleterious Mutations in LRBA Are Associated with a Syndrome of Immune Deficiency and Autoimmunity

    PubMed Central

    Lopez-Herrera, Gabriela; Tampella, Giacomo; Pan-Hammarström, Qiang; Herholz, Peer; Trujillo-Vargas, Claudia M.; Phadwal, Kanchan; Simon, Anna Katharina; Moutschen, Michel; Etzioni, Amos; Mory, Adi; Srugo, Izhak; Melamed, Doron; Hultenby, Kjell; Liu, Chonghai; Baronio, Manuela; Vitali, Massimiliano; Philippet, Pierre; Dideberg, Vinciane; Aghamohammadi, Asghar; Rezaei, Nima; Enright, Victoria; Du, Likun; Salzer, Ulrich; Eibel, Hermann; Pfeifer, Dietmar; Veelken, Hendrik; Stauss, Hans; Lougaris, Vassilios; Plebani, Alessandro; Gertz, E. Michael; Schäffer, Alejandro A.; Hammarström, Lennart; Grimbacher, Bodo

    2012-01-01

    Most autosomal genetic causes of childhood-onset hypogammaglobulinemia are currently not well understood. Most affected individuals are simplex cases, but both autosomal-dominant and autosomal-recessive inheritance have been described. We performed genetic linkage analysis in consanguineous families affected by hypogammaglobulinemia. Four consanguineous families with childhood-onset humoral immune deficiency and features of autoimmunity shared genotype evidence for a linkage interval on chromosome 4q. Sequencing of positional candidate genes revealed that in each family, affected individuals had a distinct homozygous mutation in LRBA (lipopolysaccharide responsive beige-like anchor protein). All LRBA mutations segregated with the disease because homozygous individuals showed hypogammaglobulinemia and autoimmunity, whereas heterozygous individuals were healthy. These mutations were absent in healthy controls. Individuals with homozygous LRBA mutations had no LRBA, had disturbed B cell development, defective in vitro B cell activation, plasmablast formation, and immunoglobulin secretion, and had low proliferative responses. We conclude that mutations in LRBA cause an immune deficiency characterized by defects in B cell activation and autophagy and by susceptibility to apoptosis, all of which are associated with a clinical phenotype of hypogammaglobulinemia and autoimmunity. PMID:22608502

  16. Use of Induced sputum to determine the prevalence of Pneumocystis jirovecii in immunocompromised children with pneumonia.

    PubMed

    Das, Chandan K; Mirdha, Bijay R; Singh, Sundeep; Seth, Rachna; Bagga, Arvind; Lodha, Rakesh; Kabra, Sushil K

    2014-06-01

    Information on prevalence of Pneumocystis jirovecii pneumonia (PCP) in immunocompromised children with pneumonia in Southeast Asia is limited. Immunocompromised children hospitalized with radiographic pneumonia were investigated for PCP by testing induced sputum by using polymerase chain reaction (PCR). Ninety-four immunocompromised children (mean age 74.5 ± 43.7 months, boys 69) with pneumonia were investigated for PCP. Underlying disease included solid tumors and hematological malignancy in 57, HIV infection in 14, primary immune deficiency in 11 and other immune deficiency disorders in 12 children. PCR could detect P. jirovecii in 14 children. Prevalence of PCP in HIV-infected children was 43% (6 of 14), renal disease on immunosuppressants 45% (4 of 9), primary immune deficiency 19% (2 of 11) and malignancies on chemotherapy 4% (2 of 57). Three of 14 children died from PCP. PCP is responsible for pneumonia in 14% of children with underlying immunocompromised state; PCR on induced sputum improves diagnosis. © The Author [2014]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Total-Body Irradiation Followed By Cyclosporine and Mycophenolate Mofetil in Treating Patients With Severe Combined Immunodeficiency Undergoing Donor Bone Marrow Transplant

    ClinicalTrials.gov

    2017-07-12

    Adenosine Deaminase Deficiency; Autosomal Recessive Disorder; Immune System Disorder; Purine-Nucleoside Phosphorylase Deficiency; Severe Combined Immunodeficiency; Severe Combined Immunodeficiency With Absence of T and B Cells; X-Linked Severe Combined Immunodeficiency

  18. Adenosine deaminase deficiency: a review.

    PubMed

    Flinn, Aisling M; Gennery, Andrew R

    2018-04-24

    Adenosine deaminase (ADA) deficiency leads to an accumulation of toxic purine degradation by-products, most potently affecting lymphocytes, leading to adenosine deaminase-deficient severe combined immunodeficiency. Whilst most notable affects are on lymphocytes, other manifestations include skeletal abnormalities, neurodevelopmental affects and pulmonary manifestations associated with pulmonary-alveolar proteinosis. Affected patients present in early infancy, usually with persistent infection, or with pulmonary insufficiency. Three treatment options are currently available. Initial treatment with enzyme replacement therapy may alleviate acute symptoms and enable partial immunological reconstitution, but treatment is life-long, immune reconstitution is incomplete, and the reconstituted immune system may nullify the effects of the enzyme replacement. Hematopoietic stem cell transplant has long been established as the treatment of choice, particularly where a matched sibling or well matched unrelated donor is available. More recently, the use of gene addition techniques to correct the genetic defect in autologous haematopoietic stem cells treatment has demonstrated immunological and clinical efficacy. This article reviews the biology, clinical presentation, diagnosis and treatment of ADA-deficiency.

  19. Chemical studies on damages of Escherichea coli by the immune bactericidal reaction. II. Release of phosphatidylethanolamine from a phospholipase A-deficient mutant of E. coli during the immune bactericidal reaction.

    PubMed

    Inoue, K; Yano, K; Amano, T

    1974-12-01

    When an antibody-sensitized, phospholipase A-deficient mutant of Escherichia coli B/SM was treated with complement in the absence of lysozyme, bacterial phosphatidylethanolamine (PE) was liberated into the lipid fraction of the surrounding medium, but only traces of its degradation products were found in this fraction. Therefore, most of the degradation of bacterial PE to FFA and LPE observed in the usual immune bactericidal reaction (Inoue et al., 1974) must be the result of the action of bacterial phospholipase A which is activated or becomes accessible to its substrate on formation of lesions by complement. The mechanism of complement-mediated formation of membrane lesions is discussed on the basis of these results.

  20. Spondyloenchondrodysplasia Due to Mutations in ACP5: A Comprehensive Survey.

    PubMed

    Briggs, Tracy A; Rice, Gillian I; Adib, Navid; Ades, Lesley; Barete, Stephane; Baskar, Kannan; Baudouin, Veronique; Cebeci, Ayse N; Clapuyt, Philippe; Coman, David; De Somer, Lien; Finezilber, Yael; Frydman, Moshe; Guven, Ayla; Heritier, Sébastien; Karall, Daniela; Kulkarni, Muralidhar L; Lebon, Pierre; Levitt, David; Le Merrer, Martine; Linglart, Agnes; Livingston, John H; Navarro, Vincent; Okenfuss, Ericka; Puel, Anne; Revencu, Nicole; Scholl-Bürgi, Sabine; Vivarelli, Marina; Wouters, Carine; Bader-Meunier, Brigitte; Crow, Yanick J

    2016-04-01

    Spondyloenchondrodysplasia is a rare immuno-osseous dysplasia caused by biallelic mutations in ACP5. We aimed to provide a survey of the skeletal, neurological and immune manifestations of this disease in a cohort of molecularly confirmed cases. We compiled clinical, genetic and serological data from a total of 26 patients from 18 pedigrees, all with biallelic ACP5 mutations. We observed a variability in skeletal, neurological and immune phenotypes, which was sometimes marked even between affected siblings. In total, 22 of 26 patients manifested autoimmune disease, most frequently autoimmune thrombocytopenia and systemic lupus erythematosus. Four patients were considered to demonstrate no clinical autoimmune disease, although two were positive for autoantibodies. In the majority of patients tested we detected upregulated expression of interferon-stimulated genes (ISGs), in keeping with the autoimmune phenotype and the likely immune-regulatory function of the deficient protein tartrate resistant acid phosphatase (TRAP). Two mutation positive patients did not demonstrate an upregulation of ISGs, including one patient with significant autoimmune disease controlled by immunosuppressive therapy. Our data expand the known phenotype of SPENCD. We propose that the OMIM differentiation between spondyloenchondrodysplasia and spondyloenchondrodysplasia with immune dysregulation is no longer appropriate, since the molecular evidence that we provide suggests that these phenotypes represent a continuum of the same disorder. In addition, the absence of an interferon signature following immunomodulatory treatments in a patient with significant autoimmune disease may indicate a therapeutic response important for the immune manifestations of spondyloenchondrodysplasia.

  1. Intestinal immune responses of Jian carp against Aeromonas hydrophila depressed by choline deficiency: Varied change patterns of mRNA levels of cytokines, tight junction proteins and related signaling molecules among three intestinal segments.

    PubMed

    Wu, Pei; Liu, Yang; Jiang, Wei-Dan; Jiang, Jun; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2017-06-01

    This study aimed to investigate the effects of choline deficiency on intestinal inflammation of fish after Aeromonas hydrophila infection and the potential molecular mechanisms. Juvenile Jian carp (Cyprinus carpio var. Jian) were fed two diets containing choline at 165 (deficient group) and 607 mg/kg diet respectively for 65 days. Choline deficiency decreased intestinal lysozyme activity, C3 and IgM contents, increased acid phosphatase activity, downregulated mRNA levels of antimicrobial peptides [liver-expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin and defensin], cytokines [interleukin (IL) 6a, tumor necrosis factor α (TNF-α), interferon γ2b (IFN-γ2b), IL-6b and transforming growth factor β2 (TGF-β2) only in proximal intestine, IL-10 in mid and distal intestine], immune-related signaling molecules [Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), nuclear factor kappa B (NF-κB), inhibitor of NF-κB (IκB), Janus kinase 3 (JAK3), and signal transducers and activators of transcription 5 (STAT5)], tight junction proteins (claudin 3b, claudin 3c, claudin 11 and occludin), and mitogen-activated protein kinases p38 (p38 MAPK ) in proximal and distal intestine of juvenile Jian carp after A. hydrophila challenge. In contrast, choline deficiency upregulated mRNA levels of antimicrobial peptides (LEAP-2A, LEAP-2B, hepcidin and defensin), cytokines (IL-6b, IFN-γ2b and TGF-β2), immune-related signaling molecules (TLR4, MyD88, NF-κB, IκB, JAK3, STAT4 in three intestinal segments, and STAT6), claudin 11, and p38 MAPK in mid intestine of fish. This study provides new finding that choline deficiency-induced immune responses against A. hydrophila infection were varied among three intestinal segments in fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. BILL E. KUNKLE INTERDISCIPLINARY BEEF SYMPOSIUM: Impact of mineral and vitamin status on beef cattle immune function and health.

    PubMed

    Kegley, E B; Ball, J J; Beck, P A

    2016-12-01

    The importance of optimal mineral and vitamin nutrition on improving immune function and health has been recognized in the preceding decades. In the southeast, beef cattle are raised predominantly on forages that may be limiting in nutrients for optimal health, especially trace minerals such as Cu, Zn, and Se. Clinical deficiencies of these nutrients produce classic symptoms that are common to several nutrient deficiencies (e.g., slow growth and unthrifty appearance); however, subclinical deficiencies are more widespread and more difficult to detect, yet may result in broader economic losses. Dietary mineral concentrations often considered adequate for maximum growth, reproductive performance, or optimal immune function have been found to be insufficient at times of physiological stress (weaning, transport, comingling, etc.), when feed intake is reduced. The impacts of these deficiencies on beef cattle health are not apparent until calves have been subjected to these stressors. Health problems that are exacerbated by mineral or vitamin deficiencies include bovine respiratory disease, footrot, retained placenta, metritis, and mastitis. Many micronutrients have antioxidant properties through being components of enzymes and proteins that benefit animal health. In dairy cattle, high levels of supplemental Zn are generally associated with reduced somatic cell counts and improved foot health, possibly reflecting the importance of Zn in maintaining effective epithelial barriers. Neutrophils isolated from ruminants deficient in Cu or Se have reduced ability to kill ingested bacteria in vitro. Supplemental vitamin E, in its role as an intracellular antioxidant has been shown to decrease morbidity in stressed calves. There is more understanding of the important biological role that these nutrients play in the functioning of the complex and multifaceted immune system. However, there is still much to be learned about determining the micronutrient status of herds (and hence when supplementation will be beneficial), requirements for different genetic and environmental conditions, understanding the bioavailability of these nutrients from feedstuffs and forages, quantifying the bioavailability of different supplemental sources of these nutrients, and identifying the impact of dietary antagonists on these nutrients.

  3. Aneuploidy assessed by DNA index influences the effect of iron status on plasma and/or supernatant cytokine levels and progression of cells through the cell cycle in a mouse model.

    PubMed

    Kuvibidila, Solo; Porretta, Connie; Baliga, Surendra

    2014-02-01

    Aneuploidy, a condition associated with altered chromosome number, hence DNA index, is frequently seen in many diseases including cancers and affects immunity. Iron, an essential nutrient for humans, modulates the immune function and the proliferation of normal and cancer cells. To determine whether impaired immunity seen in iron-deficient subjects may be related to aneuploidy, we measured spleen cell DNA index, percent of cells in different phases of the cell cycle, plasma and/or supernatant IL-2, IL-10, IL-12, and interferon-gamma in control, pair-fed, iron-deficient, and iron-replete mice (N=20-22/group). The test and control diets differed only in iron content (0.09mmol/kg versus 0.9mmol/kg) and were fed for 68days. Mean levels of hemoglobin and liver iron stores of iron-deficient and iron-replete mice were 40-60% lower than those of control and pair-fed mice (P<0.05). Mean plasma levels of IL-10, interferon-gamma and percent of cells in S+G2/M phases were lower in mice with than in those without aneuploidy (P<0.05). Lowest plasma IL-12 and interferon-gamma concentrations were observed in iron-deficient mice with aneuploidy. Mean percents of cultures with aneuploidy and DNA indexes were higher in iron-deficient and iron-replete than in control and pair-fed mice likely due to delayed cell division (P<0.05). Aneuploidy decreased the concentration of IL-2 and interferon-gamma in baseline cultures while it increased that of interferon-gamma in anti-CD3 treated cultures. Aneuploidic indexes negatively correlated with cytokine levels, percents of cells in S+G2/M phases and indicators of iron status (P<0.05). Although chromosome cytogenetics was not performed, for the first time, we report that increased aneuploidy rate may modulate the immune function during iron-deficiency. Copyright © 2014. Published by Elsevier Ltd.

  4. Th9 Cells Drive Host Immunity against Gastrointestinal Worm Infection.

    PubMed

    Licona-Limón, Paula; Henao-Mejia, Jorge; Temann, Angela U; Gagliani, Nicola; Licona-Limón, Ileana; Ishigame, Harumichi; Hao, Liming; Herbert, De'broski R; Flavell, Richard A

    2013-10-17

    Type 2 inflammatory cytokines, including interleukin-4 (IL-4), IL-5, IL-9, and IL-13, drive the characteristic features of immunity against parasitic worms and allergens. Whether IL-9 serves an essential role in the initiation of host-protective responses is controversial, and the importance of IL-9- versus IL-4-producing CD4⁺ effector T cells in type 2 immunity is incompletely defined. Herein, we generated IL-9-deficient and IL-9-fluorescent reporter mice that demonstrated an essential role for this cytokine in the early type 2 immunity against Nippostrongylus brasiliensis. Whereas T helper 9 (Th9) cells and type 2 innate lymphoid cells (ILC2s) were major sources of infection-induced IL-9 production, the adoptive transfer of Th9 cells, but not Th2 cells, caused rapid worm expulsion, marked basophilia, and increased mast cell numbers in Rag2-deficient hosts. Taken together, our data show a critical and nonredundant role for Th9 cells and IL-9 in host-protective type 2 immunity against parasitic worm infection. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Impaired intestinal immune barrier and physical barrier function by phosphorus deficiency: Regulation of TOR, NF-κB, MLCK, JNK and Nrf2 signalling in grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila.

    PubMed

    Chen, Kang; Zhou, Xiao-Qiu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin

    2018-03-01

    In aquaculture, the occurrence of enteritis has increased and dietary nutrition is considered as one of the major strategies to solve this problem. In the present study, we assume that dietary phosphorus might enhance intestinal immune barrier and physical barrier function to reduce the occurrence of enteritis in fish. To test this assumption, a total of 540 grass carp (Ctenopharyngodon idella) were investigated by feeding graded levels of available phosphorus (0.95-8.75 g/kg diet) and then infection with Aeromonas hydrophila. The results firstly showed that phosphorus deficiency decreased the ability to combat enteritis, which might be related to the impairment of intestinal immune barrier and physical barrier function. Compared with optimal phosphorus level, phosphorus deficiency decreased fish intestinal antimicrobial substances activities or contents and down-regulated antimicrobial peptides mRNA levels leading to the impairment of intestinal immune response. Phosphorus deficiency down-regulated fish intestinal anti-inflammatory cytokines mRNA levels and up-regulated the mRNA levels of pro-inflammatory cytokines [except IL-1β and IL-12p35 in distal intestine (DI) and IL-12p40] causing aggravated of intestinal inflammatory responses, which might be related to the signalling molecules target of rapamycin and nuclear factor kappa B. In addition, phosphorus deficiency disturbed fish intestinal tight junction function and induced cell apoptosis as well as oxidative damage leading to impaired of fish intestinal physical barrier function, which might be partially associated with the signalling molecules myosin light chain kinase, c-Jun N-terminal protein kinase and NF-E2-related factor 2, respectively. Finally, based on the ability to combat enteritis, dietary available phosphorus requirement for grass carp (254.56-898.23 g) was estimated to be 4.68 g/kg diet. Copyright © 2017. Published by Elsevier Ltd.

  6. Coping with uncertainty: nutrient deficiencies motivate insect migration at a cost to immunity.

    PubMed

    Srygley, Robert B; Lorch, Patrick D

    2013-12-01

    Migration often is associated with movement away from areas with depleted nutrients or other resources, and yet migration itself is energetically demanding. Migrating Mormon crickets Anabrus simplex (Orthoptera: Tettigoniidae) lack nutrients, and supplementation of deficient nutrients slows migratory movements and enhances specific aspects of their immune systems. Migrants deficient in proteins have less spontaneous phenoloxidase (PO) activity, whereas those deficient in carbohydrates have lower lysozyme-like anti-bacterial titers with a proposed compromise between migratory and anti-bacterial activities. To investigate the relationship between diet, movement, and immunity further, we removed Mormon crickets from a migratory band and offered each cricket one of five diets: high protein, high carbohydrate, equal weight of proteins and carbohydrates (P + C), vitamins only, or water only for 1 h. We then attached a radio, returned each to the migratory band, and recaptured them 18-24 h later. Mormon crickets fed protein moved the furthest, those with only water or only vitamins moved less, and those fed carbohydrates or P + C moved the least. Standard intake trials also indicated that the Mormon crickets were deficient in carbohydrates. Consistent with a previous study, lysozyme-like anti-bacterial activity was greatest in those fed carbohydrates, and there was no difference between those fed water, protein, or P + C. Crickets were removed from the same migratory band and fed one of four diets: high P, high C, P + C, or vitamins only, for 1 h. Then the crickets were held in captivity with water only for 4 or 24 h before blood was drawn. Immunity measures did not differ between times of draw. Diet treatments had no effect on anti-bacterial activity of captive Mormon crickets, whereas total PO was greater in those fed protein. These results support the hypothesis of a direct compromise between migratory and anti-bacterial activities, whereas PO is compromised by low protein independent of migratory activities. We discuss the potential effects of climate on nutritional deficits and susceptibility to different pathogens.

  7. Neutrophil Recruitment by Tumor Necrosis Factor from Mast Cells in Immune Complex Peritonitis

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Ramos, Bernard F.; Jakschik, Barbara A.

    1992-12-01

    During generalized immune complex-induced inflammation of the peritoneal cavity, two peaks of tumor necrosis factor (TNF) were observed in the peritoneal exudate of normal mice. In mast cell-deficient mice, the first peak was undetected, and the second peak of TNF and neutrophil influx were significantly reduced. Antibody to TNF significantly inhibited neutrophil infiltration in normal but not in mast cell-deficient mice. Mast cell repletion of the latter normalized TNF, neutrophil mobilization, and the effect of the antibody to TNF. Thus, in vivo, mast cells produce the TNF that augments neutrophil emigration.

  8. Mannose-Binding Lectin Protein Deficiency Among Patients with Primary Immunodeficiency Disease Receiving IVIG Therapy.

    PubMed

    Azizi, Gholamreza; Kiaee, Fatemeh; Yaslianifard, Somaye; Rafiemanesh, Hosein; Mohammadikhajehdehi, Sara; Mohammadi, Hamed; Miresmaeeli, Seyed Sakineh; Pour, Leila H; Poor Heravi, Sina Abdolrahim; Sharifi, Laleh; Yazdani, Reza; Abolhassani, Hassan; Aghamohammadi, Asghar

    2018-02-13

    Primary immunodeficiencies (PIDs) are inherited disorders in which one or several components of the immune system are defective. Immunoglobulin replacement therapy is the mainstay of treatment for patients with impaired antibody production. However, recurrent infections would continue to occur in some patients due to the other high frequent concomitant defects, such as mannose-binding lectin (MBL) deficiency. A total of 51 PID patients participated in this cross-sectional study. A detailed questionnaire was completed by interviewing patients in order to record demographic, clinical and laboratory data. The levels of MBL were determined in the serums of patients by a sandwich enzyme-linked immunosorbent assay (ELISA) technique. MBL deficiency was found in 29.4% of cases; 11.8% patients had mild, 3.9% patients had moderate and 13.7% patients had severe MBL deficiency. In patients with MBL deficiency, the rate of meningitis, sepsis, pneumonia, and otitis media was higher than patients with normal MBL levels. Immunoglobulin replacement therapy reduced the rate of infectious complications in PID patients; however, these reductions were more apparent in patients with normal MBL levels than patients with MBL deficiency. Antibody deficient patients with a concomitant immune defect in MBL production have higher rates of recurrent infections despite receiving Immunoglobulin replacement therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Effects of early vitamin D deficiency rickets on bone and dental health, growth and immunity.

    PubMed

    Zerofsky, Melissa; Ryder, Mark; Bhatia, Suruchi; Stephensen, Charles B; King, Janet; Fung, Ellen B

    2016-10-01

    Vitamin D deficiency is associated with adverse health outcomes, including impaired bone growth, gingival inflammation and increased risk for autoimmune disease, but the relationship between vitamin D deficiency rickets in childhood and long-term health has not been studied. In this study, we assessed the effect of early vitamin D deficiency on growth, bone density, dental health and immune function in later childhood to determine if children previously diagnosed with rickets were at greater risk of adverse health outcomes compared with healthy children. We measured serum 25-hydroxyvitamin D, calcium, parathyroid hormone, bone mineral density, anthropometric measures, dietary habits, dental health, general health history, and markers of inflammation in 14 previously diagnosed rickets case children at Children's Hospital Oakland Research Center. We compared the findings in the rickets cases with 11 healthy children selected from the population of CHO staff families. Fourteen mothers of the rickets cases, five siblings of the rickets cases, and seven mothers of healthy children also participated. Children diagnosed with vitamin D deficiency rickets had a greater risk of fracture, greater prevalence of asthma, and more dental enamel defects compared with healthy children. Given the widespread actions of vitamin D, it is likely that early-life vitamin D deficiency may increase the risk of disease later in childhood. Further assessment of the long-term health effects of early deficiency is necessary to make appropriate dietary recommendations for infants at risk of deficiency. © 2015 John Wiley & Sons Ltd.

  10. Effects of early vitamin D deficiency rickets on bone and dental health, growth and immunity

    PubMed Central

    Zerofsky, Melissa; Ryder, Mark; Bhatia, Suruchi; Stephensen, Charles B.; King, Janet; Fung, Ellen B.

    2015-01-01

    Vitamin D deficiency is associated with adverse health outcomes, including impaired bone growth, gingival inflammation and increased risk for autoimmune disease, but the relationship between vitamin D deficiency rickets in childhood and long-term health has not been studied. In this study, we assessed the effect of early vitamin D deficiency on growth, bone density, dental health and immune function in later childhood to determine if children previously diagnosed with rickets were at greater risk of adverse health outcomes compared with healthy children. We measured serum 25-hydroxyvitamin D, calcium, parathyroid hormone, bone mineral density, anthropometric measures, dietary habits, dental health, general health history, and markers of inflammation in 14 previously diagnosed rickets case children at Children’s Hospital Oakland Research Center. We compared the findings in the rickets cases with 11 healthy children selected from the population of CHO staff families. Fourteen mothers of the rickets cases, five siblings of the rickets cases, and seven mothers of healthy children also participated. Children diagnosed with vitamin D deficiency rickets had a greater risk of fracture, greater prevalence of asthma, and more dental enamel defects compared with healthy children. Given the widespread actions of vitamin D, it is likely that early-life vitamin D deficiency may increase the risk of disease later in childhood. Further assessment of the long-term health effects of early deficiency is necessary to make appropriate dietary recommendations for infants at risk of deficiency. PMID:25850574

  11. Low 25-hydroxyvitamin D levels and cognitive impairment in hemodialysis patients

    USDA-ARS?s Scientific Manuscript database

    25-hydroxyvitamin D (25[OH]D) deficiency and cognitive impairment are both prevalent in hemodialysis patients in the United States. This study tested the hypothesis that 25(OH)D deficiency may be associated with cognitive impairment because of its vasculoprotective, neuroprotective, and immune-modul...

  12. Orange sweet potatoes are an excellent source of vitamin A

    USDA-ARS?s Scientific Manuscript database

    Vitamin A is an essential nutrient required for proper growth and development, vision, red blood cell production, and immune function. An estimated 208 million women and children suffer from vitamin A deficiency worldwide, making vitamin A deficiency a public health problem in numerous countries. Se...

  13. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level

    PubMed Central

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A.; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J.; Finkenstaedt, Felix W.; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas

    2016-01-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient’s environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P < 0.001) independently from mechanical ventilation and preserved sensory function by multiple regression analysis. We present evidence that spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS (‘immune paralysis’), sufficient to propagate clinically relevant infection in an injury level dependent manner. PMID:26754788

  14. A Critical Role for the TLR4/TRIF Pathway in Allogeneic Hematopoietic Cell Rejection by Innate Immune Cells

    PubMed Central

    Xu, Hong; Yan, Jun; Zhu, Ziqiang; Hussain, Lala-Rukh; Huang, Yiming; Ding, Chuanlin; Bozulic, Larry D.; Wen, Yujie; Ildstad, Suzanne T.

    2013-01-01

    We show for the first time that signaling through the TLR4/TRIF pathway plays a critical role in allogeneic bone marrow cell (BMC) rejection. This appears to be unique to BMC as organ allografts are rejected mainly via MyD88 signaling. Using T or T/B cell-deficient mice, we found that BMC allorejection occurred early before T cell activation and was T and B cell-independent, suggesting an effector role for innate immune cells in BMC rejection. We further demonstrated the innate immune signaling in BMC allorejection by showing superior engraftment in mice deficient in TRIF or TLR4 but not MyD88 or TLR3. The restored cytotoxicity in TRIF deficient recipients transferred with wildtype F4/80+ or NK1.1+ cells suggests TRIF signaling dependence on macrophages or NK cells in early BMC rejection. Production of the proinflammatory cytokine IL-6 and TRIF relevant chemokine MCP-1 was significantly increased early after bone marrow transplantation. In vivo specific depletion of macrophages or NK innate immune cells in combination with anti-CD154/rapamycin resulted in additive-enhanced allogeneic engraftment. The requirement for irradiation was completely eliminated when both macrophages and NK cells were depleted in combination with anti-CD154/rapamycin to target T and B cells, supporting the hypothesis that two barriers involving innate and adaptive immunity exist in mediating rejection of allogeneic BMC. In summary, our results clearly demonstrate a previously unappreciated role for innate immunity in BMC allorejection via signaling through a unique MyD88-independent TLR4/TRIF mechanism. These findings may have direct clinical impact on strategies for conditioning recipients for stem cell transplantation. PMID:23146386

  15. MAPK phosphotase 5 deficiency contributes to protection against blood-stage Plasmodium yoelii 17XL infection in mice.

    PubMed

    Cheng, Qianqian; Zhang, Qingfeng; Xu, Xindong; Yin, Lan; Sun, Lin; Lin, Xin; Dong, Chen; Pan, Weiqing

    2014-04-15

    Cell-mediated immunity plays a crucial role in the development of host resistance to asexual blood-stage malaria infection. However, little is known of the regulatory factors involved in this process. In this study, we investigated the impact of MAPK phosphotase 5 (MKP5) on protective immunity against a lethal Plasmodium yoelii 17XL blood-stage infection using MKP5 knockout C57BL/6 mice. Compared with wild-type control mice, MKP5 knockout mice developed significantly lower parasite burdens with prolonged survival times. We found that this phenomenon correlated with a rapid and strong IFN-γ-dependent cellular immune response during the acute phase of infection. Inactivation of IFN-γ by the administration of a neutralizing Ab significantly reduced the protective effects in MKP5 knockout mice. By analyzing IFN-γ production in innate and adaptive lymphocyte subsets, we observed that MKP5 deficiency specifically enhanced the IFN-γ response mediated by CD4+ T cells, which was attributable to the increased stimulatory capacity of splenic CD11c+ dendritic cells. Furthermore, following vaccination with whole blood-stage soluble plasmodial Ag, MKP5 knockout mice acquired strongly enhanced Ag-specific immune responses and a higher level of protection against subsequent P. yoelii 17XL challenge. Finally, we found the enhanced response mediated by MKP5 deficiency resulted in a lethal consequence in mice when infected with nonlethal P. yoelii 17XNL. Thus, our data indicate that MKP5 is a potential regulator of immune resistance against Plasmodium infection in mice, and that an understanding of the role of MKP5 in manipulating anti-malaria immunity may provide valuable information on the development of better control strategies for human malaria.

  16. Preclinical Demonstration of Lentiviral Vector-mediated Correction of Immunological and Metabolic Abnormalities in Models of Adenosine Deaminase Deficiency

    PubMed Central

    Carbonaro, Denise A; Zhang, Lin; Jin, Xiangyang; Montiel-Equihua, Claudia; Geiger, Sabine; Carmo, Marlene; Cooper, Aaron; Fairbanks, Lynette; Kaufman, Michael L; Sebire, Neil J; Hollis, Roger P; Blundell, Michael P; Senadheera, Shantha; Fu, Pei-Yu; Sahaghian, Arineh; Chan, Rebecca Y; Wang, Xiaoyan; Cornetta, Kenneth; Thrasher, Adrian J; Kohn, Donald B; Gaspar, H Bobby

    2014-01-01

    Gene transfer into autologous hematopoietic stem cells by γ-retroviral vectors (gRV) is an effective treatment for adenosine deaminase (ADA)–deficient severe combined immunodeficiency (SCID). However, current gRV have significant potential for insertional mutagenesis as reported in clinical trials for other primary immunodeficiencies. To improve the efficacy and safety of ADA-SCID gene therapy (GT), we generated a self-inactivating lentiviral vector (LV) with a codon-optimized human cADA gene under the control of the short form elongation factor-1α promoter (LV EFS ADA). In ADA−/− mice, LV EFS ADA displayed high-efficiency gene transfer and sufficient ADA expression to rescue ADA−/− mice from their lethal phenotype with good thymic and peripheral T- and B-cell reconstitution. Human ADA-deficient CD34+ cells transduced with 1–5 × 107 TU/ml had 1–3 vector copies/cell and expressed 1–2x of normal endogenous levels of ADA, as assayed in vitro and by transplantation into immune-deficient mice. Importantly, in vitro immortalization assays demonstrated that LV EFS ADA had significantly less transformation potential compared to gRV vectors, and vector integration-site analysis by nrLAM-PCR of transduced human cells grown in immune-deficient mice showed no evidence of clonal skewing. These data demonstrated that the LV EFS ADA vector can effectively transfer the human ADA cDNA and promote immune and metabolic recovery, while reducing the potential for vector-mediated insertional mutagenesis. PMID:24256635

  17. Vitamin E deficiency depressed fish growth, disease resistance, and the immunity and structural integrity of immune organs in grass carp (Ctenopharyngodon idella): Referring to NF-κB, TOR and Nrf2 signaling.

    PubMed

    Pan, Jia-Hong; Feng, Lin; Jiang, Wei-Dan; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu; Liu, Yang

    2017-01-01

    This study investigated the effects of dietary vitamin E on growth, disease resistance and the immunity and structural integrity of head kidney, spleen and skin in grass carp (Ctenopharyngodon idella). The fish were fed six diets containing graded levels of vitamin E (0, 45, 90, 135, 180 and 225 mg/kg diet) for 10 weeks. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila. The results showed that compared with optimal vitamin E supplementation, vitamin E deficiency caused depressed growth, poor survival rates and increased skin lesion morbidity in grass carp. Meanwhile, vitamin E deficiency decreased lysozyme and acid phosphatase activities, complement component 3 and complement component 4 contents in the head kidney, spleen and skin of grass carp (P < 0.05). Moreover, vitamin E deficiency down-regulated antimicrobial peptides (Hepcidin, liver-expressed antimicrobial peptide-2A, -2B, β-defensin), IL-10, TGFβ1, IκBα, TOR and S6K1 mRNA levels (P < 0.05) and up-regulated IL-1β, IL-6, IL-8, IFN-γ2 and TNFα, NF-κB p65, IKKα, IKKβ and 4EBP1 (not in the head kidney) mRNA levels (P < 0.05). In addition, vitamin E deficiency caused oxidative damage, decreased superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione reductase (GR) activities, and down-regulated the mRNA levels of antioxidant enzymes and signaling molecules Nrf2 (P < 0.05). Vitamin E deficiency also induced apoptosis by up-regulating capase-2, -3, -7, and -8 mRNA levels in the head kidney, spleen and skin of grass carp. In conclusion, this study indicated that dietary vitamin E deficiency depressed fish growth, impaired the immune function and disturbed the structural integrity of the head kidney, spleen and skin in grass carp, but optimal vitamin E supplementation can reverse those negative effects in fish. The optimal vitamin E requirements for young grass carp (266.39-1026.63 g) to achieve optimal growth performance and disease resistance based on the percent weight gain (PWG) and skin lesion morbidity were estimated to be 116.2 and 130.9 mg/kg diet, respectively. Meanwhile, based on immune indicator (LA activity in the head kidney) and antioxidant indicator (protection of spleen against MDA), the optimal vitamin E requirements for young grass carp were estimated to be 123.8 and 136.4 mg/kg diet, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. SELENIUM-DEFICIENCY MODIFIES INFLUENZA INFECTION OF DIFFERENTIATED HUMAN BRONCHIAL EPITHELIAL CELLS

    EPA Science Inventory

    The nutritional status of the host is important in the defense against invading pathogens. Many studies regarding the effects of host nutritional status on the immune response have demonstrated that suboptimal host nutrition results in impaired host immunity and increased suscept...

  19. Rescue of the mature B cell compartment in BAFF-deficient mice by treatment with recombinant Fc-BAFF.

    PubMed

    Swee, Lee Kim; Tardivel, Aubry; Schneider, Pascal; Rolink, Antonius

    2010-06-15

    BAFF deficiency in mice impairs B cell development beyond the transitional stage 1 in the spleen and thus severely reduces the size of follicular and marginal zone B cell compartments. Moreover, humoral immune responses in these mice are dramatically impaired. We now addressed the question whether the decrease in mature B cell numbers and the reduced humoral immune responses in BAFF-deficient mice could be overcome by the injection of recombinant BAFF. We therefore engineered a recombinant protein containing the human IgG1 Fc moiety fused to receptor-binding domain of human BAFF (Fc-BAFF). At 1 week after the second injection of this fusion protein a complete rescue of the marginal zone B cell compartment and a 50% rescue of the follicular B cell compartment was observed. Moreover these mice mounted a T cell-dependent humoral immune response indistinguishable from wild-type mice. By day 14 upon arrest of Fc-BAFF treatment mature B cell numbers in the blood dropped by 50%, indicating that the life span of mature B cells in the absence of BAFF is 14 days or less. Collectively these findings demonstrate that injection of Fc-BAFF in BAFF-deficient mice results in a temporary rescue of a functional mature B cell compartment. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Oral or parenteral administration of replication-deficient adenoviruses expressing the measles virus haemagglutinin and fusion proteins: protective immune responses in rodents.

    PubMed

    Fooks, A R; Jeevarajah, D; Lee, J; Warnes, A; Niewiesk, S; ter Meulen, V; Stephenson, J R; Clegg, J C

    1998-05-01

    The genes encoding the measles virus (MV) haemagglutinin (H) and fusion (F) proteins were placed under the control of the human cytomegalovirus immediate early promoter in a replication-deficient adenovirus vector. Immunofluorescence and radioimmune precipitation demonstrated the synthesis of each protein and biological activity was confirmed by the detection of haemadsorption and fusion activities in infected cells. Oral as well as parenteral administration of the H-expressing recombinant adenovirus elicited a significant protective response in mice challenged with MV. While the F-expressing adenovirus failed to protect mice, cotton rats immunized with either the H- or F-expressing recombinant showed reduced MV replication in the lungs. Antibodies elicited in mice following immunization with either recombinant had no in vitro neutralizing activity, suggesting a protective mechanism involving a cell-mediated immune response. This study demonstrates the feasibility of using oral administration of adenovirus recombinants to induce protective responses to heterologous proteins.

  1. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity.

    PubMed

    Jellusova, Julia; Wellmann, Ute; Amann, Kerstin; Winkler, Thomas H; Nitschke, Lars

    2010-04-01

    CD22 and Siglec-G are inhibitory coreceptors for BCR-mediated signaling. Although CD22-deficient mice show increased calcium signaling in their conventional B2 cells and a quite normal B cell maturation, Siglec-G-deficient mice have increased calcium mobilization just in B1 cells and show a large expansion of the B1 cell population. Neither CD22-deficient, nor Siglec-G-deficient mice on a pure C57BL/6 or BALB/c background, respectively, develop autoimmunity. Using Siglec-G x CD22 double-deficient mice, we addressed whether Siglec-G and CD22 have redundant functions. Siglec-G x CD22 double-deficient mice show elevated calcium responses in both B1 cells and B2 cells, increased serum IgM levels and an enlarged population of B1 cells. The enlargement of B1 cell numbers is even higher than in Siglecg(-/-) mice. This expansion seems to happen at the expense of B2 cells, which are reduced in absolute cell numbers, but show an activated phenotype. Furthermore, Siglec-G x CD22 double-deficient mice show a diminished immune response to both thymus-dependent and thymus-independent type II Ags. In contrast, B cells from Siglec-G x CD22 double-deficient mice exhibit a hyperproliferative response to stimulation with several TLR ligands. Aged Siglec-G x CD22 double-deficient mice spontaneously develop anti-DNA and antinuclear autoantibodies. These resulted in a moderate form of immune complex glomerulonephritis. These results show that Siglec-G and CD22 have partly compensatory functions and together are crucial in maintaining the B cell tolerance.

  2. ZNT7 binds to CD40 and influences CD154-triggered p38 MAPK activity in B lymphocytes-a possible regulatory mechanism for zinc in immune function

    USDA-ARS?s Scientific Manuscript database

    Zinc deficiency impairs immune system leading to frequent infections. Although it is known that zinc plays critical roles in maintaining healthy immune function, the underlying molecular targets are largely unknown. In this study, we showed that zinc is important for the CD154-CD40-mediated activati...

  3. Nutritionally mediated programming of the developing immune system.

    PubMed

    Palmer, Amanda C

    2011-09-01

    A growing body of evidence highlights the importance of a mother's nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a "layered" expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease.

  4. Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury.

    PubMed

    Luo, Dandan; Ge, Weihong; Hu, Xiao; Li, Chen; Lee, Chia-Ming; Zhou, Liqiang; Wu, Zhourui; Yu, Juehua; Lin, Sheng; Yu, Jing; Xu, Wei; Chen, Lei; Zhang, Chong; Jiang, Kun; Zhu, Xingfei; Li, Haotian; Gao, Xinpei; Geng, Yanan; Jing, Bo; Wang, Zhen; Zheng, Changhong; Zhu, Rongrong; Yan, Qiao; Lin, Quan; Ye, Keqiang; Sun, Yi E; Cheng, Liming

    2018-06-28

    The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.

  5. SUMO-Enriched Proteome for Drosophila Innate Immune Response

    PubMed Central

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S.

    2015-01-01

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. PMID:26290570

  6. SUMO-Enriched Proteome for Drosophila Innate Immune Response.

    PubMed

    Handu, Mithila; Kaduskar, Bhagyashree; Ravindranathan, Ramya; Soory, Amarendranath; Giri, Ritika; Elango, Vijay Barathi; Gowda, Harsha; Ratnaparkhi, Girish S

    2015-08-18

    Small ubiquitin-like modifier (SUMO) modification modulates the expression of defense genes in Drosophila, activated by the Toll/nuclear factor-κB and immune-deficient/nuclear factor-κB signaling networks. We have, however, limited understanding of the SUMO-modulated regulation of the immune response and lack information on SUMO targets in the immune system. In this study, we measured the changes to the SUMO proteome in S2 cells in response to a lipopolysaccharide challenge and identified 1619 unique proteins in SUMO-enriched lysates. A confident set of 710 proteins represents the immune-induced SUMO proteome and analysis suggests that specific protein domains, cellular pathways, and protein complexes respond to immune stress. A small subset of the confident set was validated by in-bacto SUMOylation and shown to be bona-fide SUMO targets. These include components of immune signaling pathways such as Caspar, Jra, Kay, cdc42, p38b, 14-3-3ε, as well as cellular proteins with diverse functions, many being components of protein complexes, such as prosß4, Rps10b, SmD3, Tango7, and Aats-arg. Caspar, a human FAF1 ortholog that negatively regulates immune-deficient signaling, is SUMOylated at K551 and responds to treatment with lipopolysaccharide in cultured cells. Our study is one of the first to describe SUMO proteome for the Drosophila immune response. Our data and analysis provide a global framework for the understanding of SUMO modification in the host response to pathogens. Copyright © 2015 Handu et al.

  7. Defective anti-polysaccharide IgG vaccine responses in IgA deficient mice

    USDA-ARS?s Scientific Manuscript database

    IgA deficient patients often show defects in antibody responses following immunization with polysaccharide vaccines. We now show that IgA-/- mice exhibit specific defects in IgG antibody responses to various polysaccharide vaccines, but not protein vaccines. Defects in anti-polysaccharide IgG resp...

  8. Provitamin A carotenoids and immune function

    USDA-ARS?s Scientific Manuscript database

    Vitamin A was called the anti-infective vitamin early in the 20th century when vitamin A deficiency was shown to increase the severity of infections of experimental animals. Squamous metaplasia caused by vitamin A deficiency was known to disrupt the mucosal barrier to infection at that time but lat...

  9. Orange-fleshed sweet potatoes are an excellent source of vitamin A

    USDA-ARS?s Scientific Manuscript database

    Vitamin A is an essential vitamin required for growth, vision, and immune function. Vitamin A deficiency is a public health problem in numerous countries. 208 million women and children suffer from vitamin A deficiency worldwide. Several carotenoids, including beta-carotene, can be converted to vi...

  10. Transient receptor potential melastatin subfamily member 2 cation channel regulates detrimental immune cell invasion in ischemic stroke.

    PubMed

    Gelderblom, Mathias; Melzer, Nico; Schattling, Benjamin; Göb, Eva; Hicking, Gordon; Arunachalam, Priyadharshini; Bittner, Stefan; Ufer, Friederike; Herrmann, Alexander M; Bernreuther, Christian; Glatzel, Markus; Gerloff, Christian; Kleinschnitz, Christoph; Meuth, Sven G; Friese, Manuel A; Magnus, Tim

    2014-11-01

    Brain injury during stroke results in oxidative stress and the release of factors that include extracellular Ca(2+), hydrogen peroxide, adenosine diphosphate ribose, and nicotinic acid adenine dinucleotide phosphate. These alterations of the extracellular milieu change the activity of transient receptor potential melastatin subfamily member 2 (TRPM2), a nonselective cation channel expressed in the central nervous system and the immune system. Our goal was to evaluate the contribution of TRPM2 to the tissue damage after stroke. In accordance with current quality guidelines, we independently characterized Trpm2 in a murine ischemic stroke model in 2 different laboratories. Gene deficiency of Trpm2 resulted in significantly improved neurological outcome and decreased infarct size. Besides an already known moderate neuroprotective effect of Trpm2 deficiency in vitro, ischemic brain invasion by neutrophils and macrophages was particularly reduced in Trpm2-deficient mice. Bone marrow chimeric mice revealed that Trpm2 deficiency in the peripheral immune system is responsible for the protective phenotype. Furthermore, experiments with mixed bone marrow chimeras demonstrated that Trpm2 is essential for the migration of neutrophils and, to a lesser extent, also of macrophages into ischemic hemispheres. Notably, the pharmacological TRPM2 inhibitor, N-(p-amylcinnamoyl)anthranilic acid, was equally protective in the stroke model. Although a neuroprotective effect of TRPM2 in vitro is well known, we can show for the first time that the detrimental role of TRPM2 in stroke primarily depends on its role in activating peripheral immune cells. Targeting TRPM2 systemically represents a promising therapeutic approach for ischemic stroke. © 2014 American Heart Association, Inc.

  11. Risk of cancer among HIV-infected individuals compared to the background population: impact of smoking and HIV.

    PubMed

    Helleberg, Marie; Gerstoft, Jan; Afzal, Shoaib; Kronborg, Gitte; Larsen, Carsten S; Pedersen, Court; Bojesen, Stig E; Nordestgaard, Børge G; Obel, Niels

    2014-06-19

    The relative impact of immune deficiency and lifestyle-related factors on risk of cancer in the HIV-infected population is controversial. We aimed to estimate the population-attributable fractions (PAFs) associated with smoking, being HIV-infected and with immune deficiency. In a Danish, nationwide, population-based cohort study (1995-2011), incidences of cancer were compared between an HIV-infected cohort and a population-based matched cohort in analyses stratified on cancer category, smoking status and for HIV patients: low CD4 cell count. We included 3503 HIV patients [baseline CD4+ 450 cells/μl (inter-quartile range 310-630)] and 12,979 population controls. Smoking-related and virological cancers accounted for 23 and 43% of cancers in the HIV-infected population. The risk of these cancers were higher among HIV patients compared to controls [incidence rate ratio (IRR) 2.8, 95% confidence interval (CI) 1.6-4.9; and IRR 11.5, 95% CI 6.5-20.5], whereas the risk of other cancers did not differ (IRR 1.0, 95% CI 0.7-1.3). Non-smoking HIV patients did not have increased risk of non-virological cancers compared to non-smoking controls (IRR 1.2, 95% CI 0.7-2.1). The PAFs of cancer associated with smoking and with being HIV-infected were 27 and 49%, respectively. For cancers not strongly related to smoking or viral infections, the PAFs associated with being HIV-infected and with immune deficiency were 0%. The risk of cancer is increased in HIV patients compared to the background population. In absence of smoking, the increase in risk is confined to cancers related to viral infections, whereas the risk of other cancers is not elevated and does not seem to be associated with immune deficiency.

  12. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice.

    PubMed

    Verhoef, Philip A; Constantinides, Michael G; McDonald, Benjamin D; Urban, Joseph F; Sperling, Anne I; Bendelac, Albert

    2016-02-01

    The transcription factor promyelocytic leukemia zinc finger (PLZF) is transiently expressed during development of type 2 innate lymphoid cells (ILC2s) but is not present at the mature stage. We hypothesized that PLZF-deficient ILC2s have functional defects in the innate allergic response and represent a tool for studying innate immunity in a mouse with a functional adaptive immune response. We determined the consequences of PLZF deficiency on ILC2 function in response to innate and adaptive immune stimuli by using PLZF(-/-) mice and mixed wild-type:PLZF(-/-) bone marrow chimeras. PLZF(-/-) mice, wild-type littermates, or mixed bone marrow chimeras were treated with the protease allergen papain or the cytokines IL-25 and IL-33 or infected with the helminth Nippostrongylus brasiliensis to induce innate type 2 allergic responses. Mice were sensitized with intraperitoneal ovalbumin-alum, followed by intranasal challenge with ovalbumin alone, to induce adaptive TH2 responses. Lungs were analyzed for immune cell subsets, and alveolar lavage fluid was analyzed for ILC2-derived cytokines. In addition, ILC2s were stimulated ex vivo for their capacity to release type 2 cytokines. PLZF-deficient lung ILC2s exhibit a cell-intrinsic defect in the secretion of IL-5 and IL-13 in response to innate stimuli, resulting in defective recruitment of eosinophils and goblet cell hyperplasia. In contrast, the adaptive allergic inflammatory response to ovalbumin and alum was unimpaired. PLZF expression at the innate lymphoid cell precursor stage has a long-range effect on the functional properties of mature ILC2s and highlights the importance of these cells for innate allergic responses in otherwise immunocompetent mice. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  13. CD11c controls herpes simplex virus 1 responses to limit virus replication during primary infection.

    PubMed

    Allen, Sariah J; Mott, Kevin R; Chentoufi, Aziz A; BenMohamed, Lbachir; Wechsler, Steven L; Ballantyne, Christie M; Ghiasi, Homayon

    2011-10-01

    CD11c is expressed on the surface of dendritic cells (DCs) and is one of the main markers for identification of DCs. DCs are the effectors of central innate immune responses, but they also affect acquired immune responses to infection. However, how DCs influence the efficacy of adaptive immunity is poorly understood. Here, we show that CD11c(+) DCs negatively orchestrate both adaptive and innate immunity against herpes simplex virus type 1 (HSV-1) ocular infection. The effectiveness and quantity of virus-specific CD8(+) T cell responses are increased in CD11c-deficient animals. In addition, the levels of CD83, CD11b, alpha interferon (IFN-α), and IFN-β, but not IFN-γ, were significantly increased in CD11c-deficient animals. Higher levels of IFN-α, IFN-β, and CD8(+) T cells in the CD11c-deficient mice may have contributed to lower virus replication in the eye and trigeminal ganglia (TG) during the early period of infection than in wild-type mice. However, the absence of CD11c did not influence survival, severity of eye disease, or latency. Our studies provide for the first time evidence that CD11c expression may abrogate the ability to reduce primary virus replication in the eye and TG via higher activities of type 1 interferon and CD8(+) T cell responses.

  14. Imaging immune response of skin mast cells in vivo with two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Li, Chunqiang; Pastila, Riikka K.; Lin, Charles P.

    2012-02-01

    Intravital multiphoton microscopy has provided insightful information of the dynamic process of immune cells in vivo. However, the use of exogenous labeling agents limits its applications. There is no method to perform functional imaging of mast cells, a population of innate tissue-resident immune cells. Mast cells are widely recognized as the effector cells in allergy. Recently their roles as immunoregulatory cells in certain innate and adaptive immune responses are being actively investigated. Here we report in vivo mouse skin mast cells imaging with two-photon microscopy using endogenous tryptophan as the fluorophore. We studied the following processes. 1) Mast cells degranulation, the first step in the mast cell activation process in which the granules are released into peripheral tissue to trigger downstream reactions. 2) Mast cell reconstitution, a procedure commonly used to study mast cells functioning by comparing the data from wild type mice, mast cell-deficient mice, and mast-cell deficient mice reconstituted with bone marrow-derived mast cells (BMMCs). Imaging the BMMCs engraftment in tissue reveals the mast cells development and the efficiency of BMMCs reconstitution. We observed the reconstitution process for 6 weeks in the ear skin of mast cell-deficient Kit wsh/ w-sh mice by two-photon imaging. Our finding is the first instance of imaging mast cells in vivo with endogenous contrast.

  15. Microflora analysis of a child with severe combined immune deficiency

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.; Kropp, K. D.; Molina, T. C.

    1978-01-01

    The paper presents a microflora analysis of a 5-year-old male child with severe combined immune deficiency who was delivered by Caesarean section and continuously maintained in an isolator. Despite precautions, it was found that the child had come in contact with at least 54 different microbial contaminants. While his skin autoflora was similar to that of a reference group of healthy male adults in numbers of different species and the number of viable cells present per square centimeter of surface area, the subject's autoflora differed from the reference group in that significantly fewer anaerobic species were recovered from the patient's mouth and feces. It is suggested that the child's remaining disease free shows that the reported bacteria are noninvasive or that the unaffected components of the child's immune defense mechanisms are important.

  16. Cytomegalovirus Retinitis and the Acquired Immune Deficiency Syndrome: Bench to Bedside: LXVII Edward Jackson Memorial Lecture

    PubMed Central

    Jabs, Douglas A.

    2010-01-01

    Purpose To update information on cytomegalovirus (CMV) retinitis in patients with the acquired immune deficiency syndrome (AIDS) and to integrate information on its pathogenesis and clinical outcomes. Design Literature review. Methods Selected articles from the medical literature, particularly large epidemiologic studies, including the Johns Hopkins Cytomegalovirus Retinitis Cohort Study, the Longitudinal Study of the Ocular Complications of AIDS, and the Cytomegalovirus Retinitis and Viral Resistance Study, were reviewed. Clinical information is discussed in light of knowledge on CMV, its pathogenesis, and its interactions with human immunodeficiency virus (HIV). Results Cytomegalovirus uses several mechanisms to evade the immune system and establish latent infection in immunologically normal hosts. With immune deficiency, such as late-stage AIDS, CMV reactivates, is disseminated to the eye, and establishes a productive infection, resulting in retinal necrosis. HIV and CMV potentiate each other: CMV accelerates HIV disease, and CMV retinitis is associated with increased mortality. Randomized clinical trials have demonstrated the efficacy of treatments for CMV retinitis. Systemically-administered treatment for CMV retinitis decreases AIDS mortality. Highly active antiretroviral therapy (HAART), effectively suppresses HIV replication, resulting in immune recovery, which, if sufficient, controls retinitis without anti-CMV therapy. Resistant CMV, detected in the blood, correlates with resistant virus in the eye and is associated with worse clinical outcomes, including mortality. Host factors, including host genetics and access to care, play a role in the development of CMV retinitis. Conclusions Clinical outcomes of CMV retinitis in patients with AIDS are dependent on characteristics of the virus and host and on HIV–CMV interactions. PMID:21168815

  17. Evaluation of abdominal pain in the AIDS patient.

    PubMed Central

    Potter, D A; Danforth, D N; Macher, A M; Longo, D L; Stewart, L; Masur, H

    1984-01-01

    Acquired immune deficiency syndrome (AIDS) is a recently recognized entity characterized by a deficiency in cell mediated immune response. The syndrome is manifested by the development of otherwise rare malignant neoplasms and severe life-threatening opportunistic infections. Case histories of five AIDS patients evaluated for abdominal pain are presented to demonstrate the unusual spectrum of intra-abdominal pathology that may be encountered in the AIDS patient. As the number of patients with AIDS continues to escalate, surgical evaluation and intervention will be required more frequently. An understanding of this syndrome and its complications is mandatory for the surgeon to adequately evaluate AIDS patients with abdominal pain. PMID:6322708

  18. Toxoplasmosis presenting as panhypopituitarism in a patient with the acquired immune deficiency syndrome.

    PubMed

    Milligan, S A; Katz, M S; Craven, P C; Strandberg, D A; Russell, I J; Becker, R A

    1984-10-01

    A 57-year-old man with a prior episode of lymphatic toxoplasmosis presented with signs of anterior panhypopituitarism, which was confirmed by standard endocrinologic evaluation. The diagnosis of central nervous system toxoplasmosis was established by brain biopsy after nondiagnostic serologic and radiographic studies. At autopsy, the anterior pituitary was necrotic, with Toxoplasma abscesses in neighboring brain structures. Clinical and laboratory data met the criteria for the acquired immune deficiency syndrome. Although this is the first reported case of toxoplasmosis presenting as panhypopituitarism, future cases may be identified since central nervous system toxoplasmosis is being recognized more frequently in patients with immunodeficiency.

  19. A novel mutation in the JH4 domain of JAK3 causing severe combined immunodeficiency complicated by vertebral osteomyelitis.

    PubMed

    Qamar, Farah; Junejo, Samina; Qureshi, Sonia; Seleman, Michael; Bainter, Wayne; Massaad, Michel; Chou, Janet; Geha, Raif S

    2017-10-01

    JAK3 is a tyrosine kinase essential for signaling downstream of the common gamma chain subunit shared by multiple cytokine receptors. JAK3 deficiency results in T - B + NK - severe combined immune deficiency (SCID). We report a patient with SCID due to a novel mutation in the JAK3 JH4 domain. The function of the JH4 domain remains unknown. This is the first report of a missense mutation in the JAK3 JH4 domain, thereby demonstrating the importance of the JH4 domain of JAK3 in host immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Normal mast cell numbers in the tissues of AhR-deficient mice.

    PubMed

    Pilz, Caroline; Feyerabend, Thorsten; Sonner, Jana; Redaelli, Chiara; Peter, Katharina; Kunze, Anja; Haas, Katharina; Esser, Charlotte; Schäkel, Knut; Wick, Wolfgang; Rodewald, Hans-Reimer; Lanz, Tobias V; Platten, Michael

    2016-01-01

    The transcription factor aryl hydrocarbon receptor (AhR) acts as an immunomodulatory molecule in several immune cell lineages. Recently, it has been implicated in development and maintenance of immune cells in barrier tissues such as skin and mucosa. To investigate its role on mast cell development and maintenance in skin, peritoneal exudate cells (PECs) and lymph nodes, we studied in depth their phenotype in AhR-deficient mice. Our findings do not provide any evidence for a suspected role of the AhR in mast cell homeostasis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Capturing public interest toward new tools for controlling human immunodeficiency virus (HIV) infection exploiting data from Google Trends.

    PubMed

    Mahroum, Naim; Bragazzi, Nicola Luigi; Brigo, Francesco; Waknin, Roy; Sharif, Kassem; Mahagna, Hussein; Amital, Howard; Watad, Abdulla

    2018-04-01

    Human immunodeficiency virus vaccination and pre-exposure prophylaxis represent two different emerging preventive tools. Google Trends was used to assess the public interest toward these tools in terms of digital activities. Worldwide web searches concerning the human immunodeficiency virus vaccine represented 0.34 percent, 0.03 percent, and 46.97 percent of human immunodeficiency virus, acquired immune deficiency syndrome, and human immunodeficiency virus/acquired immune deficiency syndrome treatment-related Google Trends queries, respectively. Concerning temporal trends, digital activities were shown to increase from 0 percent as of 1 January 2004 percent to 46 percent as of 8 October 2017 with two spikes observed in May and July 2012, coinciding with the US Food and Drug Administration approval. Bursts in search number and volume were recorded as human immunodeficiency virus vaccine trials emerged. This search topic has decreased in the past decade in parallel to the increase in Truvada-related topics. Concentrated searches were noticed among African countries with high human immunodeficiency virus/acquired immune deficiency syndrome prevalence. Stakeholders should take advantage of public interest especially in preventive medicine in high disease burden countries.

  2. Absence of MyD88 Signaling Induces Donor-Specific Kidney Allograft Tolerance

    PubMed Central

    Noordmans, Gerda A.; O’Brien, Maya R.; Ma, Jin; Zhao, Cathy Y.; Zhang, Geoff Y.; Kwan, Tony K.T.; Alexander, Stephen I.; Chadban, Steven J.

    2012-01-01

    Toll-like receptors (TLRs) play a fundamental role in innate immunity and provide a link between innate and adaptive responses to an allograft; however, whether the development of acute and chronic allograft rejection requires TLR signaling is unknown. Here, we studied TLR signaling in a fully MHC-mismatched, life-sustaining murine model of kidney allograft rejection. Mice deficient in the TLR adaptor protein MyD88 developed donor antigen-specific tolerance, which protected them from both acute and chronic allograft rejection and increased their survival after transplantation compared with wild-type controls. Administration of an anti-CD25 antibody to MyD88-deficient recipients depleted CD4+CD25+FoxP3+ cells and broke tolerance. In addition, defective development of Th17 immune responses to alloantigen both in vitro and in vivo occurred, resulting in an increased ratio of Tregs to Th17 effectors. Thus, MyD88 deficiency was associated with an altered balance of Tregs over Th17 cells, promoting tolerance instead of rejection. This study provides evidence that targeting innate immunity may be a clinically relevant strategy to facilitate transplantation tolerance. PMID:22878960

  3. A sandwich HIV p24 amperometric immunosensor based on a direct gold electroplating-modified electrode.

    PubMed

    Zheng, Lei; Jia, Liyong; Li, Bo; Situ, Bo; Liu, Qinlan; Wang, Qian; Gan, Ning

    2012-05-18

    Acquired immune deficiency syndrome (AIDS) is a severe communicable immune deficiency disease caused by the human immune deficiency virus (HIV). The analysis laboratory diagnosis of HIV infection is a crucial aspect of controlling AIDS. The p24 antigen, the HIV-1 capsid protein, is of considerable diagnostic interest because it is detectable several days earlier than host-generated HIV antibodies following HIV exposure. We present herein a new sandwich HIV p24 immunosensor based on directly electroplating an electrode surface with gold nanoparticles using chronoamperometry, which greatly increased the conductivity and reversibility of the electrode. Under optimum conditions, the electrochemical signal showed a linear relationship with the concentration of p24, ranging from 0.01 ng/mL to 100 ng/mL (R > 0.99), and the detection limit was 0.008 ng/mL. Compared with ELISA, this method increased the sensitivity by more than two orders of magnitude (the sensitivity of ELISA for p24 is about 1 ng/mL). This immunosensor may be broadly applied to clinical samples, being distinguished by its ease of use, mild reaction conditions, guaranteed reproducibility, and good anti-interference ability.

  4. Thymic pseudotumorous enlargement due to follicular hyperplasia in a human immunodeficiency virus sero-positive patient. Immunohistochemical and molecular biological study of viral infected cells.

    PubMed

    Prevot, S; Audouin, J; Andre-Bougaran, J; Griffais, R; Le Tourneau, A; Fournier, J G; Diebold, J

    1992-03-01

    An enlargement of the thymus suggesting a tumor was discovered in a 28-year-old man who had early-stage acquired immune deficiency syndrome. A biopsy was performed. The adipose involuted thymus, with persistence of many Hassall's corpuscles, was judged to be a large lymphoid follicular hyperplasia. This follicular hyperplasia was similar to that previously described for lymph nodes, spleen, and other lymphoid tissues at earlier stages of human immunodeficiency virus infection, before the development of acquired immune deficiency syndrome. Human immunodeficiency virus RNA and p24 human immunodeficiency virus protein were detected in the hyperplastic germinal centers (lymphocytes and follicular dendritic infected cells), and also in many cells that may have been either lymphocytes and/or epithelial cells in the interfollicular areas. The tissue was negative for Epstein-Barr virus DNA sequences, as determined by the polymerase chain reaction. These observations identify the first state of infection of the thymus in a human immune deficiency virus-infected adult, preceding the severe involution with lymphoid depletion observed in all fatal cases of acquired immunodeficiency syndrome in which the thymus has been analyzed.

  5. Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis

    PubMed Central

    Qian, Yongqiang; Tan, Dun-Xian; Reiter, Russel J.; Shi, Haitao

    2015-01-01

    Melatonin is an important secondary messenger in plant innate immunity against the bacterial pathogen Pseudomonas syringe pv. tomato (Pst) DC3000 in the salicylic acid (SA)- and nitric oxide (NO)-dependent pathway. However, the metabolic homeostasis in melatonin-mediated innate immunity is unknown. In this study, comparative metabolomic analysis found that the endogenous levels of both soluble sugars (fructose, glucose, melibose, sucrose, maltose, galatose, tagatofuranose and turanose) and glycerol were commonly increased after both melatonin treatment and Pst DC3000 infection in Arabidopsis. Further studies showed that exogenous pre-treatment with fructose, glucose, sucrose, or glycerol increased innate immunity against Pst DC3000 infection in wild type (Col-0) Arabidopsis plants, but largely alleviated their effects on the innate immunity in SA-deficient NahG plants and NO-deficient mutants. This indicated that SA and NO are also essential for sugars and glycerol-mediated disease resistance. Moreover, exogenous fructose, glucose, sucrose and glycerol pre-treatments remarkably increased endogenous NO level, but had no significant effect on the endogenous melatonin level. Taken together, this study highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in SA and NO-dependent pathway in Arabidopsis. PMID:26508076

  6. Oral and dental health status in patients with primary antibody deficiencies.

    PubMed

    Meighani, Ghasem; Aghamohammadi, Asghar; Javanbakht, Honarmand; Abolhassani, Hassan; Nikayin, Sina; Jafari, Seyed Mehryar; Ghandehari Motlagh, Mehdi; Shamshiri, Ahmad Reza; Rezaei, Nima

    2011-12-01

    Primary antibody deficiencies (PAD) are a group of immune system disorders, associated with decreased levels of secretory and protective immunoglobulins. Because of the important role of immunoglobulins in the protection of oral cavity, patients with PADs are more susceptible to dental caries or oral manifestations. This study was performed to investigate the oral and dental manifestations of PADs patients. In this study, 33 patients with PADs (21 common variable immunodeficiency, 8 X-linked agammaglobulinemia and 4 hyper IgM syndrome) and 66 controls were examined; the number of decayed, missed and filled teeth (DMFT) were investigated. Aphthous was the most frequent manifestation in PADs patients (38.7%), which was significantly 16.7% higher than the controls (p=0.03). The patients with PADs showed significantly higher presentation of other oral and dental manifestations, including herpes sores, candidiasis tonsillitis, gingivitis, calculus, enamel hypoplasia and other ulcerations. The mean DMFT scores were 6.15±3.6 and 1.93±0.4 in PADs patients and controls, respectively (p<0.001). Although the patients with common variable immunodeficiency had higher means of DMFT in comparison with other groups of PADs, this difference was not statistically significant. This study showed significantly higher frequency of oral and dental manifestations in the patients with PADs compared to controls. Therefore, regular examination of oral cavity could be suggested in this group of immunodeficient patients.

  7. Troubled Adolescents and HIV Infection.

    ERIC Educational Resources Information Center

    Woodruff, John O., Ed.; And Others

    This report on adolescents, Acquired Immune Deficiency Syndrome (AIDS), and Human Immune Virus (HIV) infection had its beginning in the Knowledge Development Workshop "Issues in the Prevention and Treatment of AIDS Among Adolescents with Serious Emotional Disturbance," held June 9-10, 1988 in the District of Columbia. These papers are included:…

  8. Selenium status alters the immune response and expulsion of adult Heligmosomodies bakeri in mice

    USDA-ARS?s Scientific Manuscript database

    Heligmosomoides bakeri is a nematode with parasitic development exclusively in the small intestine of infected mice that induces a potent STAT6-dependent Th2 immune response. We previously demonstrated that host protective expulsion of adult H. bakeri was delayed in selenium (Se) deficient mice. ...

  9. MAdCAM-1 expressing sacral lymph node in the lymphotoxin beta-deficient mouse provides a site for immune generation following vaginal herpes simplex virus-2 infection.

    PubMed

    Soderberg, Kelly A; Linehan, Melissa M; Ruddle, Nancy H; Iwasaki, Akiko

    2004-08-01

    The members of the lymphotoxin (LT) family of molecules play a critical role in lymphoid organogenesis. Whereas LT alpha-deficient mice lack all lymph nodes and Peyer's patches, mice deficient in LT beta retain mesenteric lymph nodes and cervical lymph nodes, suggesting that an LT beta-independent pathway exists for the generation of mucosal lymph nodes. In this study, we describe the presence of a lymph node in LT beta-deficient mice responsible for draining the genital mucosa. In the majority of LT beta-deficient mice, a lymph node was found near the iliac artery, slightly misplaced from the site of the sacral lymph node in wild-type mice. The sacral lymph node of the LT beta-deficient mice, as well as that of the wild-type mice, expressed the mucosal addressin cell adhesion molecule-1 similar to the mesenteric lymph node. Following intravaginal infection with HSV type 2, activated dendritic cells capable of stimulating a Th1 response were found in this sacral lymph node. Furthermore, normal HSV-2-specific IgG responses were generated in the LT beta-deficient mice following intravaginal HSV-2 infection even in the absence of the spleen. Therefore, an LT beta-independent pathway exists for the development of a lymph node associated with the genital mucosa, and such a lymph node serves to generate potent immune responses against viral challenge.

  10. Recombinant methionyl human leptin administration activates signal transducer and activator of transcription 3 signaling in peripheral blood mononuclear cells in vivo and regulates soluble tumor necrosis factor-alpha receptor levels in humans with relative leptin deficiency.

    PubMed

    Chan, Jean L; Moschos, Stergios J; Bullen, John; Heist, Kathleen; Li, Xian; Kim, Young-Bum; Kahn, Barbara B; Mantzoros, Christos S

    2005-03-01

    Studies of congenital complete leptin deficiency in animals and humans support a role for leptin in regulating immune function. Whether acquired relative leptin deficiency affects immunological parameters in healthy humans remains unknown. We thus used experimental models of relative leptin deficiency and recombinant methionyl human leptin (r-metHuLeptin) administration in humans to investigate whether r-metHuLeptin would activate signaling pathways in peripheral blood mononuclear cells (PBMCs) and whether acquired relative leptin deficiency and/or increasing circulating leptin levels into the physiologic range would change PBMC subpopulations and cytokines important in the T-helper cell and systemic immune responses. We found that r-metHuLeptin administration to healthy humans activates signal transducer and activator of transcription-3 signaling in PBMCs in vivo. Neither short-term leptin deficiency, induced by 3-d complete fasting, nor physiologic r-metHuLeptin replacement for the same period of time had a major effect on PBMC subpopulations or serum cytokines in healthy men. In contrast, normalizing serum leptin levels over 8 wk in lean women with relative leptin deficiency for 5.1 +/- 1.4 yr (mean +/- se) due to chronic energy deficit increased soluble TNFalpha receptor levels, indicating activation of the TNFalpha system. These findings suggest that relative leptin deficiency due to more long-term energy deprivation is associated with defects in immunological parameters that may be corrected with exogenous r-metHuLeptin administration. Further studies are warranted to assess the implications of acquired relative hypoleptinemia and/or r-metHuLeptin administration on the immunosuppression associated with energy- and leptin-deficient states in humans.

  11. Mommy, Daddy--What's AIDS?

    ERIC Educational Resources Information Center

    National Association of Pediatric Nurse Associates and Practitioners, Cherry Hill, NJ.

    This brochure is designed to help parents answer the questions that their children may ask them about Acquired Immune Deficiency Syndrome (AIDS) and the Human Immuno Deficiency Virus (HIV), the virus that causes AIDS. It provides basic information about AIDS and HIV, as well as sources for further information, such as the National AIDS Hotline. It…

  12. How We Manage Adenosine Deaminase-Deficient Severe Combined Immune Deficiency (ADA SCID).

    PubMed

    Kohn, Donald B; Gaspar, H Bobby

    2017-05-01

    Adenosine deaminase-deficient severe combined immune deficiency (ADA SCID) accounts for 10-15% of cases of human SCID. From what was once a uniformly fatal disease, the prognosis for infants with ADA SCID has improved greatly based on the development of multiple therapeutic options, coupled with more frequent early diagnosis due to implementation of newborn screening for SCID. We review the various treatment approaches for ADA SCID including allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen-matched sibling or family member or from a matched unrelated donor or a haplo-identical donor, autologous HSCT with gene correction of the hematopoietic stem cells (gene therapy-GT), and enzyme replacement therapy (ERT) with polyethylene glycol-conjugated adenosine deaminase. Based on growing evidence of safety and efficacy from GT, we propose a treatment algorithm for patients with ADA SCID that recommends HSCT from a matched family donor, when available, as a first choice, followed by GT as the next option, with allogeneic HSCT from an unrelated or haplo-identical donor or long-term ERT as other options.

  13. Cell-wall deficient L. monocytogenes L-forms feature abrogated pathogenicity

    PubMed Central

    Schnell, Barbara; Staubli, Titu; Harris, Nicola L.; Rogler, Gerhard; Kopf, Manfred; Loessner, Martin J.; Schuppler, Markus

    2014-01-01

    Stable L-forms are cell wall-deficient bacteria which are able to multiply and propagate indefinitely, despite the absence of a rigid peptidoglycan cell wall. We investigated whether L-forms of the intracellular pathogen L. monocytogenes possibly retain pathogenicity, and if they could trigger an innate immune response. While phagocytosis of L. monocytogenes L-forms by non-activated macrophages sometimes resulted in an unexpected persistence of the bacteria in the phagocytes, they were effectively eliminated by IFN-γ preactivated or bone marrow-derived macrophages (BMM). These findings were in line with the observed down-regulation of virulence factors in the cell-wall deficient L. monocytogenes. Absence of Interferon-β (IFN-β) triggering indicated inability of L-forms to escape from the phagosome into the cytosol. Moreover, abrogated cytokine response in MyD88-deficient dendritic cells (DC) challenged with L. monocytogenes L-forms suggested an exclusive TLR-dependent host response. Taken together, our data demonstrate a strong attenuation of Listeria monocytogenes L-form pathogenicity, due to diminished expression of virulence factors and innate immunity recognition, eventually resulting in elimination of L-form bacteria from phagocytes. PMID:24904838

  14. Increased autophagic sequestration in adaptor protein-3 deficient dendritic cells limits inflammasome activity and impairs antibacterial immunity

    PubMed Central

    Casson, Cierra N.; Lefkovith, Ariel J.

    2017-01-01

    Bacterial pathogens that compromise phagosomal membranes stimulate inflammasome assembly in the cytosol, but the molecular mechanisms by which membrane dynamics regulate inflammasome activity are poorly characterized. We show that in murine dendritic cells (DCs), the endosomal adaptor protein AP-3 –which optimizes toll-like receptor signaling from phagosomes–sustains inflammasome activation by particulate stimuli. AP-3 independently regulates inflammasome positioning and autophagy induction, together resulting in delayed inflammasome inactivation by autophagy in response to Salmonella Typhimurium (STm) and other particulate stimuli specifically in DCs. AP-3-deficient DCs, but not macrophages, hyposecrete IL-1β and IL-18 in response to particulate stimuli in vitro, but caspase-1 and IL-1β levels are restored by silencing autophagy. Concomitantly, AP-3-deficient mice exhibit higher mortality and produce less IL-1β, IL-18, and IL-17 than controls upon oral STm infection. Our data identify a novel link between phagocytosis, inflammasome activity and autophagy in DCs, potentially explaining impaired antibacterial immunity in AP-3-deficient patients. PMID:29253868

  15. Infectious complications of the primary immunodeficiencies.

    PubMed

    Stiehm, E R; Chin, T W; Haas, A; Peerless, A G

    1986-07-01

    The primary manifestation of the immunodeficiencies is undue susceptibility to infection. This means too many, too severe, too prolonged, too complicated and too unusual infections. Infections in immunodeficiency have a characteristic cause depending on the nature of the immune deficiency. Antibody deficiencies are associated with infections with gram-positive infections. Cellular immune deficiencies are associated with mycobacterial, protozoan, fungus, virus, and opportunistic bacterial infection. Phagocytic disorders are associated with staphylococcal, fungal, and gram-negative organisms. Complement disorders are associated by neisserial infections. Infections have also been implicated in the pathogenesis of some immunodeficiencies in some circumstances. These include human T lymphotropic virus type III (HTLV-III), rubella virus, cytomegalovirus, and Epstein-Barr virus. Several infectious syndromes in specific immunodeficiencies have been identified. Examples include enteric cytopathic human orphan (ECHO) virus encephalitis in agammaglobulinemia, and meningococcal meningitis in C6 deficiency. Infections can also be induced by live vaccines given in immunodeficiency (e.g., paralytic polio in agammaglobulinemia.) Unusual infectious syndromes will be illustrated including parainfluenza infection in severe combined and immunodeficiency, Legionella pneumonia in chronic granulomatous disease, and Cryptosporidium infection in hyper-IgM immunodeficiency.

  16. Deficiency of the Chemotactic Factor Inactivator in Human Sera with α1-Antitrypsin Deficiency

    PubMed Central

    Ward, Peter A.; Talamo, Richard C.

    1973-01-01

    As revealed by appropriate fractionation procedures, human serum deficient in α1-antitrypsin (α1-AT) is also deficient in the naturally occurring chemotactic factor inactivator. These serum donors had severe pulmonary emphysema. Serum from patients with clinically similar pulmonary disease, but with presence of α1-AT in the serum, showed no such deficiency of the chemotactic factor inactivator. When normal human serum and α1-AT-deficient human sera are chemotactically activated by incubation with immune precipitates, substantially more chemotactic activity is generated in α1-AT-deficient serum. These data indicate that in α1-AT-deficient serum there is an imbalance in the generation and control of chemotactic factors. It is suggested that the theory regarding development of pulmonary emphysema in patients lacking the α1-antitrypsin in their serum should be modified to take into account a deficiency of the chemotactic factor inactivator. PMID:4683887

  17. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID).

    PubMed

    Booth, Claire; Gaspar, H Bobby

    2009-01-01

    Adenosine deaminase deficiency (ADA) is a rare, inherited disorder of purine metabolism characterized by immunodeficiency, failure to thrive and metabolic abnormalities. A lack of the enzyme ADA allows accumulation of toxic metabolites causing defects of both cell mediated and humoral immunity leading to ADA severe combined immune deficiency (SCID), a condition that can be fatal in early infancy if left untreated. Hematopoietic stem cell transplant is curative but is dependent on a good donor match. Other therapeutic options include enzyme replacement therapy (ERT) with pegademase bovine (PEG-ADA) and more recently gene therapy. PEG-ADA has been used in over 150 patients worldwide and has allowed stabilization of patients awaiting more definitive treatment with hematopoietic stem cell transplant. It affords both metabolic detoxification and protective immune function with patients remaining clinically well, but immune reconstitution is often suboptimal and may not be long lived. We discuss the pharmacokinetics, immune reconstitution, effects on systemic disease and side effects of treatment with PEG-ADA. We also review the long-term outcome of patients receiving ERT and discuss the role of PEG-ADA in the management of infants and children with ADA-SCID, alongside other therapeutic options.

  18. Zinc as a Gatekeeper of Immune Function

    PubMed Central

    Wessels, Inga; Maywald, Martina; Rink, Lothar

    2017-01-01

    After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856

  19. Vitamin D, the immune system and asthma

    PubMed Central

    Lange, Nancy E; Litonjua, Augusto; Hawrylowicz, Catherine M; Weiss, Scott

    2010-01-01

    The effects of vitamin D on bone metabolism and calcium homeostasis have long been recognized. Emerging evidence has implicated vitamin D as a critical regulator of immunity, playing a role in both the innate and cell-mediated immune systems. Vitamin D deficiency has been found to be associated with several immune-mediated diseases, susceptibility to infection and cancer. Recently, there has been increasing interest in the possible link between vitamin D and asthma. Further elucidation of the role of vitamin D in lung development and immune system function may hold profound implications for the prevention and treatment of asthma. PMID:20161622

  20. CD38 exacerbates focal cytokine production, postischemic inflammation and brain injury after focal cerebral ischemia.

    PubMed

    Choe, Chi-un; Lardong, Kerstin; Gelderblom, Mathias; Ludewig, Peter; Leypoldt, Frank; Koch-Nolte, Friedrich; Gerloff, Christian; Magnus, Tim

    2011-01-01

    Converging evidence suggests that inflammatory processes significantly influence brain injury and clinical impairment in ischemic stroke. Although early studies suggested a key role of lymphocytes, recent data has emphasized the orchestrating function of innate immunity, i.e., macrophages and microglia. The bifunctional receptor and ectoenzyme CD38 synthesizes calcium-mobilizing second messengers (e.g., cyclic ADP-ribose), which have been shown to be necessary for activation and migration of myeloid immune cells. Therefore, we investigated the dynamics of CD38 in stroke and the impact of CD38-deficiency on cytokine production, inflammation and cerebral damage in a mouse model of cerebral ischemia-reperfusion. We show that the local expression of the chemokine MCP-1 was attenuated in CD38-deficient mice compared with wildtype mice after focal cerebral ischemia and reperfusion. In contrast, no significant induction of MCP-1 expression was observed in peripheral blood after 6 hours. Flow cytometry analysis revealed less infiltrating macrophages and lymphocytes in the ischemic hemisphere of CD38-deficient mice, whereas the amount of resident microglia was unaltered. An up-regulation of CD38 expression was observed in macrophages and CD8(+) cells after focal cerebral ischemia in wildtype mice, whereas CD38 expression was unchanged in microglia. Finally, we demonstrate that CD38-deficiency decreases the cerebral ischemic injury and the persistent neurological deficit after three days of reperfusion in this murine temporary middle cerebral artery occlusion (tMCAO) model. CD38 is differentially regulated following stroke and its deficiency attenuates the postischemic chemokine production, the immune cell infiltration and the cerebral injury after temporary ischemia and reperfusion. Therefore CD38 might prove a therapeutic target in ischemic stroke.

  1. Autoimmunity and glomerulonephritis in mice with targeted deletion of the serum amyloid P component gene: SAP deficiency or strain combination?

    PubMed Central

    Gillmore, Julian D; Hutchinson, Winston L; Herbert, Jeff; Bybee, Alison; Mitchell, Daniel A; Hasserjian, Robert P; Yamamura, Ken-Ichi; Suzuki, Misao; Sabin, Caroline A; Pepys, Mark B

    2004-01-01

    Human serum amyloid P component (SAP) binds avidly to DNA, chromatin and apoptotic cells in vitro and in vivo. 129\\Sv × C57BL\\6 mice with targeted deletion of the SAP gene spontaneously develop antinuclear autoantibodies and immune complex glomerulonephritis. SAP-deficient animals, created by backcrossing the 129\\Sv SAP gene deletion into pure line C57BL\\6 mice and studied here for the first time, also spontaneously developed broad spectrum antinuclear autoimmunity and proliferative immune complex glomerulonephritis but without proteinuria, renal failure, or increased morbidity or mortality. Mice hemizygous for the SAP gene deletion had an intermediate autoimmune phenotype. Injected apoptotic cells and isolated chromatin were more immunogenic in SAP–\\– mice than in wild-type mice. In contrast, SAP-deficient pure line 129\\Sv mice did not produce significant autoantibodies either spontaneously or when immunized with extrinsic chromatin or apoptotic cells, indicating that loss of tolerance is markedly strain dependent. However, SAP deficiency in C57BL\\6 mice only marginally affected plasma clearance of exogenous chromatin and had no effect on distribution of exogenous nucleosomes between the liver and kidneys, which were the only tissue sites of catabolism. Furthermore, transgenic expression of human SAP in the C57BL\\6 SAP knockout mice did not abrogate the autoimmune phenotype. This may reflect the different binding affinities of mouse and human SAP for nuclear autoantigens and\\or the heterologous nature of transgenic human SAP in the mouse. Alternatively, the autoimmunity may be independent of SAP deficiency and caused by expression of 129\\Sv chromosome 1 genes in the C57BL\\6 background. PMID:15147569

  2. Psychological distress, iron deficiency, active disease and female gender are independent risk factors for fatigue in patients with ulcerative colitis

    PubMed Central

    Jonefjäll, Börje; Simrén, Magnus; Lasson, Anders; Öhman, Lena; Strid, Hans

    2017-01-01

    Background Patients with ulcerative colitis often report fatigue. Objectives To investigate prevalence of and risk factors for fatigue in patients with ulcerative colitis with active disease and during deep remission. Methods In this cross-sectional study, disease activity was evaluated with endoscopy and calprotectin, and patients were classified as having active disease (n = 133) or being in deep remission (n = 155). Blood samples were analysed to assess anaemia, iron deficiency and systemic immune activity. Patients completed questionnaires to assess fatigue, psychological distress, gastrointestinal symptoms and quality of life. Results The prevalence of high fatigue (general fatigue ≥ 13, Multidimensional Fatigue Inventory) was 40% in the full study population. Among patients with high fatigue, female gender and iron deficiency were more prevalent, and these patients had more severe disease activity and reported higher levels of anxiety, depression and decreased quality of life compared with patients with no/mild fatigue. A logistic regression analysis identified probable psychiatric disorder (odds ratio (OR) (confidence interval) 6.1 (3.1–12.2)), iron deficiency (OR 2.5 (1.2–5.1)), active disease (OR 2.2 (1.2–3.9)) and female gender (OR 2.1 (1.1–3.7)) as independent risk factors for high fatigue. Similar results were found concerning psychological distress, gender and quality of life, but immune markers did not differ in patients in deep remission with high vs. no/mild fatigue. Conclusions Probable psychiatric disorder, iron deficiency, active disease and female gender are independent risk factors for high fatigue in patients with ulcerative colitis. Low-grade immune activity does not seem to be the cause of fatigue among patients in deep remission. PMID:29435325

  3. Deficiency of IL-18 Aggravates Esophageal Carcinoma Through Inhibiting IFN-γ Production by CD8+T Cells and NK Cells.

    PubMed

    Li, Jiantao; Qiu, Gang; Fang, Baoshuan; Dai, Xiaohui; Cai, Jianhui

    2018-03-01

    To investigate the potential role of interleukin-18 (IL-18) in immunomodulation during tumorigenesis of esophageal carcinoma and elucidate the underlying molecular mechanism, we employed IL-18 knockout mice for this purpose. Carcinogen 4-nitroquinoline 1-oxide (4NQO) was administrated in drinking water to induce occurrence of esophageal squamous cell carcinoma (ESCC). T cell activation as indicated by the surface CD molecules was analyzed with flow cytometry. The serous content of interferon-γ (IFN-γ) along with other cytokines was determined by inflammatory human cytokine cytometric bead array. The cytotoxicity assay was performed by co-culture of tumor cells with immune cells and relative cell viability was determined by lactate dehydrogenase (LDH) assay. Apoptotic cells were stained with Annexin-V/propidium iodide (PI) and analyzed by flow cytometry. Cell proliferation was measured with Cell Counting Kit-8 (CCK-8) assay. Our data demonstrated that deficiency of IL-18 promoted the progression and development of 4NQO-induced ESCC. Loss of IL-18 suppressed the activation of T cells in the esophagus. Deficiency of IL-18 inhibited the IFN-γ production by CD8 + T cells and natural killer (NK) cells. Absence of IL-18 inhibited the cytotoxicity of CD8 + T cells and NK cell in vitro. Moreover, deficiency of IL-18 promoted the apoptosis of CD8 + T cells and inhibited the proliferation of CD8 + T cells in vitro. Our data elucidated the immunomodulatory role of IL-18 during tumorigenesis of ESCC, whose deficiency compromised antitumor immunity and contributed to immune escape of esophageal carcinoma. Our results also indicated the therapeutic potential of exogenous IL-18 against ESCC, which warrants further investigations.

  4. Role of immune cells in animal models for inherited neuropathies: facts and visions.

    PubMed

    Mäurer, Mathias; Kobsar, Igor; Berghoff, Martin; Schmid, Christoph D; Carenini, Stefano; Martini, Rudolf

    2002-04-01

    Mice heterozygously deficient in the peripheral myelin adhesion molecule P0 (P0+/- mice) are models for some forms of Charcot-Marie-Tooth (CMT) neuropathies. In addition to the characteristic hallmarks of demyelination, elevated numbers of CD8-positive T-lymphocytes and F4/80-positive macrophages are striking features in the nerves of these mice. These immune cells increase in number with age and progress of demyelination, suggesting that they might be functionally related to myelin damage. In order to investigate the pathogenetic role of lymphocytes, the myelin mutants were cross-bred with recombination activating gene 1 (RAG-1)-deficient mice, which lack mature T- and B-lymphocytes. The immunodeficient myelin mutants showed a less severe myelin degeneration. The beneficial effect of lymphocyte-deficiency was reversible, since demyelination worsened in immunodeficient myelin-mutants when reconstituted with bone marrow from wild-type mice. Ultrastructural analysis revealed macrophages in close apposition to myelin and demyelinated axons. We therefore cross-bred the P0+/- mice with spontaneous osteopetrotic (op) mutants deficient in the macrophage colony-stimulating factor (M-CSF), hence displaying impaired macrophage activation. In the corresponding double mutants the numbers of macrophages were not elevated in the peripheral nerves, and the demyelinating phenotype was less severe than in the genuine P0+/- mice, demonstrating that macrophages are also functionally involved in the pathogenesis of genetically mediated demyelination. We also examined other models for inherited neuropathies for a possible involvement of immune cells. We chose mice deficient in the gap junction component connexin 32, a model for the X-linked form of CMT. Similar to P0-deficient mice, T-lymphocytes and macrophages were elevated and macrophages showed a close apposition to degenerating myelin. We conclude that the involvement of T-lymphocytes and macrophages is a common pathogenetic feature in various forms of slowly progressive inherited neuropathies.

  5. Generation of immunodeficient rats with Rag1 and Il2rg gene deletions and human tissue grafting models.

    PubMed

    Ménoret, Séverine; Ouisse, Laure-Hélène; Tesson, Laurent; Delbos, Frédéric; Garnier, Delphine; Remy, Séverine; Usal, Claire; Concordet, Jean-Paul; Giovannangeli, Carine; Chenouard, Vanessa; Brusselle, Lucas; Merieau, Emmanuel; Nerrière-Daguin, Véronique; Duteille, Franck; Bellier-Waast, Frédérique; Fraichard, Alexandre; Nguyen, Tuan H; Anegon, Ignacio

    2018-04-24

    Immunodeficient mice are invaluable tools to analyze the long-term effects of potentially immunogenic molecules in the absence of adaptive immune responses. Nevertheless, there are models and experimental situations that would beneficiate of larger immunodeficient recipients. Rats are ideally suited to perform experiments in which larger size is needed and are still a small animal model suitable for rodent facilities. Additionally, rats reproduce certain human diseases better than mice, such as ankylosing spondylitis and Duchenne disease and these disease models would greatly benefit of immunodeficient rats to test different immunogenic treatments. We describe the generation of Il2rg-deficient rats and their crossing with previously described Rag1-deficient rats to generate double-mutant RRG animals. As compared to Rag1-deficient rats, Il2rg-deficient rats were more immunodeficient since partially lacked not only T and B cells but also NK cells. RRG animals showed a more profound immunossuppressed phenotype since they displayed undetectable levels of T, B and NK cells. Similarly, all immunoglobulin isotypes in sera were decreased in Rag1 or Il2rg-deficient rats and undetectable in RRG animals. Rag1 or Il2rg-deficient rats rejected allogeneic skin transplants and human tumors whereas RRG animals not only accepted allogeneic rat skin but also xenogeneic human tumors, skin and hepatocytes. Immune humanization of RRG animals was unsuccessful. Thus, immunodeficient RRG animals are useful recipients for long term studies in which immune responses could be an obstacle, including tissue humanization of different tissues.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  6. alpha(4)beta(7) independent pathway for CD8(+) T cell-mediated intestinal immunity to rotavirus.

    PubMed

    Kuklin, N A; Rott, L; Darling, J; Campbell, J J; Franco, M; Feng, N; Müller, W; Wagner, N; Altman, J; Butcher, E C; Greenberg, H B

    2000-12-01

    Rotavirus (RV), which replicates exclusively in cells of the small intestine, is the most important cause of severe diarrhea in young children worldwide. Using a mouse model, we show that expression of the intestinal homing integrin alpha(4)ss(7) is not essential for CD8(+) T cells to migrate to the intestine or provide immunity to RV. Mice deficient in ss7 expression (ss7(-/-)) and unable to express alpha(4)ss(7) integrin were found to clear RV as quickly as wild-type (wt) animals. Depletion of CD8(+) T cells in ss7(-/-) animals prolonged viral shedding, and transfer of immune ss7(-/-) CD8(+) T cells into chronically infected Rag-2-deficient mice resolved RV infection as efficiently as wt CD8(+) T cells. Paradoxically, alpha(4)ss(7)(hi) memory CD8(+) T cells purified from wt mice that had been orally immunized cleared RV more efficiently than alpha(4)ss(7)(low) CD8(+) T cells. We explained this apparent contradiction by demonstrating that expression of alpha(4)ss(7) on effector CD8(+) T cells depends upon the site of initial antigen exposure: oral immunization generates RV-specific CD8(+) T cells primarily of an alpha(4)ss(7)(hi) phenotype, but subcutaneous immunization yields both alpha(4)ss(7)(hi) and alpha(4)ss(7)(low) immune CD8(+) T cells with anti-RV effector capabilities. Thus, alpha(4)ss(7) facilitates normal intestinal immune trafficking to the gut, but it is not required for effective CD8(+) T cell immunity.

  7. Nutritionally Mediated Programming of the Developing Immune System12

    PubMed Central

    Palmer, Amanda C.

    2011-01-01

    A growing body of evidence highlights the importance of a mother’s nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a “layered” expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease. PMID:22332080

  8. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley fever vaccine in mice.

    PubMed

    Warimwe, George M; Lorenzo, Gema; Lopez-Gil, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew G; Spencer, Alexandra J; Collins, Katharine A; Dicks, Matthew D J; Milicic, Anita; Lall, Amar; Furze, Julie; Turner, Alison V; Hill, Adrian V S; Brun, Alejandro; Gilbert, Sarah C

    2013-12-05

    Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.

  9. Dietary choline deficiency and excess induced intestinal inflammation and alteration of intestinal tight junction protein transcription potentially by modulating NF-κB, STAT and p38 MAPK signaling molecules in juvenile Jian carp.

    PubMed

    Wu, Pei; Jiang, Wei-Dan; Jiang, Jun; Zhao, Juan; Liu, Yang; Zhang, Yong-An; Zhou, Xiao-Qiu; Feng, Lin

    2016-11-01

    This study investigated the effects of choline on intestinal mucosal immune and the possible mechanisms in fish by feeding juvenile Jian carp (Cyprinus carpio var. Jian) with graded levels of dietary choline (165-1820 mg/kg diet) for 65 days. The results firstly showed that choline deficiency induced inflammatory infiltration in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) of fish. Meanwhile, compared with the optimal choline group, choline deficiency decreased the activities of lysozyme and acid phosphatase, contents of complement 3 and IgM in the intestine, downregulated the mRNA levels of antimicrobial peptides (liver-expressed antimicrobial peptide (LEAP) 2A and defensin-3 in the PI and MI, LEAP-2B and hepcidin in the PI, MI and DI), anti-inflammatory cytokines (interleukin (IL) 10 and transforming growth factor β2 in the PI, MI and DI), and signaling molecule IκB in the PI, MI and DI; while upregulated the mRNA levels of pro-inflammatory cytokines (IL-6a and tumor necrosis factor α in the MI and DI, interferon γ2b in the PI and MI, IL-1β and IL-6b in the PI, MI and DI), and signaling molecules (Toll-like receptor 4 in the MI, myeloid differentiation primary response 88 in the PI and MI, Janus kinase 3 and tyrosine kinase 2 in the MI and DI, nuclear factor kappa B (NF-κB), signal transducers and activators of transcription (STAT) 4 and STAT5 in the PI, MI and DI) of juvenile Jian carp, further indicating that choline deficiency caused inflammation and immunity depression in the intestine of fish. But choline deficiency decreased the PI IL-6a mRNA level, and increased the DI LEAP-2A and defensin-3 mRNA levels with unknown reasons. Furthermore, dietary choline deficiency downregulated mRNA levels of tight junction (TJ) proteins (claudin 3c in the PI and MI, claudin 7, claudin 11 and occludin in the PI, MI and DI) and signaling molecule mitogen-activated protein kinases p38 in the PI, MI and DI of juvenile Jian carp, whereas upregulated the mRNA levels of claudin 3b in the MI and DI, and claudin 3c in the DI. Moreover, the excessive choline exhibited negative effects on intestinal immunity and TJ proteins that were similar to the choline deficiency. In summary, dietary choline deficiency or excess caused the depression of intestinal mucosal immune by inducing inflammation and dysfunction of the intestinal physical barrier, and regulating related signaling molecules of fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Dietary vitamin D3 deficiency exacerbates sinonasal inflammation and alters local 25(OH)D3 metabolism.

    PubMed

    Mulligan, Jennifer K; Pasquini, Whitney N; Carroll, William W; Williamson, Tucker; Reaves, Nicholas; Patel, Kunal J; Mappus, Elliott; Schlosser, Rodney J; Atkinson, Carl

    2017-01-01

    Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) have been shown to be vitamin D3 (VD3) deficient, which is associated with more severe disease and increased polyp size. To gain mechanistic insights into these observational studies, we examined the impact of VD3 deficiency on inflammation and VD3 metabolism in an Aspergillus fumigatus (Af) mouse model of chronic rhinosinusitis (Af-CRS). Balb/c mice were fed control or VD3 deficient diet for 4 weeks. Mice were then sensitized with intraperitoneal Af, and one week later given Af intranasally every three days for four weeks while being maintained on control or VD3 deficient diet. Airway function, sinonasal immune cell infiltrate and sinonasal VD3 metabolism profiles were then examined. Mice with VD3 deficiency had increased Penh and sRaw values as compared to controls as well as exacerbated changes in sRaw when coupled with Af-CRS. As compared to controls, VD3 deficient and Af-CRS mice had reduced sinonasal 1α-hydroxylase and the active VD3 metabolite, 1,25(OH)2D3. Differential analysis of nasal lavage samples showed that VD3 deficiency alone and in combination with Af-CRS profoundly upregulated eosinophil, neutrophil and lymphocyte numbers. VD3 deficiency exacerbated increases in monocyte-derived dendritic cell (DC) associated with Af-CRS. Conversely, T-regulatory cells were decreased in both Af-CRS mice and VD3 deficient mice, though coupling VD3 deficiency with Af-CRS did not exacerbate CD4 or T-regulatory cells numbers. Lastly, VD3 deficiency had a modifying or exacerbating impact on nasal lavage levels of IFN-γ, IL-6, IL-10 and TNF-α, but had no impact on IL-17A. VD3 deficiency causes changes in sinonasal immunity, which in many ways mirrors the changes observed in Af-CRS mice, while selectively exacerbating inflammation. Furthermore, both VD3 deficiency and Af-CRS were associated with altered sinonasal VD3 metabolism causing reductions in local levels of the active VD3 metabolite, 1,25(OH)2D3, even with adequate circulating levels.

  11. Corticotropin-releasing hormone regulates IL-6 expression during inflammation

    PubMed Central

    Venihaki, Maria; Dikkes, Pieter; Carrigan, Allison; Karalis, Katia P.

    2001-01-01

    Stimulation of the hypothalamic-pituitary-adrenal (HPA) axis by proinflammatory cytokines results in increased release of glucocorticoid that restrains further development of the inflammatory process. IL-6 has been suggested to stimulate the HPA axis during immune activation independent of the input of hypothalamic corticotropin-releasing hormone (CRH). We used the corticotropin-releasing hormone–deficient (Crh+/+) mouse to elucidate the effect of CRH deficiency on IL-6 expression and IL-6–induced HPA axis activation during turpentine-induced inflammation. We demonstrate that during inflammation CRH is required for a normal adrenocorticotropin hormone (ACTH) increase but not for adrenal corticosterone rise. The paradoxical increase of plasma IL-6 associated with CRH deficiency suggests that IL-6 release during inflammation is CRH-dependent. We also demonstrate that adrenal IL-6 expression is CRH-dependent, as its basal and inflammation-induced expression is blocked by CRH deficiency. Our findings suggest that during inflammation, IL-6 most likely compensates for the effects of CRH deficiency on food intake. Finally, we confirm that the HPA axis response is defective in Crh+/+/IL-6+/+ mice. These findings, along with the regulation of IL-6 by CRH, support the importance of the interaction between the immune system and the HPA axis in the pathophysiology of inflammatory diseases. PMID:11602623

  12. Leptin Selectively Augments Thymopoiesis in Leptin Deficiency and Lipopolysaccharide-Induced Thymic Atrophy1

    PubMed Central

    Hick, Ryan W.; Gruver, Amanda L.; Ventevogel, Melissa S.; Haynes, Barton F.; Sempowski, Gregory D.

    2007-01-01

    The thymus is a lymphoid organ that selects T cells for release to the peripheral immune system. Unfortunately, thymopoiesis is highly susceptible to damage by physiologic stressors and can contribute to immune deficiencies that occur in a variety of clinical settings. No treatment is currently available to protect the thymus from stress-induced involution. Leptin-deficient (ob/ob) mice have severe thymic atrophy and this finding suggests that this hormone is required for normal thymopoiesis. In this study, the ability of leptin to promote thymopoiesis in wild-type C57BL/6 and BALB/c mice, as well as in leptin-deficient (ob/ob) and endotoxin-stressed (Escherichia coli LPS) mice, was determined. Leptin administration induced weight loss and stimulated thymopoiesis in ob/ob mice, but did not stimulate thymopoiesis in wild-type C57BL/6 nor BALB/c mice. In endotoxin-stressed mice, however, leptin prevented LPS-induced thymus weight loss and stimulated TCRα gene rearrangement. Coadministration of leptin with LPS blunted endotoxin-induced systemic corticosterone response and production of proinflammatory cytokines. Thus, leptin has a selective thymostimulatory role in settings of leptin deficiency and endotoxin administration, and may be useful for protecting the thymus from damage and augmenting T cell reconstitution in these clinical states. PMID:16785512

  13. Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant.

    PubMed

    Bielinska, Anna U; Makidon, Paul E; Janczak, Katarzyna W; Blanco, Luz P; Swanson, Benjamin; Smith, Douglas M; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F; Baker, James R

    2014-03-15

    Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1- and Th-17-balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell-mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses.

  14. Studying the Impact of Spaceflight Environment on Immune Functions Using New Molecular Diagnostics System

    NASA Astrophysics Data System (ADS)

    Cohen, Luchino

    Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.

  15. Dual RNA-seq reveals no plastic transcriptional response of the coccidian parasite Eimeria falciformis to host immune defenses.

    PubMed

    Ehret, Totta; Spork, Simone; Dieterich, Christoph; Lucius, Richard; Heitlinger, Emanuel

    2017-09-05

    Parasites can either respond to differences in immune defenses that exist between individual hosts plastically or, alternatively, follow a genetically canalized ("hard wired") program of infection. Assuming that large-scale functional plasticity would be discernible in the parasite transcriptome we have performed a dual RNA-seq study of the lifecycle of Eimeria falciformis using infected mice with different immune status as models for coccidian infections. We compared parasite and host transcriptomes (dual transcriptome) between naïve and challenge infected mice, as well as between immune competent and immune deficient ones. Mice with different immune competence show transcriptional differences as well as differences in parasite reproduction (oocyst shedding). Broad gene categories represented by differently abundant host genes indicate enrichments for immune reaction and tissue repair functions. More specifically, TGF-beta, EGF, TNF and IL-1 and IL-6 are examples of functional annotations represented differently depending on host immune status. Much in contrast, parasite transcriptomes were neither different between Coccidia isolated from immune competent and immune deficient mice, nor between those harvested from naïve and challenge infected mice. Instead, parasite transcriptomes have distinct profiles early and late in infection, characterized largely by biosynthesis or motility associated functional gene groups, respectively. Extracellular sporozoite and oocyst stages showed distinct transcriptional profiles and sporozoite transcriptomes were found enriched for species specific genes and likely pathogenicity factors. We propose that the niche and host-specific parasite E. falciformis uses a genetically canalized program of infection. This program is likely fixed in an evolutionary process rather than employing phenotypic plasticity to interact with its host. This in turn might limit the potential of the parasite to adapt to new host species or niches, forcing it to coevolve with its host.

  16. Dectin-2 Is a C-Type Lectin Receptor that Recognizes Pneumocystis and Participates in Innate Immune Responses.

    PubMed

    Kottom, Theodore J; Hebrink, Deanne M; Jenson, Paige E; Marsolek, Paige L; Wüthrich, Marcel; Wang, Huafeng; Klein, Bruce; Yamasaki, Sho; Limper, Andrew H

    2018-02-01

    Pneumocystis is an important fungal pathogen that causes life-threatening pneumonia in patients with AIDS and malignancy. Lung fungal pathogens are recognized by C-type lectin receptors (CLRs), which bind specific ligands and stimulate innate immune responses. The CLR Dectin-1 was previously shown to mediate immune responses to Pneumocystis spp. For this reason, we investigated a potential role for Dectin-2. Rats with Pneumocystis pneumonia (PCP) exhibited elevated Dectin-2 mRNA levels. Soluble Dectin-2 carbohydrate-recognition domain fusion protein showed binding to intact Pneumocystis carinii (Pc) and to native Pneumocystis major surface glycoprotein/glycoprotein A (Msg/gpA). RAW macrophage cells expressing V5-tagged Dectin-2 displayed enhanced binding to Pc and increased protein tyrosine phosphorylation. Furthermore, the binding of Pc to Dectin-2 resulted in Fc receptor-γ-mediated intracellular signaling. Alveolar macrophages from Dectin-2-deficient mice (Dectin-2 -/- ) showed significant decreases in phospho-Syk activation after challenge with Pc cell wall components. Stimulation of Dectin-2 -/- alveolar macrophages with Pc components showed significant decreases in the proinflammatory cytokines IL-6 and TNF-α. Finally, during infection with Pneumocystis murina, Dectin-2 -/- mice displayed downregulated mRNA expression profiles of other CLRs implicated in fungal immunity. Although Dectin-2 -/- alveolar macrophages had reduced proinflammatory cytokine release in vitro, Dectin-2 -/- deficiency did not reduce the overall resistance of these mice in the PCP model, and organism burdens were statistically similar in the long-term immunocompromised and short-term immunocompetent PCP models. These results suggest that Dectin-2 participates in the initial innate immune signaling response to Pneumocystis, but its deficiency does not impair resistance to the organism.

  17. Influence of phthiocerol dimycocerosate on CD4(+) T cell priming and persistence during Mycobacterium tuberculosis infection.

    PubMed

    Pinto, Rachel; Nambiar, Jonathan K; Leotta, Lisa; Counoupas, Claudio; Britton, Warwick J; Triccas, James A

    2016-07-01

    The characterisation of mycobacterial factors that influence or modulate the host immune response may aid the development of more efficacious TB vaccines. We have previously reported that Mycobacterium tuberculosis deficient in export of Phthiocerol Dimycocerosates (DIM) (MT103(ΔdrrC)) is more attenuated than wild type M. tuberculosis and provides sustained protective immunity compared to the existing BCG vaccine. Here we sought to define the correlates of immunity associated with DIM deficiency by assessing the impact of MT103(ΔdrrC) delivery on antigen presenting cell (APC) function and the generation of CD4(+) T cell antigen-specific immunity. MT103(ΔdrrC) was a potent activator of bone marrow derived dendritic cells, inducing significantly greater expression of CD86 and IL-12p40 compared to BCG or the MT103 parental strain. This translated to an increased ability to initiate early in vivo priming of antigen-specific CD4(+) T cells compared to BCG with enhanced release of IFN-γ and TNF upon antigen-restimulation. The heightened immunity induced by MT103(ΔdrrC) correlated with greater persistence within the spleen compared to BCG, however both MT103(ΔdrrC) and BCG were undetectable in the lung at 70 days post-vaccination. In immunodeficient RAG (-/-) mice, MT103(ΔdrrC) was less virulent than the parental MT103 strain, yet MT103(ΔdrrC) infected mice succumbed more rapidly compared to BCG-infected animals. These results suggest that DIM translocation plays a role in APC stimulation and CD4(+) T cell activation during M. tuberculosis infection and highlights the potential of DIM-deficient strains as novel TB vaccine candidates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice

    PubMed Central

    Chowdhury, Sumaiya; Polak, Natasa

    2017-01-01

    Fibroblast activation protein alpha (FAP) is a unique dual peptidase of the S9B serine protease family, being capable of both dipeptidyl peptidase and endopeptidase activities. FAP is expressed at low level in healthy adult organs including the pancreas, cervix, uterus, submaxillary gland and the skin, and highly upregulated in embryogenesis, chronic inflammation and tissue remodelling. It is also expressed by cancer-associated stromal fibroblasts in more than 90% of epithelial tumours. FAP has enzymatic and non-enzymatic functions in the growth, immunosuppression, invasion and cell signalling of tumour cells. FAP deficient mice are fertile and viable with no gross abnormality, but little data exist on the role of FAP in the immune system. FAP is upregulated in association with microbial stimulation and chronic inflammation, but its function in infection remains unknown. We showed that major populations of immune cells including CD4+ and CD8+ T cells, B cells, dendritic cells and neutrophils are generated and maintained normally in FAP knockout mice. Upon intranasal challenge with influenza virus, FAP mRNA was increased in the lungs and lung-draining lymph nodes. Nonetheless, FAP deficient mice showed similar pathologic kinetics to wildtype controls, and were capable of supporting normal anti-influenza T and B cell responses. There was no evidence of compensatory upregulation of other DPP4 family members in influenza-infected FAP-deficient mice. FAP appears to be dispensable in anti-influenza adaptive immunity. PMID:28158223

  19. Schizogony and gametogony of the vaccine, oocyst-deficient, strain T-263 of Toxoplasma gondii

    USDA-ARS?s Scientific Manuscript database

    Oocysts are important stage for the spread of Toxoplasma gondii because they are environmentally resistant. Among all hosts of T. gondii, only felids can excrete oocysts. Cats that have excreted T. gondii oocysts after primary infection become immune to re-excretion of oocysts, and this immunity app...

  20. Oral Human Immunoglobulin for Children with Autism and Gastrointestinal Dysfunction: A Prospective, Open-Label Study

    ERIC Educational Resources Information Center

    Schneider, Cindy K.; Melmed, Raun D.; Barstow, Leon E.; Enriquez, F. Javier; Ranger-Moore, James; Ostrem, James A.

    2006-01-01

    Immunoglobulin secretion onto mucosal surfaces is a major component of the mucosal immune system. We hypothesized that chronic gastrointestinal (GI) disturbances associated with autistic disorder (AD) may be due to an underlying deficiency in mucosal immunity, and that orally administered immunoglobulin would be effective in alleviating chronic GI…

  1. AIDS: Education's New Dilemma.

    ERIC Educational Resources Information Center

    Freeland, D. Kay; Faber, Charles F.

    The acquired immune deficiency syndrome (AIDS) is an incurable, fatal disease that is caused by a virus that eventually destroys the body's immune system. While AIDS is contagious, the risk of contracting AIDS through casual contact is said to be negligible. A review of the court cases involving students with AIDS reveals that the precedent has…

  2. Malnutrition: Modulator of Immune Responses in Tuberculosis

    PubMed Central

    Chandrasekaran, Padmapriyadarsini; Saravanan, Natarajan; Bethunaickan, Ramalingam; Tripathy, Srikanth

    2017-01-01

    Nutrition plays a major role in the management of both acute and chronic diseases, in terms of body’s response to the pathogenic organism. An array of nutrients like macro- and micro-nutrients, vitamins, etc., are associated with boosting the host’s immune responses against intracellular pathogens including mycobacterium tuberculosis (M.tb). These nutrients have an immunomodulatory effects in controlling the infection and inflammation process and nutritional deficiency of any form, i.e., malnutrition may lead to nutritionally acquired immunodeficiency syndrome, which greatly increases an individual’s susceptibility to progression of infection to disease. This narrative review looks at the various mechanisms by which nutrition or its deficiency leads to impaired cell mediated and humoral immune responses, which in turn affects the ability of an individual to fight M.tb infection or disease. There is very little evidence in the literature that any specific food on its own or a specific quantity can alter the course of TB disease or be effective in the treatment of malnutrition. Further clinical trials or studies will be needed to recommend and to better understand the link between malnutrition, tuberculosis, and impaired immunity. PMID:29093710

  3. The Chemokine Receptor CXCR6 Is Required for the Maintenance of Liver Memory CD8+ T Cells Specific for Infectious Pathogens

    PubMed Central

    Tse, Sze-Wah; Radtke, Andrea J.; Espinosa, Diego A.; Cockburn, Ian A.; Zavala, Fidel

    2014-01-01

    It is well established that immunization with attenuated malaria sporozoites induces CD8+ T cells that eliminate parasite-infected hepatocytes. Liver memory CD8+ T cells induced by immunization with parasites undergo a unique differentiation program and have enhanced expression of CXCR6. Following immunization with malaria parasites, CXCR6-deficient memory CD8+ T cells recovered from the liver display altered cell-surface expression markers as compared to their wild-type counterparts, but they exhibit normal cytokine secretion and expression of cytotoxic mediators on a per-cell basis. Most importantly, CXCR6-deficient CD8+ T cells migrate to the liver normally after immunization with Plasmodium sporozoites or vaccinia virus, but a few weeks later their numbers severely decrease in this organ, losing their capacity to inhibit malaria parasite development in the liver. These studies are the first to show that CXCR6 is critical for the development and maintenance of protective memory CD8+ T cells in the liver. PMID:24823625

  4. The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors.

    PubMed

    Thevenot, Paul T; Sierra, Rosa A; Raber, Patrick L; Al-Khami, Amir A; Trillo-Tinoco, Jimena; Zarreii, Parisa; Ochoa, Augusto C; Cui, Yan; Del Valle, Luis; Rodriguez, Paulo C

    2014-09-18

    Adaptation of malignant cells to the hostile milieu present in tumors is an important determinant of their survival and growth. However, the interaction between tumor-linked stress and antitumor immunity remains poorly characterized. Here, we show the critical role of the cellular stress sensor C/EBP-homologous protein (Chop) in the accumulation and immune inhibitory activity of tumor-infiltrating myeloid-derived suppressor cells (MDSCs). MDSCs lacking Chop had decreased immune-regulatory functions and showed the ability to prime T cell function and induce antitumor responses. Chop expression in MDSCs was induced by tumor-linked reactive oxygen and nitrogen species and regulated by the activating-transcription factor-4. Chop-deficient MDSCs displayed reduced signaling through CCAAT/enhancer-binding protein-β, leading to a decreased production of interleukin-6 (IL-6) and low expression of phospho-STAT3. IL-6 overexpression restored immune-suppressive activity of Chop-deficient MDSCs. These findings suggest the role of Chop in tumor-induced tolerance and the therapeutic potential of targeting Chop in MDSCs for cancer immunotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Complement Activation in Inflammatory Skin Diseases

    PubMed Central

    Giang, Jenny; Seelen, Marc A. J.; van Doorn, Martijn B. A.; Rissmann, Robert; Prens, Errol P.; Damman, Jeffrey

    2018-01-01

    The complement system is a fundamental part of the innate immune system, playing a crucial role in host defense against various pathogens, such as bacteria, viruses, and fungi. Activation of complement results in production of several molecules mediating chemotaxis, opsonization, and mast cell degranulation, which can contribute to the elimination of pathogenic organisms and inflammation. Furthermore, the complement system also has regulating properties in inflammatory and immune responses. Complement activity in diseases is rather complex and may involve both aberrant expression of complement and genetic deficiencies of complement components or regulators. The skin represents an active immune organ with complex interactions between cellular components and various mediators. Complement involvement has been associated with several skin diseases, such as psoriasis, lupus erythematosus, cutaneous vasculitis, urticaria, and bullous dermatoses. Several triggers including auto-antibodies and micro-organisms can activate complement, while on the other hand complement deficiencies can contribute to impaired immune complex clearance, leading to disease. This review provides an overview of the role of complement in inflammatory skin diseases and discusses complement factors as potential new targets for therapeutic intervention. PMID:29713318

  6. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis.

    PubMed

    Chu, Van Trung; Beller, Alexander; Rausch, Sebastian; Strandmark, Julia; Zänker, Michael; Arbach, Olga; Kruglov, Andrey; Berek, Claudia

    2014-04-17

    Although in normal lamina propria (LP) large numbers of eosinophils are present, little is known about their role in mucosal immunity at steady state. Here we show that eosinophils are needed to maintain immune homeostasis in gut-associated tissues. By using eosinophil-deficient ΔdblGATA-1 and PHIL mice or an eosinophil-specific depletion model, we found a reduction in immunoglobulin A(+) (IgA(+)) plasma cell numbers and in secreted IgA. Eosinophil-deficient mice also showed defects in the intestinal mucous shield and alterations in microbiota composition in the gut lumen. In addition, TGF-β-dependent events including class switching to IgA in Peyer's patches (PP), the formation of CD103(+) T cells including Foxp3(+) regulatory (Treg), and also CD103(+) dendritic cells were disturbed. In vitro cultures showed that eosinophils produce factors that promote T-independent IgA class switching. Our findings show that eosinophils are important players for immune homeostasis in gut-associated tissues and add to data suggesting that eosinophils can promote tissue integrity. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. The Relationship of Sexual Responsibility to Knowledge of Acquired Immuno-Deficiency Syndrome among High School Students.

    ERIC Educational Resources Information Center

    Andre, Thomas; Bormann, Lynda

    Because there is no cure or vaccine for Acquired Immune Deficiency Syndrome (AIDS), many authorities have recommended education as the primary means for controlling the spread of the disease. However, knowledge about AIDS represents a necessary, but not sufficient, condition for reduction of risky behavior. Although hetereosexual high school and…

  8. Umbilical Cord Blood Transplantation From Unrelated Donors

    ClinicalTrials.gov

    2018-02-17

    Acute Leukemia; Immune Deficiency Disorder; Congenital Hematological Disorder; Metabolism Disorder; Aplastic Anemia; Myelodysplastic Syndromes; Chronic Leukemia; Lymphoma; Multiple Myeloma; Solid Tumor

  9. Historical Perspective on the Current Renaissance for Hematopoietic Stem Cell Gene Therapy.

    PubMed

    Kohn, Donald B

    2017-10-01

    Gene therapy using hematopoietic stem cells (HSC) has developed over the past 3 decades, with progressive improvements in the efficacy and safety. Autologous transplantation of HSC modified with murine gammaretroviral vectors first showed clinical benefits for patients with several primary immune deficiencies, but some of these patients suffered complications from vector-related genotoxicity. Lentiviral vectors have been used recently for gene addition to HSC and have yielded clinical benefits for primary immune deficiencies, metabolic diseases, and hemoglobinopathies, without vector-related complications. Gene editing using site-specific endonucleases is emerging as a promising technology for gene therapy and is moving into clinical trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Vitamin D in atopic dermatitis, asthma and allergic diseases.

    PubMed

    Searing, Daniel A; Leung, Donald Y M

    2010-08-01

    This review examines the scientific evidence behind the hypothesis that vitamin D plays a role in the pathogenesis of allergic diseases, along with a focus on emerging data regarding vitamin D and atopic dermatitis. Elucidated molecular interactions of vitamin D with components of the immune system and clinical data regarding vitamin D deficiency and atopic diseases are discussed. The rationale behind the sunshine hypothesis, laboratory evidence supporting links between vitamin D deficiency and allergic diseases, the clinical evidence for and against vitamin D playing a role in allergic diseases, and the emerging evidence regarding the potential use of vitamin D to augment the innate immune response in atopic dermatitis are reviewed. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    PubMed Central

    Gunasekaran, Manojkumar; Chatterjee, Prodyot K.; Shih, Andrew; Imperato, Gavin H.; Addorisio, Meghan; Kumar, Gopal; Lee, Annette; Graf, John F.; Meyer, Dan; Marino, Michael; Puleo, Christopher; Ashe, Jeffrey; Cox, Maureen A.; Mak, Tak W.; Bouton, Chad; Sherry, Barbara; Diamond, Betty; Andersson, Ulf; Coleman, Thomas R.; Metz, Christine N.; Tracey, Kevin J.; Chavan, Sangeeta S.

    2018-01-01

    The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses. PMID:29755449

  12. Requirement for Innate Immunity and CD90+ NK1.1− Lymphocytes to Treat Established Melanoma with Chemo-Immunotherapy

    PubMed Central

    Moskalenko, Marina; Pan, Michael; Fu, Yichun; de Moll, Ellen H.; Hashimoto, Daigo; Mortha, Arthur; Leboeuf, Marylene; Jayaraman, Padmini; Bernardo, Sebastian; Sikora, Andrew G.; Wolchok, Jedd; Bhardwaj, Nina; Merad, Miriam; Saenger, Yvonne

    2015-01-01

    We sought to define cellular immune mechanisms of synergy between tumor-antigen–targeted monoclonal antibodies and chemotherapy. Established B16 melanoma in mice was treated with cytotoxic doses of cyclophosphamide in combination with an antibody targeting tyrosinase-related protein 1 (αTRP1), a native melanoma differentiation antigen. We find that Fcγ receptors are required for efficacy, showing that antitumor activity of combination therapy is immune mediated. Rag1−/− mice deficient in adaptive immunity are able to clear tumors, and thus innate immunity is sufficient for efficacy. Furthermore, previously treated wild-type mice are not significantly protected against tumor reinduction, as compared with mice inoculated with irradiated B16 alone, consistent with a primarily innate immune mechanism of action of chemo-immunotherapy. In contrast, mice deficient in both classical natural killer (NK) lymphocytes and nonclassical innate lymphocytes (ILC) due to deletion of the IL2 receptor common gamma chain IL2γc−/−) are refractory to chemo-immunotherapy. Classical NK lymphocytes are not critical for treatment, as depletion of NK1.1+ cells does not impair antitumor effect. Depletion of CD90+NK1.1− lymphocytes, however, both diminishes therapeutic benefit and decreases accumulation of macrophages within the tumor. Tumor clearance during combination chemo-immunotherapy with monoclonal antibodies against native antigen is mediated by the innate immune system. We highlight a novel potential role for CD90+NK1.1− ILCs in chemo-immunotherapy. PMID:25600438

  13. Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants*

    PubMed Central

    Jacobson, Lee S.; Lima, Heriberto; Goldberg, Michael F.; Gocheva, Vasilena; Tsiperson, Vladislav; Sutterwala, Fayyaz S.; Joyce, Johanna A.; Gapp, Bianca V.; Blomen, Vincent A.; Chandran, Kartik; Brummelkamp, Thijn R.; Diaz-Griffero, Felipe; Brojatsch, Jürgen

    2013-01-01

    Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response. PMID:23297415

  14. Immune malfunction in the GPR39 zinc receptor of knockout mice: Its relationship to depressive disorder.

    PubMed

    Młyniec, Katarzyna; Trojan, Ewa; Ślusarczyk, Joanna; Głombik, Katarzyna; Basta-Kaim, Agnieszka; Budziszewska, Bogusława; Skrzeszewski, Jakub; Siwek, Agata; Holst, Birgitte; Nowak, Gabriel

    2016-02-15

    Depression is a serious psychiatric disorder affecting not only the monaminergic, glutamatergic, and GABAergic neurosystems, but also the immune system. Patients suffering from depression show disturbance in the immune parameters as well as increased susceptibility to infections. Zinc is well known as an anti-inflammatory agent, and its link with depression has been proved, zinc deficiency causing depression- and anxiety-like behavior with immune malfunction. It has been discovered that trace-element zinc acts as a neurotransmitter in the central nervous system via zinc receptor GPR39. In this study we investigated whether GPR39 knockout would cause depressive-like behavior as measured by the forced swim test, and whether these changes would coexist with immune malfunction. In GPR39 knockout mice versus a wild-type control we found: i) depressive-like behavior; ii) significantly reduced thymus weight; (iii) reduced cell viability of splenocytes; iv) reduced proliferative response of splenocytes; and v) increased IL-6 production of splenocytes after ConA stimulation and decreased IL-1b and IL-6 release after LPS stimulation. The results indicate depressive-like behavior in GPR39 KO animals with an immune response similar to that observed in depressive disorder. Here for the first time we show immunological changes under GPR39-deficient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Epstein-Barr Virus DNA Enhances Diptericin Expression and Increases Hemocyte Numbers in Drosophila melanogaster via the Immune Deficiency Pathway.

    PubMed

    Sherri, Nour; Salloum, Noor; Mouawad, Carine; Haidar-Ahmad, Nathaline; Shirinian, Margret; Rahal, Elias A

    2018-01-01

    Infection with the Epstein-Barr virus (EBV) is associated with several malignancies and autoimmune diseases in humans. The following EBV infection and establishment of latency, recurrences frequently occur resulting in potential viral DNA shedding, which may then trigger the activation of immune pathways. We have previously demonstrated that levels of the pro-inflammatory cytokine IL-17, which is associated with several autoimmune diseases, are increased in response to EBV DNA injection in mice. Whether other pro-inflammatory pathways are induced in EBV DNA pathobiology remains to be investigated. The complexity of mammalian immune systems presents a challenge to studying differential activities of their intricate immune pathways in response to a particular immune stimulus. In this study, we used Drosophila melanogaster to identify innate humoral and cellular immune pathways that are activated in response to EBV DNA. Injection of wild-type adult flies with EBV DNA induced the immune deficiency (IMD) pathway resulting in enhanced expression of the antimicrobial peptide diptericin. Furthermore, EBV DNA increased the number of hemocytes in flies. Conditional silencing of the IMD pathway decreased diptericin expression in addition to curbing of hemocyte proliferation in response to challenge with EBV DNA. Comparatively, upon injecting mice with EBV DNA, we detected enhanced expression of tumor necrosis factor-α (TNFα); this enhancement is rather comparable to IMD pathway activation in flies. This study hence indicates that D. melanogaster could possibly be utilized to identify immune mediators that may also play a role in the response to EBV DNA in higher systems.

  16. Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae.

    PubMed

    Knox, Benjamin P; Deng, Qing; Rood, Mary; Eickhoff, Jens C; Keller, Nancy P; Huttenlocher, Anna

    2014-10-01

    Aspergillus fumigatus is the most common filamentous fungal pathogen of immunocompromised hosts, resulting in invasive aspergillosis (IA) and high mortality rates. Innate immunity is known to be the predominant host defense against A. fumigatus; however, innate phagocyte responses to A. fumigatus in an intact host and their contributions to host survival remain unclear. Here, we describe a larval zebrafish A. fumigatus infection model amenable to real-time imaging of host-fungal interactions in live animals. Following infection with A. fumigatus, innate phagocyte populations exhibit clear preferences for different fungal morphologies: macrophages rapidly phagocytose conidia and form aggregates around hyphae, while the neutrophil response is dependent upon the presence of hyphae. Depletion of macrophages rendered host larvae susceptible to invasive disease. Moreover, a zebrafish model of human leukocyte adhesion deficiency with impaired neutrophil function also resulted in invasive disease and impaired host survival. In contrast, macrophage-deficient but not neutrophil-deficient larvae exhibited attenuated disease following challenge with a less virulent (ΔlaeA) strain of A. fumigatus, which has defects in secondary metabolite production. Taking these results together, we have established a new vertebrate model for studying innate immune responses to A. fumigatus that reveals distinct roles for neutrophils and macrophages in mediating host defense against IA. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Contribution of Progranulin to Protective Lung Immunity During Bacterial Pneumonia.

    PubMed

    Zou, Shan; Luo, Qin; Song, Zhixin; Zhang, Liping; Xia, Yun; Xu, Huajian; Xiang, Yu; Yin, Yibing; Cao, Ju

    2017-06-01

    Progranulin (PGRN) is an important immunomodulatory factor in a variety of inflammatory diseases. However, its role in pulmonary immunity against bacterial infection remains unknown. Pneumonia was induced in PGRN-deficient and normal wild-type mice using Pseudomonas aeruginosa or Staphylococcus aureus, and we assessed the effects of PGRN on survival, bacterial burden, cytokine and chemokine production, and pulmonary leukocyte recruitment after bacterial pneumonia. Patients with community-acquired pneumonia displayed elevated PGRN levels. Likewise, mice with Gram-negative and Gram-positive pneumonia had increased PGRN production in the lung and circulation. Progranulin deficiency led to increased bacterial growth and dissemination accompanied by enhanced lung injury and mortality in bacterial pneumonia, which was associated with impaired recruitment of macrophages and neutrophils in the lung. The reduced number of pulmonary macrophages and neutrophils observed in PGRN-deficient mice was related to a reduction of CCL2 and CXCL1 in the lungs after bacterial pneumonia. Importantly, therapeutic administration of PGRN improved mortality in severe bacterial pneumonia. This study supports a novel role for PGRN in pulmonary immunity and suggests that treatment with PGRN may be a viable therapy for bacterial pneumonia. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  18. MFGE8 inhibits inflammasome-induced IL-1β production and limits postischemic cerebral injury.

    PubMed

    Deroide, Nicolas; Li, Xuan; Lerouet, Dominique; Van Vré, Emily; Baker, Lauren; Harrison, James; Poittevin, Marine; Masters, Leanne; Nih, Lina; Margaill, Isabelle; Iwakura, Yoichiro; Ryffel, Bernhard; Pocard, Marc; Tedgui, Alain; Kubis, Nathalie; Mallat, Ziad

    2013-03-01

    Milk fat globule-EGF 8 (MFGE8) plays important, nonredundant roles in several biological processes, including apoptotic cell clearance, angiogenesis, and adaptive immunity. Several recent studies have reported a potential role for MFGE8 in regulation of the innate immune response; however, the precise mechanisms underlying this role are poorly understood. Here, we show that MFGE8 is an endogenous inhibitor of inflammasome-induced IL-1β production. MFGE8 inhibited necrotic cell-induced and ATP-dependent IL-1β production by macrophages through mediation of integrin β(3) and P2X7 receptor interactions in primed cells. Itgb3 deficiency in macrophages abrogated the inhibitory effect of MFGE8 on ATP-induced IL-1β production. In a setting of postischemic cerebral injury in mice, MFGE8 deficiency was associated with enhanced IL-1β production and larger infarct size; the latter was abolished after treatment with IL-1 receptor antagonist. MFGE8 supplementation significantly dampened caspase-1 activation and IL-1β production and reduced infarct size in wild-type mice, but did not limit cerebral necrosis in Il1b-, Itgb3-, or P2rx7-deficient animals. In conclusion, we demonstrated that MFGE8 regulates innate immunity through inhibition of inflammasome-induced IL-1β production.

  19. Leptin Deficiency: Clinical Implications and Opportunities for Therapeutic Interventions

    PubMed Central

    Blüher, Susan; Shah, Sunali; Mantzoros, Christos S.

    2017-01-01

    The discovery of leptin has significantly advanced our understanding of the metabolic importance of adipose tissue and has revealed that both leptin deficiency and leptin excess are associated with severe metabolic, endocrine, and immunological consequences. We and others have shown that a prominent role of leptin in humans is to mediate the neuroendocrine adaptation to energy deprivation. Humans with genetic mutations in the leptin and leptin receptor genes have deregulated food intake and energy expenditure leading to a morbidly obese phenotype and a disrupted regulation in neuroendocrine and immune function and in glucose and fat metabolism. Observational and interventional studies in humans with (complete) congenital leptin deficiency caused by mutations in the leptin gene or with relative leptin deficiency as seen in states of negative energy balance such as lipoatrophy, anorexia nervosa, or exercise-induced hypothalamic and neuroendocrine dysfunction have contributed to the elucidation of the pathophysiological role of leptin in these conditions and of the clinical significance of leptin administration in these subjects. More specifically, interventional studies have demonstrated that several neuroendocrine, metabolic, or immune disturbances in these states could be restored by leptin administration. Leptin replacement therapy is currently available through a compassionate use program for congenital complete leptin deficiency and under an expanded access program to subjects with leptin deficiency associated with congenital or acquired lipoatrophy. In addition, leptin remains a potentially forthcoming treatment for several other states of energy deprivation including anorexia nervosa or milder forms of hypothalamic amenorrhea pending appropriate clinical trials. PMID:19730134

  20. Leptin in humans: lessons from translational research.

    PubMed

    Blüher, Susann; Mantzoros, Christos S

    2009-03-01

    Leptin has emerged over the past decade as a key hormone in not only the regulation of food intake and energy expenditure but also in the regulation of neuroendocrine and immune function as well as the modulation of glucose and fat metabolism as shown by numerous observational and interventional studies in humans with (complete) congenital or relative leptin deficiency. These results have led to proof-of-concept studies that have investigated the effect of leptin administration in subjects with complete (congenital) leptin deficiency caused by mutations in the leptin gene as well as in humans with relative leptin deficiency, including states of lipoatrophy or negative energy balance and neuroendocrine dysfunction, as for instance seen with hypothalamic amenorrhea in states of exercise-induced weight loss. In those conditions, most neuroendocrine, metabolic, or immune disturbances can be restored by leptin administration. Leptin replacement therapy is thus a promising approach in several disease states, including congenital complete leptin deficiency, states of energy deprivation, including anorexia nervosa or milder forms of hypothalamic amenorrhea, as well as syndromes of insulin resistance seen in conditions such as congenital or acquired lipodystrophy. In contrast, states of energy excess such as garden-variety obesity are associated with hyperleptinemia that reflects either leptin tolerance or leptin resistance. For those conditions, development of leptin sensitizers is currently a focus of pharmaceutical research. This article summarizes our current understanding of leptin's role in human physiology and its potential role as a novel therapeutic option in human disease states associated with a new hormone deficiency, ie, leptin deficiency.

  1. Leptin deficiency: clinical implications and opportunities for therapeutic interventions.

    PubMed

    Blüher, Susan; Shah, Sunali; Mantzoros, Christos S

    2009-10-01

    The discovery of leptin has significantly advanced our understanding of the metabolic importance of adipose tissue and has revealed that both leptin deficiency and leptin excess are associated with severe metabolic, endocrine, and immunological consequences. We and others have shown that a prominent role of leptin in humans is to mediate the neuroendocrine adaptation to energy deprivation. Humans with genetic mutations in the leptin and leptin receptor genes have deregulated food intake and energy expenditure leading to a morbidly obese phenotype and a disrupted regulation in neuroendocrine and immune function and in glucose and fat metabolism. Observational and interventional studies in humans with (complete) congenital leptin deficiency caused by mutations in the leptin gene or with relative leptin deficiency as seen in states of negative energy balance such as lipoatrophy, anorexia nervosa, or exercise-induced hypothalamic and neuroendocrine dysfunction have contributed to the elucidation of the pathophysiological role of leptin in these conditions and of the clinical significance of leptin administration in these subjects. More specifically, interventional studies have demonstrated that several neuroendocrine, metabolic, or immune disturbances in these states could be restored by leptin administration. Leptin replacement therapy is currently available through a compassionate use program for congenital complete leptin deficiency and under an expanded access program to subjects with leptin deficiency associated with congenital or acquired lipoatrophy. In addition, leptin remains a potentially forthcoming treatment for several other states of energy deprivation including anorexia nervosa or milder forms of hypothalamic amenorrhea pending appropriate clinical trials.

  2. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis

    PubMed Central

    de Diego, Rebeca Pérez; Sancho-Shimizu, Vanessa; Lorenzo, Lazaro; Puel, Anne; Plancoulaine, Sabine; Picard, Capucine; Herman, Melina; Cardon, Annabelle; Durandy, Anne; Bustamante, Jacinta; Vallabhapurapu, Sivakumar; Bravo, Jerónimo; Warnatz, Klaus; Chaix, Yves; Cascarrigny, Françoise; Lebon, Pierre; Rozenberg, Flore; Karin, Michael; Tardieu, Marc; Al-Muhsen, Saleh; Jouanguy, Emmanuelle; Zhang, Shen-Ying; Abel, Laurent; Casanova, Jean-Laurent

    2010-01-01

    Tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) functions downstream of multiple receptors that induce interferon-α (IFN-α), IFN–β and IFN-λ production, including Toll-like receptor 3 (TLR3), which is deficient in some patients with herpes simplex virus-1 encephalitis (HSE). Mice lacking TRAF3 die in the neonatal period, preventing direct investigation of the role of TRAF3 in immune responses and host defenses in vivo. Here we reported the autosomal dominant, human TRAF3 deficiency in a young adult with a history of HSE in childhood. The TRAF3 mutant allele was a loss-of-expression, loss-of-function, dominant-negative phenotype, and was associated with impaired, but not abolished TRAF3-dependent responses upon stimulation of both TNF receptors and receptors that induce IFN production. TRAF3 deficiency was associated with a clinical phenotype limited to HSE resulting from the impairment of TLR3-dependent induction of IFN. Thus, TLR3-mediated immunity against primary infection by HSV-1 in the central nervous system is critically dependent on TRAF3. Highlight sentence Autosomal dominant TRAF3 deficiency is a genetic etiology of herpes simplex encephalitis. Highlight sentence R118W TRAF3 allele is loss-of-function, loss-of-expression, and dominant-negative. Highlight sentence Human TRAF3 deficiency impairs the TLR3-dependent induction of anti-viral interferons. PMID:20832341

  3. Illusions of Immortality: The Confrontation of Adolescence and AIDS.

    ERIC Educational Resources Information Center

    New York State Dept. of Health, Albany.

    Acquired Immune Deficiency Syndrome (AIDS) is a potent and a present danger for teenagers, casting a dark shadow over their lives now and in the future. A small, but significant, number of teenagers will develop Human Immune Virus (HIV)-related illness before they turn 20; a far greater number will become infected with the virus during…

  4. Daily cholecalciferol supplementation during pregnancy alters markers of regulatory immunity, inflammation, and clinical outcomes in a randomized controlled trial

    USDA-ARS?s Scientific Manuscript database

    Vitamin D deficiency is widespread in pregnancy and has been associated with adverse health conditions for mothers and infants. Vitamin D supplementation in pregnancy may support maintenance of pregnancy by its effects on adaptive and innate immunity. We assessed the effects of vitamin D supplement...

  5. Iraqi parents' views of barriers to childhood immunization.

    PubMed

    Al-Lela, O Q B; Bahari, M B; Al-Abbassi, M G; Salih, M R M; Basher, A Y

    2013-03-01

    Deficiencies in knowledge about immunization among parents often leads to poor utake or errors in immunization dosage and timing. The aims of this study were to determine Iraqi parents' views of barriers to immunization and beliefs about ways to promote immunization. A questionnaire survey was carried out among 528 Iraqi parents with children who had incomplete immunization status. The main barriers to immunization agreed by the parents were lack of vaccine availability (51.5% of parents) and parents' lack of education (42.4%), while 88.4% of parents thought that lack of funding was not an important barrier. More than 60% of the parents suggested promoting childhood immunization via the media, and 77.5% thought that an increase in funding would not remove barriers to childhood immunization. Better vaccine availability in public health clinics and improving parents' literacy might enhance immunization uptake in Iraq.

  6. Vitamin D in Lupus

    PubMed Central

    Kamen, Diane L.

    2014-01-01

    Vitamin D is an essential steroid hormone, with well-established effects on mineral metabolism, skeletal health, and recently established effects on the cardiovascular and immune systems. Vitamin D deficiency is highly prevalent and evidence is mounting that it contributes to the morbidity and mortality of multiple chronic diseases, including systemic lupus erythematosus (SLE). Patients with SLE avoid the sun because of photosensitive rashes and potential for disease flare, so adequate oral supplementation is critical. This review will describe the prevalence of vitamin D deficiency in patients with SLE, identify risk factors for deficiency, describe the consequences of deficiency, and review current vitamin D recommendations for patients with rheumatic diseases. PMID:20969555

  7. CCR7 Maintains Nonresolving Lymph Node and Adipose Inflammation in Obesity

    PubMed Central

    Hellmann, Jason; Sansbury, Brian E.; Holden, Candice R.; Tang, Yunan; Wong, Blenda; Wysoczynski, Marcin; Rodriguez, Jorge; Bhatnagar, Aruni; Hill, Bradford G.

    2016-01-01

    Accumulation of immune cells in adipose tissue promotes insulin resistance in obesity. Although innate and adaptive immune cells contribute to adipose inflammation, the processes that sustain these interactions are incompletely understood. Here we show that obesity promotes the accumulation of CD11c+ adipose tissue immune cells that express C-C chemokine receptor 7 (CCR7) in mice and humans, and that CCR7 contributes to chronic inflammation and insulin resistance. We identified that CCR7+ macrophages and dendritic cells accumulate in adipose tissue in close proximity to lymph nodes (LNs) (i.e., perinodal) and visceral adipose. Consistent with the role of CCR7 in regulating the migration of immune cells to LNs, obesity promoted the accumulation of CD11c+ cells in LNs, which was prevented by global or hematopoietic deficiency of Ccr7. Obese Ccr7−/− mice had reduced accumulation of CD8+ T cells, B cells, and macrophages in adipose tissue, which was associated with reduced inflammatory signaling. This reduction in maladaptive inflammation translated to increased insulin signaling and improved glucose tolerance in obesity. Therapeutic administration of an anti-CCR7 antibody phenocopied the effects of genetic Ccr7 deficiency in mice with established obesity. These results suggest that CCR7 plays a causal role in maintaining innate and adaptive immunity in obesity. PMID:27207557

  8. Modulation of Immune Cell Functions by the E3 Ligase Cbl-b

    PubMed Central

    Lutz-Nicoladoni, Christina; Wolf, Dominik; Sopper, Sieghart

    2015-01-01

    Maintenance of immunological tolerance is a critical hallmark of the immune system. Several signaling checkpoints necessary to balance activating and inhibitory input to immune cells have been described so far, among which the E3 ligase Cbl-b appears to be a central player. Cbl-b is expressed in all leukocyte subsets and regulates several signaling pathways in T cells, NK cells, B cells, and different types of myeloid cells. In most cases, Cbl-b negatively regulates activation signals through antigen or pattern recognition receptors and co-stimulatory molecules. In line with this function, cblb-deficient immune cells display lower activation thresholds and cblb knockout mice spontaneously develop autoimmunity and are highly susceptible to experimental autoimmunity. Interestingly, genetic association studies link CBLB-polymorphisms with autoimmunity also in humans. Vice versa, the increased activation potential of cblb-deficient cells renders them more potent to fight against malignancies or infections. Accordingly, several reports have shown that cblb knockout mice reject tumors, which mainly depends on cytotoxic T and NK cells. Thus, targeting Cbl-b may be an interesting strategy to enhance anti-cancer immunity. In this review, we summarize the findings on the molecular function of Cbl-b in different cell types and illustrate the potential of Cbl-b as target for immunomodulatory therapies. PMID:25815272

  9. A Recombinant Adenovirus Expressing P12A and 3C Protein of the Type O Foot-and-Mouth Disease Virus Stimulates Systemic and Mucosal Immune Responses in Mice

    PubMed Central

    Gao, Peng

    2016-01-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of cloven-hoofed animals which causes severe economic losses. The replication-deficient, human adenovirus-vectored FMD vaccine has been proven effective against FMD. However, the role of T-cell-mediated antiviral responses and the mucosae-mediated antiviral responses induced by the adenovirus-vectored FMD vaccine was rarely examined. Here, the capsid protein precursor P1-2A and viral protease 3C of the type O FMDV were expressed in replicative-deficient human adenovirus type 5 vector. BALB/c mice immunized intramuscularly and intraperitoneally with recombinant adenovirus rAdv-P12A3C elicited higher FMDV-specific IgG antibodies, IFN-γ, and IL-4 cytokines than those in mice immunized with inactivated FMDV vaccine. Moreover, BALB/c mice immunized with recombinant adenovirus rAdv-P12A3C by oral and intraocular-nasal immunization induced high FMDV-specific IgA antibodies. These results show that the recombinant adenovirus rAdv-P12A3C could resist FMDV comprehensively. This study highlights the potential of rAdv-P12A3C to serve as a type O FMDV vaccine. PMID:27478836

  10. [How dangerous is the pill?].

    PubMed

    1975-09-20

    Neurologic complications of oral contraception in 3 women aged 36, 22, and 36, respectively, are reported. Neurologic symptomatology was diagnosed as myasthenia gravis pseudoparalytica, thrombosis of the right internal occipital artery, and multiple sclerosis. In 2 cases, neurologic symptoms disappeared after oral contraception was stopped. In all 3 cases immune deficiency symptoms were found. The possible relationship between immunologic deficiency syndromes and hormone status are discussed.

  11. Search for poliovirus carriers among people with primary immune deficiency diseases in the United States, Mexico, Brazil, and the United Kingdom.

    PubMed Central

    Halsey, Neal A.; Pinto, Jorge; Espinosa-Rosales, Francisco; Faure-Fontenla, María A.; da Silva, Edson; Khan, Aamir J.; Webster, A. D.; Minor, Philip; Dunn, Glynis; Asturias, Edwin; Hussain, Hamidah; Pallansch, Mark A.; Kew, Olen M.; Winkelstein, Jerry; Sutter, Roland

    2004-01-01

    OBJECTIVE: To estimate the rate of long-term poliovirus excretors in people known to have B-cell immune deficiency disorders. METHODS: An active search for chronic excretors was conducted among 306 persons known to have immunoglobulin G (IgG) deficiency in the United States, Mexico, Brazil, and the United Kingdom, and 40 people with IgA deficiency in the United States. Written informed consent or assent was obtained from the participants or their legal guardians, and the studies were formally approved. Stool samples were collected from participants and cultured for polioviruses. Calculation of the confidence interval for the proportion of participants with persistent poliovirus excretion was based on the binomial distribution. FINDINGS: No individuals with long-term excretion of polioviruses were identified. Most participants had received oral poliovirus vaccine (OPV) and almost all had been exposed to household contacts who had received OPV. Polioviruses of recent vaccine origin were transiently found in four individuals in Mexico and Brazil, where OPV is recommended for all children. CONCLUSION: Although chronic poliovirus excretion can occur in immunodeficient persons, it appears to be rare. PMID:15106294

  12. Vitamin D in inflammatory bowel disease: more than just a supplement.

    PubMed

    Gubatan, John; Moss, Alan C

    2018-05-11

    The aim of this review is to explore the protective role of vitamin D on the gastrointestinal tract, summarize the epidemiology of vitamin D deficiency in inflammatory bowel disease (IBD), and highlight recent studies examining the impact of low vitamin D and vitamin D supplementation on IBD clinical outcomes. Vitamin D protects the gut barrier by regulating tight junction proteins and inhibiting intestinal apoptosis. Vitamin D enhances innate immunity by inducing antimicrobial peptides and regulates adaptive immunity by promoting anti-inflammatory T cells and cytokines. Vitamin D may also alter the gut microbiota. The prevalence of vitamin D deficiency in IBD is 30-40%. Predictors of vitamin D deficiency in IBD include non-white ethnicity, IBD-related surgery, BMI more than 30, female sex, and pregnancy. Low vitamin D is associated with increased disease activity, inflammation, and clinical relapse. The effect of vitamin D supplementation on IBD clinical outcomes is inconclusive. Vitamin D plays a protective role on gut health. Vitamin D deficiency in IBD is prevalent and associated with poor outcomes. The benefits of vitamin D supplementation in IBD is unclear. Measuring novel vitamin D metabolites and vitamin D absorption in IBD patients may help guide future studies.

  13. Aspergillus fumigatus generates an enhanced Th2-biased immune response in mice with defective cystic fibrosis transmembrane conductance regulator.

    PubMed

    Allard, Jenna B; Poynter, Matthew E; Marr, Kieren A; Cohn, Lauren; Rincon, Mercedes; Whittaker, Laurie A

    2006-10-15

    Cystic fibrosis (CF) lung disease is characterized by persistent airway inflammation and airway infection that ultimately leads to respiratory failure. Aspergillus sp. are present in the airways of 20-40% of CF patients and are of unclear clinical significance. In this study, we demonstrate that CF transmembrane conductance regulator (CFTR)-deficient (CFTR knockout, Cftr(tm1Unc-)TgN(fatty acid-binding protein)CFTR) and mutant (DeltaF508) mice develop profound lung inflammation in response to Aspergillus fumigatus hyphal Ag exposure. CFTR-deficient mice also develop an enhanced Th2 inflammatory response to A. fumigatus, characterized by elevated IL-4 in the lung and IgE and IgG1 in serum. In contrast, CFTR deficiency does not promote a Th1 immune response. Furthermore, we demonstrate that CD4+ T cells from naive CFTR-deficient mice produce higher levels of IL-4 in response to TCR ligation than wild-type CD4+ T cells. The Th2 bias of CD4+ T cells in the absence of functional CFTR correlates with elevated nuclear levels of NFAT. Thus, CFTR is important to maintain the Th1/Th2 balance in CD4+ T cells.

  14. Hsp70 Regulates Immune Response in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Mansilla, M. José; Costa, Carme; Eixarch, Herena; Tepavcevic, Vanja; Castillo, Mireia; Martin, Roland; Lubetzki, Catherine; Aigrot, Marie-Stéphane; Montalban, Xavier; Espejo, Carmen

    2014-01-01

    Heat shock protein (Hsp)70 is one of the most important stress-inducible proteins. Intracellular Hsp70 not only mediates chaperone-cytoprotective functions but can also block multiple steps in the apoptosis pathway. In addition, Hsp70 is actively released into the extracellular milieu, thereby promoting innate and adaptive immune responses. Thus, Hsp70 may be a critical molecule in multiple sclerosis (MS) pathogenesis and a potential target in this disease due to its immunological and cytoprotective functions. To investigate the role of Hsp70 in MS pathogenesis, we examined its immune and cytoprotective roles using both in vitro and in vivo experimental procedures. We found that Hsp70.1-deficient mice were more resistant to developing experimental autoimmune encephalomyelitis (EAE) compared with their wild-type (WT) littermates, suggesting that Hsp70.1 plays a critical role in promoting an effective myelin oligodendrocyte glycoprotein (MOG)-specific T cell response. Conversely, Hsp70.1-deficient mice that developed EAE showed an increased level of autoreactive T cells to achieve the same production of cytokines compared with the WT mice. Although a neuroprotective role of HSP70 has been suggested, Hsp70.1-deficient mice that developed EAE did not exhibit increased demyelination compared with the control mice. Accordingly, Hsp70 deficiency did not influence the vulnerability to apoptosis of oligodendrocyte precursor cells (OPCs) in culture. Thus, the immunological role of Hsp70 may be relevant in EAE, and specific therapies down-regulating Hsp70 expression may be a promising approach to reduce the early autoimmune response in MS patients. PMID:25153885

  15. Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression.

    PubMed

    Amiel, Eyal; Lovewell, Rustin R; O'Toole, George A; Hogan, Deborah A; Berwin, Brent

    2010-07-01

    Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that causes severe opportunistic infections in immunocompromised individuals; in particular, severity of infection with P. aeruginosa positively correlates with poor prognosis in cystic fibrosis (CF) patients. Establishment of chronic infection by this pathogen is associated with downregulation of flagellar expression and of other genes that regulate P. aeruginosa motility. The current paradigm is that loss of flagellar expression enables immune evasion by the bacteria due to loss of engagement by phagocytic receptors that recognize flagellar components and loss of immune activation through flagellin-mediated Toll-like receptor (TLR) signaling. In this work, we employ bacterial and mammalian genetic approaches to demonstrate that loss of motility, not the loss of the flagellum per se, is the critical factor in the development of resistance to phagocytosis by P. aeruginosa. We demonstrate that isogenic P. aeruginosa mutants deficient in flagellar function, but retaining an intact flagellum, are highly resistant to phagocytosis by both murine and human phagocytic cells at levels comparable to those of flagellum-deficient mutants. Furthermore, we show that loss of MyD88 signaling in murine phagocytes does not recapitulate the phagocytic deficit observed for either flagellum-deficient or motility-deficient P. aeruginosa mutants. Our data demonstrate that loss of bacterial motility confers a dramatic resistance to phagocytosis that is independent of both flagellar expression and TLR signaling. These findings provide an explanation for the well-documented observation of nonmotility in clinical P. aeruginosa isolates and for how this phenotype confers upon the bacteria an advantage in the context of immune evasion.

  16. Selenium Status Alters the Immune Response and Expulsion of Adult Heligmosomoides bakeri Worms in Mice

    PubMed Central

    Cheung, Lumei; Beshah, Ethiopia; Shea-Donohue, Terez; Urban, Joseph F.

    2013-01-01

    Heligmosomoides bakeri is a nematode with parasitic development exclusively in the small intestine of infected mice that induces a potent STAT6-dependent Th2 immune response. We previously demonstrated that host protective expulsion of adult H. bakeri worms from a challenge infection was delayed in selenium (Se)-deficient mice. In order to explore mechanisms associated with the delayed expulsion, 3-week-old female BALB/c mice were placed on a torula yeast-based diet with or without 0.2 ppm Se, and after 5 weeks, they were inoculated with H. bakeri infective third-stage larvae (L3s). Two weeks after inoculation, the mice were treated with an anthelmintic and then rested, reinoculated with L3s, and evaluated at various times after reinoculation. Analysis of gene expression in parasite-induced cysts and surrounding tissue isolated from the intestine of infected mice showed that the local-tissue Th2 response was decreased in Se-deficient mice compared to that in Se-adequate mice. In addition, adult worms recovered from Se-deficient mice had higher ATP levels than worms from Se-adequate mice, indicating greater metabolic activity in the face of a suboptimal Se-dependent local immune response. Notably, the process of worm expulsion was restored within 2 to 4 days after feeding a Se-adequate diet to Se-deficient mice. Expulsion was associated with an increased local expression of Th2-associated genes in the small intestine, intestinal glutathione peroxidase activity, secreted Relm-β protein, anti-H. bakeri IgG1 production, and reduced worm fecundity and ATP-dependent metabolic activity. PMID:23649095

  17. Obligatory Requirement for Antibody in Recovery from a Primary Poxvirus Infection

    PubMed Central

    Chaudhri, Geeta; Panchanathan, Vijay; Bluethmann, Horst; Karupiah, Gunasegaran

    2006-01-01

    To understand the correlates of protective immunity against primary variola virus infection in humans, we have used the well-characterized mousepox model. This is an excellent surrogate small-animal model for smallpox in which the disease is caused by infection with the closely related orthopoxvirus, ectromelia virus. Similarities between the two infections include virus replication and transmission, aspects of pathology, and development of pock lesions. Previous studies using ectromelia virus have established critical roles for cytokines and effector functions of CD8 T cells in the control of acute stages of poxvirus infection. Here, we have used mice deficient in B cells to demonstrate that B-cell function is also obligatory for complete virus clearance and recovery of the host. In the absence of B cells, virus persists and the host succumbs to infection, despite the generation of CD8 T-cell responses. Intriguingly, transfer of naive B cells or ectromelia virus-immune serum to B-cell-deficient mice with established infection allowed these animals to clear virus and fully recover. In contrast, transfer of ectromelia virus-immune CD8 T cells was ineffective. Our data show that mice deficient in CD8 T-cell function die early in infection, whereas those deficient in B cells or antibody production die much later, indicating that B-cell function becomes critical after the effector phase of the CD8 T-cell response to infection subsides. Strikingly, our results show that antibody prevents virus from seeding the skin and forming pock lesions, which are important for virus transmission between hosts. PMID:16775322

  18. Cost-Effectiveness/Cost-Benefit Analysis of Newborn Screening for Severe Combined Immune Deficiency in Washington State.

    PubMed

    Ding, Yao; Thompson, John D; Kobrynski, Lisa; Ojodu, Jelili; Zarbalian, Guisou; Grosse, Scott D

    2016-05-01

    To evaluate the expected cost-effectiveness and net benefit of the recent implementation of newborn screening (NBS) for severe combined immunodeficiency (SCID) in Washington State. We constructed a decision analysis model to estimate the costs and benefits of NBS in an annual birth cohort of 86 600 infants based on projections of avoided infant deaths. Point estimates and ranges for input variables, including the birth prevalence of SCID, proportion detected asymptomatically without screening through family history, screening test characteristics, survival rates, and costs of screening, diagnosis, and treatment were derived from published estimates, expert opinion, and the Washington NBS program. We estimated treatment costs stratified by age of identification and SCID type (with or without adenosine deaminase deficiency). Economic benefit was estimated using values of $4.2 and $9.0 million per death averted. We performed sensitivity analyses to evaluate the influence of key variables on the incremental cost-effectiveness ratio (ICER) of net direct cost per life-year saved. Our model predicts an additional 1.19 newborn infants with SCID detected preclinically through screening, in addition to those who would have been detected early through family history, and 0.40 deaths averted annually. Our base-case model suggests an ICER of $35 311 per life-year saved, and a benefit-cost ratio of either 5.31 or 2.71. Sensitivity analyses found ICER values <$100 000 and positive net benefit for plausible assumptions on all variables. Our model suggests that NBS for SCID in Washington is likely to be cost-effective and to show positive net economic benefit. Published by Elsevier Inc.

  19. Riboflavin deprivation inhibits macrophage viability and activity - a study on the RAW 264.7 cell line.

    PubMed

    Mazur-Bialy, Agnieszka Irena; Buchala, Beata; Plytycz, Barbara

    2013-08-28

    Riboflavin, or vitamin B2, as a precursor of the coenzymes FAD and FMN, has an indirect influence on many metabolic processes and determines the proper functioning of several systems, including the immune system. In the human population, plasma riboflavin concentration varies from 3·1 nM (in a moderate deficiency, e.g. in pregnant women) to 10·4 nM (in healthy adults) and 300 nM (in cases of riboflavin supplementation). The purpose of the present study was to investigate the effects of riboflavin concentration on the activity and viability of macrophages, i.e. on one of the immunocompetent cell populations. The study was performed on the murine monocyte/macrophage RAW 264.7 cell line cultured in medium with various riboflavin concentrations (3·1, 10·4, 300 and 531 nM). The results show that riboflavin deprivation has negative effects on both the activity and viability of macrophages and reduces their ability to generate an immune response. Signs of riboflavin deficiency developed in RAW 264.7 cells within 4 d of culture in the medium with a low riboflavin concentration (3·1 nM). In particular, the low riboflavin content reduced the proliferation rate and enhanced apoptotic cell death connected with the release of lactate dehydrogenase. The riboflavin deprivation impaired cell adhesion, completely inhibited the respiratory burst and slightly impaired phagocytosis of the zymosan particles. In conclusion, macrophages are sensitive to riboflavin deficiency; thus, a low riboflavin intake in the diet may affect the immune system and may consequently decrease proper host immune defence.

  20. Effect of immune stress on body weight regulation is altered by ovariectomy in female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Kinouchi, Riyo; Gereltsetseg, Ganbat; Murakami, Masahiro; Nakazawa, Hiroshi; Fujisawa, Shinobu; Yamamoto, Satoshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2011-09-01

    It has been suggested that obesity and loss of ovarian function alter the inflammatory response to immune stress. Ovariectomized (OVX) rats, which are used as a model of human menopause, exhibit both hyperphagia-induced obesity and gonadal steroid deficiency. To evaluate the effects of ovariectomy on inflammatory responses, we compared the anorectic response to LPS in OVX rats and gonad intact female rats. As leptin and hypothalamic interleukin-1β (IL1β) play pivotal roles in the anorectic response to immune stress, these factors were also measured. It was found that the OVX rats exhibited an increased anorectic response to LPS compared with the sham-operated rats. The OVX rats showed higher serum leptin concentrations and a greater increase in hypothalamic IL1β mRNA expression after LPS injection. In addition, in order to determine whether gonadal steroid deficiency contributes to the changes in the inflammatory responses of OVX rats, we compared responses between OVX rats treated with gonadal steroids and untreated OVX rats. There were no differences in appetite, the serum leptin level, and hypothalamic IL1β mRNA expression between the two groups after LPS injection. These findings suggest that the loss of ovarian function increases the induction of leptin and hypothalamic IL1β synthesis and consequently increases the anorectic response under immune stress conditions. It is possible that these alterations are caused by OVX-induced obesity rather than the direct effects of gonadal steroid deficiency. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Lack of Toll-like receptor 2 results in higher mortality of bacterial meningitis by impaired host resistance.

    PubMed

    Böhland, Martin; Kress, Eugenia; Stope, Matthias B; Pufe, Thomas; Tauber, Simone C; Brandenburg, Lars-Ove

    2016-10-15

    Bacterial meningitis is - despite therapeutical progress during the last decades - still characterized by high mortality and severe permanent neurogical sequelae. The brain is protected from penetrating pathogens by both the blood-brain barrier and the innate immune system. Invading pathogens are recognized by so-called pattern recognition receptors including the Toll-like receptors (TLR) which are expressed by glial immune cells in the central nervous system. Among these, TLR2 is responsible for the detection of Gram-positive bacteria such as the meningitis-causing pathogen Streptococcus pneumoniae. Here, we used TLR2-deficient mice to investigate the effects on mortality, bacterial growth and inflammation in a mouse model of pneumococcal meningitis. Our results revealed a significantly increased mortality rate and higher bacterial burden in TLR2-deficient mice with pneumococcal meningitis. Furthermore, infected TLR2-deficient mice suffered from a significantly increased pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and Chemokine (C-C motif) ligand 2 (CCL2) or CCL3 chemokine expression and decreased expression of anti-inflammatory cytokines and antimicrobial peptides. In contrast, glial cell activation assessed by glial cell marker expression was comparable to wildtype mice. Taken together, the results suggest that TLR2 is essential for an efficient immune response against Streptococcus pneumoniae meningitis since lack of the receptor led to a worse outcome by higher mortality due to increased bacterial burden, weakened innate immune response and reduced expression of antimicrobial peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Gab3-deficient mice exhibit normal development and hematopoiesis and are immunocompetent.

    PubMed

    Seiffert, Martina; Custodio, Joseph M; Wolf, Ingrid; Harkey, Michael; Liu, Yan; Blattman, Joseph N; Greenberg, Philip D; Rohrschneider, Larry R

    2003-04-01

    Gab proteins are intracellular scaffolding and docking molecules involved in signaling pathways mediated by various growth factor, cytokine, or antigen receptors. Gab3 has been shown to act downstream of the macrophage colony-stimulating factor receptor, c-Fms, and to be important for macrophage differentiation. To analyze the physiological role of Gab3, we used homologous recombination to generate mice deficient in Gab3. Gab3(-/-) mice develop normally, are visually indistinguishable from their wild-type littermates, and are healthy and fertile. To obtain a detailed expression pattern of Gab3, we generated Gab3-specific monoclonal antibodies. Immunoblotting revealed a predominant expression of Gab3 in lymphocytes and bone marrow-derived macrophages. However, detailed analysis demonstrated that hematopoiesis in mice lacking Gab3 is not impaired and that macrophages develop in normal numbers and exhibit normal function. The lack of Gab3 expression during macrophage differentiation is not compensated for by increased levels of Gab1 or Gab2 mRNA. Furthermore, Gab3-deficient mice have no major immune deficiency in T- and B-lymphocyte responses to protein antigens or during viral infection. In addition, allergic responses in Gab3-deficient mice appeared to be normal. Together, these data demonstrate that loss of Gab3 does not result in detectable defects in normal mouse development, hematopoiesis, or immune system function.

  3. Influence of Th2 Cytokines on the Cornified Envelope, Tight Junction Proteins, and ß-Defensins in Filaggrin-Deficient Skin Equivalents.

    PubMed

    Hönzke, Stefan; Wallmeyer, Leonie; Ostrowski, Anja; Radbruch, Moritz; Mundhenk, Lars; Schäfer-Korting, Monika; Hedtrich, Sarah

    2016-03-01

    Atopic dermatitis is a chronic skin condition with complex etiology. It is characterized by skin barrier defects and T helper type 2 (Th2)-polarized inflammation. Although mutations in the filaggrin gene are known to be prominent genetic risk factors for the development of atopic dermatitis, the interdependency between these and an altered cytokine milieu is not fully understood. In this study, we evaluated the direct effects of filaggrin deficiency on the cornified envelope, tight junction proteins, and innate immune response, and report the effects of Th2 cytokines in normal and filaggrin-deficient skin equivalents. Supplementation with IL-4 and IL-13 led to distinct histologic changes and significantly increased skin surface pH, both of which were enhanced in filaggrin knockdown skin equivalents. We detected a compensatory up-regulation of involucrin and occludin in filaggrin-deficient skin that was dramatically disturbed when simultaneous inflammation occurred. Furthermore, we found that a lack of filaggrin triggered an up-regulation of human ?-defensin 2 via an unknown mechanism, which was abolished by Th2 cytokine supplementation. Taken together, these results indicate that defects in the epidermal barrier, skin permeability, and cutaneous innate immune response are not primarily linked to filaggrin deficiency but are rather secondarily induced by Th2 inflammation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Gender Affects Skin Wound Healing in Plasminogen Deficient Mice

    PubMed Central

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge; Hald, Andreas

    2013-01-01

    The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin thickness and composition. PMID:23527289

  5. Zinc Deficiency Augments Leptin Production and Exacerbates Macrophage Infiltration into Adipose Tissue in Mice Fed a High-Fat Diet123

    PubMed Central

    Liu, Ming-Jie; Bao, Shengying; Bolin, Eric R.; Burris, Dara L.; Xu, Xiaohua; Sun, Qinghua; Killilea, David W.; Shen, Qiwen; Ziouzenkova, Ouliana; Belury, Martha A.; Failla, Mark L.; Knoell, Daren L.

    2013-01-01

    Zinc (Zn) deficiency and obesity are global public health problems. Zn deficiency is associated with obesity and comorbid conditions that include insulin resistance and type 2 diabetes. However, the function of Zn in obesity remains unclear. Using a mouse model of combined high-fat and low-Zn intake (0.5–1.5 mg/kg), we investigated whether Zn deficiency exacerbates the extent of adiposity as well as perturbations in metabolic and immune function. C57BL/6 mice were randomly assigned to receive either a high-fat diet (HFD) or a control (C) diet for 6 wk, followed by further subdivision into 2 additional groups fed Zn-deficient diets (C-Zn, HFD-Zn), along with a C diet and an HFD, for 3 wk (n = 8–9 mice/group). The extent of visceral fat, insulin resistance, or systemic inflammation was unaffected by Zn deficiency. Strikingly, Zn deficiency significantly augmented circulating leptin concentrations (HFD-Zn vs. HFD: 3.15 ± 0.16 vs. 2.59 ± 0.12 μg/L, respectively) and leptin signaling in the liver of obese mice. Furthermore, gene expression of macrophage-specific markers ADAM8 (A disintegrin and metalloproteinase domain-containing protein 8) and CD68 (cluster of differentiation 68) was significantly greater in adipose tissue in the HFD-Zn group than in the HFD group, as confirmed by CD68 protein analysis, indicative of increased macrophage infiltration. Inspection of Zn content and mRNA profiles of all Zn transporters in the adipose tissue revealed alterations of Zn metabolism to obesity and Zn deficiency. Our results demonstrate that Zn deficiency increases leptin production and exacerbates macrophage infiltration into adipose tissue in obese mice, indicating the importance of Zn in metabolic and immune dysregulation in obesity. PMID:23700340

  6. Immunometabolic circuits in trained immunity.

    PubMed

    Arts, Rob J W; Joosten, Leo A B; Netea, Mihai G

    2016-10-01

    The classical view that only adaptive immunity can build immunological memory has recently been challenged. Both in organisms lacking adaptive immunity as well as in mammals, the innate immune system can adapt to mount an increased resistance to reinfection, a de facto innate immune memory termed trained immunity. Recent studies have revealed that rewiring of cellular metabolism induced by different immunological signals is a crucial step for determining the epigenetic changes underlying trained immunity. Processes such as a shift of glucose metabolism from oxidative phosphorylation to aerobic glycolysis, increased glutamine metabolism and cholesterol synthesis, play a crucial role in these processes. The discovery of trained immunity opens the door for the design of novel generations of vaccines, for new therapeutic strategies for the treatment of immune deficiency states, and for modulation of exaggerated inflammation in autoinflammatory diseases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Vitamin D in Atopic Dermatitis, Asthma and Allergic Diseases

    PubMed Central

    Searing, Daniel A; Leung, Donald YM

    2010-01-01

    Synopsis This review examines the scientific evidence behind the hypothesis that vitamin D plays a role in the pathogenesis of allergic diseases, with a particular focus on emerging data regarding vitamin D and atopic dermatitis. Both elucidated molecular interactions of vitamin D with components of the immune system, as well as clinical data regarding vitamin D deficiency and atopic diseases are discussed. The rationale behind the “sunshine hypothesis,” laboratory evidence supporting links between vitamin D deficiency and allergic diseases, the clinical evidence for/and against vitamin D playing a role in allergic diseases, and the emerging evidence regarding the potential use of vitamin D in augmentation of the innate immune response in atopic dermatitis are reviewed. PMID:20670821

  8. Immune deficiency in chronic rhinosinusitis: screening and treatment

    PubMed Central

    Chiarella, Sergio E.; Grammer, Leslie C.

    2017-01-01

    Introduction Chronic rhinosinusitis (CRS) is a prevalent disease with a high annual cost of treatment. Immune deficiencies are more common in individuals with CRS and should be especially considered in those patients who are refractory to medical and surgical therapy. Areas covered We performed a literature search in PubMed of the terms “immunodeficiency” and “sinusitis” or “rhinosinusitis” from 2006 through March 2016. All abstracts were reviewed to determine if they pertained to human disease; relevant articles were evaluated in their entirety and included in this review. Expert commentary CRS is a common disease; in those patients with frequent exacerbations or who are refractory to treatment, an immunodeficiency evaluation should be considered. Treatment includes vaccination, antibiotic therapy, immunoglobulin replacement and surgery. PMID:27500811

  9. Unrelated Hematopoietic Cell Transplantation in a Patient with Combined Immunodeficiency with Granulomatous Disease and Autoimmunity Secondary to RAG Deficiency

    PubMed Central

    Walter, Jolan E.; Schuetz, Catherina; Chen, Karin; Abraham, Roshini S.; Bonfim, Carmem; Boyce, Thomas G.; Joshi, Avni Y.; Kang, Elizabeth; Carvalho, Beatriz Tavares Costa; Mahajerin, Arash; Nugent, Diane; Puthenveetil, Geetha; Soni, Amit; Su, Helen; Cowan, Morton J.; Notarangelo, Luigi; Buchbinder, David

    2016-01-01

    The use of HLA-identical hematopoietic stem cell transplantation (HSCT) demonstrates overall survival rates greater than 75 % for T-B-NK+ severe combined immunodeficiency secondary to pathogenic mutation of recombinase activating genes 1 and 2 (RAG1/2). Limited data exist regarding the use of HSCT in patients with hypomorphic RAG variants marked by greater preservation of RAG activity and associated phenotypes such as granulomatous disease in combination with autoimmunity. We describe a 17-year-old with combined immunodeficiency and immune dysregulation characterized by granulomatous lung disease and autoimmunity secondary to compound heterozygous RAG mutations. A myeloablative reduced toxicity HSCTwas completed using an unrelated bone marrow donor. With the increasing cases of immune dysregulation being discovered with hypomorphic RAG variants, the use of HSCT may advance to the forefront of treatment. This case serves to discuss indications of HSCT, approaches to preparative therapy, and the potential complications in this growing cohort of patients with immune dysregulation and RAG deficiency. PMID:27539235

  10. Unrelated Hematopoietic Cell Transplantation in a Patient with Combined Immunodeficiency with Granulomatous Disease and Autoimmunity Secondary to RAG Deficiency.

    PubMed

    John, Tami; Walter, Jolan E; Schuetz, Catherina; Chen, Karin; Abraham, Roshini S; Bonfim, Carmem; Boyce, Thomas G; Joshi, Avni Y; Kang, Elizabeth; Carvalho, Beatriz Tavares Costa; Mahajerin, Arash; Nugent, Diane; Puthenveetil, Geetha; Soni, Amit; Su, Helen; Cowan, Morton J; Notarangelo, Luigi; Buchbinder, David

    2016-10-01

    The use of HLA-identical hematopoietic stem cell transplantation (HSCT) demonstrates overall survival rates greater than 75 % for T-B-NK+ severe combined immunodeficiency secondary to pathogenic mutation of recombinase activating genes 1 and 2 (RAG1/2). Limited data exist regarding the use of HSCT in patients with hypomorphic RAG variants marked by greater preservation of RAG activity and associated phenotypes such as granulomatous disease in combination with autoimmunity. We describe a 17-year-old with combined immunodeficiency and immune dysregulation characterized by granulomatous lung disease and autoimmunity secondary to compound heterozygous RAG mutations. A myeloablative reduced toxicity HSCT was completed using an unrelated bone marrow donor. With the increasing cases of immune dysregulation being discovered with hypomorphic RAG variants, the use of HSCT may advance to the forefront of treatment. This case serves to discuss indications of HSCT, approaches to preparative therapy, and the potential complications in this growing cohort of patients with immune dysregulation and RAG deficiency.

  11. Leptin and Mucosal Immunity

    PubMed Central

    Mackey-Lawrence, Nicole M.; Petri, William A.

    2012-01-01

    Enhanced susceptibility to infection has long been recognized in children with congenital deficiency of leptin or its receptor. Studies in mice have demonstrated that leptin deficiency affects both the innate and acquired immune systems. Here we review recent studies that demonstrate the impact on immunity of a common non-synonomous polymorphism of the leptin receptor. In a Bangladesh cohort of children, the presence of two copies of the ancestral Q223 allele was significantly associated with resistance to amebiasis. Children and mice with at least one copy of the leptin receptor 223R mutation were more susceptible to amebic colitis. Leptin signaling in the intestinal epithelium and downstream STAT3 and SHP2 signaling were required for protection in the murine model of amebic colitis. Murine models have also implicated leptin in protection from other infections including M. tuberculosis, K. pneumoniae and S. pneumoniae. Thus, the role of leptin signaling in infectious disease and specifically leptin-mediated protection of the intestinal epithelium will be the focus of this review. PMID:22692456

  12. Transcriptome and proteome analysis of Salmonella enterica serovar Typhimurium systemic infection of wild type and immune-deficient mice

    PubMed Central

    Oshota, Olusegun; Fookes, Maria; Schreiber, Fernanda; Chaudhuri, Roy R.; Yu, Lu; Clare, Simon; Choudhary, Jyoti; Thomson, Nicholas R.; Lio, Pietro

    2017-01-01

    Salmonella enterica are a threat to public health. Current vaccines are not fully effective. The ability to grow in infected tissues within phagocytes is required for S. enterica virulence in systemic disease. As the infection progresses the bacteria are exposed to a complex host immune response. Consequently, in order to continue growing in the tissues, S. enterica requires the coordinated regulation of fitness genes. Bacterial gene regulation has so far been investigated largely using exposure to artificial environmental conditions or to in vitro cultured cells, and little information is available on how S. enterica adapts in vivo to sustain cell division and survival. We have studied the transcriptome, proteome and metabolic flux of Salmonella, and the transcriptome of the host during infection of wild type C57BL/6 and immune-deficient gp91-/-phox mice. Our analyses advance the understanding of how S. enterica and the host behaves during infection to a more sophisticated level than has previously been reported. PMID:28796780

  13. CD14 Deficiency Impacts Glucose Homeostasis in Mice through Altered Adrenal Tone

    PubMed Central

    Young, James L.; Mora, Alfonso; Cerny, Anna; Czech, Michael P.; Woda, Bruce; Kurt-Jones, Evelyn A.; Finberg, Robert W.; Corvera, Silvia

    2012-01-01

    The toll-like receptors comprise one of the most conserved components of the innate immune system, signaling the presence of molecules of microbial origin. It has been proposed that signaling through TLR4, which requires CD14 to recognize bacterial lipopolysaccharide (LPS), may generate low-grade inflammation and thereby affect insulin sensitivity and glucose metabolism. To examine the long-term influence of partial innate immune signaling disruption on glucose homeostasis, we analyzed knockout mice deficient in CD14 backcrossed into the diabetes-prone C57BL6 background at 6 or 12 months of age. CD14-ko mice, fed either normal or high-fat diets, displayed significant glucose intolerance compared to wild type controls. They also displayed elevated norepinephrine urinary excretion and increased adrenal medullary volume, as well as an enhanced norepinephrine secretory response to insulin-induced hypoglycemia. These results point out a previously unappreciated crosstalk between innate immune- and sympathoadrenal- systems, which exerts a major long-term effect on glucose homeostasis. PMID:22253759

  14. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode

    PubMed Central

    Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S.; Tremoli, Elena; Catapano, Alberico L.; Norata, Giuseppe D.; Bottazzi, Barbara; Garlanda, Cecilia

    2015-01-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372

  15. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity

    PubMed Central

    Thomas, David C.; Clare, Simon; Sowerby, John M.; Juss, Jatinder K.; Goulding, David A.; van der Weyden, Louise; Prakash, Ananth; Harcourt, Katherine; Mukhopadhyay, Subhankar; Antrobus, Robin; Bateman, Alex

    2017-01-01

    The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox and p22phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox and p22phox. Consequently, Eros-deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense. PMID:28351984

  16. Characterization of host immune responses in Ebola virus infections.

    PubMed

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  17. Formalin-Inactivated Coxiella burnetii Phase I Vaccine-Induced Protection Depends on B Cells To Produce Protective IgM and IgG

    PubMed Central

    Peng, Ying; Schoenlaub, Laura; Elliott, Alexandra; Mitchell, William; Zhang, Yan

    2013-01-01

    To further understand the mechanisms of formalin-inactivated Coxiella burnetii phase I (PI) vaccine (PIV)-induced protection, we examined if B cell, T cell, CD4+ T cell, or CD8+ T cell deficiency in mice significantly affects the ability of PIV to confer protection against a C. burnetii infection. Interestingly, compared to wild-type (WT) mice, PIV conferred comparable levels of protection in CD4+ T cell- or CD8+ T cell-deficient mice and partial protection in T cell-deficient mice but did not provide measurable protection in B cell-deficient mice. These results suggest that PIV-induced protection depends on B cells. In addition, anti-PI-specific IgM was the major detectable antibody (Ab) in immune sera from PIV-vaccinated CD4+ T cell-deficient mice, and passive transfer of immune sera from PIV-vaccinated CD4+ T cell-deficient mice conferred significant protection. These results suggest that T cell-independent anti-PI-specific IgM may contribute to PIV-induced protection. Our results also suggested that PIV-induced protection may not depend on complement activation and Fc receptor-mediated effector functions. Furthermore, our results demonstrated that both IgM and IgG from PIV-vaccinated WT mouse sera were able to inhibit C. burnetii infection in vivo, but only IgM from PIV-vaccinated CD4+ T cell-deficient mouse sera inhibited C. burnetii infection. Collectively, these findings suggest that PIV-induced protection depends on B cells to produce protective IgM and IgG and that T cell-independent anti-PI-specific IgM may play a critical role in PIV-induced protection against C. burnetii infection. PMID:23545296

  18. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases

    PubMed Central

    Lintner, Katherine E.; Wu, Yee Ling; Yang, Yan; Spencer, Charles H.; Hauptmann, Georges; Hebert, Lee A.; Atkinson, John P.; Yu, C. Yung

    2016-01-01

    The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases. PMID:26913032

  19. Aberrant T-cell function in vitro and impaired T-cell dependent antibody response in vivo in vitamin A-deficient rats.

    PubMed Central

    Wiedermann, U; Hanson, L A; Kahu, H; Dahlgren, U I

    1993-01-01

    We have previously reported that vitamin A deficiency resulted in a reduced IgA antibody response to cholera toxin (CT) after per-oral immunization. In the present investigation we have studied the in vivo and in vitro immune response in vitamin A-deficient rats to two parenterally applied antigens, beta-lactoglobulin (beta-LG) and picrylsulphonic acid (TNP)-Ficoll. The serum IgG and IgM antibody responses to the T-cell dependent antigen beta-LG were significantly lower in the vitamin A-deficient rats than in the pair-fed control rats. No such differences were seen with the IgG and IgM responses to the T-cell independent antigen TNP-Ficoll. However, the biliary IgA and the serum IgE antibodies against both antigens were decreased in the vitamin A-deficient rats. In vitro lymphocyte stimulation with concanavalin A (Con A) or beta-LG gave higher T-cell proliferation rates in the vitamin A-deficient than in the control rats. Interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) levels in supernatants from Con A-stimulated mesenteric lymph node cells were also higher in the vitamin A-deficient rats, while IL-6 levels were decreased, which is consistent with an up-regulated Th1 activity. Proliferation studies on purified accessory cells and T cells from the deficient and the control rats, mixed in different combinations, showed that the T cells, but not the accessory cells, were disturbed in the vitamin A-deficient rats. Despite the increased T-cell activity in vitro the vitamin A-deficient rats had a lower delayed-type hypersensitivity (DTH) reaction than the pair-fed control rats. In conclusion, the increased IL-2 and IFN-gamma levels may reflect an up-regulation of Th1 cell function, while the decreased IgA, IgE and IL-6 levels indicate a suppression of Th2 cells. The disturbed T-lymphocyte function is manifested in vivo as a decreased DTH reaction and suppressed antibody production, the latter possibly due to a lack of B-cell switching and proliferation factors in vitamin A-deficient rats. PMID:8307607

  20. Autocrine Complement Inhibits IL10-Dependent T-Cell Mediated Antitumor Immunity to Promote Tumor Progression

    PubMed Central

    Wang, Yu; Sun, Sheng-Nan; Liu, Qing; Yu, Yang-Yang; Guo, Jian; Wang, Kun; Xing, Bao-Cai; Zheng, Qing-Feng; Campa, Michael J.; Patz, Edward F.; Li, Shi-You; He, You-Wen

    2016-01-01

    In contrast to its inhibitory effects on many cells, IL-10 activates CD8+ tumor infiltrating lymphocytes (TILs) and enhances their antitumor activity. However, CD8+ TILs do not routinely express IL-10 as autocrine complement C3 inhibits IL-10 production through complement receptors C3aR and C5aR. CD8+ TILs from C3-deficient mice, however, express IL-10 and exhibit enhanced effector function. C3-deficient mice are resistant to tumor development in a T cell- and IL-10-dependent manner; human TILs expanded with IL-2 plus IL-10 increase the killing of primary tumors in vitro compared to IL-2 treated TILs. Complement-mediated inhibition of antitumor immunity is independent of the PD-1/PD-L1 immune checkpoint pathway. Our findings suggest that complement receptors C3aR and C5aR expressed on CD8+ TILs represent a novel class of immune checkpoints that could be targeted for tumor immunotherapy. Moreover, incorporation of IL-10 in the expansion of TILs and in gene-engineered T cells for adoptive cell therapy enhances their antitumor efficacy. PMID:27297552

  1. The chemokine receptor CXCR6 is required for the maintenance of liver memory CD8⁺ T cells specific for infectious pathogens.

    PubMed

    Tse, Sze-Wah; Radtke, Andrea J; Espinosa, Diego A; Cockburn, Ian A; Zavala, Fidel

    2014-11-01

    It is well established that immunization with attenuated malaria sporozoites induces CD8(+) T cells that eliminate parasite-infected hepatocytes. Liver memory CD8(+) T cells induced by immunization with parasites undergo a unique differentiation program and have enhanced expression of CXCR6. Following immunization with malaria parasites, CXCR6-deficient memory CD8(+) T cells recovered from the liver display altered cell-surface expression markers as compared to their wild-type counterparts, but they exhibit normal cytokine secretion and expression of cytotoxic mediators on a per-cell basis. Most importantly, CXCR6-deficient CD8(+) T cells migrate to the liver normally after immunization with Plasmodium sporozoites or vaccinia virus, but a few weeks later their numbers severely decrease in this organ, losing their capacity to inhibit malaria parasite development in the liver. These studies are the first to show that CXCR6 is critical for the development and maintenance of protective memory CD8(+) T cells in the liver. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Advances in understanding the pathogenesis of HLH.

    PubMed

    Usmani, G Naheed; Woda, Bruce A; Newburger, Peter E

    2013-06-01

    Haemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disorder resulting from immune dysfunction reflecting either primary immune deficiency or acquired failure of normal immune homeostasis. Familial HLH includes autosomal recessive and X-linked disorders characterized by uncontrolled activation of T cells and macrophages and overproduction of inflammatory cytokines, secondary to defects in genes encoding proteins involved in granule-dependent cytolytic pathways. In older children and adults, HLH is associated more often with infections, malignancies, autoimmune diseases, and acquired immune deficiencies. HLH, macrophage activation syndrome, sepsis, and systemic inflammatory response syndrome are different clinical entities that probably represent a common immunopathological state, termed cytokine storm. These conditions may be clinically indistinguishable; all include massive inflammatory response, elevated serum cytokine levels, multi-organ involvement, haemophagocytic macrophages, and often death. Tissues of haematopoietic and lymphoid function are directly involved; other organs are secondarily damaged by circulating cytokines and chemokines. Haemophagocytic disorders are now increasingly diagnosed in the context of severe inflammatory reactions to viruses, malignancies and systemic connective tissue diseases. Many of these cases may reflect underlying genetic predispositions to HLH. The detection of gene defects has contributed considerably to our understanding of HLH, but the mechanisms leading to acquired HLH have yet to be fully determined. © 2013 John Wiley & Sons Ltd.

  3. Seeing through the dark: New insights into the immune regulatory functions of vitamin A.

    PubMed

    Brown, Chrysothemis C; Noelle, Randolph J

    2015-05-01

    The importance of vitamin A for host defense is undeniable and the study of its mechanisms is paramount. Of the estimated 250 million preschool children who are vitamin A-deficient (VAD), 10% will die from their increased susceptibility to infectious disease. Vitamin A supplementation was established in the 1980s as one of the most successful interventions in the developing world. Understanding how vitamin A controls immunity will help curb the mortality and morbidity associated with vitamin A deficiency and exploit the immune-enhancing capacity of vitamin A to heighten host resistance to infectious disease. The discoveries that retinoic acid (RA) imprints the homing of leukocytes to the gut and enhances the induction of regulatory T cells, highlighted a potential role for RA in mucosal tolerance. However, more recently emerging data tell of a more profound systemic impact of RA on leukocyte function and commitment. In animal models using genetic manipulation of RA signaling, we learned when and how RA controls T cell fate. Here, we review the role for RA as a critical checkpoint regulator in the differentiation of CD4(+) T cells within the immune system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Wound Healing in Mac-1 Deficient Mice

    DTIC Science & Technology

    2017-05-01

    36. Rosenkranz AR, Coxon A, Maurer M, Gurish MF, Austen KF, Friend DS, Galli SJ, Mayadas TN. Impaired mast cell development and innate immunity in Mac...genetically deficient mice. 3 INTRODUCTION Wound healing is a complex yet well-regulated process in which multiple resident cells ...recruited inflammatory cells , and stem cells interact to create an environment that supports the healing process. An optimal inflammatory response is a

  5. Reactions of immune system to physical exercises.

    PubMed

    Pershin, Boris B; Geliev, Anatoly B; Tolstov, Dmitry V; Kovalchuk, Leonid V; Medvedev, Vladimir Ya

    2002-04-01

    The great attention to reactions of immune system to the physical exercises in sportsmen is linked to the growth of training volumes, to the increase of competition numbers and to the elevation of morbidity. Immune deficiency may be considered as the detonator of pathological processes among which acute respiratory diseases (ARD) are investigated most completely in sports medicine. Other pathologies require long-term observations, but it is not so simple to do due to the frequent renewal of sports groups. Besides ARD, there are reports about the growth of cases of poliomyelitis, endotoxemia, allergic and autoimmune disorders. Immune reactions in sportsmen are developed at the background of fever, impaired balance of ergotrophic hormone activity and in a number of cases under conditions of systemic endotoxemia. We have described the extreme type of immune deficiency in sportsmen, in which we could not determine different isotypes of Ig. The phenomenon of Ig disappearance is reproduced under the experimental conditions that opened the way to study its mechanisms. Physical exercises decrease function of immunocompetent cells, their antiviral resistance, antigen presentation and expression of class II MHC molecules. With the involvement of macrophages hyperproduction of IL-6 is developed in muscle tissues. After physical exercises other cytokines also change the state of immunity. Also, neuropeptides getting in touch the links between endocrine and immune systems may make a contribution to immunosuppression. The immunosuppression may be prevented by use of special carbohydrate diets and by administration of complexed preparations. The prophylaxis is capable to control the morbidity, profoundly to increase the training volumes and to enhance the labor efficiency.

  6. The role of protease-activated receptor-2 on pulmonary neutrophils in the innate immune response to cockroach allergen

    PubMed Central

    2012-01-01

    Background Serine proteases in German cockroach (GC) have been shown to mediate allergic airway inflammation through the activation of protease activated receptor (PAR)-2. Neutrophils play an important role in regulating the innate immune response, and are recruited into the airways following GC frass exposure. As such, we investigated the role of PAR-2 in airway neutrophil recruitment, activation and cytokine production following allergen exposure. Methods Wild type and PAR-2-deficient mice were administered a single intratracheal instillation of PBS or GC frass and neutrophil recruitment, expression of PAR-2, CD80, CD86, and MHC class II were assessed by flow cytometry and levels of tumor necrosis factor (TNF)α was assessed by ELISA. Uptake of AlexaFluor 405-labeled GC frass by neutrophils was performed by flow cytometry. Results Neutrophil recruitment in the lung and airways following GC frass exposure was significantly decreased in PAR-2-deficient mice compared to wild type mice. GC frass exposure increased the level of PAR-2 on pulmonary neutrophils and increased numbers of PAR-2-positive neutrophils were found in the lungs; however PAR-2 did not play a role in meditating allergen uptake. Comparing wild type and PAR-2-deficient mice, we found that a single exposure to GC frass increased levels of CD80 and CD86 on pulmonary neutrophils, an effect which was independent of PAR-2 expression. Neutrophils isolated from the whole lungs of naïve PAR-2-deficient mice treated ex vivo with GC frass produced significantly less TNFα than in similarly treated wild type neutrophils. Lastly, neutrophils were isolated from the bronchoalveolar lavage fluid of wild type and PAR-2-deficient mice following a single intratracheal exposure to GC frass. Airway neutrophils from PAR-2-deficient mice released substantially decreased levels of TNFα, suggesting a role for PAR-2 in neutrophil-derived cytokine production. Conclusions Together these data suggest PAR-2 expression can be upregulated on lung neutrophils following allergen exposure and the consequence is altered release of TNFα which could drive the early innate immune response. PMID:22954301

  7. Persistent infection with ebola virus under conditions of partial immunity.

    PubMed

    Gupta, Manisha; Mahanty, Siddhartha; Greer, Patricia; Towner, Jonathan S; Shieh, Wun-Ju; Zaki, Sherif R; Ahmed, Rafi; Rollin, Pierre E

    2004-01-01

    Ebola hemorrhagic fever in humans is associated with high mortality; however, some infected hosts clear the virus and recover. The mechanisms by which this occurs and the correlates of protective immunity are not well defined. Using a mouse model, we determined the role of the immune system in clearance of and protection against Ebola virus. All CD8 T-cell-deficient mice succumbed to subcutaneous infection and had high viral antigen titers in tissues, whereas mice deficient in B cells or CD4 T cells cleared infection and survived, suggesting that CD8 T cells, independent of CD4 T cells and antibodies, are critical to protection against subcutaneous Ebola virus infection. B-cell-deficient mice that survived the primary subcutaneous infection (vaccinated mice) transiently depleted or not depleted of CD4 T cells also survived lethal intraperitoneal rechallenge for >/==" BORDER="0">25 days. However, all vaccinated B-cell-deficient mice depleted of CD8 T cells had high viral antigen titers in tissues following intraperitoneal rechallenge and died within 6 days, suggesting that memory CD8 T cells by themselves can protect mice from early death. Surprisingly, vaccinated B-cell-deficient mice, after initially clearing the infection, were found to have viral antigens in tissues later (day 120 to 150 post-intraperitoneal infection). Furthermore, following intraperitoneal rechallenge, vaccinated B-cell-deficient mice that were transiently depleted of CD4 T cells had high levels of viral antigen in tissues earlier (days 50 to 70) than vaccinated undepleted mice. This demonstrates that under certain immunodeficiency conditions, Ebola virus can persist and that loss of primed CD4 T cells accelerates the course of persistent infections. These data show that CD8 T cells play an important role in protection against acute disease, while both CD4 T cells and antibodies are required for long-term protection, and they provide evidence of persistent infection by Ebola virus suggesting that under certain conditions of immunodeficiency a host can harbor virus for prolonged periods, potentially acting as a reservoir.

  8. Tryptophan: the key to boosting brain serotonin synthesis in depressive illness.

    PubMed

    Badawy, Abdulla A-B

    2013-10-01

    It has been proposed that focusing on brain serotonin synthesis can advance antidepressant drug development. Biochemical aspects of the serotonin deficiency in major depressive disorder (MDD) are discussed here in detail. The deficiency is caused by a decreased availability of the serotonin precursor tryptophan (Trp) to the brain. This decrease is caused by accelerated Trp degradation, most likely induced by enhancement of the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) by glucocorticoids and/or catecholamines. Induction of the extrahepatic Trp-degrading enzyme indolylamine 2,3-dioxygenase (IDO) by the modest immune activation in MDD has not been demonstrated and, if it occurs, is unlikely to make a significant contribution. Liver TDO appears to be a target of many antidepressants, the mood stabilisers Li(+) and carbamazepine and possibly other adjuncts to antidepressant therapy. The poor, variable and modest antidepressant efficacy of Trp is due to accelerated hepatic Trp degradation, and efficacy can be restored or enhanced by combination with antidepressants or other existing or new TDO inhibitors. Enhancing Trp availability to the brain is thus the key to normalisation of serotonin synthesis and could form the basis for future antidepressant drug development.

  9. Lipopolysaccharide-induced overproduction of nitric oxide and overexpression of iNOS and interleukin-1β proteins in zinc-deficient rats.

    PubMed

    Miyazaki, Takashi; Takenaka, Tsuneo; Inoue, Tsutomu; Sato, Makiko; Miyajima, Yuka; Nodera, Makoto; Hanyu, Mayuko; Ohno, Yoichi; Shibazaki, Satomi; Suzuki, Hiromichi

    2012-03-01

    Zinc deficiency leads to decreased cellular immune responses. The overproduction of nitrogen species derived from inducible nitric oxide synthase (iNOS), its enzyme, and interleukine-1 beta (IL-1β), and inflammatory cytokine have been implicated in immune responses. The goal of this study was to investigate the effects of lipopolysaccharide (LPS)-induced changes in NO metabolites, iNOS, and IL-1β protein expression in the lungs of zinc-deficient rats. Male Sprague-Dawley rats (body weight, 100 g) were divided into two groups and were fed either a zinc-deficient diet (ZnD) or a zinc-containing diet (Cont). After 4 weeks on these diets, rats received a 10-mg/kg dose of LPS injected via the tail vein and were then maintained for an additional 72 h. To determine total NO concentrations in the blood, serum zinc concentration, iNOS protein expression, IL-1β, and iNOS immunohistochemistry, blood and lung samples were obtained at pre-LPS injection, 5, 24, and 72 h after injection. Total NO levels were significantly increased at 5, at 24, and at 72 h after LPS injection compared with pre-LPS injection level in ZnD group; significant changes in total NO levels was elevated at 5 h from at pre-LPS level but not significant changes from basal level at 24 and 72 h in the control group. Based on western blot analyses and immunohistochemistry, clear bands indicating iNOS and IL-1β protein expression and iNOS antibody-stained inflammatory cells were detected at 5 and 24 h in the ZnD group and 5 h in the Cont group, not observed at 24 and 72 h in the control group. These results suggest that zinc deficiency induces overexpression of iNOS and IL-1β proteins from inflammatory cells around the alveolar blood vessels, resulting in overproduction of total NO and persisted inflammatory response in the zinc-deficient rat lung. Taken together, overexpression of LPS-induced iNOS, overproduction of iNOS-derived NO, and overexpression of IL-1β may induce nitrosative and oxidative stresses in the lung, and these stresses may be involved low immunity of zinc deficiency states.

  10. Biotin deficiency enhances the inflammatory response of human dendritic cells.

    PubMed

    Agrawal, Sudhanshu; Agrawal, Anshu; Said, Hamid M

    2016-09-01

    The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency.

  11. Biotin deficiency enhances the inflammatory response of human dendritic cells

    PubMed Central

    Agrawal, Sudhanshu; Said, Hamid M.

    2016-01-01

    The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency. PMID:27413170

  12. A rare case of Addison's disease, hepatitis, thyreoiditis, positive IgG anti-tissue transglutaminase antibodies and partial IgA deficiency.

    PubMed

    Baleva, Marta P; Mihaylova, Snejina; Yankova, Petja; Atanasova, Iliana; Nikolova-Vlahova, Milena; Naumova, Elissaveta

    2016-01-01

    Selective IgA deficiency (IgAD) is the most prevalent type of primary immune deficiencies, but partial IgA deficiency is even more common. Addison's disease is a rare condition associated with primary adrenal insufficiency due to infection or autoimmune destruction of the adrenals. The association between IgA deficiency and Addison's disease is very rare. We observed a 22-year-old male patient with marked darkening of the skin, especially on the palms and areolae, jaundice on the skin and sclera, astheno-adynamia, hypotension (80/50 mm Hg), and pain in the right hypochondrium. The laboratory investigations revealed increased serum levels of total and indirect bilirubin, AST, ALT, GGT and LDH, negative HBsAg, anti-HBc IgM, anti-HCV and anti-HAV IgM, very low serum IgA levels (0.16 g/l) with normal IgG and IgM, negative ANA, ANCA, AMA, LKM-1, anti-GAD-60, anti-IA-2, anti-thyroglobulin antibodies, a mild increase in anti-TPO antibodies titer, a marked increase in IgG anti-tissue transglutaminase antibodies, with no typical changes in cellular immunity, negative T-SPOT-TB test, HLA - A*01; B*08; DRB1*03; DQB1*02, karyotype - 46, XY. We present a rare case of partial IgA deficiency with Addison's disease, hepatitis, thyroiditis and positive anti-tissue transglutaminase antibodies. IgAD and some autoimmune disorders share several predisposing HLA genes, thus explaining the increased prevalence of IgAD in certain patient groups.

  13. IL-12Rβ1 Deficiency in Two of Fifty Children with Severe Tuberculosis from Iran, Morocco, and Turkey

    PubMed Central

    Bustamante, Jacinta; Feinberg, Jacqueline; Samarina, Arina; Grant, Audrey V.; Janniere, Lucile; El Hafidi, Naima; Hassani, Amal; Nolan, Daniel; Najib, Jilali; Camcioglu, Yildiz; Hatipoglu, Nevin; Aydogmus, Cigdem; Tanir, Gonul; Aytekin, Caner; Keser, Melike; Somer, Ayper; Aksu, Guside; Kutukculer, Necil; Mansouri, Davood; Mahdaviani, Alireza; Mamishi, Setareh; Alcais, Alexandre; Abel, Laurent; Casanova, Jean-Laurent

    2011-01-01

    Background and Objectives In the last decade, autosomal recessive IL-12Rβ1 deficiency has been diagnosed in four children with severe tuberculosis from three unrelated families from Morocco, Spain, and Turkey, providing proof-of-principle that tuberculosis in otherwise healthy children may result from single-gene inborn errors of immunity. We aimed to estimate the fraction of children developing severe tuberculosis due to IL-12Rβ1 deficiency in areas endemic for tuberculosis and where parental consanguinity is common. Methods and Principal Findings We searched for IL12RB1 mutations in a series of 50 children from Iran, Morocco, and Turkey. All children had established severe pulmonary and/or disseminated tuberculosis requiring hospitalization and were otherwise normally resistant to weakly virulent BCG vaccines and environmental mycobacteria. In one child from Iran and another from Morocco, homozygosity for loss-of-function IL12RB1 alleles was documented, resulting in complete IL-12Rβ1 deficiency. Despite the small sample studied, our findings suggest that IL-12Rβ1 deficiency is not a very rare cause of pediatric tuberculosis in these countries, where it should be considered in selected children with severe disease. Significance This finding may have important medical implications, as recombinant IFN-γ is an effective treatment for mycobacterial infections in IL-12Rβ1-deficient patients. It also provides additional support for the view that severe tuberculosis in childhood may result from a collection of single-gene inborn errors of immunity. PMID:21533230

  14. Endogenous developmental endothelial locus-1 limits ischemia-related angiogenesis by blocking inflammation

    PubMed Central

    Klotzsche - von Ameln, Anne; Cremer, Sebastian; Hoffmann, Jedrzej; Schuster, Peggy; Khedr, Sherif; Korovina, Irina; Troulinaki, Maria; Neuwirth, Ales; Sprott, David; Chatzigeorgiou, Antonios; Economopoulou, Matina; Orlandi, Alessia; Hain, Andreas; Zeiher, Andreas M.; Deussen, Andreas; Hajishengallis, George; Dimmeler, Stefanie; Chavakis, Triantafyllos; Chavakis, Emmanouil

    2017-01-01

    We have recently identified endothelial cell-secreted developmental endothelial locus-1 (Del-1) as an endogenous inhibitor of β2-integrin–dependent leukocyte infiltration. Del-1 was previously also implicated in angiogenesis. Here, we addressed the role of endogenously produced Del-1 in ischemia-related angiogenesis. Intriguingly, Del-1–deficient mice displayed increased neovascularization in two independent ischemic models (retinopathy of prematurity and hind-limb ischemia), as compared to Del-1–proficient mice. On the contrary, angiogenic sprouting in vitro or ex vivo (aortic ring assay) and physiological developmental retina angiogenesis were not affected by Del-1 deficiency. Mechanistically, the enhanced ischemic neovascularization in Del-1-deficiency was linked to higher infiltration of the ischemic tissue by CD45+ hematopoietic and immune cells. Moreover, Del-1-deficiency promoted β2-integrin–dependent adhesion of hematopoietic cells to endothelial cells in vitro, and the homing of hematopoietic progenitor cells and of immune cell populations to ischemic muscles in vivo. Consistently, the increased hind limb ischemia-related angiogenesis in Del-1 deficiency was completely reversed in mice lacking both Del-1 and the β2-integrin LFA-1. Additionally, enhanced retinopathy-associated neovascularization in Del-deficient mice was reversed by LFA-1 blockade. Our data reveal a hitherto unrecognized function of endogenous Del-1 as a local inhibitor of ischemia-induced angiogenesis by restraining LFA-1–dependent homing of pro-angiogenic hematopoietic cells to ischemic tissues. Our findings are relevant for the optimization of therapeutic approaches in the context of ischemic diseases. PMID:28447099

  15. Resurgence of Pertussis and Emergence of the Ptxp3 Toxin Promoter Allele in South Italy.

    PubMed

    Loconsole, Daniela; De Robertis, Anna Lisa; Morea, Anna; Metallo, Angela; Lopalco, Pier Luigi; Chironna, Maria

    2018-05-01

    Despite universal immunization programs, pertussis remains a major public health concern. This study aimed to describe the pertussis epidemiology in the Puglia region in 2006-2015 and to identify recent polymorphisms in Bordetella pertussis virulence-associated genes. The pertussis cases in 2006-2015 were identified from the National Hospital Discharge Database and the Information System of Infectious Diseases. Samples of pertussis cases in 2014-2016 that were confirmed by the Regional Reference Laboratory were subjected to ptxA, ptxP and prn gene sequencing and, in 10 cases, multiple-locus variable-number tandem repeat analysis. In Puglia in 2006-2015, the pertussis incidence rose from an average of 1.39/100,000 inhabitants in 2006-2013 to 2.56-2.54/100,000 in 2014-2015. In infants <1 year of age, the incidence rose from an average of 60.4/100,000 infants in 2006-2013 to 149.9/100,000 in 2015. Of the 661 cases recorded in 2006-2015, 80.3% required hospitalization; of these, 45.4% were <1 year of age. Of the 80 sequenced samples, the allelic profile ptxA1-ptxP3-prn2 was detected in 74. This variant was detected in both vaccinated and unvaccinated people. Six Bordetella pertussis samples were prn deficient. The multiple-locus variable-number tandem repeat analysis cases exhibited multiple-locus variable-number tandem repeat analysis-type 27. The pertussis incidence in Puglia has risen. The hypervirulent strain was also found in vaccinated people. This suggests bacterial adaptation to the vaccine and raises questions about acellular vaccine effectiveness. Prevention of infant pertussis cases is best achieved by immunizing the pregnant mother. Enhanced surveillance and systematic laboratory confirmation of pertussis should be improved in Italy.

  16. Immune response in the hamster: definition of a novel IgG not expressed in all hamster strains.

    PubMed Central

    Coe, J E; Schell, R F; Ross, M J

    1995-01-01

    A new IgG isotype is described in serum from Syrian hamsters. This 7S-IgG is called IgG3 and was isolated from IgG1 and IgG2 because of its great affinity for protein A. The unique antigenic determinants of IgG3 were identified with a specific rabbit antisera. IgG3 is the least expressed IgG subclass in Syrian hamsters, but serum levels increase more than 10-fold after immunization or infection. Although found in all tested outbred strains, IgG3 is expressed in only some of the commercially available inbred strains of Syrian hamsters. Five inbred hamster strains were examined, and in three strains (CB, LHC and MHA) IgG3 was not detected in normal serum or in immune serum, indicating serum levels at least 100-fold less than other normal inbred/outbred hamsters. The results of breeding experiments suggests a single gene defect is responsible for this non-expression of IgG3. Immunodeficiency was not associated with this IgG3 deficiency. Selective deficiencies of immunoglobulin classes/subclasses in experimental animals are rare. The evolution of a similar IgG3 deficiency in these three hamster strains during inbreeding suggests a novel and efficient mechanism for regulation of IgG3 synthesis in the Syrian hamster. Images Figure 2 Figure 3 Figure 5 PMID:7590875

  17. Bruton's Tyrosine Kinase (BTK) and Vav1 Contribute to Dectin1-Dependent Phagocytosis of Candida albicans in Macrophages

    PubMed Central

    Strijbis, Karin; Tafesse, Fikadu G.; Fairn, Gregory D.; Witte, Martin D.; Dougan, Stephanie K.; Watson, Nicki; Spooner, Eric; Esteban, Alexandre; Vyas, Valmik K.; Fink, Gerald R.; Grinstein, Sergio; Ploegh, Hidde L.

    2013-01-01

    Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans. PMID:23825946

  18. Bruton's Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages.

    PubMed

    Strijbis, Karin; Tafesse, Fikadu G; Fairn, Gregory D; Witte, Martin D; Dougan, Stephanie K; Watson, Nicki; Spooner, Eric; Esteban, Alexandre; Vyas, Valmik K; Fink, Gerald R; Grinstein, Sergio; Ploegh, Hidde L

    2013-01-01

    Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.

  19. Splenic macrophages are required for protective innate immunity against West Nile virus

    PubMed Central

    Bryan, Marianne A.; Giordano, Daniela; Draves, Kevin E.; Green, Richard; Gale, Michael

    2018-01-01

    Although the spleen is a major site for West Nile virus (WNV) replication and spread, relatively little is known about which innate cells in the spleen replicate WNV, control viral dissemination, and/or prime innate and adaptive immune responses. Here we tested if splenic macrophages (MΦs) were necessary for control of WNV infection. We selectively depleted splenic MΦs, but not draining lymph node MΦs, by injecting mice intravenously with clodronate liposomes several days prior to infecting them with WNV. Mice missing splenic MΦs succumbed to WNV infection after an increased and accelerated spread of virus to the spleen and the brain. WNV-specific Ab and CTL responses were normal in splenic MΦ-depleted mice; however, numbers of NK cells and CD4 and CD8 T cells were significantly increased in the brains of infected mice. Splenic MΦ deficiency led to increased WNV in other splenic innate immune cells including CD11b- DCs, newly formed MΦs and monocytes. Unlike other splenic myeloid subsets, splenic MΦs express high levels of mRNAs encoding the complement protein C1q, the apoptotic cell clearance protein Mertk, the IL-18 cytokine and the FcγR1 receptor. Splenic MΦ-deficient mice may be highly susceptible to WNV infection in part to a deficiency in C1q, Mertk, IL-18 or Caspase 12 expression. PMID:29408905

  20. The Second Pediatric Blood and Marrow Transplant Consortium International Consensus Conference on Late Effects after Pediatric Hematopoietic Cell Transplantation (HCT): Defining the Unique Late Effects of Children undergoing HCT for Immune Deficiencies, Inherited Marrow Failure Disorders, and Hemoglobinopathies

    PubMed Central

    Dietz, Andrew C.; Duncan, Christine N.; Alter, Blanche P.; Bresters, Dorine; Cowan, Morton J.; Notarangelo, Luigi; Rosenberg, Philip S.; Shenoy, Shalini; Skinner, Roderick; Walters, Mark C.; Wagner, John; Baker, K. Scott; Pulsipher, Michael A.

    2016-01-01

    An international consensus conference sponsored by the Pediatric Blood and Marrow Transplant consortium entitled, “Late Effects Screening and Recommendations Following Allogeneic Hematopoietic Cell Transplant for Immune Deficiency and Non-malignant Hematologic Disease was held in Minneapolis, Minnesota on May 10–11, 2016. The purpose of the conference was to address the unmet need for a greater understanding of and the screening for long-term complications in the growing population of survivors of transplantation for nonmalignant disorders. The conference focused on transplantation for hemoglobinopathy, immune deficiency, and inherited bone marrow syndromes. A multidisciplinary group of experts in the disease areas and transplant late effects presented the current state of understanding of how the underlying disease, pretransplant therapies, and transplant related factors uniquely interact to influence the development of late toxicities. Recommendations were put forth by the group for the late effects screening of survivors of transplantation for these non-malignant disorders. The findings and recommendations that came from this conference will be presented in a series of six additional manuscripts in the upcoming months. In this manuscript we explore the need for screening practices specific to the survivors of transplantation for non-malignant diseases and the metholodologic challenges associated with the study of these patients. PMID:27737772

  1. Primary Immune Deficiency Disease Genetics & Inheritance

    MedlinePlus

    ... Award Negotiation & Initial Award After Award Foreign Grants Management Getting Your Initial International Award Actions You Can Take as the Project Leader on a Foreign Grant Subawards for Foreign ...

  2. Sexual dimorphism in immune function changes during the annual cycle in house sparrows

    NASA Astrophysics Data System (ADS)

    Pap, Péter László; Czirják, Gábor Árpád; Vágási, Csongor István; Barta, Zoltán; Hasselquist, Dennis

    2010-10-01

    Difference between sexes in parasitism is a common phenomenon among birds, which may be related to differences between males and females in their investment into immune functions or as a consequence of differential exposure to parasites. Because life-history strategies change sex specifically during the annual cycle, immunological responses of the host aiming to reduce the impact of parasites may be sexually dimorphic. Despite the great complexity of the immune system, studies on immunoecology generally characterise the immune status through a few variables, often overlooking potentially important seasonal and gender effects. However, because of the differences in physiological and defence mechanisms among different arms of the immune system, we expect divergent responses of immune components to environmental seasonality. In male and female house sparrows ( Passer domesticus), we measured the major components of the immune system (innate, acquired, cellular and humoral) during four important life-history stages across the year: (1) mating, (2) breeding, (3) moulting and (4) during the winter capture and also following introduction to captivity in aviary. Different individuals were sampled from the same population during the four life cycle stages. We found that three out of eight immune variables showed a significant life cycle stage × sex interaction. The difference in immune response between the sexes was significant in five immune variables during the mating stage, when females had consistently stronger immune function than males, while variables varied generally non-significantly with sex during the remaining three life cycle stages. Our results show that the immune system is highly variable between life cycle stages and sexes, highlighting the potential fine tuning of the immune system to specific physiological states and environmental conditions.

  3. Intrinsic Innate Immunity Fails To Control Herpes Simplex Virus and Vesicular Stomatitis Virus Replication in Sensory Neurons and Fibroblasts

    PubMed Central

    Rosato, Pamela C.

    2014-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) establishes lifelong latent infections in the sensory neurons of the trigeminal ganglia (TG), wherein it retains the capacity to reactivate. The interferon (IFN)-driven antiviral response is critical for the control of HSV-1 acute replication. We therefore sought to further investigate this response in TG neurons cultured from adult mice deficient in a variety of IFN signaling components. Parallel experiments were also performed in fibroblasts isolated concurrently. We showed that HSV-1 replication was comparable in wild-type (WT) and IFN signaling-deficient neurons and fibroblasts. Unexpectedly, a similar pattern was observed for the IFN-sensitive vesicular stomatitis virus (VSV). Despite these findings, TG neurons responded to IFN-β pretreatment with STAT1 nuclear localization and restricted replication of both VSV and an HSV-1 strain deficient in γ34.5, while wild-type HSV-1 replication was unaffected. This was in contrast to fibroblasts in which all viruses were restricted by the addition of IFN-β. Taken together, these data show that adult TG neurons can mount an effective antiviral response only if provided with an exogenous source of IFN-β, and HSV-1 combats this response through γ34.5. These results further our understanding of the antiviral response of neurons and highlight the importance of paracrine IFN-β signaling in establishing an antiviral state. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a ubiquitous virus that establishes a lifelong latent infection in neurons. Reactivation from latency can cause cold sores, blindness, and death from encephalitis. Humans with deficiencies in innate immunity have significant problems controlling HSV infections. In this study, we therefore sought to elucidate the role of neuronal innate immunity in the control of viral infection. Using neurons isolated from mice, we found that the intrinsic capacity of neurons to restrict virus replication was unaffected by the presence or absence of innate immunity. In contrast, neurons were able to mount a robust antiviral response when provided with beta interferon, a molecule that strongly stimulates innate immunity, and that HSV-1 can combat this response through the γ34.5 viral gene. Our results have important implications for understanding how the nervous system defends itself against virus infections. PMID:24942587

  4. Pseudomonas aeruginosa Evasion of Phagocytosis Is Mediated by Loss of Swimming Motility and Is Independent of Flagellum Expression▿ †

    PubMed Central

    Amiel, Eyal; Lovewell, Rustin R.; O'Toole, George A.; Hogan, Deborah A.; Berwin, Brent

    2010-01-01

    Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that causes severe opportunistic infections in immunocompromised individuals; in particular, severity of infection with P. aeruginosa positively correlates with poor prognosis in cystic fibrosis (CF) patients. Establishment of chronic infection by this pathogen is associated with downregulation of flagellar expression and of other genes that regulate P. aeruginosa motility. The current paradigm is that loss of flagellar expression enables immune evasion by the bacteria due to loss of engagement by phagocytic receptors that recognize flagellar components and loss of immune activation through flagellin-mediated Toll-like receptor (TLR) signaling. In this work, we employ bacterial and mammalian genetic approaches to demonstrate that loss of motility, not the loss of the flagellum per se, is the critical factor in the development of resistance to phagocytosis by P. aeruginosa. We demonstrate that isogenic P. aeruginosa mutants deficient in flagellar function, but retaining an intact flagellum, are highly resistant to phagocytosis by both murine and human phagocytic cells at levels comparable to those of flagellum-deficient mutants. Furthermore, we show that loss of MyD88 signaling in murine phagocytes does not recapitulate the phagocytic deficit observed for either flagellum-deficient or motility-deficient P. aeruginosa mutants. Our data demonstrate that loss of bacterial motility confers a dramatic resistance to phagocytosis that is independent of both flagellar expression and TLR signaling. These findings provide an explanation for the well-documented observation of nonmotility in clinical P. aeruginosa isolates and for how this phenotype confers upon the bacteria an advantage in the context of immune evasion. PMID:20457788

  5. Neutralization or Absence of the Interleukin-23 Pathway Does Not Compromise Immunity to Mycobacterial Infection▿

    PubMed Central

    Chackerian, Alissa A.; Chen, Shi-Juan; Brodie, Scott J.; Mattson, Jeanine D.; McClanahan, Terrill K.; Kastelein, Robert A.; Bowman, Edward P.

    2006-01-01

    Interleukin-23 (IL-23), a member of the IL-12 family, is a heterodimeric cytokine that is composed of the p40 subunit of IL-12 plus a unique p19 subunit. IL-23 is critical for autoimmune inflammation, in part due to its stimulation of the proinflammatory cytokine IL-17A. It is less clear, however, if IL-23 is required during the immune response to pathogens. We examined the role of IL-23 during Mycobacterium bovis BCG infection. We found that IL-23 reduces the bacterial burden and promotes granuloma formation when IL-12 is absent. However, IL-23 does not contribute substantially to host resistance when IL-12 is present, as the ability to control bacterial growth and form granulomata is not affected in IL-23p19-deficient mice and mice treated with a specific anti-IL-23p19 antibody. IL-23p19-deficient mice are also able to mount an effective memory response to secondary infection with BCG. While IL-23p19-deficient mice do not produce IL-17A, this cytokine is not necessary for effective control of infection, and antibody blocking of IL-17A in both wild-type and IL-12-deficient mice also has little effect on the bacterial burden. These data suggest that IL-23 by itself does not play an essential role in the protective immune response to BCG infection; however, the presence of IL-23 can partially compensate for the absence of IL-12. Furthermore, neutralization of IL-23 or IL-17A does not increase susceptibility to mycobacterial BCG infection. PMID:16923792

  6. Hepatic transcriptional profiling response to fava bean-induced oxidative stress in glucose-6-phosphate dehydrogenase-deficient mice.

    PubMed

    Du, Guankui; Xiao, Man; Wei, Xiuyu; Zhou, Chen; Li, Shuoshuo; Cai, Wangwei

    2018-04-30

    Favism is an acute hemolytic syndrome caused by the ingestion of fava bean (FB) in glucose 6-phosphate dehydrogenase (G6PD) deficient individuals. However, little is known about the global transcripts alteration in liver tissue after FB ingestion in G6PD-normal and -deficient states. In this study, deep sequencing was used to analyze liver genes expression alterations underlying the effects of FB in C3H (Wild Type, WT) and G6PD-deficient (G6PDx) mice and to evaluate and visualize the collective annotation of a list of genes to Gene Ontology (GO) terms associated with favism. Our results showed that FB resulted in a decrease of glutathione (GSH)-to-oxidized glutathione (GSSG) ratio and an increase of malondialdehyde (MDA) both in the G6PDx and WT-control check (CK) mice plasma. Significantly, liver transcript differences were observed between the control and FB-treated groups of both WT and G6PDx mice. A total of 320 differentially expressed transcripts were identified by comparison of G6PDx-CK with WT-CK and were associated with immune response and oxidation-reduction function. A total of 149 differentially expressed genes were identified by comparison of WT-FB with WT-CK. These genes were associated with immune response, steroid metabolic process, creatine kinase activity, and fatty acid metabolic process. A total of 438 differential genes were identified by comparing G6PDx-FB with G6PD-CK, associated with the negative regulation of fatty acid metabolic process, endoplasmic reticulum, iron binding, and glutathione transferase activity. These findings indicate that G6PD mutations may affect the functional categories such as immune response and oxidation-reduction. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. SUMOylation-disrupting WAS mutation converts WASp from a transcriptional activator to a repressor of NF-κB response genes in T cells.

    PubMed

    Sarkar, Koustav; Sadhukhan, Sanjoy; Han, Seong-Su; Vyas, Yatin M

    2015-10-01

    In Wiskott-Aldrich syndrome (WAS), immunodeficiency and autoimmunity often comanifest, yet how WAS mutations misregulate chromatin-signaling in Thelper (TH) cells favoring development of auto-inflammation over protective immunity is unclear. Previously, we identified an essential promoter-specific, coactivator role of nuclear-WASp in TH1 gene transcription. Here we identify small ubiquitin-related modifier (SUMO)ylation as a novel posttranslational modification of WASp, impairment of which converts nuclear-WASp from a transcriptional coactivator to a corepressor of nuclear factor (NF)-κB response genes in human (TH)1-differentiating cells. V75M, one of many disease-causing mutations occurring in SUMO*motif (72-ψψψψKDxxxxSY-83) of WASp, compromises WASp-SUMOylation, associates with COMMD1 to attenuate NF-κB signaling, and recruits histone deacetylases-6 (HDAC6) to p300-marked promoters of NF-κB response genes that pattern immunity but not inflammation. Consequently, proteins mediating adaptive immunity (IFNG, STAT1, TLR1) are deficient, whereas those mediating auto-inflammation (GM-CSF, TNFAIP2, IL-1β) are paradoxically increased in TH1 cells expressing SUMOylation-deficient WASp. Moreover, SUMOylation-deficient WASp favors ectopic development of the TH17-like phenotype (↑IL17A, IL21, IL22, IL23R, RORC, and CSF2) under TH1-skewing conditions, suggesting a role for WASp in modulating TH1/TH17 plasticity. Notably, pan-histone deacetylase inhibitors lift promoter-specific repression imposed by SUMOylation-deficient WASp and restore misregulated gene expression. Our findings uncovering a SUMOylation-based mechanism controlling WASp's dichotomous roles in transcription may have implications for personalized therapy for patients carrying mutations that perturb WASp-SUMOylation. © 2015 by The American Society of Hematology.

  8. Interleukin-17-induced protein lipocalin 2 is dispensable for immunity to oral candidiasis.

    PubMed

    Ferreira, Maria Carolina; Whibley, Natasha; Mamo, Anna J; Siebenlist, Ulrich; Chan, Yvonne R; Gaffen, Sarah L

    2014-03-01

    Oropharyngeal candidiasis (OPC; thrush) is an opportunistic fungal infection caused by the commensal microbe Candida albicans. Immunity to OPC is strongly dependent on CD4+ T cells, particularly those of the Th17 subset. Interleukin-17 (IL-17) deficiency in mice or humans leads to chronic mucocutaneous candidiasis, but the specific downstream mechanisms of IL-17-mediated host defense remain unclear. Lipocalin 2 (Lcn2; 24p3; neutrophil gelatinase-associated lipocalin [NGAL]) is an antimicrobial host defense factor produced in response to inflammatory cytokines, particularly IL-17. Lcn2 plays a key role in preventing iron acquisition by bacteria that use catecholate-type siderophores, and lipocalin 2(-/-) mice are highly susceptible to infection by Escherichia coli and Klebsiella pneumoniae. The role of Lcn2 in mediating immunity to fungi is poorly defined. Accordingly, in this study, we evaluated the role of Lcn2 in immunity to oral infection with C. albicans. Lcn2 is strongly upregulated following oral infection with C. albicans, and its expression is almost entirely abrogated in mice with defective IL-17 signaling (IL-17RA(-/-) or Act1(-/-) mice). However, Lcn2(-/-) mice were completely resistant to OPC, comparably to wild-type (WT) mice. Moreover, Lcn2 deficiency mediated protection from OPC induced by steroid immunosuppression. Therefore, despite its potent regulation during C. albicans infection, Lcn2 is not required for immunity to mucosal candidiasis.

  9. Conditional Stat1 Ablation Reveals the Importance of Interferon Signaling for Immunity to Listeria monocytogenes Infection

    PubMed Central

    Kernbauer, Elisabeth; Maier, Verena; Stoiber, Dagmar; Strobl, Birgit; Schneckenleithner, Christine; Sexl, Veronika; Reichart, Ursula; Reizis, Boris; Kalinke, Ulrich; Jamieson, Amanda; Müller, Mathias; Decker, Thomas

    2012-01-01

    Signal transducer and activator of transcription 1 (Stat1) is a key player in responses to interferons (IFN). Mutations of Stat1 cause severe immune deficiencies in humans and mice. Here we investigate the importance of Stat1 signaling for the innate and secondary immune response to the intracellular bacterial pathogen Listeria monocytogenes (Lm). Cell type-restricted ablation of the Stat1 gene in naïve animals revealed unique roles in three cell types: macrophage Stat1 signaling protected against lethal Lm infection, whereas Stat1 ablation in dendritic cells (DC) did not affect survival. T lymphocyte Stat1 reduced survival. Type I IFN (IFN-I) signaling in T lymphocytes reportedly weakens innate resistance to Lm. Surprisingly, the effect of Stat1 signaling was much more pronounced, indicating a contribution of Stat1 to pathways other than the IFN-I pathway. In stark contrast, Stat1 activity in both DC and T cells contributed positively to secondary immune responses against Lm in immunized animals, while macrophage Stat1 was dispensable. Our findings provide the first genetic evidence that Stat1 signaling in different cell types produces antagonistic effects on innate protection against Lm that are obscured in mice with complete Stat1 deficiency. They further demonstrate a drastic change in the cell type-dependent Stat1 requirement for memory responses to Lm infection. PMID:22719255

  10. Behavioral impairments in animal models for zinc deficiency

    PubMed Central

    Hagmeyer, Simone; Haderspeck, Jasmin Carmen; Grabrucker, Andreas Martin

    2015-01-01

    Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies. PMID:25610379

  11. Differential outcome of infection with attenuated Salmonella in MyD88-deficient mice is dependent on the route of administration.

    PubMed

    Issac, Jincy M; Sarawathiamma, Dhanya; Al-Ketbi, Mai I; Azimullah, Sheikh; Al-Ojali, Samia M; Mohamed, Yassir A; Flavell, Richard A; Fernandez-Cabezudo, Maria J; al-Ramadi, Basel K

    2013-01-01

    Activation of the innate immune system is a prerequisite for the induction of adaptive immunity to both infectious and non-infectious agents. TLRs are key components of the innate immune recognition system and detect pathogen-associated molecular patterns. Most TLRs utilize the MyD88 adaptor for their signaling pathways. In the current study, we investigated innate and adaptive immune responses to primary as well as secondary Salmonella infections in MyD88-deficient (MyD88(-/-)) mice. Using i.p. or oral route of inoculation, we demonstrate that MyD88(-/-) mice are hypersusceptible to infection by an attenuated, double auxotrophic, mutant of Salmonella enterica serovar Typhimurium (S. typhimurium). This is manifested by 2-3 logs higher bacterial loads in target organs, delayed recruitment of phagocytic cells, and defective production of proinflammatory cytokines in MyD88(-/-) mice. Despite these deficiencies, MyD88(-/-) mice developed Salmonella-specific memory Th1 responses and produced elevated serum levels of anti-Salmonella Abs, not only of Th1-driven (IgG2c, IgG3) but also IgG1 and IgG2b isotypes. Curiously, these adaptive responses were insufficient to afford full protection against a secondary challenge with a virulent strain of S. typhimurium. In comparison with the high degree of mortality seen in MyD88(-/-) mice following i.p. inoculation, oral infections led to the establishment of a state of long-term persistence, characterized by continuous bacterial shedding in animal feces that lasted for more than 6 months, but absence from systemic organs. These findings suggest that the absent expression of MyD88 affects primarily the innate effector arm of the immune system and highlights its critical role in anti-bacterial defense. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Deficiency of Mannose-Binding Lectin Greatly Increases Susceptibility to Postburn Infection with Pseudomonas aeruginosa1

    PubMed Central

    Møller-Kristensen, Mette; Eddie Ip, W. K.; Shi, Lei; Gowda, Lakshmi D.; Hamblin, Michael R.; Thiel, Steffen; Jensenius, Jens Chr.; Ezekowitz, R. Alan B.; Takahashi, Kazue

    2011-01-01

    Burn injury disrupts the mechanical and biological barrier that the skin presents against infection by symbionts like the Pseudomonas aeruginosa, a Gram-negative bacteria. A combination of local factors, antimicrobial peptides, and resident effector cells form the initial response to mechanical injury of the skin. This activity is followed by an inflammatory response that includes influx of phagocytes and serum factors, such as complement and mannose-binding lectin (MBL), which is a broad-spectrum pattern recognition molecule that plays a key role in innate immunity. A growing consensus from studies in humans and mice suggests that lack of MBL together with other comorbid factors predisposes the host to infection. In this study we examined whether MBL deficiency increases the risk of P. aeruginosa infection in a burned host. We found that both wild-type and MBL null mice were resistant to a 5% total body surface area burn alone or s.c. infection with P. aeruginosa alone. However, when mice were burned then inoculated s.c. with P. aeruginosa at the burn site, all MBL null mice died by 42 h from septicemia, whereas only one-third of wild-type mice succumbed (p = 0.0005). This result indicates that MBL plays a key role in containing and preventing a systemic spread of P. aeruginosa infection following burn injury and suggests that MBL deficiency in humans maybe a premorbid variable in the predisposition to infection in burn victims. PMID:16424207

  13. The Role of Language and Education in Eradicating HIV/AIDS in Africa: Evidence from Parents, Teachers, and Students

    ERIC Educational Resources Information Center

    Okebukola, Foluso O.; Adegbite, Hassan H.; Owolabi, Tunde

    2013-01-01

    The study focuses on the eradication and reversal of the spread of HIV/AIDS (human immune virus/acquired immune deficiency syndrome) as one of the main thrusts of Africa's 21st Century Development Goals. It investigates the significant role which language and education can play in fast tracking the attainment of this goal using a three-pronged…

  14. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    PubMed

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  15. Factor Associated with Neutral Sphingomyelinase Activity Mediates Navigational Capacity of Leukocytes Responding to Wounds and Infection: Live Imaging Studies in Zebrafish Larvae

    PubMed Central

    Boecke, Alexandra; Sieger, Dirk; Neacsu, Cristian Dan; Kashkar, Hamid

    2012-01-01

    Factor associated with neutral sphingomyelinase activity (FAN) is an adaptor protein that specifically binds to the p55 receptor for TNF (TNF-RI). Our previous investigations demonstrated that FAN plays a role in TNF-induced actin reorganization by connecting the plasma membrane with actin cytoskeleton, suggesting that FAN may impact on cellular motility in response to TNF and in the context of immune inflammatory conditions. In this study, we used the translucent zebrafish larvae for in vivo analysis of leukocyte migration after morpholino knockdown of FAN. FAN-deficient zebrafish leukocytes were impaired in their migration toward tail fin wounds, leading to a reduced number of cells reaching the wound. Furthermore, FAN-deficient leukocytes show an impaired response to bacterial infections, suggesting that FAN is generally required for the directed chemotactic response of immune cells independent of the nature of the stimulus. Cell-tracking analysis up to 3 h after injury revealed that the reduced number of leukocytes is not due to a reduction in random motility or speed of movement. Leukocytes from FAN-deficient embryos protrude pseudopodia in all directions instead of having one clear leading edge. Our results suggest that FAN-deficient leukocytes exhibit an impaired navigational capacity, leading to a disrupted chemotactic response. PMID:22802420

  16. Adjuvant-specific regulation of long-term antibody responses by ZBTB20

    PubMed Central

    Wang, Yinan

    2014-01-01

    The duration of antibody production by long-lived plasma cells varies with the type of immunization, but the basis for these differences is unknown. We demonstrate that plasma cells formed in response to the same immunogen engage distinct survival programs depending on the adjuvant. After alum-adjuvanted immunization, antigen-specific bone marrow plasma cells deficient in the transcription factor ZBTB20 failed to accumulate over time, leading to a progressive loss of antibody production relative to wild-type controls. Fetal liver reconstitution experiments demonstrated that the requirement for ZBTB20 was B cell intrinsic. No defects were observed in germinal center numbers, affinity maturation, or plasma cell formation or proliferation in ZBTB20-deficient chimeras. However, ZBTB20-deficient plasma cells expressed reduced levels of MCL1 relative to wild-type controls, and transgenic expression of BCL2 increased serum antibody titers. These data indicate a role for ZBTB20 in promoting survival in plasma cells. Strikingly, adjuvants that activate TLR2 and TLR4 restored long-term antibody production in ZBTB20-deficient chimeras through the induction of compensatory survival programs in plasma cells. Thus, distinct lifespans are imprinted in plasma cells as they are formed, depending on the primary activation conditions. The durability of vaccines may accordingly be improved through the selection of appropriate adjuvants. PMID:24711582

  17. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans.

    PubMed

    Candotti, Fabio; Shaw, Kit L; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F; Weinberg, Kenneth I; Crooks, Gay M; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S; Rosenblatt, Howard M; Davis, Carla M; Hanson, Celine; Rishi, Radha G; Wang, Xiaoyan; Gjertson, David; Yang, Otto O; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A; Engel, Barbara C; Podsakoff, Gregory M; Hershfield, Michael S; Blaese, R Michael; Parkman, Robertson; Kohn, Donald B

    2012-11-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34(+) cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m(2)). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency.

  18. Gene therapy for adenosine deaminase–deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans

    PubMed Central

    Candotti, Fabio; Shaw, Kit L.; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H.; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G. Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F.; Weinberg, Kenneth I.; Crooks, Gay M.; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S.; Rosenblatt, Howard M.; Davis, Carla M.; Hanson, Celine; Rishi, Radha G.; Wang, Xiaoyan; Gjertson, David; Yang, Otto O.; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A.; Engel, Barbara C.; Podsakoff, Gregory M.; Hershfield, Michael S.; Blaese, R. Michael; Parkman, Robertson

    2012-01-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)–deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34+ cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m2). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency. PMID:22968453

  19. Glucose-6-Phosphatase Catalytic Subunit 3 (G6PC3) Deficiency Associated With Autoinflammatory Complications.

    PubMed

    Mistry, Anoop; Scambler, Thomas; Parry, David; Wood, Mark; Barcenas-Morales, Gabriela; Carter, Clive; Doffinger, Rainer; Savic, Sinisa

    2017-01-01

    G6PC3 deficiency typically causes severe congenital neutropenia, associated with susceptibility to infections, cardiac and urogenital abnormalities. However, here we describe two boys of Pakistani origin who were found to have G6PC3 deficiency due to c.130 C>T mutation, but who have clinical phenotypes that are typical for a systemic autoinflammatory syndrome. The index case presented with combination of unexplained fevers, severe mucosal ulcers, abdominal symptoms, and inflammatory arthritis. He eventually fully responded to anti-TNF therapy. In this study, we show that compared with healthy controls, neutrophils and monocytes from patients have reduced glycolytic reserve. Considering that healthy myeloid cells have been shown to switch their metabolic pathways to glycolysis in response to inflammatory cues, we studied what impact this might have on production of the inflammatory cytokines. We have demonstrated that patients' monocytes, in response to lipopolysaccharide, show significantly increased production of IL-1β and IL-18, which is NLRP3 inflammasome dependent. Furthermore, additional whole blood assays have also shown an enhanced production of IL-6 and TNF from the patients' cells. These cases provide further proof that autoinflammatory complications are also seen within the spectrum of primary immune deficiencies, and resulting from a wider dysregulation of the immune responses.

  20. Glucose-6-Phosphatase Catalytic Subunit 3 (G6PC3) Deficiency Associated With Autoinflammatory Complications

    PubMed Central

    Mistry, Anoop; Scambler, Thomas; Parry, David; Wood, Mark; Barcenas-Morales, Gabriela; Carter, Clive; Doffinger, Rainer; Savic, Sinisa

    2017-01-01

    G6PC3 deficiency typically causes severe congenital neutropenia, associated with susceptibility to infections, cardiac and urogenital abnormalities. However, here we describe two boys of Pakistani origin who were found to have G6PC3 deficiency due to c.130 C>T mutation, but who have clinical phenotypes that are typical for a systemic autoinflammatory syndrome. The index case presented with combination of unexplained fevers, severe mucosal ulcers, abdominal symptoms, and inflammatory arthritis. He eventually fully responded to anti-TNF therapy. In this study, we show that compared with healthy controls, neutrophils and monocytes from patients have reduced glycolytic reserve. Considering that healthy myeloid cells have been shown to switch their metabolic pathways to glycolysis in response to inflammatory cues, we studied what impact this might have on production of the inflammatory cytokines. We have demonstrated that patients’ monocytes, in response to lipopolysaccharide, show significantly increased production of IL-1β and IL-18, which is NLRP3 inflammasome dependent. Furthermore, additional whole blood assays have also shown an enhanced production of IL-6 and TNF from the patients’ cells. These cases provide further proof that autoinflammatory complications are also seen within the spectrum of primary immune deficiencies, and resulting from a wider dysregulation of the immune responses. PMID:29163546

  1. Evaluation of the humoral immune response of children with low level lead exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigart, J.R.; Graber, C.D.

    1976-07-01

    Twelve lead-exposed children, with evidence of metabolic impairment, and seven non-lead exposed children were examined for evidence of impairment of their immunological response. There were no differences between the control group and the lead exposed group with reference to complement levels, immunoglobulins, or anamnestic response to the tetanus toxoid antigen. It remains to be demonstrated whether or not there is deficient response to primary immunization, whether other antigens are more affected by lead, or whether impairment of humoral immune response requires a more serious degree of lead intoxication.

  2. HIV/AIDS - pregnancy and infants

    MedlinePlus

    ... immunodeficiency virus - children; Acquired immune deficiency syndrome - children; Pregnancy - HIV; Maternal HIV; Perinatal - HIV ... mother to the child. This can occur during pregnancy, childbirth, or when breastfeeding. Only blood, semen, vaginal ...

  3. AIDS (image)

    MedlinePlus

    AIDS (acquired immune deficiency syndrome) is caused by HIV (human immunodeficiency virus), and is a syndrome that ... life-threatening illnesses. There is no cure for AIDS, but treatment with antiviral medicine can suppress symptoms. ...

  4. The Role of B Cells for in Vivo T Cell Responses to a Friend Virus-Induced Leukemia

    NASA Astrophysics Data System (ADS)

    Schultz, Kirk R.; Klarnet, Jay P.; Gieni, Randall S.; Hayglass, Kent T.; Greenberg, Philip D.

    1990-08-01

    B cells can function as antigen-presenting cells and accessory cells for T cell responses. This study evaluated the role of B cells in the induction of protective T cell immunity to a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient mice exhibited significantly reduced tumor-specific CD4^+ helper and CD8^+ cytotoxic T cell responses after priming with FBL or a recombinant vaccinia virus containing F-MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but not expression of tumor and viral T cell immunity.

  5. Lymphotoxin Regulates Commensal Responses to Enable Diet-Induced Obesity

    PubMed Central

    Upadhyay, Vaibhav; Poroyko, Valeriy; Kim, Tae-jin; Devkota, Suzanne; Fu, Sherry; Liu, Donald; Tumanov, Alexei V.; Koroleva, Ekaterina P.; Deng, Liufu; Nagler, Cathryn; Chang, Eugene; Tang, Hong; Fu, Yang-Xin

    2013-01-01

    The microbiota plays a critical, weight-promoting role in diet-induced obesity (DIO), but the pathways that cause the microbiota to induce weight gain are unknown. We report that mice deficient in lymphotoxin (LT), a key molecule in gut immunity, were resistant to DIO. Ltbr−/− mice differed in microbial community composition compared to their heterozygous littermates, including an overgrowth of segmented filamentous bacteria (SFB). Furthermore, cecal transplantation conferred leanness to germ-free recipients. Housing Ltbr−/− mice with their obese siblings rescued weight gain, demonstrating the communicability of the obese phenotype. Ltbr−/− animals lacked interleukin 23 (IL-23) and IL-22 that can regulate SFB. Mice deficient in these pathways also resisted DIO, demonstrating that intact mucosal immunity guides diet-induced changes to the microbiota to enable obesity. PMID:22922363

  6. Exacerbated immune stress response during experimental magnesium deficiency results from abnormal cell calcium homeostasis.

    PubMed

    Malpuech-Brugère, C; Rock, E; Astier, C; Nowacki, W; Mazur, A; Rayssiguier, Y

    1998-01-01

    The aim of this study was to assess the potential mechanism underlying the enhanced inflammatory processes during magnesium deficit. In this study, exacerbated response to live bacteria and platelet activating factors was shown in rats fed a magnesium-deficient diet. Peritoneal cells from these animals also showed enhanced superoxide anion production and calcium mobilising potency following in vitro stimulation. The latter effect occurred very early in the course of magnesium deficiency. These studies first showed that an abnormal calcium handling induced by extracellular magnesium depression in vivo may be at the origin of exacerbated inflammatory response.

  7. Molecular characterization of FXI deficiency.

    PubMed

    Berber, Ergul

    2011-02-01

    Factor XI (FXI) deficiency is a rare autosomal bleeding disease associated with genetic defects in the FXI gene. It is a heterogeneous disorder with variable tendency in bleeding and variable causative FXI gene mutations. It is characterized as a cross-reacting material-negative (CRM-) FXI deficiency due to decreased FXI levels or cross-reacting material-positive (CRM+) FXI deficiency due to impaired FXI function. Increasing number of mutations has been reported in FXI mutation database, and most of the mutations are affecting serine protease (SP) domain of the protein. Functional characterization for the mutations helps to better understand the molecular basis of FXI deficiency. Prevalence of the disease is higher in certain populations such as Ashkenazi Jews. The purpose of this review is to give an overview of the molecular basis of congenital FXI deficiency.

  8. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis.

    PubMed

    Stagg, John; Divisekera, Upulie; Duret, Helene; Sparwasser, Tim; Teng, Michele W L; Darcy, Phillip K; Smyth, Mark J

    2011-04-15

    CD73 is a cell-surface enzyme that suppresses immune responses by producing extracellular adenosine. In this study, we employed CD73 gene-targeted mice to investigate the role of host-derived CD73 on antitumor immunity and tumor cell metastasis. We found that CD73 ablation significantly suppressed the growth of ovalbumin-expressing MC38 colon cancer, EG7 lymphoma, AT-3 mammary tumors, and B16F10 melanoma. The protective effect of CD73 deficiency on primary tumors was dependent on CD8(+) T cells and associated with an increased frequency of antigen-specific CD8(+) T cells in peripheral blood and tumors and increased antigen-specific IFN-γ production. Replicate studies in bone marrow chimeras established that both hematopoietic and nonhematopoietic expression of CD73 was important to promote tumor immune escape. Using adoptive reconstitution of T regulatory cell (Treg)-depleted DEREG (depletion of regulatory T cells) mice, we demonstrated that part of the protumorigenic effect of Tregs was dependent on their expression of CD73. CD73-deficient mice were also protected against pulmonary metastasis of B16F10 melanoma cells after intravenous injection. Unexpectedly, we found that the prometastatic effect of host-derived CD73 was dependent on CD73 expression on nonhematopoietic cells. CD73 expression on nonhematopoietic cells, most likely endothelial cells, was critical for promoting lung metastasis in a manner independent from immunosuppressive effects. Notably, in vivo blockade of CD73 with a selective inhibitor or anti-CD73 monoclonal antibody significantly reduced tumor growth and metastasis of CD73-negative tumors. Taken together, our findings indicate that CD73 may be targeted at multiple levels to induce anticancer effects including at the level of tumor cells, Tregs, and nonhematopoietic cells. ©2011 AACR.

  9. Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia.

    PubMed

    Davids, Barbara J; Palm, J E Daniel; Housley, Michael P; Smith, Jennifer R; Andersen, Yolanda S; Martin, Martin G; Hendrickson, Barbara A; Johansen, Finn-Eirik; Svärd, Staffan G; Gillin, Frances D; Eckmann, Lars

    2006-11-01

    The polymeric Ig receptor (pIgR) is conserved in mammals and has an avian homologue, suggesting evolutionarily important functions in vertebrates. It transports multimeric IgA and IgM across polarized epithelia and is highly expressed in the intestine, yet little direct evidence exists for its importance in defense against common enteric pathogens. In this study, we demonstrate that pIgR can play a critical role in intestinal defense against the lumen-dwelling protozoan parasite Giardia, a leading cause of diarrheal disease. The receptor was essential for the eradication of Giardia when high luminal IgA levels were required. Clearance of Giardia muris, in which IgA plays a dominant role, was severely compromised in pIgR-deficient mice despite significant fecal IgA output at 10% of normal levels. In contrast, eradication of the human strain Giardia lamblia GS/M, for which adaptive immunity is less IgA dependent in mice, was unaffected by pIgR deficiency, indicating that pIgR had no physiologic role when lower luminal IgA levels were sufficient for parasite elimination. Immune IgA was greatly increased in the serum of pIgR-deficient mice, conferred passive protection against Giardia, and recognized several conserved giardial Ags, including ornithine carbamoyltransferase, arginine deiminase, alpha-enolase, and alpha- and beta-giardins, that are also detected in human giardiasis. Corroborative observations were made in mice lacking the J chain, which is required for pIgR-dependent transepithelial IgA transport. These results, together with prior data on pIgR-mediated immune neutralization of luminal cholera toxin, suggest that pIgR is essential in intestinal defense against pathogenic microbes with high-level and persistent luminal presence.

  10. CD70 encoded by modified vaccinia virus Ankara enhances CD8 T-cell-dependent protective immunity in MHC class II-deficient mice.

    PubMed

    Bathke, Barbara; Pätzold, Juliane; Kassub, Ronny; Giessel, Raphael; Lämmermann, Kerstin; Hinterberger, Maria; Brinkmann, Kay; Chaplin, Paul; Suter, Mark; Hochrein, Hubertus; Lauterbach, Henning

    2017-12-27

    The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic ® (MVA-BN ® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN ® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN ® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN ® backbone. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  11. Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves

    PubMed Central

    2017-01-01

    Plants utilize an innate immune system to protect themselves from disease. While many molecular components of plant innate immunity resemble the innate immunity of animals, plants also have evolved a number of truly unique defense mechanisms, particularly at the physiological level. Plant’s flexible developmental program allows them the unique ability to simply produce new organs as needed, affording them the ability to replace damaged organs. Here we develop a system to study pathogen-triggered leaf abscission in Arabidopsis. Cauline leaves infected with the bacterial pathogen Pseudomonas syringae abscise as part of the defense mechanism. Pseudomonas syringae lacking a functional type III secretion system fail to elicit an abscission response, suggesting that the abscission response is a novel form of immunity triggered by effectors. HAESA/HAESA-like 2, INFLORESCENCE DEFICIENT IN ABSCISSION, and NEVERSHED are all required for pathogen-triggered abscission to occur. Additionally phytoalexin deficient 4, enhanced disease susceptibility 1, salicylic acid induction-deficient 2, and senescence-associated gene 101 plants with mutations in genes necessary for bacterial defense and salicylic acid signaling, and NahG transgenic plants with low levels of salicylic acid fail to abscise cauline leaves normally. Bacteria that physically contact abscission zones trigger a strong abscission response; however, long-distance signals are also sent from distal infected tissue to the abscission zone, alerting the abscission zone of looming danger. We propose a threshold model regulating cauline leaf defense where minor infections are handled by limiting bacterial growth, but when an infection is deemed out of control, cauline leaves are shed. Together with previous results, our findings suggest that salicylic acid may regulate both pathogen- and drought-triggered leaf abscission. PMID:29253890

  12. Generation of mice deficient in RNA-binding motif protein 3 (RBM3) and characterization of its role in innate immune responses and cell growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuda, Atsushi; Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075; Ogawa, Masahiro

    Highlights: {yields} We identified RNA-binding motif protein 3 (RBM3) as CpG-B DNA-binding protein. {yields} RBM3 translocates from the nucleus to the cytoplasm and co-localized with CpG-B DNA. {yields} We newly generated Rbm3-deficient (Rbm3{sup -/-}) mice. {yields} DNA-mediated cytokine gene induction was normally occured in Rbm3{sup -/-} cells. {yields}Rbm3{sup -/-} MEFs showed poorer proliferation rate and increased number of G2-phase cells. -- Abstract: The activation of innate immune responses is critical to host defense against microbial infections, wherein nucleic acid-sensing pattern recognition receptors recognize DNA or RNA from viruses or bacteria and activate downstream signaling pathways. In a search for newmore » DNA-sensing molecules that regulate innate immune responses, we identified RNA-binding motif protein 3 (RBM3), whose role has been implicated in the regulation of cell growth. In this study, we generated Rbm3-deficient (Rbm3{sup -/-}) mice to study the role of RBM3 in immune responses and cell growth. Despite evidence for its interaction with immunogenic DNA in a cell, no overt phenotypic abnormalities were found in cells from Rbm3{sup -/-} mice for the DNA-mediated induction of cytokine genes. Interestingly, however, Rbm3{sup -/-} mouse embryonic fibroblasts (MEFs) showed poorer proliferation rates as compared to control MEFs. Further cell cycle analysis revealed that Rbm3{sup -/-} MEFs have markedly increased number of G2-phase cells, suggesting a hitherto unknown role of RBM3 in the G2-phase control. Thus, these mutant mice and cells may provide new tools with which to study the mechanisms underlying the regulation of cell cycle and oncogenesis.« less

  13. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons.

    PubMed

    Sim, Chan Kyu; Cho, Yeon Sook; Kim, Byung Soo; Baek, In-Jeoung; Kim, Young-Joon; Lee, Myeong Sup

    2016-06-01

    Type I interferon (IFN-I) plays a critical role in antiviral and antitumor defense. In our previous studies, we showed that IFN-I-inducible 2'-5' oligoadenylate synthetase-like 1 (OASL1) negatively regulates IFN-I production upon viral infection by specifically inhibiting translation of the IFN-I-regulating master transcription factor, interferon regulatory factor 7 (IRF7). In this study, we investigated whether OASL1 plays a negative role in the anti-tumor immune response by using OASL1-deficient (Oasl1 (-/-)) mice and transplantable syngeneic tumor cell models. We found that Oasl1 (-/-) mice demonstrate enhanced resistance to lung metastatic tumors and subcutaneously implanted tumors compared to wild-type (WT) mice. Additionally, we found that cytotoxic effector cells such as CD8(+) T cells (including tumor antigen-specific CD8(+) T cells) and NK cells as well as CD8α(+) DCs (the major antigen cross-presenting cells) were much more frequent (>fivefold) in the Oasl1 (-/-) mouse tumors. Furthermore, the cytotoxic effector cells in Oasl1 (-/-) mouse tumors seemed to be more functionally active. However, the proportion of immunosuppressive myeloid-derived suppressor cells within hematopoietic cells and of regulatory T cells within CD4(+) T cells in Oasl1 (-/-) mouse tumors did not differ significantly from that of WT mice. Tumor-challenged Oasl1 (-/-) mice expressed increased levels of IFN-I and IRF7 protein in the growing tumor, indicating that the enhanced antitumor immune response observed in Oasl1 (-/-) mice was caused by higher IFN-I production in Oasl1 (-/-) mice. Collectively, these results show that OASL1 deficiency promotes the antitumor immune response, and thus, OASL1 could be a good therapeutic target for treating tumors.

  14. Neutropenia restores virulence to an attenuated Cu,Zn superoxide dismutase-deficient Haemophilus ducreyi strain in the swine model of chancroid.

    PubMed

    San Mateo, L R; Toffer, K L; Orndorff, P E; Kawula, T H

    1999-10-01

    Haemophilus ducreyi causes chancroid, a sexually transmitted cutaneous genital ulcer disease associated with increased heterosexual transmission of human immunodeficiency virus. H. ducreyi expresses a periplasmic copper-zinc superoxide dismutase (Cu, Zn SOD) that protects the bacterium from killing by exogenous superoxide in vitro. We hypothesized that the Cu,Zn SOD would protect H. ducreyi from immune cell killing, enhance survival, and affect ulcer development in vivo. In order to test this hypothesis and study the role of the Cu,Zn SOD in H. ducreyi pathogenesis, we compared a Cu,Zn SOD-deficient H. ducreyi strain to its isogenic wild-type parent with respect to survival and ulcer development in immunocompetent and immunosuppressed pigs. The Cu,Zn SOD-deficient strain was recovered from significantly fewer inoculated sites and in significantly lower numbers than the wild-type parent strain or a merodiploid (sodC+ sodC) strain after infection of immunocompetent pigs. In contrast, survival of the wild-type and Cu,Zn SOD-deficient strains was not significantly different in pigs that were rendered neutropenic by treatment with cyclophosphamide. Ulcer severity in pigs was not significantly different between sites inoculated with wild type and sites inoculated with Cu,Zn SOD-deficient H. ducreyi. Our data suggest that the periplasmic Cu,Zn SOD is an important virulence determinant in H. ducreyi, protecting the bacterium from host immune cell killing and contributing to survival and persistence in the host.

  15. Neutropenia Restores Virulence to an Attenuated Cu,Zn Superoxide Dismutase-Deficient Haemophilus ducreyi Strain in the Swine Model of Chancroid

    PubMed Central

    San Mateo, Lani R.; Toffer, Kristen L.; Orndorff, Paul E.; Kawula, Thomas H.

    1999-01-01

    Haemophilus ducreyi causes chancroid, a sexually transmitted cutaneous genital ulcer disease associated with increased heterosexual transmission of human immunodeficiency virus. H. ducreyi expresses a periplasmic copper-zinc superoxide dismutase (Cu,Zn SOD) that protects the bacterium from killing by exogenous superoxide in vitro. We hypothesized that the Cu,Zn SOD would protect H. ducreyi from immune cell killing, enhance survival, and affect ulcer development in vivo. In order to test this hypothesis and study the role of the Cu,Zn SOD in H. ducreyi pathogenesis, we compared a Cu,Zn SOD-deficient H. ducreyi strain to its isogenic wild-type parent with respect to survival and ulcer development in immunocompetent and immunosuppressed pigs. The Cu,Zn SOD-deficient strain was recovered from significantly fewer inoculated sites and in significantly lower numbers than the wild-type parent strain or a merodiploid (sodC+ sodC) strain after infection of immunocompetent pigs. In contrast, survival of the wild-type and Cu,Zn SOD-deficient strains was not significantly different in pigs that were rendered neutropenic by treatment with cyclophosphamide. Ulcer severity in pigs was not significantly different between sites inoculated with wild type and sites inoculated with Cu,Zn SOD-deficient H. ducreyi. Our data suggest that the periplasmic Cu,Zn SOD is an important virulence determinant in H. ducreyi, protecting the bacterium from host immune cell killing and contributing to survival and persistence in the host. PMID:10496915

  16. PLCG2-associatiated antibody deficiency immune dysregulation (PLAID)

    MedlinePlus

    ... Award Negotiation & Initial Award After Award Foreign Grants Management Getting Your Initial International Award Actions You Can Take as the Project Leader on a Foreign Grant Subawards for Foreign ...

  17. Deficiency in Serine Protease Inhibitor Neuroserpin Exacerbates Ischemic Brain Injury by Increased Postischemic Inflammation

    PubMed Central

    Ludewig, Peter; Bernreuther, Christian; Krasemann, Susanne; Arunachalam, Priyadharshini; Gerloff, Christian; Glatzel, Markus; Magnus, Tim

    2013-01-01

    The only approved pharmacological treatment for ischemic stroke is intravenous administration of plasminogen activator (tPA) to re-canalize the occluded cerebral vessel. Not only reperfusion but also tPA itself can induce an inflammatory response. Microglia are the innate immune cells of the central nervous system and the first immune cells to become activated in stroke. Neuroserpin, an endogenous inhibitor of tPA, is up-regulated following cerebral ischemia. To examine neuroserpin-dependent mechanisms of neuroprotection in stroke, we studied neuroserpin deficient (Ns−/−) mice in an animal model of temporal focal ischemic stroke. Infarct size and neurological outcome were worse in neuroserpin deficient mice even though the fibrinolytic activity in the ischemic brain was increased. The increased infarct size was paralleled by a selective increase in proinflammatory microglia activation in Ns−/− mice. Our results show excessive microglial activation in Ns−/− mice mediated by an increased activity of tPA. This activation results in a worse outcome further underscoring the potential detrimental proinflammatory effects of tPA. PMID:23658802

  18. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.

    PubMed

    Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2011-11-23

    Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Nlrp6- and ASC-Dependent Inflammasomes Do Not Shape the Commensal Gut Microbiota Composition.

    PubMed

    Mamantopoulos, Michail; Ronchi, Francesca; Van Hauwermeiren, Filip; Vieira-Silva, Sara; Yilmaz, Bahtiyar; Martens, Liesbet; Saeys, Yvan; Drexler, Stefan K; Yazdi, Amir S; Raes, Jeroen; Lamkanfi, Mohamed; McCoy, Kathy D; Wullaert, Andy

    2017-08-15

    The gut microbiota regulate susceptibility to multiple human diseases. The Nlrp6-ASC inflammasome is widely regarded as a hallmark host innate immune axis that shapes the gut microbiota composition. This notion stems from studies reporting dysbiosis in mice lacking these inflammasome components when compared with non-littermate wild-type animals. Here, we describe microbial analyses in inflammasome-deficient mice while minimizing non-genetic confounders using littermate-controlled Nlrp6-deficient mice and ex-germ-free littermate-controlled ASC-deficient mice that were all allowed to shape their gut microbiota naturally after birth. Careful microbial phylogenetic analyses of these cohorts failed to reveal regulation of the gut microbiota composition by the Nlrp6- and ASC-dependent inflammasomes. Our results obtained in two geographically separated animal facilities dismiss a generalizable impact of Nlrp6- and ASC-dependent inflammasomes on the composition of the commensal gut microbiota and highlight the necessity for littermate-controlled experimental design in assessing the influence of host immunity on gut microbial ecology. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective.

    PubMed

    Harder, Jeffrey M; Braine, Catherine E; Williams, Pete A; Zhu, Xianjun; MacNicoll, Katharine H; Sousa, Gregory L; Buchanan, Rebecca A; Smith, Richard S; Libby, Richard T; Howell, Gareth R; John, Simon W M

    2017-05-09

    Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wld s allele, which protects from axon dysfunction. We demonstrate that DBA/2J .Wld s mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J .Wld s mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J. Wld s mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma.

  1. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective

    PubMed Central

    Harder, Jeffrey M.; Braine, Catherine E.; Williams, Pete A.; Zhu, Xianjun; MacNicoll, Katharine H.; Sousa, Gregory L.; Buchanan, Rebecca A.; Smith, Richard S.; Howell, Gareth R.; John, Simon W. M.

    2017-01-01

    Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wlds allele, which protects from axon dysfunction. We demonstrate that DBA/2J.Wlds mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J.Wlds mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J.Wlds mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma. PMID:28446616

  2. Neonatal Fc Receptor Regulation of Lung Immunoglobulin and CD103+ Dendritic Cells Confers Transient Susceptibility to Tuberculosis.

    PubMed

    Vogelzang, Alexis; Lozza, Laura; Reece, Stephen T; Perdomo, Carolina; Zedler, Ulrike; Hahnke, Karin; Oberbeck-Mueller, Dagmar; Dorhoi, Anca; Kaufmann, Stefan H E

    2016-10-01

    The neonatal Fc receptor (FcRn) extends the systemic half-life of IgG antibodies by chaperoning bound Fc away from lysosomal degradation inside stromal and hematopoietic cells. FcRn also transports IgG across mucosal barriers into the lumen, and yet little is known about how FcRn modulates immunity in the lung during homeostasis or infection. We infected wild-type (WT) and FcRn-deficient (fcgrt(-/-)) mice with Pseudomonas aeruginosa or Mycobacterium tuberculosis to investigate whether recycling and transport of IgG via FcRn influences innate and adaptive immunity in the lung in response to bacterial infection. We found that FcRn expression maintains homeostatic IgG levels in lung and leads to preferential secretion of low-affinity IgG ligands into the lumen. Fcgrt(-/-) animals exhibited no evidence of developmental impairment of innate immunity in the lung and were able to efficiently recruit neutrophils in a model of acute bacterial pneumonia. Although local humoral immunity in lung increased independently of the presence of FcRn during tuberculosis, there was nonetheless a strong impact of FcRn deficiency on local adaptive immunity. We show that the quantity and quality of IgG in airways, as well as the abundance of dendritic cells in the lung, are maintained by FcRn. FcRn ablation transiently enhanced local T cell immunity and neutrophil recruitment during tuberculosis, leading to a lower bacterial burden in lung. This novel understanding of tissue-specific modulation of mucosal IgG isotypes in the lung by FcRn sheds light on the role of mucosal IgG in immune responses in the lung during homeostasis and bacterial disease. Copyright © 2016 Vogelzang et al.

  3. IgE Immune Complexes Stimulate an Increase in Lung Mast Cell Progenitors in a Mouse Model of Allergic Airway Inflammation

    PubMed Central

    Dahlin, Joakim S.; Ivarsson, Martin A.; Heyman, Birgitta; Hallgren, Jenny

    2011-01-01

    Mast cell numbers and allergen specific IgE are increased in the lungs of patients with allergic asthma and this can be reproduced in mouse models. The increased number of mast cells is likely due to recruitment of mast cell progenitors that mature in situ. We hypothesized that formation of IgE immune complexes in the lungs of sensitized mice increase the migration of mast cell progenitors to this organ. To study this, a model of allergic airway inflammation where mice were immunized with ovalbumin (OVA) in alum twice followed by three daily intranasal challenges of either OVA coupled to trinitrophenyl (TNP) alone or as immune complexes with IgE-anti-TNP, was used. Mast cell progenitors were quantified by a limiting dilution assay. IgE immune complex challenge of sensitized mice elicited three times more mast cell progenitors per lung than challenge with the same dose of antigen alone. This dose of antigen challenge alone did not increase the levels of mast cell progenitors compared to unchallenged mice. IgE immune complex challenge of sensitized mice also enhanced the frequency of mast cell progenitors per 106 mononuclear cells by 2.1-fold. The enhancement of lung mast cell progenitors by IgE immune complex challenge was lost in FcRγ deficient mice but not in CD23 deficient mice. Our data show that IgE immune complex challenge enhances the number of mast cell progenitors in the lung through activation of an Fc receptor associated with the FcRγ chain. This most likely takes place via activation of FcεRI, although activation via FcγRIV or a combination of the two receptors cannot be excluded. IgE immune complex-mediated enhancement of lung MCp numbers is a new reason to target IgE in therapies against allergic asthma. PMID:21625525

  4. Changes in the immune system are conditioned by nutrition.

    PubMed

    Marcos, A; Nova, E; Montero, A

    2003-09-01

    Undernutrition due to insufficient intake of energy and macronutrients and/or due to deficiencies in specific micronutrients impairs the immune system, suppressing immune functions that are fundamental to host protection. The most consistent abnormalities are seen in cell-mediated immunity, complement system, phagocyte function, cytokine production, mucosal secretory antibody response, and antibody affinity. There is a number of physiological situations such as ageing and performance of intense physical exercise associated with an impairment of some immune parameters' response. Nutrition can influence the extent of immune alteration in both of them. There are also numerous pathological situations in which nutrition plays a role as a primary or secondary determinant of some underlying immunological impairments. This includes obesity, eating disorders (anorexia nervosa and bulimia nervosa), food hypersensitivity and gastrointestinal disorders as some examples. The implications of nutrition on immune function in these disorders are briefly reviewed.

  5. Symptoms of Blood Disorders

    MedlinePlus

    ... or immune system proteins can cause increased blood viscosity (thickening of the blood). Increased platelets or blood ... by anemia Pica (eating of ice, dirt, or clay) suggests iron deficiency anemia Drugs Mentioned In This ...

  6. Talking to Your Doctor about Primary Immune Deficiency Diseases

    MedlinePlus

    ... Award Negotiation & Initial Award After Award Foreign Grants Management Getting Your Initial International Award Actions You Can Take as the Project Leader on a Foreign Grant Subawards for Foreign ...

  7. Macrophage IL-12p70 Signaling Prevents HSV-1–Induced CNS Autoimmunity Triggered by Autoaggressive CD4+ Tregs

    PubMed Central

    Mott, Kevin R.; Gate, David; Zandian, Mandana; Allen, Sariah J.; Rajasagi, Naveen Kumar; van Rooijen, Nico; Chen, Shuang; Arditi, Moshe; Rouse, Barry T.; Flavell, Richard A.; Town, Terrence; Ghiasi, Homayon

    2011-01-01

    Purpose. CD4+CD25+FoxP3+ naturally occurring regulatory T cells (Tregs) maintain self-tolerance and function to suppress overly exuberant immune responses. However, it is unclear whether innate immune cells modulate Treg function. Here the authors examined the role of innate immunity in lymphomyeloid homeostasis. Methods. The involvement of B cells, dendritic cells (DCs), macrophages, natural killer (NK) cells, and T cells in central nervous system (CNS) demyelination in different strains of mice infected ocularly with herpes simplex virus type 1 (HSV-1) was investigated. Results. The authors found that depletion of macrophages, but not DCs, B cells, NK cells, CD4+ T cells, or CD8+ T cells, induced CNS demyelination irrespective of virus or mouse strain. As with macrophage depletion, mice deficient in interleukin (IL)-12p35 or IL-12p40 showed CNS demyelination after HSV-1 infection, whereas demyelination was undetectable in HSV-1–infected, IL-23p19–deficient, or Epstein-Barr virus–induced gene 3-deficient mice. Demyelination could be rescued in macrophage-depleted mice after the injection of IL-12p70 DNA and in IL-12p35−/− or IL-12p40−/− mice after injection with IL-12p35 or IL-12p40 DNA or with recombinant viruses expressing IL-12p35 or IL-12p40. Using FoxP3-, CD4-, CD8-, or CD25-depletion and gene-deficient mouse approaches, the authors demonstrated that HSV-1–induced demyelination was blocked in the absence of CD4, CD25, or FoxP3 in macrophage-depleted mice. Flow cytometry showed an elevation of CD4+CD25+FoxP3+ T cells in the spleens of infected macrophage-depleted mice, and adoptive transfer of CD4+CD25+ T cells to infected macrophage-depleted severe combined immunodeficient mice induced CNS demyelination. Conclusions. The authors demonstrated that macrophage IL-12p70 signaling plays an important role in maintaining immune homeostasis in the CNS by preventing the development of autoaggressive CD4+ Tregs. PMID:21220560

  8. Umbilical Cord Blood Transplantation Corrects Very Early-Onset Inflammatory Bowel Disease in Chinese Patients With IL10RA-Associated Immune Deficiency.

    PubMed

    Peng, Kaiyue; Qian, Xiaowen; Huang, Zhiheng; Lu, Junping; Wang, Yuhuan; Zhou, Ying; Wang, Huijun; Wu, Bingbing; Wang, Ying; Chen, Lingli; Zhai, Xiaowen; Huang, Ying

    2018-05-18

    Hematopoietic stem cell transplantation is considered the only curative therapy for very early-onset inflammatory bowel disease with specific immune defects, such as interleukin-10 receptor deficiency. We performed reduced-intensity conditioning before umbilical cord blood transplantation in patients with interleukin-10 receptor-A deficiency. We enrolled 9 very early-onset inflammatory bowel disease patients with typical manifestations. We diagnosed the patients with interleukin-10 receptor-A deficiency by whole-exome sequencing. Umbilical cord blood transplantation was performed in all 9 patients. Eight patients received the reduced-intensity conditioning regimen, and 1 patient received the myeloablative conditioning regimen. All 9 patients received transplantation between the ages of 6 months to 43 months (average, 16.8 months) with body weights ranging from 3 to 10.4 kg (average, 6.6 kg). The patients displayed complete chimerism at 2-8 weeks after transplantation; 6 patients achieved complete remission without evidence of graft-vs-host disease or infections; 1 patient died of chronic lung graft-vs-host disease at 6 months post-transplantation; and the other 2 patients died of sepsis post-transplantation because of unsuccessful engraftments. Severe malnutrition and growth retardation associated with interleukin-10 receptor-A deficiency were significantly improved post-transplantation. We recommend umbilical cord blood transplantation as a potential treatment for very early-onset inflammatory bowel disease with a defined monogenic immunodeficiency, and we suggest that reduced-intensity conditioning chemotherapy is more suitable than myeloablative conditioning for patients with severe malnutrition and bowel disease. We have demonstrated success with reduced-intensity conditioning for interleukin-10 receptor-A deficiency in pediatric patients with severe clinical conditions. 10.1093/ibd/izy028_video1izy028.video15786489183001.

  9. Role Of Cathepsin C During Breast Cancer Metastasis

    DTIC Science & Technology

    2010-09-01

    tumor histopathology is regulated by CSTC; however, in cathepsin C (Ctsc)-deficient mice, there is a significant reduction in the number of...hyaluronan. Glycobiology 14(11): 1108. 2. Ruffell B, Johnson P. (2006) Hyaluronan induces apoptosis through CD44 in activated lymphoma cells. EJC...tumors and lymphomas [16,17]. The ability of immune-deficient mice to reject and/or inhibit the growth of many, but not all cell lines is also impaired

  10. Deficiency of a Disintegrin and Metalloproteinase 10 (ADAM10) on dendritic cells prevents the development of type 2 immunity and IgE production

    USDA-ARS?s Scientific Manuscript database

    Mice in which dendritic cells (DCs)lack ADAM10 (ADAM10DC-/-) were found to have a dramatic decrease in TH2 immunity and IgE production, as measured by both lung inflammation to house dust mite (HDM) and active systemic anaphylaxis models (ASA). With HDM, the ADAM10DC-/- had significantly less airway...

  11. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma.

    PubMed

    Miao, Diana; Margolis, Claire A; Gao, Wenhua; Voss, Martin H; Li, Wei; Martini, Dylan J; Norton, Craig; Bossé, Dominick; Wankowicz, Stephanie M; Cullen, Dana; Horak, Christine; Wind-Rotolo, Megan; Tracy, Adam; Giannakis, Marios; Hodi, Frank Stephen; Drake, Charles G; Ball, Mark W; Allaf, Mohamad E; Snyder, Alexandra; Hellmann, Matthew D; Ho, Thai; Motzer, Robert J; Signoretti, Sabina; Kaelin, William G; Choueiri, Toni K; Van Allen, Eliezer M

    2018-02-16

    Immune checkpoint inhibitors targeting the programmed cell death 1 receptor (PD-1) improve survival in a subset of patients with clear cell renal cell carcinoma (ccRCC). To identify genomic alterations in ccRCC that correlate with response to anti-PD-1 monotherapy, we performed whole-exome sequencing of metastatic ccRCC from 35 patients. We found that clinical benefit was associated with loss-of-function mutations in the PBRM1 gene ( P = 0.012), which encodes a subunit of the PBAF switch-sucrose nonfermentable (SWI/SNF) chromatin remodeling complex. We confirmed this finding in an independent validation cohort of 63 ccRCC patients treated with PD-1 or PD-L1 (PD-1 ligand) blockade therapy alone or in combination with anti-CTLA-4 (cytotoxic T lymphocyte-associated protein 4) therapies ( P = 0.0071). Gene-expression analysis of PBAF-deficient ccRCC cell lines and PBRM1 -deficient tumors revealed altered transcriptional output in JAK-STAT (Janus kinase-signal transducers and activators of transcription), hypoxia, and immune signaling pathways. PBRM1 loss in ccRCC may alter global tumor-cell expression profiles to influence responsiveness to immune checkpoint therapy. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome.

    PubMed

    Westdorp, Harm; Kolders, Sigrid; Hoogerbrugge, Nicoline; de Vries, I Jolanda M; Jongmans, Marjolijn C J; Schreibelt, Gerty

    2017-09-10

    Monoallelic germline mutations in one of the DNA mismatch repair (MMR) genes cause Lynch syndrome, with a high lifetime risks of colorectal and endometrial cancer at adult age. Less well known, is the constitutional mismatch repair deficiency (CMMRD) syndrome caused by biallelic germline mutations in MMR genes. This syndrome is characterized by the development of childhood cancer. Patients with CMMRD are at extremely high risk of developing multiple cancers including hematological, brain and intestinal tumors. Mutations in MMR genes impair DNA repair and therefore most tumors of patients with CMMRD are hypermutated. These mutations lead to changes in the translational reading frame, which consequently result in neoantigen formation. Neoantigens are recognized as foreign by the immune system and can induce specific immune responses. The growing evidence on the clinical efficacy of immunotherapies, such as immune checkpoint inhibitors, offers the prospect for treatment of patients with CMMRD. Combining neoantigen-based vaccination strategies and immune checkpoint inhibitors could be an effective way to conquer CMMRD-related tumors. Neoantigen-based vaccines might also be a preventive treatment option in healthy biallelic MMR mutation carriers. Future studies need to reveal the safety and efficacy of immunotherapies for patients with CMMRD. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. [Immune, inflammatory, and nutritional protein profile in children with iron deficiency in Côte d'Ivoire].

    PubMed

    Yapi, Houphouët Félix; Ahiboh, Hugues; Yayo, Eric; Edjeme, Angele; Attoungbre-Hauhouot, Marie Laure; Allico, Joseph Djaman; Monnet, Dagui

    2009-01-01

    Throughout the world and particularly in sub-Saharan Africa, deficiencies in trace elements constitute a real public health problem because of the insufficient nutritional quality of food. These trace elements are necessary for many of the body's biochemical reactions. The role of microelements such as vitamin A and zinc has been established in the functioning of the immune system and secretion of inflammatory reaction proteins, but the role of iron in these functions remains to be elucidated. The sample consists of 186 children (3/4) 80 with an iron deficiency and 106 with normal iron status. They range in age from 5 to 15 years and all attend school in the department of Adzope. The study excluded all children with parasites that might affect blood iron, protein and other hematological indicators, in particular, Plasmodium falciparum, Giardia intestinalis, Trichomonas intestinalis, Ascaris lumbricoides, and Ancylostoma. Inflammatory, immune and nutritional proteins were measured by radial immunodiffusion (Mancini's method). Ferritin was measured by a specific immunoenzymatic assay. Hematological indicators were tested by an automatic blood cell counter. Nutritional status was estimated by the weight/height ratio (W/H). This analysis showed that iron deficiency was associated with reduced IgG levels (p < 0.05), although immunoglobulins A and M remained stable (p > 0.05. Iron deficiency was also associated with reduced levels of thyroxine-binding prealbumin (TBPA) and albumin (p < 0.05). Inflammatory proteins did not differ significantly between the two groups (p > 0.05). Furthermore, the prognostic inflammatory and nutritional index (PINI) did not show any inflammatory, vital or nutritional risk, because it was lower than or equal to 2. Finally, malnutrition was not observed in the iron-deficient children: the difference in the weight/height ratio (W/H = 96.58 +/- 2.4%) between the children with iron deficiency and those with normal iron status (98.7 +/- 4.3%) did not differ significantly. The reduced IgG associated with iron deficiency may be attributed to the role that iron plays in the proliferation and maturation of lymphocytes. Reduced iron levels would thus lead to slowing down the hematopoietic mechanism, resulting in a decrease in B lymphocyte production and thus inevitably a reduction in IgG synthesis. The reduction in albumin and TBPA associated with the iron deficiency but in the absence of any sign of malnutrition (W/H > 96%) or inflammatory risk (PINI < 2) in either study group shows that iron may play a dominant role during protein synthesis. Iron deficiency might limit the energy of cellular tissues, leading to a reduction in RNA activity (transcription and translation), which would in turn decrease ribosome activity in tissues and thus reduce amino acid synthesis in cells, resulting in the reduction observed in protein synthesis. The lack of difference between the study groups in inflammatory proteins, notably CRP and alpha1-GPA, indicates that iron deficiency does not appear to be related to an inflammatory process. This study of children without any apparent clinical signs of iron deficiency shows that such a deficiency may be associated with a disruption in protein production. The proteins concerned include IgG, TBPA and albumin. The public authorities should pay particular attention to improving children's diets, especially their micronutrient levels, including for iron, vitamin A and zinc.

  14. Galectin-3 Shapes Antitumor Immune Responses by Suppressing CD8+ T Cells via LAG-3 and Inhibiting Expansion of Plasmacytoid Dendritic Cells.

    PubMed

    Kouo, Theodore; Huang, Lanqing; Pucsek, Alexandra B; Cao, Minwei; Solt, Sara; Armstrong, Todd; Jaffee, Elizabeth

    2015-04-01

    Galectin-3 is a 31-kDa lectin that modulates T-cell responses through several mechanisms, including apoptosis, T-cell receptor (TCR) cross-linking, and TCR downregulation. We found that patients with pancreatic ductal adenocarcinoma (PDA) who responded to a granulocyte-macrophage colony-stimulating factor-secreting allogeneic PDA vaccine developed neutralizing antibodies to galectin-3 after immunization. We show that galectin-3 binds activated antigen-committed CD8(+) T cells only in the tumor microenvironment. Galectin-3-deficient mice exhibit improved CD8(+) T-cell effector function and increased expression of several inflammatory genes. Galectin-3 binds to LAG-3, and LAG-3 expression is necessary for galectin-3-mediated suppression of CD8(+) T cells in vitro. Lastly, galectin-3-deficient mice have elevated levels of circulating plasmacytoid dendritic cells, which are superior to conventional dendritic cells in activating CD8(+) T cells. Thus, inhibiting galectin-3 in conjunction with CD8(+) T-cell-directed immunotherapies should enhance the tumor-specific immune response. ©2015 American Association for Cancer Research.

  15. Human Virus-Derived Small RNAs Can Confer Antiviral Immunity in Mammals.

    PubMed

    Qiu, Yang; Xu, Yanpeng; Zhang, Yao; Zhou, Hui; Deng, Yong-Qiang; Li, Xiao-Feng; Miao, Meng; Zhang, Qiang; Zhong, Bo; Hu, Yuanyang; Zhang, Fu-Chun; Wu, Ligang; Qin, Cheng-Feng; Zhou, Xi

    2017-06-20

    RNA interference (RNAi) functions as a potent antiviral immunity in plants and invertebrates; however, whether RNAi plays antiviral roles in mammals remains unclear. Here, using human enterovirus 71 (HEV71) as a model, we showed HEV71 3A protein as an authentic viral suppressor of RNAi during viral infection. When the 3A-mediated RNAi suppression was impaired, the mutant HEV71 readily triggered the production of abundant HEV71-derived small RNAs with canonical siRNA properties in cells and mice. These virus-derived siRNAs were produced from viral dsRNA replicative intermediates in a Dicer-dependent manner and loaded into AGO, and they were fully active in degrading cognate viral RNAs. Recombinant HEV71 deficient in 3A-mediated RNAi suppression was significantly restricted in human somatic cells and mice, whereas Dicer deficiency rescued HEV71 infection independently of type I interferon response. Thus, RNAi can function as an antiviral immunity, which is induced and suppressed by a human virus, in mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Primary Immune Deficiencies – Principles of Care

    PubMed Central

    Chapel, Helen; Prevot, Johan; Gaspar, Hubert Bobby; Español, Teresa; Bonilla, Francisco A.; Solis, Leire; Drabwell, Josina

    2014-01-01

    Primary immune deficiencies (PIDs) are a growing group of over 230 different disorders caused by ineffective, absent or an increasing number of gain of function mutations in immune components, mainly cells and proteins. Once recognized, these rare disorders are treatable and in some cases curable. Otherwise untreated PIDs are often chronic, serious, or even fatal. The diagnosis of PIDs can be difficult due to lack of awareness or facilities for diagnosis, and management of PIDs is complex. This document was prepared by a worldwide multi-disciplinary team of specialists; it aims to set out comprehensive principles of care for PIDs. These include the role of specialized centers, the importance of registries, the need for multinational research, the role of patient organizations, management and treatment options, the requirement for sustained access to all treatments including immunoglobulin therapies and hematopoietic stem cell transplantation, important considerations for developing countries and suggestions for implementation. A range of healthcare policies and services have to be put into place by government agencies and healthcare providers, to ensure that PID patients worldwide have access to appropriate and sustainable medical and support services. PMID:25566243

  17. HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes

    PubMed Central

    Núñez-Andrade, Norman; Iborra, Salvador; Trullo, Antonio; Moreno-Gonzalo, Olga; Calvo, Enrique; Catalán, Elena; Menasche, Gaël; Sancho, David; Vázquez, Jesús; Yao, Tso-Pang

    2016-01-01

    HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4+ T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8+ T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6-/- CD8+ T cells to Rag1-/- mice demonstrated specific impairment in CD8+ T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin 1 – dynactin mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFNγ) production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs. PMID:26869226

  18. Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory T and Th17 cells

    PubMed Central

    Moraes-Vieira, Pedro M.M.; Larocca, Rafael A.; Bassi, Enio J.; Peron, Jean Pierre S.; Andrade-Oliveira, Vinícius; Wasinski, Frederick; Araujo, Ronaldo; Thornley, Thomas; Quintana, Francisco J.; Basso, Alexandre S.; Strom, Terry B.; Câmara, Niels O.S.

    2016-01-01

    Leptin is an adipose-secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1-cell polarization and inhibit Th2-cell responses. Additionally, leptin induces Th17-cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg-cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL-12, TNF-α, and IL-6, (iii) increased DC production of TGF-β, and (iv) limited the capacity of DCs to induce syngeneic CD4+ T-cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin-free conditions induced Treg or TH17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs. PMID:24271843

  19. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors.

    PubMed

    Bhattacharyya, Suchita; Zagórska, Anna; Lew, Erin D; Shrestha, Bimmi; Rothlin, Carla V; Naughton, John; Diamond, Michael S; Lemke, Greg; Young, John A T

    2013-08-14

    Upon activation by the ligands Gas6 and Protein S, Tyro3/Axl/Mer (TAM) receptor tyrosine kinases promote phagocytic clearance of apoptotic cells and downregulate immune responses initiated by Toll-like receptors and type I interferons (IFNs). Many enveloped viruses display the phospholipid phosphatidylserine on their membranes, through which they bind Gas6 and Protein S and engage TAM receptors. We find that ligand-coated viruses activate TAM receptors on dendritic cells (DCs), dampen type I IFN signaling, and thereby evade host immunity and promote infection. Upon virus challenge, TAM-deficient DCs display type I IFN responses that are elevated in comparison to wild-type cells. As a consequence, TAM-deficient DCs are relatively resistant to infection by flaviviruses and pseudotyped retroviruses, but infection can be restored with neutralizing type I IFN antibodies. Correspondingly, a TAM kinase inhibitor antagonizes the infection of wild-type DCs. Thus, TAM receptors are engaged by viruses in order to attenuate type I IFN signaling and represent potential therapeutic targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Partial restoration of impaired interleukin-2 production and Tac antigen (putative interleukin-2 receptor) expression in patients with acquired immune deficiency syndrome by isoprinosine treatment in vitro.

    PubMed Central

    Tsang, K Y; Fudenberg, H H; Galbraith, G M; Donnelly, R P; Bishop, L R; Koopmann, W R

    1985-01-01

    The in vitro effects of isoprinosine (ISO) on interleukin-2 (IL-2) production, the expression of Tac antigen (IL-2 receptor) on lymphocytes, and the ability of Leu 3(+) cells to absorb interleukin-1 (IL-1) were investigated in 10 patients with acquired immune deficiency syndrome (AIDS). In 9 of the 10 patients, production of IL-2 from mononuclear cells and Leu 3(+) cells was depressed; expression of Tac antigen on mononuclear cells and Leu 2(+) cells was found to be depressed in 9 of 10 patients. The ability of the Leu 3(+) lymphocytes to absorb IL-1 was depressed in all (four of four) patients studied. After ISO treatment, IL-2 production, Tac antigen expression and IL-1 absorption were restored to normal or near normal levels in most of the patients. These results suggest that ISO has an immunostimulating capacity in AIDS patients and that the potential of ISO in immune response restoration in AIDS patients deserves critical consideration. PMID:2581997

  1. Eros is a novel transmembrane protein that controls the phagocyte respiratory burst and is essential for innate immunity.

    PubMed

    Thomas, David C; Clare, Simon; Sowerby, John M; Pardo, Mercedes; Juss, Jatinder K; Goulding, David A; van der Weyden, Louise; Storisteanu, Daniel; Prakash, Ananth; Espéli, Marion; Flint, Shaun; Lee, James C; Hoenderdos, Kim; Kane, Leanne; Harcourt, Katherine; Mukhopadhyay, Subhankar; Umrania, Yagnesh; Antrobus, Robin; Nathan, James A; Adams, David J; Bateman, Alex; Choudhary, Jyoti S; Lyons, Paul A; Condliffe, Alison M; Chilvers, Edwin R; Dougan, Gordon; Smith, Kenneth G C

    2017-04-03

    The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91 phox and p22 phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643 , and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91 phox and p22 phox Consequently, Eros -deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense. © 2017 Thomas et al.

  2. Immune Deficiency Foundation

    MedlinePlus

    ... PI CONNECT Research Network USIDNET Patient Registry IDF Survey Research IDF Surveys National Health Insurance Surveys Clinical Trials ... and Fellows Research USIDNET IDF Research Fund IDF Survey Research IDF Surveys Contact Us Search form Search Welcome ...

  3. Deficient maternal zinc intake-but not folate-is associated with lower fetal heart rate variability.

    PubMed

    Spann, Marisa N; Smerling, Jennifer; Gustafsson, Hanna; Foss, Sophie; Altemus, Margaret; Monk, Catherine

    2015-03-01

    Few studies of maternal prenatal diet and child development examine micronutrient status in relation to fetal assessment. Twenty-four-hour dietary recall of zinc and folate and 20min of fetal heart rate were collected from 3rd trimester pregnant adolescents. Deficient zinc was associated with less fetal heart rate variability. Deficient folate had no associations with HRV. Neither deficient zinc nor deficient folate was related to fetal heart rate. These findings, from naturalistic observation, are consistent with emerging data on prenatal zinc supplementation using a randomized control design. Taken together, the findings suggest that maternal prenatal zinc intake is an important and novel factor for understanding child ANS development. Copyright © 2015. Published by Elsevier Ireland Ltd.

  4. [Effects of epithalon and cortagene on immunity and hemostasis in neonatally hypophysectomized chicken and old birds].

    PubMed

    Kuznik, B I; Pateiuk, A V; Baranchugova, L M; Rusaeva, N S

    2008-01-01

    It has been found that chicken hypophysectomized early in the neonatal period develop anemia, cellular and humoral immune deficiency, hypercoagulation and inhibited fibrinolysis by their 45th postnatal day. An analogous operation performed on old birds produces less significant changes in erythrocytes, immunity and hemostasis. Injections of epithalon tetrapeptide (Ala-Glu-Asp-Gly) administered to either hypophysectomized chicken or old birds during a period of 40 days completely eliminate the shifts registered in erythrocytes, immunity and hemostasis, while injections of cortagene (Ala-Glu-Asp-Pro) which is distinguished from epithalon by a different terminal aminoacid (with Gly being replaced by Pro) do not affect the parameters studied.

  5. The Drosophila imd signaling pathway.

    PubMed

    Myllymäki, Henna; Valanne, Susanna; Rämet, Mika

    2014-04-15

    The fruit fly, Drosophila melanogaster, has helped us to understand how innate immunity is activated. In addition to the Toll receptor and the Toll signaling pathway, the Drosophila immune response is regulated by another evolutionarily conserved signaling cascade, the immune deficiency (Imd) pathway, which activates NF-κB. In fact, the Imd pathway controls the expression of most of the antimicrobial peptides in Drosophila; thus, it is indispensable for normal immunity in flies. In this article, we review the current literature on the Drosophila Imd pathway, with special emphasis on its role in the (patho)physiology of different organs. We discuss the systemic response, as well as local responses, in the epithelial and mucosal surfaces and the nervous system.

  6. 78 FR 47935 - Medicare Program; Prospective Payment System and Consolidated Billing for Skilled Nursing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... corresponding terms in alphabetical order below: AIDS Acquired Immune Deficiency Syndrome ARD Assessment... resource-intensive than SNF residents, especially SNF post-acute care patients. These commenters stated...

  7. Genetics Home Reference: glycoprotein VI deficiency

    MedlinePlus

    ... protein called glycoprotein VI (GPVI). This protein is embedded in the outer membrane of blood cell fragments ... erythematosus (SLE). Autoimmune disorders occur when the immune system malfunctions and attacks the body's own cells and ...

  8. 77 FR 30050 - VASRD Status Summit: A Public Overview of Proposed Disability Evaluation Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... body system, Rheumatic Diseases. Specifically, working drafts containing proposed revisions to...) Infectious Diseases, Immune Disorders and Nutritional Deficiencies (38 CFR 4.88-4.89), (5) The...

  9. Genetics Home Reference: mannose-binding lectin deficiency

    MedlinePlus

    ... Nobelprize.org: The Immune System - In More Detail Patient Support and Advocacy Resources (1 link) ... Sources for This Page Arora M, Munoz E, Tenner AJ. Identification of a site on mannan-binding lectin critical ...

  10. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity

    PubMed Central

    Zhang, Qian; Dove, Christopher G.; Hor, Jyh Liang; Murdock, Heardley M.; Strauss-Albee, Dara M.; Garcia, Jordan A.; Mandl, Judith N.; Grodick, Rachael A.; Jing, Huie; Chandler-Brown, Devon B.; Lenardo, Timothy E.; Crawford, Greg; Matthews, Helen F.; Freeman, Alexandra F.; Cornall, Richard J.; Germain, Ronald N.

    2014-01-01

    DOCK8 mutations result in an inherited combined immunodeficiency characterized by increased susceptibility to skin and other infections. We show that when DOCK8-deficient T and NK cells migrate through confined spaces, they develop cell shape and nuclear deformation abnormalities that do not impair chemotaxis but contribute to a distinct form of catastrophic cell death we term cytothripsis. Such defects arise during lymphocyte migration in collagen-dense tissues when DOCK8, through CDC42 and p21-activated kinase (PAK), is unavailable to coordinate cytoskeletal structures. Cytothripsis of DOCK8-deficient cells prevents the generation of long-lived skin-resident memory CD8 T cells, which in turn impairs control of herpesvirus skin infections. Our results establish that DOCK8-regulated shape integrity of lymphocytes prevents cytothripsis and promotes antiviral immunity in the skin. PMID:25422492

  11. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways

    PubMed Central

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. PMID:26672068

  12. CD18 deficiency improves liver injury in the MCD model of steatohepatitis

    PubMed Central

    Pierce, Andrew A.; Siao, Kevin; Mattis, Aras N.; Goodsell, Amanda; Baron, Jody L.; Maher, Jacquelyn J.

    2017-01-01

    Neutrophils and macrophages are important constituents of the hepatic inflammatory infiltrate in non-alcoholic steatohepatitis. These innate immune cells express CD18, an adhesion molecule that facilitates leukocyte activation. In the context of fatty liver, activation of infiltrated leukocytes is believed to enhance hepatocellular injury. The objective of this study was to determine the degree to which activated innate immune cells promote steatohepatitis by comparing hepatic outcomes in wild-type and CD18-mutant mice fed a methionine-choline-deficient (MCD) diet. After 3 weeks of MCD feeding, hepatocyte injury, based on serum ALT elevation, was 40% lower in CD18-mutant than wild-type mice. Leukocyte infiltration into the liver was not impaired in CD18-mutant mice, but leukocyte activation was markedly reduced, as shown by the lack of evidence of oxidant production. Despite having reduced hepatocellular injury, CD18-mutant mice developed significantly more hepatic steatosis than wild-type mice after MCD feeding. This coincided with greater hepatic induction of pro-inflammatory and lipogenic genes as well as a modest reduction in hepatic expression of adipose triglyceride lipase. Overall, the data indicate that CD18 deficiency curbs MCD-mediated liver injury by limiting the activation of innate immune cells in the liver without compromising intrahepatic cytokine activation. Reduced liver injury occurs at the expense of increased hepatic steatosis, which suggests that in addition to damaging hepatocytes, infiltrating leukocytes may influence lipid homeostasis in the liver. PMID:28873429

  13. CD18 deficiency improves liver injury in the MCD model of steatohepatitis.

    PubMed

    Pierce, Andrew A; Duwaerts, Caroline C; Siao, Kevin; Mattis, Aras N; Goodsell, Amanda; Baron, Jody L; Maher, Jacquelyn J

    2017-01-01

    Neutrophils and macrophages are important constituents of the hepatic inflammatory infiltrate in non-alcoholic steatohepatitis. These innate immune cells express CD18, an adhesion molecule that facilitates leukocyte activation. In the context of fatty liver, activation of infiltrated leukocytes is believed to enhance hepatocellular injury. The objective of this study was to determine the degree to which activated innate immune cells promote steatohepatitis by comparing hepatic outcomes in wild-type and CD18-mutant mice fed a methionine-choline-deficient (MCD) diet. After 3 weeks of MCD feeding, hepatocyte injury, based on serum ALT elevation, was 40% lower in CD18-mutant than wild-type mice. Leukocyte infiltration into the liver was not impaired in CD18-mutant mice, but leukocyte activation was markedly reduced, as shown by the lack of evidence of oxidant production. Despite having reduced hepatocellular injury, CD18-mutant mice developed significantly more hepatic steatosis than wild-type mice after MCD feeding. This coincided with greater hepatic induction of pro-inflammatory and lipogenic genes as well as a modest reduction in hepatic expression of adipose triglyceride lipase. Overall, the data indicate that CD18 deficiency curbs MCD-mediated liver injury by limiting the activation of innate immune cells in the liver without compromising intrahepatic cytokine activation. Reduced liver injury occurs at the expense of increased hepatic steatosis, which suggests that in addition to damaging hepatocytes, infiltrating leukocytes may influence lipid homeostasis in the liver.

  14. Experimental and natural infections in MyD88- and IRAK-4-deficient mice and humans

    PubMed Central

    von Bernuth, Horst; Picard, Capucine; Puel, Anne; Casanova, Jean-Laurent

    2013-01-01

    Most Toll-like-receptors (TLRs) and interleukin-1 receptors (IL-1Rs) signal via myeloid differentiation primary response 88 (MyD88) and interleukin-1 receptor-associated kinase 4 (IRAK-4). The combined roles of these two receptor families in the course of experimental infections have been assessed in MyD88- and IRAK-4-deficient mice for almost fifteen years. These animals have been shown to be susceptible to 46 pathogens: 27 bacteria, 8 viruses, 7 parasites, and 4 fungi. Humans with inborn MyD88 or IRAK-4 deficiency were first identified in 2003. They suffer from naturally occurring life-threatening infections caused by a small number of bacterial species, although the incidence and severity of these infections decrease with age. Mouse TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be vital to combat a wide array of experimentally administered pathogens at most ages. By contrast, human TLR- and IL-1R-dependent immunity mediated by MyD88 and IRAK-4 seems to be effective in the natural setting against only a few bacteria and is most important in infancy and early childhood. The roles of TLRs and IL-1Rs in protective immunity deduced from studies in mutant mice subjected to experimental infections should therefore be reconsidered in the light of findings for natural infections in humans carrying mutations as discussed in this review. PMID:23255009

  15. Group B Streptococcus CovR regulation modulates host immune signaling pathways to promote vaginal colonization

    PubMed Central

    Patras, Kathryn A.; Wang, Nai-Yu; Fletcher, Erin M.; Cavaco, Courtney K.; Jimenez, Alyssa; Garg, Mansi; Fierer, Joshua; Sheen, Tamsin R.; Rajagopal, Lakshmi; Doran, Kelly S.

    2013-01-01

    Summary Streptococcus agalactiae (Group B Streptococcus, GBS) is a frequent commensal organism of the vaginal tract of healthy women. However, GBS can transition to a pathogen in susceptible hosts, but host and microbial factors that contribute to this conversion are not well understood. GBS CovR/S (CsrR/S) is a two component regulatory system that regulates key virulence elements including adherence and toxin production. We performed global transcription profiling of human vaginal epithelial cells exposed to WT, CovR deficient, and toxin deficient strains, and observed that insufficient regulation by CovR and subsequent increased toxin production results in a drastic increase in host inflammatory responses, particularly in cytokine signaling pathways promoted by IL-8 and CXCL2. Additionally, we observed that CovR regulation impacts epithelial cell attachment and intracellular invasion. In our mouse model of GBS vaginal colonization, we further demonstrated that CovR regulation promotes vaginal persistence, as infection with a CovR deficient strain resulted in a heightened host immune response as measured by cytokine production and neutrophil activation. Using CXCr2 KO mice, we determined that this immune alteration occurs, at least in part, via signaling through the CXCL2 receptor. Taken together, we conclude that CovR is an important regulator of GBS vaginal colonization and loss of this regulatory function may contribute to the inflammatory havoc seen during the course of infection. PMID:23298320

  16. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways.

    PubMed

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. © 2016 American Society of Plant Biologists. All rights reserved.

  17. CCR7 Maintains Nonresolving Lymph Node and Adipose Inflammation in Obesity.

    PubMed

    Hellmann, Jason; Sansbury, Brian E; Holden, Candice R; Tang, Yunan; Wong, Blenda; Wysoczynski, Marcin; Rodriguez, Jorge; Bhatnagar, Aruni; Hill, Bradford G; Spite, Matthew

    2016-08-01

    Accumulation of immune cells in adipose tissue promotes insulin resistance in obesity. Although innate and adaptive immune cells contribute to adipose inflammation, the processes that sustain these interactions are incompletely understood. Here we show that obesity promotes the accumulation of CD11c(+) adipose tissue immune cells that express C-C chemokine receptor 7 (CCR7) in mice and humans, and that CCR7 contributes to chronic inflammation and insulin resistance. We identified that CCR7(+) macrophages and dendritic cells accumulate in adipose tissue in close proximity to lymph nodes (LNs) (i.e., perinodal) and visceral adipose. Consistent with the role of CCR7 in regulating the migration of immune cells to LNs, obesity promoted the accumulation of CD11c(+) cells in LNs, which was prevented by global or hematopoietic deficiency of Ccr7 Obese Ccr7(-/-) mice had reduced accumulation of CD8(+) T cells, B cells, and macrophages in adipose tissue, which was associated with reduced inflammatory signaling. This reduction in maladaptive inflammation translated to increased insulin signaling and improved glucose tolerance in obesity. Therapeutic administration of an anti-CCR7 antibody phenocopied the effects of genetic Ccr7 deficiency in mice with established obesity. These results suggest that CCR7 plays a causal role in maintaining innate and adaptive immunity in obesity. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. Interleukin-17-Induced Protein Lipocalin 2 Is Dispensable for Immunity to Oral Candidiasis

    PubMed Central

    Ferreira, Maria Carolina; Whibley, Natasha; Mamo, Anna J.; Siebenlist, Ulrich; Chan, Yvonne R.

    2014-01-01

    Oropharyngeal candidiasis (OPC; thrush) is an opportunistic fungal infection caused by the commensal microbe Candida albicans. Immunity to OPC is strongly dependent on CD4+ T cells, particularly those of the Th17 subset. Interleukin-17 (IL-17) deficiency in mice or humans leads to chronic mucocutaneous candidiasis, but the specific downstream mechanisms of IL-17-mediated host defense remain unclear. Lipocalin 2 (Lcn2; 24p3; neutrophil gelatinase-associated lipocalin [NGAL]) is an antimicrobial host defense factor produced in response to inflammatory cytokines, particularly IL-17. Lcn2 plays a key role in preventing iron acquisition by bacteria that use catecholate-type siderophores, and lipocalin 2−/− mice are highly susceptible to infection by Escherichia coli and Klebsiella pneumoniae. The role of Lcn2 in mediating immunity to fungi is poorly defined. Accordingly, in this study, we evaluated the role of Lcn2 in immunity to oral infection with C. albicans. Lcn2 is strongly upregulated following oral infection with C. albicans, and its expression is almost entirely abrogated in mice with defective IL-17 signaling (IL-17RA−/− or Act1−/− mice). However, Lcn2−/− mice were completely resistant to OPC, comparably to wild-type (WT) mice. Moreover, Lcn2 deficiency mediated protection from OPC induced by steroid immunosuppression. Therefore, despite its potent regulation during C. albicans infection, Lcn2 is not required for immunity to mucosal candidiasis. PMID:24343647

  19. Early growth response 2 and Egr3 are unique regulators in immune system.

    PubMed

    Taefehshokr, Sina; Key, Yashar Azari; Khakpour, Mansour; Dadebighlu, Pourya; Oveisi, Amin

    2017-01-01

    The immune system is evolved to defend the body against pathogens and is composed of thousands of complicated and intertwined pathways, which are highly controlled by processes such as transcription and repression of cellular genes. Sometimes the immune system malfunctions and a break down in self-tolerance occurs. This lead to the inability to distinguish between self and non-self and cause attacks on host tissues, a condition also known as autoimmunity, which can result in chronic debilitating diseases. Early growth response genes are family of transcription factors comprising of four members, Egr1, Egr2, Egr3 and Egr4. All of which contain three cyc2-His2 zinc fingers. Initially, Egr2 function was identified in the regulation of peripheral nerve myelination, hindbrain segmentation. Egr3, on the other hand, is highly expressed in muscle spindle development. Egr2 and Egr3 are induced due to the antigen stimulation and this signaling is implemented through the B and T cell receptors in the adaptive immunity. T cell receptor signaling plays a key role in Egr 2 and 3 expressions via their interaction with NFAT molecules. Egr 2 and 3 play a crucial role in regulation of the immune system and their involvement in B and T cell activation, anergy induction and preventing the autoimmune disease has been investigated. The deficiency of these transcription factors has been associated to deficient Cbl-b expression, a resistant to anergy phenotype, and expression of effector and activated T cells.

  20. Cloning and analysis of peptidoglycan recognition protein-LC and immune deficiency from the diamondback moth, Plutella xylostella.

    PubMed

    Zhan, Ming-Yue; Yang, Pei-Jin; Rao, Xiang-Jun

    2018-02-01

    Peptidoglycan (PGN) exists in both Gram-negative and Gram-positive bacteria as a component of the cell wall. PGN is an important target to be recognized by the innate immune system of animals. PGN recognition proteins (PGRP) are responsible for recognizing PGNs. In Drosophila melanogaster, PGRP-LC and IMD (immune deficiency) are critical for activating the Imd pathway. Here, we report the cloning and analysis of PGRP-LC and IMD (PxPGRP-LC and PxIMD) from diamondback moth, Plutella xylostella (L.), the insect pest of cruciferous vegetables. PxPGRP-LC gene consists of six exons encoding a polypeptide of 308 amino acid residues with a transmembrane region and a PGRP domain. PxIMD cDNA encodes a polypeptide of 251 amino acid residues with a death domain. Sequence comparisons indicate that they are characteristic of Drosophila PGRP-LC and IMD homologs. PxPGRP-LC and PxIMD were expressed in various tissues and developmental stages. Their mRNA levels were affected by bacterial challenges. The PGRP domain of PxPGRP-LC lacks key residues for the amidase activity, but it can recognize two types of PGNs. Overexpression of full-length and deletion mutants in Drosophila S2 cells induced expression of some antimicrobial peptide genes. These results indicate that PxPGRP-LC and PxIMD may be involved in the immune signaling of P. xylostella. This study provides a foundation for further studies of the immune system of P. xylostella. © 2017 Wiley Periodicals, Inc.

  1. Gel-Trapped Lymphorganogenic Chemokines Trigger Artificial Tertiary Lymphoid Organs and Mount Adaptive Immune Responses In Vivo.

    PubMed

    Kobayashi, Yuka; Watanabe, Takeshi

    2016-01-01

    We previously generated artificial lymph node-like tertiary lymphoid organs (artTLOs) in mice using lymphotoxin α-expressing stromal cells. Here, we show the construction of transplantable and functional artTLOs by applying soluble factors trapped in slow-releasing gels in the absence of lymphoid tissue organizer stromal cells. The resultant artTLOs were easily removable, transplantable, and were capable of attracting memory B and T cells. Importantly, artTLOs induced a powerful antigen-specific secondary immune response, which was particularly pronounced in immune-compromised hosts. Synthesis of functionally stable immune tissues/organs like those described here may be a first step to eventually develop immune system-based therapeutics. Although much needs to be learned from the precise mechanisms of action, they may offer ways in the future to reestablish immune functions to overcome hitherto untreatable diseases, including severe infection, cancer, autoimmune diseases, and various forms of immune deficiencies, including immune-senescence during aging.

  2. The impact of Fli1 deficiency on the pathogenesis of systemic sclerosis

    PubMed Central

    Asano, Yoshihide; Bujor, Andreea M.; Trojanowska, Maria

    2013-01-01

    Systemic sclerosis (SSc) is an autoimmune inflammatory disease with unknown etiology characterized by microvascular injury and fibrosis of the skin and internal organs. A growing body of evidence suggests that deficiency of the transcription factor Fli1 (Friend leukemia integration-1) has a pivotal role in the pathogenesis of SSc. Fli1 is expressed in fibroblasts, endothelial cells, and immune cells, and has important roles in the activation, differentiation, development, and survival of these cells. Previous studies demonstrated that Fli1 is downregulated in SSc fibroblasts by an epigenetic mechanism and a series of experiments with Fli1-deficient animal models revealed that Fli1 deficiency in fibroblasts and endothelial cells reproduces the histopathologic features of fibrosis and vasculopathy in SSc, respectively. In this article, we review the impact of Fli1 deficiency on the pathogenesis of SSc and discuss a new therapeutic strategy for SSc by targeting the transcription factor Fli1. PMID:20663647

  3. Determining immune components necessary for progression of pigment dispersing disease to glaucoma in DBA/2J mice

    PubMed Central

    2014-01-01

    Background The molecular mechanisms causing pigment dispersion syndrome (PDS) and the pathway(s) by which it progresses to pigmentary glaucoma are not known. Mutations in two melanosomal protein genes (Tyrp1 b and Gpnmb R150X ) are responsible for pigment dispersing iris disease, which progresses to intraocular pressure (IOP) elevation and subsequent glaucoma in DBA/2J mice. Melanosomal defects along with ocular immune abnormalities play a role in the propagation of pigment dispersion and progression to IOP elevation. Here, we tested the role of specific immune components in the progression of the iris disease and high IOP. Results We tested the role of NK cells in disease etiology by genetically modifying the B6.D2-Gpnmb R150X Tyrp1 b strain, which develops the same iris disease as DBA/2J mice. Our findings demonstrate that neither diminishing NK mediated cytotoxic activity (Prf1 mutation) nor NK cell depletion (Il2rg mutation) has any influence on the severity or timing of Gpnmb R150X Tyrp1 b mediated iris disease. Since DBA/2J mice are deficient in CD94, an important immune modulator that often acts as an immune suppressor, we generated DBA/2J mice sufficient in CD94. Sufficiency of CD94 failed to alter either the iris disease or the subsequent IOP elevation. Additionally CD94 status had no detected effect on glaucomatous optic nerve damage. Conclusion Our previous data implicate immune components in the manifestation of pigment dispersion and/or IOP elevation in DBA/2J mice. The current study eliminates important immune components, specifically NK cells and CD94 deficiency, as critical in the progression of iris disease and glaucoma. This narrows the field of possible immune components responsible for disease progression. PMID:24678736

  4. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID.

    PubMed

    Sauer, Aisha V; Brigida, Immacolata; Carriglio, Nicola; Hernandez, Raisa Jofra; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna; Aiuti, Alessandro

    2012-02-09

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.

  5. Clinical and Molecular Genetic Spectrum of Congenital Deficiency of the Leptin Receptor

    PubMed Central

    Farooqi, I. Sadaf; Wangensteen, Teresia; Collins, Stephan; Kimber, Wendy; Matarese, Giuseppe; Keogh, Julia M.; Lank, Emma; Bottomley, Bill; Lopez-Fernandez, Judith; Ferraz-Amaro, Ivan; Dattani, Mehul T.; Ercan, Oya; Myhre, Anne Grethe; Retterstol, Lars; Stanhope, Richard; Edge, Julie A.; McKenzie, Sheila; Lessan, Nader; Ghodsi, Maryam; De Rosa, Veronica; Perna, Francesco; Fontana, Silvia; Barroso, Inês; Undlien, Dag E.; O'Rahilly, Stephen

    2009-01-01

    BACKGROUND A single family has been described in which obesity results from a mutation in the leptin-receptor gene (LEPR), but the prevalence of such mutations in severe, early-onset obesity has not been systematically examined. METHODS We sequenced LEPR in 300 subjects with hyperphagia and severe early-onset obesity, including 90 probands from consanguineous families, and investigated the extent to which mutations cosegregated with obesity and affected receptor function. We evaluated metabolic, endocrine, and immune function in probands and affected relatives. RESULTS Of the 300 subjects, 8 (3%) had nonsense or missense LEPR mutations — 7 were homozygotes, and 1 was a compound heterozygote. All missense mutations resulted in impaired receptor signaling. Affected subjects were characterized by hyperphagia, severe obesity, alterations in immune function, and delayed puberty due to hypogonadotropic hypogonadism. Serum leptin levels were within the range predicted by the elevated fat mass in these subjects. Their clinical features were less severe than those of subjects with congenital leptin deficiency. CONCLUSIONS The prevalence of pathogenic LEPR mutations in a cohort of subjects with severe, early-onset obesity was 3%. Circulating levels of leptin were not disproportionately elevated, suggesting that serum leptin cannot be used as a marker for leptin-receptor deficiency. Congenital leptin-receptor deficiency should be considered in the differential diagnosis in any child with hyperphagia and severe obesity in the absence of developmental delay or dysmorphism. PMID:17229951

  6. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor.

    PubMed

    Farooqi, I Sadaf; Wangensteen, Teresia; Collins, Stephan; Kimber, Wendy; Matarese, Giuseppe; Keogh, Julia M; Lank, Emma; Bottomley, Bill; Lopez-Fernandez, Judith; Ferraz-Amaro, Ivan; Dattani, Mehul T; Ercan, Oya; Myhre, Anne Grethe; Retterstol, Lars; Stanhope, Richard; Edge, Julie A; McKenzie, Sheila; Lessan, Nader; Ghodsi, Maryam; De Rosa, Veronica; Perna, Francesco; Fontana, Silvia; Barroso, Inês; Undlien, Dag E; O'Rahilly, Stephen

    2007-01-18

    A single family has been described in which obesity results from a mutation in the leptin-receptor gene (LEPR), but the prevalence of such mutations in severe, early-onset obesity has not been systematically examined. We sequenced LEPR in 300 subjects with hyperphagia and severe early-onset obesity, including 90 probands from consanguineous families, and investigated the extent to which mutations cosegregated with obesity and affected receptor function. We evaluated metabolic, endocrine, and immune function in probands and affected relatives. Of the 300 subjects, 8 (3%) had nonsense or missense LEPR mutations--7 were homozygotes, and 1 was a compound heterozygote. All missense mutations resulted in impaired receptor signaling. Affected subjects were characterized by hyperphagia, severe obesity, alterations in immune function, and delayed puberty due to hypogonadotropic hypogonadism. Serum leptin levels were within the range predicted by the elevated fat mass in these subjects. Their clinical features were less severe than those of subjects with congenital leptin deficiency. The prevalence of pathogenic LEPR mutations in a cohort of subjects with severe, early-onset obesity was 3%. Circulating levels of leptin were not disproportionately elevated, suggesting that serum leptin cannot be used as a marker for leptin-receptor deficiency. Congenital leptin-receptor deficiency should be considered in the differential diagnosis in any child with hyperphagia and severe obesity in the absence of developmental delay or dysmorphism. Copyright 2007 Massachusetts Medical Society.

  7. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis

    PubMed Central

    Whibley, Natasha; Tritto, Elaine; Traggiai, Elisabetta; Kolbinger, Frank; Moulin, Pierre; Brees, Dominique; Coleman, Bianca M.; Mamo, Anna J.; Garg, Abhishek V.; Jaycox, Jillian R.; Siebenlist, Ulrich; Kammüller, Michael; Gaffen, Sarah L.

    2016-01-01

    Antibodies targeting IL-17A or its receptor, IL-17RA, are approved to treat psoriasis and are being evaluated for other autoimmune conditions. Conversely, IL-17 signaling is critical for immunity to opportunistic mucosal infections caused by the commensal fungus Candida albicans, as mice and humans lacking the IL-17R experience chronic mucosal candidiasis. IL-17A, IL-17F, and IL-17AF bind the IL-17RA-IL-17RC heterodimeric complex and deliver qualitatively similar signals through the adaptor Act1. Here, we used a mouse model of acute oropharyngeal candidiasis to assess the impact of blocking IL-17 family cytokines compared with specific IL-17 cytokine gene knockout mice. Anti-IL-17A antibodies, which neutralize IL-17A and IL-17AF, caused elevated oral fungal loads, whereas anti-IL-17AF and anti-IL-17F antibodies did not. Notably, there was a cooperative effect of blocking IL-17A, IL-17AF, and IL-17F together. Termination of anti-IL-17A treatment was associated with rapid C. albicans clearance. IL-17F-deficient mice were fully resistant to oropharyngeal candidiasis, consistent with antibody blockade. However, IL-17A-deficient mice had lower fungal burdens than anti-IL-17A-treated mice. Act1-deficient mice were much more susceptible to oropharyngeal candidiasis than anti-IL-17A antibody-treated mice, yet anti-IL-17A and anti-IL-17RA treatment caused equivalent susceptibilities. Based on microarray analyses of the oral mucosa during infection, only a limited number of genes were associated with oropharyngeal candidiasis susceptibility. In sum, we conclude that IL-17A is the main cytokine mediator of immunity in murine oropharyngeal candidiasis, but a cooperative relationship among IL-17A, IL-17AF, and IL-17F exists in vivo. Susceptibility displays the following hierarchy: IL-17RA- or Act1-deficiency > anti-IL-17A + anti-IL-17F antibodies > anti-IL-17A or anti-IL-17RA antibodies > IL-17A deficiency. PMID:26729813

  8. Antibody blockade of IL-17 family cytokines in immunity to acute murine oral mucosal candidiasis.

    PubMed

    Whibley, Natasha; Tritto, Elaine; Traggiai, Elisabetta; Kolbinger, Frank; Moulin, Pierre; Brees, Dominique; Coleman, Bianca M; Mamo, Anna J; Garg, Abhishek V; Jaycox, Jillian R; Siebenlist, Ulrich; Kammüller, Michael; Gaffen, Sarah L

    2016-06-01

    Antibodies targeting IL-17A or its receptor, IL-17RA, are approved to treat psoriasis and are being evaluated for other autoimmune conditions. Conversely, IL-17 signaling is critical for immunity to opportunistic mucosal infections caused by the commensal fungus Candida albicans, as mice and humans lacking the IL-17R experience chronic mucosal candidiasis. IL-17A, IL-17F, and IL-17AF bind the IL-17RA-IL-17RC heterodimeric complex and deliver qualitatively similar signals through the adaptor Act1. Here, we used a mouse model of acute oropharyngeal candidiasis to assess the impact of blocking IL-17 family cytokines compared with specific IL-17 cytokine gene knockout mice. Anti-IL-17A antibodies, which neutralize IL-17A and IL-17AF, caused elevated oral fungal loads, whereas anti-IL-17AF and anti-IL-17F antibodies did not. Notably, there was a cooperative effect of blocking IL-17A, IL-17AF, and IL-17F together. Termination of anti-IL-17A treatment was associated with rapid C. albicans clearance. IL-17F-deficient mice were fully resistant to oropharyngeal candidiasis, consistent with antibody blockade. However, IL-17A-deficient mice had lower fungal burdens than anti-IL-17A-treated mice. Act1-deficient mice were much more susceptible to oropharyngeal candidiasis than anti-IL-17A antibody-treated mice, yet anti-IL-17A and anti-IL-17RA treatment caused equivalent susceptibilities. Based on microarray analyses of the oral mucosa during infection, only a limited number of genes were associated with oropharyngeal candidiasis susceptibility. In sum, we conclude that IL-17A is the main cytokine mediator of immunity in murine oropharyngeal candidiasis, but a cooperative relationship among IL-17A, IL-17AF, and IL-17F exists in vivo. Susceptibility displays the following hierarchy: IL-17RA- or Act1-deficiency > anti-IL-17A + anti-IL-17F antibodies > anti-IL-17A or anti-IL-17RA antibodies > IL-17A deficiency. © Society for Leukocyte Biology.

  9. Vitamin D in melanoma: Controversies and potential role in combination with immune check-point inhibitors.

    PubMed

    Stucci, Luigia Stefania; D'Oronzo, Stella; Tucci, Marco; Macerollo, Antonella; Ribero, Simone; Spagnolo, Francesco; Marra, Elena; Picasso, Virginia; Orgiano, Laura; Marconcini, Riccardo; De Rosa, Francesco; Guardo, Lorenza di; Galli, Giulia; Gandini, Sara; Palmirotta, Raffaele; Palmieri, Giuseppe; Queirolo, Paola; Silvestris, Francesco

    2018-05-31

    The role of vitamin D in melanoma is still controversial. Although several Authors described a correlation between vitamin D deficiency and poor survival in metastatic melanoma patients, clinical trials exploring the effects of vitamin D supplementation in this clinical setting were mostly inconclusive. However, recent evidence suggests that vitamin D exerts both anti-proliferative effects on tumor cells and immune-modulating activities, that have been widely explored in auto-immune disorders. On the one hand, vitamin D has been shown to inhibit T-helper17 lymphocytes, notoriously involved in the pathogenesis of immune-related adverse events (iAEs) which complicate immune-checkpoint inhibitor (ICI) treatment. On the other hand, vitamin D up-regulates PDL-1 expression on both epithelial and immune cells, suggesting a synergic effect in combination with ICIs, for which further investigation is needed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Host control of human papillomavirus infection and disease.

    PubMed

    Doorbar, John

    2018-02-01

    Most human papillomaviruses cause inapparent infections, subtly affecting epithelial homeostasis, to ensure genome persistence in the epithelial basal layer. As with conspicuous papillomas, these self-limiting lesions shed viral particles to ensure population level maintenance and depend on a balance between viral gene expression, immune cell stimulation and immune surveillance for persistence. The complex immune evasion strategies, characteristic of high-risk HPV types, also allow the deregulated viral gene expression that underlies neoplasia. Neoplasia occurs at particular epithelial sites where vulnerable cells such as the reserve or cuboidal cells of the cervical transformation zone are found. Beta papillomavirus infection can also predispose an individual with immune deficiencies to the development of cancers. The host control of HPV infections thus involves local interactions between keratinocytes and the adaptive immune response. Effective immune detection and surveillance limits overt disease, leading to HPV persistence as productive microlesions or in a true latent state. Copyright © 2017. Published by Elsevier Ltd.

  11. Humoral Immune Reconstitution Kinetics after Allogeneic Hematopoietic Stem Cell Transplantation in Children: A Maturation Block of IgM Memory B Cells May Lead to Impaired Antibody Immune Reconstitution.

    PubMed

    Abdel-Azim, Hisham; Elshoury, Amro; Mahadeo, Kris M; Parkman, Robertson; Kapoor, Neena

    2017-09-01

    Although T cell immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been well studied, long-term B cell immune reconstitution remains less characterized. We evaluated humoral immune reconstitution among 71 pediatric allo-HSCT recipients. Although tetanus toxoid antibody levels were normal at 1 year after allo-HSCT, antipolysaccharide carbohydrate antibodies remained persistently low for up to 5 years. While naive B cell counts normalized by 6 months, IgM memory B cell deficiency persisted for up to 2 years (P = .01); switched memory B cell deficiency normalized by 1 year after allo-HSCT. CD4 + T cell immune reconstitution correlated with that of switched memory B cells as early as 6 months after allo-HSCT (r = .55, P = .002) but did not correlate with IgM memory B cells at any time point after allo-HSCT. Taken together, this suggests that allo-HSCT recipients have impaired antibody immune reconstitution, mainly due to IgM memory B cell maturation block, compared with more prompt T cell-dependent switched memory cell immune reconstitution. We further explored other factors that might affect humoral immune reconstitution. The use of total body irradiation was associated with lower naive B cells counts at 6 months after HSCT (P = .04) and lower IgM (P = .008) and switched (P = .003) memory B cells up to 2 years. Allo-HSCT recipients with extensive chronic graft-versus-host disease had lower IgM memory B cell counts (P = .03) up to 2 years after allo-HSCT. The use of cord blood was associated with better naive (P = .01), IgM (P = .0005), and switched memory (P = .006) B cells immune reconstitution. These findings may inform future prophylaxis and treatment strategies regarding risk of overwhelming infection, graft-versus-host disease, and post-allogeneic HSCT revaccination. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  12. Immunogenetics of Seasonal Influenza Vaccine Response*

    PubMed Central

    Poland, Gregory A.; Ovsyannikova, Inna G.; Jacobson, Robert M.

    2008-01-01

    Seasonal influenza causes significant morbidity, mortality, and economic costs. Vaccines against influenza, though both safe and effective, are imperfect. Notably, these vaccines result in significant immune response variability across the population. The mechanism for this variability, in part, appears to lie in the polymorphisms of key immune response genes. Despite the importance of this variability, little in the way of genetic polymorphisms and its association with vaccine immune response to viral vaccines has been performed. Herein, we review and synthesize what is known about the immune response pathway and influenza viral immunity and then present original data from our laboratory on the immunogenetic relationships between HLA, cytokine and cytokine receptor gene polymorphisms and the variations in humoral immune response to inactivated seasonal influenza vaccine. Finally, we propose that a better understanding of vaccine immunogenetics offers insight towards the development of better influenza vaccines. PMID:19230157

  13. Primary Immune Deficiency Diseases

    MedlinePlus

    ... of the Director Office of the Chief Science Management & Operations Administrative Services Office of Biodefense Research & Surety Communications ... Office of Clinical Research Policy and Regulatory Planning Operations Support Program Planning Analysis ... Office of Acquisitions Scientific Review Program Division ...

  14. Genetics Home Reference: RNAse T2-deficient leukoencephalopathy

    MedlinePlus

    ... abundant in the brain. Ribonucleases help break down RNA, a chemical cousin of DNA. Studies suggest that ... in angiogenesis or an immune system response to RNA that has not been properly broken down. Learn ...

  15. AUTOINFLAMMATORY PUSTULAR NEUTROPHILIC DISEASES

    PubMed Central

    Naik, Haley B.; Cowen, Edward W.

    2013-01-01

    SYNOPSIS The inflammatory pustular dermatoses constitute a spectrum of non-infectious conditions ranging from localized involvement to generalized disease with associated acute systemic inflammation and multi-organ involvement. Despite the variability in extent and severity of cutaneous presentation, each of these diseases is characterized by non-infectious neutrophilic intra-epidermal microabscesses. Many share systemic findings including fever, elevated inflammatory markers, inflammatory bowel disease and/or osteoarticular involvement, suggesting potential common pathogenic links (Figure 1). The recent discoveries of several genes responsible for heritable pustular diseases have revealed a distinct link between pustular skin disease and regulation of innate immunity. These genetic advances have led to a deeper exploration of common pathways in pustular skin disease and offer the potential for a new era of biologic therapy which targets these shared pathways. This chapter provides a new categorization of inflammatory pustular dermatoses in the context of recent genetic and biologic insights. We will discuss recently-described monogenic diseases with pustular phenotypes, including deficiency of IL-1 receptor antagonist (DIRA), deficiency of the IL-36 receptor antagonist (DITRA), CARD14-associated pustular psoriasis (CAMPS), and pyogenic arthritis, pyoderma gangrenosum, acne (PAPA). We will then discuss how these new genetic advancements may inform how we view previously described pustular diseases, including pustular psoriasis and its clinical variants, with a focus on historical classification by clinical phenotype. PMID:23827244

  16. Experimental Oral Candidiasis in Animal Models

    PubMed Central

    Samaranayake, Yuthika H.; Samaranayake, Lakshman P.

    2001-01-01

    Oral candidiasis is as much the final outcome of the vulnerability of the host as of the virulence of the invading organism. We review here the extensive literature on animal experiments mainly appertaining to the host predisposing factors that initiate and perpetuate these infections. The monkey, rat, and mouse are the choice models for investigating oral candidiasis, but comparisons between the same or different models appear difficult, because of variables such as the study design, the number of animals used, their diet, the differences in Candida strains, and the duration of the studies. These variables notwithstanding, the following could be concluded. (i) The primate model is ideal for investigating Candida-associated denture stomatitis since both erythematous and pseudomembranous lesions have been produced in monkeys with prosthetic plates; they are, however, expensive and difficult to obtain and maintain. (ii) The rat model (both Sprague-Dawley and Wistar) is well proven for observing chronic oral candidal colonization and infection, due to the ease of breeding and handling and their ready availability. (iii) Mice are similar, but in addition there are well characterized variants simulating immunologic and genetic abnormalities (e.g., athymic, euthymic, murine-acquired immune deficiency syndrome, and severe combined immunodeficient models) and hence are used for short-term studies relating the host immune response and oral candidiasis. Nonetheless, an ideal, relatively inexpensive model representative of the human oral environment in ecological and microbiological terms is yet to be described. Until such a model is developed, researchers should pay attention to standardization of the experimental protocols described here to obtain broadly comparable and meaningful data. PMID:11292645

  17. Variability in Immunization Practices for Preterm Infants.

    PubMed

    Gopal, Srirupa Hari; Edwards, Kathryn M; Creech, Buddy; Weitkamp, Joern-Hendrik

    2018-06-08

     The Advisory Committee on Immunization Practices and the American Academy of Pediatrics (AAP) recommend the same immunization schedule for preterm and term infants. However, significant delays in vaccination of premature infants have been reported.  The objective of this study was to assess the variability of immunization practices in preterm infants.  We conducted an online survey of 2,443 neonatologists in the United States, who are members of the Section for Neonatal-Perinatal Medicine of the AAP. Questions were targeted at immunization practices in the neonatal intensive care unit (NICU).  Of the 420 responses (17%) received, 55% of providers administer the first vaccine at >2-month chronological age. Most providers (83%) surveyed reported delaying vaccines in the setting of clinical illness. Sixty percent reported increasing frequency of apnea-bradycardia events following immunization. More than half administer the initial vaccines over several days despite lack of supporting data. Reported considerations in delaying or spreading out 2-month vaccines were clinical instability, provider preference, lower gestational age, and lower birth weight.  This survey substantiates the variability of immunizations practices in the NICU and identifies reasons for this variability. Future studies should inform better practice guidance for immunization of preterm NICU patients based on vaccine safety and effectiveness. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. The role of the prokineticin 2 pathway in human reproduction: evidence from the study of human and murine gene mutations.

    PubMed

    Martin, Cecilia; Balasubramanian, Ravikumar; Dwyer, Andrew A; Au, Margaret G; Sidis, Yisrael; Kaiser, Ursula B; Seminara, Stephanie B; Pitteloud, Nelly; Zhou, Qun-Yong; Crowley, William F

    2011-04-01

    A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a "second hit" or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans.

  19. The Role of the Prokineticin 2 Pathway in Human Reproduction: Evidence from the Study of Human and Murine Gene Mutations

    PubMed Central

    Martin, Cecilia; Balasubramanian, Ravikumar; Dwyer, Andrew A.; Au, Margaret G.; Sidis, Yisrael; Kaiser, Ursula B.; Seminara, Stephanie B.; Pitteloud, Nelly; Zhou, Qun-Yong

    2011-01-01

    A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a “second hit” or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans. PMID:21037178

  20. Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors.

    PubMed

    Gaffal, E; Cron, M; Glodde, N; Tüting, T

    2013-08-01

    ∆(9) -Tetrahydrocannabinol (THC), the active constituent of Cannabis sativa, exerts its biological effects in part through the G-protein-coupled CB1 and CB2 receptors, which were initially discovered in brain and spleen tissue, respectively. However, THC also has CB1/2 receptor-independent effects. Because of its immune-inhibitory potential, THC and related cannabinoids are being considered for the treatment of inflammatory skin diseases. Here we investigated the mechanism of the anti-inflammatory activity of THC and the role of CB1 and CB2 receptors. We evaluated the impact of topically applied THC on DNFB-mediated allergic contact dermatitis in wild-type and CB1/2 receptor-deficient mice. We performed immunohistochemical analyses for infiltrating immune cells and studied the influence of THC on the interaction between T cells, keratinocytes and myeloid immune cells in vitro. Topical THC application effectively decreased contact allergic ear swelling and myeloid immune cell infiltration not only in wild-type but also in CB1/2 receptor-deficient mice. We found that THC (1) inhibited the production of IFNγ by T cells, (2) decreased the production of CCL2 and of IFNγ-induced CCL8 and CXL10 by epidermal keratinocytes and (3) thereby limited the recruitment of myeloid immune cells in vitro in a CB1/2 receptor-independent manner. Topically applied THC can effectively attenuate contact allergic inflammation by decreasing keratinocyte-derived pro-inflammatory mediators that orchestrate myeloid immune cell infiltration independent of CB1/2 receptors. This has important implications for the future development of strategies to harness cannabinoids for the treatment of inflammatory skin diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Membrane attack complex of complement is not essential for immune mediated demyelination in experimental autoimmune neuritis.

    PubMed

    Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Killingsworth, Murray; Nomura, Masaru; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2010-12-15

    Antibody deposition and complement activation, especially membrane attack complex (MAC) formation are considered central for immune mediated demyelination. To examine the role of MAC in immune mediated demyelination, we studied experimental allergic neuritis (EAN) in Lewis rats deficient in complement component 6 (C6) that cannot form MAC. A C6 deficient Lewis (Lewis/C6-) strain of rats was bred by backcrossing the defective C6 gene, from PVG/C6- rats, onto the Lewis background. Lewis/C6- rats had the same C6 gene deletion as PVG/C6- rats and their sera did not support immune mediated haemolysis unless C6 was added. Active EAN was induced in Lewis and Lewis/C6- rats by immunization with bovine peripheral nerve myelin in complete Freund's adjuvant (CFA), and Lewis/C6- rats had delayed clinical EAN compared to the Lewis rats. Peripheral nerve demyelination in Lewis/C6- was also delayed but was similar in extent at the peak of disease. Compared to Lewis, Lewis/C6- nerves had no MAC deposition, reduced macrophage infiltrate and IL-17A, but similar T cell infiltrate and Th1 cytokine mRNA expression. ICAM-1 and P-selectin mRNA expression and immunostaining on vascular endothelium were delayed in Lewis C6- compared to Lewis rats' nerves. This study found that MAC was not required for immune mediated demyelination; but that MAC enhanced early symptoms and early demyelination in EAN, either by direct lysis or by sub-lytic induction of vascular endothelial expression of ICAM-1 and P-selectin. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. A Novel Energy-Efficient Multi-Sensor Fusion Wake-Up Control Strategy Based on a Biomimetic Infectious-Immune Mechanism for Target Tracking.

    PubMed

    Zhou, Jie; Liang, Yan; Shen, Qiang; Feng, Xiaoxue; Pan, Quan

    2018-04-18

    A biomimetic distributed infection-immunity model (BDIIM), inspired by the immune mechanism of an infected organism, is proposed in order to achieve a high-efficiency wake-up control strategy based on multi-sensor fusion for target tracking. The resultant BDIIM consists of six sub-processes reflecting the infection-immunity mechanism: occurrence probabilities of direct-infection (DI) and cross-infection (CI), immunity/immune-deficiency of DI and CI, pathogen amount of DI and CI, immune cell production, immune memory, and pathogen accumulation under immunity state. Furthermore, a corresponding relationship between the BDIIM and sensor wake-up control is established to form the collaborative wake-up method. Finally, joint surveillance and target tracking are formulated in the simulation, in which we show that the energy cost and position tracking error are reduced to 50.8% and 78.9%, respectively. Effectiveness of the proposed BDIIM algorithm is shown, and this model is expected to have a significant role in guiding the performance improvement of multi-sensor networks.

  3. TAM Receptor Signaling in Immune Homeostasis

    PubMed Central

    Rothlin, Carla V.; Carrera-Silva, Eugenio A.; Bosurgi, Lidia; Ghosh, Sourav

    2015-01-01

    The TAM receptor tyrosine kinases (RTKs)—TYRO3, AXL, and MERTK—together with their cognate agonists GAS6 and PROS1 play an essential role in the resolution of inflammation. Deficiencies in TAM signaling have been associated with chronic inflammatory and autoimmune diseases. Three processes regulated by TAM signaling may contribute, either independently or collectively, to immune homeostasis: the negative regulation of the innate immune response, the phagocytosis of apoptotic cells, and the restoration of vascular integrity. Recent studies have also revealed the function of TAMs in infectious diseases and cancer. Here, we review the important milestones in the discovery of these RTKs and their ligands and the studies that underscore the functional importance of this signaling pathway in physiological immune settings and disease. PMID:25594431

  4. Maternal nutritional status during pregnancy and infant immune response to routine childhood vaccinations.

    PubMed

    Obanewa, Olayinka; Newell, Marie-Louise

    2017-09-01

    To systematically review the association between maternal nutritional status in pregnancy and infant immune response to childhood vaccines. We reviewed literature on maternal nutrition during pregnancy, fetal immune system and vaccines and possible relationships. Thereafter, we undertook a systematic review of the literature of maternal nutritional status and infant vaccine response, extracted relevant information, assessed quality of the nine papers identified and present findings in a narrative format. From limited evidence of average quality, intrauterine nutrition deficiency could lead to functional deficit in the infant's immune function; child vaccine response may thus be negatively affected by maternal malnutrition. Response to childhood vaccination may be associated with fetal and early life environment; evaluation of programs should take this into account.

  5. Selenium Deficiency Induces Autophagy in Immune Organs of Chickens.

    PubMed

    Khoso, Pervez Ahmed; Pan, Tingru; Wan, Na; Yang, Zijiang; Liu, Ci; Li, Shu

    2017-05-01

    The aim of the present study was to investigate the effects of selenium (Se) deficiency on autophagy-related genes and on ultrastructural changes in the spleen, bursa of Fabricius, and thymus of chickens. The Se deficiency group was fed a basal diet containing Se at 0.033 mg/kg and the control group was fed the same basal diet containing Se at 0.15 mg/kg. The messenger RNA (mRNA) levels of the autophagy genes microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin 1, dynein, autophagy associated gene 5 (ATG5), and target of rapamycin complex 1 (TORC1) were assessed using real-time qPCR. The protein levels of LC3-II, Beclin 1, and dynein were investigated using western blot analysis. Furthermore, the ultrastructure was observed using an electron microscope. The results indicated that spleen mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of LC3-II, Beclin 1, and dynein were increased in the Se deficiency group compared with the control group. In the bursa of Fabricius, the mRNA levels of LC3-I, LC3-II, Beclin 1, dynein, ATG5, and TORC1 and the protein levels of Beclin 1 and dynein were increased; furthermore, the protein level of LC3-II was decreased in the Se deficiency group compared to the control group. In the thymus, the mRNA levels of LC3-I, Beclin 1, and ATG5 increased; the levels of LC3-II, dynein, and TORC1 were decreased; the protein level of Beclin 1 increased; and the levels of LC3-II and dynein decreased in the Se deficiency group compared to those in the control group. Further cellular morphological changes, such as autophagy vacuoles, autolysosomes, and lysosomal degradation, were observed in the spleen, bursa of Fabricius, and thymus of the Se-deficiency group. In summary, Se deficiency caused changes in autophagy-related genes, which increased the autophagic process and also caused structural damages to the immune organs of chickens.

  6. Zinc: physiology, deficiency, and parenteral nutrition.

    PubMed

    Livingstone, Callum

    2015-06-01

    The essential trace element zinc (Zn) has a large number of physiologic roles, in particular being required for growth and functioning of the immune system. Adaptive mechanisms enable the body to maintain normal total body Zn status over a wide range of intakes, but deficiency can occur because of reduced absorption or increased gastrointestinal losses. Deficiency impairs physiologic processes, leading to clinical consequences that include failure to thrive, skin rash, and impaired wound healing. Mild deficiency that is not clinically overt may still cause nonspecific consequences, such as susceptibility to infection and poor growth. The plasma Zn concentration has poor sensitivity and specificity as a test of deficiency. Consequently, diagnosis of deficiency requires a combination of clinical assessment and biochemical tests. Patients receiving parenteral nutrition (PN) are susceptible to Zn deficiency and its consequences. Nutrition support teams should have a strategy for assessing Zn status and optimizing this by appropriate supplementation. Nutrition guidelines recommend generous Zn provision from the start of PN. This review covers the physiology of Zn, the consequences of its deficiency, and the assessment of its status, before discussing its role in PN. © 2015 American Society for Parenteral and Enteral Nutrition.

  7. Parenteral Nutrition and Lipids.

    PubMed

    Raman, Maitreyi; Almutairdi, Abdulelah; Mulesa, Leanne; Alberda, Cathy; Beattie, Colleen; Gramlich, Leah

    2017-04-14

    Lipids have multiple physiological roles that are biologically vital. Soybean oil lipid emulsions have been the mainstay of parenteral nutrition lipid formulations for decades in North America. Utilizing intravenous lipid emulsions in parenteral nutrition has minimized the dependence on dextrose as a major source of nonprotein calories and prevents the clinical consequences of essential fatty acid deficiency. Emerging literature has indicated that there are benefits to utilizing alternative lipids such as olive/soy-based formulations, and combination lipids such as soy/MCT/olive/fish oil, compared with soybean based lipids, as they have less inflammatory properties, are immune modulating, have higher antioxidant content, decrease risk of cholestasis, and improve clinical outcomes in certain subgroups of patients. The objective of this article is to review the history of IVLE, their composition, the different generations of widely available IVLE, the variables to consider when selecting lipids, and the complications of IVLE and how to minimize them.

  8. Parenteral Nutrition and Lipids

    PubMed Central

    Raman, Maitreyi; Almutairdi, Abdulelah; Mulesa, Leanne; Alberda, Cathy; Beattie, Colleen; Gramlich, Leah

    2017-01-01

    Lipids have multiple physiological roles that are biologically vital. Soybean oil lipid emulsions have been the mainstay of parenteral nutrition lipid formulations for decades in North America. Utilizing intravenous lipid emulsions in parenteral nutrition has minimized the dependence on dextrose as a major source of nonprotein calories and prevents the clinical consequences of essential fatty acid deficiency. Emerging literature has indicated that there are benefits to utilizing alternative lipids such as olive/soy-based formulations, and combination lipids such as soy/MCT/olive/fish oil, compared with soybean based lipids, as they have less inflammatory properties, are immune modulating, have higher antioxidant content, decrease risk of cholestasis, and improve clinical outcomes in certain subgroups of patients. The objective of this article is to review the history of IVLE, their composition, the different generations of widely available IVLE, the variables to consider when selecting lipids, and the complications of IVLE and how to minimize them. PMID:28420095

  9. MyD88 signaling inhibits protective immunity to the gastrointestinal helminth parasite Heligmosomoides polygyrus.

    PubMed

    Reynolds, Lisa A; Harcus, Yvonne; Smith, Katherine A; Webb, Lauren M; Hewitson, James P; Ross, Ewan A; Brown, Sheila; Uematsu, Satoshi; Akira, Shizuo; Gray, David; Gray, Mohini; MacDonald, Andrew S; Cunningham, Adam F; Maizels, Rick M

    2014-09-15

    Helminth parasites remain one of the most common causes of infections worldwide, yet little is still known about the immune signaling pathways that control their expulsion. C57BL/6 mice are chronically susceptible to infection with the gastrointestinal helminth parasite Heligmosomoides polygyrus. In this article, we report that C57BL/6 mice lacking the adapter protein MyD88, which mediates signaling by TLRs and IL-1 family members, showed enhanced immunity to H. polygyrus infection. Alongside increased parasite expulsion, MyD88-deficient mice showed heightened IL-4 and IL-17A production from mesenteric lymph node CD4(+) cells. In addition, MyD88(-/-) mice developed substantial numbers of intestinal granulomas around the site of infection, which were not seen in MyD88-sufficient C57BL/6 mice, nor when signaling through the adapter protein TRIF (TIR domain-containing adapter-inducing IFN-β adapter protein) was also ablated. Mice deficient solely in TLR2, TLR4, TLR5, or TLR9 did not show enhanced parasite expulsion, suggesting that these TLRs signal redundantly to maintain H. polygyrus susceptibility in wild-type mice. To further investigate signaling pathways that are MyD88 dependent, we infected IL-1R1(-/-) mice with H. polygyrus. This genotype displayed heightened granuloma numbers compared with wild-type mice, but without increased parasite expulsion. Thus, the IL-1R-MyD88 pathway is implicated in inhibiting granuloma formation; however, protective immunity in MyD88-deficient mice appears to be granuloma independent. Like IL-1R1(-/-) and MyD88(-/-) mice, animals lacking signaling through the type 1 IFN receptor (i.e., IFNAR1(-/-)) also developed intestinal granulomas. Hence, IL-1R1, MyD88, and type 1 IFN receptor signaling may provide pathways to impede granuloma formation in vivo, but additional MyD88-mediated signals are associated with inhibition of protective immunity in susceptible C57BL/6 mice. Copyright © 2014 The Authors.

  10. Immune status influences fear and anxiety responses in mice after acute stress exposure

    PubMed Central

    Clark, Sarah M.; Sand, Joseph; Francis, T. Chase; Nagaraju, Anitha; Michael, Kerry C.; Keegan, Achsah D.; Kusnecov, Alexander; Gould, Todd D.; Tonelli, Leonardo H.

    2014-01-01

    Significant evidence suggests that exposure to traumatic and/or acute stress in both mice and humans results in compromised immune function that in turn may affect associated brain processes. Additionally, recent studies in mouse models of immune deficiency have suggested that adaptive immunity may play a role during traumatic stress exposure and that impairments in lymphocyte function may contribute to increased susceptibility to various psychogenic stressors. However, rodent studies on the relationship between maladaptive stress responses and lymphocyte deficiency have been complicated by the fact that genetic manipulations in these models may also result in changes in CNS function due to the expression of targeted genes in tissues other than lymphocytes, including the brain. To address these issues we utilized mice with a deletion of recombination-activating gene 2 (Rag2), which has no confirmed expression in the CNS; thus, its loss should result in the absence of mature lymphocytes without altering CNS function directly. Stress responsiveness of immune deficient Rag2−/− mice on a BALB/c background was evaluated in three different paradigms: predator odor exposure (POE), fear conditioning (FC) and learned helplessness (LH). These models are often used to study different aspects of stress responsiveness after the exposure to an acute stressor. In addition, immunoblot analysis was used to assess hippocampal BDNF expression under both stressed and non-stressed conditions. Subsequent to POE, Rag2−/− mice exhibited a reduced acoustic startle response compared to BALB/c mice; no significant differences in behavior were observed in either FC or LH. Furthermore, analysis of hippocampal BDNF indicated that Rag2−/− mice have elevated levels of the mature form of BDNF compared to BALB/c mice. Results from our studies suggest that the absence of mature lymphocytes is associated with increased resilience to stress exposure in the POE and does not affect behavioral responses in the FC and LH paradigms. These findings indicate that lymphocytes play a specific role in stress responsiveness dependent upon the type, nature and intensity of the stressor. PMID:24524915

  11. NADPH Oxidase Deficiency: A Multisystem Approach

    PubMed Central

    Cicalese, Maria Pia; Delmonte, Ottavia; Migliavacca, Maddalena; Cirillo, Emilia; Violi, Francesco

    2017-01-01

    The immune system is a complex system able to recognize a wide variety of host agents, through different biological processes. For example, controlled changes in the redox state are able to start different pathways in immune cells and are involved in the killing of microbes. The generation and release of ROS in the form of an “oxidative burst” represent the pivotal mechanism by which phagocytic cells are able to destroy pathogens. On the other hand, impaired oxidative balance is also implicated in the pathogenesis of inflammatory complications, which may affect the function of many body systems. NADPH oxidase (NOX) plays a pivotal role in the production of ROS, and the defect of its different subunits leads to the development of chronic granulomatous disease (CGD). The defect of the different NOX subunits in CGD affects different organs. In this context, this review will be focused on the description of the effect of NOX2 deficiency in different body systems. Moreover, we will also focus our attention on the novel insight in the pathogenesis of immunodeficiency and inflammation-related manifestations and on the protective role of NOX2 deficiency against the development of atherosclerosis. PMID:29430280

  12. Current options and new developments in the treatment of haemophilia.

    PubMed

    Wong, Trisha; Recht, Michael

    2011-02-12

    Haemophilia A and B are X-linked bleeding disorders due to the inherited deficiency of factor VIII or factor IX, respectively. Of the approximately 1 per 5000-10000 male births affected by haemophilia, 80% are deficient in factor VIII and 20% are deficient in factor IX. Haemophilia is characterized by spontaneous and provoked joint, muscle, gastrointestinal and CNS bleeding leading to major morbidity and even mortality if left untreated or under-treated. The evolution of haemophilia management has been marked by tragedy and triumph over recent decades. Clotting factors and replacement strategies continue to evolve for patients without inhibitors. For patients with an inhibitor, factor replacement for acute bleeding episodes and immune tolerance, immune modulation and extracorporeal methods for inhibitor reduction are the cornerstone of care. In addition, adjuvant therapies such as desmopressin, antifibrinolytics and topical agents also contribute to improved outcomes for patients with and without inhibitors. The future direction of haemophilia care is promising with new longer-acting clotting factors and genetic therapies, including gene transfer and premature termination codon suppressors. With these current and future treatment modalities, the morbidity and mortality rates in patients with haemophilia certainly will continue to improve.

  13. Roles of Alum and Monophosphoryl Lipid A Adjuvants in Overcoming CD4+ T Cell Deficiency to Induce Isotype-Switched IgG Antibody Responses and Protection by T-Dependent Influenza Vaccine

    PubMed Central

    Ko, Eun-Ju; Lee, Young-Tae; Kim, Ki-Hye; Lee, Youri; Jung, Yu-Jin; Kim, Min-Chul; Lee, Yu-Na; Kang, Taeuk; Kang, Sang-Moo

    2016-01-01

    Vaccine adjuvant effects in CD4 deficient condition largely remain unknown. We investigated the roles of combined monophosphoryl lipid A (MPL) and Alum adjuvant (MPL+Alum) in inducing immunity after immunization of CD4-knockout (CD4KO) and wild-type (WT) mice with T-dependent influenza vaccine. MPL+Alum adjuvant mediated IgG isotype-switched antibodies, IgG secreting cell responses, and protection in CD4KO mice, which were comparable to those in WT mice. In contrast, Alum adjuvant effects were dependent on CD4+ T cells. MPL+Alum adjuvant was effective in recruiting monocytes and neutrophils as well as in protecting macrophages from alum-mediated cell loss at the injection site in CD4KO mice. MPL+Alum appeared to attenuate MPL-induced inflammatory responses in WT mice, likely improving the safety. Additional studies in CD4-depleted WT mice and MHCII KO mice suggest that MHCII positive antigen presenting cells contribute to providing alternative B cell help in CD4 deficient condition in the context of MPL+Alum adjuvanted vaccination. PMID:27881702

  14. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    NASA Astrophysics Data System (ADS)

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  15. Metabolic Induction of Trained Immunity through the Mevalonate Pathway.

    PubMed

    Bekkering, Siroon; Arts, Rob J W; Novakovic, Boris; Kourtzelis, Ioannis; van der Heijden, Charlotte D C C; Li, Yang; Popa, Calin D; Ter Horst, Rob; van Tuijl, Julia; Netea-Maier, Romana T; van de Veerdonk, Frank L; Chavakis, Triantafyllos; Joosten, Leo A B; van der Meer, Jos W M; Stunnenberg, Henk; Riksen, Niels P; Netea, Mihai G

    2018-01-11

    Innate immune cells can develop long-term memory after stimulation by microbial products during infections or vaccinations. Here, we report that metabolic signals can induce trained immunity. Pharmacological and genetic experiments reveal that activation of the cholesterol synthesis pathway, but not the synthesis of cholesterol itself, is essential for training of myeloid cells. Rather, the metabolite mevalonate is the mediator of training via activation of IGF1-R and mTOR and subsequent histone modifications in inflammatory pathways. Statins, which block mevalonate generation, prevent trained immunity induction. Furthermore, monocytes of patients with hyper immunoglobulin D syndrome (HIDS), who are mevalonate kinase deficient and accumulate mevalonate, have a constitutive trained immunity phenotype at both immunological and epigenetic levels, which could explain the attacks of sterile inflammation that these patients experience. Unraveling the role of mevalonate in trained immunity contributes to our understanding of the pathophysiology of HIDS and identifies novel therapeutic targets for clinical conditions with excessive activation of trained immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Immune responses to invasive aspergillosis: new understanding and therapeutic opportunities

    PubMed Central

    Hohl, Tobias M.

    2017-01-01

    Purpose of review Invasive aspergillosis is a worldwide disease that primarily affects immune-compromised patients, agricultural workers with corneal abrasions, individuals with structural lung disease, and patients with primary immune deficiency. The critical function of the immune system is to prevent the germination of airborne conidia into tissue-invasive hyphae. This review covers recent advances that shape our understanding of anti-Aspergillus immunity at the molecular and cellular level. Recent findings Host defense against conidia and hyphae occurs via distinct molecular mechanisms that involve intracellular and extracellular killing pathways, as well as cooperation between different myeloid cell subsets. The strength and efficacy of the host response is shaped by the tissue microenvironment. In preclinical models of disease, host immune augmentation strategies have yielded benefits, yet translating these insights into therapeutic strategies in humans remains challenging. Summary Although advances in early diagnostic strategies and in antifungal drugs have ameliorated clinical outcomes of invasive aspergillosis, further improvements depend on gaining deeper insight into and translating advances in anti-Aspergillus immunity. PMID:28509673

  17. On the Mechanism Determining the Th1/Th2 Phenotype of an Immune Response, and its Pertinence to Strategies for the Prevention, and Treatment, of Certain Infectious Diseases

    PubMed Central

    Bretscher, P A

    2014-01-01

    It is well recognized that the physiological/pathological consequences of an immune response, against a foreign or a self-antigen, are often critically dependent on the class of immunity generated. Here we focus on how antigen interacts with the cells of the immune system to determine whether antigen predominantly generates Th1 or Th2 cells. We refer to this mechanism as the ‘decision criterion’ controlling the Th1/Th2 phenotype of the immune response. A plausible decision criterion should account for the variables of immunization known to affect the Th1/Th2 phenotype of the ensuing immune response. Documented variables include the nature of the antigen, in terms of its degree of foreignness, the dose of antigen and the time after immunization at which the Th1/Th2 phenotype of the immune response is assessed. These are quantitative variables made at the level of the system. In addition, the route of immunization is also critical. I describe a quantitative hypothesis as to the nature of the decision criterion, referred to as the Threshold Hypothesis. This hypothesis accounts for the quantitative variables of immunization known to affect the Th1/Th2 phenotype of the immune response generated. I suggest and illustrate how this is not true of competing, contemporary hypotheses. I outline studies testing predictions of the hypothesis and illustrate its potential utility in designing strategies to prevent or treat medical situations where a predominant Th1 response is required to contain an infection, such as those caused by HIV-1 and by Mycobacterium tuberculosis, or to contain cancers. PMID:24684592

  18. The Sobering Geography of AIDS.

    ERIC Educational Resources Information Center

    Palca, Joseph

    1991-01-01

    The rate at which the epidemic of acquired immune deficiency syndrome (AIDS) is spreading in North America, Asia, Latin America, and Africa is discussed. The number of people infected globally and in low-risk urban populations is presented. (KR)

  19. Attitudes of Dental Faculty toward Individuals with AIDS.

    ERIC Educational Resources Information Center

    Cohen, Leonard A.; Grace, Edward G., Jr.

    1989-01-01

    A survey of one dental school's faculty concerning attitudes toward homosexual or heterosexual patients with either Acquired Immune Deficiency Syndrome (AIDS) or leukemia found significant negative biases both toward individuals with AIDS and toward homosexuals. (MSE)

  20. AIDS and Herpes Carry Weighty Policy Implications for Your Board.

    ERIC Educational Resources Information Center

    McCormick, Kathleen

    1985-01-01

    Few schools have policies to deal specifically with herpes and Acquired Immune Deficiency Syndrome (AIDS). Discusses some schools and states that have developed such policies and includes a source list for more information. (MD)

  1. Expanded Access Protocol (EAP) Using the CliniMACS® Device for Pediatric Haplocompatible Donor Stem Cell Transplant

    ClinicalTrials.gov

    2017-11-22

    Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Chronic Myeloid Leukemia; Myelodysplastic Syndrome; Lymphomas; Bone Marrow Failure; Hemoglobinopathy; Immune Deficiency; Osteopetrosis; Cytopenias; Leukocyte Disorders; Anemia Due to Intrinsic Red Cell Abnormality

  2. AIDS in the Workplace: What Can Be Done?

    ERIC Educational Resources Information Center

    Masi, Dale A.

    1987-01-01

    Discusses the legal ramifications for employers concerning acquired immune deficiency syndrome (AIDS). Suggests that employers should have in place an AIDS policy that addresses such issues as AIDS testing, employee assistance programs, and health insurance coverage. (CH)

  3. Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types.

    PubMed

    Ecker, Simone; Chen, Lu; Pancaldi, Vera; Bagger, Frederik O; Fernández, José María; Carrillo de Santa Pau, Enrique; Juan, David; Mann, Alice L; Watt, Stephen; Casale, Francesco Paolo; Sidiropoulos, Nikos; Rapin, Nicolas; Merkel, Angelika; Stunnenberg, Hendrik G; Stegle, Oliver; Frontini, Mattia; Downes, Kate; Pastinen, Tomi; Kuijpers, Taco W; Rico, Daniel; Valencia, Alfonso; Beck, Stephan; Soranzo, Nicole; Paul, Dirk S

    2017-01-26

    A healthy immune system requires immune cells that adapt rapidly to environmental challenges. This phenotypic plasticity can be mediated by transcriptional and epigenetic variability. We apply a novel analytical approach to measure and compare transcriptional and epigenetic variability genome-wide across CD14 + CD16 - monocytes, CD66b + CD16 + neutrophils, and CD4 + CD45RA + naïve T cells from the same 125 healthy individuals. We discover substantially increased variability in neutrophils compared to monocytes and T cells. In neutrophils, genes with hypervariable expression are found to be implicated in key immune pathways and are associated with cellular properties and environmental exposure. We also observe increased sex-specific gene expression differences in neutrophils. Neutrophil-specific DNA methylation hypervariable sites are enriched at dynamic chromatin regions and active enhancers. Our data highlight the importance of transcriptional and epigenetic variability for the key role of neutrophils as the first responders to inflammatory stimuli. We provide a resource to enable further functional studies into the plasticity of immune cells, which can be accessed from: http://blueprint-dev.bioinfo.cnio.es/WP10/hypervariability .

  4. Unified-planning, graded-administration, and centralized-controlling: a management modality for treating acquired immune deficiency syndrome with Chinese medicine in Henan Province of China.

    PubMed

    Xu, Li-Ran; Guo, Hui-jun; Liu, Zhi-bin; Li, Qiang; Yang, Ji-ping; He, Ying

    2015-04-01

    Henan Province in China has a major epidemic of human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). Chinese medicine (CM) has been used throughout the last decade, and a management modality was developed, which can be described by unified-planning, graded-administration, and centralized-controlling (UGC). The UGC modality has one primary concept (patient-centered medicine from CM theory), four basic foundations (classifying administrative region, characteristics of CM on disease treatment, health resource conditions, and distribution of patients living with HIV), six important relationships (the "three uniformities and three combinations," and the six relationships therein guide the treatment of AIDS with CM), and four key sections (management, operation, records, and evaluation). In this article, the authors introduce the UGC modality, which could be beneficial to developing countries or resource-limited areas for the management of chronic infectious disease.

  5. Changing epidemiology of non-cystic fibrosis bronchiectasis.

    PubMed

    Bahçeci, Semiha; Karaman, Sait; Nacaroğlu, Hikmet Tekin; Yazıcı, Selçuk; Girit, Saniye; Ünsal-Karkıner, Şule; Can, Demet

    2016-01-01

    Non-cystic fibrosis bronchiectasis again becomes a major health problem due to inappropriate antibiotic use and increasing frequency of protracted bacterial bronchitis. The aim was to determine the changes in etiology of bronchiectasis. Patients who admitted to Behçet Uz Children Hospital between 2005 and 2015 (n=110) were retrospectively examined. The etiology of bronchiectasis was detected as; primary ciliary dyskinesia 26.4%, protracted bacterial bronchitis 22.8%, primary immune deficiency 11.8%, bronchiolitis obliterans 8.2%, lung disease secondary to gastro-esophageal reflux 3.7%, foreign body aspiration 2.7%, tuberculosis %2.7, congenital malformation 1.8% and asthma 1.8%, respectively. In 15.4% of cases, etiology was not identified clearly. 91% of the patients were medically treated. In ten years, the frequency of asthma and tuberculosis in etiology had decreased but primary ciliary dyskinesia and primary immune deficiency had increased. Non-cystic fibrosis bronchiectasis can be followed up for a long time with medical treatment.

  6. Primary immunodeficiencies appearing as combined lymphopenia, neutropenia, and monocytopenia.

    PubMed

    Dotta, Laura; Badolato, Raffaele

    2014-10-01

    Recurrent or prolonged severe infections associated to panleukopenia strongly suggest primary immune disorders. In recent years, new immunodeficiency syndromes turned up: besides the importance of continuous clinical characterization throughout added reports, the phenotype can easily lead to diagnosis of known rare entities. Our purpose is to review main emerging genetic syndromes featuring lymphopenia combined to neutropenia and/or monocytopenia in order to facilitate diagnosis of rare primary immune deficiencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effect of traditional Chinese medicine for treating human immunodeficiency virus infections and acquired immune deficiency syndrome: Boosting immune and alleviating symptoms.

    PubMed

    Zou, Wen; Wang, Jian; Liu, Ying

    2016-01-01

    To respond to the human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) epidemic in China, the integration of antiretroviral therapy (ART) and traditional Chinese medicine (TCM) has important implications in health outcomes, especially in China where the use of TCM is widespread. The National Free TCM Pilot Program for HIV Infected People began in 5 provinces (Henan, Hebei, Anhui, Hubei, and Guangdong) in 2004, and quickly scaled up to 19 provinces, autonomous regions, and municipalities in China including some places with high prevalence, 26,276 adults have been treated thus far. Usually, people with HIV infection seek TCM for four main reasons: to enhance immune function, to treat symptoms, to improve quality of life, and to reduce side effects related to medications. Evidences from randomized controlled clinical trials suggested some beneficial effects of use of traditional Chinese herbal medicine for HIV infections and AIDS. More proofs from large, well-designed, rigorous trials is needed to give firm support. Challenges include interaction between herbs and antiretroviral drugs, stigma and discrimination. The Free TCM Program has made considerable progress in providing the necessary alternative care and treatment for HIV-infected people in China, and has strong government support for continued improvement and expansion, establishing and improving a work mechanism integrating Chinese and Western medicines.

  8. ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis.

    PubMed

    Chen, Huamin; Xue, Li; Chintamanani, Satya; Germain, Hugo; Lin, Huiqiong; Cui, Haitao; Cai, Run; Zuo, Jianru; Tang, Xiaoyan; Li, Xin; Guo, Hongwei; Zhou, Jian-Min

    2009-08-01

    Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) trigger plant immunity that forms the first line inducible defenses in plants. The regulatory mechanism of MAMP-triggered immunity, however, is poorly understood. Here, we show that Arabidopsis thaliana transcription factors ETHYLENE INSENSITIVE3 (EIN3) and ETHYLENE INSENSITIVE3-LIKE1 (EIL1), previously known to mediate ethylene signaling, also negatively regulate PAMP-triggered immunity. Plants lacking EIN3 and EIL1 display enhanced PAMP defenses and heightened resistance to Pseudomonas syringae bacteria. Conversely, plants overaccumulating EIN3 are compromised in PAMP defenses and exhibit enhanced disease susceptibility to Pseudomonas syringae. Microarray analysis revealed that EIN3 and EIL1 negatively control PAMP response genes. Further analyses indicated that SALICYLIC ACID INDUCTION DEFICIENT2 (SID2), which encodes isochorismate synthase required for pathogen-induced biosynthesis of salicylic acid (SA), is a key target of EIN3 and EIL1. Consistent with this, the ein3-1 eil1-1 double mutant constitutively accumulates SA in the absence of pathogen attack, and a mutation in SID2 restores normal susceptibility in the ein3 eil1 double mutant. EIN3 can specifically bind SID2 promoter sequence in vitro and in vivo. Taken together, our data provide evidence that EIN3/EIL1 directly target SID2 to downregulate PAMP defenses.

  9. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity.

    PubMed

    Querec, Troy; Bennouna, Soumaya; Alkan, Sefik; Laouar, Yasmina; Gorden, Keith; Flavell, Richard; Akira, Shizuo; Ahmed, Rafi; Pulendran, Bali

    2006-02-20

    The live attenuated yellow fever vaccine 17D (YF-17D) is one of the most effective vaccines available, with a 65-yr history of use in >400 million people globally. Despite this efficacy, there is presently no information about the immunological mechanisms by which YF-17D acts. Here, we present data that suggest that YF-17D activates multiple Toll-like receptors (TLRs) on dendritic cells (DCs) to elicit a broad spectrum of innate and adaptive immune responses. Specifically, YF-17D activates multiple DC subsets via TLRs 2, 7, 8, and 9 to elicit the proinflammatory cytokines interleukin (IL)-12p40, IL-6, and interferon-alpha. Interestingly, the resulting adaptive immune responses are characterized by a mixed T helper cell (Th)1/Th2 cytokine profile and antigen-specific CD8+ T cells. Furthermore, distinct TLRs appear to differentially control the Th1/Th2 balance; thus, whilst MyD88-deficient mice show a profound impairment of Th1 cytokines, TLR2-deficient mice show greatly enhanced Th1 and Tc1 responses to YF-17D. Together, these data enhance our understanding of the molecular mechanism of action of YF-17D, and highlight the potential of vaccination strategies that use combinations of different TLR ligands to stimulate polyvalent immune responses.

  10. Indoleamine 2,3-dioxygenase in endometrial cancer: a targetable mechanism of immune resistance in mismatch repair-deficient and intact endometrial carcinomas.

    PubMed

    Mills, Anne; Zadeh, Sara; Sloan, Emily; Chinn, Zachary; Modesitt, Susan C; Ring, Kari L

    2018-03-20

    Mismatch repair-deficient endometrial carcinomas are optimal candidates for immunotherapy given their high neoantigen loads, robust lymphoid infiltrates, and frequent PD-L1 expression. However, co-opting the PD-1/PD-L1 pathway is just one mechanism that tumors can utilize to evade host immunity. Another immune modulatory molecule that has been demonstrated in endometrial carcinoma is indoleamine 2,3-dioxygenase (IDO). We herein evaluate IDO expression in 60 endometrial carcinomas and assess results in relation to PD-L1 and mismatch repair status. IDO immunohistochemistry was performed on 60 endometrial carcinomas (20 Lynch syndrome (LS)-associated, 20 MLH1 promoter hypermethylated, and 20 mismatch repair-intact). Eight-five percent of endometrial carcinomas showed IDO tumor staining in >1% of cells. Twenty-five percent were positive in >25% of tumor cells and only 7% exceeded 50% staining. Mismatch repair-deficient cancers were more likely than mismatch repair-intact cancers to be >25% IDO-positive (35% vs. 5% p = 0.024). Differences were amplified when Lynch syndrome-associated cases were evaluated in isolation (50% Lynch syndrome-associated vs. 10% mismatch repair-intact and MLH1-hypermethylated, p = 0.001). Of the four cases showing >50% staining, three were Lynch syndrome-associated and one was MLH1-hypermethylated; no mismatch repair-intact cases had >50% staining. Forty-three percent of IDO-positive tumors were also positive for PD-L1, whereas only two cases showed tumoral PD-L1 in the absence of IDO. In summary, IDO expression is prevalent in endometrial carcinomas and diffuse staining is significantly more common in mismatch repair-deficient cancers, particularly Lynch syndrome-associated cases. Given that the majority of PD-L1 positive cancers also express IDO, synergistic combination therapy with anti-IDO and anti-PD1/PD-L1 may be relevant in this tumor type. Furthermore, anti-IDO therapy may be an option for a small subset of mismatch repair-intact cancers.

  11. Primary vs. Secondary Antibody Deficiency: Clinical Features and Infection Outcomes of Immunoglobulin Replacement

    PubMed Central

    Duraisingham, Sai S.; Buckland, Matthew; Dempster, John; Lorenzo, Lorena; Grigoriadou, Sofia; Longhurst, Hilary J.

    2014-01-01

    Secondary antibody deficiency can occur as a result of haematological malignancies or certain medications, but not much is known about the clinical and immunological features of this group of patients as a whole. Here we describe a cohort of 167 patients with primary or secondary antibody deficiencies on immunoglobulin (Ig)-replacement treatment. The demographics, causes of immunodeficiency, diagnostic delay, clinical and laboratory features, and infection frequency were analysed retrospectively. Chemotherapy for B cell lymphoma and the use of Rituximab, corticosteroids or immunosuppressive medications were the most common causes of secondary antibody deficiency in this cohort. There was no difference in diagnostic delay or bronchiectasis between primary and secondary antibody deficiency patients, and both groups experienced disorders associated with immune dysregulation. Secondary antibody deficiency patients had similar baseline levels of serum IgG, but higher IgM and IgA, and a higher frequency of switched memory B cells than primary antibody deficiency patients. Serious and non-serious infections before and after Ig-replacement were also compared in both groups. Although secondary antibody deficiency patients had more serious infections before initiation of Ig-replacement, treatment resulted in a significant reduction of serious and non-serious infections in both primary and secondary antibody deficiency patients. Patients with secondary antibody deficiency experience similar delays in diagnosis as primary antibody deficiency patients and can also benefit from immunoglobulin-replacement treatment. PMID:24971644

  12. Clinical evaluation of a nutraceutical diet as an adjuvant to pharmacological treatment in dogs affected by Keratoconjunctivitis sicca.

    PubMed

    Destefanis, Simona; Giretto, Daniela; Muscolo, Maria Cristina; Di Cerbo, Alessandro; Guidetti, Gianandrea; Canello, Sergio; Giovazzino, Angela; Centenaro, Sara; Terrazzano, Giuseppe

    2016-09-22

    Canine keratoconjunctivitis sicca (cKCS) is an inflammatory eye condition related to a deficiency in the tear aqueous fraction. Etiopathogenesis of such disease is substantially multifactorial, combining the individual genetic background with environmental factors that contribute to the process of immunological tolerance disruption and, as a consequence, to the emergence of autoimmunity disease. In this occurrence, it is of relevance the role of the physiological immune-dysregulation that results in immune-mediated processes at the basis of cKCS. Current therapies for this ocular disease rely on immunosuppressive treatments. Clinical response to treatment frequently varies from poor to good, depending on the clinical-pathological status of eyes at diagnosis and on individual response to therapy. In the light of the variability of clinical response to therapies, we evaluated the use of an anti-inflammatory/antioxidant nutraceutical diet with potential immune-modulating activity as a therapeutical adjuvant in cKCS pharmacological treatment. Such combination was administered to a cohort of dogs affected by cKCS in which the only immunosuppressive treatment resulted poorly responsive or ineffective in controlling the ocular symptoms. Fifty dogs of different breeds affected by immune-mediated cKCS were equally distributed and randomly assigned to receive either a standard diet (control, n = 25) or the nutraceutical diet (treatment group, n = 25) both combined with standard immunosuppressive therapy over a 60 days period. An overall significant improvement of all clinical parameters (tear production, conjunctival inflammation, corneal keratinization, corneal pigment density and mucus discharge) and the lack of food-related adverse reactions were observed in the treatment group (p < 0.0001). Our results showed that the association of traditional immune-suppressive therapy with the antioxidant/anti-inflammatory properties of the nutraceutical diet resulted in a significant amelioration of clinical signs and symptoms in cKCS. The beneficial effects, likely due to the presence of supplemented nutraceuticals in the diet, appeared to specifically reduce the immune-mediated ocular symptoms in those cKCS-affected dogs that were poorly responsive or unresponsive to classical immunosuppressive drugs. These data suggest that metabolic changes could affect the immune response orchestration in a model of immune-mediated ocular disease, as represented by cKCS.

  13. Tolerance and immunity in mice infected with herpes simplex virus: simultaneous induction of protective immunity and tolerance to delayed-type hypersensitivity.

    PubMed

    Nash, A A; Gell, P G; Wildy, P

    1981-05-01

    Unresponsiveness to delayed type hypersensitivity was induced in mice following an intravenous injection of herpes simplex virus. The principal tolerogens used were thymidine kinase-deficient virus mutants which grow poorly in vivo; u.v.-inactivated and to a lesser extent formalin-inactivated virus were also tolerogenic. The tolerance induced was specific for the virus type. Despite the tolerance to delayed hypersensitivity, anti-viral immunity is present as determined by the rapid inactivation of infectious virus. The mechanism of tolerance to herpes virus and the importance of these observations for the pathogenesis of viral disease is discussed.

  14. Tolerance and immunity in mice infected with herpes simplex virus: simultaneous induction of protective immunity and tolerance to delayed-type hypersensitivity.

    PubMed Central

    Nash, A A; Gell, P G; Wildy, P

    1981-01-01

    Unresponsiveness to delayed type hypersensitivity was induced in mice following an intravenous injection of herpes simplex virus. The principal tolerogens used were thymidine kinase-deficient virus mutants which grow poorly in vivo; u.v.-inactivated and to a lesser extent formalin-inactivated virus were also tolerogenic. The tolerance induced was specific for the virus type. Despite the tolerance to delayed hypersensitivity, anti-viral immunity is present as determined by the rapid inactivation of infectious virus. The mechanism of tolerance to herpes virus and the importance of these observations for the pathogenesis of viral disease is discussed. PMID:7251047

  15. Evaluation of immunological responses to a glycoprotein G deficient candidate vaccine strain of infectious laryngotracheitis virus.

    PubMed

    Devlin, Joanne M; Viejo-Borbolla, Abel; Browning, Glenn F; Noormohammadi, Amir H; Gilkerson, James R; Alcami, Antonio; Hartley, Carol A

    2010-02-03

    Infectious laryngotracheitis virus (ILTV), an alphaherpesvirus, causes severe respiratory disease in poultry. Glycoprotein G (gG) is a virulence factor in ILTV. Recent studies have shown that gG-deficient ILTV is an effective attenuated vaccine however the function of ILTV gG is unknown. This study examined the function and in vivo relevance of ILTV gG. The results showed that ILTV gG binds to chemokines with high affinity and inhibits leukocyte chemotaxis. Specific-pathogen-free (SPF) chickens infected with gG-deficient virus had altered tracheal leukocyte populations and lower serum antibody levels compared with those infected with the parent virus. The findings suggest that the absence of chemokine-binding activity during infection with gG-deficient ILTV results in altered host immune responses. (c) 2009 Elsevier Ltd. All rights reserved.

  16. Novel targets for ATM-deficient malignancies

    PubMed Central

    Winkler, Johannes; Hofmann, Kay; Chen, Shuhua

    2014-01-01

    Conventional chemo- and radiotherapies for the treatment of cancer target rapidly dividing cells in both tumor and non-tumor tissues and can exhibit severe cytotoxicity in normal tissue and impair the patient's immune system. Novel targeted strategies aim for higher efficacy and tumor specificity. The role of ATM protein in the DNA damage response is well known and ATM deficiency frequently plays a role in tumorigenesis and development of malignancy. In addition to contributing to disease development, ATM deficiency also renders malignant cells heavily dependent on other pathways that cooperate with the ATM-mediated DNA damage response to ensure tumor cell survival. Disturbing those cooperative pathways by inhibiting critical protein components allows specific targeting of tumors while sparing healthy cells with normal ATM status. We review druggable candidate targets for the treatment of ATM-deficient malignancies and the mechanisms underlying such targeted therapies. PMID:27308314

  17. The decreased growth performance and impaired immune function and structural integrity by dietary iron deficiency or excess are associated with TOR, NF-κB, p38MAPK, Nrf2 and MLCK signaling in head kidney, spleen and skin of grass carp (Ctenopharyngodon idella).

    PubMed

    Guo, Yan-Lin; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Zhou, Xiao-Qiu; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Feng, Lin

    2017-06-01

    This study was conducted to investigate the effects of dietary iron on the growth, and immune function and structural integrity in head kidney, spleen and skin as well as the underlying signaling of young grass carp (Ctenopharyngodon idella). Total 630 grass carp (242.32 ± 0.58 g) were fed diets containing graded levels of iron at 12.15 (basal diet), 35.38, 63.47, 86.43, 111.09, 136.37 mg/kg (diets 2-6 were added with ferrous fumarate) and 73.50 mg/kg (diet 7 was added with ferrous sulfate) diet for 60 days. Then, a challenge test was conducted by infection of Aeromonas hydrophila for 14 days. The results firstly showed that compared with optimal iron level, iron deficiency decreased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents and down-regulated the mRNA levels of antibacterial peptides, anti-inflammatory cytokines, inhibitor of κBα (IκBα), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1), whereas up-regulated the mRNA levels of pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) p65, IκB kinases β (IKKβ) and eIF4E-binding protein (4E-BP) in head kidney and spleen of young grass carp (P < 0.05), indicating that iron deficiency impaired immune function in head kidney and spleen of fish. Secondly, iron deficiency down-regulated the mRNA levels of B-cell lymphoma-2 (Bcl-2), myeloid cell leukemia 1 (Mcl-1), and inhibitor of apoptosis protein (IAP), and decreased activities and mRNA levels of antioxidant enzymes, down-regulated the mRNA levels of NF-E2-related factor 2 (Nrf2) and tight junction complexes, and up-regulated mRNA levels of cysteinyl aspartic acid-protease (caspase) -2, -3, -7, -8, -9, apoptotic protease activating factor-1 (Apaf-1), Bcl-2 associated X protein (Bax), Fas ligand (FasL), p38 mitogen-activated protein kinase (p38MAPK), Kelch-like ECH-associating protein (Keap) 1a, Keap1b, claudin-12 and myosin light chain kinase (MLCK), and increased malondialdehyde (MDA), protein carbonyl (PC) and reactive oxygen species (ROS) contents in head kidney and spleen of young grass carp (P < 0.05), indicating that iron deficiency impaired structural integrity in head kidney and spleen of fish. Thirdly, iron deficiency increased skin hemorrhage and lesion morbidity, and impaired immune function and structural integrity in skin of fish. Fourthly, iron excess decreased growth and impaired the immune function and structural integrity in head kidney, spleen and skin of fish. Besides, in young grass carp, based on PWG and ability against skin hemorrhage and lesion, the efficacy of ferrous fumarate relative to ferrous sulfate was 140.32% and 126.48%, respectively, and the iron requirements based on PWG, ability against skin hemorrhage and lesion, ACP activities and MDA contents in head kidney and spleen were estimated to be 75.65, 87.03, 79.74, 78.93, 83.17 and 82.14 mg/kg diet (based on ferrous fumarate), respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Genomic analysis, cytokine expression, and microRNA profiling reveal biomarkers of human dietary zinc depletion and homeostasis.

    PubMed

    Ryu, Moon-Suhn; Langkamp-Henken, Bobbi; Chang, Shou-Mei; Shankar, Meena N; Cousins, Robert J

    2011-12-27

    Implementation of zinc interventions for subjects suspected of being zinc-deficient is a global need, but is limited due to the absence of reliable biomarkers. To discover molecular signatures of human zinc deficiency, a combination of transcriptome, cytokine, and microRNA analyses was applied to a dietary zinc depletion/repletion protocol with young male human subjects. Concomitant with a decrease in serum zinc concentration, changes in buccal and blood gene transcripts related to zinc homeostasis occurred with zinc depletion. Microarray analyses of whole blood RNA revealed zinc-responsive genes, particularly, those associated with cell cycle regulation and immunity. Responses of potential signature genes of dietary zinc depletion were further assessed by quantitative real-time PCR. The diagnostic properties of specific serum microRNAs for dietary zinc deficiency were identified by acute responses to zinc depletion, which were reversible by subsequent zinc repletion. Depression of immune-stimulated TNFα secretion by blood cells was observed after low zinc consumption and may serve as a functional biomarker. Our findings introduce numerous novel candidate biomarkers for dietary zinc status assessment using a variety of contemporary technologies and which identify changes that occur prior to or with greater sensitivity than the serum zinc concentration which represents the current zinc status assessment marker. In addition, the results of gene network analysis reveal potential clinical outcomes attributable to suboptimal zinc intake including immune function defects and predisposition to cancer. These demonstrate through a controlled depletion/repletion dietary protocol that the illusive zinc biomarker(s) can be identified and applied to assessment and intervention strategies.

  19. Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis.

    PubMed

    Rocca, Stefano; Schiavoni, Giovanna; Sali, Michela; Anfossi, Antonio Giovanni; Abalsamo, Laura; Palucci, Ivana; Mattei, Fabrizio; Sanchez, Massimo; Giagu, Anna; Antuofermo, Elisabetta; Fadda, Giovanni; Belardelli, Filippo; Delogu, Giovanni; Gabriele, Lucia

    2013-01-01

    Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8⁻/⁻) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8⁻/⁻ mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8⁻/⁻, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8⁻/⁻ mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions.

  20. Interferon Regulatory Factor 8-Deficiency Determines Massive Neutrophil Recruitment but T Cell Defect in Fast Growing Granulomas during Tuberculosis

    PubMed Central

    Sali, Michela; Anfossi, Antonio Giovanni; Abalsamo, Laura; Palucci, Ivana; Mattei, Fabrizio; Sanchez, Massimo; Giagu, Anna; Antuofermo, Elisabetta; Fadda, Giovanni; Belardelli, Filippo; Delogu, Giovanni; Gabriele, Lucia

    2013-01-01

    Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions. PMID:23717393

Top