Sample records for variable lbv star

  1. The Search for New Luminous Blue Variable Stars: Near-Infrared Spectroscopy of Stars With 24 micron Shells

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2010-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.

  2. Confirming LBV Candidates Through Variability: A Photometric and Spectroscopic Monitoring Study

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2012-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous, massive stars. About a dozen confirmed Galactic LBV stars are known, which precludes determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. Several catalogues of nebulae - rings and shells typical of LBVs - derived from the GLIMPSE and MIPSGAL surveys have recently been published. We conducted a near-IR spectral survey of a large subset of central stars residing within these nebulae and have identified nearly two dozen new candidate LBVs (cLBVs) based on spectral similarity alone; they remain cLBVs until 1-3 mag variability is demonstrated, securing their LBV nature. This marks a significant advancement in the study of massive stars, far outweighing the return from many studies searching for LBVs and WRs the past several decades. Using SMARTS 16 new cLBVs, 3 confirmed LBVs, and 2 previously known cLBVs will undergo photometric IR-monitoring, with 6 new cLBVs monitored spectroscopically (already being photometrically monitored elsewhere).

  3. Confirming LBV Candidates Through Variability: A Photometric and Spectroscopic Monitoring Study

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2011-08-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous, massive stars. About a dozen confirmed Galactic LBV stars are known, which precludes determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. Several catalogues of nebulae - rings and shells typical of LBVs - derived from the GLIMPSE and MIPSGAL surveys have recently been published. We conducted a near-IR spectral survey of a large subset of central stars residing within these nebulae and have identified nearly two dozen new candidate LBVs (cLBVs) based on spectral similarity alone; they remain cLBVs until 1-3 mag variability is demonstrated, securing their LBV nature. This marks a significant advancement in the study of massive stars, far outweighing the return from many studies searching for LBVs and WRs the past several decades. Using SMARTS 16 new cLBVs, 3 confirmed LBVs, and 2 previously known cLBVs will undergo photometric IR-monitoring, with 6 new cLBVs monitored spectroscopically (already being photometrically monitored elsewhere).

  4. Confirming LBV Candidates Through Variability: A Photometric and Spectroscopic Monitoring Study

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2013-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of luminous massive stars with high mass loss rates. The paucity ( 12) of confirmed Galactic LBV precludes determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. We've been conducting an optical/near-IR spectral survey of a large subset of central stars residing within newly discovered it Spitzer nebulae and have identified over two dozen new candidate LBVs (cLBVs) based on spectral similarity alone; confirming them as bona fide LBVs requires demonstrating 1-3 mag photometric and spectroscopic variability. This marks a significant advancement in the study of massive stars, far outweighing the return from many studies searching for LBVs and WRs the past several decades. Monitoring from semesters 2011B-2012A already has confirmed one new cLBV as a bona fide LBV. We propose to continue optical-IR photometric monitoring of these cLBVS with the 1.3m. Chiron, replacing the RC spectrograph on the 1.5m, now allows high-resolution optical spectroscopic monitoring of bright cLBVs, 11 of which are proposed herein. Spectra are important for understanding the physics driving photometric variability, properties of the wind, and allow analysis of line profiles.

  5. Family ties of WR to LBV nebulae yielding clues for stellar evolution

    NASA Astrophysics Data System (ADS)

    Weis, K.

    Luminous Blue Variables (LBVs) are stars is a transitional phase massive stars may enter while evolving from main-sequence to Wolf-Rayet stars. The to LBVs intrinsic photometric variability is based on the modulation of the stellar spectrum. Within a few years the spectrum shifts from OB to AF type and back. During their cool phase LBVs are close to the Humphreys-Davidson (equivalent to Eddington/Omega-Gamma) limit. LBVs have a rather high mass loss rate, with stellar winds that are fast in the hot and slower in the cool phase of an LBV. These alternating wind velocities lead to the formation of LBV nebulae by wind-wind interactions. A nebula can also be formed in a spontaneous giant eruption in which larger amounts of mass are ejected. LBV nebulae are generally small (< 5 pc) mainly gaseous circumstellar nebulae, with a rather large fraction of LBV nebulae being bipolar. After the LBV phase the star will turn into a Wolf-Rayet star, but note that not all WR stars need to have passed the LBV phase. Some follow from the RSG and the most massive directly from the MS phase. In general WRs have a large mass loss and really fast stellar winds. The WR wind may interact with winds of earlier phases (MS, RSG) to form WR nebulae. As for WR with LBV progenitors the scenario might be different, here no older wind is present but an LBV nebula! The nature of WR nebulae are therefore manifold and in particular the connection (or family ties) of WR to LBV nebulae is important to understand the transition between these two phases, the evolution of massive stars, their winds, wind-wind and wind-nebula interactions. Looking at the similarities and differences of LBV and WR nebula, figuring what is a genuine LBV and WR nebula are the basic question addressed in the analysis presented here.

  6. Discovery of two new Galactic candidate luminous blue variables with Wide-field Infrared Survey Explorer

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Miroshnichenko, A. S.; Berdnikov, L. N.; Langer, N.; Stringfellow, G. S.; Todt, H.; Hamann, W.-R.; Grebel, E. K.; Buckley, D.; Crause, L.; Crawford, S.; Gulbis, A.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Nysewander, M. C.; LaCluyze, A. P.

    2012-04-01

    We report the discovery of two new Galactic candidate luminous blue variable (LBV) stars via detection of circular shells (typical of confirmed and candidate LBVs) and follow-up spectroscopy of their central stars. The shells were detected at 22 μm in the archival data of the Mid-Infrared All Sky Survey carried out with the Wide-field Infrared Survey Explorer (WISE). Follow-up optical spectroscopy of the central stars of the shells conducted with the renewed Southern African Large Telescope (SALT) showed that their spectra are very similar to those of the well-known LBVs P Cygni and AG Car, and the recently discovered candidate LBV MN112, which implies the LBV classification for these stars as well. The LBV classification of both stars is supported by detection of their significant photometric variability: one of them brightened in the R and I bands by 0.68 ± 0.10 and 0.61 ± 0.04 mag, respectively, during the last 13-18 years, while the second one (known as Hen 3-1383) varies its B, V, R, I and Ks brightnesses by ≃0.5-0.9 mag on time-scales from 10 d to decades. We also found significant changes in the spectrum of Hen 3-1383 on a time-scale of ≃3 months, which provides additional support for the LBV classification of this star. Further spectrophotometric monitoring of both stars is required to firmly prove their LBV status. We discuss a connection between the location of massive stars in the field and their fast rotation, and suggest that the LBV activity of the newly discovered candidate LBVs might be directly related to their possible runaway status. a USNO B-1 (Monet et al. 2003); bDENIS; c2MASS; dSALT; ePROMPT.

  7. New Galactic Candidate Luminous Blue Variables and Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy S.; Gvaramadze, Vasilii V.; Beletsky, Yuri; Kniazev, Alexei Y.

    2012-04-01

    We have undertaken a near-infrared spectral survey of stars associated with compact mid-IR shells recently revealed by the MIPSGAL (24 μm) and GLIMPSE (8 μm) Spitzer surveys, whose morphologies are typical of circumstellar shells produced by massive evolved stars. Through spectral similarity with known Luminous Blue Variable (LBV) and Wolf-Rayet (WR) stars, a large population of candidate LBVs (cLBVs) and a smaller number of new WR stars are being discovered. This significantly increases the Galactic cLBV population and confirms that nebulae are inherent to most (if not all) objects of this class.

  8. A new luminous blue variable - R143 in 30 Doradus

    NASA Technical Reports Server (NTRS)

    Parker, Joel WM.; Clayton, Geoffrey C.; Winge, Claudia; Conti, Peter S.

    1993-01-01

    We have discovered that R143 in the Large Magellanic Cloud is a luminous blue variable (LBV), the first and perhaps the lone LBV in the central cluster of 30 Doradus, and only the sixth known LMC LBV. Photometric and spectroscopic observations over the past 40 yr indicate that during that time R143 moved redward (changing from an F5 to F8 supergiant), then blueward (possibly becoming as early as O9.5), and is now moving back to the red (currently appearing as a late B supergiant). Similarly, the V magnitude of the star has changed by at least 1.4 mag. Images of R143 show very unusual filaments of nebulosity extending from the star to a shell at a distance of 3.5 pc, perhaps due to a similar ejection mechanism that created the spiral jets and shell associated with AG Car, another LBV.

  9. Spectral Confirmation of New Galactic LBV and WN Stars Associated With Mid-IR Nebulae

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy; Gvaramadze, Vasilii V.

    2014-08-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class and short-lived phase in the lives of very luminous massive stars with high mass loss rates. Extragalactic LBVs are responsible for producing false supernovae (SN), the SN Impostors, and have been directly linked with the progenitors of actual SN, indicating the LBV phase can be a final endpoint for massive star evolution. Yet only a few confirmed LBVs have been identified in the Galaxy. Their stellar evolution is poorly constrained by observations, and the physical reason for their unstable nature, both in terms of moderate spectral and photometric variability of a few magnitudes and the giant eruptions a la η Car that rival SN explosions, remains a mystery. Newly discovered mid-IR shells act as signposts, pointing to the central massive stars (LBV and Wolf-Rayet [WR] stars) that produced them. We have undertaken a spectroscopic survey of possible progenitor stars within these shells and are discovering that many are LBVs and WN-type WR transitional stars. We propose to extend this IR spectral survey to the south to search for new progenitor stars associated with dozens of newly identified shells. This survey should result in a substantial increase of new WRs and candidate LBVs for continued future study. Spectral analysis will yield new insights into the winds and physical properties of these rare and important objects, and lead to a better understanding of the physics driving giant eruptions.

  10. MN112: a new Galactic candidate luminous blue variable

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.; Sholukhova, O.; Berdnikov, L. N.; Cherepashchuk, A. M.; Zharova, A. V.

    2010-06-01

    We report the discovery of a new Galactic candidate luminous blue variable (cLBV) via detection of an infrared circular nebula and follow-up spectroscopy of its central star. The nebula, MN112, is one of many dozens of circular nebulae detected at 24μm in the Spitzer Space Telescope archival data, whose morphology is similar to that of nebulae associated with known (c)LBVs and related evolved massive stars. Specifically, the core-halo morphology of MN112 bears a striking resemblance to the circumstellar nebula associated with the Galactic cLBV GAL079.29+00.46, which suggests that both nebulae might have a similar origin and that the central star of MN112 is an LBV. The spectroscopy of the central star showed that its spectrum is almost identical to that of the bona fide LBV PCygni, which also supports the LBV classification of the object. To further constrain the nature of MN112, we searched for signatures of possible high-amplitude (>~1mag) photometric variability of the central star using archival and newly obtained photometric data covering a 45-yr period. We found that the B magnitude of the star was constant within error margins, while in the I band the star brightened by ~=0.4mag during the last 17 yr. Although the non-detection of large photometric variability leads us to use the prefix `candidate' in the classification of MN112, we remind the readers that the long-term photometric stability is not unusual for genuine LBVs and that the brightness of PCygni remained relatively stable during the last three centuries. Partially based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF); olga@sao.ru (OS); berdnik@sai.msu.ru (LNB); cher@sai.msu.ru (AMC); alla@sai.msu.ru (AVZ)

  11. VLT/X-shooter observations of the low-metallicity blue compact dwarf galaxy PHL 293B including a luminous blue variable star

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Guseva, N. G.; Fricke, K. J.; Henkel, C.

    2011-09-01

    Context. We present VLT/X-shooter spectroscopic observations in the wavelength range λλ3000-23 000 Å of the extremely metal-deficient blue compact dwarf (BCD) galaxy PHL 293B containing a luminous blue variable (LBV) star and compare them with previous data. Aims: This BCD is one of the two lowest-metallicity galaxies where LBV stars were detected, allowing us to study the LBV phenomenon in the extremely low metallicity regime. Methods: We determine abundances of nitrogen, oxygen, neon, sulfur, argon, and iron by analyzing the fluxes of narrow components of the emission lines using empirical methods and study the properties of the LBV from the fluxes and widths of broad emission lines. Results: We derive an interstellar oxygen abundance of 12+log O/H = 7.71 ± 0.02, which is in agreement with previous determinations. The observed fluxes of narrow Balmer, Paschen and Brackett hydrogen lines correspond to the theoretical recombination values after correction for extinction with a single value C(Hβ) = 0.225. This implies that the star-forming region observed in the optical range is the only source of ionisation and there is no additional source of ionisation that is seen in the NIR range but is hidden in the optical range. We detect three v = 1-0 vibrational lines of molecular hydrogen. Their flux ratios and non-detection of v = 2-1 and 3-1 emission lines suggest that collisional excitation is the main source producing H2 lines. For the LBV star in PHL 293B we find broad emission with P Cygni profiles in several Balmer hydrogen emission lines and for the first time in several Paschen hydrogen lines and in several He i emission lines, implying temporal evolution of the LBV on a time scale of 8 years. The Hα luminosity of the LBV star is by one order of magnitude higher than the one obtained for the LBV star in NGC 2363 ≡ Mrk 71 which has a slightly higher metallicity 12+logO/H = 7.87. The terminal velocity of the stellar wind in the low-metallicity LBV of PHL293B is high, ~800 km s-1, and is comparable to that seen in spectra of some extragalactic LBVs during outbursts. We find that the averaged terminal velocities derived from the Paschen and He i emission lines are by some ~40-60 km s-1 lower than those derived from the Balmer emission lines. This probably indicates the presence of the wind accelerating outward. Based on observations collected at the European Southern Observatory, Chile, ESO program 60.A-9442(A).The reduced data in Figures 1 and 2 are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A25

  12. Spectroscopy, MOST photometry, and interferometry of MWC 314: is it an LBV or an interacting binary?

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Moffat, Anthony F. J.; Maltais-Tariant, Raphaël; Pablo, Herbert; Gies, Douglas R.; Saio, Hideyuki; St-Louis, Nicole; Schaefer, Gail; Miroshnichenko, Anatoly S.; Farrington, Chris; Aldoretta, Emily J.; Artigau, Étienne; Boyajian, Tabetha S.; Gordon, Kathryn; Jones, Jeremy; Matson, Rachel; McAlister, Harold A.; O'Brien, David; Raghavan, Deepak; Ramiaramanantsoa, Tahina; Ridgway, Stephen T.; Scott, Nic; Sturmann, Judit; Sturmann, Laszlo; Brummelaar, Theo ten; Thomas, Joshua D.; Turner, Nils; Vargas, Norm; Zharikov, Sergey; Matthews, Jaymie; Cameron, Chris; Guenther, David; Kuschnig, Rainer; Rowe, Jason; Rucinski, Slavek; Sasselov, Dimitar; Weiss, Werner

    2016-01-01

    MWC 314 is a bright candidate luminous blue variable (LBV) that resides in a fairly close binary system, with an orbital period of 60.753 ± 0.003 d. We observed MWC 314 with a combination of optical spectroscopy, broad-band ground- and space-based photometry, as well as with long baseline, near-infrared interferometry. We have revised the single-lined spectroscopic orbit and explored the photometric variability. The orbital light curve displays two minima each orbit that can be partially explained in terms of the tidal distortion of the primary that occurs around the time of periastron. The emission lines in the system are often double-peaked and stationary in their kinematics, indicative of a circumbinary disc. We find that the stellar wind or circumbinary disc is partially resolved in the K'-band with the longest baselines of the CHARA Array. From this analysis, we provide a simple, qualitative model in an attempt to explain the observations. From the assumption of Roche Lobe overflow and tidal synchronization at periastron, we estimate the component masses to be M1 ≈ 5 M⊙ and M2 ≈ 15 M⊙, which indicates a mass of the LBV that is extremely low. In addition to the orbital modulation, we discovered two pulsational modes with the MOST satellite. These modes are easily supported by a low-mass hydrogen-poor star, but cannot be easily supported by a star with the parameters of an LBV. The combination of these results provides evidence that the primary star was likely never a normal LBV, but rather is the product of binary interactions. As such, this system presents opportunities for studying mass-transfer and binary evolution with many observational techniques.

  13. DISCOVERY OF PRECURSOR LUMINOUS BLUE VARIABLE OUTBURSTS IN TWO RECENT OPTICAL TRANSIENTS: THE FITFULLY VARIABLE MISSING LINKS UGC 2773-OT AND SN 2009ip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Nathan; Miller, Adam; Li Weidong

    2010-04-15

    We present progenitor-star detections, light curves, and optical spectra of supernova (SN) 2009ip and the 2009 optical transient in UGC 2773 (U2773-OT), which were not genuine SNe. Precursor variability in the decade before outburst indicates that both of the progenitor stars were luminous blue variables (LBVs). Their pre-outburst light curves resemble the S Doradus phases that preceded giant eruptions of the prototypical LBVs {eta} Carinae and SN 1954J (V12 in NGC 2403), with intermediate progenitor luminosities. Hubble Space Telescope detections a decade before discovery indicate that the SN 2009ip and U2773-OT progenitors were supergiants with likely initial masses of 50-80more » M {sub sun} and {approx}>20 M {sub sun}, respectively. Both outbursts had spectra befitting known LBVs, although in different physical states. SN 2009ip exhibited a hot LBV spectrum with characteristic speeds of 550 km s{sup -1}, plus evidence for faster material up to 5000 km s{sup -1}, resembling the slow Homunculus and fast blast wave of {eta} Carinae. In contrast, U2773-OT shows a forest of narrow absorption and emission lines comparable to that of S Dor in its cool state, plus [Ca II] emission and an infrared excess indicative of dust, similar to SN 2008S and the 2008 optical transient in NGC 300 (N300-OT). The [Ca II] emission is probably tied to a dusty pre-outburst environment, and is not a distinguishing property of the outburst mechanism. The LBV nature of SN 2009ip and U2773-OT may provide a critical link between historical LBV eruptions, while U2773-OT may provide a link between LBVs and the unusual dust-obscured transients SN 2008S and N300-OT. Future searches will uncover more examples of precursor LBV variability of this kind, providing key clues that may help unravel the instability driving LBV eruptions in massive stars.« less

  14. The extremely metal-poor galaxy DDO 68: the luminous blue variable, Hα shells and the most luminous stars

    NASA Astrophysics Data System (ADS)

    Pustilnik, S. A.; Makarova, L. N.; Perepelitsyna, Y. A.; Moiseev, A. V.; Makarov, D. I.

    2017-03-01

    This paper presents new results from the ongoing study of the unusual Lynx-Cancer void galaxy DDO 68, which has star-forming regions of record low metallicity [12+log (O/H) ˜7.14]. The results include the following. (I) A new spectrum and photometry have been obtained with the 6-m SAO RAS telescope (BTA) for the luminous blue variable (LBV = DDO68-V1). Photometric data sets were complemented with others based on the Sloan Digital Sky Survey (SDSS) and the Hubble Space Telescope (HST) archive images. (II) We performed an analysis of the DDO 68 supergiant shell (SGS) and the prominent smaller Hα arcs/shells visible in the HST image coupled with kinematic maps in Hα obtained with the Fabry-Perot interferometer (FPI) at the BTA. (III) We compiled a list of about 50 of the most luminous stars (-9.1 mag < MV < -6.0 mag) identified from the HST images associated with the star-forming regions with known extremely low O/H. This is intended to pave the path for the current science to be investigated with the next generation of giant telescopes. We have confirmed earlier hints of significant variation of the LBV optical light, deriving its amplitude as ΔV ≳ 3.7 mag for the first time. New data suggest that in 2008-2010 the LBV reached MV = -10.5 mag and probably underwent a giant eruption. We argue that the structure of star-forming complexes along the SGS ('Northern Ring') perimeter provides evidence for sequential induced star-formation episodes caused by the shell gas instabilities and gravitational collapse. The variability of some luminous extremely metal-poor stars in DDO 68 can currently be monitored with medium-size telescopes at sites with superb seeing.

  15. BONA FIDE, STRONG-VARIABLE GALACTIC LUMINOUS BLUE VARIABLE STARS ARE FAST ROTATORS: DETECTION OF A HIGH ROTATIONAL VELOCITY IN HR CARINAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groh, J. H.; Damineli, A.; Moises, A. P.

    2009-11-01

    We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si IV lambdalambda4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of v{sub rot} approx = 150 +- 20 km s{sup -1} is needed (assuming an inclination angle of 30 deg.), implying that HR Car rotates at approx =0.88 +- 0.2 of its critical velocity for breakup (v{sub crit}). Our results suggest that fast rotation is typical in all strong-variable, bona fide galacticmore » LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the 'LBV minimum instability strip'). We suggest this region corresponds to where v{sub crit} is reached. To the left of this strip, a forbidden zone with v{sub rot}/v{sub crit}>1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low v{sub rot}, we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase.« less

  16. VizieR Online Data Catalog: Rotating Wolf-Rayet stars in post RSG/LBV phase (Graefener+, 2012)

    NASA Astrophysics Data System (ADS)

    Graefener, G.; Vink, J. S.; Harries, T. J.; Langer, N.

    2013-01-01

    Wolf-Rayet (WR) stars with fast rotating cores are thought to be the direct progenitors of long-duration gamma-ray bursts (LGRBs). A well accepted evolutionary channel towards LGRBs is chemically-homogeneous evolution at low metallicities, which completely avoids a red supergiant (RSG), or luminous blue variable (LBV) phase. On the other hand, strong absorption features with velocities of several hundred km/s have been found in some LGRB afterglow spectra (GRB 020813 and GRB 021004), which have been attributed to dense circumstellar (CS) material that has been ejected in a previous RSG or LBV phase, and is interacting with a fast WR-type stellar wind. Here we investigate the properties of Galactic WR stars and their environment to identify similar evolutionary channels that may lead to the formation of LGRBs. We compile available information on the spectropolarimetric properties of 29 WR stars, the presence of CS ejecta for 172 WR stars, and the CS velocities in the environment of 34 WR stars in the Galaxy. We use linear line-depolarization as an indicator of rotation, nebular morphology as an indicator of stellar ejecta, and velocity patterns in UV absorption features as an indicator of increased velocities in the CS environment. (2 data files).

  17. WR and LBV stars

    NASA Astrophysics Data System (ADS)

    Kochiashvili, Nino; Beradze, Sophie; Kochiashvili, Ia; Natsvlishvili, Rezo; Vardosanidze, Manana

    Evolutionary scenarios of massive stars were revised in recent decades, after finding "unusual", blue progenitor of SN 1987A and after detecting the more massive stars than the accepted 120 M ⊙ maximum limit of stellar masses. A very important relation exists between WR and LBV stars. They represent the earlier, pre-SN evolutionary states of massive stars. WR and LBV stars and "classic" evolutionary scheme of the relation between the different type massive stars are discussed in this article. There also exist the newest evolutionary scenarios for low metallicity massive stars, which give us a different picture of their post main-sequence evolution. There is a rather good tradition of observations and investigations of massive stars at Abastumani Astrophysical Observatory. The authors discuss the new findings on the fate of P Cygni, the LBV star. These results on the reddening of the star and about its next possible outburst in the near future were obtained on the basis of UBV long-term electrophotometric observations of P Cygni by Eugene Kharadze and Nino Magalashvili. The observations were held in 1951-1983 at Abastumani Observatory using 33-cm and 48-cm reflectors.

  18. Luminous and Variable Stars in M31 and M33. V. The Upper HR Diagram

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Davidson, Kris; Hahn, David; Martin, John C.; Weis, Kerstin

    2017-07-01

    We present HR diagrams for the massive star populations in M31 and M33, including several different types of emission-line stars: the confirmed luminous blue variables (LBVs), candidate LBVs, B[e] supergiants, and the warm hypergiants. We estimate their apparent temperatures and luminosities for comparison with their respective massive star populations and evaluate the possible relationships of these different classes of evolved, massive stars, and their evolutionary state. Several of the LBV candidates lie near the LBV/S Dor instability strip that supports their classification. Most of the B[e] supergiants, however, are less luminous than the LBVs. Many are very dusty with the infrared flux contributing one-third or more to their total flux. They are also relatively isolated from other luminous OB stars. Overall, their spatial distribution suggests a more evolved state. Some may be post-RSGs (red supergiants) like the warm hypergiants, and there may be more than one path to becoming a B[e] star. There are sufficient differences in the spectra, luminosities, spatial distribution, and the presence or lack of dust between the LBVs and B[e] supergiants to conclude that one group does not evolve into the other.

  19. Luminous and Variable Stars in M31 and M33. V. The Upper HR Diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, Roberta M.; Davidson, Kris; Hahn, David

    We present HR diagrams for the massive star populations in M31 and M33, including several different types of emission-line stars: the confirmed luminous blue variables (LBVs), candidate LBVs, B[e] supergiants, and the warm hypergiants. We estimate their apparent temperatures and luminosities for comparison with their respective massive star populations and evaluate the possible relationships of these different classes of evolved, massive stars, and their evolutionary state. Several of the LBV candidates lie near the LBV/S Dor instability strip that supports their classification. Most of the B[e] supergiants, however, are less luminous than the LBVs. Many are very dusty with themore » infrared flux contributing one-third or more to their total flux. They are also relatively isolated from other luminous OB stars. Overall, their spatial distribution suggests a more evolved state. Some may be post-RSGs (red supergiants) like the warm hypergiants, and there may be more than one path to becoming a B[e] star. There are sufficient differences in the spectra, luminosities, spatial distribution, and the presence or lack of dust between the LBVs and B[e] supergiants to conclude that one group does not evolve into the other.« less

  20. MN48: a new Galactic bona fide luminous blue variable revealed by Spitzer and SALT

    NASA Astrophysics Data System (ADS)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2016-07-01

    In this paper, we report the results of spectroscopic and photometric observations of the candidate evolved massive star MN48 disclosed via detection of a mid-infrared circular shell around it with the Spitzer Space Telescope. Follow-up optical spectroscopy of MN48 with the Southern African Large Telescope (SALT) carried out in 2011-2015 revealed significant changes in the spectrum of this star, which are typical of luminous blue variables (LBVs). The LBV status of MN48 was further supported by photometric monitoring which shows that in 2009-2011 this star has brightened by ≈0.9 and 1 mag in the V and Ic bands, respectively, then faded by ≈1.1 and 1.6 mag during the next four years, and apparently started to brighten again recently. The detected changes in the spectrum and brightness of MN48 make this star the 18th known Galactic bona fide LBV and increase the percentage of LBVs associated with circumstellar nebulae to more than 70 per cent. We discuss the possible birth place of MN48 and suggest that this star might have been ejected either from a putative star cluster embedded in the H II region IRAS 16455-4531 or the young massive star cluster Westerlund 1.

  1. WS1: one more new Galactic bona fide luminous blue variable★

    NASA Astrophysics Data System (ADS)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2015-04-01

    In this Letter, we report the results of spectroscopic and photometric monitoring of the candidate luminous blue variable (LBV) WS1, which was discovered in 2011 through the detection of a mid-infrared circular shell and follow-up optical spectroscopy of its central star. Our monitoring showed that WS1 brightened in the B, V and I bands by more than 1 mag during the last three years, while its spectrum revealed dramatic changes during the same time period, indicating that the star became much cooler. The light curve of WS1 demonstrates that the brightness of this star has reached maximum in 2013 December and then starts to decline. These findings unambiguously proved the LBV nature of WS1 and added one more member to the class of Galactic bona fide LBVs, bringing their number to sixteen (an updated census of these objects is provided).

  2. SN 2015bh: an LBV becomes NGC 2770s fourth SN. . . or not?

    NASA Astrophysics Data System (ADS)

    Thöne, Christina C.; de Ugarte Postigo, Antonio; Leloudas, Giorgos

    2017-11-01

    Massive stars in the final phases of their lives frequently expel large amounts of material. An interesting example is SN 2009ip that varied in brightness years before its possible core-collapse. Here we present SN 2015bh in NGC 2770 that shows striking similarities to SN 2009ip. It experienced frequent variabilities for 21 years before a smaller precursor and the ``main event'' in May 2015. Its spectra are consistent with an LBV during the outburst phase and show a complex P-Cygni profile during the main event. Both SN 2009ip and 2015bh were always situated red-wards of LBVs in outburst in the HR diagram. Their final fate is currently still uncertain, SN 2009ip, however, is now fainter than in pre-explosion observations. If the star survives this event it is undoubtedly altered, and we suggest that these ``zombie stars'' could be LBVs evolving into a Wolf-Rayet (WR) star over a very short timescale.

  3. Mid-Infrared Spectrally-Dispersed Visibilities of Massive Stars Observed with the MIDI Instrument on the VLTI

    NASA Astrophysics Data System (ADS)

    Wallace, D. J.; Rajagopal, J.; Barry, R.; Richardson, L. J.; Lopez, B.; Chesneau, O.; Danchi, W. C.

    The mechanism driving dust production in massive stars remains somewhat mysterious. However, recent aperture-masking and interferometric observations of late-type WC Wolf-Rayet (WR) stars strongly support the theory that dust formation in these objects is a result of colliding winds in binaries. Consistent with this theory, there is also evidence that suggests the prototypical Luminous Blue Variable (LBV) star, Eta Carinae, is a binary. To explore and quantify this possible explanation, we have conducted a high resolution interferometric survey of late-type massive stars utilizing the VLTI, Keck, and IOTA interferometers. We present here the motivation for this study as well as the first results from the MIDI instrument on the VLTI. (Details of the Keck Interferometer and IOTA interferometer observations are discussed in this workshop by Rajagopal et al.). Our VLTI study is aimed primarily at resolving and characterizing the dust around the WC9 star WR 85a and the LBV WR 122, both dust-producing but at different phases of massive star evolution. The pectrally-dispersed visibilities obtained with the MIDI observations will provide the first steps towards answering many outstanding issues in our understanding of this critical phase of massive star evolution

  4. Modeling and Observations of Massive Binaries with the B[e] Phenomenon

    NASA Astrophysics Data System (ADS)

    Lobel, A.; Martayan, C.; Mehner, A.; Groh, J. H.

    2017-02-01

    We report a long-term high-resolution spectroscopic monitoring program of LBVs and candidate LBVs with Mercator-HERMES. Based on 7 years of data, we recently showed that supergiant MWC 314 is a (Galactic) semi-detached eccentric binary with stationary permitted and forbidden emission lines in the optical and near-IR region. MWC 314 is a luminous and massive probable LBV star showing a strongly orbitally-modulated wind variability. We observe discrete absorption components in P Cyg He I lines signaling large-scale wind structures. In 2014 XMM observed X-rays indicating strong wind-wind collision in the close binary system (a ≃1 AU). A VLT-NACO imaging survey recently revealed that MWC 314 is a triple hierarchical system. We present a 3-D non-LTE radiative transfer model of the extended asymmetric wind structure around the primary B0 supergiant for modeling the orbital variability of P Cyg absorption (v∞˜1200 km s-1) in He I lines. An analysis of the HERMES monitoring spectra of the Galactic LBV star MWC 930 however does not show clear indications of a spectroscopic binary. The detailed long-term spectroscopic variability of this massive B[e] star is very similar to the spectroscopic variability of the prototypical blue hypergiant S Dor in the LMC. We observe prominent P Cyg line shapes in MWC 930 that temporarily transform into split absorption line cores during variability phases of its S Dor cycle over the past decade with a brightening in V of ˜ 1.2 mag. The line splitting phenomenon is very similar to the split metal line cores observed in pulsating Yellow Hypergiants ρ Cas (F-K Ia+) and HR 8752 (A-K Ia+) with [Ca II] and [N II] emission lines. We propose the line core splitting in MWC 930 is due to optically thick central line emission produced in the inner ionized wind region becoming mechanically shock-excited with the increase of R* and decrease of Teff of the LBV.

  5. On the nature of candidate luminous blue variables in M 33

    NASA Astrophysics Data System (ADS)

    Clark, J. S.; Castro, N.; Garcia, M.; Herrero, A.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Smith, K. T.

    2012-05-01

    Context. Luminous blue variables (LBVs) are a class of highly unstable stars that have been proposed to play a critical role in massive stellar evolution as well as being the progenitors of some of the most luminous supernovae known. However the physical processes underlying their characteristic instabilities are currently unknown. Aims: In order to provide observational constraints on this behaviour we have initiated a pilot study of the population of (candidate) LBVs in the Local Group galaxy M 33. Methods: To accomplish this we have obtained new spectra of 18 examples within M 33. These provide a baseline of ≥ 4 yr with respect to previous observations, which is well suited to identifying LBV outbursts. We also employed existing multi-epoch optical and mid-IR surveys of M 33 to further constrain the variability of the sample and search for the presence of dusty ejecta. Results: Combining the datasets reveals that spectroscopic and photometric variability appears common, although in the majority of cases further observations will be needed to distinguish between an origin for this behavour in short lived stochastic wind structure and low level photospheric pulsations or coherent long term LBV excursions. Of the known LBVs we report a hitherto unidentified excursion of M 33 Var C between 2001-5, while the transition of the WNLh star B517 to a cooler B supergiant phase between 1993-2010 implies an LBV classification. Proof-of-concept quantitative model atmosphere analysis is provided for Romano's star; the resultant stellar parameters being consistent with the finding that the LBV excursions of this star are accompanied by changes in bolometric luminosity. The combination of temperature and luminosity of two stars, the BHG [HS80] 110A and the cool hypergiant B324, appear to be in violation of the empirical Humphreys-Davidson limit. Mid-IR observations demonstrate that a number of candidates appear associated with hot circumstellar dust, although no objects as extreme as η Car are identified. The combined dataset suggests that the criteria employed to identify candidate LBVs results in a heterogeneous sample, also containing stars demonstrating the B[e] phenomenon. Of these, a subset of optically faint, low luminosity stars associated with hot dust are of particular interest since they appear similar to the likely progenitor of SN 2008S and the 2008 NGC 300 transient (albeit suffering less intrinsic extinction). Conclusions: The results of such a multiwavelength observational approach, employing multiplexing spectrographs and supplemented with quantitative model atmosphere analysis, appears to show considerable promise in both identifying and characterising the physical properties of LBVs as well as other short lived phases of massive stellar evolution. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Appendix is available in electronic form at http://www.aanda.org

  6. Revealing evolved massive stars with Spitzer

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  7. Connecting the progenitors, pre-explosion variability and giant outbursts of luminous blue variables with Gaia16cfr

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Charles D.; Foley, Ryan J.; Drout, Maria R.; Pan, Yen-Chen; Panther, Fiona H.; Coulter, David A.; Filippenko, Alexei V.; Marion, G. Howard; Piro, Anthony L.; Rest, Armin; Seitenzahl, Ivo R.; Strampelli, Giovanni; Wang, Xi E.

    2018-02-01

    We present multi-epoch, multicolour pre-outburst photometry and post-outburst light curves and spectra of the luminous blue variable (LBV) outburst Gaia16cfr discovered by the Gaia satellite on 2016 December 1 UT. We detect Gaia16cfr in 13 epochs of Hubble Space Telescope imaging spanning phases of 10 yr to 8 months before the outburst and in Spitzer Space Telescope imaging 13 yr before outburst. Pre-outburst optical photometry is consistent with an 18 M⊙ F8 I star, although the star was likely reddened and closer to 30 M⊙. The pre-outburst source exhibited a significant near-infrared excess consistent with a 120 au shell with 4 × 10-6 M⊙ of dust. We infer that the source was enshrouded by an optically thick and compact shell of circumstellar material from an LBV wind, which formed a pseudo-photosphere consistent with S Dor-like variables in their 'maximum' phase. Within a year of outburst, the source was highly variable on 10-30 d time-scales. The outburst light curve closely matches that of the 2012 outburst of SN 2009ip, although the observed velocities are significantly slower than in that event. In H α, the outburst had an excess of blueshifted emission at late times centred around -1500 km s-1, similar to that of double-peaked Type IIn supernovae and the LBV outburst SN 2015bh. From the pre-outburst and post-outburst photometry, we infer that the outburst ejecta are evolving into a dense, highly structured circumstellar environment from precursor outbursts within years of the 2016 December event.

  8. An X-ray Investigation of the NGC 346 Field. 1; The LBV HD 5980 and the NGC 346 Cluster

    NASA Technical Reports Server (NTRS)

    Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Corcoran, M. F.; Chu, Y.-H.; Koenigsberger, G.; Moffat, A. F. J.; Niemela, V. S.

    2002-01-01

    We present results from a Chandra observation of the NGC 346 star formation region, which contains numerous massive stars, and is related to N66, the largest H(II) region of the SMC (Small Magellanic Cloud). In this first paper, we will focus on the characteristics of the main objects of the field. The NGC 346 cluster itself shows only relatively faint X-ray emission (with L((sub X)(sup unabs)) is approximately 1.5 x 10(exp 34) erg s(exp -1), tightly correlated with the core of the cluster. In the field also lies HD 5980, a LBV (Luminous Blue Variable) star in a binary (or triple system) that is detected for the first time at X-ray energies. The star is X-ray bright, with an unabsorbed luminosity of L((sub X)(sup unabs)) is approximately 1.7 x 10(exp 34) erg s(exp -1), but needs to be monitored further to investigate its X-ray variability over a complete orbital cycle. The high X-ray luminosity may be associated either with colliding winds in the binary system or with the 1994 eruption. HD 5980 is surrounded by a region of diffuse X-ray emission, which may be a superimposed supernova remnant.

  9. A giant outburst two years before the core-collapse of a massive star.

    PubMed

    Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L

    2007-06-14

    The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.

  10. The evolution of massive stars and their spectra. I. A non-rotating 60 M⊙ star from the zero-age main sequence to the pre-supernova stage

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.; Meynet, Georges; Ekström, Sylvia; Georgy, Cyril

    2014-04-01

    For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and stellar atmospheric/wind models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and photometry, thereby aiding the comparison between evolution models and observed data. Here we analyze the evolution of a non-rotating 60 M⊙ star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class I) even at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 I (middle of the H-core burning phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle of He-core burning), and WO (end of He-core burning until core collapse). We find the following spectroscopic phase lifetimes: 3.22 × 106 yr for the O-type, 0.34 × 105 yr (BSG), 0.79 × 105 yr (BHG), 2.35 × 105 yr (LBV), 1.05 × 105 yr (WN), 2.57 × 105 yr (WC), and 3.80 × 104 yr (WO). Compared to previous studies, we find a much longer (shorter) duration for the early WN (late WN) phase, as well as a long-lived LBV phase. We show that LBVs arise naturally in single-star evolution models at the end of the MS when the mass-loss rate increases as a consequence of crossing the bistability limit. We discuss the evolution of the spectra, magnitudes, colors, and ionizing flux across the star's lifetime, and the way they are related to the evolution of the interior. We find that the absolute magnitude of the star typically changes by ~6 mag in optical filters across the evolution, with the star becoming significantly fainter in optical filters at the end of the evolution, when it becomes a WO just a few 104 years before the SN explosion. We also discuss the origin of the different spectroscopic phases (i.e., O-type, LBV, WR) and how they are related to evolutionary phases (H-core burning, H-shell burning, He-core burning). Tables 1, 4 and 5 are available in electronic form at http://www.aanda.orgSynthetic spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A30

  11. Spectroscopic and photometric oscillatory envelope variability during the S Doradus outburst of the luminous blue variable R71

    NASA Astrophysics Data System (ADS)

    Mehner, A.; Baade, D.; Groh, J. H.; Rivinius, T.; Hambsch, F.-J.; Bartlett, E. S.; Asmus, D.; Agliozzo, C.; Szeifert, T.; Stahl, O.

    2017-12-01

    Context. Luminous blue variables (LBVs) are evolved massive stars that exhibit instabilities that are not yet understood. Stars can lose several solar masses during this evolutionary phase. The LBV phenomenon is thus critical to our understanding of the evolution of the most massive stars. Aims: The LBV R71 in the Large Magellanic Cloud is presently undergoing an S Doradus outburst, which started in 2005. To better understand the LBV phenomenon, we determine the fundamental stellar parameters of R71 during its quiescence phase. In addition, we analyze multiwavelength spectra and photometry obtained during the current outburst. Methods: We analyzed pre-outburst CASPEC spectra from 1984-1997, EMMI spectra in 2000, UVES spectra in 2002, and FEROS spectra from 2005 with the radiative transfer code CMFGEN to determine the fundamental stellar parameters of the star. A spectroscopic monitoring program with VLT X-shooter since 2012 secured visual to near-infrared spectra throughout the current outburst, which is well-covered by ASAS and AAVSO photometry. Mid-infrared images and radio data were also obtained. Results: During quiescence, R71 has an effective temperature of Teff = 15 500 K and a luminosity of log(L∗/L⊙) = 5.78. We determine its mass-loss rate to 4.0 × 10-6M⊙ yr-1. We present the spectral energy distribution of R71 from the near-ultraviolet to the mid-infrared during its present outburst. Semi-regular oscillatory variability in the light curve of the star is observed during the current outburst. Absorption lines develop a second blue component on a timescale of twice that length. The variability may consist of one (quasi-)periodic component with P 425/850 d with additional variations superimposed. Conclusions: R71 is a classical LBV, but this star is at the lower luminosity end of this group. Mid-infrared observations suggest that we are witnessing dust formation and grain evolution. During its current S Doradus outburst, R71 occupies a region in the HR diagram at the high-luminosity extension of the Cepheid instability strip and exhibits similar irregular variations as RV Tau variables. LBVs do not pass the Cepheid instability strip because of core evolution, but they develop comparable cool, low-mass, extended atmospheres in which convective instabilities may occur. As in the case of RV Tau variables, the occurrence of double absorption lines with an apparent regular cycle may be due to shocks within the atmosphere and period doubling may explain the factor of two in the lengths of the photometric and spectroscopic cycles. Based on observations collected at ESO's Very Large Telescope under Prog-IDs: 69.D-0390(D), 289.D-5040(A), 290.D-5032(A), 091.D-0116(A, B), 092.D-0024(A), 094.D-0266(A, B, C), 096.D-0043(A, B, C), 097.D-0006(A, B), 598.D-0005(A, B) and at the MPG/ESO 2.2-m Telescope under Prog-IDs: 076.D-0609(A), 078.D-0790(B), 086.D-0997(A, B), 087.D-0946(A), 089.D-0975(A), 094.A-9029(D), 096.A-9039(A), 097.D-0612(A, B), 098.D-0071(A).

  12. SALT Spectroscopy of Evolved Massive Stars

    NASA Astrophysics Data System (ADS)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  13. The luminous blue variable HR Carinae has a partner. Discovery of a companion with the VLTI

    NASA Astrophysics Data System (ADS)

    Boffin, Henri M. J.; Rivinius, Thomas; Mérand, Antoine; Mehner, Andrea; LeBouquin, Jean-Baptiste; Pourbaix, Dimitri; de Wit, Willem-Jan; Martayan, Christophe; Guieu, Sylvain

    2016-09-01

    Luminous blue variables (LBVs) are massive stars caught in a post-main sequence phase, during which they lose a significant amount of mass. Since, on one hand, it is thought that the majority of massive stars are close binaries that will interact during their lifetime, and on the other, the most dramatic example of an LBV, η Car, is a binary, it would be useful to find other binary LBVs. We present here interferometric observations of the LBV HR Car done with the AMBER and PIONIER instruments attached to ESO's Very Large Telescope Interferometer (VLTI). Our observations, spanning two years, clearly reveal that HR Car is a binary star. It is not yet possible to fully constrain the orbit, and the orbital period may lie between a few years and several hundred years. We derive a radius for the primary in the system and possibly also resolve the companion. The luminosity ratio in the H-band between the two components is changing with time, going from about 6 to 9. We also tentatively detect the presence of some background flux which remained at the 2% level until January 2016, but then increased to 6% in April 2016. Our AMBER results show that the emission line-forming region of Brγ is more extended than the continuum-emitting region as seen by PIONIER and may indicate some wind-wind interaction. Most importantly, we constrain the total masses of both components, with the most likely range being 33.6 M⊙ and 45 M⊙. Our results show that the LBV HR Car is possibly an η Car analog binary system with smaller masses, with variable components, and further monitoring of this object is definitively called for. Based on data obtained with ESO programmes 092.C-0243, 092.D-0289, 092.D-0296, 094.D-0069, and 596.D-0335.

  14. The WR/LBV system HD 5980 in the Small Magellanic Cloud: What is its evolutionary status?

    NASA Astrophysics Data System (ADS)

    Koenigsberger, Gloria; Morrell, Nidia; Hillier, D. John; Barba, Rodolfo; Gamen, Roberto

    2013-06-01

    HD 5980 is located in the Small Magellanic Cloud and consists of two binary systems which, if physically associated, are very widely separated. Their orbital periods are 19.3d and 97d and each of these systems contains very luminous massive stars. The P=19.3d binary is peculiar in that it consists of two WR stars, one of which underwent an LBV eruption in 1994. Because this binary is eclipsing and because it has been monitored since the 1950s, we now have a good grasp on the fundamental parameters of the LBV component. Particularly noteworthy is the fact that its bolometric luminosity increased during the 1994 eruption. In this poster we will summarize our current knowledge of HD 5980, including recent results derived from observations at Las Campanas Observatory which yield an improved orbital solution for the two binary systems and strong limits on the mass of the LBV. With these data, it should now be possible to constrain the evolutionary path that has been followed by the LBV and speculate on its properties as it approaches the supernova stage.

  15. Gaia TGAS search for Large Magellanic Cloud runaway supergiant stars. Candidate hypervelocity star discovery and the nature of R 71

    NASA Astrophysics Data System (ADS)

    Lennon, Daniel J.; van der Marel, Roeland P.; Ramos Lerate, Mercedes; O'Mullane, William; Sahlmann, Johannes

    2017-07-01

    Aims: Our research aims to search for runaway stars in the Large Magellanic Cloud (LMC) among the bright Hipparcos supergiant stars included in the Gaia DR1 Tycho-Gaia astrometric solution (TGAS) catalogue. Methods: We compute the space velocities of the visually brightest stars in the Large Magellanic Cloud that are included in the TGAS proper motion catalogue. This sample of 31 stars contains a luminous blue variable (LBV), emission line stars, blue and yellow supergiants, and an SgB[e] star. We combine these results with published radial velocities to derive their space velocities, and by comparing with predictions from stellar dynamical models we obtain each star's (peculiar) velocity relative to its local stellar environment. Results: Two of the 31 stars have unusually high proper motions. Of the remaining 29 stars we find that most objects in this sample have velocities that are inconsistent with a runaway nature, being in very good agreement with model predictions of a circularly rotating disk model. Indeed the excellent fit to the model implies that the TGAS uncertainty estimates are likely overestimated. The fastest outliers in this subsample contain the LBV R 71 and a few other well known emission line objects though in no case do we derive velocities consistent with fast ( 100 km s-1) runaways. On the contrary our results imply that R 71 in particular has a moderate deviation from the local stellar velocity field (40 km s-1) lending support to the proposition that this object cannot have evolved as a normal single star since it lies too far from massive star forming complexes to have arrived at its current position during its lifetime. Our findings therefore strengthen the case for this LBV being the result of binary evolution. Of the two stars with unusually high proper motions we find that one, the isolated B1.5 Ia+ supergiant Sk-67 2 (HIP 22237), is a candidate hypervelocity star, the TGAS proper motion implying a very large peculiar transverse velocity ( 360 km s-1) directed radially away from the LMC centre. If confirmed, for example by Gaia Data Release 2, it would imply that this massive supergiant, on the periphery of the LMC, is leaving the galaxy where it will explode as a supernova.

  16. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    NASA Astrophysics Data System (ADS)

    Tartaglia, L.

    2015-02-01

    Violent eruptions, and consequently major mass loss, are a common feature of the so-called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8⊙) exploding in a dense H-rich circumstellar medium (CSM), produced by progenitor's mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ˜3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.

  17. Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartaglia, L.

    2015-02-24

    Violent eruptions, and consequently major mass loss, are a common feature of the so–called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8{sub ⊙}) exploding in a dense H–rich circumstellar medium (CSM), produced by progenitor’s mass loss prior to the SN explosion. Although the mechanismsmore » triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ∼3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.« less

  18. Multi-epoch BVRI Photometry of Luminous Stars in M31 and M33

    NASA Astrophysics Data System (ADS)

    Martin, John C.; Humphreys, Roberta M.

    2017-09-01

    We present the first four years of BVRI photometry from an on-going survey to annually monitor the photometric behavior of evolved luminous stars in M31 and M33. Photometry was measured for 199 stars at multiple epochs, including 9 classic Luminous Blue Variables (LBVs), 22 LBV candidates, 10 post-RGB A/F type hypergiants, and 18 B[e] supergiants. At all epochs, the brightness is measured in the V-band and at least one other band to a precision of 0.04-0.10 mag down to a limiting magnitude of 19.0-19.5. Thirty three stars in our survey exhibit significant variability, including at least two classic LBVs caught in S Doradus-type outbursts. A hyperlinked version of the photometry catalog is at http://go.uis.edu/m31m33photcat.

  19. Probing the Extreme Environment of the Galactic Center with Observations from SOFIA/FORCAST

    NASA Astrophysics Data System (ADS)

    Lau, Ryan M.; Herter, Terry L.; Morris, Mark; Adams, Joseph D; Becklin, Eric E.

    2014-06-01

    In this thesis we present a study of the inner 40 pc of the Galactic center addressing the dense, dusty torus around Sgr A*, dust production around massive stars, and massive star formation. Observations of warm dust emission from the Galactic center were performed using the Faint Object Infrared Camera for the SOFIA Telescope (FORCAST). A dense, molecular torus referred to as the Circumnuclear Disk (CND) orbits Sgr A* with an inner radius of ~1.4 pc and extending to ~7 pc. The inner edge of the CND, which we refer to as the Circumnuclear Ring (CNR), exhibits features of a classic HII region and appears consistent with the prevailing paradigm in which the dust is heated by the Central cluster of hot, young stars. We do not detect any star formation occurring in the CNR; however, we reveal the presence of density “clumps” along the inner edge of the CNR. These clumps are not dense enough to be stable against tidal shear from Sgr A* and will be sheared out before completing a full orbit 10^5 yrs). Three Luminous Blue Variables (LBVs) are located in and near the Quintuplet Cluster 40 pc in projection from Sgr A*: qF362, the Pistol star, G0.120-0.048 (LBV3). FORCAST observation reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding LBV3. However, no detection of hot dust associated with qF362 is made. We argue that the Pistol star and LBV3 are identical “twins” that exhibit contrasting nebulae due to the external influence of their different environments. G-0.02-0.07, a complex consisting of three compact HII regions and one ultracompact HII region, is located at the edge of a molecular cloud 6 pc in projection to the east of Sgr A* and contains the most recent episode of star formation in the Galactic center. We probe the dust morphology, energetics, and composition of the regions to study the star forming conditions of a molecular cloud in the strong gravitational potential of Sgr A*.

  20. Spectral Identification of New Galactic cLBV and WR Stars

    NASA Astrophysics Data System (ADS)

    Stringfellow, G. S.; Gvaramadze, V. V.; Beletsky, Y.; Kniazev, A. Y.

    2012-12-01

    We have undertaken a near-IR spectral survey of stars associated with compact nebulae recently revealed by the Spitzer and WISE imaging surveys. These circumstellar nebulae, produced by massive evolved stars, display a variety of symmetries and shapes and are often only evident at mid-IR wavelengths. Stars associated with ˜50 of these nebulae have been observed. We also obtained recent spectra of previously confirmed (known) luminous blue variables (LBVs) and candidate LBVs (cLBVs). The spectral similarity of the stars observed when compared directly to known LBVs and Wolf-Rayet (WR) stars indicate many are newly identified cLBVs, with a few being newly discovered WR stars, mostly of WN8-9h spectral type. These results suggest that a large population of previously unidentified cLBVs and related transitional stars reside in the Galaxy and confirm that circumstellar nebulae are inherent to most (c)LBVs.

  1. Extended VHE γ-ray emission towards SGR1806-20, LBV 1806-20, and stellar cluster Cl* 1806-20

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Using the High Energy Spectroscopic System (H.E.S.S.) telescopes we have discovered a steady and extended very high-energy (VHE) γ-ray source towards the luminous blue variable candidate LBV 1806-20, massive stellar cluster Cl* 1806-20, and magnetar SGR 1806-20. The new VHE source, HESS J1808-204, was detected at a statistical significance of >6σ (post-trial) with a photon flux normalisation (2.9 ± 0.4stat ± 0.5sys) × 10-13 ph cm-2 s-1 TeV-1 at 1 TeV and a power-law photon index of 2.3 ± 0.2stat ± 0.3sys. The luminosity of this source (0.2 to 10 TeV; scaled to distance d = 8.7 kpc) is LVHE 1.6 × 1034(d/8.7 kpc)2 erg s-1. The VHE γ-ray emission is extended and is well fit by a single Gaussian with statistical standard deviation of 0.095° ± 0.015°. This extension is similar to that of the synchrotron radio nebula G10.0-0.3, which is thought to be powered by LBV 1806-20. The VHE γ-ray luminosity could be provided by the stellar wind luminosity of LBV 1806-20 by itself and/or the massive star members of Cl* 1806-20. Alternatively, magnetic dissipation (e.g. via reconnection) from SGR 1806-20 can potentially account for the VHE luminosity. The origin and hadronic and/or leptonic nature of the accelerated particles responsible for HESS J1808-204 is not yet clear. If associated with SGR 1806-20, the potentially young age of the magnetar (650 yr) can be used to infer the transport limits of these particles to match the VHE source size. This discovery provides new interest in the potential for high-energy particle acceleration from magnetars, massive stars, and/or stellar clusters.

  2. GR 290 (ROMANO’S STAR). II. LIGHT HISTORY AND EVOLUTIONARY STATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polcaro, V. F.; Nesci, R.; Chieffi, A.

    We have investigated the past light history of the luminous variable star GR 290 (M33/V532, Romano’s Star) in the M33 galaxy, and collected new spectrophotometric observations in order to analyze links between this object, the LBV category, and the Wolf–Rayet stars of the nitrogen sequence. We have built the historical light curve of GR 290 back to 1901, from old observations of the star found in several archival plates of M33. These old recordings together with published and new data on the star allowed us to infer that for at least half a century the star was in a lowmore » luminosity state, with B ≃ 18–19, most likely without brighter luminosity phases. After 1960, five large variability cycles of visual luminosity were recorded. The amplitude of the oscillations was seen increasing toward the 1992–1994 maximum, then decreasing during the last maxima. The recent light curve indicates that the photometric variations have been quite similar in all the bands and that the B – V color index has been constant within ±0.1{sup m} despite the 1.5{sup m} change of the visual luminosity. The spectrum of GR 290 at the large maximum of 1992–94 was equivalent to late-B-type, while, during 2002–2014, it varied between WN10h-11h near the visual maxima to WN8h-9h at the luminosity minima. We have detected, during this same period, a clear anti-correlation between the visual luminosity, the strength of the He ii 4686 Å emission line, the strength of the 4600–4700 Å lines’ blend, and the spectral type. From a model analysis of the spectra collected during the whole 2002–2014 period, we find that the Rosseland radius R {sub 2/3}, changed between the minimum and maximum luminosity phases by a factor of three while T {sub eff} varied between about 33,000 and 23,000 K. We confirm that the bolometric luminosity of the star has not been constant, but has increased by a factor of ∼1.5 between minimum and maximum luminosity, in phase with the apparent luminosity variations. Presently, GR 290 falls in the H–R diagram close to WN8h stars and is probably younger than them. In the light of current evolutionary models of very massive stars, we find that GR 290 has evolved from an ∼60 M {sub ☉} progenitor star and should have an age of about four million years. From its physical charcteristics, we argue that GR 290 has left the LBV stage and is presently moving from the LBV stage to a Wolf–Rayet stage of a late nitrogen spectral type.« less

  3. Var C: Long-term photometric and spectral variability of a luminous blue variable in M 33

    NASA Astrophysics Data System (ADS)

    Burggraf, B.; Weis, K.; Bomans, D. J.; Henze, M.; Meusinger, H.; Sholukhova, O.; Zharova, A.; Pellerin, A.; Becker, A.

    2015-09-01

    Aims: So far the highly unstable phase of luminous blue variables (LBVs) has not been understood well. It is still uncertain why and which massive stars enter this phase. Investigating the variabilities by looking for a possible regular or even (semi-)periodic behaviour could give a hint at the underlying mechanism for these variations and might answer the question of where these variabilities originate. Finding out more about the LBV phase also means understanding massive stars better in general, which have (e.g. by enriching the ISM with heavy elements, providing ionising radiation and kinetic energy) a strong and significant influence on the ISM, hence also on their host galaxy. Methods: Photometric and spectroscopic data were taken for the LBV Var C in M 33 to investigate its recent status. In addition, scanned historic plates, archival data, and data from the literature were gathered to trace Var C's behaviour in the past. Its long-term variability and periodicity was investigated. Results: Our investigation of the variability indicates possible (semi-)periodic behaviour with a period of 42.3 years for Var C. That Var C's light curve covers a time span of more than 100 years means that more than two full periods of the cycle are visible. The critical historic maximum around 1905 is less strong but discernible even with the currently rare historic data. The semi-periodic and secular structure of the light curve is similar to the one of LMC R71. Both light curves hint at a new aspect in the evolution of LBVs. Based on observations collected at the Thüringer Landessternwarte (TLS) Tautenburg.Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Tables 2-4, and 6 are available in electronic form at http://www.aanda.org

  4. An Optical and Infrared Time-domain Study of the Supergiant Fast X-Ray Transient Candidate IC 10 X-2

    NASA Astrophysics Data System (ADS)

    Kwan, Stephanie; Lau, Ryan M.; Jencson, Jacob; Kasliwal, Mansi M.; Boyer, Martha L.; Ofek, Eran; Masci, Frank; Laher, Russ

    2018-03-01

    We present an optical and infrared (IR) study of IC 10 X-2, a high-mass X-ray binary in the galaxy IC 10. Previous optical and X-ray studies suggest that X-2 is a Supergiant Fast X-ray Transient: a large-amplitude (factor of ∼100), short-duration (hours to weeks) X-ray outburst on 2010 May 21. We analyze R- and g-band light curves of X-2 from the intermediate Palomar Transient Factory taken between 2013 July 15 and 2017 February 14 that show high-amplitude (≳1 mag), short-duration (≲8 days) flares and dips (≳0.5 mag). Near-IR spectroscopy of X-2 from Palomar/TripleSpec show He I, Paschen-γ, and Paschen-β emission lines with similar shapes and amplitudes as those of luminous blue variables (LBVs) and LBV candidates (LBVc). Mid-IR colors and magnitudes from Spitzer/Infrared Array Camera photometry of X-2 resemble those of known LBV/LBVcs. We suggest that the stellar companion in X-2 is an LBV/LBVc and discuss possible origins of the optical flares. Dips in the optical light curve are indicative of eclipses from optically thick clumps formed in the winds of the stellar counterpart. Given the constraints on the flare duration (0.02–0.8 days) and the time between flares (15.1 ± 7.8 days), we estimate the clump volume filling factor in the stellar winds, f V , to be 0.01< {f}V< 0.71, which overlaps with values measured from massive star winds. In X-2, we interpret the origin of the optical flares as the accretion of clumps formed in the winds of an LBV/LBVc onto the compact object.

  5. Extended VHE γ-ray emission towards SGR1806-20 and stellar cluster C1 1806-20

    NASA Astrophysics Data System (ADS)

    Rowell, Gavin; de Naurois, Mathieu; Ataï, Arache Djannati; Gallant, Yves; H.E.S.S. Collaboration

    2012-12-01

    We report the discovery, with the H.E.S.S. telescopes, of steady and extended VHE γ-ray emission towards the magnetar candidate SGR 1806-20 and parent stellar cluster C1 1806-20. Preliminary analysis suggests the VHE γ-ray flux of this source, designated HESS J1808-204 is a few×10-13 ph cm-2 s-1 TeV-1 at 1 TeV with a power-law photon spectral index Γ = 2.4+/-0.2. The instrinsic extension and orientation matches that of the synchrotron radio nebula G10.0-0.3 which may be powered by the luminous blue variable star LBV 1806-20, a prominent member of the C1 1806-20 cluster. From the energetics of the combined VHE, X-ray, and nearby Fermi-LAT GeV emission, magnetar magnetic energy may be a dominant source of energy over spin-down power, should SGR 1806-20 power the source. Alternatively, C1 1806-20 and/or LBV 1806-20 by itself, via stellar winds, could supply sufficient energy.

  6. SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Li, Weidong; Foley, Ryan J.; Wheeler, J. Craig; Pooley, David; Chornock, Ryan; Filippenko, Alexei V.; Silverman, Jeffrey M.; Quimby, Robert; Bloom, Joshua S.; Hansen, Charles

    2007-09-01

    We report the discovery and early observations of the peculiar Type IIn supernova (SN) 2006gy in NGC 1260. With a peak visual magnitude of about -22, it is the most luminous supernova ever recorded. Its very slow rise to maximum took ~70 days, and it stayed brighter than -21 mag for about 100 days. It is not yet clear what powers the enormous luminosity and the total radiated energy of ~1051 erg, but we argue that any known mechanism-thermal emission, circumstellar interaction, or 56Ni decay-requires a very massive progenitor star. The circumstellar interaction hypothesis would require truly exceptional conditions around the star, which, in the decades before its death, must have experienced a luminous blue variable (LBV) eruption like the 19th century eruption of η Carinae. However, this scenario fails to explain the weak and unabsorbed soft X-rays detected by Chandra. Radioactive decay of 56Ni may be a less objectionable hypothesis, but it would imply a large Ni mass of ~22 Msolar, requiring SN 2006gy to have been a pair-instability supernova where the star's core was obliterated. While this is still uncertain, SN 2006gy is the first supernova for which we have good reason to suspect a pair-instability explosion. Based on a number of lines of evidence, we eliminate the hypothesis that SN 2006gy was a ``Type IIa'' event, that is, a white dwarf exploding inside a hydrogen envelope. Instead, we propose that the progenitor was a very massive evolved object like η Carinae that, contrary to expectations, failed to shed its hydrogen envelope. SN 2006gy implies that some of the most massive stars can explode prematurely during the LBV phase, never becoming Wolf-Rayet stars. SN 2006gy also suggests that they can create brilliant supernovae instead of experiencing ignominious deaths through direct collapse to a black hole. If such a fate is common among the most massive stars, then observable supernovae from Population III stars in the early universe will be more numerous than previously believed.

  7. Death or Survival? Determining the nature of SNe IIn-P explosions

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon

    2016-10-01

    An increasing number of transients classifiable as interacting supernovae of Type IIn have become the subject of intense debate, as the death or survival of the precursor star is unclear. This is because giant non-terminal eruptions from massive luminous blue variable (LBV) stars can spectroscopically resemble SNe IIn and achieve comparable luminosities via shock interaction with pre-existing circumstellar material (CSM). The stellar origin of the new SNe IIn-P class of explosions is particularly controversial. Competing interpretations predict stellar progenitors with very different initial masses and explosion outcomes: 1) non-terminal super-Eddington eruptions from LBVs; 2) collapsars from very massive stars that should die within their natal OB associations; and 3) electron-capture SNe from super-AGB stars with dense CSM envelopes. To resolve the uncertain origin of SNe IIn-P, we propose a simple and inexpensive optical imaging experiment to see if there is a luminous surviving star remaining at the site. UV imaging is also proposed to determine the nature of a UV source detected in pre-explosion GALEX images, and to survey the progenitor's environment for sibling O-type stars.

  8. Detection of new eruptions in the Magellanic Clouds luminous blue variables R 40 and R 110

    NASA Astrophysics Data System (ADS)

    Campagnolo, J. C. N.; Borges Fernandes, M.; Drake, N. A.; Kraus, M.; Guerrero, C. A.; Pereira, C. B.

    2018-05-01

    We performed a spectroscopic and photometric analysis to study new eruptions in two luminous blue variables (LBVs) in the Magellanic Clouds. We detected a strong new eruption in the LBV R40 that reached V 9.2 in 2016, which is around 1.3 mag brighter than the minimum registered in 1985. During this new eruption, the star changed from an A-type to a late F-type spectrum. Based on photometric and spectroscopic empirical calibrations and synthetic spectral modeling, we determine that R 40 reached Teff = 5800-6300 K during this new eruption. This object is thereby probably one of the coolest identified LBVs. We could also identify an enrichment of nitrogen and r- and s-process elements. We detected a weak eruption in the LBV R 110 with a maximum of V 9.9 mag in 2011, that is, around 1.0 mag brighter than in the quiescent phase. On the other hand, this new eruption is about 0.2 mag fainter than the first eruption detected in 1990, but the temperature did not decrease below 8500 K. Spitzer spectra show indications of cool dust in the circumstellar environment of both stars, but no hot or warm dust was present, except by the probable presence of PAHs in R 110. We also discuss a possible post-red supergiant nature for both stars. Based on observations with the 0.6 m telescope at Pico dos Dias Observatory (Brazil) and MPG/ESO 2.2-m telescope at the European Southern Observatory (La Silla, Chile) under the Prog. IDs: 094.A-9029(D), 096.A-9039(A), and 098.A-9039(C), and under the agreements ESO-Observatório Nacional/MCTIC and MPI-Observatório Nacional/MCTIC, Prog. IDs.: 076.D-0609(A) and 096.A-9030(A).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walborn, Nolan R.; Sana, Hugues; Sabbi, Elena, E-mail: walborn@stsci.edu, E-mail: hsana@stsci.edu, E-mail: sabbi@stsci.edu

    Extremely broad emission wings at Hβ and Hα have been found in VLT-FLAMES Tarantula Survey data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of Hβ and the shortward wing of Hα. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, althoughmore » we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables (LBVs). No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminous supergiants are approaching the LBV stage for the first time. Their locations in the HRD and presumed evolutionary tracks are consistent with that possibility. The available evidence for spectroscopic variations of these objects is reviewed, while recent photometric monitoring does not reveal variability. A search for circumstellar nebulae has been conducted, with an indeterminate result for one of them.« less

  10. Spectral Classification of the 30 Doradus Stellar Populations

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan R.; Blades, J. Chris

    1997-10-01

    An optical spectral classification study of 106 OB stars within the 30 Doradus Nebula has sharpened the description of the spatial and temporal structures among the associated clusters. Five distinct stellar groups are recognized: (1) the central early-O (Carina phase) concentration, which includes Radcliffe 136 (R136); (2) a younger (Orion phase) population to the north and west of R136, containing heavily embedded early-O dwarfs and IR sources, the formation of which was likely triggered by the central concentration; (3) an older population of late-O and early-B supergiants (Scorpius OB1 phase) throughout the central field, whose structural relationship, if any, to the younger groups is unclear; (4) a previously known, even older compact cluster 3' northwest of R136, containing A- and M-type supergiants (h and χ Persei phase), which has evidently affected the nebular dynamics substantially; and (5) a newly recognized Sco OB1-phase association, surrounding the recently discovered luminous blue variable (LBV) R143, in the southern part of the Nebula. The intricacy of this region and the implications for the interpretation of more distant starbursts are emphasized. The evidence indicates that the formation of the 30 Dor stellar content was neither instantaneous nor continuous, but rather that the stars formed in discrete events at different epochs. The average difference between the derived and calibration absolute visual magnitudes of the stars is 0.05, indicating that the classification, calibration, and adopted distance modulus (V0 - MV = 18.6) are accurate. For 70 of the stars, either the absolute value of that difference is <=0.6 mag, or they are subluminous dwarfs or superluminous supergiants. Many astrophysically interesting objects have been isolated for further investigation. Surprisingly, in view of the presence of several O3 supergiants, the mid-Of star R139 is identified as the most massive object in this sample; it is located well along the 120 M⊙ track, very near the Humphreys-Davidson limit, and it is probably an immediate LBV precursor. This work can and should be extended in three ways: (1) higher resolution and higher S/N observations of many of the stars with larger ground-based telescopes for quantitative analysis, (2) ground-based spectral classification of the numerous additional accessible stars in the field, and (3) spatially resolved spectral classification of compact multiple systems with the Hubble Space Telescope.

  11. Astrophysical laser operating in the OI 8446-Åline in the Weigelt blobs of η Carinae

    NASA Astrophysics Data System (ADS)

    Johansson, S.; Letokhov, V. S.

    2005-12-01

    Within the framework of a simple model of photophysical processes in the Weigelt blobs in the vicinity of the luminous blue variable (LBV) star η Carinae, we explain the presence of the fluorescent 8446-Åand forbidden [OI] 6300-Ålines as well as the absence of the allowed OI 7774-Åline in spectra recorded with the Hubble Space Telescope (HST)/STIS instrument (Gull et al.). From atomic data and estimated stellar parameters we demonstrate that there is a population inversion and stimulated emission in the 3p3P-3s3S transition λ8446 due to photoexcitation by accidental resonance (PAR) by H Lyβ radiation.

  12. Catching Supernova Impostors

    NASA Astrophysics Data System (ADS)

    Elias-Rosa, Nancy

    2015-08-01

    Given the heterogeneity of the type IIn SNe (SN that show strong interaction with the circumstellar medium), sometimes sneak cases of powerful eruptions of luminous blue variables (LBV) copy the true appearance of a SN explosion. These cases are commonly known as ``SN impostors". Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and type IIn SNe, such as the case of the controversial SN 2009ip. Even if these objects are quite rare, their number has increased in the last couple of years. In this poster I will summarise my work on this topic, showing the most recent object of study and the conclusions from their analysis.

  13. Massive stars: Their lives in the interstellar medium; Proceedings of the Symposium, ASP Annual Meeting, 104th, Univ. of Wisconsin, Madison, June 23-25, 1992

    NASA Astrophysics Data System (ADS)

    Cassinelli, Joseph P.; Churchwell, Edward B.

    1993-01-01

    Various papers on massive stars and their relationship to the interstellar medium are presented. Individual topics addressed include: observations of newly formed massive stars, star formation with nonthermal motions, embedded stellar clusters in H II regions, a Milky Way concordance, NH3 and H2O masers, PIGs in the Trapezium, star formation in photoevaporating molecular clouds, massive star evolution, mass loss from cool supergiant stars, massive runaway stars, CNO abundances in three A-supergiants, mass loss from late-type supergiants, OBN stars and blue supergiant supernovae, the most evolved W-R stars, X-ray variability in V444 Cygni, highly polarized stars in Cassiopeia, H I bubbles around O stars, interstellar H I LY-alpha absorption, shocked ionized gas in 30 Doradus, wind mass and energy deposition. Also discussed are: stellar wind bow shocks, O stars giant bubbles in M33, Eridanus soft X-ray enhancement, wind-blown bubbles in ejecta medium, nebulae around W-R stars, highly ionized gas in the LMC, cold ionized gas around hot H II regions, initial mass function in the outer Galaxy, late stages in SNR evolution, possible LBV in NGC 1313, old SN-pulsar association, cold bright matter near SN1987A, starbursts in the nearby universe, giant H II regions, powering the superwind in NGC 253, obscuration effects in starburst Galactic nuclei, starburst propagation in dwarf galaxies, 30 Doradus, W-R content of NGC 595 and NGC 604, Cubic Cosmic X-ray Background Experiment.

  14. Interacting supernovae and supernova impostors

    NASA Astrophysics Data System (ADS)

    Tartaglia, Leonardo

    2016-02-01

    Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.

  15. The Next Possible Outburst of P Cygni

    NASA Astrophysics Data System (ADS)

    Kochiashvili, Nino; Beradze, Sopia; Kochiashvili, Ia; Natsvlishvili, Rezo; Vardosanidze, Manana

    2017-11-01

    On the basis of long-term UBV observations of P Cygni, which were made by Eugene Kharadze and Nino Magalashvili between 1951-1983, is evident that P Cygni undergone reddening during those observations. P cygni is a LBV and a supernova impostor. Corrected on the reddening B-V color has values between about -0.4 (at the beginning of 1950-ies) and -0.1 (for the 1980-ies). It means that the star probably had earlier spectral type at the beginning of 20-th century and accordingly, we are witnesses of its evolutionary changes. It means also that on the HR diagram the star moves gradually to the instability strip of LBVs in Outburst. So, if the rate of the reddening of the P Cygni will the same in near future then the star will have the next eruption (or even supernova explosion) after approximately 80-120 years. The long (approximately 1500 d, 1160 d, 760 d, 580 d) quasi-periods and the shorter ones (approximatelly 130 d, 68 d and 15-18 days) were revealed using the above observations. We observed P Cygni on July 23 - October 20, 2014 with the 48 cm Cassegrain telescope and standard B,V,R,I filters. HD 228793 has been used as a comparison star. We revealed that during our observations the star underwent light variations with the mean amplitude of approximately 0.1 magnitudes in all pass-bands and the period of this change was approximately 68 days. There is also a relation between brightness and the Hα EW variability. Therefore, we think that the cause of this behavior may be a variability of rate of the stellar wind that is very strong in this star. Changes in the rate of the stellar wind, on the other hand, maybe due to the pulsation of the star. It seems that quasi-periods of the brightness variability are almost the exact multiples of each other which probably also indicates on pulsation of the star. According to the new photometric observations of 2014 the star continues reddening.

  16. VLTI and KI Interferometric Observations of Massive Evolved Stars and Their Dusty Circumstellar Environments

    NASA Astrophysics Data System (ADS)

    Wallace, Debra J.; Danchi, W. C.; Rajagopal, J.; Chesneau, O.; Lopez, B.; Menut, J.; Monnier, J.; Tuthill, P.; Ireland, M.; Barry, R.; Richardson, L. J.

    2007-12-01

    Recent aperture-masking and interferometric observations of late-type WC Wolf-Rayet stars strongly support the theory that dust formation in these objects is a result of colliding winds in binary systems. To explore and quantify this possible explanation, we have conducted a high-resolution interferometric survey of late-type massive stars utilizing the VLTI, KI, IOTA, and FGS1r interferometers. We present here the motivation for this study. We also present the first results from the MIDI instrument on the VLTI, and the KI and IOTA observations. Our VLTI study is aimed primarily at resolving and characterizing the dust around the WC9 star WR 85a and the LBV WR 122, both dust-producing but at different phases of massive star evolution. Our IOTA and KI interferometric observations resolve the WR star WR 137 into a dust-producing binary system.

  17. Isolation of Lagos bat virus from water mongoose.

    PubMed

    Markotter, Wanda; Kuzmin, Ivan; Rupprecht, Charles E; Randles, Jenny; Sabeta, Claude T; Wandeler, Alexander I; Nel, Louis H

    2006-12-01

    A genotype 2 lyssavirus, Lagos bat virus (LBV), was isolated from a terrestrial wildlife species (water mongoose) in August 2004 in the Durban area of the KwaZulu-Natal Province of South Africa. The virus isolate was confirmed as LBV by antigenic and genetic characterization, and the mongoose was identified as Atilax paludinosus by mitochondrial cytochrome b sequence analysis. Phylogenetic analysis demonstrated sequence homology with previous LBV isolates from South African bats. Studies performed in mice indicated that the peripheral pathogenicity of LBV had been underestimated in previous studies. Surveillance strategies for LBV in Africa must be improved to better understand the epidemiology of this virus and to make informed decisions on future vaccine strategies because evidence is insufficent that current rabies vaccines provide protection against LBV.

  18. New members of the massive stellar population in Cygnus

    NASA Astrophysics Data System (ADS)

    Comerón, F.; Pasquali, A.

    2012-07-01

    Context. The Cygnus OB2 association and its surroundings display the richest collection of massive stars in our nearby Galactic environment and a wealth of signposts of the interaction between these stars and the interstellar gas. Aims: We perform a magnitude-limited, homogeneous census of O and early B-type stars with accurate spectral classifications in the blue, in a 6° × 4° region centered on Cygnus OB2 that includes most of the Cygnus X complex, a sizeable fraction of the adjacent Cygnus OB9 association, and a large area of the field surrounding these complexes. Methods: By using reddening-free indices based on BJHK magnitudes from the USNO-B and 2MASS catalogs, we are able to produce a highly complete, highly uncontaminated sample of O and early B stars, which nearly duplicates any previous census of the region for the same range of spectral types. We provide the spectral types of 60 new O and B stars, as well as a list of an additional 60 candidates pending spectroscopic confirmation. In addition, the UBV imaging of the surroundings of three apparently isolated O stars is used to investigate the possible presence of small clusters of young stars around them. Results: Early-type stars are consistent with similar distances for Cygnus OB2, OB9, and the field stars surrounding them. We confirm previous findings of an older population in Cygnus OB2 spatially offset from where the stellar density of the association peaks. Some new remarkable objects are identified, including BD+40 4210, a B0 supergiant member of Cygnus OB2 that is among the brightest members of the association sharing some characteristics with luminous blue variable (LBV) candidates, located at a projected distance of 5 pc from another LBV candidate. A new O5If member of Cygnus OB9 is found, as well as several other O stars and B supergiants. On the other hand, while no obvious clustering is found around the apparently isolated O stars, the fields around two of them seem to contain objects with strong ultraviolet excesses, which perhaps indicates that they are accreting, although their nature and possible relationship to the O stars in the field are unclear. Conclusions: Star formation in Cygnus has been taking place in a sustained manner for well over 10 Myr, with a large-scale trend of proceeding from lower to higher Galactic longitudes. Star formation inside Cygnus OB2 follows this trend, with indications of intense star formation activity having started in the southern (lower galactic latitude) part of the association about 10 Myr ago and probably continuing at present in the north. Based on observations collected at the Centro Astronómico Hispano-Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC); and with the IAC80 telescope operated on the island of Tenerife by the Instituto de Astrofísica de Canarias in the Spanish Observatorio del Teide.Tables 1-7 are available at http://www.aanda.orgTables 1-7 are also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/543/A101

  19. Virus neutralising activity of African fruit bat (Eidolon helvum) sera against emerging lyssaviruses.

    PubMed

    Wright, Edward; Hayman, David T S; Vaughan, Aisling; Temperton, Nigel J; Wood, James L N; Cunningham, Andrew A; Suu-Ire, Richard; Weiss, Robin A; Fooks, Anthony R

    2010-12-20

    It is likely that phylogroup 2 lyssaviruses circulate within bat reservoirs. We adapted a pseudotype (pt) neutralisation assay (PNA) to a multiplex format enabling serosurveillance for Lagos bat virus (LBV), Mokola virus (MOKV) and West Caucasian bat virus (WCBV) in a potential reservoir, the African straw-coloured fruit bat, Eidolon helvum. Highly correlated titres were observed between single and multiplex PNAs using ptLBV and ptMOKV (r=0.97, p<0.0001), validating its use for bat serosurveillance. Of the bat serum samples screened 56% neutralised ptLBV, 27% ptMOKV and 1% ptWCBV. Mean VNAb titres were 1:266, 1:35 and 1:7 against ptLBV, ptMOKV and ptWCBV respectively. The high seroprevalence estimates suggest that the infection rate of LBV in E. helvum remains high enough to persist in this species. This supports the hypothesis that LBV is endemic in Ghanaian E. helvum and we speculate that LBV may have co-evolved with African megachiroptera. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Isolation of Lagos Bat Virus from Water Mongoose

    PubMed Central

    Markotter, Wanda; Kuzmin, Ivan; Rupprecht, Charles E.; Randles, Jenny; Sabeta, Claude T.; Wandeler, Alexander I.

    2006-01-01

    A genotype 2 lyssavirus, Lagos bat virus (LBV), was isolated from a terrestrial wildlife species (water mongoose) in August 2004 in the Durban area of the KwaZulu-Natal Province of South Africa. The virus isolate was confirmed as LBV by antigenic and genetic characterization, and the mongoose was identified as Atilax paludinosus by mitochondrial cytochrome b sequence analysis. Phylogenetic analysis demonstrated sequence homology with previous LBV isolates from South African bats. Studies performed in mice indicated that the peripheral pathogenicity of LBV had been underestimated in previous studies. Surveillance strategies for LBV in Africa must be improved to better understand the epidemiology of this virus and to make informed decisions on future vaccine strategies because evidence is insufficent that current rabies vaccines provide protection against LBV. PMID:17326944

  1. OT2_nflagey_2: Capturing missing evolved stars in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Flagey, N.

    2011-09-01

    We discovered more than 400 compact shells in the MIPSGAL 24 microns survey of the Galactic plane. About 15% of all these objects were already known as planetary nebulae, supernova remnants, Wolf-Rayet stars, and luminous blue variables. The unknown bubbles are expected to be envelopes of evolved stars that could account for the ``missing massive stars in the Galaxy. Indeed, recent spectroscopic follow-ups in the near-IR and mid-IR have revealed several dust-free planetary nebulae with very hot central white dwarf and significantly increased the number of WR and LBV candidates. Our OT1 Priority 1 proposal just provided us with a first observation in the PACS-SED B2A mode of one object, revealing only a strong [N II] 122 microns line. Without further spectral information, identification and modeling of the target are impossible. However, analysis of the PACS and SPIRE data from the HiGal survey has recently enabled us to measure much higher detection rates of the shells in the far-IR than with MIPS 70 microns. We are thus very confident that dust features and/or gas lines can be detected with the PACS and SPIRE spectrometers. Therefore, we request complementary PACS-SED B2B and SPIRE-FTS observations on our OT1 sample. The complete far-IR/submm spectrum of each target will allow its unequivocal identification thanks to comparison with spectra of known evolved stars from the MESS key program. We will also model with much detail the different phases of the envelopes, thanks to our expertise in circumstellar envelopes, dust models and photoionization codes.

  2. Association of monoamine oxidase A gene polymorphism with Alzheimer's disease and Lewy body variant.

    PubMed

    Takehashi, Masanori; Tanaka, Seigo; Masliah, Eliezer; Ueda, Kunihiro

    2002-07-19

    The association between (GT)n dinucleotide repeats in monoamine oxidase gene loci, monoamine oxidase A (MAOA) and B (MAOB), and Parkinson's disease (PD), Alzheimer's disease (AD), and Lewy body variant (LBV) of AD were determined. MAOA-GT polymorphisms were significantly associated with pure AD and LBV. MAOA-GT allele 113 was excessively represented in pure AD and LBV compared with controls. Furthermore, the frequency of females homozygous for MAOA-GT allele 113 was higher in pure AD and LBV than controls by 2.79- and 2.77-fold, respectively. In contrast, there was no association between MAOA-GT or MAOB-GT polymorphisms and PD. These results suggest that polymorphisms within the MAOA gene may have implication in AD pathology shared by pure AD and LBV.

  3. Massive Star Burps, Then Explodes

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Berkeley -- In a galaxy far, far away, a massive star suffered a nasty double whammy. On Oct. 20, 2004, Japanese amateur astronomer Koichi Itagaki saw the star let loose an outburst so bright that it was initially mistaken for a supernova. The star survived, but for only two years. On Oct. 11, 2006, professional and amateur astronomers witnessed the star actually blowing itself to smithereens as Supernova 2006jc. Swift UVOT Image Swift UVOT Image (Credit: NASA / Swift / S.Immler) "We have never observed a stellar outburst and then later seen the star explode," says University of California, Berkeley, astronomer Ryan Foley. His group studied the event with ground-based telescopes, including the 10-meter (32.8-foot) W. M. Keck telescopes in Hawaii. Narrow helium spectral lines showed that the supernova's blast wave ran into a slow-moving shell of material, presumably the progenitor's outer layers ejected just two years earlier. If the spectral lines had been caused by the supernova's fast-moving blast wave, the lines would have been much broader. artistic rendering This artistic rendering depicts two years in the life of a massive blue supergiant star, which burped and spewed a shell of gas, then, two years later, exploded. When the supernova slammed into the shell of gas, X-rays were produced. (Credit: NASA/Sonoma State Univ./A.Simonnet) Another group, led by Stefan Immler of NASA's Goddard Space Flight Center, Greenbelt, Md., monitored SN 2006jc with NASA's Swift satellite and Chandra X-ray Observatory. By observing how the supernova brightened in X-rays, a result of the blast wave slamming into the outburst ejecta, they could measure the amount of gas blown off in the 2004 outburst: about 0.01 solar mass, the equivalent of about 10 Jupiters. "The beautiful aspect of our SN 2006jc observations is that although they were obtained in different parts of the electromagnetic spectrum, in the optical and in X-rays, they lead to the same conclusions," says Immler. "This event was a complete surprise," added Alex Filippenko, leader of the UC Berkeley/Keck supernova group and a member of NASA'S Swift team. "It opens up a fascinating new window on how some kinds of stars die." All the observations suggest that the supernova's blast wave took only a few weeks to reach the shell of material ejected two years earlier, which did not have time to drift very far from the star. As the wave smashed into the ejecta, it heated the gas to millions of degrees, hot enough to emit copious X-rays. The Swift satellite saw the supernova continue to brighten in X-rays for 100 days, something that has never been seen before in a supernova. All supernovae previously observed in X-rays have started off bright and then quickly faded to invisibility. "You don't need a lot of mass in the ejecta to produce a lot of X-rays," notes Immler. Swift's ability to monitor the supernova's X-ray rise and decline over six months was crucial to his team's mass determination. But he adds that Chandra's sharp resolution enabled his group to resolve the supernova from a bright X-ray source that appears in the field of view of Swift's X-ray Telescope. "We could not have made this measurement without Chandra," says Immler, who will submit his team's paper next week to the Astrophysical Journal. "The synergy between Swift's fast response and its ability to observe a supernova every day for a long period, and Chandra's high spatial resolution, is leading to a lot of interesting results." Foley and his colleagues, whose paper appears in the March 10 Astrophysical Journal Letters, propose that the star recently transitioned from a Luminous Blue Variable (LBV) star to a Wolf-Rayet star. An LBV is a massive star in a brief but unstable phase of stellar evolution. Similar to the 2004 eruption, LBVs are prone to blow off large amounts of mass in outbursts so extreme that they are frequently mistaken for supernovae, events dubbed "supernova impostors." Wolf-Rayet stars are hot, highly evolved stars that have shed their outer envelopes. Swift XRT Image Swift XRT Image (Credit: NASA / GSFC / CXC /S.Immler) Most astronomers did not expect that a massive star would explode so soon after a major outburst, or that a Wolf-Rayet star would produce such a luminous eruption, so SN 2006jc represents a puzzle for theorists. "It challenges some aspects of our current model of stellar evolution," says Foley. "We really don't know what caused this star to have such a large eruption so soon before it went supernova." "SN 2006jc provides us with an important clue that LBV-style eruptions may be related to the deaths of massive stars, perhaps more closely than we used to think," adds coauthor and UC Berkeley astronomer Nathan Smith. "The fact that we have no well-established theory for what actually causes these outbursts is the elephant in the living room that nobody is talking about." SN 2006jc occurred in galaxy UGC 4904, located 77 million light years from Earth in the constellation Lynx. The supernova explosion, a peculiar variant of a Type Ib, was first sighted by Itagaki, American amateur astronomer Tim Puckett and Italian amateur astronomer Roberto Gorelli. See also NASA Goddard press release at: http://www.nasa.gov/centers/goddard/news/topstory/ 2007/supernova_imposter.html

  4. Active Luminous Blue Variables in the Large Magellanic Cloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walborn, Nolan R.; Gamen, Roberto C.; Lajús, Eduardo Fernández

    We present extensive spectroscopic and photometric monitoring of two famous and currently highly active luminous blue variables (LBVs) in the Large Magellanic Cloud (LMC), together with more limited coverage of three further, lesser known members of the class. R127 was discovered as an Ofpe/WN9 star in the 1970s but entered a classical LBV outburst in or about 1980 that is still in progress, thus enlightening us about the minimum state of such objects. R71 is currently the most luminous star in the LMC and continues to provide surprises, such as the appearance of [Ca ii] emission lines, as its spectralmore » type becomes unprecedentedly late. Most recently, R71 has developed inverse P Cyg profiles in many metal lines. The other objects are as follows: HDE 269582, now a “second R127” that has been followed from Ofpe/WN9 to A type in its current outburst; HDE 269216, which changed from late B in 2014 to AF in 2016, its first observed outburst; and R143 in the 30 Doradus outskirts. The light curves and spectroscopic transformations are correlated in remarkable detail and their extreme reproducibility is emphasized, both for a given object and among all of them. It is now believed that some LBVs proceed directly to core collapse. One of these unstable LMC objects may thus oblige in the near future, teaching us even more about the final stages of massive stellar evolution.« less

  5. Active Luminous Blue Variables in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan R.; Gamen, Roberto C.; Morrell, Nidia I.; Barbá, Rodolfo H.; Fernández Lajús, Eduardo; Angeloni, Rodolfo

    2017-07-01

    We present extensive spectroscopic and photometric monitoring of two famous and currently highly active luminous blue variables (LBVs) in the Large Magellanic Cloud (LMC), together with more limited coverage of three further, lesser known members of the class. R127 was discovered as an Ofpe/WN9 star in the 1970s but entered a classical LBV outburst in or about 1980 that is still in progress, thus enlightening us about the minimum state of such objects. R71 is currently the most luminous star in the LMC and continues to provide surprises, such as the appearance of [Ca II] emission lines, as its spectral type becomes unprecedentedly late. Most recently, R71 has developed inverse P Cyg profiles in many metal lines. The other objects are as follows: HDE 269582, now a “second R127” that has been followed from Ofpe/WN9 to A type in its current outburst; HDE 269216, which changed from late B in 2014 to AF in 2016, its first observed outburst; and R143 in the 30 Doradus outskirts. The light curves and spectroscopic transformations are correlated in remarkable detail and their extreme reproducibility is emphasized, both for a given object and among all of them. It is now believed that some LBVs proceed directly to core collapse. One of these unstable LMC objects may thus oblige in the near future, teaching us even more about the final stages of massive stellar evolution.

  6. The Dust Ring of Luminous Blue Variable Candidate HD 168625: Infrared Observations and Model Calculations

    NASA Astrophysics Data System (ADS)

    O'Hara, Timothy B.; Meixner, Margaret; Speck, Angela K.; Ueta, Toshiya; Bobrowsky, Matthew

    2003-12-01

    We present a 2.218 μm image from the Hubble Space Telescope/Near Infrared Camera and Multi-Object Spectrometer (NICMOS) and a 55 μm image from ISOPHOT of the dust ring surrounding the luminous blue variable (LBV) candidate HD 168625, together with new temperature and optical depth maps derived from mid-IR images. The shell is detached from the star in the near-IR, and substructure in the overall toroidal shell is visible. The far-IR image constrains the extent of the dust shell to ~25" in diameter, providing an upper radius limit for modeling. The temperature maps and the NICMOS image show evidence for very small transiently heated dust grains in the shell. The opacity maps show higher optical depth in the limbs, consistent with interpretation of the dust shell as an equatorially enhanced torus inclined ~60° with respect to the observer. An overall trend in the dust emission location with wavelength is observed and interpreted as a variation with respect to location in the nebula of either the dust grain size distribution or gas-to-dust mass ratio. Radiative transfer calculations using 2-DUST indicate that a mass-loss event occurred ~5700 yr ago with a rate of (1.9+/-0.1)×10-4Msolaryr-1, creating a dust torus that currently has a τV~0.22 in the equatorial plane and a dust mass of (2.5+/-0.1)×10-3Msolar. Using published values for the gas mass, we find a gas-to-dust mass ratio of 840, which is ~4 times higher than current estimates for the interstellar medium. In addition to a high equator-to-pole density ratio (~31) torus, an elliptical midshell is needed to reproduce the appearance and spectral energy distribution of the dust. Therefore, HD 168625 is an excellent example of proposed models of LBV nebulae in which a stellar wind interacts with a preexisting density contrast and creates a blowout in the polar direction perpendicular to the equatorial ring. The circumstellar shell is much lower in mass than that of LBV η Carinae, suggesting that HD 168625 had a lower mass progenitor. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555 these observations are associated with proposal 7898. Based also on observations with ISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.

  7. A Lifting Ball Valve for cryogenic fluid applications

    NASA Astrophysics Data System (ADS)

    Cardin, Joseph M.; Reinicke, Robert H.; Bruneau, Stephen D.

    1993-11-01

    Marotta Scientific Controls, Inc. has designed a Lifting Ball Valve (LBV) capable of both flow modulation and tight shutoff for cryogenic and other applications. The LBV features a thin-walled visor valving element that lifts off the seal with near axial motion before rotating completely out of the flow path. This is accomplished with a simple, robust mechanism that minimizes cost and weight. Conventional spherical rotating seats ar plagued by leakage due to 'scuffing' as the seal and seat slide against one another while opening. Cryogenic valves, which typically utilize plastic seals, are particularly susceptible to this type of damage. The seat in the LBV lifts off the seal without 'scuffing' making it immune to this failure mode. In addition, the LBV lifting mechanism is capable of applying the very high seating loads required to seal at cryogenic temperatures. These features make the LBV ideally suited for cryogenic valve applications. Another major feature of the LBV is the fact that the visor rotates completely out of the flow path. This allows for a smaller, lighter valve for a given flow capacity, especially for line sizes above one inch. The LBV is operated by a highly integrated 'wetted' DC brushless motor. The motor rotor is 'wetted' ion that it is immersed in the fluid. To ensure compatibility, the motor rotor is encased in a thin-walled CRES weldment. The motor stator is outside the fluid containment weldment and therefore is not in direct contact with the fluid. To preclude the potential for external leakage there are no static or dynamic seals or bellows across the pressure boundary. The power required to do the work of operating the valving mechanism is transmitted across the pressure boundary by electromagnetic interaction between the motor rotor and the stator. Commutation of the motor is accomplished using the output of a special 'wetted' resolver. This paper describes the design, operation, and element testing of the LBV.

  8. Wolf-Rayet spin at low metallicity and its implication for black hole formation channels

    NASA Astrophysics Data System (ADS)

    Vink, Jorick S.; Harries, Tim J.

    2017-07-01

    Context. The spin of Wolf-Rayet (WR) stars at low metallicity (Z) is most relevant for our understanding of gravitational wave sources, such as GW 150914, and of the incidence of long-duration gamma-ray bursts (GRBs). Two scenarios have been suggested for both phenomena: one of them involves rapid rotation and quasi-chemical homogeneous evolution (CHE) and the other invokes classical evolution through mass loss in single and binary systems. Aims: The stellar spin of WR stars might enable us to test these two scenarios. In order to obtain empirical constraints on black hole progenitor spin we infer wind asymmetries in all 12 known WR stars in the Small Magellanic Cloud (SMC) at Z = 1 / 5 Z⊙ and within a significantly enlarged sample of single and binary WR stars in the Large Magellanic Cloud (LMC at Z = 1 / 2 Z⊙), thereby tripling the sample of Vink from 2007. This brings the total LMC sample to 39, making it appropriate for comparison to the Galactic sample. Methods: We measured WR wind asymmetries with VLT-FORS linear spectropolarimetry, a tool that is uniquely poised to perform such tasks in extragalactic environments. Results: We report the detection of new line effects in the LMC WN star BAT99-43 and the WC star BAT99-70, along with the well-known WR LBV HD 5980 in the SMC, which might be undergoing a chemically homogeneous evolution. With the previous reported line effects in the late-type WNL (Ofpe/WN9) objects BAT99-22 and BAT99-33, this brings the total LMC WR sample to four, I.e. a frequency of 10%. Perhaps surprisingly, the incidence of line effects amongst low Z WR stars is not found to be any higher than amongst the Galactic WR sample, challenging the rotationally induced CHE model. Conclusions: As WR mass loss is likely Z-dependent, our Magellanic Cloud line-effect WR stars may maintain their surface rotation and fulfill the basic conditions for producing long GRBs, both via the classical post-red supergiant or luminous blue variable channel, or resulting from CHE due to physics specific to very massive stars.

  9. CSI in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2017-02-01

    Supernovae (SNe) explode in environments that have been significantly modified by the SN progenitors. For core-collapse SNe, the massive progenitors ionize the ambient interstellar medium (ISM) via UV radiation and sweep the ambient ISM via fast stellar winds during the main sequence phase, replenish the surroundings with stellar material via slow winds during the luminous blue variable (LBV) or red supergiant (RSG) phase, and sweep up the circumstellar medium (CSM) via fast winds during the Wolf-Rayet (WR) phase. If a massive progenitor was in a close binary system, the binary interaction could have caused mass ejection in certain preferred directions, such as the orbital plane, and even bipolar outflow/jet. As a massive star finally explodes, the SN ejecta interacts first with the CSM that was ejected and shaped by the star itself. As the newly formed supernova remnant (SNR) expands further, it encounters interstellar structures that were shaped by the progenitor from earlier times. Therefore, the structure and evolution of a SNR is largely dependent on the initial mass and close binarity of the SN progenitor. The Large Magellanic Cloud (LMC) has an excellent sample of over 50 confirmed SNRs that are well resolved by Hubble Space Telescope, Chandra X-ray Observatory, and Spitzer Space Telescope. These multi-wavelength observations allow us to conduct stellar forensics in SNRs and understand the wide variety of morphologies and physical properties of SNRs observed.

  10. Near-Infrared Mass Loss Diagnostics for Massive Stars

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Bouret, J. C.

    2010-01-01

    Stellar wind mass loss is a key process which modifies surface abundances, luminosities, and other physical properties of hot, massive stars. Furthermore, mass loss has to be understood quantitatively in order to accurately describe and predict massive star evolution. Two urgent problems have been identified that challenge our understanding of line-driven winds, the so-called weak-wind problem and wind clumping. In both cases, mass-loss rates are drastically lower than theoretically expected (up to a factor 1001). Here we study how the expected spectroscopic capabilities of the James Webb Space Telescope (JWST), especially NIRSpec, could be used to significantly improve constraints on wind density structures (clumps) and deep-seated phenomena in stellar winds of massive stars, including OB, Wolf-Rayet and LBV stars. Since the IR continuum of objects with strong winds is formed in the wind, IR lines may sample different depths inside the wind than UV-optical lines and provide new information about the shape of the velocity field and clumping properties. One of the most important applications of IR line diagnostics will be the measurement of mass-loss rates in massive stars with very weak winds by means of the H I Bracket alpha line, which has been identified as one of the most promising diagnostics for this problem.

  11. The dusty aftermath of SN Hunt 248: merger-burst remnant?

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Van Dyk, Schuyler D.; Johansson, Joel; Fox, Ori D.; Filippenko, Alexei V.; Graham, Melissa L.

    2018-01-01

    SN Hunt 248 was classified as a non-terminal eruption (a supernova 'impostor') from a directly identified and highly variable cool hypergiant star. The 2014 outburst achieved peak luminosity equivalent to that of the historic eruption of luminous blue variable (LBV) η Car, and exhibited a multipeaked optical light curve which rapidly faded after ∼100 d. We report ultraviolet (UV) through optical observations of SN Hunt 248 with the Hubble Space Telescope (HST) about 1 yr after the outburst, and mid-infrared observations with the Spitzer Space Telescope before the burst and in decline. The HST data reveal a source which is a factor of ∼10 dimmer in apparent brightness than the faintest available measurement of the precursor star. The UV-optical spectral energy distribution (SED) requires a strong Balmer continuum, consistent with a hot B4-B5 photosphere attenuated by grey circumstellar extinction. Substantial mid-infrared excess of the source is consistent with thermal emission from hot dust with a mass of ∼10-6-10-5 M⊙ and a geometric extent which is comparable to the expansion radius of the ejecta from the 2014 event. SED modelling indicates that the dust consists of relatively large grains ( > 0.3 μm), which could be related to the grey circumstellar extinction which we infer for the UV-optical counterpart. Revised analysis of the precursor photometry is also consistent with grey extinction by circumstellar dust, and suggests that the initial mass of the star could be twice as large as previously estimated (nearly ∼ 60 M⊙). Re-analysis of the earlier outburst data shows that the peak luminosity and outflow velocity of the eruption are consistent with a trend exhibited by stellar merger candidates, prompting speculation that SN Hunt 248 may also have stemmed from a massive stellar merger or common-envelope ejection.

  12. Dust formation in LBV envelopes

    NASA Astrophysics Data System (ADS)

    Gail, H.-P.; Duschl, W. J.; Ferrarotti, A. S.; Weis, K.

    2005-09-01

    The condensation process for the peculiar element mixture of CNO cycle processed material in the pre-SN ejecta of massive stars is investigated. From thermodynamic equilibrium calculations it is shown that the most likely solids to be formed in CNO process equilibrated materials are solid FeSi, metallic Fe, and small quantities of forsterite (Mg2SiO4). Nucleation may be triggered by TiC. Some SiC may be formed by non-equilibrium condensation. As a case study for these substances the non-equilibrium dust condensation in the outflow is calculated for a simple stationary wind model which shows, that these dust species indeed can be formed in the ejecta.

  13. Phylogeny of Lagos bat virus: challenges for lyssavirus taxonomy.

    PubMed

    Markotter, W; Kuzmin, I; Rupprecht, C E; Nel, L H

    2008-07-01

    Lagos bat virus (LBV) belongs to genotype 2 of the Lyssavirus genus. The complete nucleoprotein (N), phosphoprotein (P), matrixprotein (M) and glycoprotein (G) genes of 13 LBV isolates were sequenced and phylogenetically compared with other lyssavirus representatives. The results identified three different lineages of LBV. One of these lineages demonstrated sufficient sequence diversity to be considered a new lyssavirus genotype (Dakar bat lyssavirus). The suggested quantitative separation of lyssavirus genotypes using the N, P, M and G genes was also investigated using P-distances matrixes. Results indicated that the current criteria should be revised since overlaps between intergenotypic and intragenotypic variation occur.

  14. Exposure to Lyssaviruses in Bats of the Democratic Republic of the Congo.

    PubMed

    Kalemba, Lem's N; Niezgoda, Michael; Gilbert, Amy T; Doty, Jeffrey B; Wallace, Ryan M; Malekani, Jean M; Carroll, Darin S

    2017-04-01

    Lyssavirus infections in the Democratic Republic of Congo are poorly documented. We examined 218 bats. No lyssavirus antigens were detected but Lagos bat virus (LBV) neutralizing antibodies (VNA) were detected in Eidolon helvum and Myonycteris torquata . Four samples with LBV VNA reacted against Shimoni bat virus.

  15. Disentangling the Origin and Heating Mechanism of Supernova Dust: Late-Time Spitzer Spectroscopy of the Type IIn SN 2005ip

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Chevalier, Roger A.; Dwek, Eli; Skrutskie, Michael F.; Sugerman, Ben E. K.; Leisenring, Jarron M.

    2010-01-01

    This paper presents late-time near-infrared and Spitzer mid-infrared photometric and spectroscopic observations of warm dust in the Type IIn SN 2005ip in NGC 2906. The spectra show evidence for two dust components with different temperatures. Spanning the peak of the thermal emission, these observations provide strong constraints on the dust mass, temperature, and luminosity, which serve as critical diagnostics for disentangling the origin and heating mechanism of each component. The results suggest the warmer dust has a mass of approx. 5 x 10(exp -4) Solar Mass and originates from newly formed dust in the ejecta, continuously heated by the circumstellar interaction. By contrast, the cooler component likely originates from a circumstellar shock echo that forms from the heating of a large, pre-existing dust shell approx. 0.01 - 0.05 Solar Mass by the late-time circumstellar interaction. The progenitor wind velocity derived from the blue edge of the He I 1.083 micro P Cygni profile indicates a progenitor eruption likely formed this dust shell approx.100 years prior to the supernova explosion, which is consistent with a Luminous Blue Variable (LBV) progenitor star. Subject

  16. Decoding of the light changes in eclipsing Wolf-Rayet binaries. I. A non-classical approach to the solution of light curves

    NASA Astrophysics Data System (ADS)

    Perrier, C.; Breysacher, J.; Rauw, G.

    2009-09-01

    Aims: We present a technique to determine the orbital and physical parameters of eclipsing eccentric Wolf-Rayet + O-star binaries, where one eclipse is produced by the absorption of the O-star light by the stellar wind of the W-R star. Methods: Our method is based on the use of the empirical moments of the light curve that are integral transforms evaluated from the observed light curves. The optical depth along the line of sight and the limb darkening of the W-R star are modelled by simple mathematical functions, and we derive analytical expressions for the moments of the light curve as a function of the orbital parameters and the key parameters of the transparency and limb-darkening functions. These analytical expressions are then inverted in order to derive the values of the orbital inclination, the stellar radii, the fractional luminosities, and the parameters of the wind transparency and limb-darkening laws. Results: The method is applied to the SMC W-R eclipsing binary HD 5980, a remarkable object that underwent an LBV-like event in August 1994. The analysis refers to the pre-outburst observational data. A synthetic light curve based on the elements derived for the system allows a quality assessment of the results obtained.

  17. Eta Car: The Good, the Bad and the Ugly of Nebular and Stellar Confusion

    NASA Technical Reports Server (NTRS)

    Gull, T.R.; Sonneborn, G.; Jensen, A.G.; Nielsen, K.E.; Vieira Kover, G.; Hillier, D.J.

    2008-01-01

    Observations in the far-UV provide a unique opportunity to investigate the very massive star Eta Car and its hot binary companion, Eta Car B. Eta Car was observed with FUSE over a large portion of the 5.54 year spectroscopic period before and after the 2003.5 minimum. The observed spectrum is defined by strong stellar wind signatures, primarily from Eta Car A, complicated by the strong absorptions of the ejecta surrounding Eta Car plus interstellar absorption. The Homunculus and Little Homunculus are massive bipolar ejecta historically associable with LBV outbursts in the 1840s and the 1890s and are linked to absorptions at -513 and -146 km/s, respectively. The FUSE spectra are confused by the extended nebulosity and thermal drifting of the FUSE co-pointed instruments. Interpretation is further complicated by two B-stars sufficiently close to h Car to be included most of the time in the large FUSE aperture. Followup observations partially succeeded in obtaining spectra of at least one of these B-stars through the smaller apertures, allowing potential separation of the B-star contributions and h Car. A complete analysis of all available spectra is currently underway. Our ultimate goals are to directly detect the hot secondary star if possible with FUSE and to identify the absorption contributions to the overall spectrum especially of the stellar members and the massive ejecta.

  18. Phase processing for quantitative susceptibility mapping of regions with large susceptibility and lack of signal.

    PubMed

    Fortier, Véronique; Levesque, Ives R

    2018-06-01

    Phase processing impacts the accuracy of quantitative susceptibility mapping (QSM). Techniques for phase unwrapping and background removal have been proposed and demonstrated mostly in brain. In this work, phase processing was evaluated in the context of large susceptibility variations (Δχ) and negligible signal, in particular for susceptibility estimation using the iterative phase replacement (IPR) algorithm. Continuous Laplacian, region-growing, and quality-guided unwrapping were evaluated. For background removal, Laplacian boundary value (LBV), projection onto dipole fields (PDF), sophisticated harmonic artifact reduction for phase data (SHARP), variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP), regularization enabled sophisticated harmonic artifact reduction for phase data (RESHARP), and 3D quadratic polynomial field removal were studied. Each algorithm was quantitatively evaluated in simulation and qualitatively in vivo. Additionally, IPR-QSM maps were produced to evaluate the impact of phase processing on the susceptibility in the context of large Δχ with negligible signal. Quality-guided unwrapping was the most accurate technique, whereas continuous Laplacian performed poorly in this context. All background removal algorithms tested resulted in important phase inaccuracies, suggesting that techniques used for brain do not translate well to situations where large Δχ and no or low signal are expected. LBV produced the smallest errors, followed closely by PDF. Results suggest that quality-guided unwrapping should be preferred, with PDF or LBV for background removal, for QSM in regions with large Δχ and negligible signal. This reduces the susceptibility inaccuracy introduced by phase processing. Accurate background removal remains an open question. Magn Reson Med 79:3103-3113, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Understanding the X-ray Flaring from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Moffat, A.F.J.; Corcoran, Michael F.

    2009-01-01

    We quantify the rapid variations in X-ray brightness ("flares") from the extremely massive colliding wind binary Eta Carinae seen during the past three orbital cycles by RXTE. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the LBV component entering and compressing the hard X-ray emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like powerlaw distribution of clumps, decreasing in number towards larger sizes, as seen in Wolf-Rayet winds.

  20. Discovery of the First B[e] Supergiants in M 31

    NASA Astrophysics Data System (ADS)

    Kraus, M.; Cidale, L. S.; Arias, M. L.; Oksala, M. E.; Borges Fernandes, M.

    2014-01-01

    B[e] supergiants (B[e]SGs) are transitional objects in the post-main sequence evolution of massive stars. The small number of B[e]SGs known so far in the Galaxy and the Magellanic Clouds indicates that this evolutionary phase is short. Nevertheless, the strong aspherical mass loss occurring during this phase, which leads to the formation of rings or disk-like structures, and the similarity to possible progenitors of SN1987 A emphasize the importance of B[e]SGs for the dynamics of the interstellar medium as well as stellar and galactic chemical evolution. The number of objects and their mass-loss behavior at different metallicities are essential ingredients for accurate predictions from stellar and galactic evolution calculations. However, B[e]SGs are not easily identified, as they share many characteristics with luminous blue variables (LBVs) in their quiescent (hot) phase. We present medium-resolution near-infrared K-band spectra for four stars in M 31, which have been assigned a hot LBV (candidate) status. Applying diagnostics that were recently developed to distinguish B[e]SGs from hot LBVs, we classify two of the objects as bonafide LBVs; one of them currently in outburst. In addition, we firmly classify the two stars 2MASS J00441709+4119273 and 2MASS J00452257+4150346 as the first B[e]SGs in M 31 based on strong CO band emission detected in their spectra, and infrared colors typical for this class of stars. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), under program ID GN-2013B-Q-10.

  1. Rotation and Mass Loss

    NASA Astrophysics Data System (ADS)

    Owocki, S.

    2008-06-01

    Stellar rotation can play an important role in structuring and enhancing the mass loss from massive stars. Initial 1D models focussed on the expected centrifugal enhancement of the line-driven mass flux from the equator of a rotating star, but the review here emphasizes that the loss of centrifugal support away from the stellar surface actually limits the steady mass flux to just the point-star CAK value, with models near critical rotation characterized by a slow, subcritical acceleration. Recent suggestions that such slow outflows might have high enough density to explain disks in Be or B[e] stars are examined in the context of 2D simulations of the ``Wind Compressed Disk'' (WCD) paradigm, together with a review of the tendency for poleward components of the line-driving force to inhibit WCD formation. When one accounts for equatorial gravity darkening, the net tendency is in fact for the relatively bright regions at higher latitude to drive a faster, denser ``bipolar'' outflow. I discuss the potential relevance for the bipolar form of nebulae from LBV stars like η Carinae, but emphasize that, since the large mass loss associated with the eruption of eta Carinae's Homunculus would heavily saturate line-driving, explaining its bipolar form requires development of analogous models for continuum-driven mass loss. I conclude with a discussion of how radiation seems inherently ill-suited to supporting or driving a geometrically thin, but optically thick disk or disk outflow. The disks inferred in Be and B[e] stars may instead be centrifugally ejected, with radiation inducing an ablation flow from the disk surface, and thus perhaps playing a greater role in destroying (rather than creating) an orbiting, circumstellar disk.

  2. Shimoni bat virus, a new representative of the Lyssavirus genus.

    PubMed

    Kuzmin, Ivan V; Mayer, Anne E; Niezgoda, Michael; Markotter, Wanda; Agwanda, Bernard; Breiman, Robert F; Rupprecht, Charles E

    2010-05-01

    During 2009, 616 bats representing at least 22 species were collected from 10 locations throughout Kenya. A new lyssavirus, named Shimoni bat virus (SHIBV), was isolated from the brain of a dead Commerson's leaf-nosed bat (Hipposideros commersoni), found in a cave in the coastal region of Kenya. Genetic distances and phylogenetic reconstructions, implemented for each gene and for the concatenated alignment of all five structural genes (N, P, M, G and L), demonstrated that SHIBV cannot be identified with any of the existing species, but rather should be considered an independent species within phylogroup II of the Lyssavirus genus, most similar to Lagos bat virus (LBV). Antigenic reaction patterns with anti-nucleocapsid monoclonal antibodies corroborated these distinctions. In addition, new data on the diversity of LBV suggests that this species may be subdivided quantitatively into three separate genotypes. However, the identity values alone are not considered sufficient criteria for demarcation of new species within LBV. (c) 2010 Elsevier B.V. All rights reserved.

  3. Early-time spectra of supernovae and their precursor winds. The luminous blue variable/yellow hypergiant progenitor of SN 2013cu

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.

    2014-12-01

    We present the first quantitative spectroscopic modeling of an early-time supernova (SN) that interacts with its progenitor wind. Using the radiative transfer code CMFGEN, we investigate the recently reported 15.5 h post-explosion spectrum of the type IIb SN 2013cu. We are able to directly measure the chemical abundances of a SN progenitor and find a relatively H-rich wind, with H and He abundances (by mass) of X = 0.46 ± 0.2 and Y = 0.52 ± 0.2, respectively. The wind is enhanced in N and depleted in C relative to solar values (mass fractions of 8.2 × 10-3 and 1.0 × 10-5, respectively). We obtain that a slow, dense wind or circumstellar medium surrounds the precursor at the pre-SN stage, with a wind terminal velocity vwind ≲ 100 km s-1 and mass-loss rate of Ṁ ≃ 3 × 10-3 (vwind/ 100 km s-1) M⊙ yr-1. These values are lower than previous analytical estimates, although Ṁ/υ∞ is consistent with previous work. We also compute a CMFGEN model to constrain the progenitor spectral type; the high Ṁ and low vwind imply that the star had an effective temperature of ≃ 8000 K immediately before the SN explosion. Our models suggest that the progenitor was either an unstable luminous blue variable or a yellow hypergiant undergoing an eruptive phase, and rule out a Wolf-Rayet star. We classify the post-explosion spectra at 15.5 h as XWN5(h) and advocate for the use of the prefix "X" (eXplosion) to avoid confusion between post-explosion, non-stellar spectra, and those of massive stars. We show that the XWN spectrum results from the ionization of the progenitor wind after the SN, and that the progenitor spectral type is significantly different from the early post-explosion spectral type owing to the huge differences in the ionization structure before and after the SN event. We find the following temporal evolution: LBV/YHG → XWN5(h) → SN IIb. Future early-time spectroscopy in the UV will further constrain the properties of SN precursors, such as their metallicities.

  4. Hubble Space Telescope STIS Observations of the Wolf-Rayet Star HD 5980 in the Small Magellanic Cloud. II. The Interstellar Medium Components

    NASA Astrophysics Data System (ADS)

    Koenigsberger, Gloria; Georgiev, Leonid; Peimbert, Manuel; Walborn, Nolan R.; Barbá, Rodolfo; Niemela, Virpi S.; Morrell, Nidia; Tsvetanov, Zlatan; Schulte-Ladbeck, Regina

    2001-01-01

    Observations of the interstellar and circumstellar absorption components obtained with the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) along the line of sight toward the Wolf-Rayet-luminous blue variable (LBV) system HD 5980 in the Small Magellanic Cloud are analyzed. Velocity components from C I, C I*, C II, C II*, C IV, N I, N V, O I, Mg II, Al II, Si II, Si II*, Si III, Si IV, S II, S III, Fe II, Ni II, Be I, Cl I, and CO are identified, and column densities estimated. The principal velocity systems in our data are (1) interstellar medium (ISM) components in the Galactic disk and halo (Vhel=1.1+/-3, 9+/-2 km s-1) (2) ISM components in the SMC (Vhel=+87+/-6, +110+/-6, +132+/-6, +158+/-8, +203+/-15 km s-1) (3) SMC supernova remnant SNR 0057-7226 components (Vhel=+312+/-3, +343+/-3, +33, +64 km s-1) (4) circumstellar (CS) velocity systems (Vhel=-1020, -840, -630, -530, -300 km s-1) and (5) a possible system at -53+/-5 km s-1 (seen only in some of the Si II lines and marginally in Fe II) of uncertain origin. The supernova remnant SNR 0057-7226 has a systemic velocity of +188 km s-1, suggesting that its progenitor was a member of the NGC 346 cluster. Our data allow estimates to be made of Te~40,000 K, ne~100 cm-3, N(H)~(4-12)×1018 cm-2 and a total mass between 400 and 1000 Msolar for the supernova remnant (SNR) shell. We detect C I absorption lines primarily in the +132 and +158 km s-1 SMC velocity systems. As a result of the LBV-type eruptions in HD 5980, a fast-wind/slow-wind circumstellar interaction region has appeared, constituting the earliest formation stages of a windblown H II bubble surrounding this system. Variations over a timescale of 1 year in this circumstellar structure are detected. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  5. Studying the SGR 1806-20/Cl* 1806-20 Region Using the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Yeung, Paul K. H.; Kong, Albert K. H.; Tam, P. H. Thomas; Lin, Lupin C. C.; Hui, C. Y.; Hu, Chin-Ping; Cheng, K. S.

    2016-08-01

    The region around SGR 1806-20 and its host stellar cluster Cl* 1806-20 is a potentially important site of particle acceleration. The soft γ-ray repeater and Cl* 1806-20, which also contains several very massive stars including a luminous blue variable hypergiant LBV 1806-20, are capable of depositing a large amount of energy to the surroundings. Using the data taken with the Fermi Large Area Telescope (LAT), we identified an extended LAT source to the southwest of Cl* 1806-20. The centroid of the 1-50 GeV emission is consistent with that of HESS J1808-204 (until now unidentified). The LAT spectrum is best-fit by a broken power law with the break energy {E}{{b}}=297+/- 15 {MeV}. The index above E b is 2.60 ± 0.04 and is consistent with the flux and spectral index above 100 GeV for HESS J1808-204, suggesting an association between the two sources. Meanwhile, the interacting supernova remnant SNR G9.7-0.0 is also a potential contributor to the LAT flux. A tentative flux enhancement at the MeV band during a 45 day interval (2011 January 21-March 7) is also reported. We discuss possible origins of the extended LAT source in the context of both leptonic and hadronic scenarios.

  6. Serological Evidence of Lyssaviruses among Bats on Southwestern Indian Ocean Islands.

    PubMed

    Mélade, Julien; McCulloch, Stewart; Ramasindrazana, Beza; Lagadec, Erwan; Turpin, Magali; Pascalis, Hervé; Goodman, Steven M; Markotter, Wanda; Dellagi, Koussay

    2016-01-01

    We provide serological evidence of lyssavirus circulation among bats on southwestern Indian Ocean (SWIO) islands. A total of 572 bats belonging to 22 species were collected on Anjouan, Mayotte, La Réunion, Mauritius, Mahé and Madagascar and screened by the Rapid Fluorescent Focus Inhibition Test for the presence of neutralising antibodies against the two main rabies related lyssaviruses circulating on the African continent: Duvenhage lyssavirus (DUVV) and Lagos bat lyssavirus (LBV), representing phylogroups I and II, respectively. A total of 97 and 42 sera were able to neutralise DUVV and LBV, respectively. No serum neutralised both DUVV and LBV but most DUVV-seropositive bats (n = 32/220) also neutralised European bat lyssavirus 1 (EBLV-1) but not Rabies lyssavirus (RABV), the prototypic lyssavirus of phylogroup I. These results highlight that lyssaviruses belonging to phylogroups I and II circulate in regional bat populations and that the putative phylogroup I lyssavirus is antigenically closer to DUVV and EBLV-1 than to RABV. Variation between bat species, roost sites and bioclimatic regions were observed. All brain samples tested by RT-PCR specific for lyssavirus RNA were negative.

  7. Dust composition and mass-loss return from the luminous blue variable R71 in the LMC

    NASA Astrophysics Data System (ADS)

    Guha Niyogi, S.; Min, M.; Meixner, M.; Waters, L. B. F. M.; Seale, J.; Tielens, A. G. G. M.

    2014-09-01

    Context. We present an analysis of mid- and far-infrared (IR) spectrum and spectral energy distribution (SED) of the luminous blue variable (LBV) R71 in the Large Magellanic Cloud (LMC). Aims: This work aims to understand the overall contribution of high-mass LBVs to the total dust-mass budget of the interstellar medium (ISM) of the LMC and compare this with the contribution from low-mass asymptotic giant branch (AGB) stars. As a case study, we analyze the SED of R71. Methods: We compiled all the available photometric and spectroscopic observational fluxes from various telescopes for a wide wavelength range (0.36-250 μm). We determined the dust composition from the spectroscopic data, and derived the ejected dust mass, dust mass-loss rate, and other dust shell properties by modeling the SED of R71. We noted nine spectral features in the dust shell of R71 by analyzing Spitzer Space Telescope spectroscopic data. Among these, we identified three new crystalline silicate features. We computed our model spectrum by using 3D radiative transfer code MCMax. Results: Our model calculation shows that dust is dominated by amorphous silicates, with some crystalline silicates, metallic iron, and a very tiny amount of polycyclic aromatic hydrocarbon (PAH) molecules. The presence of both silicates and PAHs indicates that the dust has a mixed chemistry. We derived a dust mass of 0.01 M⊙, from which we arrive at a total ejected mass of ≈5 M⊙. This implies a time-averaged dust mass-loss rate of 2.5 × 10-6 M⊙ yr-1 with an explosion about 4000 years ago. We assume that the other five confirmed dusty LBVs in the LMC loose mass at a similar rate, and estimate the total contribution to the mass budget of the LMC to be ≈10-5 M⊙ yr-1, which is comparable to the contribution by all the AGB stars in the LMC. Conclusions: Based on our analysis on R71, we speculate that LBVs as a class may be an important dust source in the ISM of the LMC.

  8. Station Keeping Results for Seabotix vLBV300 Underwater Vehicle near Newport, OR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollinger, Geoffrey

    This data set presents results testing the station keeping abilities of a tethered Seabotix vLBV300 underwater vehicle equipped with an inertial navigation system. These results are from an offshore deployment on April 20, 2016 off the coast of Newport, OR (44.678 degrees N, 124.109 degrees W). During the mission period, the sea state varied between 3 and 4, with an average significant wave height of 1.6 m. The vehicle utilizes an inertial navigation system based on a Gladiator Landmark 40 IMU coupled with a Teledyne Explorer Doppler Velocity Log to perform station keeping at a desired location and orientation.

  9. Effects of the LBV Primary's Mass-loss Rate on the 3D Hydrodynamics of eta Carinae's Colliding Winds

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Cocoran, M.; Okazaki, A.; Owocki, S.; Russell, C.; Hamaguchi, K.; Clementel, N; Groh, J.; Hillier, D. J.

    2013-01-01

    At the heart of eta Carinae's spectacular "Homunculus" nebula lies an extremely luminous (L(sub Total) greater than approximately 5 × 10(exp 6) solar luminosity) colliding wind binary with a highly eccentric (e approximately 0.9), 5.54-year orbit (Figure 1). The primary of the system, a Luminous Blue Variable (LBV), is our closest (D approximately 2.3 kpc) and best example of a pre-hypernova or pre-gamma ray burst environment. The remarkably consistent and periodic RXTE X-ray light curve surprisingly showed a major change during the system's last periastron in 2009, with the X-ray minimum being approximately 50% shorter than the minima of the previous two cycles1. Between 1998 and 2011, the strengths of various broad stellar wind emission lines (e.g. Halpha, Fe II) in line-of-sight (l.o.s.) also decreased by factors of 1.5 - 3 relative to the continuum2. The current interpretation for these changes is that they are due to a gradual factor of 2 - 4 drop in the primary's mass-loss rate over the last approximately 15 years1, 2. However, while a secular change is seen for a direct view of the central source, little to no change is seen in profiles at high stellar latitudes or reflected off of the dense, circumbinary material known as the "Weigelt blobs"2, 3. Moreover, model spectra generated with CMFGEN predict that a factor of 2 - 4 drop in the primary's mass-loss rate should lead to huge changes in the observed spectrum, which thus far have not been seen. Here we present results from large- (plus or minus 1620 AU) and small- (plus or minus 162 AU) domain, full 3D smoothed particle hydrodynamics (SPH) simulations of eta Car's massive binary colliding winds for three different primary-star mass-loss rates (2.4, 4.8, and 8.5 × 10(exp -4) solar mass/yr). The goal is to investigate how the mass-loss rate affects the 3D geometry and dynamics of eta Car's optically-thick wind and spatially-extended wind-wind collision (WWC) regions, both of which are known sources of observed X-ray, optical, UV, and near-IR emission and absorption. We use two domain sizes in order to better understand how the primary's mass-loss rate influences the various observables that form at different length scales. The 3D simulations provide information important for helping constrain ? Car's recent mass-loss history and future state.

  10. Five Spectroscopic Categories of O-Type Candidate GRB Progenitors

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan R.; Rojas-Montes, Eliceth; Evans, Chris J.; Maíz Apellániz, Jesús; Wade, Gregg A.

    2013-06-01

    Five categories of peculiar O-type stars in the Galaxy and Magellanic Clouds that each combine three or four of the canonical GRB properties of magnetic fields, high mass, rarity, rapid rotation, and runaway space motions are displayed. (1) The Of?p stars were initially isolated as a peculiar spectroscopic category which was later found to undergo spectacular periodic variations; they are now understood as the most massive oblique magnetic rotators. All five Galactic members plus two related objects now have magnetic field detections, including one of 20 kG, with rotational periods ranging from a week to >50 yrs. There are also three spectroscopic members in the MCs, for which magnetic observations remain to be undertaken. (2) The ONn stars are rapidly rotating, nitrogen-rich, late-O giants at least several of which are runaways. (3) The Onfp stars are another category first described in terms of certain spectral peculiarities; they are now known to be massive, evolved rapid rotators with strong winds, which theoretically should not exist in the single-star regime. Many are in binary systems, perhaps spun up by mass transfer, while others may be mergers, and at least some are runaways. This category calls into question the assumption that GRBs can occur only at low metallicity where weaker winds allow high rotation to be preserved in evolved objects. (4) A population of young extreme rotators, including the two most rapid known at v sin i of 600 km/sec, lies at the peripheries of the 30 Doradus ionizing clusters. Peculiar radial velocities as well as their locations support an ejection hypothesis, currently under further investigation by means of proper motions. (5) At least two extremely massive O2 stars have also been ejected from 30 Doradus, most likely by dynamical processes since there have not yet been any SN in the dense central cluster R136. Presumably all of these stars must reach LBV and/or WR stages before collapsing, so they are not immediate GRB progenitors, but rather their precursors that provide information about their origins.

  11. Behavior of Listeria monocytogenes on Mortadella Formulated Using a Natural, Clean-Label Antimicrobial Agent during Extended Storage at 4 or 12°C.

    PubMed

    Porto-Fett, Anna C S; Campano, Stephen G; Rieker, Marcus; Stahler, Laura J; McGEARY, Lianna; Shane, Laura E; Shoyer, Bradley A; Osoria, Manuela; Luchansky, John B

    2018-05-01

    All-pork mortadella, an Italian-style deli meat, was produced by a local artisanal meat producer with or without 1.0 or 1.5% liquid buffered vinegar (LBV), 0.4, 0.6, or 1.0% dry buffered vinegar (DBV), or a 2.5% blend of potassium lactate and sodium diacetate (KLac). In each of three trials, mortadella was sliced (ca. 1.5 cm thick, ca. 30 g) and surface inoculated with 250 μL per side of a five-strain mixture of Listeria monocytogenes (ca. 3.8 log CFU per slice). The packages were vacuum sealed and then stored at 4 or 12°C. In the absence of antimicrobials, L. monocytogenes levels increased by ca. 2.6 and 6.0 log CFU per slice after up to 120 or 28 days at 4 or 12°C, respectively. With inclusion of 1.0 or 1.5% LBV, 1.0% DBV, or 2.5% KLac as ingredients, pathogen levels decreased by ca. 0.3 to 0.7 log CFU per slice after 120 days at 4°C, whereas with inclusion of 0.4 or 0.6% DBV, L. monocytogenes levels increased by ca. 1.2 and 0.8 log CFU per slice, respectively. After 28 days at 12°C, inclusion of 2.5% KLac, 1.0 or 1.5% LBV, or 0.4 or 0.6% DBV resulted in a ca. 1.4- to 5.7-log increase in L. monocytogenes levels. When 1.0% DBV was included in the formulation, pathogen levels remained unchanged after 28 days at 12°C. However, product quality was lessened at this abusive storage temperature (12°C) for all treatments by the end of storage. Thus, inclusion of LBV or DBV, as clean-label ingredients, in mortadella is equally effective as KLac for controlling L. monocytogenes during storage at 4°C without adversely affecting product quality.

  12. THE 2012 RISE OF THE REMARKABLE TYPE IIn SN 2009ip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prieto, Jose L.; Brimacombe, J.; Drake, A. J.

    2013-02-01

    Recent observations by Mauerhan et al. have shown the unprecedented transition of the previously identified luminous blue variable (LBV) and supernova (SN) impostor SN 2009ip to a real Type IIn SN explosion. We present {approx}100 optical R- and I-band photometric measurements of SN 2009ip obtained between UT 2012 September 23.6 and October 9.6, using 0.3-0.4 m aperture telescopes from the Coral Towers Observatory in Cairns, Australia. The light curves show well-defined phases, including very rapid brightening early on (0.5 mag in 6 hr observed during the night of September 24), a transition to a much slower rise between September 25more » and September 28, and a plateau/peak around October 7. These changes are coincident with the reported spectroscopic changes that most likely mark the start of a strong interaction between the fast SN ejecta and a dense circumstellar medium formed during the LBV eruptions observed in recent years. In the 16-day observing period, SN 2009ip brightened by 3.7 mag from I = 17.4 mag on September 23.6 (M{sub I} {approx_equal} -14.2) to I = 13.7 mag (M{sub I} {approx_equal} -17.9) on October 9.6, radiating {approx}3 Multiplication-Sign 10{sup 49} erg in the optical wavelength range. As of 2012 October 9.6, SN 2009ip is more luminous than most Type IIP SN and comparable to other Type IIn SN.« less

  13. 4-D Imaging and Modeling of Eta Carinae's Inner Fossil Wind Structures

    NASA Astrophysics Data System (ADS)

    Madura, Thomas I.; Gull, Theodore; Teodoro, Mairan; Clementel, Nicola; Corcoran, Michael; Damineli, Augusto; Groh, Jose; Hamaguchi, Kenji; Hillier, D. John; Moffat, Anthony; Richardson, Noel; Weigelt, Gerd; Lindler, Don; Feggans, Keith

    2017-11-01

    Eta Carinae is the most massive active binary within 10,000 light-years and is famous for the largest non-terminal stellar explosion ever recorded. Observations reveal that the supermassive (~120 M⊙) binary, consisting of an LBV and either a WR or extreme O star, undergoes dramatic changes every 5.54 years due to the stars' very eccentric orbits (e ~ 0.9). Many of these changes are caused by a dynamic wind-wind collision region (WWCR) between the stars, plus expanding fossil WWCRs formed one, two, and three 5.54-year cycles ago. The fossil WWCRs can be spatially and spectrally resolved by the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). Starting in June 2009, we used the HST/STIS to spatially map Eta Carinae's fossil WWCRs across one full orbit, following temporal changes in several forbidden emission lines (e.g. [Feiii] 4659 Å, [Feii] 4815 Å), creating detailed data cubes at multiple epochs. Multiple wind structures were imaged, revealing details about the binary's orbital motion, photoionization properties, and recent (~5 - 15 year) mass-loss history. These observations allow us to test 3-D hydrodynamical and radiative-transfer models of the interacting winds. Our observations and models strongly suggest that the wind and photoionization properties of Eta Carinae's binary have not changed substantially over the past several orbital cycles. They also provide a baseline for following future changes in Eta Carinae, essential for understanding the late-stage evolution of this nearby supernova progenitor. For more details, see Gull et al. (2016) and references therein.

  14. Shared Autonomy Manipulation Data with a Seabotix vLBV300

    DOE Data Explorer

    Hollinger, Geoffrey; Lawrance, Nicholas

    2017-06-19

    This report outlines marine field demonstrations for manipulation tasks with a semi-Autonomous Underwater Vehicle (sAUV). The vehicle is built off a Seabotix vLBV300 platform with custom software interfacing it with the Robot Operating System (ROS). The vehicle utilizes an inertial navigation system available from Greensea Systems, Inc. based on a Gladiator Landmark 40 IMU coupled with a Teledyne Explorer Doppler Velocity Log to perform station keeping at a desired location and orientation. We performed two marine trials with the vehicle: a near-shore shared autonomy manipulation trial and an offshore attempted intervention trial. These demonstrations were designed to show the capabilities of our sAUV system for inspection and basic manipulation tasks in real marine environments.

  15. Observational aspects of Herbig Ae/Be stars and of candidate young A/B stars

    NASA Astrophysics Data System (ADS)

    de Winter, Dolf

    1996-06-01

    The thesis consists of several studies on candidate young stars of which most material is published or in press and which can be divided into three parts roughly. Part A is about Herbig Ae/Be stars. A complete review of the observational properties of HAeBes is given in Chapter A1 together with a renewed up-to-date catalogue of HAeBes and HAeBe candidates. As an example of the selection of HAeBes from candidate stars, the observational properties of three candidates is discussed in Chapter A2. They are in particular interesting as they are relatively bright with respect to other HAeBes candidates. An advantage of bright HAeBes is that high resolution spectroscopy can be obtained. For two well know HAeBe objects with a favourable oriented disk, UX and BF Ori, a high resolution spectroscopy monitoring programme is presented in Chapters A3 and A4. First results presented indicate that the disk material of UX Ori is accreting in the form of comet-like bodies. Such pioneering results are also found for BF Ori but more details of the cometaries are given. As discussed in Chapter A1, the IR-excess is one of the fundamental discriminators for the selection of HAeBe candidates. A good understanding of the origin of the IR-excess of HAeBe candidates is necessary to study the disk material that ultimately could produce (proto-)planetary systems. Chapter A5 discusses the amount of IR-excess of HAeBe candidates and ideas about the probable origin. In Part B objects are discussed which were originally selected as HAeBe candidates, but for which a more detailed analysis of the observational characteristics show that they are probably more evolved. This group contains very interesting objects as is shown in Chapters B1, B2 and B3, in which the discovery of a new galactic Luminous Blue Variable (LBV) is reported, WRA 751. A well known B[e] star is HD 45677. The B[e]-group was collected to consist of evolved objects with masses less than those of LBVs and comparable with B[e] stars observed in the LMC. In recent publications, however, HD 45677 was described as a possible Herbig Be star. In Chapter B4 new observational evidences together with the analyses of about 100 years of known brightness measurements of this star indicate that its PMS nature must be questioned. Another object for which the PMS status is doubtful is HD 147196. A Be star located in the dark cloud region ρ Ophiuchus. In Chapter B5 we show that the emission line nature of this object is variable, which indicate the difficulties to select homogeneous samples on the bases of spectral observations. Finally in Chapter B6 we discuss the possible youth of HR 6000, an object not showing any observable peculiarities at first sight. But being the close neighbour of HR 5999, a comparable youth is likely. Indeed, a weak near-IR excess, photometric variability and being a strong X-ray source, suggest the presence of a T Tauri companion. In Parts A and B we have encountered various difficulties to make a clear and easy distinction between PMS stars and more evolved objects. In the case of young open clusters such problems are less severe. For this reason in Part C a study of the well known very young open cluster NGC 6611 is presented. The results are reported in two chapters: in Chapter C1 the stars in the cluster field are studied, from which a HRD can be constructed, giving necessary information about some cluster properties such as distance and age; we use these findings in Chapter C1 to study in detail objects which were previously recognised as PMS candidates, in order to discover true HAeBe objects. Although we find a large number of early type stars being in the PMS phase, we find only scarcely objects with clear HAeBe characteristics. It is therefore discussed that the clearing mechanism on the circumstellar material must work on a very short timescale and that not all of them go through a HAeBe-phase. This conclusion is discussed with an eye to the recent finding af EGGs in the field of this cluster.

  16. On the Nature of the Prototype Luminous Blue Variable Ag Carinae. I. Fundamental Parameters During Visual Minimum Phases and Changes in the Bolometric Luminosity During the S-Dor Cycle

    NASA Astrophysics Data System (ADS)

    Groh, J. H.; Hillier, D. J.; Damineli, A.; Whitelock, P. A.; Marang, F.; Rossi, C.

    2009-06-01

    We present a detailed spectroscopic analysis of the luminous blue variable (LBV) AG Carinae (AG Car) during the last two visual minimum phases of its S-Dor cycle (1985-1990 and 2000-2003). The analysis reveals an overabundance of He, N, and Na, and a depletion of H, C, and O, on the surface of the AG Car, indicating the presence of a CNO-processed material. Furthermore, the ratio N/O is higher on the stellar surface than in the nebula. We found that the minimum phases of AG Car are not equal to each other, since we derived a noticeable difference between the maximum effective temperature achieved during 1985-1990 (22, 800 K) and 2000-2001 (17,000 K). Significant differences between the wind parameters in these two epochs were also noticed. While the wind terminal velocity was 300 km s-1 in 1985-1990, it was as low as 105 km s-1 in 2001. The mass-loss rate, however, was lower from 1985-1990 (1.5 × 10-5 M sun yr-1) than from 2000-2001 (3.7 × 10-5 M sun yr-1). We found that the wind of AG Car is significantly clumped (f sime 0.10-0.25) and that clumps must be formed deep in the wind. We derived a bolometric luminosity of 1.5 × 106 L sun during both minimum phases which, contrary to the common assumption, decreases to 1.0 × 106 L sun as the star moves toward the maximum flux in the V band. Assuming that the decrease in the bolometric luminosity of AG Car is due to the energy used to expand the outer layers of the star, we found that the expanding layers contain roughly 0.6-2 M sun. Such an amount of mass is an order of magnitude lower than the nebular mass around AG Car, but is comparable to the nebular mass found around lower-luminosity LBVs and to that of the Little Homunculus of Eta Car. If such a large amount of mass is indeed involved in the S Dor-type variability, we speculate that such instability could be a failed Giant Eruption, with several solar masses never becoming unbound from the star. Based on observations made with the 1.6 m telescope at the Observatório Pico dos Dias (OPD/LNA, Brazil), with the 1.52 m telescope and 8 m Very Large Telescope at the European Southern Observatory (ESO, Chile), with the International Ultraviolet Explorer (IUE) satellite, at the South African Astronomical Observatory (SAAO), and with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer (FUSE), which is operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985.

  17. A Tale of Two Impostors: SN2002kg and SN1954J in NGC 2403

    NASA Astrophysics Data System (ADS)

    Humphreys, Roberta M.; Davidson, Kris; Van Dyk, Schuyler D.; Gordon, Michael S.

    2017-10-01

    We describe new results on two supernova impostors in NGC 2403, SN 1954J(V12) and SN 2002kg(V37). For the famous object SN 1954J, we combine four critical observations: its current SED, its Hα emission line profile, the Ca II triplet in absorption in its red spectrum, and the brightness compared to its pre-event state. Together, these strongly suggest that the survivor is now a hot supergiant with T ˜ 20,000 K, a dense wind, substantial circumstellar extinction, and a G-type supergiant companion. The hot star progenitor of V12's giant eruption was likely in the post-red supergiant stage and had already shed a lot of mass. V37 is a classical LBV/S Dor variable. Our photometry and spectra observed during and after its eruption show that its outburst was an apparent transit on the HR Diagram due to enhanced mass loss and the formation of a cooler, dense wind. V37 is an evolved hot supergiant at ≈106 {L}⊙ with a probable initial mass of 60-80 {M}⊙ . Based on observations with the Multiple Mirror Telescope, a joint facility of the Smithsonian Institution and the University of Arizona, and on observations obtained with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners include The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.

  18. Super-Eddington stellar winds driven by near-surface energy deposition

    NASA Astrophysics Data System (ADS)

    Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel; Klion, Hannah; Paxton, Bill

    2016-05-01

    We develop analytic and numerical models of the properties of super-Eddington stellar winds, motivated by phases in stellar evolution when super-Eddington energy deposition (via, e.g. unstable fusion, wave heating, or a binary companion) heats a region near the stellar surface. This appears to occur in the giant eruptions of luminous blue variables (LBVs), Type IIn supernovae progenitors, classical novae, and X-ray bursts. We show that when the wind kinetic power exceeds Eddington, the photons are trapped and behave like a fluid. Convection does not play a significant role in the wind energy transport. The wind properties depend on the ratio of a characteristic speed in the problem v_crit˜ (dot{E} G)^{1/5} (where dot{E} is the heating rate) to the stellar escape speed near the heating region vesc(rh). For vcrit ≳ vesc(rh), the wind kinetic power at large radii dot{E}_w ˜ dot{E}. For vcrit ≲ vesc(rh), most of the energy is used to unbind the wind material and thus dot{E}_w ≲ dot{E}. Multidimensional hydrodynamic simulations without radiation diffusion using FLASH and one-dimensional hydrodynamic simulations with radiation diffusion using MESA are in good agreement with the analytic predictions. The photon luminosity from the wind is itself super-Eddington but in many cases the photon luminosity is likely dominated by `internal shocks' in the wind. We discuss the application of our models to eruptive mass-loss from massive stars and argue that the wind models described here can account for the broad properties of LBV outflows and the enhanced mass-loss in the years prior to Type IIn core-collapse supernovae.

  19. Variability survey of brightest stars in selected OB associations

    NASA Astrophysics Data System (ADS)

    Laur, Jaan; Kolka, Indrek; Eenmäe, Tõnis; Tuvikene, Taavi; Leedjärv, Laurits

    2017-02-01

    Context. The stellar evolution theory of massive stars remains uncalibrated with high-precision photometric observational data mainly due to a small number of luminous stars that are monitored from space. Automated all-sky surveys have revealed numerous variable stars but most of the luminous stars are often overexposed. Targeted campaigns can improve the time base of photometric data for those objects. Aims: The aim of this investigation is to study the variability of luminous stars at different timescales in young open clusters and OB associations. Methods: We monitored 22 open clusters and associations from 2011 to 2013 using a 0.25-m telescope. Variable stars were detected by comparing the overall light-curve scatter with measurement uncertainties. Variability was analysed by the light curve feature extraction tool FATS. Periods of pulsating stars were determined using the discrete Fourier transform code SigSpec. We then classified the variable stars based on their pulsation periods and available spectral information. Results: We obtained light curves for more than 20 000 sources of which 354 were found to be variable. Amongst them we find 80 eclipsing binaries, 31 α Cyg, 13 β Cep, 62 Be, 16 slowly pulsating B, 7 Cepheid, 1 γ Doradus, 3 Wolf-Rayet and 63 late-type variable stars. Up to 55% of these stars are potential new discoveries as they are not present in the Variable Star Index (VSX) database. We find the cluster membership fraction for variable stars to be 13% with an upper limit of 35%. Variable star catalogue (Tables A.1-A.10) and light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A108

  20. VizieR Online Data Catalog: AAVSO International Variable Star Index VSX (Watson+, 2006-2014)

    NASA Astrophysics Data System (ADS)

    Watson, C.; Henden, A. A.; Price, A.

    2017-05-01

    This file contains Galactic stars known or suspected to be variable. It lists all stars that have an entry in the AAVSO International Variable Star Index (VSX; http://www.aavso.org/vsx). The database consisted initially of the General Catalogue of Variable Stars (GCVS) and the New Catalogue of Suspected Variables (NSV) and was then supplemented with a large number of variable star catalogues, as well as individual variable star discoveries or variables found in the literature. Effort has also been invested to update the entries with the latest information regarding position, type and period and to remove duplicates. The VSX database is being continually updated and maintained. For historical reasons some objects outside of the Galaxy have been included. (3 data files).

  1. VizieR Online Data Catalog: AAVSO International Variable Star Index VSX (Watson+, 2006-2014)

    NASA Astrophysics Data System (ADS)

    Watson, C.; Henden, A. A.; Price, A.

    2018-05-01

    This file contains Galactic stars known or suspected to be variable. It lists all stars that have an entry in the AAVSO International Variable Star Index (VSX; http://www.aavso.org/vsx). The database consisted initially of the General Catalogue of Variable Stars (GCVS) and the New Catalogue of Suspected Variables (NSV) and was then supplemented with a large number of variable star catalogues, as well as individual variable star discoveries or variables found in the literature. Effort has also been invested to update the entries with the latest information regarding position, type and period and to remove duplicates. The VSX database is being continually updated and maintained. For historical reasons some objects outside of the Galaxy have been included. (3 data files).

  2. Underwater Mapping Results for Seabotix vLBV300 Vehicle with Tritech Gemini 720i Imaging Sonar near Newport, OR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollinger, Geoffrey

    This document presents results from tests to demonstrate underwater mapping capabilities of an underwater vehicle in conditions typically found in marine renewable energy arrays. These tests were performed with a tethered Seabotix vLBV300 underwater vehicle. The vehicle is equipped with an inertial navigation system (INS) based on a Gladiator Landmark 40 IMU and Teledyne Explorer Doppler Velocity Log, as well as a Gemini 720i scanning sonar acquired from Tritech. The results presented include both indoor pool and offshore deployments. The indoor pool deployments were performed on October 7, 2016 and February 3, 2017 in Corvallis, OR. The offshore deployment wasmore » performed on April 20, 2016 off the coast of Newport, OR (44.678 degrees N, 124.109 degrees W). During the mission period, the sea state varied between 3 and 4, with an average significant wave height of 1.6 m. Data was recorded from both the INS and the sonar.« less

  3. A SYSTEMATIC SEARCH FOR COROTATING INTERACTION REGIONS IN APPARENTLY SINGLE GALACTIC WOLF-RAYET STARS. II. A GLOBAL VIEW OF THE WIND VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chene, A.-N.; St-Louis, N., E-mail: achene@astro-udec.cl, E-mail: stlouis@astro.umontreal.ca

    This study is the second part of a survey searching for large-scale spectroscopic variability in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic variability level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale wind variability, potentially originating from large-scale structures named corotating interaction regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of {approx}100 and determined its variability level usingmore » the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral variability of which 7 present CIR-type changes (WR 8, WR 44, WR55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral variability as far as can be concluded from the data on hand. Also, we discuss the spectroscopic variability level of all single galactic WR stars that are brighter than v {approx} 12.5, and some WR stars with 12.5 < v {<=} 13.5, i.e., all the stars presented in our two papers and four more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8%) present large-scale variability, but only 12/54 stars ({approx}22.1%) are potentially of CIR type. Also, we find that 31/68 stars (45.6%) only show small-scale variability, most likely due to clumping in the wind. Finally, no spectral variability is detected based on the data on hand for 14/68 (20.6%) stars. Interestingly, the variability with the highest amplitude also has the widest mean velocity dispersion.« less

  4. IRAS variables as galactic structure tracers - Classification of the bright variables

    NASA Technical Reports Server (NTRS)

    Allen, L. E.; Kleinmann, S. G.; Weinberg, M. D.

    1993-01-01

    The characteristics of the 'bright infrared variables' (BIRVs), a sample consisting of the 300 brightest stars in the IRAS Point Source Catalog with IRAS variability index VAR of 98 or greater, are investigated with the purpose of establishing which of IRAS variables are AGB stars (e.g., oxygen-rich Miras and carbon stars, as was assumed by Weinberg (1992)). Results of the analysis of optical, infrared, and microwave spectroscopy of these stars indicate that, out of 88 stars in the BIRV sample identified with cataloged variables, 86 can be classified as Miras. Results of a similar analysis performed for a color-selected sample of stars, using the color limits employed by Habing (1988) to select AGB stars, showed that, out of 52 percent of classified stars, 38 percent are non-AGB stars, including H II regions, planetary nebulae, supergiants, and young stellar objects, indicating that studies using color-selected samples are subject to misinterpretation.

  5. Utilizing the AAVSO's Variable Star Index (VSX) in Undergraduate Research Projects (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Larsen, K.

    2016-12-01

    (Abstract only) Among the many important services that the American Association of Variable Star Observers (AAVSO) provides to the astronomical community is the Variable Star Index (VSX; https://www.aavso.org/vsx/). This online catalog of variable stars is the repository of data on over 334,000 variable stars, including information on spectral type, range of magnitude, period, and type of variable, among other properties. A number of these stars were identified as being variable through automated telescope surveys, such as ASAS (All Sky Automated Survey). The computer code of this survey classified newly discovered variables as best it could, but a significant number of false classifications have been noted. The reclassification of ASAS variables in the VSX data, as well as a closer look at variables identified as miscellaneous type in VSX, are two of many projects that can be undertaken by interested undergraduates. In doing so, students learn about the physical properties of various types of variable stars as well as statistical analysis and computer software, especially the vstar variable star data visualization and analysis tool that is available to the astronomical community free of charge on the AAVSO website (https://www.aavso.org/vstar-overview). Three such projects are described in this presentation, to identify BY Draconis variables misidentified as Cepheids or "miscellaneous", and SRD semiregular variables and ELL (rotating ellipsoidal) variables misidentified as "miscellaneous", in ASAS data and VSX.

  6. A CCD Search for Variable Stars of Spectral Type B in the Northern Hemisphere Open Clusters. VII. NGC 1502

    NASA Astrophysics Data System (ADS)

    Michalska, G.; Pigulski, A.; Stęlicki, M.; Narwid, A.

    2009-12-01

    We present results of variability search in the field of the young open cluster NGC 1502. Eight variable stars were discovered. Of six other stars in the observed field that were suspected for variability, we confirm variability of two, including one β Cep star, NGC 1502-26. The remaining four suspects were found to be constant in our photometry. In addition, UBVIC photometry of the well-known massive eclipsing binary SZ Cam was obtained. The new variable stars include: two eclipsing binaries of which one is a relatively bright detached system with an EA-type light curve, an α2 CVn-type variable, an SPB candidate, a field RR Lyr star and three other variables showing variability of unknown origin. The variability of two of them is probably related to their emission in Hα, which has been measured by means of the α index obtained for 57 stars brighter than V≍16 mag in the central part of the observed field. Four other non-variable stars with emission in Hα were also found. Additionally, we provide VIC photometry for stars down to V=17 mag and UB photometry for about 50 brightest stars in the observed field. We also show that the 10 Myr isochrone fits very well the observed color-magnitude diagram if a distance of 1 kpc and mean reddening, E(V-IC)=0.9 mag are adopted.

  7. Variable Star and Exoplanet Section of the Czech Astronomical Society

    NASA Astrophysics Data System (ADS)

    Brát, L.; Zejda, M.

    2010-12-01

    We present activities of Czech variable star observers organized in the Variable Star and Exoplanet Section of the Czech Astronomical Society. We work in four observing projects: B.R.N.O. - eclipsing binaries, MEDUZA - intrinsic variable stars, TRESCA - transiting exoplanets and candidates, HERO - objects of high energy astrophysics. Detailed information together with O-C gate (database of eclipsing binaries minima timings) and OEJV (Open European Journal on Variable stars) are available on our internet portal http://var.astro.cz.

  8. Utilizing the AAVSO's Variable Star Index (VSX) In Undergraduate Research Projects

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2016-01-01

    Among the many important services that the American Association of Variable Star Observers (AAVSO) provides to the astronomical community is the Variable Star Index (VSX - https://www.aavso.org/vsx/). This online catalog of variable stars is the repository of data on over 334,000 variable stars, including information on spectral type, range of magnitude, period, and type of variable, among other properties. A number of these stars were identified as being variable through automated telescope surveys, such as ASAS (All Sky Automated Survey). The computer code of this survey classified newly discovered variables as best it could, but a significant number of false classifications have been noted. The reclassification of ASAS variables in the VSX data, as well as a closer look at variables identified as miscellaneous type in VSX, are two of many projects that can be undertaken by interested undergraduates. In doing so, students learn about the physical properties of various types of variable stars as well as statistical analysis and computer software, especially the VStar variable star data visualization and analysis tool that is available to the astronomical community free of charge on the AAVSO website (https://www.aavso.org/vstar-overview). Two such projects are described in this presentation, the first to identify BY Draconis variables erroneously classified as Cepheids in ASAS data, and the second to identify SRD semiregular variables misidentified as "miscellaneous" in VSX.

  9. Periodic and Aperiodic Variability in the Molecular Cloud ρ Ophiuchus

    NASA Astrophysics Data System (ADS)

    Parks, J. Robert; Plavchan, Peter; White, Russel J.; Gee, Alan H.

    2014-03-01

    Presented are the results of a near-IR photometric survey of 1678 stars in the direction of the ρ Ophiuchus (ρ Oph) star forming region using data from the 2MASS Calibration Database. For each target in this sample, up to 1584 individual J-, H-, and Ks -band photometric measurements with a cadence of ~1 day are obtained over three observing seasons spanning ~2.5 yr it is the most intensive survey of stars in this region to date. This survey identifies 101 variable stars with ΔKs -band amplitudes from 0.044 to 2.31 mag and Δ(J - Ks ) color amplitudes ranging from 0.053 to 1.47 mag. Of the 72 young ρ Oph star cluster members included in this survey, 79% are variable; in addition, 22 variable stars are identified as candidate members. Based on the temporal behavior of the Ks time-series, the variability is distinguished as either periodic, long time-scale or irregular. This temporal behavior coupled with the behavior of stellar colors is used to assign a dominant variability mechanism. A new period-searching algorithm finds periodic signals in 32 variable stars with periods between 0.49 to 92 days. The chief mechanism driving the periodic variability for 18 stars is rotational modulation of cool starspots while 3 periodically vary due to accretion-induced hot spots. The time-series for six variable stars contains discrete periodic "eclipse-like" features with periods ranging from 3 to 8 days. These features may be asymmetries in the circumstellar disk, potentially sustained or driven by a proto-planet at or near the co-rotation radius. Aperiodic, long time-scale variations in stellar flux are identified in the time-series for 31 variable stars with time-scales ranging from 64 to 790 days. The chief mechanism driving long time-scale variability is variable extinction or mass accretion rates. The majority of the variable stars (40) exhibit sporadic, aperiodic variability over no discernable time-scale. No chief variability mechanism could be identified for these variable stars.

  10. Mythical Maia, ultrashort and 53 PSC variables. Lecture 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, A.N.

    1983-03-14

    Moving down the main sequence from the ..beta.. Cephei variables, we come to later B-type stars. The suspicion of variability for these stars goes back to Vogel in 1891 who studied the radial velocities of Vega. Since that time there have been numerous studies of Vega (Wisniewski and Johnson 1979, Fernie 1981) and other B and early A stars which hint at variability in both radial velocity and light. Since Struve (1955) discussed these stars 28 years ago, they have been called the Maia stars after the Pleiades star that he thought was the prototype. The uncertainty in their actualmore » variability has led Breger (1980) to call them the mythical Maia variables.« less

  11. X-ray variability of Pleiades late-type stars as observed with the ROSAT-PSPC

    NASA Astrophysics Data System (ADS)

    Marino, A.; Micela, G.; Peres, G.; Sciortino, S.

    2003-08-01

    We present a comprehensive analysis of X-ray variability of the late-type (dF7-dM) Pleiades stars, detected in all ROSAT-PSPC observations; X-ray variations on short (hours) and medium (months) time scales have been explored. We have grouped the stars in two samples: 89 observations of 42 distinct dF7-dK2 stars and 108 observations of 61 dK3-dM stars. The Kolmogorov-Smirnov test applied on all X-ray photon time series show that the percentage of cases of significant variability is quite similar on both samples, suggesting that the presence of variability does not depend on mass for the time scales and mass range explored. The comparison between the Time X-ray Amplitude Distribution functions (XAD) of the set of dF7-dK2 and of the dK3-dM show that, on short time scales, dK3-dM stars show larger variations than dF7-dK2. A subsample of eleven dF7-dK2 and eleven dK3-dM Pleiades stars allows the study of variability on longer time scales: we found that variability on medium - long time scales is relatively more common among dF7-dK2 stars than among dK3-dM ones. For both dF7-dK2 Pleiades stars and dF7-dK2 field stars, the variability on short time scales depends on Lx while this dependence has not been observed among dK3-dM stars. It may be that the variability among dK3-dM stars is dominated by flares that have a similar luminosity distribution for stars of different Lx, while flaring distribution in dF7-dK2 stars may depend on X-ray luminosity. The lowest mass stars show significant rapid variability (flares?) and no evidence of rotation modulation or cycles. On the contrary, dF7-dK2 Pleiades stars show both rapid variability and variations on longer time scales, likely associated with rotational modulation or cycles.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cacciari, C.; Clementini, G.

    Attention is given to the folowing topics: population I and II variable stars; LP variables, the sun, and mass determination; and predegenerate and degenerate variables. Particular papers are presented on alternative evolutionary approaches to the absolute magnitude of the RR Lyrae variables; the evolution of the Cepheid stars; nonradial pulsations in rapidly rotating Delta Scuti stars; dynamical models of dust shells around Mira variables; and pulsations of central stars of planetary nebulae.

  13. Variable Star Observing in Hungary

    NASA Astrophysics Data System (ADS)

    Mizser, Attila

    1986-12-01

    Astronomy and variable star observing has a long history in Hungary, dating back to the private observatories erected by the Hungarian nobility in the late 19th Century. The first organized network of amateur variable star observers, the Variable Star Section of the new Hungarian Astronomical Association, was organized around the Urania Observatory in Budapest in 1948. Other groups, dedicated to various types of variables, have since been organized.

  14. Four new Delta Scuti stars

    NASA Technical Reports Server (NTRS)

    Schutt, R. L.

    1991-01-01

    Four new Delta Scuti stars are reported. Power, modified into amplitude, spectra, and light curves are used to determine periodicities. A complete frequency analysis is not performed due to the lack of a sufficient time base in the data. These new variables help verify the many predictions that Delta Scuti stars probably exist in prolific numbers as small amplitude variables. Two of these stars, HR 4344 and HD 107513, are possibly Am stars. If so, they are among the minority of variable stars which are also Am stars.

  15. Variable stars in Local Group Galaxies - II. Sculptor dSph

    NASA Astrophysics Data System (ADS)

    Martínez-Vázquez, C. E.; Stetson, P. B.; Monelli, M.; Bernard, E. J.; Fiorentino, G.; Gallart, C.; Bono, G.; Cassisi, S.; Dall'Ora, M.; Ferraro, I.; Iannicola, G.; Walker, A. R.

    2016-11-01

    We present the identification of 634 variable stars in the Milky Way dwarf spheroidal (dSph) satellite Sculptor based on archival ground-based optical observations spanning ˜24 yr and covering ˜2.5 deg2. We employed the same methodologies as the `Homogeneous Photometry' series published by Stetson. In particular, we have identified and characterized one of the largest (536) RR Lyrae samples so far in a Milky Way dSph satellite. We have also detected four Anomalous Cepheids, 23 SX Phoenicis stars, five eclipsing binaries, three field variable stars, three peculiar variable stars located above the horizontal branch - near to the locus of BL Herculis - that we are unable to classify properly. Additionally, we identify 37 long period variables plus 23 probable variable stars, for which the current data do not allow us to determine the period. We report positions and finding charts for all the variable stars, and basic properties (period, amplitude, mean magnitude) and light curves for 574 of them. We discuss the properties of the RR Lyrae stars in the Bailey diagram, which supports the coexistence of subpopulations with different chemical compositions. We estimate the mean mass of Anomalous Cepheids (˜1.5 M⊙) and SX Phoenicis stars (˜1 M⊙). We discuss in detail the nature of the former. The connections between the properties of the different families of variable stars are discussed in the context of the star formation history of the Sculptor dSph galaxy.

  16. Multiband Fourier Analysis and Interstellar Reddening of the Variable Stars in the Globular Cluster NGC 6402 (M14)

    NASA Astrophysics Data System (ADS)

    Weinschenk, Sedrick; Murphy, Brian; Villiger, Nathan J.

    2018-01-01

    We present a detailed study of the variable stars in the globular cluster NGC 6402 (M14). Approximately 1500 B and V band images were collected from July 2016 to August 2017 using the SARA Consortium Jacobus Kaptyen 1-meter telescope located in the Canary Islands. Using difference image analysis, we were able to identify 145 probable variable stars, confirming the 133 previously known variables and adding 12 new variables. The variables consisted of 117 RR Lyrae stars, 18 long period variables, 2 eclipsing variables, 6 Cepheid variables, and 2 SX Phoenix variables. Of the RR Lyrae variables 55 were of fundamental mode RR0 stars, of which 18 exhibited the Blazhko effect, 57 were of 1st overtone RR1, of which 7 appear to exhibit the Blazhko effect, 1 2nd overtone RR2, and 2 double mode variables. We found an average period of 0.59016 days for RR0 stars and 0.30294 days for RR1 stars. Using the multiband light curves of both the RR0 and RR1 variables we found an average E(B-V) of 0.604 with a scatter of 0.15 magnitudes. Using Fourier decomposition of the RR Lyrae light curves we also determined the metallicity and distance of the NGC 6402.

  17. The Beginning of Variable star astronomy in Hungary

    NASA Astrophysics Data System (ADS)

    Zsoldos, Endre

    Variable star astronomy began in Hungary as elsewhere: new objects have been recognized in the sky. Comets appeared in 16th - 17th century chronicles. The first mention of the new star of 1572 seems to be the "Prognosticon" of Wilhelm Misocacus, printed in 1578. New stars were discussed in the 17th century by Jesuits as well as Protestants. The work of Jacob Schnitzler is especially interesting from this point. The Cartesians dealt with new stars with less enthusiasm, they hardly mentioned them. The beginning of the 19th century saw the development of science in Hungarian, variable stars, however, were left out. The birth of variable star astronomy might be linked to the Ógyalla Observatory, originally a private observatory of Miklós Konkoly Thege. The 1885 supernova in the Andromeda Nebula were observed there, as well as the spectra of a few interesting variable stars. Theoretical astrophysics also has its beginnings in Ógyalla through the work of Radó Kövesligethy. Professional variable star astronomy started here in the early 20th century through the work of Antal Tass

  18. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsdofer, Elizabeth; Marengo, M.; Seale, J.

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. Anmore » error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.« less

  19. A CT-rich haplotype in intron 4 of SNCA confers risk for Lewy body pathology in Alzheimer’s disease and affects SNCA expression

    PubMed Central

    Lutz, Michael W.; Saul, Robert; Linnertz, Colton; Glenn, Omolara-Chinue; Roses, Allen D.; Chiba-Falek, Ornit

    2015-01-01

    INTRODUCTION We recently showed that tagging-SNPs across the SNCA locus were significantly associated with increased risk for LB pathology in AD cases. However, the actual genetic variant(s) that underlie the observed associations remain elusive. METHODS We used a bioinformatics algorithm to catalogue Structural-Variants in a region of SNCA-intron4, followed by phased-sequencing. We performed a genetic-association analysis in autopsy series of LBV/AD cases compared with AD-only controls. We investigated the biological functions by expression analysis using temporal-cortex samples. RESULTS We identified four distinct haplotypes within a highly-polymorphic-low-complexity CT-rich region. We showed that a specific haplotype conferred risk to develop LBV/AD. We demonstrated that the CT-rich site acts as an enhancer element, where the risk haplotype was significantly associated with elevated levels of SNCA-mRNA. DISCUSSION We have discovered a novel haplotype in a CT-rich region in SNCA that contributes to LB pathology in AD patients, possibly via cis-regulation of the gene expression. PMID:26079410

  20. Variability search in M 31 using principal component analysis and the Hubble Source Catalogue

    NASA Astrophysics Data System (ADS)

    Moretti, M. I.; Hatzidimitriou, D.; Karampelas, A.; Sokolovsky, K. V.; Bonanos, A. Z.; Gavras, P.; Yang, M.

    2018-06-01

    Principal component analysis (PCA) is being extensively used in Astronomy but not yet exhaustively exploited for variability search. The aim of this work is to investigate the effectiveness of using the PCA as a method to search for variable stars in large photometric data sets. We apply PCA to variability indices computed for light curves of 18 152 stars in three fields in M 31 extracted from the Hubble Source Catalogue. The projection of the data into the principal components is used as a stellar variability detection and classification tool, capable of distinguishing between RR Lyrae stars, long-period variables (LPVs) and non-variables. This projection recovered more than 90 per cent of the known variables and revealed 38 previously unknown variable stars (about 30 per cent more), all LPVs except for one object of uncertain variability type. We conclude that this methodology can indeed successfully identify candidate variable stars.

  1. Variable Stars in the Field of TrES-3b (Abstract)

    NASA Astrophysics Data System (ADS)

    Aadland, E.

    2018-06-01

    (Abstract only) The star field around the exoplanet TrES-3b has potential for finding unknown variable stars. The field was observed over several nights using Minnesota State University Moorheadís Feder Observatory. A light curve for each star was created and are being evaluated for variability and periodicity. A python program is in development to help complete the analysis by automating some of the process. Several stars in the field appear to be variable and are being further analyzed to determine a period and to classify the type of variable.

  2. CSI 2264: Simultaneous optical and X-ray variability in pre-main sequence stars. I. Time resolved X-ray spectral analysis during optical dips and accretion bursts in stars with disks

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Flaccomio, E.; Micela, G.; Argiroffi, C.; Sciortino, S.; Venuti, L.; Stauffer, J.; Rebull, L.; Cody, A. M.

    2017-06-01

    Context. Pre-main sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray-active regions. In stars with disks, this variability is related to the morphology of the inner circumstellar region (≤0.1 AU) and that of the photosphere and corona, all impossible to be spatially resolved with present-day techniques. This has been the main motivation for the Coordinated Synoptic Investigation of NGC 2264, a set of simultaneous observations of NGC 2264 with 15 different telescopes. Aims: In this paper, we focus on the stars with disks. We analyze the X-ray spectral properties extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars without disks are studied in a companion paper. Methods: We analyze simultaneous CoRoT and Chandra/ACIS-I observations to search for coherent optical and X-ray flux variability in stars with disks. Then, stars are analyzed in two different samples. In stars with variable extinction, we look for a simultaneous increase of optical extinction and X-ray absorption during the optical dips; in stars with accretion bursts, we search for soft X-ray emission and increasing X-ray absorption during the bursts. Results: We find evidence for coherent optical and X-ray flux variability among the stars with variable extinction. In 9 of the 24 stars with optical dips, we observe a simultaneous increase of X-ray absorption and optical extinction. In seven dips, it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5 of the 20 stars with optical accretion bursts, we observe increasing soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts, since favorable geometric configurations are required. Conclusions: The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts, we observe, on average, a larger soft X-ray spectral component not observed in non-accreting stars.

  3. Left ventricular approach for recording His bundle potential in man.

    PubMed

    Lee, Y S; Lien, W P

    1975-06-01

    The electrical potentials of the His bundle (HB) were recorded from the left ventricular endocardial surface in 28 patients ranging from 16 to 63 years of age. In 14 of the patients the left bundle branch (LB) potentials were also obtained. Placement of a bipolar electrode catheter tip toward the interventricular septum, right at and also 1 to 2 cm below the aortic valve, resulted in stable recordings of both potentials in successive cardiac cycles even at performing atrial or HB pacing from the right heart. The following intervals were measured in milliseconds (msec): P-A, A-H, H, H-V, LB, and LB-V. The average values in 12 patients (average age 26 plus or minus 7 years and average heart rate 90 plus or minus 16 beats per minute) with normal A-V conduction were as follows: P-A 28 plus or minus 7, A-H 76 plus or minus 16, H 19 plus or minus 3 and H-V 45 plus or minus 6 msec. The average values for LB and LB-V in 10 of these 12 patients were 15 plus or minus 3 and 25 plus or minus 3 msec respectively. Validation of the His bundle electrogram (HBE) from the left ventricular endocardial surface was based on simultaneous recordings of the intracardiac electrograms from both left and right sides of the heart in 18 patients. The individual average values for the intervals obtained from both sides of the heart in these patients were statistically not different, except that the H potential was slightly longer in duration fr m the left heart (P equals 0.05). Among these, 16 showed simultaneous onset of the H potentials, and the LB-V and RB-V conduction times from comparable points were almost the same. Indications for the left sided electro-physiologic studies include the following situations: (a) inability to record H from the right of the heart; (b) giant right atrium; and (c) possibly during atrial fibrillation.

  4. VISTA variables in the Sagittarius dwarf spheroidal galaxy: pulsation-versus dust-driven winds on the giant branches

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.; Sloan, G. C.; Kerins, E.; Lagadec, E.; Minniti, D.

    2014-04-01

    Variability is examined in over 2.6 million stars covering 11 square degrees of the core of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) from Visible and Infrared Survey Telescope for Astronomy Z-band observations. Generally, pulsation on the Sgr dSph giant branches appears to be excited by the internal κ mechanism. Pulsation amplitudes appear identical between red and asymptotic (red giant branch/asymptotic giant branch) giant stars, and between unreddened carbon and oxygen-rich stars at the same luminosity. The lack of correlation between infrared excess and variability among oxygen-rich stars indicates that pulsations do not contribute significantly to wind driving in oxygen-rich stars in the Sgr dSph, though the low amplitudes of these stars mean this may not apply elsewhere. The dust-enshrouded carbon stars have the highest amplitudes of the stars we observe. Only in these stars does an external κ-mechanism-driven pulsation seem likely, caused by variations in their more opaque carbon-rich molecules or dust. This may allow pulsation driving of winds to be effective in carbon stars. Variability can be simplified to a power law (A ∝ L/T2), as in other systems. In total, we identify 3026 variable stars (with rms variability of δZ ≳ 0.015 mag), of which 176 are long-period variables associable with the upper giant branches of the Sgr dSph. We also identify 324 candidate RR Lyrae variables in the Sgr dSph and 340 in the outer Galactic bulge.

  5. Variable Stars in M13. II.The Red Variables and the Globular Cluster Period-Luminosity Relation

    NASA Astrophysics Data System (ADS)

    Osborn, W.; Layden, A.; Kopacki, G.; Smith, H.; Anderson, M.; Kelly, A.; McBride, K.; Pritzl, B.

    2017-06-01

    New CCD observations have been combined with archival data to investigate the nature of the red variables in the globular cluster M13. Mean magnitudes, colors and variation ranges on the UBVIC system have been determined for the 17 cataloged red variables. 15 of the stars are irregular or semi-regular variables that lie at the top of the red giant branch in the color-magnitude diagram. Two stars are not, including one with a well-defined period and a light curve shape indicating it is an ellipsoidal or eclipsing variable. All stars redder than (V-IC)0=1.38 mag vary, with the amplitudes being larger with increased stellar luminosity and with bluer filter passband. Searches of the data for periodicities yielded typical variability cycle times ranging from 30 d up to 92 d for the most luminous star. Several stars have evidence of multiple periods. The stars' period-luminosity diagram compared to those from microlensing survey data shows that most M13 red variables are overtone pulsators. Comparison with the diagrams for other globular clusters shows a correlation between red variable luminosity and cluster metallicity.

  6. The Clusters AgeS Experiment (CASE). Variable stars in the field of the globular cluster NGC 362

    NASA Astrophysics Data System (ADS)

    Rozyczka, M.; Thompson, I. B.; Narloch, W.; Pych, W.; Schwarzenberg-Czerny, A.

    2016-09-01

    The field of the globular cluster NGC 362 was monitored between 1997 and 2015 in a search for variable stars. BV light curves were obtained for 151 periodic or likely periodic variable stars, over a hundred of which are new detections. Twelve newly detected variable stars are proper-motion members of the cluster: two SX Phe and two RR Lyr pulsators, one contact binary, three detached or semi-detached eclipsing binaries, and four spotted variable stars. The most interesting objects among these are the binary blue straggler V20 with an asymmetric light curve, and the 8.1 d semidetached binary V24 located on the red giant branch of NGC 362, which is a Chandra X-ray source. We also provide substantial new data for 24 previously known variable stars.

  7. Variable stars in the Pegasus dwarf galaxy (DDO 216)

    NASA Technical Reports Server (NTRS)

    Hoessel, J. G.; Abbott, Mark J.; Saha, A.; Mossman, Amy E.; Danielson, G. Edward

    1990-01-01

    Observations obtained over a period of five years of the resolved stars in the Pegasus dwarf irregular galaxy (DDO 216) have been searched for variable stars. Thirty-one variables were found, and periods established for 12. Two of these variable stars are clearly eclipsing variables, seven are very likely Cepheid variables, and the remaining three are probable Cepheids. The period-luminosity relation for the Cepheids indicates a distance modulus for Pegasus of m - M = 26.22 + or - 0.20. This places Pegasus very near the zero-velocity surface of the Local Group.

  8. Variable Stars Observed in the Galactic Disk by AST3-1 from Dome A, Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingzhi; Ma, Bin; Hu, Yi

    AST3-1 is the second-generation wide-field optical photometric telescope dedicated to time-domain astronomy at Dome A, Antarctica. Here, we present the results of an i -band images survey from AST3-1 toward one Galactic disk field. Based on time-series photometry of 92,583 stars, 560 variable stars were detected with i magnitude ≤16.5 mag during eight days of observations; 339 of these are previously unknown variables. We tentatively classify the 560 variables as 285 eclipsing binaries (EW, EB, and EA), 27 pulsating variable stars ( δ Scuti, γ Doradus, δ Cephei variable, and RR Lyrae stars), and 248 other types of variables (unclassifiedmore » periodic, multiperiodic, and aperiodic variable stars). Of the eclipsing binaries, 34 show O’Connell effects. One of the aperiodic variables shows a plateau light curve and another variable shows a secondary maximum after peak brightness. We also detected a complex binary system with an RS CVn-like light-curve morphology; this object is being followed-up spectroscopically using the Gemini South telescope.« less

  9. Effects of rotation and tidal distortions on the shapes of radial velocity curves of polytropic models of pulsating variable stars

    NASA Astrophysics Data System (ADS)

    Kumar, Tarun; Lal, Arvind Kumar; Pathania, Ankush

    2018-06-01

    Anharmonic oscillations of rotating stars have been studied by various authors in literature to explain the observed features of certain variable stars. However, there is no study available in literature that has discussed the combined effect of rotation and tidal distortions on the anharmonic oscillations of stars. In this paper, we have created a model to determine the effect of rotation and tidal distortions on the anharmonic radial oscillations associated with various polytropic models of pulsating variable stars. For this study we have used the theory of Rosseland to obtain the anharmonic pulsation equation for rotationally and tidally distorted polytropicmodels of pulsating variable stars. The main objective of this study is to investigate the effect of rotation and tidal distortions on the shapes of the radial velocity curves for rotationally and tidally distorted polytropic models of pulsating variable stars. The results of the present study show that the rotational effects cause more deviations in the shapes of radial velocity curves of pulsating variable stars as compared to tidal effects.

  10. Pulsating star research and the Gaia revolution

    NASA Astrophysics Data System (ADS)

    Eyer, Laurent; Clementini, Gisella; Guy, Leanne P.; Rimoldini, Lorenzo; Glass, Florian; Audard, Marc; Holl, Berry; Charnas, Jonathan; Cuypers, Jan; Ridder, Joris De; Evans, Dafydd W.; de Fombelle, Gregory Jevardat; Lanzafame, Alessandro; Lecoeur-Taibi, Isabelle; Mowlavi, Nami; Nienartowicz, Krzysztof; Riello, Marco; Ripepi, Vincenzo; Sarro, Luis; Süveges, Maria

    2017-09-01

    In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of variability phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.

  11. Félix de Roy: a life of variable stars

    NASA Astrophysics Data System (ADS)

    Shears, J.

    2011-08-01

    Félix de Roy (1883-1942), an internationally recognised amateur astronomer, made significant contributions to variable star research. As an active observer, he made some 91,000 visual estimates of a number of different variable stars. A Belgian national, he took refuge in England during World War I. While there, de Roy became well enough known to serve later as Director of the BAA Variable Star Section for seventeen years. Through this office, and his connections with other organisations around the world, he encouraged others to pursue the observation of variable stars. Not merely content to accumulate observational data, de Roy also analysed the data and published numerous papers.

  12. On the phase form of a deformation quantization with separation of variables

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander

    2016-06-01

    Given a star product with separation of variables on a pseudo-Kähler manifold, we obtain a new formal (1, 1)-form from its classifying form and call it the phase form of the star product. The cohomology class of a star product with separation of variables equals the class of its phase form. We show that the phase forms can be arbitrary and they bijectively parametrize the star products with separation of variables. We also describe the action of a change of the formal parameter on a star product with separation of variables, its formal Berezin transform, classifying form, phase form, and canonical trace density.

  13. The impact of large-scale, long-term optical surveys on pulsating star research

    NASA Astrophysics Data System (ADS)

    Soszyński, Igor

    2017-09-01

    The era of large-scale photometric variability surveys began a quarter of a century ago, when three microlensing projects - EROS, MACHO, and OGLE - started their operation. These surveys initiated a revolution in the field of variable stars and in the next years they inspired many new observational projects. Large-scale optical surveys multiplied the number of variable stars known in the Universe. The huge, homogeneous and complete catalogs of pulsating stars, such as Cepheids, RR Lyrae stars, or long-period variables, offer an unprecedented opportunity to calibrate and test the accuracy of various distance indicators, to trace the three-dimensional structure of the Milky Way and other galaxies, to discover exotic types of intrinsically variable stars, or to study previously unknown features and behaviors of pulsators. We present historical and recent findings on various types of pulsating stars obtained from the optical large-scale surveys, with particular emphasis on the OGLE project which currently offers the largest photometric database among surveys for stellar variability.

  14. The UK Infrared Telescope M33 monitoring project - IV. Variable red giant stars across the galactic disc

    NASA Astrophysics Data System (ADS)

    Javadi, Atefeh; Saberi, Maryam; van Loon, Jacco Th.; Khosroshahi, Habib; Golabatooni, Najmeh; Mirtorabi, Mohammad Taghi

    2015-03-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope, of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In this fourth paper of the series, we present a search for variable red giant stars in an almost square degree region comprising most of the galaxy's disc, carried out with the WFCAM (Wide Field CAMera) instrument in the K band. These data, taken during the period 2005-2007, were complemented by J- and H-band images. Photometry was obtained for 403 734 stars in this region; of these, 4643 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. The variable stars are concentrated towards the centre of M33, more so than low-mass, less-evolved red giants. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. Most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey. The photometric catalogue is made publicly available at the Centre de Données astronomiques de Strasbourg.

  15. The UK Infrared Telescope M33 monitoring project - I. Variable red giant stars in the central square kiloparsec

    NASA Astrophysics Data System (ADS)

    Javadi, Atefeh; van Loon, Jacco Th.; Mirtorabi, Mohammad Taghi

    2011-02-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The most extensive data set was obtained in the K band with the UIST instrument for the central 4 × 4 arcmin2 (1 kpc2) - this contains the nuclear star cluster and inner disc. These data, taken during the period 2003-2007, were complemented by J- and H-band images. Photometry was obtained for 18 398 stars in this region; of these, 812 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. In this first of a series of papers, we present the methodology of the variability survey and the photometric catalogue - which is made publicly available at the Centre de Données astronomiques de Strasbourg - and discuss the properties of the variable stars. The most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey.

  16. General catalogue of variable stars: Version GCVS 5.1

    NASA Astrophysics Data System (ADS)

    Samus', N. N.; Kazarovets, E. V.; Durlevich, O. V.; Kireeva, N. N.; Pastukhova, E. N.

    2017-01-01

    Work aimed at compiling detailed catalogs of variable stars in the Galaxy, which has been carried out continuously by Moscow variable-star researchers since 1946 on behalf of the International Astronomical Union, has entered the stage of the publication of the 5th, completely electronic edition of the General Catalogue of Variable Stars (GCVS). This paper describes the requirements for the contents of the 5th edition and the current state of the catalog in its new version, GCVS 5.1. The complete revision of information for variable stars in the constellation Carina and the compilation of the 81st Name-list of Variable Stars are considered as examples of work on the 5th edition. The GCVS 5.1 is freely accessible on the Internet. We recommend the present paper as a unified reference to the 5th edition of the GCVS.

  17. Basic properties and variability

    NASA Technical Reports Server (NTRS)

    Querci, Francois R.

    1987-01-01

    Giant and supergiant M, S, and C stars are discussed in this survey of research. Basic properties as determined by spectra, chemical composition, photometry, or variability type are discussed. Space motions and space distributions of cool giants are described. Distribution of these stars in our galaxy and those nearby is discussed. Mira variables in particular are surveyed with emphasis on the following topics: (1) phase lag phenomenon; (2) Mira light curves; (3) variations in color indices; (4) determination of multiple periods; (5) correlations between quantities such as period length, light-curve shape, infrared (IR) excess, and visible and IR color diagram; (6) semiregular (SR) variables and different time scales in SR light variations; (7) irregular variable Lb and Lc stars; (8) different time-scale light variations; (9) hydrogen-deficient carbon (HdC) stars, in particular RCB stars; and (10) irreversible changes and rapid evolution in red variable stars.

  18. New Variable Stars in the KP2001 Catalog from the Data Base of the Northern Sky Variability Survey

    NASA Astrophysics Data System (ADS)

    Petrosyan, G. V.

    2018-03-01

    The optical variability of stars in the KP2001 catalog is studied. Monitor data from the automatic Northern Sky Variability Survey (NSVS) are used for this purpose. Of the 257 objects that were studied, 5 are Mira Ceti variables (mirids), 33 are semiregular (SR), and 108 are irregular variables (Ir). The light curves of the other objects show no noticeable signs of variability. For the first time, 11 stars are assigned to the semiregular and 105 stars to the irregular variables. Of the irregular variables, the light curves of two, No. 8 and No. 194, are distinct and are similar to the curves for eclipsing variables. The periods and amplitudes of the mirids and semiregular variables are determined using the "VStar" program package from AAVSO. The absolute stellar magnitudes M K and distances are also estimated, along with the mass loss for the mirids. The behavior of stars from KP2001 in 2MASS and WISE color diagrams is examined.

  19. Near-infrared Variability in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Rice, Thomas S.; Reipurth, Bo; Wolk, Scott J.; Vaz, Luiz Paulo; Cross, N. J. G.

    2015-10-01

    Using UKIRT on Mauna Kea, we have carried out a new near-infrared J, H, K monitoring survey of almost a square degree of the star-forming Orion Nebula Cluster with observations on 120 nights over three observing seasons, spanning a total of 894 days. We monitored ˜15,000 stars down to J≈ 20 using the WFCAM instrument, and have extracted 1203 significantly variable stars from our data. By studying variability in young stellar objects (YSOs) in the H - K, K color-magnitude diagram, we are able to distinguish between physical mechanisms of variability. Many variables show color behavior indicating either dust-extinction or disk/accretion activity, but we find that when monitored for longer periods of time, a number of stars shift between these two variability mechanisms. Further, we show that the intrinsic timescale of disk/accretion variability in young stars is longer than that of dust-extinction variability. We confirm that variability amplitude is statistically correlated with evolutionary class in all bands and colors. Our investigations of these 1203 variables have revealed 73 periodic AA Tau type variables, many large-amplitude and long-period (P\\gt 15 days) YSOs, including three stars showing widely spaced periodic brightening events consistent with circumbinary disk activity, and four new eclipsing binaries. These phenomena and others indicate the activity of long-term disk/accretion variability processes taking place in young stars. We have made the light curves and associated data for these 1203 variables available online.

  20. Investigation of Structure in the Light Curves of a Sample of Newly Discovered Long Period Variable Stars

    NASA Astrophysics Data System (ADS)

    Craine, E. R.; Culver, R. B.; Eykholt, R.; Flurchick, K. M.; Kraus, A. L.; Tucker, R. A.; Walker, D. K.

    2015-09-01

    Long period variable stars exhibit hump structures, and possibly flares, in their light curves. While the existence of humps is not controversial, the presence of flaring activity is less clear. Mining of a sky survey database of new variable star discoveries (the first MOTESS-GNAT Variable Star Catalog (MG1-VSC)) has led to identification of 47 such stars for which there are sufficient data to explore the presence of anomalous light curve features. We find a number of hump structures, and see one possible flare, suggesting that they are rare events. We present light curves and measured parameters for these stars, and a population statistical analysis.

  1. A Binary Nature of the Marginal CP Star Sigma Sculptoris

    NASA Astrophysics Data System (ADS)

    Janík, Jan; Krtička, Jiří; Mikulášek, Zdeněk; Zverko, Juraj; Pintado, Olga; Paunzen, Ernst; Prvák, Milan; Skalický, Jan; Zejda, Miloslav; Adam, Christian

    2018-05-01

    The A2 V star σ Scl was suspected of being a low-amplitude rotating variable of the Ap-type star by several authors. Aiming to decide whether the star is a variable chemically peculiar (CP) star, we searched for the photometric and spectroscopic variability, and determined chemical abundances of σ Scl. The possible variability was tested using several types of periodograms applied to the photometry from Long-Term Photometry of Variables project (LTPV) and Hipparcos. Sixty spectrograms of high signal-to-noise (S/N) were obtained and used for chemical analysis of the stellar atmosphere and for looking for spectral variability that is symptomatic for the CP stars. We did not find any signs of the light variability or prominent chemical peculiarity, that is specific for the CP stars. The only exception is the abundance of scandium, which is significantly lower than the solar one and yttrium and barium, which are strongly overabundant. As a by-product of the analysis, and with the addition of 29 further spectra, we found that σ Scl is a single-lined spectroscopic binary with orbital period of 46.877(8) d. We argue that σ Scl is not an Ap star, but rather a marginal Am star in SB1 system. The spectral energy distribution of the binary reveals infrared excess due to circumstellar material.

  2. Near-infrared variability study of the central 2.3 arcmin × 2.3 arcmin of the Galactic Centre - I. Catalogue of variable sources

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-09-01

    We used 4-yr baseline Hubble Space Telescope/Wide Field Camera 3 IR observations of the Galactic Centre in the F153M band (1.53 μm) to identify variable stars in the central ∼2.3 arcmin × 2.3 arcmin field. We classified 3845 long-term (periods from months to years) and 76 short-term (periods of a few days or less) variables among a total sample of 33 070 stars. For 36 of the latter ones, we also derived their periods (<3 d). Our catalogue not only confirms bright long period variables and massive eclipsing binaries identified in previous works but also contains many newly recognized dim variable stars. For example, we found δ Scuti and RR Lyrae stars towards the Galactic Centre for the first time, as well as one BL Her star (period < 1.3 d). We cross-correlated our catalogue with previous spectroscopic studies and found that 319 variables have well-defined stellar types, such as Wolf-Rayet, OB main sequence, supergiants and asymptotic giant branch stars. We used colours and magnitudes to infer the probable variable types for those stars without accurately measured periods or spectroscopic information. We conclude that the majority of unclassified variables could potentially be eclipsing/ellipsoidal binaries and Type II Cepheids. Our source catalogue will be valuable for future studies aimed at constraining the distance, star formation history and massive binary fraction of the Milky Way nuclear star cluster.

  3. Construction of the Database for Pulsating Variable Stars

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Qiu; Yang, Ming; Jiang, Bi-Wei

    2012-01-01

    A database for pulsating variable stars is constructed to favor the study of variable stars in China. The database includes about 230,000 variable stars in the Galactic bulge, LMC and SMC observed in an about 10 yr period by the MACHO(MAssive Compact Halo Objects) and OGLE(Optical Gravitational Lensing Experiment) projects. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided for searching the photometric data and light curves in the database through the right ascension and declination of an object. Because of the flexibility of this database, more up-to-date data of variable stars can be incorporated into the database conveniently.

  4. General Catalogue of Variable Stars: Current Status and New Name-Lists

    NASA Astrophysics Data System (ADS)

    Samus, N. N.; Kazarovets, E. V.; Kireeva, N. N.; Pastukhova, E. N.; Durlevich, O. V.

    2010-12-01

    A short history of variable-star catalogs is presented. After the second World War, the International Astronomical Union asked astronomers of the Soviet Union to become responsible for variable-star catalogs. Currently, the catalog is kept electronically and is a joint project of the Institute of Astronomy (Russian Academy of Sciences) and Sternberg Astronomical Institute (Moscow University). We review recent trends in the field of variable-star catalogs, discuss problems and new prospects related to modern large-scale automatic photometric sky surveys, outline the subject of discussions on the future of the variable-star catalogs in the profile commissions of the IAU, and call for suggestions from the astronomical community.

  5. Cataclysmic Variable Stars

    NASA Astrophysics Data System (ADS)

    Hellier, Coel

    2001-01-01

    Cataclysmic variable stars are the most variable stars in the night sky, fluctuating in brightness continually on timescales from seconds to hours to weeks to years. The changes can be recorded using amateur telescopes, yet are also the subject of intensive study by professional astronomers. That study has led to an understanding of cataclysmic variables as binary stars, orbiting so closely that material transfers from one star to the other. The resulting process of accretion is one of the most important in astrophysics. This book presents the first account of cataclysmic variables at an introductory level. Assuming no previous knowledge of the field, it explains the basic principles underlying the variability, while providing an extensive compilation of cataclysmic variable light curves. Aimed at amateur astronomers, undergraduates, and researchers, the main text is accessible to those with no mathematical background, while supplementary boxes present technical details and equations.

  6. New Variable Stars found in the NSVS Database (2)

    NASA Astrophysics Data System (ADS)

    Nicholson, Martin; Sutherland, Jane

    2006-01-01

    In 2004 and 2005 a search for variable stars not listed in the General Catalogue of Variable Stars or in Sinbad was conducted by members of the Remote Astronomical Society in the publicly available data of the Northern Sky Variability Survey (NSVS, Wozniak et al., 2004). NSVS fields were searched for candidates with both a sufficient number of observations to allow valid analysis and also with a significantly higher magnitude scatter than normal for stars of their magnitude.

  7. Type II Cepheids: evidence for Na-O anticorrelation for BL Her type stars?

    NASA Astrophysics Data System (ADS)

    Kovtyukh, V.; Yegorova, I.; Andrievsky, S.; Korotin, S.; Saviane, I.; Lemasle, B.; Chekhonadskikh, F.; Belik, S.

    2018-06-01

    The chemical composition of 28 Population II Cepheids and one RR Lyrae variable has been studied using high-resolution spectra. The chemical composition of W Vir variable stars (with periods longer than 8 d) is typical for the halo and thick disc stars. However, the chemical composition of BL Her variables (with periods of 0.8-4 d) is drastically different, although it does not differ essentially from that of the stars belonging to globular clusters. In particular, the sodium overabundance ([Na/Fe] ≈ 0.4) is reported for most of these stars, and the Na-O anticorrelation is also possible. The evolutionary tracks for BL Her variables (with a progenitor mass value of 0.8 solar masses) indicate that mostly helium-overabundant stars (Y = 0.30-0.35) can fall into the instability strip region. We suppose that it is the helium overabundance that accounts not only for the existence of BL Her variable stars but also for the observed abnormalities in the chemical composition of this small group of pulsating variables.

  8. British variable star associations, 1848-1908

    NASA Astrophysics Data System (ADS)

    Toone, J.

    2010-06-01

    The study of variable stars lagged some distance behind solar system, positional (double star) and deep sky research until the middle part of the 19th century. Then, following F. W. A. Argelander's pioneering work in the 1840s, there was a striking increase in variable star research, particularly in Europe. The transformation was to such an extent that in the second half of the 19th century there were three attempts at forming variable star associations within Great Britain. The first in 1863 was the ASOVS, which never got off the ground. The second in 1883 was the LAS VSS, which was successfully launched but had somewhat limited achievements. The third launched in 1890 was the BAA VSS which was eventually both a resounding and lasting success. This paper is an outline history of these three associations up to a position of one hundred years ago (1908). [A summary version of this paper was presented at the joint meeting of the American Association of Variable Star Observers (AAVSO) and British Astronomical Association Variable Star Section (BAA VSS) held at Cambridge, UK, on 2008 April 11.

  9. A Photometric Variability Survey of Field K and M Dwarf Stars with HATNet

    NASA Astrophysics Data System (ADS)

    Hartman, J. D.; Bakos, G. Á.; Noyes, R. W.; Sipőcz, B.; Kovács, G.; Mazeh, T.; Shporer, A.; Pál, A.

    2011-05-01

    Using light curves from the HATNet survey for transiting extrasolar planets we investigate the optical broadband photometric variability of a sample of 27, 560 field K and M dwarfs selected by color and proper motion (V - K >~ 3.0, μ > 30 mas yr-1, plus additional cuts in J - H versus H - KS and on the reduced proper motion). We search the light curves for periodic variations and for large-amplitude, long-duration flare events. A total of 2120 stars exhibit potential variability, including 95 stars with eclipses and 60 stars with flares. Based on a visual inspection of these light curves and an automated blending classification, we select 1568 stars, including 78 eclipsing binaries (EBs), as secure variable star detections that are not obvious blends. We estimate that a further ~26% of these stars may be blends with fainter variables, though most of these blends are likely to be among the hotter stars in our sample. We find that only 38 of the 1568 stars, including five of the EBs, have previously been identified as variables or are blended with previously identified variables. One of the newly identified EBs is 1RXS J154727.5+450803, a known P = 3.55 day, late M-dwarf SB2 system, for which we derive preliminary estimates for the component masses and radii of M 1 = M 2 = 0.258 ± 0.008 M sun and R 1 = R 2 = 0.289 ± 0.007 R sun. The radii of the component stars are larger than theoretical expectations if the system is older than ~200 Myr. The majority of the variables are heavily spotted BY Dra-type stars for which we determine rotation periods. Using this sample, we investigate the relations between period, color, age, and activity measures, including optical flaring, for K and M dwarfs, finding that many of the well-established relations for F, G, and K dwarfs continue into the M dwarf regime. We find that the fraction of stars that is variable with peak-to-peak amplitudes greater than 0.01 mag increases exponentially with the V - KS color such that approximately half of field dwarfs in the solar neighborhood with M <~ 0.2 M sun are variable at this level. Our data hint at a change in the rotation-activity-age connection for stars with M <~ 0.25 M sun.

  10. The History of Variable Stars: A Fresh Look

    NASA Astrophysics Data System (ADS)

    Hatch, R. A.

    2012-06-01

    (Abstract only) For historians of astronomy, variable stars are important for a simple reason - stars change. But good evidence suggests this is a very modern idea. Over the millennia, our species has viewed stars as eternal and unchanging, forever fixed in time and space - indeed, the Celestial Dance was a celebration of order, reason, and stability. But everything changed in the period between Copernicus and Newton. According to tradition, two New Stars announced the birth of the New Science. Blazing across the celestial stage, Tycho's Star (1572) and Kepler's Star (1604) appeared dramatically - and just as unexpectedly - disappeared forever. But variable stars were different. Mira Ceti, the oldest, brightest, and most controversial variable star, was important because it appeared and disappeared again and again. Mira was important because it did not go away. The purpose of this essay is to take a fresh look at the history of variable stars. In re-thinking the traditional narrative, I begin with the first sightings of David Fabricius (1596) and his contemporaries - particularly Hevelius (1662) and Boulliau (1667) - to new traditions that unfolded from Newton and Maupertuis to Herschel (1780) and Pigott (1805). The essay concludes with important 19th-century developments, particularly by Argelander (1838), Pickering (1888), and Lockyer (1890). Across three centuries, variable stars prompted astronomers to re-think all the ways that stars were no longer "fixed." New strategies were needed. Astronomers needed to organize, to make continuous observations, to track changing magnitudes, and to explain stellar phases. Importantly - as Mira suggested from the outset - these challenges called for an army of observers with the discipline of Spartans. But recruiting that army required a strategy, a set of theories with shared expectations. Observation and theory worked hand-in-hand. In presenting new historical evidence from neglected printed sources and unpublished manuscripts, this essay aims to offer a fresh look at the history of variable stars.

  11. A CCD Search for Variable Stars of Spectral Type B in the Northern Hemisphere Open Clusters. IX. NGC 457

    NASA Astrophysics Data System (ADS)

    Moździerski, D.; Pigulski, A.; Kopacki, G.; Kołaczkowski, Z.; Stęślicki, M.

    2014-06-01

    We present results of a BVIC variability survey in the young open cluster NGC 457 based on observations obtained during three separate runs spanning almost 20 years. In total, we found 79 variable stars, of which 66 are new. The BVIC photometry was transformed to the standard system and used to derive cluster parameters by means of isochrone fitting. The cluster is about 20 Myr old, the mean reddening amounts to about 0.48 mag in terms of the color excess E(B-V). Depending on the metallicity, the isochrone fitting yields a distance between 2.3 kpc and 2.9 kpc, which locates the cluster in the Perseus arm of the Galaxy. Using the complementary Hα photometry carried out in two seasons separated by over 10 years, we find that the cluster is very rich in Be stars. In total, 15 stars in the observed field of which 14 are cluster members showed Hα in emission either during our observations or in the past. Most of the Be stars vary in brightness on different time scales including short-period variability related most likely to g-mode pulsations. A single-epoch spectrum of NGC 457-6 shows that this Be star is presently in the shell phase. The inventory of variable stars in the observed field consists of a single β Cep-type star, NGC 457-8, 13 Be stars, 21 slowly pulsating B stars, seven δ Sct stars, one γ Dor star, 16 unclassified periodic stars, 8 eclipsing systems and a dozen of stars with irregular variability, of which six are also B-type stars. As many as 45 variable stars are of spectral type B which is the largest number in all open clusters presented in this series of papers. The most interesting is the discovery of a large group of slowly pulsating B stars which occupy the cluster main sequence in the range between V=11 mag and 14.5 mag, corresponding to spectral types B3 to B8. They all have very low amplitudes and about half show pulsations with frequencies higher than 3 d-1. We argue that these are most likely fast-rotating slowly pulsating B stars, observed also in other open clusters.

  12. Zeta Pegasi: An SPB Variable Star

    NASA Technical Reports Server (NTRS)

    Goebel, John H.

    2007-01-01

    Broadband photometric observations of the bright star Zeta Pegasi are presented that display brightness variability of 488.2 +/- 6.6 micromag (ppm) range with a period of 22.952 +/- 0.804 hr (f approx. equals 1.04566 c/d). The variation is monosinusoidal, so the star is recommended for membership in the class of small-amplitude Slowly Pulsating B-Stars (SPB) variables oscillating in a non-radial g-mode.

  13. Discovering new variable stars at Key Stage 3

    NASA Astrophysics Data System (ADS)

    Chubb, Katy; Hood, Rosie; Wilson, Thomas; Holdship, Jonathan; Hutton, Sarah

    2017-05-01

    Details of the London pilot of the ‘Discovery Project’ are presented, where university-based astronomers were given the chance to pass on some real and applied knowledge of astronomy to a group of selected secondary school pupils. It was aimed at students in Key Stage 3 of their education, allowing them to be involved in real astronomical research at an early stage of their education, the chance to become the official discoverer of a new variable star, and to be listed in the International Variable Star Index database (The International Variable Star Index, Version 1.1, American Association of Variable Star Observers (AAVSO), 2016, http://aavso.org/vsx), all while learning and practising research-level skills. Future plans are discussed.

  14. IUE observations of variability in winds from hot stars

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Snow, T. P., Jr.

    1981-01-01

    Observations of variability in stellar winds or envelopes provide an important probe of their dynamics. For this purpose a number of O, B, Be, and Wolf-Rayet stars were repeatedly observed with the IUE satellite in high resolution mode. In the course of analysis, instrumental and data handling effects were found to introduce spurious variability in many of the spectra. software was developed to partially compensate for these effects, but limitations remain on the type of variability that can be identified from IUE spectra. With these contraints, preliminary results of multiple observations of two OB stars, one Wolf-Rayet star, and a Be star are discussed.

  15. Variable Star Discoveries for Research Education at the Phillips Academy Observatory

    NASA Astrophysics Data System (ADS)

    Odden, Caroline; Yoon, Seokjun; Zhu, Emily; Little, John; Taylor, Isabel; Kim, Ji Seok; Briggs, John W.

    2014-06-01

    The discovery and publication of unknown variable stars by high school students is a highly engaging activity in a new hands-on research course developed at Phillips Academy in Andover, Massachusetts. Students use MPO Canopus software to recognize candidate variable stars in image series typically recorded for asteroid rotation studies. Follow-up observations are made using the 16-inch DFM telescopes at the Phillips Academy Observatory and at the HUT Observatory near Eagle, Colorado, as well as with a remote-access 20-inch at New Mexico Skies Observatory near Mayhill, New Mexico. The Catalina Sky Survey can provide additional photometric measurements. Confirmed variables, with light curves and periods, are submitted to the International Variable Star Index and Journal of the American Association of Variable Star Observers. Asteroid rotation studies are published in Minor Planet Bulletin.

  16. Short-term variability and mass loss in Be stars. II. Physical taxonomy of photometric variability observed by the Kepler spacecraft

    NASA Astrophysics Data System (ADS)

    Rivinius, Th.; Baade, D.; Carciofi, A. C.

    2016-09-01

    Context. Classical Be stars have been established as pulsating stars. Space-based photometric monitoring missions contributed significantly to that result. However, whether Be stars are just rapidly rotating SPB or β Cep stars, or whether they have to be understood differently, remains debated in the view of their highly complex power spectra. Aims: Kepler data of three known Be stars are re-visited to establish their pulsational nature and assess the properties of additional, non-pulsational variations. The three program stars turned out to be one inactive Be star, one active, continuously outbursting Be star, and one Be star transiting from a non-outbursting into an outbursting phase, thus forming an excellent sample to distill properties of Be stars in the various phases of their life-cycle. Methods: The Kepler data was first cleaned from any long-term variability with Lomb-Scargle based pre-whitening. Then a Lomb-Scargle analysis of the remaining short-term variations was compared to a wavelet analysis of the cleaned data. This offers a new view on the variability, as it enables us to see the temporal evolution of the variability and phase relations between supposed beating phenomena, which are typically not visualized in a Lomb-Scargle analysis. Results: The short-term photometric variability of Be stars must be disentangled into a stellar and a circumstellar part. The stellar part is on the whole not different from what is seen in non-Be stars. However, some of the observed phenomena might be to be due to resonant mode coupling, a mechanism not typically considered for B-type stars. Short-term circumstellar variability comes in the form of either a group of relatively well-defined, short-lived frequencies during outbursts, which are called Štefl frequencies, and broad bumps in the power spectra, indicating aperiodic variability on a time scale similar to typical low-order g-mode pulsation frequencies, rather than true periodicity. Conclusions: From a stellar pulsation perspective, Be stars are rapidly rotating SPB stars, that is they pulsate in low order g-modes, even if the rapid rotation can project the observed frequencies into the traditional high-order p-mode regime above about 4 c/d. However, when a circumstellar disk is present, Be star power spectra are complicated by both cyclic, or periodic, and aperiodic circumstellar phenomena, possibly even dominating the power spectrum.

  17. A Modern Update and Usage of Historical Variable Star Catalogs

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Graur, Or; Murray, Zachary; Kruk, Julia; Christie-Dervaux, Lucien; Chen, Dong Yi

    2015-01-01

    One of the earliest modern variable star catalogs was constructed by Henrietta Swan Leavitt during her tenure at the Harvard College Observatory (HCO) in the early 1900s. Originally published in 1908, Leavitt's catalog listed 1777 variables in the Magellanic Clouds (MCs). The construction and analysis of this catalog allowed her to subsequently discover the Cepheid period-luminosity relationship, now known as the Leavitt Law. The MC variable star catalogs were updated and expanded by Cecilia Payne-Gaposchkin in 1966 and 1971. Although newer studies of the MC variables have been performed since then, the new information has not always been correlated with the old due to a lack of modern descriptors of the stars listed in the Harvard MC catalogs. We will discuss the history of MC variable star catalogs, especially those compiled using the HCO plates, as well as our modernized version of the Leavitt and Payne-Gaposchkin catalogs. Our modern catalog can be used in conjunction with the archival plates (primarily via the Digital Access to a Sky Century @ Harvard scanning project) to study the secular behavior of the MC variable stars over the past century.

  18. Intrinsically variable stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Querci, Monique

    1987-01-01

    The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.

  19. Pulsating stars in ω Centauri. Near-IR properties and period-luminosity relations

    NASA Astrophysics Data System (ADS)

    Navarrete, Camila; Catelan, Márcio; Contreras Ramos, Rodrigo; Alonso-García, Javier; Gran, Felipe; Dékány, István; Minniti, Dante

    2017-09-01

    ω Centauri (NGC 5139) contains many variable stars of different types, including the pulsating type II Cepheids, RR Lyrae and SX Phoenicis stars. We carried out a deep, wide-field, near-infrared (IR) variability survey of ω Cen, using the VISTA telescope. We assembled an unprecedented homogeneous and complete J and KS near-IR catalog of variable stars in the field of ω Cen. In this paper we compare optical and near-IR light curves of RR Lyrae stars, emphasizing the main differences. Moreover, we discuss the ability of near-IR observations to detect SX Phoenicis stars given the fact that the amplitudes are much smaller in these bands compared to the optical. Finally, we consider the case in which all the pulsating stars in the three different variability types follow a single period-luminosity relation in the near-IR bands.

  20. VStar: Variable star data visualization and analysis tool

    NASA Astrophysics Data System (ADS)

    VStar Team

    2014-07-01

    VStar is a multi-platform, easy-to-use variable star data visualization and analysis tool. Data for a star can be read from the AAVSO (American Association of Variable Star Observers) database or from CSV and TSV files. VStar displays light curves and phase plots, can produce a mean curve, and analyzes time-frequency with Weighted Wavelet Z-Transform. It offers tools for period analysis, filtering, and other functions.

  1. VSOP: the variable star one-shot project. I. Project presentation and first data release

    NASA Astrophysics Data System (ADS)

    Dall, T. H.; Foellmi, C.; Pritchard, J.; Lo Curto, G.; Allende Prieto, C.; Bruntt, H.; Amado, P. J.; Arentoft, T.; Baes, M.; Depagne, E.; Fernandez, M.; Ivanov, V.; Koesterke, L.; Monaco, L.; O'Brien, K.; Sarro, L. M.; Saviane, I.; Scharwächter, J.; Schmidtobreick, L.; Schütz, O.; Seifahrt, A.; Selman, F.; Stefanon, M.; Sterzik, M.

    2007-08-01

    Context: About 500 new variable stars enter the General Catalogue of Variable Stars (GCVS) every year. Most of them however lack spectroscopic observations, which remains critical for a correct assignement of the variability type and for the understanding of the object. Aims: The Variable Star One-shot Project (VSOP) is aimed at (1) providing the variability type and spectral type of all unstudied variable stars, (2) process, publish, and make the data available as automatically as possible, and (3) generate serendipitous discoveries. This first paper describes the project itself, the acquisition of the data, the dataflow, the spectroscopic analysis and the on-line availability of the fully calibrated and reduced data. We also present the results on the 221 stars observed during the first semester of the project. Methods: We used the high-resolution echelle spectrographs HARPS and FEROS in the ESO La Silla Observatory (Chile) to survey known variable stars. Once reduced by the dedicated pipelines, the radial velocities are determined from cross correlation with synthetic template spectra, and the spectral types are determined by an automatic minimum distance matching to synthetic spectra, with traditional manual spectral typing cross-checks. The variability types are determined by manually evaluating the available light curves and the spectroscopy. In the future, a new automatic classifier, currently being developed by members of the VSOP team, based on these spectroscopic data and on the photometric classifier developed for the COROT and Gaia space missions, will be used. Results: We confirm or revise spectral types of 221 variable stars from the GCVS. We identify 26 previously unknown multiple systems, among them several visual binaries with spectroscopic binary individual components. We present new individual results for the multiple systems V349 Vel and BC Gru, for the composite spectrum star V4385 Sgr, for the T Tauri star V1045 Sco, and for DM Boo which we re-classify as a BY Draconis variable. The complete data release can be accessed via the VSOP web site. Based on data obtained at the La Silla Observatory, European Southern Observatory, under program ID 077.D-0085.

  2. A Catalog of Eclipsing Binaries and Variable Stars Observed with ASTEP 400 from Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Chapellier, E.; Mékarnia, D.; Abe, L.; Guillot, T.; Agabi, K.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Aristidi, E.

    2016-10-01

    We used the large photometric database of the ASTEP program, whose primary goal was to detect exoplanets in the southern hemisphere from Antarctica, to search for eclipsing binaries (EcBs) and variable stars. 673 EcBs and 1166 variable stars were detected, including 31 previously known stars. The resulting online catalogs give the identification, the classification, the period, and the depth or semi-amplitude of each star. Data and light curves for each object are available at http://astep-vo.oca.eu.

  3. Identification of Cepheid Variables in ASAS Data (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Larsen, K.

    2014-06-01

    (Abstract only) Cepheid variables are well-known to be important to astronomers, as their period-luminosity relationship is used to determine the distances to galaxies. The unambiguous identification of newly discovered Cepheid variables in large photometric data sets is therefore of significance. A data set of 3,548 candidate Cepheid variable stars in the ASAS data was provided by Patrick Wils (through Doug Welch). A computer program had originally identified these candidates; however, Wils investigated a small subset of the data by hand and discovered that the vast majority of these stars were misidentified. The most common misidentification was of BY Draconis stars (rotating spotted K and M dwarfs). In a companion piece, Swenton and Larsen sought out the most likely Cepheid candidates in the data; the work discussed here is instead focused on looking at stars that had properties that were clearly different from Cepheids, more specifically properties likely to be seen in BY Dra stars. We are sorting the spreadsheet stars by characteristics in order to find as many BY Dra variables as possible (since they seem to be the most commonly misidentified stars). These characteristics include newly available infrared photometry (2MASS), proper motion (PPMXL), and X-Ray emission (ROTSE) data (for which we received helpful guidance from Sebastian Otero) as well as VSX information. The first 103 stars to be studied are those with the smallest range in magnitude (less than or equal to 0.1). An analysis of their light curves and other available data is being undertaken in order to determine whether or not they are indeed BY Dra-type variables. In doing so the goal is to be able to submit and publish the correct identifications for these stars to the International Variable Star Index (VSX) and the JAAVSO.

  4. Variable Star Catalogs: Their Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Samus, N. N.; Kazarovets, E. V.; Kireeva, N. N.; Pastukhova, E. N.; Durlevich, O. V.

    2010-02-01

    After the second World War, the International Astronomical Union made astronomers of the Soviet Union responsible for variable-star catalogues. This work has been continued ever since the first edition of the General Catalogue of Variable Stars compiled by the team headed by P. P. Parenago and B. V. Kukarkin and published in 1948. Currently, the catalogue work is a joint project of the Institute of Astronomy (Russian Academy of Sciences) and Sternberg Astronomical Institute (Moscow University). This paper is a brief review of recent trends in the field of variable-star catalogues. We discuss problems as well as new prospects related to modern large-scale automatic photometric sky surveys, and outline the state of discussions on the future of the variable-star catalogues in the profile commissions of the IAU.

  5. The Pan-STARRS 1 Medium Deep Field Variable Star Catalog

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather

    2015-01-01

    We present the first Pan-STARRS 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-STARRS 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter, resulting in 3000-4000 data points per star over a time span of 3.5 years. To find the variables, we select the stars with > 200 detections, between 16th and 21st magnitude. There are approximately 500k stars that fit this criteria, they then go through a lomb-scargle fitting routine to determine periodicity. After a periodicity cut, the ~400 candidates are classified by eye into different types of variable stars. We have identified several hundred variable stars, with periods ranging between a few minutes to a few days, and about half are not previously identified in the literature. We compare our results to the stripe 82 variable catalog, which overlaps part of the sky with the PS1 catalog.

  6. The Pan-STARRS 1 Medium Deep Field Variable Star Catalog

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather

    2015-08-01

    We present the first Pan-STARRS 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-STARRS 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter, resulting in 3000-4000 data points per star over a time span of 3.5 years. To find the variables, we select the stars with > 200 detections, between 16th and 21st magnitude. There are approximately 500k stars that fit this criteria, they then go through a lomb-scargle fitting routine to determine periodicity. After a periodicity cut, the ~400 candidates are classified by eye into different types of variable stars. We have identified several hundred variable stars, with periods ranging between a few minutes to a few days, and about half are not previously identified in the literature. We compare our results to the stripe 82 variable catalog, which overlaps part of the sky with the PS1 catalog.

  7. Photometric search for variable stars in the young open cluster Berkeley 59

    NASA Astrophysics Data System (ADS)

    Lata, Sneh; Pandey, A. K.; Maheswar, G.; Mondal, Soumen; Kumar, Brijesh

    2011-12-01

    We present the time series photometry of stars located in the extremely young open cluster Berkeley 59. Using the 1.04-m telescope at Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, we have identified 42 variables in a field of ˜13 × 13 arcmin2 around the cluster. The probable members of the cluster have been identified using a (V, V-I) colour-magnitude diagram and a (J-H, H-K) colour-colour diagram. 31 variables have been found to be pre-main-sequence stars associated with the cluster. The ages and masses of the pre-main-sequence stars have been derived from the colour-magnitude diagram by fitting theoretical models to the observed data points. The ages of the majority of the probable pre-main-sequence variable candidates range from 1 to 5 Myr. The masses of these pre-main-sequence variable stars have been found to be in the range of ˜0.3 to ˜3.5 M⊙, and these could be T Tauri stars. The present statistics reveal that about 90 per cent T Tauri stars have period <15 d. The classical T Tauri stars are found to have a larger amplitude than the weak-line T Tauri stars. There is an indication that the amplitude decreases with an increase in mass, which could be due to the dispersal of the discs of relatively massive stars.

  8. More Unusual Light Curves from Kepler

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    Twenty-three new objects have been added to the growing collection of stars observed to have unusual dips in their light curves. A recent study examines these stars and the potential causes of their strange behavior.An Influx of DataThe primary Kepler mission provided light curves for over 100,000 stars, and its continuation K2 is observing another 20,000 stars every three months. As we enter an era where these enormous photometric data sets become commonplace Gaia will obtain photometry for millions of stars, and LSST billions its crucial that we understand the different categories of variability observed in these stars.The authors find three different types of light curves among their 23 unusual stars. Scallop-shell curves (top) show many undulations; persistent flux-dip class curves (middle) have discrete triangularly shaped flux dips; transient, narrow dip class curves (bottom) have only one dip that is variable in depth. The authors speculate a common cause for the scallop-shell and persistent flux-dip stars, and a different cause for the transient flux-dip stars. [Stauffer et al. 2017]After filtering out the stars with planets, those in binary systems, those with circumstellar disks, and those with starspots, a number of oddities remain: a menagerie of stars with periodic variability that cant be accounted for in these categories. Some of these stars are now famous (for instance, Boyajians star); some are lesser known. But by continuing to build up this sample of stars with unusual light curves, we have a better chance of understanding the sources of variability.Building the MenagerieTo this end, a team of scientists led by John Stauffer (Spitzer Science Center at Caltech) has recently hunted for more additions to this sample in the K2 data set. In particular, they searched through the light curves from stars in the Oph and Upper Scorpius star-forming region a data set that makes up the largest collection of high-quality light curves for low-mass, pre-main-sequence stars ever obtained.In these light curves, Stauffer and collaborators found a set of 23 very low-mass, mid-to-late-type M dwarfs with unusual variability in their light curves. The variability is consistent with the stars rotation period where measured which suggests that whatever causes the dips in the light curve, its orbiting at the same rate as the star spins.Causes of Variability?These plots show how the properties of these 23 stars compare to those of the rest of the stars in their cluster (click for a closer look!). For all but the rotation rate, they are typical. But the stars with scallop-shaped light curves have among the shortest periods in Upper Sco, with somenear the theoretical break-up for stars of their age. [Stauffer et al. 2017]The authors categorize the 23 stars into two main groups.The first group consists of 19 stars with short periods; more than half of them rotate within a factor of two of their predicted breakup period! Many of these show sudden changes in their light-curve morphology, often after a stellar flare. The authors propose that the variability in these light curves might be caused by warm coronal gas clouds that are organized into a structured toroidal shape around the star.The second group consists of the remaining four stars, which have slightly longer periods. The light curves show a single short-duration flux dip with highly variable depth and shape superposed on normal, spotted-star light curves. The authors best guess for these four stars is that there are clouds of dusty debris circling the star, possibly orbiting a close-in planet or resulting from a recent collisional event.Stauffer and collaborators are currently developing more detailed models for these stars based on the possible variability scenarios. The next step, they state, is to determine if the gas in these structures have properties necessary to generate the light-curve features we see.CitationJohn Stauffer et al 2017 AJ 153 152. doi:10.3847/1538-3881/aa5eb9

  9. Photometric Variations of Solar-type Stars: Results of the Cloudcroft Survey

    NASA Technical Reports Server (NTRS)

    Giampapa, M. S.

    1984-01-01

    The results of a synoptic program to search for the occurrence of photometric variability in solar type stars as seen in continuum band photometry are summarized. The survey disclosed the existence of photometric variability in solar type stars that is related to the presence of spots on the stellar surface. The observed variability detected in solar type stars is at enhanced levels compared to that observed for the Sun.

  10. The ASAS-SN Catalog of Variable Stars I: The Serendipitous Survey

    NASA Astrophysics Data System (ADS)

    Jayasinghe, T.; Kochanek, C. S.; Stanek, K. Z.; Shappee, B. J.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Pawlak, M.; Shields, J. V.; Pojmanski, G.; Otero, S.; Britt, C. A.; Will, D.

    2018-04-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to routinely monitor the whole sky with a cadence of ˜2 - 3 days down to V≲ 17 mag. ASAS-SN has monitored the whole sky since 2014, collecting ˜100 - 500 epochs of observations per field. The V-band light curves for candidate variables identified during the search for supernovae are classified using a random forest classifier and visually verified. We present a catalog of 66,533 bright, new variable stars discovered during our search for supernovae, including 27,753 periodic variables and 38,780 irregular variables. V-band light curves for the ASAS-SN variables are available through the ASAS-SN variable stars database (https://asas-sn.osu.edu/variables). The database will begin to include the light curves of known variable stars in the near future along with the results for a systematic, all-sky variability survey.

  11. Photometric Variability of the Be Star Population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labadie-Bartz, Jonathan; Pepper, Joshua; McSwain, M. Virginia

    2017-06-01

    Be stars have generally been characterized by the emission lines in their spectra, and especially the time variability of those spectroscopic features. They are known to also exhibit photometric variability at multiple timescales, but have not been broadly compared and analyzed by that behavior. We have taken advantage of the advent of wide-field, long-baseline, and high-cadence photometric surveys that search for transiting exoplanets to perform a comprehensive analysis of brightness variations among a large number of known Be stars. The photometric data comes from the KELT transit survey, with a typical cadence of 30 minutes, a baseline of up to 10more » years, photometric precision of about 1%, and coverage of about 60% of the sky. We analyze KELT light curves of 610 known Be stars in both the northern and southern hemispheres in an effort to study their variability. Consistent with other studies of Be star variability, we find most of the stars to be photometrically variable. We derive lower limits on the fraction of stars in our sample that exhibit features consistent with non-radial pulsations (25%), outbursts (36%), and long-term trends in the circumstellar disk (37%), and show how these are correlated with spectral sub-types. Other types of variability, such as those owing to binarity, are also explored. Simultaneous spectroscopy for some of these systems from the Be Star Spectra database allow us to better understand the physical causes for the observed variability, especially in cases of outbursts and changes in the disk.« less

  12. Spectral Properties and Variability of BIS objects

    NASA Astrophysics Data System (ADS)

    Gaudenzi, S.; Nesci, R.; Rossi, C.; Sclavi, S.; Gigoyan, K. S.; Mickaelian, A. M.

    2017-10-01

    Through the analysis and interpretation of newly obtained and of literature data we have clarified the nature of poorly investigated IRAS point sources classified as late type stars, belonging to the Byurakan IRAS Stars catalog. From medium resolution spectroscopy of 95 stars we have strongly revised 47 spectral types and newly classified 31 sources. Nine stars are of G or K types, four are N carbon stars in the Asymptotic Giant Branch, the others being M-type stars. From literature and new photometric observations we have studied their variability behaviour. For the regular variables we determined distances, absolute magnitudes and mass loss rates. For the other stars we estimated the distances, ranging between 1.3 and 10 kpc with a median of 2.8 kpc from the galactic plane, indicating that BIS stars mostly belong to the halo population.

  13. Observations of red-giant variable stars by Aboriginal Australians

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2018-04-01

    Aboriginal Australians carefully observe the properties and positions of stars, including both overt and subtle changes in their brightness, for subsistence and social application. These observations are encoded in oral tradition. I examine two Aboriginal oral traditions from South Australia that describe the periodic changing brightness in three pulsating, red-giant variable stars: Betelgeuse (Alpha Orionis), Aldebaran (Alpha Tauri), and Antares (Alpha Scorpii). The Australian Aboriginal accounts stand as the only known descriptions of pulsating variable stars in any Indigenous oral tradition in the world. Researchers examining these oral traditions over the last century, including anthropologists and astronomers, missed the description of these stars as being variable in nature as the ethnographic record contained several misidentifications of stars and celestial objects. Arguably, ethnographers working on Indigenous Knowledge Systems should have academic training in both the natural and social sciences.

  14. Population of the lower part of the instability strip: Delta Scuti stars and dwarf Cepheids (or AI Velorum)

    NASA Technical Reports Server (NTRS)

    Auvergne, M.; Baglin, A.; Lecontel, J. M.; Valtier, J. C.

    1980-01-01

    Some of the properties of the atmospheric variations in delta Scuti stars were investigated with emphasis on the amplitude and the shape of both light curves and radial velocity curves. It is shown that these curves are small and rapidly variable in the case of dwarf Scuti stars; for the evolved stars the situation is more complex. The relation between variables and nonvariables, and also the results on abundances in the atmospheres of these stars were surveyed with respect to the hydrodynamics of their envelopes. The abundance anomalies of Am stars were qualitatively examined. The coexistence of abundance anomalies and variability among giants were also studied. Attempts were made to relate the variability to the hydrogen ionization zone in an envelope deprived of helium. Specific results are reported.

  15. Optical photometric variable stars towards the Galactic H II region NGC 2282

    NASA Astrophysics Data System (ADS)

    Dutta, Somnath; Mondal, Soumen; Joshi, Santosh; Jose, Jessy; Das, Ramkrishna; Ghosh, Supriyo

    2018-05-01

    We report here CCD I-band time series photometry of a young (2-5 Myr) cluster NGC 2282, in order to identify and understand the variability of pre-main-sequence (PMS) stars. The I-band photometry, down to ˜20.5 mag, enables us to probe the variability towards the lower mass end (˜0.1 M⊙) of PMS stars. From the light curves of 1627 stars, we identified 62 new photometric variable candidates. Their association with the region was established from H α emission and infrared (IR) excess. Among 62 variables, 30 young variables exhibit H α emission, near-IR (NIR)/mid-IR (MIR) excess or both and are candidate members of the cluster. Out of 62 variables, 41 are periodic variables, with a rotation rate ranging from 0.2-7 d. The period distribution exhibits a median period at ˜1 d, as in many young clusters (e.g. NGC 2264, ONC, etc.), but it follows a unimodal distribution, unlike others that have bimodality, with slow rotators peaking at ˜6-8 d. To investigate the rotation-disc and variability-disc connection, we derived the NIR excess from Δ(I - K) and the MIR excess from Spitzer [3.6]-[4.5] μm data. No conclusive evidence of slow rotation with the presence of discs around stars and fast rotation for discless stars is obtained from our periodic variables. A clear increasing trend of the variability amplitude with IR excess is found for all variables.

  16. Time Resolved X-Ray Spectral Analysis of Class II YSOs in NGC 2264 During Optical Dips and Bursts

    NASA Astrophysics Data System (ADS)

    Guarcello, Mario Giuseppe; Flaccomio, Ettore; Micela, Giuseppina; Argiroffi, Costanza; Venuti, Laura

    2016-07-01

    Pre-Main Sequence stars are variable sources. The main mechanisms responsible for their variability are variable extinction, unsteady accretion, and rotational modulation of both hot and dark photospheric spots and X-ray active regions. In stars with disks this variability is thus related to the morphology of the inner circumstellar region (<0.1 AU) and that of photosphere and corona, all impossible to be spatially resolved with present day techniques. This has been the main motivations of the Coordinated Synoptic Investigation of NGC2264, a set of simultaneous observations of NGC2264 with 15 different telescopes.We analyze the X-ray spectral properties of stars with disks extracted during optical bursts and dips in order to unveil the nature of these phenomena. Stars are analyzed in two different samples. In stars with variable extinction a simultaneous increase of optical extinction and X-ray absorption is searched during the optical dips; in stars with accretion bursts we search for soft X-ray emission and increasing X-ray absorption during the bursts. In 9/33 stars with variable extinction we observe simultaneous increase of X-ray absorption and optical extinction. In seven dips it is possible to calculate the NH/AV ratio in order to infer the composition of the obscuring material. In 5/27 stars with optical accretion bursts, we observe soft X-ray emission during the bursts that we associate to the emission of accreting gas. It is not surprising that these properties are not observed in all the stars with dips and bursts since favorable geometric configurations are required. The observed variable absorption during the dips is mainly due to dust-free material in accretion streams. In stars with accretion bursts we observe in average a larger soft X-ray spectral component not observed in non accreting stars. This indicates that this soft X-ray emission arises from the accretion shocks.

  17. A CCD search of short period variable stars in six selected fields. (Italian Title: Ricerca CCD di variabili a breve periodo in sei campi selezionati)

    NASA Astrophysics Data System (ADS)

    Valentini, S.

    2013-12-01

    A search of variable stars was carried out, using a new software specifically created by the author, on a series of images acquired at the Astronomical Observatory of Santa Lucia di Stroncone (Terni, Italy) between October 2010 and March 2012. This research, named Fast Variable Stars Survey (FVSS), arose from the idea to verify if the log files pr oduced by the software Astrometrica (H. Raab), could be used as a basis for rapid detection of short-period variable stars. The r esults obtained showed that the idea is very valid, so that the new software has allowed the identification and the correct determination of the period of thirty-two new variable stars in the six stellar fields subjected to analysis.

  18. A New Binary Star System of EW Type in Draco: GSC 03905-01870

    NASA Astrophysics Data System (ADS)

    Barquin, S.

    2018-05-01

    Discovery of a new binary star system (GSC 03905-01870 = USNO-B1.0 1431-0327922 = UCAC4 716-059522) in the Draco constellation is presented. It was discovered during a search for previously unreported eclipsing binary stars through the ASAS-SN database. The shape of the light curve and its characteristics (period of 0.428988+-0.000001 d, amplitude of 0.34+-0.02 V Mag, primary minimum epoch HJD 2457994.2756+-0.0002) indicates that the new variable star is an eclipsing binary of W Ursae Majoris type. I registered this variable star in The International Variable Star Index (VSX), its AAVSO UID is 000-BMP-891.

  19. Human Health Exposure Assessment for Rocky Mountain Arsenal Study Area Evaluations. Volume 6-B. Western Study Area Exposure Assessment Version 4.1

    DTIC Science & Technology

    1990-09-01

    Prpae f9 r FIUR ?--81L C)ora 2Aagv 61iefrPoe n hs lAnl sDtceRocky~ ~ ~ ~~~~~~~~91 O~~iiAsea lau IthnoLbv ndctrLvl Abar~~~ ge14 15~ rigE 0.4n, ar

  20. Diver Relative UUV Navigation for Joint Human-Robot Operations

    DTIC Science & Technology

    2013-09-01

    loop response: (10) where Kej is the gain that scales the position error to force . Substituting the measured values for ζ and ων as well as the...Underwater Vehicle; Tethered ; Hovering; Autonomous Underwater Vehicle; Joint human-robot operations; dynamic, uncertain environments 15. NUMBER OF PAGES...4   Figure 3.   The SeaBotix vLBV300 tethered AUV platform (left), and the planar vectored thruster

  1. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species.

    PubMed

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Cross-neutralizing activities partly correlate with the phylogenetic distance of the virus species. Cross-neutralizing activities against the species BBLV and DUVV of phylogroup 1 were demonstrated, in line with previous results of cross-neutralizing activities against ABLV and EBLV-1 and -2. Potential partial cross-neutralizing activities against more distant lyssavirus species like selected MOKV strains need further research.

  2. The EPOCH Project. I. Periodic variable stars in the EROS-2 LMC database

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Won; Protopapas, Pavlos; Bailer-Jones, Coryn A. L.; Byun, Yong-Ik; Chang, Seo-Won; Marquette, Jean-Baptiste; Shin, Min-Su

    2014-06-01

    The EPOCH (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the EROS-2 light curve database. In this paper, we present the first result of the classification of periodic variable stars in the EROS-2 LMC database. To classify these variables, we first built a training set by compiling known variables in the Large Magellanic Cloud area from the OGLE and MACHO surveys. We crossmatched these variables with the EROS-2 sources and extracted 22 variability features from 28 392 light curves of the corresponding EROS-2 sources. We then used the random forest method to classify the EROS-2 sources in the training set. We designed the model to separate not only δ Scuti stars, RR Lyraes, Cepheids, eclipsing binaries, and long-period variables, the superclasses, but also their subclasses, such as RRab, RRc, RRd, and RRe for RR Lyraes, and similarly for the other variable types. The model trained using only the superclasses shows 99% recall and precision, while the model trained on all subclasses shows 87% recall and precision. We applied the trained model to the entire EROS-2 LMC database, which contains about 29 million sources, and found 117 234 periodic variable candidates. Out of these 117 234 periodic variables, 55 285 have not been discovered by either OGLE or MACHO variability studies. This set comprises 1906 δ Scuti stars, 6607 RR Lyraes, 638 Cepheids, 178 Type II Cepheids, 34 562 eclipsing binaries, and 11 394 long-period variables. catalog of these EROS-2 LMC periodic variable stars is available at http://stardb.yonsei.ac.kr and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A43

  3. A Method to Estimate the Masses of Asymptotic Giant Branch Variable Stars

    NASA Astrophysics Data System (ADS)

    Takeuti, Mine; Nakagawa, Akiharu; Kurayama, Tomoharu; Honma, Mareki

    2013-06-01

    AGB variable stars are at the transient phase between low and high mass-loss rates; estimating the masses of these stars is necessary to study the evolutionary processes and mass-loss processes during the AGB stage. We applied the pulsation constant theoretically derived by Xiong and Deng (2007 MNRAS, 378, 1270) to 15 galactic AGB stars in order to estimate their masses. We found that using the pulsation constant is effective to estimate the mass of a star pulsating with two different pulsation modes, such as S Crt and RX Boo, which provides mass estimates comparable to theoretical results of AGB star evolution. We also extended the use of the pulsation constant to single-mode variables, and analyzed the properties of AGB stars related to their masses.

  4. Construction of Database for Pulsating Variable Stars

    NASA Astrophysics Data System (ADS)

    Chen, B. Q.; Yang, M.; Jiang, B. W.

    2011-07-01

    A database for the pulsating variable stars is constructed for Chinese astronomers to study the variable stars conveniently. The database includes about 230000 variable stars in the Galactic bulge, LMC and SMC observed by the MACHO (MAssive Compact Halo Objects) and OGLE (Optical Gravitational Lensing Experiment) projects at present. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided to search the photometric data and the light curve in the database through the right ascension and declination of the object. More data will be incorporated into the database.

  5. The millimagnitude variability of the HgMn star φ Phe

    NASA Astrophysics Data System (ADS)

    Prvák, M.; Krtička, J.; Korhonen, H.

    2018-01-01

    The horizontally inhomogeneous chemical composition of the atmospheres of the chemically peculiar stars causes wavelength redistribution of the spectral energy in areas with increased abundance of heavier elements. Due to the rotation of the star, this usually leads to strictly periodic photometric variability in some spectral regions. We used abundance maps of the HgMn star φ Phe (HD 11753), obtained by means of the Doppler imaging, to model its photometric variability. Comparing the light curves derived from abundance maps obtained at different times, we also study how the time evolution of the surface spots affects this variability.

  6. Observing variable stars at the University of Athens Observatory

    NASA Astrophysics Data System (ADS)

    Gazeas, K.; Manimanis, V. N.; Niarchos, P. G.

    In 1999 the University of Athens installed a 0.4-m Cassegrain telescope (CCT-16, by DFM Engineering) on the roof of the Department of Astrophysics, Astronomy and Mechanics, equipped with a ST-8 CCD camera and Bessel UBVRI filters. Although the telescope was built for educational purposes, we found it can be a perfect research instrument, as we can obtain fine quality light curves of bright variable stars, even from a place close to the city center. Light curves of the δ Scuti star V1162 Ori and of the sdB star PG 1336-018 are presented, showing the ability of a 40-cm telescope to detect negligible luminosity fluctuations of relatively bright variable stars. To date, we succeed in making photometry of stars down to 15th magnitude with satisfactory results. We expect to achieve even better results in the future, as our methods still improve, and as the large number of relatively bright stars gives us the chance to study various fields of CCD photometry of variables.

  7. Large amplitude change in spot-induced rotational modulation of the Kepler Ap star KIC 2569073

    NASA Astrophysics Data System (ADS)

    Drury, Jason A.; Murphy, Simon J.; Derekas, Aliz; Sódor, Ádám; Stello, Dennis; Kuehn, Charles A.; Bedding, Timothy R.; Bognár, Zsófia; Szigeti, László; Szakáts, Róbert; Sárneczky, Krisztián; Molnár, László

    2017-11-01

    An investigation of the 200 × 200 pixel `superstamp' images of the centres of the open clusters NGC 6791 and NGC 6819 allows for the identification and study of many variable stars that were not included in the Kepler target list. KIC 2569073 (V = 14.22), is a particularly interesting variable Ap star that we discovered in the NGC 6791 superstamp. With a rotational period of 14.67 d and 0.034 mag variability, it has one of the largest peak-to-peak variations of any known Ap star. Colour photometry reveals an antiphase correlation between the B band, and the V, R and I bands. This Ap star is a rotational variable, also known as an α2 CVn star, and is one of only a handful of Ap stars observed by Kepler. While no change in spot period or amplitude is observed within the 4 yr Kepler time series, the amplitude shows a large increase compared to ground-based photometry obtained two decades ago.

  8. A study about the photometric variability in the M42 region

    NASA Astrophysics Data System (ADS)

    Lima, G. H. R. A.; Vaz, L. P. R.; Reipurth, B.

    2003-08-01

    The M42 region in Orion is one of the most active regarding stellar formation in the neighborhood of the solar system. At a distance of 450pc, it gives us an excellent oportunity to study star formation processes. By studying 22 films of this region, covering an area of 5 by 5 degrees, taken in almost regular intervals through 2.5 years by ESO 1m Schimdt Telescope, in La Silla, Chile, we seek to discover variable stars among the young stars. These films were digitalized by the SuperCOSMOS (the most precise scientific scanner today) team, and each film were exposed for 30 minutes. Our knowledge about the variability of low-mass young variable stars were outdated, and were based on old photographic plates, which were studied by the so called blink comparators and Iris photometers. Now we developed a process to study these data and identify possible candidate stars to be constants or variables, and developed some softwares based on this process. We also used some softwares supplied by the SuperCosmos team to help our analysis of the dataset. After identifying the stars, which we, definitively, can consider variables, we will study more deeply these ones in hope to obtain more data about the formation process. We expect to detect thousands of new variables within our data as also the light curves for each star detected.

  9. Time-Series Photometry of Variable Stars in the Globular Cluster NGC 288

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Joo; Koo, Jae-Rim; Hong, Kyeongsoo; Kim, Seung-Lee; Lee, Jae Woo; Lee, Chung-Uk; Jeon, Young-Beom; Kim, Yun-Hak; Lim, Beomdu; Ryu, Yoon-Hyun; Cha, Sang-Mok; Lee, Yongseok; Kim, Dong-Jin; Park, Byeong-Gon; Kim, Chun-Hwey

    2016-12-01

    We present the results of BV time-series photometry of the globular cluster NGC 288. Observations were carried out to search for variable stars using the Korea Microlensing Telescope Network (KMTNet) 1.6-m telescopes and a 4k pre-science CCD camera during a test observation from August to December, 2014. We found a new SX Phe star and confirmed twelve previously known variable stars in NGC 288. For the semi-regular variable star V1, we newly determined a period of 37.3 days from light curves spanning 137 days. The light-curve solution of the eclipsing binary V10 indicates that the system is probably a detached system. The pulsation properties of nine SX Phe stars were examined by applying multiple frequency analysis to their light curves. We derived a new Period-Luminosity (P-L) relation, < M_{V} rangle = -2.476(±0.300) log P - 0.354(±0.385), from six SX Phe stars showing the fundamental mode. Additionally, the period ratios of three SX Phe stars that probably have a double-radial mode were investigated; P_{FO}/P_{F} = 0.779 for V5, P_{TO}/P_{FO} = 0.685 for V9, P_{SO}/P_{FO} = 0.811 for V11. This paper is the first contribution in a series assessing the detections and properties of variable stars in six southern globular clusters with the KMTNet system.

  10. The American Association of Variable Star Observers: Serving the Research Community in 2010 and Beyond

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.; Henden, A. A.; Davis, K.; Kinne, R.; Watson, C.; Saladyga, M.; Waagen, E.; Beck, S.; Menali, G.; Price, A.; Turner, R.

    2010-05-01

    The American Association of Variable Star Observers (AAVSO) holds the largest single online database of variable star data in the world, collected from thousands of amateur and professional observers during the past century. One of our core missions is to preserve and distribute these data to the research community in service to the science of variable star astronomy. But as an organization, the AAVSO is much more than a data archive. Our services to the research community include: monitoring for and announcement of major astronomical events like novae and supernovae; organization and management of observing campaigns; support for satellite and other TOO observing programs by the professional community; creation of comparison star sequences and generation of charts for the observer community; and observational and other support for the amateur, professional, and educator communities in all things related to variable stars. As we begin a new century of variable star astronomy we invite you to take advantage of the services the AAVSO can provide, and to become a part of our organization yourselves. In this poster, we highlight some of the most important services the AAVSO can provide to the professional research community, as well as suggest ways in which your research may be enhanced with support from the AAVSO.

  11. Multimode delta Scuti stars in the open cluster NGC 7062

    NASA Astrophysics Data System (ADS)

    Freyhammer, L. M.; Arentoft, T.; Sterken, C.

    2001-03-01

    The central field of NGC 7062 was observed intensively with the main goal of finding delta Scuti stars suitable for use in asteroseismological tests of stellar structure and evolution theory. BV time series photometry was obtained for this northern open cluster, which has a large population of stars inside the delta Scuti instability strip, making it a probable host of several such variables. We report findings of 15 pulsating stars, including at least 13 delta Scuti stars. Ten variables oscillate in two or more frequencies. Only one of these variables was known before, for which we detected 9 frequencies. Five probable variables are mentioned, and period analysis is given for all 20 stars. Based on observations obtained at the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisíca de Canarias.

  12. High-resolution H -band Spectroscopy of Be Stars with SDSS-III/APOGEE. II. Line Profile and Radial Velocity Variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chojnowski, S. Drew; Holtzman, Jon A.; Wisniewski, John P.

    2017-04-01

    We report on the H -band spectral variability of classical Be stars observed over the course of the Apache Point Galactic Evolution Experiment (APOGEE), one of four subsurveys comprising SDSS-III. As described in the first paper of this series, the APOGEE B-type emission-line (ABE) star sample was culled from the large number of blue stars observed as telluric standards during APOGEE observations. In this paper, we explore the multi-epoch ABE sample, consisting of 1100 spectra for 213 stars. These “snapshots” of the circumstellar disk activity have revealed a wealth of temporal variability including, but not limited to, gradual disappearance ofmore » the line emission and vice versa over both short and long timescales. Other forms of variability include variation in emission strength, emission peak intensity ratios, and emission peak separations. We also analyze radial velocities (RVs) of the emission lines for a subsample of 162 stars with sufficiently strong features, and we discuss on a case-by-case basis whether the RV variability exhibited by some stars is caused by binary motion versus dynamical processes in the circumstellar disks. Ten systems are identified as convincing candidates for binary Be stars with as of yet undetected companions.« less

  13. Image-Subtraction Photometry of Variable Stars in the Field of the Globular Cluster NGC 6934

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Olech, A.; Stanek, K. Z.

    2001-03-01

    We present CCD BVI photometry of 85 variable stars from the field of the globular cluster NGC 6934. The photometry was obtained with the image subtraction package ISIS. 35 variables are new identifications: 24 RRab stars, five RRc stars, two eclipsing binaries of W UMa-type, one SX Phe star, and three variables of other types. Both detected contact binaries are foreground stars. The SX Phe variable belongs most likely to the group of cluster blue stragglers. Large number of newly found RR Lyr variables in this cluster, as well as in other clusters recently observed by us, indicates that total RR Lyr population identified up to date in nearby galactic globular clusters is significantly (>30%) incomplete. Fourier decomposition of the light curves of RR Lyr variables was used to estimate the basic properties of these stars. From the analysis of RRc variables we obtain a mean mass of M=0.63 Msolar, luminosity logL/Lsolar=1.72, effective temperature Teff=7300 and helium abundance Y=0.27. The mean values of the absolute magnitude, metallicity (on Zinn's scale) and effective temperature for RRab variables are MV=0.81, [Fe/H]=-1.53 and Teff=6450, respectively. From the B-V color at minimum light of the RRab variables we obtained the color excess to NGC 6934 equal to E(B-V)=0.09+/-0.01. Different calibrations of absolute magnitudes of RRab and RRc available in literature were used to estimate apparent distance modulus of the cluster: (m-M)V=16.09+/-0.06. We note a likely error in the zero point of the HST-based V-band photometry of NGC 6934 recently presented by Piotto et al. Among analyzed sample of RR Lyr stars we have detected a short period and low amplitude variable which possibly belongs to the group of second overtone pulsators (RRe subtype variables). The BVI photometry of all variables is available electronically via anonymous ftp. The complete set of the CCD frames is available upon request. Based on observations obtained with the 1.2 m Telescope at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics.

  14. A seven-year northern sky survey of Ap stars for rapid variability

    NASA Technical Reports Server (NTRS)

    Nelson, Matthew J.; Kreidl, Tobias J.

    1993-01-01

    A high-speed photometric survey of 120 Ap stars in the northern sky, has been conducted, between 1985 and 1991, in order to search for rapid variability. Stars of spectral types, namely from B8 to F4, have been selected for the survey. The selected pulsational variable stars occupy the hotter regions of the instability strip of the Hertzsprung-Russel diagram. Noted is the absence of pulsations in the hotter B8-A3 Ap stars; this does not, however, preclude the existence of pulsations, since HD 218495 was recently discovered to be a rapidly oscillating Ap (roAp) star. The primary result of this study is that various combinations of photometric indices, while pointing towards roAp stars having the characteristic signatures of cool, SrCrEu stars, still fail to isolate the roAp phenomenon from similar nonpulsating Ap stars. Color-magnitude and color-color diagrams are presented in order to complete this survey.

  15. PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Lingzhi; Macri, Lucas M.; Krisciunas, Kevin

    Dome A on the Antarctic plateau is likely one of the best observing sites on Earth thanks to the excellent atmospheric conditions present at the site during the long polar winter night. We present high-cadence time-series aperture photometry of 10,000 stars with i < 14.5 mag located in a 23 deg{sup 2} region centered on the south celestial pole. The photometry was obtained with one of the CSTAR telescopes during 128 days of the 2008 Antarctic winter. We used this photometric data set to derive site statistics for Dome A and to search for variable stars. Thanks to the nearlymore » uninterrupted synoptic coverage, we found six times as many variables as previous surveys with similar magnitude limits. We detected 157 variable stars, of which 55% were unclassified, 27% were likely binaries, and 17% were likely pulsating stars. The latter category includes {delta} Scuti, {gamma} Doradus, and RR Lyrae variables. One variable may be a transiting exoplanet.« less

  16. Variable Stars in the Field of V729 Aql

    NASA Astrophysics Data System (ADS)

    Cagaš, P.

    2017-04-01

    Wide field instruments can be used to acquire light curves of tens or even hundreds of variable stars per night, which increases the probability of new discoveries of interesting variable stars and generally increases the efficiency of observations. At the same time, wide field instruments produce a large amount of data, which must be processed using advanced software. The traditional approach, typically used by amateur astronomers, requires an unacceptable amount of time needed to process each data set. New functionality, built into SIPS software package, can shorten the time needed to obtain light curves by several orders of magnitude. Also, newly introduced SILICUPS software is intended for post-processing of stored light curves. It can be used to visualize observations from many nights, to find variable star periods, evaluate types of variability, etc. This work provides an overview of tools used to process data from the large field of view around the variable star V729 Aql. and demonstrates the results.

  17. Velocity fields and spectrum peculiarities in Beta Cephei stars

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1980-01-01

    The acquisition of short wavelength spectra of Beta Cephei variable stars from the International Ultraviolet Explorer is reported. A total of 122 images of 10 variable stars and 3 comparison stars were obtained. All of the images were observed in the high dispersion mode through a small aperture. The development of image processing methods is also briefly discussed.

  18. The ASAS-SN catalogue of variable stars I: The Serendipitous Survey

    NASA Astrophysics Data System (ADS)

    Jayasinghe, T.; Kochanek, C. S.; Stanek, K. Z.; Shappee, B. J.; Holoien, T. W.-S.; Thompson, Toda A.; Prieto, J. L.; Dong, Subo; Pawlak, M.; Shields, J. V.; Pojmanski, G.; Otero, S.; Britt, C. A.; Will, D.

    2018-07-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to routinely monitor the whole sky with a cadence of ˜2-3 d down to V ≲ 17 mag. ASAS-SN has monitored the whole sky since 2014, collecting ˜100-500 epochs of observations per field. The V-band light curves for candidate variables identified during the search for supernovae are classified using a random forest classifier and visually verified. We present a catalogue of 66 179 bright, new variable stars discovered during our search for supernovae, including 27 479 periodic variables and 38 700 irregular variables. V-band light curves for the ASAS-SN variables are available through the ASAS-SN variable stars data base (https://asas-sn.osu.edu/variables). The data base will begin to include the light curves of known variable stars in the near future along with the results for a systematic, all-sky variability survey.

  19. Skysurvey Results of RotseIIID Data

    NASA Astrophysics Data System (ADS)

    Bilir, Cansu; Varol Keskin, MR..

    2016-07-01

    The aim of this thesis is to find variable stars from the ROTSEIIID fields data files. In order to determine the variable stars, a simple but effective software, that works seamlessly, has been developed. Robotic Optical Transient Search Experiment (ROTSE) is a worldwide project with four robotic telescopes, established in order to follow the optical afterglow radiation of the Gamma-Ray Bursts (GRB). In this study, the observations of the fields obtained from the ROTSEIIID Telescope located in the TÜBİTAK (Scientific and Technological Research Council of Turkey) National Observatory were used. ROTSEIIID creates a calibrated object list (cobj) from the observations gathered automatically. The different values of each star (RA, DEC, Pixel Coordinates, M, MERR, Flags etc.) can be found in this generated list. In this thesis these values are extracted from data files. A php programme was developed in order to extract time series data of every star in a field. It also searches period, and if found, calculates phases for this data. The goal of this study is to determine the variable stars, especially unknown variables. Ds9 and fv programs are used for dealing with FITS files. Also flowchart of program is given in this thesis. In addition Debil (for finding some parameters of detached eclipsing binary stars) and Gnuplot (for drawing graphics) are used by php program. Using gnuplot, magnitude-time and period-time graphics of each star are plotted. The searching program is used for some different fields of RotseIIID data files. On the basis of the results of this research, 42 variable stars found and 14 of them are listed end of the thesis with their light curves. The data used in this thesis will be studied more detailed and research results of new/unknown variable stars will be published along the Msc thesis. We are still studying on the data of new variable stars which were discovered by this research and the results will be published in near future...

  20. Variable Stars with the Kepler Space Telescope

    NASA Astrophysics Data System (ADS)

    Molnár, L.; Szabó, R.; Plachy, E.

    2016-12-01

    The Kepler space telescope has revolutionized our knowledge about exoplanets and stars and is continuing to do so in the K2 mission. The exquisite photometric precision, together with the long, uninterrupted observations opened up a new way to investigate the structure and evolution of stars. Asteroseismology, the study of stellar oscillations, allowed us to investigate solar-like stars, and to peer into the insides of red giants and massive stars. But many discoveries have been made about classical variable stars, too, ranging from pulsators like Cepheids and RR Lyraes to eclipsing binary stars and cataclysmic variables, and even supernovae. In this review, which is far from an exhaustive summary of all results obtained with Kepler, we collected some of the most interesting discoveries, and ponder on the role for amateur observers in this golden era of stellar astrophysics.

  1. Infrared Studies of the Variability and Mass Loss of Dusty Asymptotic Giant Branch Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Groenewegen, M. A. T.

    2018-01-01

    The asymptotic giant branch (AGB) phase is one of the last phases of a star's life. AGB stars lose mass in an outflow in which dust condenses and is pushed away from the star. Extreme AGB stars are so named because their very red colors suggest very large amounts of dust, which in turn suggests extremely high mass loss rates. AGB stars also vary in brightness, and studies show that extreme AGB stars tend to have longer periods than other AGB stars and are more likely to be fundamental mode pulsators than other AGB stars. Extreme AGB stars are difficult to study, as their colors are so red due to their copious amounts of circumstellar dust that they are often not detected at optical wavelengths. Therefore, they must be observed at infrared wavelengths to explore their variability. Using the Spitzer Space Telescope, my team and I have observed a sample of extreme AGB stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) over Cycles 9 through 12 during the Warm Spitzer mission. For each cycle, we typically observed a set of extreme AGB stars at both 3.6 and 4.5 microns wavelength approximately monthly for most of a year. These observations reveal a wide range of variability properties. I present results from our analysis of the data obtained from these Spitzer variability programs, including light curve analyses and comparison to period-luminosity diagrams. Funding is acknowledged from JPL RSA # 1561703.

  2. VizieR Online Data Catalog: Mira stars discovered in LAMOST DR4 (Yao+, 2017)

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Liu, C.; Deng, L.; de Grijs, R.; Matsunaga, N.

    2017-10-01

    By the end of 2016 March, the wide-field Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) DR4 catalog had accumulated 7681185 spectra (R=1800), of which 6898298 were of stars. We compiled a photometrically confirmed sample of Mira variables from the Kiso Wide-Field Camera (KWFC) Intensive Survey of the Galactic Plane (KISOGP; Matsunaga 2017, arXiv:1705.08567), the American Association of Variable Star Observers (AAVSO) International Database Variable Star Index (VSX; Watson 2006, B/vsx, version 2017-05-02; we selected stars of variability type "M"), and the SIMBAD Astronomical Database. We first cross-matched the KISOGP and VSX Miras with the LAMOST DR4 catalog. Finally, we cross-matched the DR4 catalog with the SIMBAD database. See section 2. (1 data file).

  3. THE BERLIN EXOPLANET SEARCH TELESCOPE II CATALOG OF VARIABLE STARS. I. CHARACTERIZATION OF THREE SOUTHERN TARGET FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fruth, T.; Cabrera, J.; Csizmadia, Sz.

    2013-11-01

    A photometric survey of three southern target fields with BEST II yielded the detection of 2406 previously unknown variable stars and an additional 617 stars with suspected variability. This study presents a catalog including their coordinates, magnitudes, light curves, ephemerides, amplitudes, and type of variability. In addition, the variability of 17 known objects is confirmed, thus validating the results. The catalog contains a number of known and new variables that are of interest for further astrophysical investigations, in order to, e.g., search for additional bodies in eclipsing binary systems, or to test stellar interior models. Altogether, 209,070 stars were monitoredmore » with BEST II during a total of 128 nights in 2009/2010. The overall variability fraction of 1.2%-1.5% in these target fields is well comparable to similar ground-based photometric surveys. Within the main magnitude range of R in [11, 17], we identify 0.67(3)% of all stars to be eclipsing binaries, which indicates a completeness of about one third for this particular type in comparison to space surveys.« less

  4. The First Pan-Starrs Medium Deep Field Variable Star Catalog

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather

    2013-01-01

    We present the first Pan-Starrs 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-Starrs 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, and is located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter. We have located and classified several hundred periodic variable stars within the Medium Deep fields, and we present the first catalog listing the properties of these variable stars.

  5. The Pan-STARRS 1 Medium Deep Field Variable Star Catalog

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather

    2016-01-01

    We present the first Pan-STARRS 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-STARRS 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totaling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter, resulting in 3000-4000 data points per star over a time span of 3.5 years. To find the variables, we select objects with > 200 detections, and remove those flagged as saturated. No other cuts are used. There are approximately 2.4 million objects that fit this criteria, with magnitudes between 13th and 24th. These objects are then passed through a lomb-scargle fitting routine to determine periodicity. After a periodicity cut, the candidates are classified by eye into different types of variable stars. We have identified several thousand periodic variable stars, with periods ranging between a few minutes to a few days. We compare our findings to the variable star catalogs within Vizier and AAVSO. In particular, for field MD02, we recover all the variables that are faint in Vizier, and we find good agreement with the periods reported in Vizier.

  6. Caroline Furness and the Evolution of Visual Variable Star Observing

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2017-01-01

    An Introduction to the Study of Variable Stars by Dr. Caroline Ellen Furness (1869-1936), Director of the Vassar College Observatory, was published in October 2015. Issued in honor of the fiftieth anniversary of the founding of Vassar College, the work was meant to fill a void in the literature, namely as both an introduction to the topic of variable stars as well as a manual explaining how they should be observed and the resulting data analyzed. It was judged to be one of the hundred best books written by an American woman in the last hundred years at the 1933 World’s Fair in Chicago. The book covers the relevant history of and background on types of variable stars, star charts, catalogs, and the magnitude scale, then describes observing techniques, including visual, photographic, and photoelectric photometry. The work finishes with a discussion of light curves and patterns of variability, with a special emphasis on eclipsing binaries and long period variables. Furness’s work is therefore a valuable snapshot of the state of astronomical knowledge, technology, and observing techniques from a century ago. Furness’s book and its reception in the scientific community are analyzed, and parallels with (and departures from) the current advice given by the AAVSO to beginning variable star observers today are highlighted.

  7. Revisiting Caroline Furness's An Introduction to the Study of Variable Stars on its Centenary (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Larsen, K.

    2016-06-01

    (Abstract only) A century and one month ago (October 1915) Dr. Caroline Ellen Furness (1869-1936), Director of the Vassar College Observatory, published An Introduction to the Study of Variable Stars. Issued in honor of the fiftieth anniversary of the founding of Vassar College, the work was meant to fill a void in the literature, namely as both an introduction to the topic of variable stars and as a manual explaining how they should be observed and the resulting data analyzed. It was judged to be one of the hundred best books written by an American woman in the last hundred years at the 1933 World's Fair in Chicago. The book covers the relevant history of and background on types of variable stars, star charts, catalogs, and the magnitude scale, then describes observing techniques, including visual, photographic, and photoelectric photometry. The work finishes with a discussion of light curves and patterns of variability, with a special emphasis on eclipsing binaries and long period variables. Furness's work is a valuable snapshot of the state of astronomical knowledge, technology, and observing techniques from a century ago. This presentation will analyze both Furness's book and its reception in the scientific community, and draw parallels to current advice given to beginning variable star observers.

  8. HST Snapshot Study of Variable Stars in Globular Clusters: Inner Region of NGC 6441

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Stetson, Peter B.; Catelan, Marcio; Sweigart, Allen V.; Layden, Andrew C.; Rich, R. Michael

    2003-01-01

    We present the results of a Hubble Space Telescope snapshot program to survey the inner region of the metal-rich globular cluster NGC 6441 for its variable stars. A total of 57 variable stars was found including 38 RR Lyrae stars, 6 Population II Cepheids, and 12 long period variables. Twenty-four of the RR Lyrae stars and all of the Population II Cepheids were previously undiscovered in ground-based surveys. Of the RR Lyrae stars observed in h s survey, 26 are pulsating in the fundamental mode with a mean period of 0.753 d and 12 are first-overtone mode pulsators with a mean period of 0.365 d. These values match up very well with those found in ground-based surveys. Combining all the available data for NGC 6441, we find mean periods of 0.759 d and 0.375 d for the RRab and RRc stars, respectively. We also find that the RR Lyrae in this survey are located in the same regions of a period-amplitude diagram as those found in ground-based surveys. The overall ratio of RRc to total RR Lyrae is 0.33. Although NGC 6441 is a metal-rich globular cluster and would, on that ground, be expected either to have few RR Lyrae stars, or to be an Oosterhoff type I system, its RR Lyrae more closely resemble those in Oosterhoff type II globular clusters. However, even compared to typical Oosterhoff type II systems, the mean period of its RRab stars is unusually long. We also derived I-band period-luminosity relations for the RR Lyrae stars. Of the six Population II Cepheids, five are of W Virginis type and one is a BL Herculis variable star. This makes NGC 6441, along with NGC 6388, the most metal-rich globular cluster known to contain these types of variable stars. Another variable, V118, may also be a Population II Cepheid given its long period and its separation in magnitude from the RR Lyrae stars. We examine the period-luminosity relation for these Population II Cepheids and compare it to those in other globular clusters and in the Large Magellanic Cloud. We argue that there does not appear to be a change in the period-luminosity relation slope between the BL Herculis and W Virginis stars, but that a change of slope does occur when the RV Tauri stars are added to the period-luminosity relation.

  9. Cool carbon stars in the halo and in dwarf galaxies: Hα, colours, and variability

    NASA Astrophysics Data System (ADS)

    Mauron, N.; Gigoyan, K. S.; Berlioz-Arthaud, P.; Klotz, A.

    2014-02-01

    The population of cool carbon (C) stars located far from the galactic plane is probably made of debris of small galaxies such as the Sagittarius dwarf spheroidal galaxy (Sgr), which are disrupted by the gravitational field of the Galaxy. We aim to know this population better through spectroscopy, 2MASS photometric colours, and variability data. When possible, we compared the halo results to C star populations in the Fornax dwarf spheroidal galaxy, Sgr, and the solar neighbourhood. We first present a few new discoveries of C stars in the halo and in Fornax. The number of spectra of halo C stars is now 125. Forty percent show Hα in emission. The narrow location in the JHK diagram of the halo C stars is found to differ from that of similar C stars in the above galaxies. The light curves of the Catalina and LINEAR variability databases were exploited to derive the pulsation periods of 66 halo C stars. A few supplementary periods were obtained with the TAROT telescopes. We confirm that the period distribution of the halo strongly resembles that of Fornax, and we found that it is very different from the C stars in the solar neighbourhood. There is a larger proportion of short-period Mira/SRa variables in the halo than in Sgr, but the survey for C stars in this dwarf galaxy is not complete, and the study of their variability needs to be continued to investigate the link between Sgr and the cool halo C stars. Based on observations made with the NTT and 3.6 m telescope at the European Southern Observatory (La Silla, Chile; programs 084.D-0302 and 070.D-0203), with the TAROT telescopes at La Silla and at Observatoire de la Côte d'Azur (France), and on the exploitation of the Catalina Sky Survey and the LINEAR variability databases.Appendix A is available in electronic form at http://www.aanda.org

  10. Pulsating B and Be stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Diago, P. D.; Gutiérrez-Soto, J.; Fabregat, J.; Martayan, C.

    2008-03-01

    Context: Stellar pulsations in main-sequence B-type stars are driven by the κ-mechanism due to the Fe-group opacity bump. The current models do not predict the presence of instability strips in the B spectral domain at very low metallicities. As the metallicity of the SMC is lower than Z = 0.005, it constitutes a very suitable object to test these predictions. Aims: The main objective is to investigate the existence of B-type pulsators at low metallicities, searching for short-term periodic variability in absorption-line B and Be stars in the SMC. The analysis has been performed in a sample of 313 B and Be stars with fundamental astrophysical parameters accurately determined from high-resolution spectroscopy. Methods: Photometric light curves of the MACHO project have been analyzed using standard Fourier techniques and linear and non-linear least squares fitting methods. The position of the pulsating stars in the HR diagram has been used to ascertain their nature and to map the instability regions in the SMC. Results: We have detected 9 absorption-line B stars showing short-period variability, two among them being multiperiodic. One star is most likely a β Cephei variable and the remaining 8 are SPB stars. The SPB instability strip in the SMC is shifted towards higher temperatures than the Galaxy. In the Be star sample, 32 stars are short-period variables, 20 among them multiperiodic. 4.9% of B stars and 25.3% of Be stars are pulsating stars. Conclusions: β Cephei and SPB stars do exist at the SMC metallicity. The fractions of SPB stars and pulsating Be stars in the SMC are lower than in the Galaxy. The fraction of pulsating Be stars in the SMC is much higher than the fraction of pulsating absorption-line B stars, as in the Galaxy.

  11. The Catalina Surveys Southern periodic variable star catalogue

    NASA Astrophysics Data System (ADS)

    Drake, A. J.; Djorgovski, S. G.; Catelan, M.; Graham, M. J.; Mahabal, A. A.; Larson, S.; Christensen, E.; Torrealba, G.; Beshore, E.; McNaught, R. H.; Garradd, G.; Belokurov, V.; Koposov, S. E.

    2017-08-01

    Here, we present the results from our analysis of 6 yr of optical photometry taken by the Siding Spring Survey (SSS). This completes a search for periodic variable stars within the 30 000 deg2 of the sky covered by the Catalina Surveys. The current analysis covers 81 million sources with declinations between -20° and -75° with median magnitudes in the range 11 < V < 19.5. We find approximately 34 000 new periodic variable stars in addition to the ˜9000 RR Lyrae that we previously discovered in SSS data. This brings the total number of periodic variables identified in Catalina data to ˜110 000. The new SSS periodic variable stars mainly consist of eclipsing binaries, RR Lyrae, LPVs, RS CVn stars, δ Scutis, and Anomalous Cepheids. By cross-matching these variable stars with those from prior surveys, we find that ˜90 per cent of the sources are new discoveries and recover ˜95 per cent of the known periodic variables in the survey region. For the known sources, we find excellent agreement between our catalogue and prior values of luminosity, period, and amplitude. However, we find many variable stars that had previously been misclassified. Examining the distribution of RR Lyrae, we find a population associated with the Large Magellanic Cloud (LMC) that extends more than 20° from its centre confirming recent evidence for the existence of a very extended stellar halo in the LMC. By combining SSS photometry with Dark Energy Survey data, we identify additional LMC halo RR Lyrae, thus confirming the significance of the population.

  12. The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster NGC 6362

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Thompson, I. B.; Rozyczka, M.; Pych, W.; Narloch, W.

    2014-12-01

    The field of the globular cluster NGC 6362 was monitored between 1995 and 2009 in a search for variable stars. BV light curves were obtained for 69 periodic variable stars including 34 known RR Lyr stars, 10 known objects of other types and 25 newly detected variable stars. Among the latter we identified 18 proper-motion members of the cluster: seven detached eclipsing binaries (DEBs), six SX Phe stars, two W UMa binaries, two spotted red giants, and a very interesting eclipsing binary composed of two red giants - the first example of such a system found in a globular cluster. Five of the DEBs are located at the turnoff region, and the remaining two are redward of the lower main sequence. Eighty-four objects from the central 9×9 arcmin2 of the cluster were found in the region of cluster blue stragglers. Of these 70 are proper motion (PM) members of NGC 6362 (including all SX Phe and two W UMa stars), and five are field stars. The remaining nine objects lacking PM information are located at the very core of the cluster, and as such they are likely genuine blue stragglers.

  13. A Search for Circumstellar Gas-Disk Variability in F-type Stars

    NASA Astrophysics Data System (ADS)

    Adkins, Ally; Montgomery, Sharon Lynn; Welsh, Barry

    2018-01-01

    Over the past six years, short-term (night-to-night) variability in the CaII K-line (3933Å) absorption has been detected towards 22 rapidly-rotating A-type stars, all but four of them discovered by us. Most of these stars are young (age < 100 million years) and possess dusty debris disks as evidenced by their infrared excesses. The variability is thought to be due to kilometer-sized planetesimals (i.e., exocomets) that release gas during their catastrophic in-falls towards their central star. To expand the relatively small number of systems showing this type of variability, we conducted a search amongst nearby, rapidly-rotating, F-type stars. Here, we present high signal-to-noise, medium-resolution spectral observations of the CaII K-line absorption (R≈60,000) recorded towards seven F-type stars. Six of these stars were observed multiple times over the course of our seven-night run on the 2.1-meter Otto Struve Telescope (McDonald Observatory) during June 2017. The appearance or absence of similar short-lived, Doppler-shifted absorption in F-type stars serves as a test of our understanding of the underlying phenomena.

  14. Imaging Variable Stars with HST

    NASA Astrophysics Data System (ADS)

    Karovska, Margarita

    2011-05-01

    The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents.I will highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I will describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semi-regular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.

  15. Imaging Variable Stars with HST

    NASA Astrophysics Data System (ADS)

    Karovska, M.

    2012-06-01

    (Abstract only) The Hubble Space Telescope (HST) observations of astronomical sources, ranging from objects in our solar system to objects in the early Universe, have revolutionized our knowledge of the Universe its origins and contents. I highlight results from HST observations of variable stars obtained during the past twenty or so years. Multiwavelength observations of numerous variable stars and stellar systems were obtained using the superb HST imaging capabilities and its unprecedented angular resolution, especially in the UV and optical. The HST provided the first detailed images probing the structure of variable stars including their atmospheres and circumstellar environments. AAVSO observations and light curves have been critical for scheduling of many of these observations and provided important information and context for understanding of the imaging results of many variable sources. I describe the scientific results from the imaging observations of variable stars including AGBs, Miras, Cepheids, semiregular variables (including supergiants and giants), YSOs and interacting stellar systems with a variable stellar components. These results have led to an unprecedented understanding of the spatial and temporal characteristics of these objects and their place in the stellar evolutionary chains, and in the larger context of the dynamic evolving Universe.

  16. Amplitude Variability in gamma Dor and delta Sct Stars Observed by Kepler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzik, Joyce Ann; Kosak, Mary Katherine; Bradley, Paul Andrew

    2015-08-17

    The NASA Kepler spacecraft data revealed a large number of new multimode nonradially pulsating gamma Dor and delta Sct variable stars. The Kepler high-precision long time-series photometry makes it possible to study amplitude variations of the frequencies, and recent literature on amplitude and frequency variations in nonradially pulsating variables is summarized. Several methods are applied to study amplitude variability in about a dozen gamma Doradus or delta Scuti candidate variable stars observed for several quarters as part of the Kepler Guest Observer program. The magnitude and timescale of the amplitude variations are discussed, along with the presence or absence ofmore » correlations between amplitude variations for different frequencies of a given star. Proposed causes of amplitude spectrum variability that will require further investigation are also discussed.« less

  17. Overview of the observations of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Viotti, Roberto

    1993-01-01

    The term Symbiotic stars commonly denotes variable stars whose optical spectra simultaneously present a cool absorption spectrum (typically TiO absorption bands) and emission lines of high ionization energy. This term is now used for the category of variable stars with composite spectrum. The main spectral features of these objects are: (1) the presence of the red continuum typical of a cool star, (2) the rich emission line spectrum, and (3) the UV excess, frequently with the Balmer continuum in emission. In addition to the peculiar spectrum, the very irregular photometric and spectroscopic variability is the major feature of the symbiotic stars. Moreover, the light curve is basic to identify the different phases of activity in a symbiotic star. The physical mechanisms that cause the symbiotic phenomenon and its variety are the focus of this paper. An astronomical phenomenon characterized by a composite stellar spectrum with two apparently conflicting features, and large variability has been observed. Our research set out to find the origin of this behavior and, in particular, to identify and measure the physical mechanism(s) responsible for the observed phenomena.

  18. Gaia luminosities of pulsating A-F stars in the Kepler field

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    2018-06-01

    All stars in the Kepler field brighter than 12.5 magnitude have been classified according to variability type. A catalogue of δ Scuti and γ Doradus stars is presented. The problem of low frequencies in δ Sct stars, which occurs in over 98 percent of these stars, is discussed. Gaia DR2 parallaxes were used to obtain precise luminosities, enabling the instability strips of the two classes of variable to be precisely defined. Surprisingly, it turns out that the instability region of the γ Dor stars is entirely within the δ Sct instability strip. Thus γDor stars should not be considered a separate class of variable. The observed red and blue edges of the instability strip do not agree with recent model calculations. Stellar pulsation occurs in less than half of the stars in the instability region and arguments are presented to show that this cannot be explained by assuming pulsation at a level too low to be detected. Precise Gaia DR2 luminosities of high-amplitude δ Sct stars (HADS) show that most of these are normal δ Sct stars and not transition objects. It is argued that current ideas on A star envelopes need to be revised.

  19. New Variable Stars found in the NSVS Database

    NASA Astrophysics Data System (ADS)

    Nicholson, Martin; Sutherland, Jane; Sutherland, Charles

    2005-12-01

    A search for previously unreported variable stars was conducted by members of the Remote Astronomical Society in the publicly available data of the Northern Sky Variability Survey (NSVS, Wozniak et al., 2004). NSVS fields were searched for candidates with both a sufficient number of observations to allow valid analysis and also with a significantly higher magnitude scatter than normal for stars of their magnitude.

  20. Deformation quantization with separation of variables of an endomorphism bundle

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander

    2014-01-01

    Given a holomorphic Hermitian vector bundle E and a star-product with separation of variables on a pseudo-Kähler manifold, we construct a star product on the sections of the endomorphism bundle of the dual bundle E∗ which also has the appropriately generalized property of separation of variables. For this star product we prove a generalization of Gammelgaard's graph-theoretic formula.

  1. Be Star Hα Line Profile Variability

    NASA Astrophysics Data System (ADS)

    Austin, S. J.; Dunlap, B.; Franklin, M.; Hoggard, T.; Hoskins, J. S.

    2004-12-01

    The monitoring of the spectroscopic variability of Be stars is crucial for testing Be star models. Motivated by this, a Be star monitoring project was developed for undergraduate student research involvement. We have been obtaining 0.8 Angstrom/pixel resolution Hα line profiles for several bright Be stars since 2003 June. These spectra were acquired using the UCA Fiber Fed Spectrograph used at the UCA Observatory and the Nubbin Ridge Observatory in Royal, AR. H-α line profiles, velocities, and variability are shown for Delta Sco, Chi Oph, Eta PsA, 48 Lib, and Upsilon Sgr (HD181615). Funding has been provided by the UCA University Research Council and the Arkansas Space Grant Consortium.

  2. A census of variability in globular cluster M 68 (NGC 4590)

    NASA Astrophysics Data System (ADS)

    Kains, N.; Arellano Ferro, A.; Figuera Jaimes, R.; Bramich, D. M.; Skottfelt, J.; Jørgensen, U. G.; Tsapras, Y.; Street, R. A.; Browne, P.; Dominik, M.; Horne, K.; Hundertmark, M.; Ipatov, S.; Snodgrass, C.; Steele, I. A.; Lcogt/Robonet Consortium; Alsubai, K. A.; Bozza, V.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Galianni, P.; Gu, S.-H.; Harpsøe, K.; Hinse, T. C.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Southworth, J.; Surdej, J.; Vilela, C.; Wang, X.-B.; Wertz, O.; Mindstep Consortium

    2015-06-01

    Aims: We analyse 20 nights of CCD observations in the V and I bands of the globular cluster M 68 (NGC 4590) and use them to detect variable objects. We also obtained electron-multiplying CCD (EMCCD) observations for this cluster in order to explore its core with unprecedented spatial resolution from the ground. Methods: We reduced our data using difference image analysis to achieve the best possible photometry in the crowded field of the cluster. In doing so, we show that when dealing with identical networked telescopes, a reference image from any telescope may be used to reduce data from any other telescope, which facilitates the analysis significantly. We then used our light curves to estimate the properties of the RR Lyrae (RRL) stars in M 68 through Fourier decomposition and empirical relations. The variable star properties then allowed us to derive the cluster's metallicity and distance. Results: M 68 had 45 previously confirmed variables, including 42 RRL and 2 SX Phoenicis (SX Phe) stars. In this paper we determine new periods and search for new variables, especially in the core of the cluster where our method performs particularly well. We detect 4 additional SX Phe stars and confirm the variability of another star, bringing the total number of confirmed variable stars in this cluster to 50. We also used archival data stretching back to 1951 to derive period changes for some of the single-mode RRL stars, and analyse the significant number of double-mode RRL stars in M 68. Furthermore, we find evidence for double-mode pulsation in one of the SX Phe stars in this cluster. Using the different classes of variables, we derived values for the metallicity of the cluster of [Fe/H] = -2.07 ± 0.06 on the ZW scale, or -2.20 ± 0.10 on the UVES scale, and found true distance moduli μ0 = 15.00 ± 0.11 mag (using RR0 stars), 15.00 ± 0.05 mag (using RR1 stars), 14.97 ± 0.11 mag (using SX Phe stars), and 15.00 ± 0.07 mag (using the MV -[Fe/H] relation for RRL stars), corresponding to physical distances of 10.00 ± 0.49, 9.99 ± 0.21, 9.84 ± 0.50, and 10.00 ± 0.30 kpc, respectively. Thanks to the first use of difference image analysis on time-series observations of M 68, we are now confident that we have a complete census of the RRL stars in this cluster. The full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A128

  3. Visual Observing Manual | aavso.org

    Science.gov Websites

    Institute CCD School Videos Student Projects Two Eyes, 3D Variable Star Astronomy H-R Diagram Plotting Student Projects Two Eyes, 3D Variable Star Astronomy H-R Diagram Plotting Activity Reporting Variable

  4. Chromospheric activity of periodic variable stars (including eclipsing binaries) observed in DR2 LAMOST stellar spectral survey

    NASA Astrophysics Data System (ADS)

    Zhang, Liyun; Lu, Hongpeng; Han, Xianming L.; Jiang, Linyan; Li, Zhongmu; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang

    2018-05-01

    The LAMOST spectral survey provides a rich databases for studying stellar spectroscopic properties and chromospheric activity. We cross-matched a total of 105,287 periodic variable stars from several photometric surveys and databases (CSS, LINEAR, Kepler, a recently updated eclipsing star catalogue, ASAS, NSVS, some part of SuperWASP survey, variable stars from the Tsinghua University-NAOC Transient Survey, and other objects from some new references) with four million stellar spectra published in the LAMOST data release 2 (DR2). We found 15,955 spectra for 11,469 stars (including 5398 eclipsing binaries). We calculated their equivalent widths (EWs) of their Hα, Hβ, Hγ, Hδ and Caii H lines. Using the Hα line EW, we found 447 spectra with emission above continuum for a total of 316 stars (178 eclipsing binaries). We identified 86 active stars (including 44 eclipsing binaries) with repeated LAMOST spectra. A total of 68 stars (including 34 eclipsing binaries) show chromospheric activity variability. We also found LAMOST spectra of 12 cataclysmic variables, five of which show chromospheric activity variability. We also made photometric follow-up studies of three short period targets (DY CVn, HAT-192-0001481, and LAMOST J164933.24+141255.0) using the Xinglong 60-cm telescope and the SARA 90-cm and 1-m telescopes, and obtained new BVRI CCD light curves. We analyzed these light curves and obtained orbital and starspot parameters. We detected the first flare event with a huge brightness increase of more than about 1.5 magnitudes in R filter in LAMOST J164933.24+141255.0.

  5. Smearing model and restoration of star image under conditions of variable angular velocity and long exposure time.

    PubMed

    Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin

    2014-03-10

    The star tracker is one of the most promising attitude measurement devices widely used in spacecraft for its high accuracy. High dynamic performance is becoming its major restriction, and requires immediate focus and promotion. A star image restoration approach based on the motion degradation model of variable angular velocity is proposed in this paper. This method can overcome the problem of energy dispersion and signal to noise ratio (SNR) decrease resulting from the smearing of the star spot, thus preventing failed extraction and decreased star centroid accuracy. Simulations and laboratory experiments are conducted to verify the proposed methods. The restoration results demonstrate that the described method can recover the star spot from a long motion trail to the shape of Gaussian distribution under the conditions of variable angular velocity and long exposure time. The energy of the star spot can be concentrated to ensure high SNR and high position accuracy. These features are crucial to the subsequent star extraction and the whole performance of the star tracker.

  6. The Anatomy of the Perseus Spiral Arm: 12 CO and IRAS Imaging Observations of the W3-W4-W5 Cloud Complex

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.; Terebey, S.

    1998-01-01

    Panoramic images of 12CO J = 1-0 and thermal dust emissions from the W3-W4-W5 region of the outer Galaxy are presented. These data and recently published H I 21 cm line emission images provide an approximate 1' resolution perspective to the dynamics and thermal energy content of the interstellar gas and dust components contained within a 9 deg. arc of the Perseus spiral arm. We tabulate the molecular properties of 1560 clouds identified as closed surfaces within the l-b-v CO data cube at a threshold of 0.9 K T* (sub R). Relative surface densities of the molecular (28:1) and atomic (2.5:1) gas components determined within the arm and interarm velocity intervals demonstrate that the gas component that enters the spiral arm is predominantly atomic. Molecular clouds must necessarily condense from the compressed atomic material that enters the spiral arm and are likely short lived within the interarm regions. From the distribution of centroid velocities of clouds, we determine a random cloud-to-cloud velocity dispersion of 4 km s (exp. -1) over the width of the spiral arm but find no clear evidence within the molecular gas for streaming motions induced by the spiral potential. The far-infrared images are analyzed with the CO J = 1-0 and H I 21 cm line emission. The enhanced UV (Ultraviolet) radiation field from members of the Cas OB6 association and embedded newborn stars provide a significant source of heating to the extended dust component within the Perseus arm relative to the quiescent cirrus regions. Much of the measured far-infrared flux (69% at 60 micrometers and 47% at 100 micrometers) originates from regions associated with star formation rather than the extended, infrared cirrus component.

  7. The Anatomy of the Perseus Spiral ARM: (sup 12)CO and IRAS Imaging Observations of the W3-W4-W5 Cloud Complex

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.; Terebey, S.; Oliversen, R. (Technical Monitor)

    1998-01-01

    Panoramic images of (sup l2)CO J = 1-0 and thermal dust emissions from the W3-W4-W5 region of the outer Galaxy are presented. These data and recently published H (sub I) 21 cm line emission images provide an approx. 1 min resolution perspective to the dynamics and thermal energy content of the interstellar gas and dust components contained within a 9 deg arc of the Perseus spiral arm. We tabulate the molecular properties of 1560 clouds identified as closed surfaces within the l-b-v CO data cube at a threshold of 0.9 K T(sup *)(sub R). Relative surface densities of the molecular (28:1) and atomic (2.5: 1) gas components determined within the arm and interarm velocity intervals demonstrate that the gas component that enters the spiral arm is predominantly atomic. Molecular clouds must necessarily condense from the compressed atomic material that enters the spiral arm and are likely short lived within the interarm regions. From the distribution of centroid velocities of clouds, we determine a random cloud-to-cloud velocity dispersion of 4 km/s over the width of the spiral arm but find no clear evidence within the molecular gas for streaming motions induced by the spiral potential. The far-infrared images are analyzed with the CO J = 1-0 and H (sub I) 21 cm line emission. The enhanced UV radiation field from members of the Cas OB6 association and embedded newborn stars provide a significant source of heating to the extended dust component within the Perseus arm relative to the quiescent cirrus regions. Much of the measured far-infrared flux (69% at 60 microns and 47% at 100 microns) originates from regions associated with star formation rather than the extended, infrared cirrus component.

  8. A precursive study of the time-domain survey of the Galactic Anti-center using the Nanshan 1-meter telescope with variable stars detected

    NASA Astrophysics Data System (ADS)

    Ma, Shu-Guo; Esamdin, Ali; Ma, Lu; Niu, Hu-Biao; Fu, Jian-Ning; Zhang, Yu; Liu, Jin-Zhong; Yang, Tao-Zhi; Song, Fang-Fang; Pu, Guang-Xin

    2018-04-01

    Following the LAMOST Spectroscopic Survey and the Xuyi's Photometric Survey of the Galactic Anti-center, we plan to carry out a time-domain survey of the Galactic Anti-center (TDS-GAC) to study variable stars by using the Nanshan 1-meter telescope. Before the beginning of TDS-GAC, a precursive sky survey (PSS) has been executed. The goal of the PSS is to optimize the observation strategy of TDS-GAC and to detect some strong transient events, as well as to find some short time-scale variable stars of different types. By observing a discontinuous sky area of 15.03 deg2 with the standard Johnson-Cousin-Bessel V filter, 48 variable stars are found and the time series are analyzed. Based on the behaviors of the light curves, 28 eclipsing binary stars, 10 RR Lyraes, 3 periodic pulsating variables of other types have been classified. The rest 7 variables stay unclassified with deficient data. In addition, the observation strategy of TD-GAC is described, and the pipeline of data reduction is tested.

  9. Eight to 14 μm spectral monitoring of long period variable stars with GLADYS.

    NASA Astrophysics Data System (ADS)

    Levan, P. D.; Sloan, G.; Grasdalen, G.

    The authors describe an ongoing program of spectral monitoring of long period variable stars using GLADYS, a long slit prism spectrometer that employs a 58x62 pixel Si:Ga detector array. The goal is to compare the equivalent widths of the SiC emission features in carbon-rich circumstellar shells, and the silicate emission features in oxygen-rich circumstellar stars, obtained over different phases of the continuum variability cycle. Spectra of long period variables and low amplitude variables recently obtained on the Wyoming Infrared Observatory 2.3 m telescope are presented.

  10. Pre-main sequence variables in young cluster Stock 18

    NASA Astrophysics Data System (ADS)

    Sinha, Tirthendu; Sharma, Saurabh; Pandey, Rakesh; Pandey, Anil Kumar

    2018-04-01

    We have carried out multi-epoch deep I band photometry of the open cluster Stock 18 to search for variable stars in star forming regions. In the present study, we identified 65 periodic and 217 non-periodic variable stars. The periods of most of the periodic variables are between 2 hours to 15 days and their magnitude varies between 0.05 to 0.6 mag. We have derived spectral energy distributions for 48 probable pre-main sequence variables. Their average age and mass are 2.7 ± 0.3 Myrs and 2.7 ± 0.2 Mo, respectively.

  11. ZZ Canis Minoris as a symbiotic star

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.

    1984-01-01

    The H-aplha and Na I D-line regions of the M6 giant star ZZ Canis Minoris (ZZ CMi) were observed with the Kitt Peak coude feed telescope and a CCD detector. It is shown that ZZ CMi has similar spectroscopic and photoproperties to the symbiotic star EG And. The data are used to argue for the classification of ZZ CMi as a symbiotic star despite its current listing in the General Catalog of Variable Stars (GCVS) as a semi-regular variable. The infrared magnitudes of ZZ CMi and the known symbiotic stars are compared in a table.

  12. RR Lyrae in the UMi dSph Galaxy

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles; Kinemuchi, Karen; Jeffery, Elizabeth; Grabowski, Kathleen; Nemec, James; Herrera, Daniel

    2018-01-01

    Over the past two years we have obtained observations of the Ursa Minor dwarf spheroidal galaxy with the goal of completing an updated catalog of the variable stars in the dwarf galaxy. In addition to finding new variable stars, this updated catalog will allow us to look at period changes in the variables and to determine stellar characteristic for the RR Lyrae stars in the dSph. We will compare the RR Lyrae stellar characteristics to other RR Lyrae stars found in the Local Group dSph galaxies; these comparisons can give us insights to the near-field cosmology of the Local Group. In this poster we present our updated catalog of RR Lyrae stars in the UMi dSph; the updated catalog includes Fourier decomposition parameters, metallicities, and other physical properties for the RR Lyrae stars.

  13. The Optical Gravitational Lensing Experiment. Catalog of RR Lyr Stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2003-06-01

    We present the catalog of RR Lyr stars discovered in a 4.5 square degrees area in the central parts of the Large Magellanic Cloud (LMC). Presented sample contains 7612 objects, including 5455 fundamental mode pulsators (RRab), 1655 first-overtone (RRc), 272 second-overtone (RRe) and 230 double-mode RR Lyr stars (RRd). Additionally we attach alist of several dozen other short-period pulsating variables. The catalog data include astrometry, periods, BVI photometry, amplitudes, and parameters of the Fourier decomposition of the I-band light curve of each object. We present density map of RR Lyr stars in the observed fields which shows that the variables are strongly concentrated toward the LMC center. The modal values of the period distribution for RRab, RRc and RRe stars are 0.573, 0.339 and 0.276 days, respectively. The period-luminosity diagrams for BVI magnitudes and for extinction insensitive index W_I are constructed. We provide the log P-I, log P-V and log P-W_I relations for RRab, RRc and RRe stars. The mean observed V-band magnitudes of RR Lyr stars in the LMC are 19.36 mag and 19.31 mag for ab and c types, respectively, while the extinction free values are 18.91 mag and 18.89 mag. We found a large number of RR Lyr stars pulsating in two modes closely spaced in the power spectrum. These stars are believed to exhibit non-radial pulsating modes. We discovered three stars which simultaneously reveal RR Lyr-type and eclipsing-type variability. If any of these objects were an eclipsing binary system containing RR Lyr star, then for the first time the direct determination of the mass of RR Lyr variable would be possible. We provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables. The period distribution of these stars suggests that NGC1835 shares features of Oosterhoff type I and type II groups. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive.

  14. Variable stars in the dwarf galaxy GR 8 (DDO 155)

    NASA Technical Reports Server (NTRS)

    Tolstoy, Eline; Saha, A.; Hoessel, John G.; Danielson, G. Edward

    1995-01-01

    Observations of the resolved stars in dwarf galaxy GR 8, obtained over the period 1980 February to 1994 March, are presented. Thirty-four separate epochs were searched for variable stars, and a total of six were found, of which one has Cepheid characteristics. After correction for Galactic extinction this single Cepheid yields a distance modulus of m - M = 26.75 +/- 0.35. This corresponds to a distance of 2.24 Mpc, placing GR 8 near the Local Group (LG) zero-velocity surface. The other five variable stars are very red, and possibly have long periods of order 100 days or more.

  15. The TAROT Suspected Variable Star Catalog

    NASA Astrophysics Data System (ADS)

    Damerdji, Y.; Klotz, A.; Boër, M.

    2007-04-01

    TAROT (Télescope à Action Rapide pour les Objets Transitoires) is a robotic observatory designed to observe very early optical transients of gamma-ray bursts (GRBs). As GRBs do not often occur, we use TAROT for various other celestial targets spread over the sky. For every field observed by TAROT, we computed the magnitudes of every star. From this work, we found 1175 new variable stars brighter than 17 mag. We selected the best variable star candidates and compiled them in the TSVSC1 (TAROT Suspected Variable Star Catalog, ver. 1), which also contains Fourier-series coefficients that fit the light curves. Based on observations collected with the TAROT instrument at the Calern Observatory, France. Complementary observations were carried out with the T80 telescope at the Observatoire de Haute-Provence, France. Additional material described in § 5 is available in electronic format at the CDS at http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/AJ/.

  16. An ultraviolet study of B[e] stars: evidence for pulsations, luminous blue variable type variations and processes in envelopes

    NASA Astrophysics Data System (ADS)

    Krtičková, I.; Krtička, J.

    2018-06-01

    Stars that exhibit a B[e] phenomenon comprise a very diverse group of objects in a different evolutionary status. These objects show common spectral characteristics, including the presence of Balmer lines in emission, forbidden lines and strong infrared excess due to dust. Observations of emission lines indicate illumination by an ultraviolet ionizing source, which is key to understanding the elusive nature of these objects. We study the ultraviolet variability of many B[e] stars to specify the geometry of the circumstellar environment and its variability. We analyse massive hot B[e] stars from our Galaxy and from the Magellanic Clouds. We study the ultraviolet broad-band variability derived from the flux-calibrated data. We determine variations of individual lines and the correlation with the total flux variability. We detected variability of the spectral energy distribution and of the line profiles. The variability has several sources of origin, including light absorption by the disc, pulsations, luminous blue variable type variations, and eclipses in the case of binaries. The stellar radiation of most of B[e] stars is heavily obscured by circumstellar material. This suggests that the circumstellar material is present not only in the disc but also above its plane. The flux and line variability is consistent with a two-component model of a circumstellar environment composed of a dense disc and an ionized envelope. Observations of B[e] supergiants show that many of these stars have nearly the same luminosity, about 1.9 × 105 L⊙, and similar effective temperatures.

  17. Beyond the Kepler/K2 bright limit: variability in the seven brightest members of the Pleiades

    NASA Astrophysics Data System (ADS)

    White, T. R.; Pope, B. J. S.; Antoci, V.; Pápics, P. I.; Aerts, C.; Gies, D. R.; Gordon, K.; Huber, D.; Schaefer, G. H.; Aigrain, S.; Albrecht, S.; Barclay, T.; Barentsen, G.; Beck, P. G.; Bedding, T. R.; Fredslund Andersen, M.; Grundahl, F.; Howell, S. B.; Ireland, M. J.; Murphy, S. J.; Nielsen, M. B.; Silva Aguirre, V.; Tuthill, P. G.

    2017-11-01

    The most powerful tests of stellar models come from the brightest stars in the sky, for which complementary techniques, such as astrometry, asteroseismology, spectroscopy and interferometry, can be combined. The K2 mission is providing a unique opportunity to obtain high-precision photometric time series for bright stars along the ecliptic. However, bright targets require a large number of pixels to capture the entirety of the stellar flux, and CCD saturation, as well as restrictions on data storage and bandwidth, limit the number and brightness of stars that can be observed. To overcome this, we have developed a new photometric technique, which we call halo photometry, to observe very bright stars using a limited number of pixels. Halo photometry is simple, fast and does not require extensive pixel allocation, and will allow us to use K2 and other photometric missions, such as TESS, to observe very bright stars for asteroseismology and to search for transiting exoplanets. We apply this method to the seven brightest stars in the Pleiades open cluster. Each star exhibits variability; six of the stars show what are most likely slowly pulsating B-star pulsations, with amplitudes ranging from 20 to 2000 ppm. For the star Maia, we demonstrate the utility of combining K2 photometry with spectroscopy and interferometry to show that it is not a `Maia variable', and to establish that its variability is caused by rotational modulation of a large chemical spot on a 10 d time-scale.

  18. Blue large-amplitude pulsators as a new class of variable stars

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, Paweł; Dziembowski, Wojciech A.; Latour, Marilyn; Angeloni, Rodolfo; Poleski, Radosław; di Mille, Francesco; Soszyński, Igor; Udalski, Andrzej; Szymański, Michał K.; Wyrzykowski, Łukasz; Kozłowski, Szymon; Skowron, Jan; Skowron, Dorota; Mróz, Przemek; Pawlak, Michał; Ulaczyk, Krzysztof

    2017-08-01

    Regular intrinsic brightness variations observed in many stars are caused by pulsations. These pulsations provide information on the global and structural parameters of the star. The pulsation periods range from seconds to years, depending on the compactness of the star and properties of the matter that forms its outer layers. Here, we report the discovery of more than a dozen previously unknown short-period variable stars: blue large-amplitude pulsators. These objects show very regular brightness variations with periods in the range of 20-40 min and amplitudes of 0.2-0.4 mag in the optical passbands. The phased light curves have a characteristic sawtooth shape, similar to the shape of classical Cepheids and RR Lyrae-type stars pulsating in the fundamental mode. The objects are significantly bluer than main-sequence stars observed in the same fields, which indicates that all of them are hot stars. Follow-up spectroscopy confirms a high surface temperature of about 30,000 K. Temperature and colour changes over the cycle prove the pulsational nature of the variables. However, large-amplitude pulsations at such short periods are not observed in any known type of stars, including hot objects. Long-term photometric observations show that the variable stars are very stable over time. Derived rates of period change are of the order of 10-7 per year and, in most cases, they are positive. According to pulsation theory, such large-amplitude oscillations may occur in evolved low-mass stars that have inflated helium-enriched envelopes. The evolutionary path that could lead to such stellar configurations remains unknown.

  19. Synergies between exoplanet surveys and variable star research

    NASA Astrophysics Data System (ADS)

    Kovacs, Geza

    2017-09-01

    With the discovery of the first transiting extrasolar planetary system back in 1999, a great number of projects started to hunt for other similar systems. Because the incidence rate of such systems was unknown and the length of the shallow transit events is only a few percent of the orbital period, the goal was to monitor continuously as many stars as possible for at least a period of a few months. Small aperture, large field of view automated telescope systems have been installed with a parallel development of new data reduction and analysis methods, leading to better than 1% per data point precision for thousands of stars. With the successful launch of the photometric satellites CoRoT and Kepler, the precision increased further by one-two orders of magnitude. Millions of stars have been analyzed and searched for transits. In the history of variable star astronomy this is the biggest undertaking so far, resulting in photometric time series inventories immensely valuable for the whole field. In this review we briefly discuss the methods of data analysis that were inspired by the main science driver of these surveys and highlight some of the most interesting variable star results that impact the field of variable star astronomy.

  20. The Bulgarian Contribution to the Study of variable stars on observational data from the Kepler mission

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, D. P.; Dimitrov, D. P.; Radeva, V. S.; Vasileva, D. L.; Atanasova, T. V.; Stateva, I. V.; Petrov, N. I.; Iliev, I. Kh.

    2018-02-01

    This review paper presents the results of investigations of variable stars obtained by Bulgarian astronomers based on observations of Kepler mission. The main contributions are: determination of orbits and global parameters of more than 100 binary stars; creation of the largest catalog of eccentric stars; identification of sixty new binaries with eccentricity over 0.5; discovery of 19 heartbeat stars; detailed investigation of the spot and flare activity of several binary stars; asteroseismic study of three pulsating stars; detection of deep transits of WD 1145+017 due to its disentangling planet system. The paper illustrates not only scientific significance but also educational and social impact of the work on these tasks.

  1. Report on the Photometric Observations of the Variable Stars DH Pegasi, DY Pegasi, and RZ Cephei

    NASA Astrophysics Data System (ADS)

    Abu-Sharkh, I.; Fang, S.; Mehta, S.; Pham, D.

    2014-12-01

    We report 872 observations on two RR Lyrae variable stars, DH Pegasi and RZ Cephei, and on one SX Phoenicis variable, DY Pegasi. This paper discusses the methodology of our measurements, the light curves, magnitudes, epochs, and epoch prediction of the above stars. We also derived the period of DY Pegasi. All measurements and analyses are compared with prior publications and known values from multiple databases.

  2. Searching for Variable Stars in the SDSS Calibration Fields (Abstract)

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Butner, M.; Tucker, D.; Allam, S.

    2018-06-01

    (Abstract only) We are searching the Sloan Digital Sky Survey (SDSS) calibration fields for variable stars. This long neglected data set, taken with a 0.5-m telescope, contains nearly 200,000 stars in more than 100 fields which were observed over the course of 8+ years during the observing portion of the SDSS-I and SDSS-II surveys. During the course of the survey, each field was visited from 10 to several thousand times, so our initial pass is just to identify potential variable stars. Our initial "quick-look" effort shows several thousand potential candidates and includes at least one nearby supernova. We present our plans for a follow-up observational program for further identification of variable types and period determinations.

  3. A survey for pulsations in A-type stars using SuperWASP

    NASA Astrophysics Data System (ADS)

    Holdsworth, Daniel L.

    2015-12-01

    "It is sound judgement to hope that in the not too distant future we shall be competent to understand so simple a thing as a star." - Sir Arthur Stanley Eddington, The Internal Constitution of Stars, 1926 A survey of A-type stars is conducted with the SuperWASP archive in the search for pulsationally variable stars. Over 1.5 million stars are selected based on their (J-H) colour. Periodograms are calculated for light curves which have been extracted from the archive and cleaned of spurious points. Peaks which have amplitudes greater than 0.5 millimagnitude are identified in the periodograms. In total, 202 656 stars are identified to show variability in the range 5-300 c/d. Spectroscopic follow-up was obtained for 38 stars which showed high-frequency pulsations between 60 and 235 c/d, and a further object with variability at 636 c/d. In this sample, 13 were identified to be normal A-type δ Sct stars, 14 to be pulsating metallic-lined Am stars, 11 to be rapidly oscillating Ap (roAp) stars, and one to be a subdwarf B variable star. The spectra were used not only to classify the stars, but to determine an effective temperature through Balmer line fitting. Hybrid stars have been identified in this study, which show pulsations in both the high- and low-overtone domains; an observation not predicted by theory. These stars are prime targets to perform follow-up observations, as a confirmed detection of this phenomenon will have significant impact on the theory of pulsations in A-type stars. The detected number of roAp stars has expanded the known number of this pulsator class by 22 per cent. Within these results both the hottest and coolest roAp star have been identified. Further to this, one object, KIC 7582608, was observed by the Kepler telescope for 4 yr, enabling a detailed frequency analysis. This analysis has identified significant frequency variations in this star, leading to the hypothesis that this is the first close binary star of its type. The observational results presented in this thesis are able to present new challenges to the theory of pulsations in A-type stars, with potentially having the effect of further delaying the full understanding of 'so simple a thing as a star'.

  4. VizieR Online Data Catalog: Abundances of 8 RR Lyrae subclass C variable stars (Govea+, 2014)

    NASA Astrophysics Data System (ADS)

    Govea, J.; Gomez, T.; Preston, G. W.; Sneden, C.

    2016-02-01

    We chose 10 candidate RR Lyrae variable stars of subclass c (RRc) stars for spectroscopic observation. Many of these stars were first identified as RRc variables by the All Sky Automated Survey (ASAS) of Pojmanski 2003 (cat. II/264). The target star list included ASAS 144154-0324.7 and ASAS 204440-2402.7. But our spectroscopic study suggest that these two stars are probably W UMa binaries instead of RR Lyrae stars Our spectra were obtained with the echelle spectrograph of the du Pont 2.5m telescope at the Las Campanas Observatory. Four observing runs during 2009-2010 were partly devoted to this project. The spectrograph was used with the 1.5*4'' entrance slit, which translates to a resolving power of R=λ/Δλ~27000 at the MgI b lines near 5180Å. The total continuous wavelength coverage of the spectra was 3500-9000Å. (6 data files).

  5. The IUE Mega Campaign: Wind Variability and Rotation in Early-Type Stars

    NASA Technical Reports Server (NTRS)

    Massa, D.; Fullerton, A. W.; Nichols, J. S.; Owocki, S. P.; Prinja, R. K.; St-Louis, N.; Willis, A. J.; Altner, B.; Bolton, C. T.; Cassinelli, J. P.; hide

    1995-01-01

    Wind variability in OB stars may be ubiquitous and a connection between projected stellar rotation velocity and wind activity is well established. However, the origin of this connection is unknown. To probe the nature of the rotation connection, several of the attendees at the workshop on Instability and Variability of Hot-Star Winds drafted an IUE observing proposal. The goal of this program was to follow three stars for several rotations to determine whether the rotation connection is correlative or causal. The stars selected for monitoring all have rotation periods less than or equal to 5 days. They were HD 50896 (WN5), HD 64760 (BO.5 Ib), and HD 66811 (zeta Pup; 04 If(n)). During 16 days of nearly continuous observations in 1995 January (dubbed the 'MEGA' campaign), 444 high-dispersion IUE spectra of these stars were obtained. This Letter presents an overview of the results of the MEGA campaign and provides an introduction to the three following Letters, which discuss the results for each star.

  6. Variable Circumstellar Disks of Classical Be Stars in Clusters

    NASA Astrophysics Data System (ADS)

    Gerhartz, C.; Bjorkman, K. S.; Bjorkman, J. E.; Wisniewski, J. P.

    2016-11-01

    Circumstellar disks are common among many stars, at most spectral types, and at different stages of their lifetimes. Among the near-main-sequence classical Be stars, there is growing evidence that these disks form, dissipate, and reform on timescales that differ from star to star. Using data obtained with the Large Monolithic Imager (LMI) at the Lowell Observatory Discovery Channel Telescope (DCT), along with additional complementary data obtained at the University of Toledo Ritter Observatory (RO), we have begun a long-term monitoring project of a well-studied set of galactic star clusters that are known to contain Be stars. Our goal is to develop a statistically significant sample of variable circumstellar disk systems over multiple timescales. With a robust multi-epoch study we can determine the relative fraction of Be stars that exhibit disk-loss or disk-renewal phases, and investigate the range of timescales over which these events occur. A larger sample will improve our understanding of the prevalence and nature of the disk variability, and may provide insight about underlying physical mechanisms.

  7. Wide-Field Variability Survey of the Globular Cluster M 79 and a New Period-Luminosity Relation for SX Phe Stars

    NASA Astrophysics Data System (ADS)

    Kopacki, G.

    2015-03-01

    We present the results of a search for variable stars in a 26×39 arcmin2 field around globular cluster M 79 (NGC 1904). The search was made by means of an extended version of image subtraction, which allows us to analyze in a uniform manner CCD frames obtained with different telescopes and cameras of different sizes and resolutions. The search resulted in finding 20 new variable stars, among which 13 are cluster members. The members include one new RR Lyr star of subtype c, three SX Phe stars, and nine variable red giants. We also show that V7 is a W Vir star with a period of 13.985 d. Revised mean periods of RRab and RRc stars, ab=0.71 d and c=0.34 d, respectively, and relative percentage of RRc stars, Nc/(Nab+Nc)=45% confirm that M 79 belongs to the Oosterhoff II group of globular clusters. The mean V magnitude of the horizontal branch of M 79 based on ten RR Lyr stars has been estimated to be VHB=RR=16.11±0.03 mag. In one RRc star, V9, light changes with three close frequencies were detected, indicating excitation of nonradial modes. An SX Phe star, V18, is a double-mode pulsator with two radial modes excited, fundamental and first overtone. Moreover, we have discovered two SX Phe or δ Sct stars and one W UMa type system, all likely field objects. We also studied the period-luminosity relation for SX Phe stars. Using 62 fundamental and fundamentalized periods of radial double-mode and high-amplitude SX Phe stars known in Galactic globular clusters, we have derived the slope and zero point of this relation to be, -3.3±0.27 and 2.68±0.03 mag (at log(P/d)=-1.24), respectively.

  8. A photometric study of Be stars located in the seismology fields of COROT

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Soto, J.; Fabregat, J.; Suso, J.; Lanzara, M.; Garrido, R.; Hubert, A.-M.; Floquet, M.

    2007-12-01

    Context: In preparation for the COROT mission, an exhaustive photometric study of Be stars located in the seismology fields of the mission has been performed. The very precise and long-time-spanned photometric observations gathered by the COROT satellite will give important clues on the origin of the Be phenomenon. Aims: The aim of this work is to find short-period variable Be stars located in the seismology fields of COROT, and to study and characterise their pulsational properties. Methods: Light curves obtained at the Observatorio de Sierra Nevada, together with data from Hipparcos and ASAS-3 for a total of 84 Be stars, were analysed in order to search for short-term variations. We applied standard Fourier techniques and non-linear least-square fitting to the time series. Results: We found 7 multiperiodic, 21 mono-periodic and 26 non-variable Be stars. Short-term variability was detected in 74% of early-type Be stars and in 31% of mid- to late-type Be stars. We show that non-radial pulsations are more frequent among Be stars than in slow-rotating B stars of the same spectral range. Appendix A is only available in electronic form at http://www.aanda.org

  9. Trajectories of Cepheid variable stars in the Galactic nuclear bulge

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki

    2012-06-01

    The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, 10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, 25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.

  10. Exploring the crowded central region of ten Galactic globular clusters using EMCCDs. Variable star searches and new discoveries

    NASA Astrophysics Data System (ADS)

    Figuera Jaimes, R.; Bramich, D. M.; Skottfelt, J.; Kains, N.; Jørgensen, U. G.; Horne, K.; Dominik, M.; Alsubai, K. A.; Bozza, V.; Calchi Novati, S.; Ciceri, S.; D'Ago, G.; Galianni, P.; Gu, S.-H.; Harpsøe, K. B. W.; Haugbølle, T.; Hinse, T. C.; Hundertmark, M.; Juncher, D.; Korhonen, H.; Mancini, L.; Popovas, A.; Rabus, M.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Southworth, J.; Starkey, D.; Street, R. A.; Surdej, J.; Wang, X.-B.; Wertz, O.

    2016-04-01

    Aims: We aim to obtain time-series photometry of the very crowded central regions of Galactic globular clusters; to obtain better angular resolution thanhas been previously achieved with conventional CCDs on ground-based telescopes; and to complete, or improve, the census of the variable star population in those stellar systems. Methods: Images were taken using the Danish 1.54-m Telescope at the ESO observatory at La Silla in Chile. The telescope was equipped with an electron-multiplying CCD, and the short-exposure-time images obtained (ten images per second) were stacked using the shift-and-add technique to produce the normal-exposure-time images (minutes). Photometry was performed via difference image analysis. Automatic detection of variable stars in the field was attempted. Results: The light curves of 12 541 stars in the cores of ten globular clusters were statistically analysed to automatically extract the variable stars. We obtained light curves for 31 previously known variable stars (3 long-period irregular, 2 semi-regular, 20 RR Lyrae, 1 SX Phoenicis, 3 cataclysmic variables, 1 W Ursae Majoris-type and 1 unclassified) and we discovered 30 new variables (16 long-period irregular, 7 semi-regular, 4 RR Lyrae, 1 SX Phoenicis and 2 unclassified). Fluxes and photometric measurements for these stars are available in electronic form through the Strasbourg astronomical Data Center. Based on data collected by the MiNDSTEp team with the Danish 1.54m telescope at ESO's La Silla observatory in Chile.Full Table 1 is only available at CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A128

  11. ROTSE All-Sky Surveys for Variable Stars. I. Test Fields

    NASA Astrophysics Data System (ADS)

    Akerlof, C.; Amrose, S.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Hills, J.; Kehoe, R.; Lee, B.; Marshall, S.; McKay, T.; Pawl, A.; Schaefer, J.; Szymanski, J.; Wren, J.

    2000-04-01

    The Robotic Optical Transient Search Experiment I (ROTSE-I) experiment has generated CCD photometry for the entire northern sky in two epochs nightly since 1998 March. These sky patrol data are a powerful resource for studies of astrophysical transients. As a demonstration project, we present first results of a search for periodic variable stars derived from ROTSE-I observations. Variable identification, period determination, and type classification are conducted via automatic algorithms. In a set of nine ROTSE-I sky patrol fields covering roughly 2000 deg2, we identify 1781 periodic variable stars with mean magnitudes between mv=10.0 and mv=15.5. About 90% of these objects are newly identified as variable. Examples of many familiar types are presented. All classifications for this study have been manually confirmed. The selection criteria for this analysis have been conservatively defined and are known to be biased against some variable classes. This preliminary study includes only 5.6% of the total ROTSE-I sky coverage, suggesting that the full ROTSE-I variable catalog will include more than 32,000 periodic variable stars.

  12. Variability Survey of ω Centauri in the Near-IR: Period-Luminosity Relations

    NASA Astrophysics Data System (ADS)

    Navarrete, Camila; Catelan, Márcio; Contreras Ramos, Rodrigo; Gran, Felipe; Alonso-García, Javier; Dékány, István

    2015-08-01

    ω Centauri (NGC 5139) is by far the most massive globular star cluster in the Milky Way, and has even been suggested to be the remnant of a dwarf galaxy. As such, it contains a large number of variable stars of different classes. Here we report on a deep, wide-field, near-infrared variability survey of omega Cen, carried out by our team using ESO's 4.1m VISTA telescope. Our time-series data comprise 42 and 100 epochs in J and Ks, respectively. This unique dataset has allowed us to derive complete light curves for hundreds of variable stars in the cluster, and thereby perform a detailed analysis of the near-infrared period-luminosity (PL) relations for different variability classes, including type II Cepheids, SX Phoenicis, and RR Lyrae stars. In this contribution, in addition to describing our survey and presenting the derived light curves, we present the resulting PL relations for each of these variability classes, including the first calibration of this sort for the SX Phoenicis stars. Based on these relations, we also provide an updated (pulsational) distance modulus for omega Cen, compare with results based on independent techniques, and discuss possible sources of systematic errors.

  13. Exploración del catálogo de objetos en emisión H de Henize y All Sky Automated Survey: nuevas variables y tipos espectrales

    NASA Astrophysics Data System (ADS)

    Jaque Arancibia, M.; Barbá, R. H.; Collado, A.; Gamen, R.; Arias, J. I.

    2016-08-01

    Large astronomical surveys allow us to do systematic studies of stellar populations with significant statistical weight. In this study, we have cross-correlated the Henize's (1976) catalog of stellar sources with H emission-line with “The All Sky Automated Survey'' database. After the positional cross-matching we have found that 1402 of 1926 H sources have ASAS light-curves. From that number, more than 50 (723 sources) are periodic variables with amplitude larger than 0.05 magnitudes, while 276 sources show photometric variations without a clear periodicity. Variable stars that we have found are of many different types, among them Miras, eclipsing binaries, bursting stars, etc. Also, only 133 stars are known previously as variable sources in ASAS catalogue, and 93 of them were studied previously in detail. In order to characterize the nature of the sources, we have started a medium-resolution spectroscopic survey of the unstudied variable emission-line objects using the 2.15-m Jorge Sahade Telescope at Complejo Astronómico El Leoncito (Argentina). At the moment, we have observed a set of 67 blue stars selected using 2MASS colors, being almost all of them Be-type stars. This set of bright new variable Be-type stars is ideal for follow-up monitoring for the study of the Be-phenomenon.

  14. Cross-neutralization of antibodies induced by vaccination with Purified Chick Embryo Cell Vaccine (PCECV) against different Lyssavirus species

    PubMed Central

    Malerczyk, Claudius; Freuling, Conrad; Gniel, Dieter; Giesen, Alexandra; Selhorst, Thomas; Müller, Thomas

    2014-01-01

    Background: Rabies is a neglected zoonotic disease caused by viruses belonging to the genus lyssavirus. In endemic countries of Asia and Africa, where the majority of the estimated 60,000 human rabies deaths occur, it is mainly caused by the classical rabies virus (RABV) transmitted by dogs. Over the last decade new species within the genus lyssavirus have been identified. Meanwhile 15 (proposed or classified) species exist, including Australian bat lyssavirus (ABLV), European bat lyssavirus (EBLV-1 and -2), Duvenhage virus (DUVV), as well as Lagos bat virus (LBV) and Mokola virus (MOKV) and recently identified novel species like Bokeloh bat lyssavirus (BBLV), Ikoma bat lyssavirus (IKOV) or Lleida bat lyssavirus (LLBV). The majority of these lyssavirus species are found in bat reservoirs and some have caused human infection and deaths. Previous work has demonstrated that Purified Chick Embryo Cell Rabies Vaccine (PCECV) not only induces immune responses against classical RABV, but also elicits cross-neutralizing antibodies against ABLV, EBLV-1 and EBLV-2. Material & Methods: Using the same serum samples as in our previous study, this study extension investigated cross-neutralizing activities of serum antibodies measured by rapid fluorescent focus inhibition test (RFFIT) against selected other non-classical lyssavirus species of interest, namely DUVV and BBLV, as well as MOKV and LBV. Results: Antibodies developed after vaccination with PCECV have neutralizing capability against BBLV and DUVV in the same range as against ABLV and EBLV-1 and -2. As expected, for the phylogenetically more distant species LBV no cross-neutralizing activity was found. Interestingly, 15 of 94 serum samples (16%) with a positive neutralizing antibody titer against RABV displayed specific cross-neutralizing activity (65-fold lower than against RABV) against one specific MOKV strain (Ethiopia isolate), which was not seen against a different strain (Nigeria isolate). Conclusion: Cross-neutralizing activities partly correlate with the phylogenetic distance of the virus species. Cross-neutralizing activities against the species BBLV and DUVV of phylogroup 1 were demonstrated, in line with previous results of cross-neutralizing activities against ABLV and EBLV-1 and -2. Potential partial cross-neutralizing activities against more distant lyssavirus species like selected MOKV strains need further research. PMID:25483634

  15. Optical Monitoring of Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Kar, Aman; Jang-Condell, Hannah; Kasper, David; Findlay, Joseph; Kobulnicky, Henry A.

    2018-06-01

    Observing Young Stellar Objects (YSOs) for variability in different wavelengths enables us to understand the evolution and structure of the protoplanetary disks around stars. The stars observed in this project are known YSOs that show variability in the Infrared. Targets were selected from the Spitzer Space Telescope Young Stellar Object Variability (YSOVAR) Program, which monitored star-forming regions in the mid-infrared. The goal of our project is to investigate any correlation between the variability in the infrared versus the optical. Infrared variability of YSOs is associated with the heating of the protoplanetary disk while accretion signatures are observed in the H-alpha region. We used the University of Wyoming’s Red Buttes Observatory to monitor these stars for signs of accretion using an H-alpha narrowband filter and the Johnson-Cousins filter set, over the Summer of 2017. We perform relative photometry and inspect for an image-to-image variation by observing these targets for a period of four months every two to three nights. The study helps us better understand the link between accretion and H-alpha activity and establish a disk-star connection.

  16. The Development of Early Pulsation Theory, or, How Cepheids Are Like Steam Engines

    NASA Astrophysics Data System (ADS)

    Stanley, M.

    2012-06-01

    The pulsation theory of Cepheid variable stars was a major breakthrough of early twentieth-century astrophysics. At the beginning of that century, the basic physics of normal stars was very poorly understood, and variable stars were even more mysterious. Breaking with accepted explanations in terms of eclipsing binaries, Harlow Shapley and A. S. Eddington pioneered novel theories that considered Cepheids as pulsating spheres of gas. Surprisingly, the pulsation theory not only depended on novel developments in stellar physics, but the theory also drove many of those developments. In particular, models of stars in radiative balance and theories of stellar energy were heavily inspired and shaped by ideas about variable stars. Further, the success of the pulsation theory helped justify the new approaches to astrophysics being developed before World War II.

  17. All-Sky Census of Variable Stars from the ATLAS Survey

    NASA Astrophysics Data System (ADS)

    Heinze, Aren Nathaniel; Tonry, John; Denneau, Larry; Stalder, Brian

    2018-01-01

    The Asteroid Terrestrial-Impact Last Alert Survey uses two custom-built 0.5 meter telescopes to scan the whole accessible sky down to magnitude 19.5 every two nights, with a cadence optimized to detect small asteroids on their 'final plunge' toward impact with Earth. This cadence is also well suited to the detection of variable stars with a huge range of periods and properties, while ATLAS' use of two filters provides additional scientific depth. From the first two years of ATLAS data we have constructed a catalog of several hundred thousand variable objects with periods from one hour to hundreds of days. These include RR Lyrae stars, Cepheids, eclipsing binaries, spotted stars, ellipsoidal variables, Miras; and other objects both regular and irregular. We describe the construction of this catalog, including our multi-step confirmation process for genuine variables; some big-picture scientific conclusions; and prospects for more detailed results.

  18. An investigation of the photometric variability of confirmed and candidate Galactic Be stars using ASAS-3 data

    NASA Astrophysics Data System (ADS)

    Bernhard, Klaus; Otero, Sebastián; Hümmerich, Stefan; Kaltcheva, Nadejda; Paunzen, Ernst; Bohlsen, Terry

    2018-05-01

    We present an investigation of a large sample of confirmed (N=233) and candidate (N=54) Galactic classical Be stars (mean V magnitude range of 6.4 to 12.6 mag), with the main aim of characterizing their photometric variability. Our sample stars were preselected among early-type variables using light curve morphology criteria. Spectroscopic information was gleaned from the literature, and archival and newly-acquired spectra. Photometric variability was analyzed using archival ASAS-3 time series data. To enable a comparison of results, we have largely adopted the methodology of Labadie-Bartz et al. (2017), who carried out a similar investigation based on KELT data. Complex photometric variations were established in most stars: outbursts on different time-scales (in 73±5 % of stars), long-term variations (36±6 %), periodic variations on intermediate time-scales (1±1 %) and short-term periodic variations (6±3 %). 24±6 % of the outbursting stars exhibit (semi)periodic outbursts. We close the apparent void of rare outbursters reported by Labadie-Bartz et al. (2017), and show that Be stars with infrequent outbursts are not rare. While we do not find a significant difference in the percentage of stars showing outbursts among early-type, mid-type and late-type Be stars, we show that early-type Be stars exhibit much more frequent outbursts. We have measured rising and falling times for well-covered and well-defined outbursts. Nearly all outburst events are characterized by falling times that exceed the rising times. No differences were found between early-, mid- and late-type stars; a single non-linear function adequately describes the ratio of falling time to rising time across all spectral subtypes, with the ratio being larger for short events.

  19. The 3.5 micron light curves of long period variable stars. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Strecker, D. W.

    1973-01-01

    Infrared observations at an effective wavelength of 3.5 microns of a selected group of long period variable (LPV) stars are presented. Mira type and semiregular stars of M, S, and C spectral classifications were monitored throughout the full cycle of variability. Although the variable infrared radiation does not exactly repeat in intensity or time, the regularity is sufficient to produce mean 3.5 micron light curves. The 3.5 micron maximum radiation lags the visual maximum by about one-seventh of a cycle, while the minimum 3.5 micron intensity occurs nearly one-half cycle after infrared maximum. In some stars, there are inflections or humps on the ascending portion of the 3.5 micron light curve which may also be seen in the visual variations.

  20. Transits, Spots, and Eclipses: The Sunís Role in Pedagogy and Outreach (Abstract)

    NASA Astrophysics Data System (ADS)

    Larsen, K.

    2018-06-01

    (Abstract only) While most people observe variable stars at night, the observers of the AAVSO Solar Section make a single observation per day, but only if it is sunny, because our variable is the Sun itself. While the Sun can play an important role in astronomy outreach and pedagogy in general, as demonstrated by the recent 2017 eclipse, it can also serve as an ambassador for variable stars. This talk will examine how our sun can be used as a tool to explain several types of variable star behaviors, including transits, spots, and eclipses.

  1. Searching for δ Scuti-type pulsation and characterising northern pre-main-sequence field stars

    NASA Astrophysics Data System (ADS)

    Díaz-Fraile, D.; Rodríguez, E.; Amado, P. J.

    2014-08-01

    Context. Pre-main-sequence (PMS) stars are objects evolving from the birthline to the zero-age main sequence (ZAMS). Given a mass range near the ZAMS, the temperatures and luminosities of PMS and main-sequence stars are very similar. Moreover, their evolutionary tracks intersect one another causing some ambiguity in the determination of their evolutionary status. In this context, the detection and study of pulsations in PMS stars is crucial for differentiating between both types of stars by obtaining information of their interiors via asteroseismic techniques. Aims: A photometric variability study of a sample of northern field stars, which previously classified as either PMS or Herbig Ae/Be objects, has been undertaken with the purpose of detecting δ Scuti-type pulsations. Determination of physical parameters for these stars has also been carried out to locate them on the Hertzsprung-Russell diagram and check the instability strip for this type of pulsators. Methods: Multichannel photomultiplier and CCD time series photometry in the uvby Strömgren and BVI Johnson bands were obtained during four consecutive years from 2007 to 2010. The light curves have been analysed, and a variability criterion has been established. Among the objects classified as variable stars, we have selected those which present periodicities above 4 d-1, which was established as the lowest limit for δ Scuti-type pulsations in this investigation. Finally, these variable stars have been placed in a colour-magnitude diagram using the physical parameters derived with the collected uvbyβ Strömgren-Crawford photometry. Results: Five PMS δ Scuti- and three probable β Cephei-type stars have been detected. Two additional PMS δ Scuti stars are also confirmed in this work. Moreover, three new δ Scuti- and two γ Doradus-type stars have been detected among the main-sequence objects used as comparison or check stars.

  2. Variability of Massive Young Stellar Objects in Cygnus-X

    NASA Astrophysics Data System (ADS)

    Thomas, Nancy H.; Hora, J. L.; Smith, H. A.

    2013-01-01

    Young stellar objects (YSOs) are stars in the process of formation. Several recent investigations have shown a high rate of photometric variability in YSOs at near- and mid-infrared wavelengths. Theoretical models for the formation of massive stars (1-10 solar masses) remain highly idealized, and little is known about the mechanisms that produce the variability. An ongoing Spitzer Space Telescope program is studying massive star formation in the Cygnus-X region. In conjunction with the Spitzer observations, we have conducted a ground-based near-infrared observing program of the Cygnus-X DR21 field using PAIRITEL, the automated infrared telescope at Whipple Observatory. Using the Stetson index for variability, we identified variable objects and a number of variable YSOs in our time-series PAIRITEL data of DR21. We have searched for periodicity among our variable objects using the Lomb-Scargle algorithm, and identified periodic variable objects with an average period of 8.07 days. Characterization of these variable and periodic objects will help constrain models of star formation present. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.

  3. Variable Stars in the Draco Dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Harris, H. C.; Silberman, N. A.; Smith, H. A.

    A new survey of the variable stars in the Draco dwarf spheroidal galaxy updates the pioneering study of this galaxy by Baade and Swope (1961). Our improved data, taken in BVI filters with CCD cameras on three telescopes at more than 80 epochs, allow us to investigate the known variables and to discover new, mostly low-amplitude variables. Approximately 300 variables are found and classified, more than double the number of variables analyzed previously. Most are RR Lyraes, with a small fraction of Anomalous Cepheids. This large sample of variables provides a unique opportunity to study the properties of these stars in a single system. This paper discusses the census of RR Lyraes, including RRc-type, double-mode, and Blazhko-effect RR Lyraes, as well as Anomalous Cepheids, and Type II Cepheids in Draco.

  4. Variable stars in the Galactic center, as revealed by the VVV Survey

    NASA Astrophysics Data System (ADS)

    Molina, Claudio Navarro; Borissova, Jura; Catelan, Márcio; Kurtev, Radostin; Medina, Nicolás

    2017-09-01

    A variability search has been performed in the Galactic center, using the nearinfrared images from the Vista Variables in the Vía Láctea (VVV) Survey. Light curves contain 89 epochs in the KS band. A total of 353 variable stars were found, of which only 47 are already present in the literature.

  5. A Study of Nonthermal X-Ray and Radio Emission from the O Star 9 Sgr

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Corcoran, Michael F.; Drake, Stephen A.

    1999-01-01

    The observed X-ray and highly variable nonthermal radio emission from OB stars has eluded explanation for more than 18 years. The most favorable model of X-ray production in these stars (shocks) predicts both nonthermal radio and X-ray emission. The nonthermal X-ray emission should occur above 2 keV and the variability of this X-ray component should also be comparable to the observed radio variability. To test this scenario, we proposed an ASC/VLA monitoring program to observe the OB star, 9 Sgr, a well known nonthermal, variable radio source and a strong X-ray source. We requested 625 ks ASCA observations with a temporal spacing of approximately 4 days which corresponds to the time required for a density disturbance to propagate to the 6 cm radio free-free photosphere. The X-ray observations were coordinated with 5 multi-wavelength VLA observations. These observations represent the first systematic attempt to investigate the relationship between the X-ray and radio emission in OB stars.

  6. Bulge RR Lyrae stars in the VVV tile b201

    NASA Astrophysics Data System (ADS)

    Gran, F.; Minniti, D.; Saito, R. K.; Navarrete, C.; Dékány, I.; McDonald, I.; Contreras Ramos, R.; Catelan, M.

    2015-03-01

    Context. The VISTA Variables in the Vía Láctea (VVV) Survey is one of the six ESO public surveys currently ongoing at the VISTA telescope on Cerro Paranal, Chile. VVV uses near-IR (ZYJHKs) filters that at present provide photometry to a depth of Ks ~ 17.0 mag in up to 36 epochs spanning over four years, and aim at discovering more than 106 variable sources as well as trace the structure of the Galactic bulge and part of the southern disk. Aims: A variability search was performed to find RR Lyrae variable stars. The low stellar density of the VVV tile b201, which is centered at (ℓ,b) ~ (-9°, -9°), makes it suitable to search for variable stars. Previous studies have identified some RR Lyrae stars using optical bands that served to test our search procedure. The main goal is to measure the reddening, interstellar extinction, and distances of the RR Lyrae stars and to study their distribution on the Milky Way bulge. Methods: For each star in the tile with more than 25 epochs (~90% of the objects down to Ks ~ 17.0 mag), the standard deviation and χ2 test were calculated to identify variable candidates. Periods were determined using the analysis of variance. Objects with periods in the RR Lyrae range of 0.2 ≤ P ≤ 1.2 days were selected as candidate RR Lyrae. They were individually examined to exclude false positives. Results: A total of 1.5 sq deg were analyzed, and we found 39 RR Lyr stars, 27 of which belong to the ab-type and 12 to the c-type. Our analysis recovers all the previously identified RR Lyrae variables in the field and discovers 29 new RR Lyr stars. The reddening and extinction toward all the RRab stars in this tile were derived, and distance estimations were obtained through the period-luminosity relation. Despite the limited amount of RR Lyrae stars studied, our results are consistent with a spheroidal or central distribution around ~8.1 and ~8.5 kpc. for either the Cardelli or Nishiyama extinction law. Our analysis does not reveal a stream-like structure. Nevertheless, a larger area must be analyzed to definitively rule out streams. Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179.B-2002.

  7. Automated classification of periodic variable stars detected by the wide-field infrared survey explorer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masci, Frank J.; Grillmair, Carl J.; Cutri, Roc M.

    2014-07-01

    We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodicmore » light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately ±2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.« less

  8. A search for T Tauri stars and related objects: Archival photometry of candidate variables in V733 Cep field

    NASA Astrophysics Data System (ADS)

    Jurdana-Šepić, R.; Poljančić Beljan, I.

    Searching for T Tauri stars or related early type variables we carried out a BVRI photometric measurements of five candidates with positions within the field of the pre-main sequence object V733 Cephei (Persson's star) located in the dark cloud L1216 near to Cepheus OB3 Association: VES 946, VES 950, NSV 14333, NSV 25966 and V385 Cep. Their magnitudes are determined on the plates from Asiago Observatory historical photographic archive exposed 1971 - 1978. We provide finding charts for program stars and comparison sequence stars, magnitude estimations, magnitude mean values and BVR_cI_c light curves of program stars.

  9. Determining Hβ Color Indices for 23 δ Scuti Variable Stars

    NASA Astrophysics Data System (ADS)

    Bush, Tabitha C.; Hintz, E. G.; Shreeve, D. K.; Jorgenson, K.

    2010-01-01

    Color index is a fundamental characteristic in the study of δ Scuti variable stars. The then comprehensive catalog of δ Scutis compiled by Rodriguez et al. (Rodriguez, E. Lopez Gonzalez, M. J., & Lopez de Coca, P. 2000, A&AS, 144, 469) contains 636 δ Scuti stars and several characteristics of these stars, including Hβ color index. Of the 417 stars in this catalog brighter than 13th magnitude, about 20% of them are missing Hβ color index values. We present 23 of these previously unpublished values, calculated from a calibration relation using spectroscopic observations obtained at the Dominion Astrophysical Observatory of 167 δ Scuti stars north of -01 degrees declination and brighter than 13th magnitude.

  10. GORGONA - the characteristic of the software system.

    NASA Astrophysics Data System (ADS)

    Artim, M.; Zejda, M.

    A description of the new software system is given. The GORGONA system is established to the processing, making and administration of archives of periodic variable stars observations, observers and observed variable stars.

  11. Long-term variability of T Tauri stars using WASP

    NASA Astrophysics Data System (ADS)

    Rigon, Laura; Scholz, Alexander; Anderson, David; West, Richard

    2017-03-01

    We present a reference study of the long-term optical variability of young stars using data from the WASP project. Our primary sample is a group of well-studied classical T Tauri stars (CTTSs), mostly in Taurus-Auriga. WASP light curves cover time-scales of up to 7 yr and typically contain 10 000-30 000 data points. We quantify the variability as a function of time-scale using the time-dependent standard deviation 'pooled sigma'. We find that the overwhelming majority of CTTSs have a low-level variability with σ < 0.3 mag dominated by time-scales of a few weeks, consistent with rotational modulation. Thus, for most young stars, monitoring over a month is sufficient to constrain the total amount of variability over time-scales of up to a decade. The fraction of stars with a strong optical variability (σ > 0.3 mag) is 21 per cent in our sample and 21 per cent in an unbiased control sample. An even smaller fraction (13 per cent in our sample, 6 per cent in the control) show evidence for an increase in variability amplitude as a function of time-scale from weeks to months or years. The presence of long-term variability correlates with the spectral slope at 3-5 μm, which is an indicator of inner disc geometry, and with the U-B band slope, which is an accretion diagnostics. This shows that the long-term variations in CTTSs are predominantly driven by processes in the inner disc and in the accretion zone. Four of the stars with long-term variations show periods of 20-60 d, significantly longer than the rotation periods and stable over months to years. One possible explanation is cyclic changes in the interaction between the disc and the stellar magnetic field.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Edward G.; Hemen, Brian; Rogalla, Danielle

    We have obtained VR photometry of 282 Cepheid variable star candidates from the northern part of the All Sky Automated Survey (ASAS). These together with data from the ASAS and the Northern Sky Variability Survey (NSVS) were used to redetermine the periods of the stars. We divided the stars into four groups based on location in a plot of mean color, (V-R), versus period. Two of the groups fell within the region of the diagram containing known type II Cepheids and yielded 14 new highly probable type II Cepheids. The properties of the remaining stars in these two groups aremore » discussed but their nature remains uncertain. Unexplained differences exist between the sample of stars studied here and a previous sample drawn from the NSVS by Akerlof et al. This suggests serious biases in the identification of variables in different surveys.« less

  13. Inter-Longitude Astronomy (ILA) Project: Current Highlights And Perspectives. I. Magnetic vs. Non-Magnetic Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.; Antoniuk, K. A.; Baklanov, A. V.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Dubovsky, P. A.; Han, W.; Hegedus, T.; Henden, A.; Hric, L.; Chun-Hwey, Kim; Yonggi, Kim; Kolesnikov, S. V.; Kudzej, I.; Liakos, A.; Niarchos, P. G.; Oksanen, A.; Patkos, L.; Petrik, K.; Pit', N. V.; Shakhovskoy, N. M.; Virnina, N. A.; Yoon, J.; Zola, S.

    2010-12-01

    We present a review of highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types classical, asynchronous, intermedi ate polars with 25 timescales corresponding to differ ent physical mechanisms and their combinations (part "Polar"); negative and positive superhumpers in nova- like and dwarf novae stars ("Superhumper"); symbiotic ("Symbiosis"); eclipsing variables with and without ev idence for a current mass transfer ("Eclipser") with a special emphasis on systems with a direct impact of the stream into the gainor star's atmosphere, which we propose to call "Impactors", or V361 Lyr-type stars. Other parts of the ILA project are "Stellar Bell" (pul sating variables of different types and periods - M, SR, RV Tau, RR Lyr, Delta Sct) and "New Variable".

  14. Further observations of the lambda 10830 He line in stars and their significance as a measure of stellar activity

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1975-01-01

    Measurements of the lambda 1030 He line in 198 stars are given along with data on other features in that spectral range. Nearly 80% of all G and K stars show some lambda 10830; of these, half are variable and 1/4 show emission. It was confirmed that lambda 10830 is not found in M stars, is weak in F stars, and is particularly strong in close binaries. The line is found in emission in extremely late M and S stars, along with P gamma, but P gamma is not in emission in G and K stars with lambda 10830 emissions. Variable He emission and Ti I emission are found in the RV Tauri variables R Scuti and U Mon. In R Aqr the Fe XIII coronal line lambda 10747 and a line at lambda 11012 which may be singlet He or La II are found, as well as lambda 10830 and P gamma. The nature of coronas or hot chromospheres in the various stars is discussed. It was concluded that the lambda 10830 intensity must be more or less proportional to the energy deposited in the chromosphere corona by non-thermal processes.

  15. A VLA 3.6 centimeter survey of N-type carbon stars

    NASA Technical Reports Server (NTRS)

    Luttermoser, Donald G.; Brown, Alexander

    1992-01-01

    The results are presented of a VLA-continuum survey of 7 N-type carbon stars at 3.6 cm. Evidence exists for hot plasma around such stars; the IUE satellite detected emission lines of singly ionized metals in the optically brightest carbon stars, which in solar-type stars indicate the existence of a chromosphere. In the past, these emission lines were used to constrain the lower portion of the archetypical chromospheric model of N-type carbon stars, that of TX Psc. Five of the survey stars are semiregular (1 SRa and 4 SRb) variables and two are irregular (Lb) variables. Upper limits of about 0.07 mJy are set of the SRb and Lb variables and the lone SRa (V Hya) was detected with a flux of 0.22 mJy. The upper limits for the six stars that are not detected indicate that the temperature in their winds is less than 10,000 K. Various scenarios for the emission from V Hya are proposed, and it is suggested that the radio continuum is shock-related (either due to pulsation or the suspected bipolar jet) and not due to a supposed accretion disk around an unseen companion.

  16. ASAS 095221-4329.8 und ASAS 123034-7703.9 - zwei R-CrB-Stern-Kandidaten aus der ASAS-Datenbank

    NASA Astrophysics Data System (ADS)

    Huemmerich, Stefan

    2011-04-01

    During an examination of ASAS Misc-type objects, the stars ASAS 095221-4329.8 GSC 07706-00560, 09:52:21.38 -43:29:40.5) and ASAS 123034-7703.9 (GSC 09416-00380, 12:30:34.22 -77:03:52.7) - both of which show semi-regular variability - were found to exhibit significant obscuration events in their V-band lightcurves. Both stars are likely to be red giants undergoing fading events, possibly of DY Per-type. However, spectroscopy of both stars is needed for a conclusive classification. The corresponding entries in the International Variable Star Index (VSX) have been revised accordingly; variability type was set to "RCB:".

  17. A heavy-metal home

    NASA Image and Video Library

    2016-05-30

    This 10.5-billion-year-old globular cluster, NGC 6496, is home to heavy-metal stars of a celestial kind! The stars comprising this spectacular spherical cluster are enriched with much higher proportions of metals — elements heavier than hydrogen and helium, are in astronomy curiously known as metals — than stars found in similar clusters. A handful of these high-metallicity stars are also variable stars, meaning that their brightness fluctuates over time. NGC 6496 hosts a selection of long-period variables — giant pulsating stars whose brightness can take up to, and even over, a thousand days to change — and short-period eclipsing binaries, which dim when eclipsed by a stellar companion. The nature of the variability of these stars can reveal important information about their mass, radius, luminosity, temperature, composition, and evolution, providing astronomers with measurements that would be difficult or even impossible to obtain through other methods. NGC 6496 was discovered in 1826 by Scottish astronomer James Dunlop. The cluster resides at about 35 000 light-years away in the southern constellation of Scorpius (The Scorpion).

  18. Variable Circumstellar Disks of “Classical” Be Stars

    NASA Astrophysics Data System (ADS)

    Gerhartz, Cody; Bjorkman, K. S.; Wisniewski, J. P.

    2013-06-01

    Circumstellar disks are common among many stars, all spectral types, and at different stages of their lifetimes. Among the near-main sequence “Classical” Be stars, there is growing evidence that these disks can form, dissipate, and reform, on timescales that are differ from case to case. We present data for a subset of cases where observations have been obtained throughout the different phases of the disk cycle. Using data obtained with the SpeX instrument at the NASA IRTF, we examine the IR spectral line variability of these stars to better understand the timescales and the physical mechanisms involved. The primary focus in this study are the V/R variations that are observed in the sample. The second stage of our project is to examine a sample of star clusters known to contain Be stars, with the goal to develop a more statistically significant sample of variable circumstellar disk systems. With a robust multi-epoch study we can determine whether these Be stars exhibit disk-loss or disk-renewal phases. The larger sample will enable a better understanding of the prevalence of these disk events.

  19. Instabilities in Interacting Binary Stars

    NASA Astrophysics Data System (ADS)

    Andronov, I. L.; Andrych, K. D.; Antoniuk, K. A.; Baklanov, A. V.; Beringer, P.; Breus, V. V.; Burwitz, V.; Chinarova, L. L.; Chochol, D.; Cook, L. M.; Cook, M.; Dubovský, P.; Godlowski, W.; Hegedüs, T.; Hoňková, K.; Hric, L.; Jeon, Y.-B.; Juryšek, J.; Kim, C.-H.; Kim, Y.; Kim, Y.-H.; Kolesnikov, S. V.; Kudashkina, L. S.; Kusakin, A. V.; Marsakova, V. I.; Mason, P. A.; Mašek, M.; Mishevskiy, N.; Nelson, R. H.; Oksanen, A.; Parimucha, S.; Park, J.-W.; Petrík, K.; Quiñones, C.; Reinsch, K.; Robertson, J. W.; Sergey, I. M.; Szpanko, M.; Tkachenko, M. G.; Tkachuk, L. G.; Traulsen, I.; Tremko, J.; Tsehmeystrenko, V. S.; Yoon, J.-N.; Zola, S.; Shakhovskoy, N. M.

    2017-07-01

    The types of instability in the interacting binary stars are briefly reviewed. The project “Inter-Longitude Astronomy” is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. This “ILA” project is in some kind similar and complementary to other projects like WET, CBA, UkrVO, VSOLJ, BRNO, MEDUZA, AstroStatistics, where many of us collaborate. Totally we studied 1900+ variable stars of different types, including newly discovered variables. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. In this short review, we present some highlights of our photometric and photo-polarimetric monitoring and mathematical modeling of interacting binary stars of different types: classical (AM Her, QQ Vul, V808 Aur = CSS 081231:071126+440405, FL Cet), asynchronous (BY Cam, V1432 Aql), intermediate (V405 Aql, BG CMi, MU Cam, V1343 Her, FO Aqr, AO Psc, RXJ 2123, 2133, 0636, 0704) polars and magnetic dwarf novae (DO Dra) with 25 timescales corresponding to different physical mechanisms and their combinations (part “Polar”); negative and positive superhumpers in nova-like (TT Ari, MV Lyr, V603 Aql, V795 Her) and many dwarf novae stars (“Superhumper”); eclipsing “non-magnetic” cataclysmic variables(BH Lyn, DW UMa, EM Cyg; PX And); symbiotic systems (“Symbiosis”); super-soft sources (SSS, QR And); spotted (and not spotted) eclipsing variables with (and without) evidence for a current mass transfer (“Eclipser”) with a special emphasis on systems with a direct impact of the stream into the gainer star's atmosphere, which we propose to call “Impactor” (short from “Extreme Direct Impactor”), or V361 Lyr-type stars. Other parts of the ILA project are “Stellar Bell” (interesting pulsating variables of different types and periods - M, SR, RV Tau, RR Lyr, Delta Sct with changes of characteristics) and “Novice”(=“New Variable”) discoveries and classification based on special own observations and data mining with a subsequent monitoring for searching and studying possible multiple components of variability. Special mathematical methods have been developed to create a set of complementary software for statistically optimal modeling of variable stars of different types.

  20. Hubble Friday - Heavy Metal Stars

    NASA Image and Video Library

    2017-12-08

    Hubble rocks out with heavy metal stars! This 10.5-billion-year-old globular cluster, NGC 6496, is home to heavy-metal stars of a celestial kind! The stars comprising this spectacular spherical cluster are enriched with much higher proportions of metals — elements heavier than hydrogen and helium are curiously known as metals in astronomy — than stars found in similar clusters. A handful of these high-metallicity stars are also variable stars, meaning that their brightness fluctuates over time. NGC 6496 hosts a selection of long-period variables — giant pulsating stars whose brightness can take up to, and even over, a thousand days to change — and short-period eclipsing binaries, which dim when eclipsed by a stellar companion. The nature of the variability of these stars can reveal important information about their mass, radius, luminosity, temperature, composition, and evolution, providing astronomers with measurements that would be difficult or even impossible to obtain through other methods. NGC 6496 was discovered in 1826 by Scottish astronomer James Dunlop. The cluster resides at about 35,000 light-years away in the southern constellation of Scorpius (The Scorpion). Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt Text credit: European Space Agency Read more: go.nasa.gov/1U2wqGW

  1. Kepler's first view of O-star variability: K2 data of five O stars in Campaign 0 as a proof of concept for O-star asteroseismology

    NASA Astrophysics Data System (ADS)

    Buysschaert, B.; Aerts, C.; Bloemen, S.; Debosscher, J.; Neiner, C.; Briquet, M.; Vos, J.; Pápics, P. I.; Manick, R.; Schmid, V. S.; Van Winckel, H.; Tkachenko, A.

    2015-10-01

    We present high-precision photometric light curves of five O-type stars observed with the refurbished Kepler satellite during its Campaign 0. For one of the stars, we also assembled high-resolution ground-based spectroscopy with the HERMES spectrograph attached to the 1.2 m Mercator telescope. The stars EPIC 202060097 (O9.5V) and EPIC 202060098 (O7V) exhibit monoperiodic variability due to rotational modulation with an amplitude of 5.6 and 9.3 mmag and a rotation period of 2.63 and 5.03 d, respectively. EPIC 202060091 (O9V) and EPIC 202060093 (O9V:pe) reveal variability at low frequency but the cause is unclear. EPIC 202060092 (O9V:p) is discovered to be a spectroscopic binary with at least one multiperiodic β Cep-type pulsator whose detected mode frequencies occur in the range [0.11, 6.99] d-1 and have amplitudes between 0.8 and 2.0 mmag. Its pulsation spectrum is shown to be fully compatible with the ones predicted by core-hydrogen burning O-star models. Despite the short duration of some 33 d and the limited data quality with a precision near 100 μmag of these first K2 data, the diversity of possible causes for O-star variability already revealed from campaigns of similar duration by the MOST and CoRoT satellites is confirmed with Kepler. We provide an overview of O-star space photometry and give arguments why future K2 monitoring during Campaigns 11 and 13 at short cadence, accompanied by time-resolved high-precision high-resolution spectroscopy, opens up the possibility of in-depth O-star seismology.

  2. Globular Cluster Variable Stars—Atlas and Coordinate Improvement using AAVSOnet Telescopes (Abstract)

    NASA Astrophysics Data System (ADS)

    Welch, D.; Henden, A.; Bell, T.; Suen, C.; Fare, I.; Sills, A.

    2015-12-01

    (Abstract only) The variable stars of globular clusters have played and continue to play a significant role in our understanding of certain classes of variable stars. Since all stars associated with a cluster have the same age, metallicity, distance and usually very similar (if not identical reddenings), such variables can produce uniquely powerful constraints on where certain types of pulsation behaviors are excited. Advanced amateur astronomers are increasingly well-positioned to provide long-term CCD monitoring of globular cluster variable star but are hampered by a long history of poor or inaccessible finder charts and coordinates. Many of variable-rich clusters have published photographic finder charts taken in relatively poor seeing with blue-sensitive photographic plates. While useful signal-to-noise ratios are relatively straightforward to achieve for RR Lyrae, Type 2 Cepheids, and red giant variables, correct identification remains a difficult issue—particularly when images are taken at V or longer wavelengths. We describe the project and report its progress using the OC61, TMO61, and SRO telescopes of AAVSOnet after the first year of image acquisition and demonstrate several of the data products being developed for globular cluster variables.

  3. Long-term Photometric Variability in Kepler Full-frame Images: Magnetic Cycles of Sun–like Stars

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin T.; Tovar, Guadalupe; Foreman-Mackey, Daniel

    2017-12-01

    Photometry from the Kepler mission is optimized to detect small, short-duration signals like planet transits at the expense of long-term trends. This long-term variability can be recovered in photometry from the full-frame images (FFIs), a set of calibration data collected approximately monthly during the Kepler mission. Here we present f3, an open-source package to perform photometry on the Kepler FFIs in order to detect changes in the brightness of stars in the Kepler field of view over long time baselines. We apply this package to a sample of 4000 Sun–like stars with measured rotation periods. We find that ≈10% of these targets have long-term variability in their observed flux. For the majority of targets, we find that the luminosity variations are either correlated or anticorrelated with the short-term variability due to starspots on the stellar surface. We find a transition between anticorrelated (starspot-dominated) variability and correlated (facula-dominated) variability between rotation periods of 15 and 25 days, suggesting the transition between the two modes is complete for stars at the age of the Sun. We also identify a sample of stars with apparently complete cycles, as well as a collection of short-period binaries with extreme photometric variation over the Kepler mission.

  4. The Globular Cluster NGC 6402 (M14). II. Variable Stars

    NASA Astrophysics Data System (ADS)

    Contreras Peña, C.; Catelan, M.; Grundahl, F.; Stephens, A. W.; Smith, H. A.

    2018-03-01

    We present time-series BVI photometry for the Galactic globular cluster NGC 6402 (M14). The data consist of ∼137 images per filter, obtained using the 0.9 and 1.0 m SMARTS telescopes at the Cerro Tololo Inter-American Observatory. The images were obtained during two observing runs in 2006–2007. The image-subtraction package ISIS, along with DAOPHOT II/ALLFRAME, was used to perform crowded-field photometry and search for variable stars. We identified 130 variables, eight of which are new discoveries. The variable star population is comprised of 56 ab-type RR Lyrae stars, 54 c-type RR Lyrae, 6 type II Cepheids, 1 W UMa star, 1 detached eclipsing binary, and 12 long-period variables. We provide Fourier decomposition parameters for the RR Lyrae, and discuss the physical parameters and photometric metallicity derived therefrom. The M14 distance modulus is also discussed, based on different approaches for the calibration of the absolute magnitudes of RR Lyrae stars. The possible presence of second-overtone RR Lyrae in M14 is critically addressed, with our results arguing against this possibility. By considering all of the RR Lyrae stars as members of the cluster, we derive < {P}ab > =0.589 {{d}}{{a}}{{y}}{{s}}. This, together with the position of the RR Lyrae stars of both Bailey types in the period–amplitude diagram, suggests an Oosterhoff-intermediate classification for the cluster. Such an intermediate Oosterhoff type is much more commonly found in nearby extragalactic systems, and we critically discuss several other possible indications that may point to an extragalactic origin for this cluster. Based on observations obtained with the 0.9 m and 1 m telescopes at the Cerro Tololo Inter-American Observatory, Chile, operated by the SMARTS consortium.

  5. Engaging Generation Now, Inspiring Generation Next

    NASA Astrophysics Data System (ADS)

    Simonsen, Mike; Gay, P.

    2008-05-01

    In 2008, the Education and Public Outreach Committee of the American Association of Variable Star Observers (AAVSO) initiated several new strategies for disseminating accurate, stimulating, engaging information on general astronomy and variable star science to thousands of students, parents, and amateur astronomers each year through astronomy clubs, societies, and star party events. We are initiating contact with astronomy clubs and organizations to offer qualified speakers from the AAVSO Speakers Bureau for their meetings and activities. The current roster of speakers include, professional astronomers, doctors, engineers, teachers and some of the world's leading variable star observers. Request information is available on the AAVSO website. For organizations and individuals unable to engage one of our speakers due to time, distance or financial constraints, we have made PowerPoint presentations used in previous talks available free for download from the same web pages. Thousands of amateur astronomers and their children attend star parties each year. As an extension of our speakers’ bureau, our goal is to have an AAVSO representative at each of the major star parties each year giving an enthusiastic talk on variable stars or related astronomical subject and supplying inspirational printed materials on astronomy and amateur contributions to science. The nation's largest astronomy clubs have monthly newsletters they distribute to their membership. Newsletter editors are constantly in need of quality, interesting content to fill out their issues each month. We are offering a `writers’ bureau’ service to newsletter editors, similar to the news wire services used by newspapers. We will supply up to a half dozen articles on astronomy and variable star science each month for editors to use at their discretion in their publications. Our goal is to provide information, inspiration and encourage participation among amateur astronomers and their kids, our next generation of astronomers.

  6. Anomalous double-mode RR Lyrae stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Smolec, R.; Dziembowski, W. A.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Skowron, D.; Skowron, J.; Mróz, P.; Pawlak, M.

    2016-12-01

    We report the discovery of a new subclass of double-mode RR Lyrae stars in the Large and Small Magellanic Clouds. The sample of 22 pulsating stars has been extracted from the latest edition of the Optical Gravitational Lensing Experiment collection of RR Lyrae variables in the Magellanic System. The stars pulsating simultaneously in the fundamental (F) and first-overtone (1O) modes have distinctly different properties than regular double-mode RR Lyrae variables (RRd stars). The P1O/PF period ratios of our anomalous RRd stars are within a range of 0.725-0.738, while `classical' double-mode RR Lyrae variables have period ratios in the range of 0.742-0.748. In contrast to the typical RRd stars, in the majority of the anomalous pulsators, the F-mode amplitudes are higher than the 1O-mode amplitudes. The light curves associated with the F-mode in the anomalous RRd stars show different morphology than the light curves of, both, regular RRd stars and single-mode RRab stars. Most of the anomalous double-mode stars show long-term modulations of the amplitudes (Blazhko-like effect). Translating the period ratios into the abundance parameter, Z, we find for our stars Z ∈ (0.002, 0.005) - an order of magnitude higher values than typical for RR Lyrae stars. The mass range of the RRd stars inferred from the WI versus PF diagram is (0.55-0.75) M⊙. These parameters cannot be accounted for with single star evolution assuming a Reimers-like mass-loss. Much greater mass-loss caused by interaction with other stars is postulated. We blame the peculiar pulsation properties of our stars to the parametric resonance instability of the 1O-mode to excitation of the F- and 2O-modes as with the inferred parameters of the stars 2ω1O ≈ ωF + ω2O.

  7. Polarimetric measures of selected variable stars

    NASA Astrophysics Data System (ADS)

    Elias, N. M., II; Koch, R. H.; Pfeiffer, R. J.

    2008-10-01

    Aims: The purpose of this paper is to summarize and interpret unpublished optical polarimetry for numerous program stars that were observed over the past decades at the Flower and Cook Observatory (FCO), University of Pennsylvania. We also make the individual calibrated measures available for long-term comparisons with new data. Methods: We employ three techniques to search for intrinsic variability within each dataset. First, when the observations for a given star and filter are numerous enough and when a period has been determined previously via photometry or spectroscopy, the polarimetric measures are plotted versus phase. If a statistically significant pattern appears, we attribute it to intrinsic variability. Second, we compare means of the FCO data to means from other workers. If they are statistically different, we conclude that the object exhibits long-term intrinsic variability. Third, we calculate the standard deviation for each program star and filter and compare it to the standard deviation estimated from comparable polarimetric standards. If the standard deviation of the program star is at least three times the value estimated from the polarimetric standards, the former is considered intrinsically variable. All of these statements are strengthened when variability appears in multiple filters. Results: We confirm the existence of an electron-scattering cloud at L1 in the β Per system, and find that LY Aur and HR 8281 possess scattering envelopes. Intrinsic polarization was detected for Nova Cas 1993 as early as day +3. We detected polarization variability near the primary eclipse of 32 Cyg. There is marginal evidence for polarization variability of the β Cepheid type star γ Peg. The other objects of this class exhibited no variability. All but one of the β Cepheid objects (ES Vul) fall on a tight linear relationship between linear polarization and E(B-V), in spite of the fact that the stars lay along different lines of sight. This dependence falls slightly below the classical upper limit of Serkowski, Mathewson, and Ford. The table, which contains the polarization observations of the program stars discussed in this paper, is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/489/911

  8. Serendipitous discovery of an irregular and a semi-regular type variable in the field of BY Draconis

    NASA Astrophysics Data System (ADS)

    Messina, S.; Marino, G.; Rodonò, M.; Cutispoto, G.

    2000-12-01

    We present new evidence of the optical variability of two red giant stars: HD 172468 and HK Dra, based on photometric and spectroscopic observations. These stars had been included as check stars in our photometric monitoring program of BY Dra and turned out to be variable. HD 172468, whereas almost constant for most of the time, suddenly started to drop in brightness to such a low level to become undetectable. We suspect that such an abrupt event may be an ``obscurational'' minimum, that is typical of eruptive RCB stars, or may be due to the variable extinction by circumstellar dust in a young Orion type object. HK Dra, already known as an irregular variable, is characterised by periodic flux modulation with season-to-season changes of the photometric period, as inferred from a periodogram analysis. It also shows changes of the light curve peak-to-peak amplitude and shape. Such a behaviour in giant stars is commonly found among semi-regular giants (SR) at the Asymptotic Giant Branch (AGB). Our radial velocity measurements rule out that HK Dra may be a close binary system.

  9. The Subaru/XMM-Newton Deep Survey (SXDS). V. Optically Faint Variable Object Survey

    NASA Astrophysics Data System (ADS)

    Morokuma, Tomoki; Doi, Mamoru; Yasuda, Naoki; Akiyama, Masayuki; Sekiguchi, Kazuhiro; Furusawa, Hisanori; Ueda, Yoshihiro; Totani, Tomonori; Oda, Takeshi; Nagao, Tohru; Kashikawa, Nobunari; Murayama, Takashi; Ouchi, Masami; Watson, Mike G.; Richmond, Michael W.; Lidman, Christopher; Perlmutter, Saul; Spadafora, Anthony L.; Aldering, Greg; Wang, Lifan; Hook, Isobel M.; Knop, Rob A.

    2008-03-01

    We present our survey for optically faint variable objects using multiepoch (8-10 epochs over 2-4 years) i'-band imaging data obtained with Subaru Suprime-Cam over 0.918 deg2 in the Subaru/XMM-Newton Deep Field (SXDF). We found 1040 optically variable objects by image subtraction for all the combinations of images at different epochs. This is the first statistical sample of variable objects at depths achieved with 8-10 m class telescopes or the Hubble Space Telescope. The detection limit for variable components is i'vari ~ 25.5 mag. These variable objects were classified into variable stars, supernovae (SNe), and active galactic nuclei (AGNs), based on the optical morphologies, magnitudes, colors, and optical-mid-infrared colors of the host objects, spatial offsets of variable components from the host objects, and light curves. Detection completeness was examined by simulating light curves for periodic and irregular variability. We detected optical variability for 36% +/- 2% (51% +/- 3% for a bright sample with i' < 24.4 mag) of X-ray sources in the field. Number densities of variable objects as functions of time intervals Δ t and variable component magnitudes i'vari are obtained. Number densities of variable stars, SNe, and AGNs are 120, 489, and 579 objects deg-2, respectively. Bimodal distributions of variable stars in the color-magnitude diagrams indicate that the variable star sample consists of bright (V ~ 22 mag) blue variable stars of the halo population and faint (V ~ 23.5 mag) red variable stars of the disk population. There are a few candidates of RR Lyrae providing a possible number density of ~10-2 kpc-3 at a distance of >150 kpc from the Galactic center. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations (program GN-2002B-Q-30) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  10. eJAAVSO | aavso.org

    Science.gov Websites

    Institute CCD School Videos Student Projects Two Eyes, 3D Variable Star Astronomy H-R Diagram Plotting CHOICE Online Institute CCD School Videos Student Projects Two Eyes, 3D Variable Star Astronomy H-R

  11. Unsupervised classification of variable stars

    NASA Astrophysics Data System (ADS)

    Valenzuela, Lucas; Pichara, Karim

    2018-03-01

    During the past 10 years, a considerable amount of effort has been made to develop algorithms for automatic classification of variable stars. That has been primarily achieved by applying machine learning methods to photometric data sets where objects are represented as light curves. Classifiers require training sets to learn the underlying patterns that allow the separation among classes. Unfortunately, building training sets is an expensive process that demands a lot of human efforts. Every time data come from new surveys; the only available training instances are the ones that have a cross-match with previously labelled objects, consequently generating insufficient training sets compared with the large amounts of unlabelled sources. In this work, we present an algorithm that performs unsupervised classification of variable stars, relying only on the similarity among light curves. We tackle the unsupervised classification problem by proposing an untraditional approach. Instead of trying to match classes of stars with clusters found by a clustering algorithm, we propose a query-based method where astronomers can find groups of variable stars ranked by similarity. We also develop a fast similarity function specific for light curves, based on a novel data structure that allows scaling the search over the entire data set of unlabelled objects. Experiments show that our unsupervised model achieves high accuracy in the classification of different types of variable stars and that the proposed algorithm scales up to massive amounts of light curves.

  12. Eclipsing binary stars in the era of massive surveys First results and future prospects

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Athanasios; Catelan, Márcio; Ramos, Rodrigo Contreras; Drake, Andrew J.

    2017-09-01

    Our thinking about eclipsing binary stars has undergone a tremendous change in the last decade. Eclipsing binary stars are one of nature's best laboratories for determining the fundamental physical properties of stars and thus for testing the predictions of theoretical models. Some of the largest ongoing variable star surveys include the Catalina Real-time Transient Survey (CRTS) and the VISTA Variables in the Vía Láctea survey (VVV). They both contain a large amount of photometric data and plenty of information about eclipsing binaries that wait to be extracted and exploited. Here we briefly describe our efforts in this direction.

  13. Digital Archiving: Where the Past Lives Again

    NASA Astrophysics Data System (ADS)

    Paxson, K. B.

    2012-06-01

    The process of digital archiving for variable star data by manual entry with an Excel spreadsheet is described. Excel-based tools including a Step Magnitude Calculator and a Julian Date Calculator for variable star observations where magnitudes and Julian dates have not been reduced are presented. Variable star data in the literature and the AAVSO International Database prior to 1911 are presented and reviewed, with recent archiving work being highlighted. Digitization using optical character recognition software conversion is also demonstrated, with editing and formatting suggestions for the OCR-converted text.

  14. The development of early pulsation theory, or, how Cepheids are like steam engines"

    NASA Astrophysics Data System (ADS)

    Stanley, Matthew

    2011-05-01

    The pulsation theory of Cepheid variable stars was a major breakthrough of early twentieth-century astrophysics. At the beginning of that century, the basic physics of normal stars was very poorly understood, and variable stars were even more mysterious. Breaking with accepted explanations in terms of eclipsing binaries, Harlow Shapley and A.S. Eddington pioneered novel theories that considered Cepheids as pulsating spheres of gas. These theoretical models relied on highly speculative physics, but nonetheless returned very impressive results despite attacks from figures such as James Jeans. Surprisingly, the pulsation theory not only depended on developments in stellar physics, but also drove many of those developments. In particular, models of stars in radiative balance and theories of stellar energy were heavily inspired and shaped by ideas about variable stars. Further, the success of the pulsation theory helped justify the new approaches to astrophysics being developed before World War II.

  15. Discovery of a Wolf-Rayet Star through Detection of Its Photometric Variability

    NASA Astrophysics Data System (ADS)

    Littlefield, Colin; Garnavich, Peter; Marion, G. H. Howie; Vinkó, József; McClelland, Colin; Rettig, Terrence; Wheeler, J. Craig

    2012-06-01

    We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR 142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 Å, suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong He II emission and an N IV 7112 Å line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the He II line strengths reveals no detectable hydrogen in WR 142b. A blue-sensitive spectrum obtained with the Large Binocular Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B - V) = 2.2-2.6 mag. We estimate that the distance to WR 142b is 1.4 ± 0.3 kpc.

  16. The occurrence of non-pulsating stars in the γ Dor and δ Sct pulsation instability regions: Results from Kepler quarter 14–17 data

    DOE PAGES

    Guzik, J. A.; Bradley, P. A.; Jackiewicz, J.; ...

    2015-04-21

    In this study, the high precision long time-series photometry of the NASA Kepler spacecraft provides an excellent means to discover and characterize variability in main-sequence stars, and to make progress in interpreting the pulsations to derive stellar interior structure and test stellar models. For stars of spectral types A–F, the Kepler data revealed a number of surprises, such as more hybrid pulsating Sct and Dor pulsators than expected, pulsators lying outside of the instability regions predicted by theory, and stars that were expected to pulsate, but showed no variability. In our 2013 Astronomical Review article, we discussed the statistics ofmore » variability for 633 faint (Kepler magnitude 14–16) spectral type A–F stars observed by Kepler during Quarters 6–13 (June 2010–June 2012).« less

  17. The occurrence of non-pulsating stars in the γ Dor and δ Sct pulsation instability regions: Results from Kepler quarter 14–17 data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzik, J. A.; Bradley, P. A.; Jackiewicz, J.

    In this study, the high precision long time-series photometry of the NASA Kepler spacecraft provides an excellent means to discover and characterize variability in main-sequence stars, and to make progress in interpreting the pulsations to derive stellar interior structure and test stellar models. For stars of spectral types A–F, the Kepler data revealed a number of surprises, such as more hybrid pulsating Sct and Dor pulsators than expected, pulsators lying outside of the instability regions predicted by theory, and stars that were expected to pulsate, but showed no variability. In our 2013 Astronomical Review article, we discussed the statistics ofmore » variability for 633 faint (Kepler magnitude 14–16) spectral type A–F stars observed by Kepler during Quarters 6–13 (June 2010–June 2012).« less

  18. Variable Stars in the Field of the Hydra II Ultra-Faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, Anna Katherina; Olsen, Knut A.; Blum, Robert D.; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas; Besla, Gurtina; Gallart, Carme; Van Der Marel, Roeland P.; Majewski, Steven R.; Munoz, Ricardo; Kaleida, Catherine C.; Saha, Abhijit; Conn, Blair; Jin, Shoko

    2016-06-01

    We searched for variable stars in Hydra II, one of the recently discovered ultra-faint dwarf satellites of the Milky Way, using gri time-series obtained with the Dark Energy Camera (DECam) at Cerro Tololo Inter-American Observatory, Chile. We discovered one RR Lyrae star in the galaxy which was used to derive a distance of 154±8 kpc to this system and to re-calculate its absolute magnitude and half-light radius.A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  19. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that ifmore » the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.« less

  20. The MACHO Project Large Magellanic Cloud Variable-Star Inventory. IX. Frequency Analysis of the First-Overtone RR Lyrae Stars and the Indication for Nonradial Pulsations

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R.; Alves, D. R.; Axelrod, T.; Becker, A.; Bennett, D.; Clement, C.; Cook, K. H.; Drake, A.; Freeman, K.; Geha, M.; Griest, K.; Kovács, G.; Kurtz, D. W.; Lehner, M.; Marshall, S.; Minniti, D.; Nelson, C.; Peterson, B.; Popowski, P.; Pratt, M.; Quinn, P.; Rodgers, A.; Rowe, J.; Stubbs, C.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.

    2000-10-01

    More than 1300 variables classified provisionally as first-overtone RR Lyrae pulsators in the MACHO variable-star database of the Large Magellanic Cloud (LMC) have been subjected to standard frequency analysis. Based on the remnant power in the prewhitened spectra, we found 70% of the total population to be monoperiodic. The remaining 30% (411 stars) are classified as one of nine types according to their frequency spectra. Several types of RR Lyrae pulsational behavior are clearly identified here for the first time. Together with the earlier discovered double-mode (fundamental and first-overtone) variables, this study increased the number of known double-mode stars in the LMC to 181. During the total 6.5 yr time span of the data, 10% of the stars showed strong period changes. The size, and in general also the patterns of the period changes, exclude a simple evolutionary explanation. We also discovered two additional types of multifrequency pulsators with low occurrence rates of 2% for each. In the first type, there remains one closely spaced component after prewhitening by the main pulsation frequency. In the second type, the number of remnant components is two; they are also closely spaced, and are symmetric in their frequency spacing relative to the central component. This latter type of variables are associated with their relatives among the fundamental pulsators, known as Blazhko variables. Their high frequency (~20%) among the fundamental-mode variables versus the low occurrence rate of their first-overtone counterparts makes it more difficult to explain the Blazhko phenomenon by any theory depending mainly on the role of aspect angle or magnetic field. None of the current theoretical models are able to explain the observed close frequency components without invoking nonradial pulsation components in these stars.

  1. News and Views: Kleopatra a pile of rubble, shedding moons; Did plasma flow falter to stretch solar minimum? Amateurs hit 20 million variable-star observations; Climate maths; Planetary priorities; New roles in BGA

    NASA Astrophysics Data System (ADS)

    2011-04-01

    Metallic asteroid 216 Kleopatra is shaped like a dog's bone and has two tiny moons - which came from the asteroid itself - according to a team of astronomers from France and the US, who also measured its surprisingly low density and concluded that it is a collection of rubble. The recent solar minimum was longer and lower than expected, with a low polar field and an unusually large number of days with no sunspots visible. Models of the magnetic field and plasma flow within the Sun suggest that fast, then slow meridional flow could account for this pattern. Variable stars are a significant scientific target for amateur astronomers. The American Association of Variable Star Observers runs the world's largest database of variable star observations, from volunteers, and reached 20 million observations in February.

  2. Amateur-Professional Collaborations in the AAVSO

    NASA Astrophysics Data System (ADS)

    Hawkins, G.; Mattei, J. A.; Waagen, E. O.

    2000-05-01

    The AAVSO coordinates, collects, evaluates, and archives variable star observations made largely by amateur astronomers around the world, and publishes and disseminates these observations to researchers and educators worldwide. Its electronic database of nearly 10 million visual variable star observations contributed by 6,000 amateur astronomers in over 40 countries since 1911 is the world's largest and longest-running. The AAVSO has a long history of collaborations between its amateur astronomer observers and professional astronomers. Many of the over 275 requests received yearly from astronomers for AAVSO data and services result in collaborative projects - particularly in multiwavelength observations of variable stars using ground-based telescopes and/or satellites - to help schedule observing runs; provide sumultaneous optical coverage of observing targets and immediate notification of their activity during particular satellite observations; correlate multiwavelength data; and analyze long-term variable star behavior. Among the more dramatic collaborations AAVSO observers have participated in are numerous multi-satellite observing runs on specific variable stars triggered in response to real-time alerts to stellar activity from AAVSO observers; and the variable star observations made during the Astro-2 mission, in which real-time observations by AAVSO observers directed shuttle astronauts to observing targets, and resulted in seminal new information about the cataclysmic variable Z Camelopardalis. The AAVSO is embarking on an exciting new collaboration with Gamma-Ray astronomers at NASA/Marshall Space Flight Center. The AAVSO and the MSFC Gamma-Ray Burst Team have established a Gamma-Ray Burst Network, in which participating AAVSO observers will be alerted immediately via pagers and email to the detection of gamma-ray bursts and will use their own CCD-equipped telescopes to search for the optical counterpart. We gratefully acknowledge partial funding of this network by NASA. Contact the AAVSO at aavso@aavso.org or http://www.aavso.org.

  3. Near-infrared variability study of the central 2.3 × 2.3 arcmin2 of the Galactic Centre - II. Identification of RR Lyrae stars in the Milky Way nuclear star cluster

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Rich, R. Michael; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-11-01

    Because of strong and spatially highly variable interstellar extinction and extreme source crowding, the faint (K ≥ 15) stellar population in the Milky Way's nuclear star cluster is still poorly studied. RR Lyrae stars provide us with a tool to estimate the mass of the oldest, relative dim stellar population. Recently, we analysed HST/WFC3/IR observations of the central 2.3 × 2.3 arcmin2 of the Milky Way and found 21 variable stars with periods between 0.2 and 1 d. Here, we present a further comprehensive analysis of these stars. The period-luminosity relationship of RR Lyrae is used to derive their extinctions and distances. Using multiple approaches, we classify our sample as 4 RRc stars, 4 RRab stars, 3 RRab candidates and 10 binaries. Especially, the four RRab stars show sawtooth light curves and fall exactly on to the Oosterhoff I division in the Bailey diagram. Compared to the RRab stars reported by Minniti et al., our new RRab stars have higher extinction (AK > 1.8) and should be closer to the Galactic Centre. The extinction and distance of one RRab stars match those for the Milky Way's nuclear star cluster given in previous works. We perform simulations and find that after correcting for incompleteness, there could be not more than 40 RRab stars within the Milky Way's nuclear star cluster and in our field of view. Through comparing with the known globular clusters of the Milky Way, we estimate that if there exists an old, metal-poor (-1.5 < [Fe/H] < -1) stellar population in the Milky Way nuclear star cluster on a scale of 5 × 5 pc, then it contributes at most 4.7 × 105 M⊙, I.e. ˜18 per cent of the stellar mass.

  4. OPTICAL SPECTROSCOPY OF X-RAY-SELECTED YOUNG STARS IN THE CARINA NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaidya, Kaushar; Chen, Wen-Ping; Lee, Hsu-Tai

    We present low-resolution optical spectra for 29 X-ray sources identified as either massive star candidates or low-mass pre-main-sequence (PMS) star candidates in the clusters Trumpler 16 and Trumpler 14 of the Carina Nebula. Spectra of two more objects (one with an X-ray counterpart, and one with no X-ray counterpart), not originally our targets, but found close (∼3″) to two of our targets, are presented as well. Twenty early-type stars, including an O8 star, seven B1–B2 stars, two B3 stars, a B5 star, and nine emission-line stars, are identified. Eleven T Tauri stars, including eight classical T Tauri stars (CTTSs) and threemore » weak-lined T Tauri stars, are identified. The early-type stars in our sample are more reddened compared to the previously known OB stars of the region. The Chandra hardness ratios of our T Tauri stars are found to be consistent with the Chandra hardness ratios of T Tauri stars of the Orion Nebula Cluster. Most early-type stars are found to be nonvariable in X-ray emission, except the B2 star J104518.81–594217.9, the B3 star J104507.84–594134.0, and the Ae star J104424.76–594555.0, which are possible X-ray variables. J104452.20–594155.1, a CTTS, is among the brightest and the hardest X-ray sources in our sample, appears to be a variable, and shows a strong X-ray flare. The mean optical and near-infrared photometric variability in the V and K{sub s} bands, of all sources, is found to be ∼0.04 and 0.05 mag, respectively. The T Tauri stars show significantly larger mean variation, ∼0.1 mag, in the K{sub s} band. The addition of one O star and seven B1–B2 stars reported here contributes to an 11% increase of the known OB population in the observed field. The 11 T Tauri stars are the first ever confirmed low-mass PMS stars in the Carina Nebula region.« less

  5. Hands-On Astrophysics: Variable Stars in Math, Science, and Computer Education

    NASA Astrophysics Data System (ADS)

    Mattei, J. A.; Percy, J. R.

    1999-12-01

    Hands-On Astrophysics (HOA): Variable Stars in Math, Science, and Computer Education, is a project recently developed by the American Association of Variable Star Observers (AAVSO) with funds from the National Science Foundation. HOA uses the unique methods and the international database of the AAVSO to develop and integrate students' math and science skills through variable star observation and analysis. It can provide an understanding of basic astronomy concepts, as well as interdisciplinary connections. Most of all, it motivates the user by exposing them to the excitement of doing real science with real data. Project materials include: a database of 600,000 variable star observations; VSTAR (a data plotting and analysis program), and other user friendly software; 31 slides and 14 prints of five constellations; 45 variable star finder charts; an instructional videotape in three 15-minute segments; and a 560-page student's and teacher's manual. These materials support the National Standards for Science and Math education by directly involving the students in the scientific process. Hands-On Astrophysics is designed to be flexible. It is organized so that it can be used at many levels, in many contexts: for classroom use from high school to college level, or for individual projects. In addition, communication and support can be found through the AAVSO home page on the World Wide Web: http://www.aavso.org. The HOA materials can be ordered through this web site or from the AAVSO, 25 Birch Street Cambridge, MA 02138, USA. We gratefully acknowledge the education grant ESI-9154091 from the National Science Foundation which funded the development of this project.

  6. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    NASA Astrophysics Data System (ADS)

    Lii, Patrick; Romanova, Marina; Lovelace, Richard

    2014-01-01

    Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  7. X ray emission from Wolf-Rayet stars with recurrent dust formation

    NASA Technical Reports Server (NTRS)

    Rawley, Gayle L.

    1993-01-01

    We were granted a ROSAT observation of the Wolf-Rayet star WR 137 (equals HD 192641) to test a proposed mechanism for producing the infrared variability reported by Williams et al. (1987). These studies showed one clear infrared outburst preceded by what may be the dimming of a previous outburst. The recurrent dust formation model was put forward by Williams et al. (1990) to account for similar variability seen in WR 140, which varies in both the infrared and X-ray bands. The detected X-ray flux from WR 140 was observed to decrease from its normally high (for Wolf-Rayet stars) level as the infrared flux increased. Observation of two apparently-periodic infrared outbursts led to the hypothesis that WR 140 had an O star companion in an eccentric orbit, and that the increase in infrared flux came from a dust formation episode triggered by the compression of the O star and Wolf-Rayet star winds. The absorption of the X-rays by the increased material explained the decrease in flux at those wavelengths. If the infrared variability in WR 137 were caused by a similar interaction of the Wolf-Rayet star with a companion, we might expect that WR 137 would show corresponding X-ray variability and an X-ray luminosity somewhat higher than typical WC stars, as well as a phase-dependent non-thermal X-ray spectrum. Our goals in this study were to obtain luminosity estimates from our counting rates for comparison with previous observations of WR 137 and other WC class stars, especially WR 140; to compare the luminosity with the IR lightcurve; and to characterize the spectral shape of the X-ray emission, including the column density.

  8. Stellar Populations and Nearby Galaxies with the LSST

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Olsen, K.; Monet, D. G.; LSST Stellar Populations Collaboration

    2009-01-01

    The LSST will produce a multi-color map and photometric object catalog of half the sky to r=27.6 (AB mag; 5-sigma). Time-space sampling of each field spanning ten years will allow variability, proper motion and parallax measurements for objects brighter than r=24.7. As part of providing an unprecedented map of the Galaxy, the accurate multi-band photometry will permit photometric parallaxes, chemical abundances and a handle on ages via colors at turn-off for main-sequence (MS) stars at all distances within the Galaxy as well as in the Magellanic Clouds, and dwarf satellites of the Milky Way. This will support comprehensive studies of star formation histories and chemical evolution for field stars. The structures of the Clouds and dwarf spheroidals will be traced with the MS stars, to equivalent surface densities fainter than 35 mag/square arc-second. With geometric parallax accuracy of 1 milli-arc-sec, comparable to HIPPARCOS but reaching more than 10 magnitudes fainter, a robust complete sample of solar neighborhood stars will be obtained. The LSST time sampling will identify and characterize variable stars of all types, from time scales of 1 hr to several years, a feast for variable star astrophysics. The combination of wide coverage, multi-band photometry, time sampling and parallax taken together will address several key problems: e.g. fine tuning the extragalactic distance scale by examining properties of RR Lyraes and Cepheids as a function of parent populations, extending the faint end of the galaxy luminosity function by discovering them using star count density enhancements on degree scales tracing, and indentifying inter-galactic stars through novae and Long Period Variables.

  9. Spectral monitoring of AB Aur

    NASA Astrophysics Data System (ADS)

    Rodríguez Díaz, L. F.; Oostra, B.

    2017-07-01

    The Astronomical Observatory of the Universidad de los Andes in Bogotá, Colombia, did a spectral monitoring during 2014 and 2015 to AB Aurigae, the brightest Herbig Ae/be star in the northern hemisphere. The aim of this project is applying spectral techniques, in order to identify specific features that could help us not only to understand how this star is forming, but also to establish a pattern to explain general star formation processes. We have recorded 19 legible spectra with a resolving power of R = 11,0000, using a 40 cm Meade telescope with an eShel spectrograph, coupled by a 50-micron optical fiber. We looked for the prominent absorption lines, the Sodium doublet at 5890Å and 5896Å, respectively and Magnesium II at 4481Å; to measure radial velocities of the star, but, we did not find a constant value. Instead, it ranges from 15 km/s to 32 km/s. This variability could be explained by means of an oscillation or pulsation of the external layers of the star. Other variabilities are observed in some emission lines: Hα, Hβ, He I at 5876Å and Fe II at 5018Å. It seems this phenomenon could be typical in stars that are forming and have a circumstellar disk around themselves. This variability is associated with the nonhomogeneous surface of the star and the interaction that it has with its disk. Results of this interaction could be seen also in the stellar wind ejected by the star. More data are required in order to look for a possible period in the changes of radial velocity of the star, the same for the variability of He I and Fe II, and phenomena present in Hα. We plan to take new data in January of 2017.

  10. Asteroseismology of hybrid δ Scuti-γ Doradus pulsating stars

    NASA Astrophysics Data System (ADS)

    Sánchez Arias, J. P.; Córsico, A. H.; Althaus, L. G.

    2017-01-01

    Context. Hybrid δ Scuti-γ Doradus pulsating stars show acoustic (p) oscillation modes typical of δ Scuti variable stars, and gravity (g) pulsation modes characteristic of γ Doradus variable stars simultaneously excited. Observations from space missions such as MOST, CoRoT, and Kepler have revealed a large number of hybrid δ Scuti-γ Doradus pulsators, thus paving the way for an exciting new channel of asteroseismic studies. Aims: We perform detailed asteroseismological modelling of five hybrid δ Scuti-γ Doradus stars. Methods: A grid-based modeling approach was employed to sound the internal structure of the target stars using stellar models ranging from the zero-age main sequence to the terminal-age main sequence, varying parameters such as stellar mass, effective temperature, metallicity and core overshooting. Their adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2,3) p and g mode periods were computed. Two model-fitting procedures were used to search for asteroseismological models that best reproduce the observed pulsation spectra of each target star. Results: We derive the fundamental parameters and the evolutionary status of five hybrid δ Scuti-γ Doradus variable stars recently observed by the CoRoT and Kepler space missions: CoRoT 105733033, CoRoT 100866999, KIC 11145123, KIC 9244992, and HD 49434. The asteroseismological model for each star results from different criteria of model selection, in which we take full advantage of the richness of periods that characterises the pulsation spectra for this kind of star.

  11. Variable Circumstellar Disks of “Classical” Be Stars, Part 2

    NASA Astrophysics Data System (ADS)

    Gerhartz, Cody; Davidson, J. W.; Bjorkman, K. S.; Wisniewski, J. P.

    2014-01-01

    Circumstellar disks are common among many stars, all spectral types, and at different stages of their lifetimes. Among the near-main sequence “Classical” Be stars, there is growing evidence that these disks can form, dissipate, and reform, on timescales that are differ from case to case. We present data for a subset of cases where observations have been obtained throughout the different phases of the disk cycle. Using data obtained with the SpeX instrument at the NASA IRTF, we examine the IR spectral line variability of these stars to better understand the timescales and the physical mechanisms involved. The primary focus in this study are the V/R variations that are observed in the sample. A complete run of all double-peaked velocity profiles in the sample is now complete. The second stage of our project is to examine a sample of star clusters known to contain Be stars, with the goal to develop a more statistically significant sample of variable circumstellar disk systems. With a robust multi-epoch study we can determine whether these Be stars exhibit disk-loss or disk-renewal phases. The larger sample will enable an understanding of the prevalence of these disk events.

  12. Extreme Variables in Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Contreras Peña, Carlos Eduardo

    2015-01-01

    The notion that low- to intermediate-mass young stellar objects (YSOs) gain mass at a constant rate during the early stages of their evolution appears to be challenged by observations of YSOs suffering sudden increases of the rate at which they gain mass from their circumstellar discs. Also, this idea that stars spend most of their lifetime with a low accretion rate and gain most of their final mass during short-lived episodes of high accretion bursts, helps to solve some long-standing problems in stellar evolution. The original classification of eruptive variables divides them in two separate subclasses known as FU Orionis stars (FUors) and EX Lupi stars (EXors). In this classical view FUors are at an early evolutionary stage and are still gaining mass from their parent envelopes, whilst EXors are thought to be older objects only surrounded by an accretion disc. The problem with this classical view is that it excludes younger protostars which have higher accretion rates but are too deeply embedded in circumstellar matter to be observed at optical wavelengths. Optically invisible protostars have been observed to display large variability in the near-infrared. These and some recent discoveries of new eruptive variables, show characteristics that can be attributed to both of the optically-defined subclasses of eruptive variables. The new objects have been proposed to be part of a new class of eruptive variables. However, a more accepted scenario is that in fact the original classes only represent two extremes of the same phenomena. In this sense eruptive variability could be explained as arising from one physical mechanism, i.e. unsteady accretion, where a variation in the parameters of such mechanism can cause the different characteristics observed in the members of this class. With the aim of studying the incidence of episodic accretion among young stellar objects, and to characterize the nature of these eruptive variables we searched for high amplitude variability in two multi-epoch infrared surveys: the UKIDSS Galactic Plane Survey (GPS) and the Vista Variables in the Via Lactea (VVV). In order to further investigate the nature of the selected variable stars, we use photometric information arising from public surveys at near- to far-infrared wavelengths. In addition we have performed spectroscopic and photometric follow-up for a large subset of the samples arising from GPS and VVV. We analyse the widely separated two-epoch K-band photometry in the 5th, 7th and 8th data releases of the UKIDSS Galactic Plane Survey. We find 71 stars with ΔK > 1 mag, including 2 previously known OH/IR stars and a Nova. Even though the mid-plane is mostly excluded from the dataset, we find the majority (66%) of our sample to be within known star forming regions (SFRs), with two large concentrations in the Serpens OB2 association (11 stars) and the Cygnus-X complex (27 stars). The analysis of the multi-epoch K-band photometry of 2010-2012 data from VVV covering the Galactic disc at |b| < 1° yields 816 high amplitude variables, which include known variables of different classes such as high mass X-ray binaries, Novae and eclipsing binaries among others. Remarkably, 65% of the sample are found concentrated towards areas of star formation, similar to the results from GPS. In both surveys, sources in SFRs show spectral energy distributions (SEDs) that support classification as YSOs. This indicates that YSOs dominate the Galactic population of high amplitude infrared variable stars at low luminosities and therefore likely dominate the total high amplitude population. Spectroscopic follow-up allows us to confirm the pre-main sequence nature of several GPS and VVV Objects. Most objects in both samples show spectroscopic signatures that can be attributed to YSOs undergoing high states of accretion, such as veiling of photospheric features and CO emission, or show FUor-like spectra. We also find a large fraction of objects with 2.12 μm H2 emission that can be explained as arising from shock-excited emission caused by molecular outflows. Whether these molecular outflows are related to outbursts events cannot be confirmed from our data. Adding the GPS and VVV spectroscopic results, we find that between 6 and 14 objects are new additions to the FUor class from their close resemblance to the near-infrared spectra of FUors, and at least 23 more objects are new additions to the eruptive variable class. For most of these we are unable to classify them into any of the original definitions for this variable class. In any case, we are adding up to 37 new stars to the eruptive variable class which would double the current number of known objects. We note that most objects are found to be deeply embedded optically invisible stars, thus increasing the number of objects belonging to this subclass by a much larger factor. In general, objects in our samples which are found to be likely eruptive variable stars show a mixture of characteristics that can be attributed to both of the optically-defined classes. This agrees well with the recent discoveries in the literature. Finally, we are able to derive a first rough estimate on the incidence of episodic accretion among class I YSOs in the star-forming complex G305. We find that ~9% of such objects are in a state of high accretion. This number is in agreement with previous theoretical and observational estimates among class I YSOs.

  13. Revised coordinates of variable stars in Cassiopeia

    NASA Astrophysics Data System (ADS)

    Nesci, R.

    2018-02-01

    The identification of the variable stars published on IBVS 3573 has ben revised on the basis of the original (unpublished) finding charts. Cross check with the 2MASS catalog has been made to get more accurate coordinates and to confirm their nature from their , colors. The Mira stars, given their known periods, could be used with the astrometric parallaxes of the forthcoming Gaia catalog to improve the Period-Luminosity relation.

  14. Ubiquitous time variability of integrated stellar populations.

    PubMed

    Conroy, Charlie; van Dokkum, Pieter G; Choi, Jieun

    2015-11-26

    Long-period variable stars arise in the final stages of the asymptotic giant branch phase of stellar evolution. They have periods of up to about 1,000 days and amplitudes that can exceed a factor of three in the I-band flux. These stars pulsate predominantly in their fundamental mode, which is a function of mass and radius, and so the pulsation periods are sensitive to the age of the underlying stellar population. The overall number of long-period variables in a population is directly related to their lifetimes, which is difficult to predict from first principles because of uncertainties associated with stellar mass-loss and convective mixing. The time variability of these stars has not previously been taken into account when modelling the spectral energy distributions of galaxies. Here we construct time-dependent stellar population models that include the effects of long-period variable stars, and report the ubiquitous detection of this expected 'pixel shimmer' in the massive metal-rich galaxy M87. The pixel light curves display a variety of behaviours. The observed variation of 0.1 to 1 per cent is very well matched to the predictions of our models. The data provide a strong constraint on the properties of variable stars in an old and metal-rich stellar population, and we infer that the lifetime of long-period variables in M87 is shorter by approximately 30 per cent compared to predictions from the latest stellar evolution models.

  15. Variable Stars in Large Magellanic Cloud Globular Clusters. II. NGC 1786

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Smith, Horace A.; Catelan, Márcio; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2012-12-01

    This is the second in a series of papers studying the variable stars in Large Magellanic Cloud globular clusters. The primary goal of this series is to study how RR Lyrae stars in Oosterhoff-intermediate systems compare to their counterparts in Oosterhoff I/II systems. In this paper, we present the results of our new time-series B-V photometric study of the globular cluster NGC 1786. A total of 65 variable stars were identified in our field of view. These variables include 53 RR Lyraes (27 RRab, 18 RRc, and 8 RRd), 3 classical Cepheids, 1 Type II Cepheid, 1 Anomalous Cepheid, 2 eclipsing binaries, 3 Delta Scuti/SX Phoenicis variables, and 2 variables of undetermined type. Photometric parameters for these variables are presented. We present physical properties for some of the RR Lyrae stars, derived from Fourier analysis of their light curves. We discuss several different indicators of Oosterhoff type which indicate that the Oosterhoff classification of NGC 1786 is not as clear cut as what is seen in most globular clusters. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  16. A NEW CENSUS OF THE VARIABLE STAR POPULATION IN THE GLOBULAR CLUSTER NGC 2419

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Criscienzo, M.; Greco, C.; Ripepi, V.

    We present B, V, and I CCD light curves for 101 variable stars belonging to the globular cluster NGC 2419, 60 of which are new discoveries, based on data sets obtained at the Telescopio Nazionale Galileo, the Subaru telescope, and the Hubble Space Telescope. The sample includes 75 RR Lyrae stars (38 RRab, 36 RRc, and one RRd), one Population II Cepheid, 12 SX Phoenicis variables, two {delta} Scuti stars, three binary systems, five long-period variables, and three variables of uncertain classification. The pulsation properties of the RR Lyrae variables are close to those of Oosterhoff type II clusters, consistentmore » with the low metal abundance and the cluster horizontal branch morphology, disfavoring (but not totally ruling out) an extragalactic hypothesis for the origin of NGC 2419. The observed properties of RR Lyrae and SX Phoenicis stars are used to estimate the cluster reddening and distance, using a number of different methods. Our final value is {mu}{sub 0} (NGC 2419) = 19.71 {+-} 0.08 mag (D = 87.5 {+-} 3.3 kpc), with E(B - V) = 0.08 {+-} 0.01 mag, [Fe/H] = -2.1 dex on the Zinn and West metallicity scale, and a value of M{sub V} that sets {mu}{sub 0} (LMC) = 18.52 mag. This value is in good agreement with the most recent literature estimates of the distance to NGC 2419.« less

  17. Searching for Variable Stars in the Field of Dolidze 35 (Abstract)

    NASA Astrophysics Data System (ADS)

    Welch, J.; Smith, J. A.

    2018-06-01

    (Abstract only) We are conducting a study of the open cluster Dolidze-35. We have a data set which contains several nights and spans four years. One step of our survey is to search these data to identify candidate local standards and potential variable stars. We present early results of the variable search effort.

  18. Frequency Analysis of the RRc Variables of the MACHO Database for the LMC

    NASA Astrophysics Data System (ADS)

    Kovács, G.; Alcock, C.; Allsman, R.; Alves, D.; Axelrod, T.; Becker, A.; Bennett, D.; Clement, C.; Cook, K. H.; Drake, A.; Freeman, K.; Geha, M.; Griest, K.; Kurtz, D. W.; Lehner, M.; Marshall, S.; Minniti, D.; Nelson, C.; Peterson, B.; Popowski, P.; Pratt, M.; Quinn, P.; Rodgers, A.; Rowe, J.; Stubbs, C.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; MACHO Collaboration

    We present the first massive frequency analysis of the 1200 first overtone RR Lyrae stars in the Large Magellanic Cloud observed in the first 4.3 yr of the MACHO project. Besides the many new double-mode variables, we also discovered stars with closely spaced frequencies. These variables are most probably nonradial pulsators.

  19. Measuring the rotation periods of 4-10 Myr T-Tauri stars in the Orion OB1 association

    NASA Astrophysics Data System (ADS)

    Karim, Md Tanveer; Stassun, Keivan; Briceno, Cesar; Vivas, Kathy; Raetz, Stefanie; Calvet, Nuria; Mateu, Cecilia; Downes, Juan Jose; Hernandez, Jesus; Neuhäuser, Ralph; Mugrauer, Markus; Takahashi, Hidenori; Tachihara, Kengo; Chini, Rolf; YETI

    2016-01-01

    Most existing studies of young stellar populations have focused on the youngest (< 2-3 Myr) T-Tauri stars, which are usually associated with their natal gas and hence easier to identify. In contrast, older T-Tauri stars (~ 4-10 Myr), being more difficult to find, have been less studied, even though they hold key insight to understanding evolution of lower-mass (0.1-2 M⊙) stars and of protoplanetary discs. We present a study of photometric variability of 1974 confirmed 4-10 Myr old T-Tauri stars in the Orion OB1 association using optical time-series from three different surveys: the Centro de Investigaciones de Astronomía-Quest Equatorial Survey Team (CIDA-QUEST), the Young Exoplanet Transit Initiative (YETI) and from a Kitt Peak National Observatory (KPNO) campaign. We investigated stellar rotation periods according to the type of stars (Classical or Weak-lined T-Tauri stars) and their locations, to look for population-wide trends. We detected 563 periodic variables and 1411 non-periodic variables by investigating the light curves of these stars. We find that ~ 30% of Weak-line T-Tauri stars (WTTS) and ~ 20% of Classical T-Tauri stars (CTTS) are periodic. Though we did not find any noticeable difference in rotation period between CTTS and WTTS, our study does show a change in the overall rotation periods of stars 4-10 Myr old, consistent with predictions of angular momentum evolution models, an important constraint for theoretical models for an age range for which no similar data existed.

  20. VizieR Online Data Catalog: Stellar parameters of KIC planet-host stars (Bastien+, 2014)

    NASA Astrophysics Data System (ADS)

    Bastien, F. A.; Stassun, K. G.; Pepper, J.

    2017-07-01

    We draw our bright KOI sample from the NASA Exoplanet Archive (NEA; Akeson et al. 2013PASP..125..989A) accessed on 2014 January 7. We restrict the sample to stars with 6650 K>Teff>4500 K, the Teff range for which F8 is calibrated. We exclude 28 stars with overall range of photometric variability >10 ppt (parts per thousand), as phenomena in the light curves of such chromospherically active stars can boost the measured F8 and thus result in an erroneous F8-based log g. These excluded stars (10% of the sample) are cooler than average for the overall sample, as expected given their large variability. Our sample after applying these cuts contains 289 stars (407 KOIs). (1 data file).

  1. A remarkable oxygen-rich asymptotic giant branch variable in the Sagittarius Dwarf Irregular Galaxy

    NASA Astrophysics Data System (ADS)

    Whitelock, Patricia A.; Menzies, John W.; Feast, Michael W.; Marigo, Paola

    2018-01-01

    We report and discuss JHKS photometry for Sgr dIG, a very metal-deficient galaxy in the Local Group, obtained over 3.5 years with the Infrared Survey Facility in South Africa. Three large amplitude asymptotic giant branch variables are identified. One is an oxygen-rich star that has a pulsation period of 950 d, which was until recently undergoing hot bottom burning, with Mbol ∼ -6.7. It is surprising to find a variable of this sort in Sgr dIG, given their rarity in other dwarf irregulars. Despite its long period the star is relatively blue and is fainter, at all wavelengths shorter than 4.5 μm, than anticipated from period-luminosity relations that describe hot bottom burning stars. A comparison with models suggests it had a main-sequence mass Mi ∼ 5 M⊙ and that it is now near the end of its asymptotic giant branch evolution. The other two periodic variables are carbon stars with periods of 670 and 503 d (Mbol ∼ -5.7 and -5.3). They are very similar to other such stars found on the asymptotic giant branch of metal-deficient Local Group galaxies and a comparison with models suggests Mi ∼ 3 M⊙. We compare the number of asymptotic giant branch variables in Sgr dIG to those in NGC 6822 and IC 1613, and suggest that the differences may be due to the high specific star formation rate and low metallicity of Sgr dIG.

  2. A Detailed Study of the Variable Stars in Five Galactic Globular Clusters: IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584

    NASA Astrophysics Data System (ADS)

    Murphy, Brian W.; Darragh, Andrew; Hettinger, Paul; Hibshman, Adam; Johnson, Elliott W.; Liu, Z. J.; Pajkos, Michael A.; Stephenson, Hunter R.; Vondersaar, John R.; Conroy, Kyle E.; McCombs, Thayne A.; Reinhardt, Erik D.; Toddy, Joseph

    2015-08-01

    We present the results of an extensive study intended to search for and properly classify the variable stars in five galactic globular clusters. Each of the five clusters was observed hundreds to thousands of times over a time span ranging from 2 to 4 years using the SARA 0.6m located at Cerro Tololo Interamerican Observatory. The images were analyzed using the image subtract method of Alard (2000) to identify and produce light curves of all variables found in each cluster. In total we identified 373 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 312 RR Lyrae variables (187 RR0, 18 RR01, 99 RR1, 8 RR2), 9 SX Phe stars, 6 Cepheid variables, 11 eclipsing variables, and 35 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 2 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 13 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 52 RR0, 56 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 48 RR0, 15 RR1, 1 RR2, 5 eclipsing binaries, and 9 long period variables. Using the RR Lyrae variables we found the mean V magnitude of the horizontal branch to be VHB = ⟨V ⟩RR = 17.63, 15.51, 15.72, 17.13, and 16.37 magnitudes for IC4499, NGC4833, NGC6171 (M107), NGC6402 (M14), and NGC6584, respectively. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the light curves to further analyze the properties of the variable stars and hence physical properties of each clusters. In this poster we will give the temperature, radius, stellar mass, metallicity, and helium abundance of the set of RR Lyrae variable stars found in each of the five globular clusters.

  3. Variable stars in the Leo A dwarf galaxy (DDO 69)

    NASA Technical Reports Server (NTRS)

    Hoessel, John G.; Saha, A.; Krist, John; Danielson, G. Edward

    1994-01-01

    Observations of the Leo A dwarf galaxy, obtained over the period from 1980 to 1991 are reported. Forty two separate Charge Coupled Devices (CCD) frames were searched for variable stars. A total of 14 suspected variables were found, 9 had sufficient coverage for period determination, and 5 had Cepheid light curves. Four of these stars fit well on a P-L relation and yield a distance modulus, after correction for Galactic foreground extinction, of m-M = 26.74. This corresponds to a distance of 2.2 Mpc, placing Leo A near the Local Group zero-velocity surface.

  4. Radial velocity variability and stellar properties of FGK stars in the cores of NGC 2516 and NGC 2422

    NASA Astrophysics Data System (ADS)

    Bailey, John I.; Mateo, Mario; White, Russel J.; Shectman, Stephen A.; Crane, Jeffrey D.

    2018-04-01

    We present multi-epoch high-dispersion optical spectra obtained with the Michigan/Magellan Fibre System of 126 and 125 Sun-like stars in the young clusters NGC 2516 (141 Myr) and NGC 2422 (73 Myr). We determine stellar properties including radial velocity (RV), Teff, [Fe/H], [α/Fe] and the line-of-sight rotation rate, vrsin (i), from these spectra. Our median RV precision of 80 m s-1 on individual epochs that span a temporal baseline of 1.1 yr enables us to investigate membership and stellar binarity, and to search for sub-stellar companions. We determine membership probabilities and RV variability probabilities for our sample along with candidate companion orbital periods for a select subset of stars. In NGC 2516, we identified 81 RV members, 27 spectroscopic binaries (17 previously identified as photometric binaries) and 16 other stars that show significant RV variability after accounting for average stellar jitter at the 74 m s-1 level. In NGC 2422, we identify 57 members, 11 spectroscopic binaries and three other stars that show significant RV variability after accounting for an average jitter of 138 m s-1. We use Monte Carlo simulations to verify our stellar jitter measurements, determine the proportion of exoplanets and stellar companions to which we are sensitive, and estimate companion-mass limits for our targets. We also report mean cluster metallicity, velocity and velocity dispersion based on our member targets. We identify 58 non-member stars as RV variables, 24 of which have RV amplitudes that imply stellar or brown-dwarf mass companions. Finally, we note the discovery of a separate RV clustering of stars in our NGC 2422 sample.

  5. Observing Globular Cluster RR Lyrae Variables with the BYU West Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Jeffery, E. J.; Joner, M. D.

    2016-06-01

    We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on six northern hemisphere globular clusters. Here we present representative observations of RR Lyrae stars located in these clusters, including light curves. We compare light curves produced using both DAOPHOT and ISIS software packages. Light curve fitting is done with FITLC. We find that for well-separated stars, DAOPHOT and ISIS provide comparable results. However, for stars within the cluster core, ISIS provides superior results. These improved techniques will allow us to better measure the properties of cluster variable stars.

  6. RR Lyrae variables in M33: two new fields and an analysis of the galaxy's population

    NASA Astrophysics Data System (ADS)

    Tanakul, Nahathai; Yang, Soung-Chul; Sarajedini, Ata

    2017-06-01

    We present a re-analysis of M33 RR Lyrae variables in four different fields: two inner disc fields and two outer disc fields. These are located at 8.5, 8.7, 36 and 46 arcmin from the centre of M33, respectively. We identify 48 new RR Lyrae variable stars and refine the light-curve properties of 51 previously identified variables. From the light curves, we calculate reddenings and metallicities for each star. Using data in this paper and previously published material, we are able to construct a radial density profile for the RR Lyrae stars in M33. This profile, when plotted in log space, has a slope of ˜-2.0 ± 0.15 which agrees with the radial distribution of halo stars in the Milky Way and M31. This suggests that the majority of M33 RR Lyrae variables observed so far belong to the halo. We also examine the RR Lyrae specific frequency and absolute magnitude relation in M33 and find good agreement with previous studies.

  7. Lights and shadows: multi-wavelength analysis of young stellar objects and their protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Rigon, Laura

    2016-03-01

    Stars form from the collapse of molecular clouds and evolve in an environment rich in gas and dust before becoming Main Sequence stars. During this phase, characterised by the presence of a protoplanetary disc, stars manifest changes in the structure and luminosity. This thesis performs a multi-wavelength analysis, from optical to mm range, on a sample of young stars (YSOs), mainly Classical T Tauri (CTTS). The purpose is to study optical and infrared variability and its relation with the protoplanetary disc. Longer wavelength, in the mm range, are used instead to investigate the evolution of the disc, in terms of dust growth. In optical, an F-test on a sample of 39 CTTS reveals that 67% of the stars are variable. The variability, quantified through pooled sigma, is visible both in magnitude amplitudes and changes over time. Time series analysis applied on the more variable stars finds the presence of quasi periodicity, with periods longer than two weeks, interpreted either as eclipsing material in the disc happening on a non-regular basis, or as a consequence of star-disc interaction via magnetic field lines. The variability of YSOs is confirmed also in infrared, even if with lower amplitude. No strong correlations are found between optical and infrared variability, which implies a different cause or a time shift in the two events. By using a toy model to explore their origin, I find that infrared variations are likely to stem from emissions in the inner disc. The evolution of discs in terms of dust growth is confirmed in most discs by the analysis of the slope of the spectral energy distribution (SED), after correcting for wind emission and optical depth effects. However, the comparison with a radiative transfer model highlights that a number of disc parameters, in particular disc masses and temperature, dust size distribution and composition, can also affect the slope of the SED.

  8. The Sproul 24-Inch Refractor: Entering A New Century of Research

    NASA Astrophysics Data System (ADS)

    Augensen, H. J.; Heintz, W. D.; Schultz, M. R.; Hassel, G. E., Jr.; Inoue, S.; Howanski, R.; Fanning, T.

    1999-05-01

    The Sproul Observatory, located in Swarthmore, Pennsylvania, has been in operation since 1912. Its major research instrument is a 24-inch, f/18 refracting telescope with lenses made by Brashear. The research conducted during the 20th century concentrated on obtaining parallaxes of nearby stars and also on the exploration of visual double and multiple star systems. The Sproul plate vault contains some 90,000 plates, from which 1500 stellar parallaxes, or about 10% of the current parallax database, have been extracted. Heintz made 54,000 observations (including those made with other telescopes) of double stars over 43 years (47,500 by micrometer, 6500 by photography), resulting in the calculation of 500 orbits and 900 newly discovered double stars. Photographic observations ceased in 1994. In 1998 the refractor was fitted with an Apogee AP-6 CCD camera, which contains a Kodak KAF 1000 chip with 1024 x 1024 pixel array, and gives a 0.45 arcseconds per pixel image scale and 8 x 8 arcminute field of view at the focal plane. The camera is operated using PMIS software. A filter wheel constructed by ISI Systems and attached to the camera contains 5-mm thick B, V, and R filters. The Sproul telescope has now been given a new task: the study of variable stars. Currently under investigation are RV Tauri and semiregular variables, SX Phoenicis stars, and also stars which are suspected of being variable, taken from the New Catalogue of Stars Suspected of Variability of Light, Nauka Publishing, Moscow 1982. Thus far, the most convincing cases for variability are NSV 656 (irregular?), 1098 (large amplitude, probably Mira type), 1470 (short P, eclipsing?), and 13514 (P 105d?). This work has been supported by a Provost Grant from Swarthmore College and by the Howard Hughes Medical Institute-Supported Summer Research in Science Program.

  9. SpecDB: The AAVSO’s Public Repository for Spectra of Variable Stars

    NASA Astrophysics Data System (ADS)

    Kafka, Stella; Weaver, John; Silvis, George; Beck, Sara

    2018-01-01

    SpecDB is the American Association of Variable Star Observers (AAVSO) spectral database. Accessible to any astronomer with the capability to perform spectroscopy, SpecDB provides an unprecedented scientific opportunity for amateur and professional astronomers around the globe. Backed by the Variable Star Index, one of the most utilized variable star catalogs, SpecDB is expected to become one of the world leading databases of its kind. Once verified by a team of expert spectroscopists, an observer can upload spectra of variable stars target easily and efficiently. Uploaded spectra can then be searched for, previewed, and downloaded for inclusion in publications. Close community development and involvement will ensure a user-friendly and versatile database, compatible with the needs of 21st century astrophysics. Observations of 1D spectra are submitted as FITS files. All spectra are required to be preprocessed for wavelength calibration and dark subtraction; Bias and flat are strongly recommended. First time observers are required to submit a spectrum of a standard (non-variable) star to be checked for errors in technique or equipment. Regardless of user validation, FITS headers must include several value cards detailing the observation, as well as information regarding the observer, equipment, and observing site in accordance with existing AAVSO records. This enforces consistency and provides necessary details for follow up analysis. Requirements are provided to users in a comprehensive guidebook and accompanying technical manual. Upon submission, FITS headers are automatically checked for errors and any anomalies are immediately fed back to the user. Successful candidates can then submit at will, including multiple simultaneous submissions. All published observations can be searched and interactively previewed. Community involvement will be enhanced by an associated forum where users can discuss observation techniques and suggest improvements to the database.

  10. A UV-to-MIR monitoring of DR Tau: Exploring how water vapor in the planet formation region is affected by stellar accretion variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banzatti, A.; Meyer, M. R.; Manara, C. F.

    2014-01-01

    Young stars are known to show variability due to non-steady mass accretion rate from their circumstellar disks. Accretion flares can produce strong energetic irradiation and heating that may affect the disk in the planet formation region, close to the central star. During an extreme accretion outburst in the young star EX Lupi, the prototype of EXor variables, remarkable changes in molecular gas emission from ∼1 AU in the disk have recently been observed. Here, we focus on water vapor and explore how it is affected by variable accretion luminosity in T Tauri stars. We monitored a young highly variable solar-massmore » star, DR Tau, using simultaneously two high/medium-resolution spectrographs at the European Southern Observatory Very Large Telescope: VISIR at 12.4 μm to observe water lines from the disk and X-shooter covering from 0.3 to 2.5 μm to constrain the stellar accretion. Three epochs spanning timescales from several days to several weeks were obtained. The accretion luminosity was estimated to change within a factor of ∼2 and no change in water emission was detected at a significant level. In comparison with EX Lupi and EXor outbursts, DR Tau suggests that the less long-lived and weaker variability phenomena typical of T Tauri stars may leave water at planet-forming radii in the disk mostly unaffected. We propose that these systems may provide evidence for two processes that act over different timescales: ultraviolet photochemistry in the disk atmosphere (faster) and heating of the deeper disk layers (slower).« less

  11. Massive stars: flare activity due to infalls of comet-like bodies

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon; Ibodov, Firuz S.

    2015-01-01

    Passages of comet-like bodies through the atmosphere/chromosphere of massive stars at velocities more than 600 km/s will be accompanied, due to aerodynamic effects as crushing and flattening, by impulse generation of hot plasma within a relatively very thin layer near the stellar surface/photosphere as well as ``blast'' shock wave, i.e., impact-generated photospheric stellar/solar flares. Observational manifestations of such high-temperature phenomena will be eruption of the explosive layer's hot plasma, on materials of the star and ``exploding'' comet nuclei, into the circumstellar environment and variable anomalies in chemical abundances of metal atoms/ions like Fe, Si etc. Interferometric and spectroscopic observations/monitoring of young massive stars with dense protoplanetary discs are of interest for massive stars physics/evolution, including identification of mechanisms for massive stars variability.

  12. Spectrophotometry of peculiar B and A stars. XVIII - The helium rich variable stars HR 1890, Sigma Orionis E, and HD 37776

    NASA Technical Reports Server (NTRS)

    Adelman, S. J.; Pyper, D. M.

    1985-01-01

    Optical region spectrophotometry at 3300-7850 A has been obtained for three helium rich stars, HR 1890, Sigma Ori E, and HD 37776, of the Orion OB1 Association. New uvby-beta photometry of HR 1890 and HD 37776 as well as published data are also used to investigate the variability of these stars. A new period of 1.53862 days was determined for HD 37776. For all three stars H-beta varies in antiphase with strong He I lines. The spectrophotometric bandpass containing the strong He I line at 4471 A varies in phase with the R index of Pedersen and Thomsen (1977). Evidence is found for weak absorption features which appear to be an extension of the 5200 A feature seen in cooler CP stars.

  13. DISCOVERY OF A WOLF-RAYET STAR THROUGH DETECTION OF ITS PHOTOMETRIC VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littlefield, Colin; Garnavich, Peter; McClelland, Colin

    We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR 142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 A, suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong He II emission and an N IV 7112 A line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the He II line strengths reveals no detectable hydrogen in WR 142b. A blue-sensitive spectrum obtained with the Large Binocularmore » Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B - V) = 2.2-2.6 mag. We estimate that the distance to WR 142b is 1.4 {+-} 0.3 kpc.« less

  14. MONET, HET and SALT and asteroseismological observations and theory in Göttingen

    NASA Astrophysics Data System (ADS)

    Schuh, S.; Hessman, F. V.; Dreizler, S.; Kollatschny, W.; Glatzel, W.

    2007-06-01

    The Göttingen stellar astrophysics group, headed by Stefan Dreizler, conducts research on extrasolar planets and their host stars, on lower-main sequence stars, and on evolved compact objects, in particular hot white dwarfs (including PG 1159 objects, magnetic WDs and cataclysmic variables), and subdwarf B stars. In addition to sophisticated NLTE spectral analyses of these stars, which draw on the extensive stellar atmosphere modelling experience of the group, we actively develop and apply a variety of photometric monitoring and time-resolved spectroscopic techniques to address time-dependent phenomena. With the new instrumentational developments described below, we plan to continue the study of variable white dwarfs (GW Vir, DB and ZZ Ceti variables) and in particular sdB EC 14026 and PG 1617 pulsators which already constitute a main focus, partly within the Whole Earth Telescope (WET/DARC), http://www.physics.udel.edu/~jlp/darc/) collaboration, on a new level. Additional interest is directed towards strange mode instabilities in Wolf Rayet stars.

  15. Delta Scuti Variables

    NASA Astrophysics Data System (ADS)

    Handler, Gerald

    2009-09-01

    We review recent research on Delta Scuti stars from an observer's viewpoint. First, some signposts helping to find the way through the Delta Scuti jungle are placed. Then, some problems in studying individual pulsators in the framework of asteroseismology are given before a view on how the study of these variables has benefited (or not) from past and present high-precision asteroseismic space missions is presented. Some possible pitfalls in the analysis of data with a large dynamical range in pulsational amplitudes are pointed out, and a strategy to optimize the outcome of asteroseismic studies of Delta Scuti stars is suggested. We continue with some views on ``hybrid'' pulsators and interesting individual High Amplitude Delta Scuti stars, and then take a look on Delta Scuti stars in stellar systems of several different kinds. Recent results on pre-main sequence Delta Scuti stars are discussed as are questions related to the instability strip of these variables. Finally, some remarkable new theoretical results are highlighted before, instead of a set of classical conclusions, questions to be solved in the future, are raised.

  16. Variable stars around selected open clusters in the VVV area: Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Medina, Nicolas; Borissova, Jura; Bayo, Amelia; Kurtev, Radostin; Lucas, Philip

    2017-09-01

    Time-varying phenomena are one of the most substantial sources of astrophysical information, and led to many fundamental discoveries in modern astronomy. We have developed an automated tool to search and analyze variable sources in the near infrared Ks band, using the data from the Vista Variables in the Vía Láctea (VVV) ESO Public Survey ([5, 8]). One of our main goals is to investigate the Young Stellar Objects (YSOs) in the Galactic star forming regions, looking for: Variability. New pre-main sequence star clusters. Here we present the newly discovered YSOs within some selected stellar clusters in our Galaxy.

  17. An Undergraduate Research Experience on Studying Variable Stars

    NASA Astrophysics Data System (ADS)

    Amaral, A.; Percy, J. R.

    2016-06-01

    We describe and evaluate a summer undergraduate research project and experience by one of us (AA), under the supervision of the other (JP). The aim of the project was to sample current approaches to analyzing variable star data, and topics related to the study of Mira variable stars and their astrophysical importance. This project was done through the Summer Undergraduate Research Program (SURP) in astronomy at the University of Toronto. SURP allowed undergraduate students to explore and learn about many topics within astronomy and astrophysics, from instrumentation to cosmology. SURP introduced students to key skills which are essential for students hoping to pursue graduate studies in any scientific field. Variable stars proved to be an excellent topic for a research project. For beginners to independent research, it introduces key concepts in research such as critical thinking and problem solving, while illuminating previously learned topics in stellar physics. The focus of this summer project was to compare observations with structural and evolutionary models, including modelling the random walk behavior exhibited in the (O-C) diagrams of most Mira stars. We found that the random walk could be modelled by using random fluctuations of the period. This explanation agreed well with observations.

  18. Use of the AAVSO's International Variable Star Index (VSX) in an Undergraduate Astronomy Course Capstone Project

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2017-06-01

    The author discusses a capstone project that utilizes the AAVSO's International Variable Star Index (VSX), ASAS light curves and phase plots, and the SIMBAD astronomical data repository in a laboratory-based undergraduate Stellar and Galactic Astronomy course.

  19. A New Catalog of Variable Stars in the Field of the Open Cluster M37

    NASA Astrophysics Data System (ADS)

    Chang, S.-W.; Byun, Y.-I.; Hartman, J. D.

    2015-07-01

    We present a comprehensive re-analysis of stellar photometric variability in the field of the open cluster M37 following the application of a new photometry and de-trending method to the MMT/Megacam image archive. This new analysis allows a rare opportunity to explore photometric variability over a broad range of timescales, from minutes to a month. The intent of this work is to examine the entire sample of more than 30,000 objects for periodic, aperiodic, and sporadic behaviors in their light curves. We show a modified version of the fast χ2 periodogram algorithm (Fχ2) and change-point analysis as tools for detecting and assessing the significance of periodic and non-periodic variations. The benefits of our new photometry and analysis methods are evident. A total of 2,306 stars exhibit convincing variations that are induced by flares, pulsations, eclipses, starspots, and unknown causes in some cases. This represents a 60% increase in the number of variables known in this field. Moreover, 30 of the previously identified variables are found to be false positives resulting from time-dependent systematic effects. The new catalog includes 61 eclipsing binary systems, 92 multiperiodic variable stars, 132 aperiodic variables, and 436 flare stars, as well as several hundreds of rotating variables. Based on extended and improved catalog of variables, we investigate the basic properties (e.g., period, amplitude, type) of all variables. The catalog can be accessed through the web interface (http://stardb.yonsei.ac.kr/).

  20. Binarity and Variable Stars in the Open Cluster NGC 2126

    NASA Astrophysics Data System (ADS)

    Chehlaeh, Nareemas; Mkrtichian, David; Kim, Seung-Lee; Lampens, Patricia; Komonjinda, Siramas; Kusakin, Anatoly; Glazunova, Ljudmila

    2018-04-01

    We present the results of an analysis of photometric time-series observations for NGC 2126 acquired at the Thai National Observatory (TNO) in Thailand and the Mount Lemmon Optical Astronomy Observatory (LOAO) in USA during the years 2004, 2013 and 2015. The main purpose is to search for new variable stars and to study the light curves of binary systems as well as the oscillation spectra of pulsating stars. NGC 2126 is an intermediate-age open cluster which has a population of stars inside the δ Scuti instability strip. Several variable stars are reported including three eclipsing binary stars, one of which is an eclipsing binary star with a pulsating component (V551 Aur). The Wilson-Devinney technique was used to analyze its light curves and to determine a new set of the system’s parameters. A frequency analysis of the eclipse-subtracted light curve was also performed. Eclipsing binaries which are members of open clusters are capable of delivering strong constraints on the cluster’s properties which are in turn useful for a pulsational analysis of their pulsating components. Therefore, high-resolution, high-quality spectra will be needed to derive accurate component radial velocities of the faint eclipsing binaries which are located in the field of NGC 2126. The new Devasthal Optical Telescope, suitably equipped, could in principle do this.

  1. Fourier Decomposition and Properties of the Variable Stars in the Globular Cluster NGC 4833

    NASA Astrophysics Data System (ADS)

    Reed, Hunter M.; Pajkos, Michael A.; Murphy, Brian W.; Darragh, Andrew

    2016-01-01

    Globular clusters provide an ideal setting to study stellar evolution of stars of similar composition and age. RR Lyrae stars found in globular clusters have a variety of uses in probing the physical characteristics of the stellar population itself and its evolution. Building upon our previous study, we focus on the RR Lyrae stars in the globular cluster NGC 4833. From March through June 2014, we used the Southeastern Association for Research in Astronomy 0.6-meter telescope located at CTIO to collect nearly 1,500 images of NGC 4833 in the B, V, R, and I bands. Using difference image analysis we identified 40 variable stars. Of these, 20 were RR Lyrae stars with 10 being of type RR0, 7 of type RR1, and 3 of type RR2. Additionally, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables were identified. The average period of the type RR0, RR1, and RR2 type variables were 0.69597 days, 0.39547 days, and 0.30654 days, respectively. The periods of the RR Lyrae stars and ratio of N1/(N0+N1) of 0.41 is indicative of an Oosterhoff Type II cluster. The observations of the RR Lyrae stars were of very high quality and phase coverage allowing us to perform Fourier decomposition of their light curves. From this Fourier decomposition we were able to determine the physical characteristics of the RR Lyrae stars. We found the mean iron abundance to be [Fe/H]JKZW = -1.87 ± 0.06, the mean apparent V-magnitude RR0 and RR1 type variables to be VRR = 15.51 ± 0.11, a mean absolute V-magnitude of MV = 0.636 ± 0.053; and an effective temperature for RR0's and RR1's of log10Teff = 3.797 and log10Teff = 3.855, respectively. The multi-band photometry allowed us to determine the reddening of the cluster, E(B-V) = 0.342 ± 0.021, which resulted in a distance of D(kpc) = 5.91 ± 0.31 to NGC 4833.

  2. VizieR Online Data Catalog: Gaia DR1 and OGLE variable stars (Udalski+, 2016)

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Soszynski, I.; Skowron, D. M.; Skowron, J.; Pietrukowicz, P.; Mroz, P.; Poleski, R.; Szymanski, M. K.; Kozlowski, S.; Wyrzykowski, L.; Ulaczyk, K.; Pawlak, M.

    2018-04-01

    To assess the Gaia dataset of Cepheids and RR Lyr stars presented in the Gaia DR1 (Clementini et al., 2016A&A...595A.133C, Cat. I/337) we cross-identified the sample of 3194 variable stars presented on the final Gaia pipeline list (599 Cepheid and 2595 RR Lyr candidates) with the OGLE detected objects using RA/DEC coordinates provided within Gaia DR1. (4 data files).

  3. Results from the Rothney Astrophysical Observatory Variable Star Search Program: Background, Procedure, and Results from RAO Field 1

    NASA Astrophysics Data System (ADS)

    Williams, Michael D.; Milone, E. F.

    2013-12-01

    We describe a variable star search program and present the fully reduced results of a search in a 19 square degree (4.4 × 4.4) field centered on J2000 RA = 22:03:24, DEC= +18:54:32. The search was carried out with the Baker-Nunn Patrol Camera located at the Rothney Astrophysical Observatory in the foothills of the Canadian Rockies. A total of 26,271 stars were detected in the field, over a range of about 11-15 (instrumental) magnitudes. Our image processing made use of the IRAF version of the DAOPHOT aperture photometry routine and we used the ANOVA method to search for periodic variations in the light curves. We formally detected periodic variability in 35 stars, that we tentatively classify according to light curve characteristics: 6 EA (Algol), 5 EB (?? Lyrae), 19 EW (W UMa), and 5 RR (RR Lyrae) stars. Eleven of the detected variable stars have been reported previously in the literature. The eclipsing binary light curves have been analyzed with a package of light curve modeling programs and 25 have yielded converged solutions. Ten of these are of systems that are detached, 3 semi-detached, 10 overcontact, and 2 are of systems that appear to be in marginal contact. We discuss these results as well as the advantages and disadvantages of the instrument and of the program.

  4. FFT Deconvultion of Be Star Hα Line Profiles

    NASA Astrophysics Data System (ADS)

    Austin, S. J.

    2005-12-01

    We have been monitoring the spectroscopic variability of Be stars using the UCA Fiber Fed Spectrograph. The spectra are 0.8 Angstrom/pixel resolution of the Hα line. The observed line profiles are a convolution of the actual profile and the instrumental profile. A Fast Fourier Transform (FFT) method has been used to deconvolve the observed profiles, given the instrument profile obtained by observing the narrow lines from the HgNe wavelength calibration lamp. The long-term monitoring of the spectroscopic variability of Be stars is crucial for testing the various Be star models. Deconvolved H-α line profiles, velocities, and variability are shown for gamma Cas, delta Sco, chi Oph, eta PsA, 48 Lib, and upsilon Sgr (HD181615). Funding has been provided by the UCA University Research Council and the Arkansas Space Grant Consortium.

  5. Globular cluster photometry with the Hubble Space Telescope. 3: Blue stragglers and variable stars in the core of M3

    NASA Technical Reports Server (NTRS)

    Guhathakurta, Puragra; Yanny, Brian; Bahcall, John N.; Schneider, Donald P.

    1994-01-01

    This paper describes Hubble Space Telescope (HST)/Planetary Camera-I images of the core of the dense globular cluster M3 (NGC 5272). Stellar photometry in the F555W (V) and F785LP (I) bands, with a 1-sigma photometric accuracy of about 0.1 mag, has been used to construct color-magnitude diagrams of about 4700 stars above the main-sequence turnoff within r less than or approximately equal to 1 min of the cluster center. We have also analyzed archival HST F336W (U) images of M3 obtained by the Wide Field/Planetary Camera-I Instrument Definition Team. The UVI data are used to identify 28 blue straggler (BS) stars within the central 0.29 sq. arcmin. The specific frequency of BSs in this region of M3, N(sub BS)/N(sub V less than (V(HB)+2)) = 0.094 +/- 0.019, is about a factor of 2 - 3 higher than that found by Bolte et al. in a recent ground-based study of the same region, but comparable to that seen in the sparse outer parts of the same cluster and in HST observations of the core of the higher density cluster 47 Tuc. The BSs in M3 are slightly more centrally concentrated than red giant branch stars while horizontal branch stars are somewhat less concentrated red giants. The radial distribution of V-selected subgiant and turnoff stars is well fit by a King model with a core radius r(sub core) = 28 arcmin +/- 2 arcmin (90% confidence limits), which corresponds to 1.4 pc. Red giant and horizontal branch stars selected in the ultraviolet data (U less than 18) have a somewhat more compact distribution (r(sub core) = 22.5 arcmin). The HST U data consist of 17 exposures acquired over a span of three days. We have used these data to isolate 40 variable stars for which relative astrometry, brightnesses, colors, and light curves are presented. A Kolmogorov-Smirnov test indicates that, typically, the variability for each star is significant at the 95% level. We identify two variable BS candidates (probably of the SX Phe type), out of a sample of approximately 25 BSs in which variability could have been detected. Most of the variables are RR Lyrae stars on the horizontal branch. All of them have periods P greater than or approximately equal 8 h.

  6. Interrogation of duplicitous stars with an APT

    NASA Technical Reports Server (NTRS)

    Bopp, Bernard W.

    1992-01-01

    Preliminary results from intensive spectroscopic and APT monitoring of two interacting binary systems are presented. Both V644 Mon (Be + K:) and HD 37453 (F5 II + B) show complex, composite, and variable spectral. APT observations extending over three years show both stars to vary by 0.1-0.2 mag in V. The photometric variability of V644 Mon appears to be irregular, though there is some evidence for periodic behavior in the 50-60 day range. HD 37453 has an orbital period of 66.75 days; the best-fit photometric period is not quite half this value, indicating the star is an ellipsoidal variable.

  7. The OGLE Collection of Variable Stars. Over 450 000 Eclipsing and Ellipsoidal Binary Systems Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.

    2016-12-01

    We present a collection of 450 598 eclipsing and ellipsoidal binary systems detected in the OGLE fields toward the Galactic bulge. The collection consists of binary systems of all types: detached, semi-detached, and contact eclipsing binaries, RS CVn stars, cataclysmic variables, HW Vir binaries, double periodic variables, and even planetary transits. For all stars we provide the I- and V-band time-series photometry obtained during the OGLE-II, OGLE-III, and OGLE-IV surveys. We discuss methods used to identify binary systems in the OGLE data and present several objects of particular interest.

  8. The detection of X-ray variability in O stars

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.; Cash, W.; Grady, C. A.

    1981-01-01

    Seven O stars known to have strong, and sometimes variable, stellar winds have been observed repeatedly with the Imaging Proportional Counter on the Einstein Observatory, in a program designed to determine whether the X-ray fluxes from these stars are variable. In three cases, definite changes were seen, either on a time scale of a year (Iota Ori and Delta Ori) or five days (15 Mon). In two of these cases, the X-ray spectrum was harder when the overall flux was higher, indicating that some of the fluctuations may take place in a hot (approximately 10 to the 7th K) emitting region at the bottom of the winds.

  9. Spectral and Photometric Data of Be Star, EM Cep

    NASA Astrophysics Data System (ADS)

    Kochiashvili, Nino; Natsvilishvili, Rezo; Kochiashvili, Ia; Vardosanidze, Manana; Beradze, Sopia; Pannicke, Anna

    The subject of investigation in this project is a Be spectral type giant variable star EM Cep. It was established that the star has a double nature: 1. when emission lines are seen in its spectrum and 2. when only absorption lines are observable and emission lines are not seen. This means that the star is not always in Be state. Be state continues existing during a few months. EM Cep shows flare activity too. The causes of photometric and spectral variability are to be established. The existence of different mechanisms, which provokes Be phenomenon, is possible. The character of light curves' variability gives us possibility to propose that it is not excluded that the star could be a short-period Cepheid of λ Eri type. However, we do not have sufficient data to exclude its binarity. On the basis of the observations carried out at Abastumani observatory, the light curve with two minima and two maxima were revealed, but these data, too accord with the half-period - we can also consider a light curve with one minimum and one maximum. Both cases suggest a good agreement with the characters of variability. For the case of binarity in Abastumani observatory, a set of orbital elements by using the Wilson-Devinney code is already obtained. The elements correspond to the model of acceptable, real close binary star. However, notwithstanding this situation, the true nature of the star is not established for the moment. To solve this problem, we need to get high-resolution spectral data, when by using radial velocity curves, it would be possible to answer the question of binarity of the star. It is not excluded to reveal spectral lines of the second component in case of binarity of the star. Since 2014, we have renewed UBVRI photometric observations of EM Cep in Abastumani using a 48-cm telescope with CCD device. Spectral observations are made in Azerbaijan, Shamakhy Observatory. Our German Colleagues have been observing the star since March of 2017 at the Observatory of the Jena University. We plan to carry out a joint analysis of the observations of the three observatories to explain the observational peculiarities of the star.

  10. Precise time series photometry for the Kepler-2.0 mission

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Hodgkin, S. T.; Irwin, M. J.; Lewis, J. R.; Roberts, S. J.

    2015-03-01

    The recently approved NASA K2 mission has the potential to multiply by an order of magnitude the number of short-period transiting planets found by Kepler around bright and low-mass stars, and to revolutionize our understanding of stellar variability in open clusters. However, the data processing is made more challenging by the reduced pointing accuracy of the satellite, which has only two functioning reaction wheels. We present a new method to extract precise light curves from K2 data, combining list-driven, soft-edged aperture photometry with a star-by-star correction of systematic effects associated with the drift in the roll angle of the satellite about its boresight. The systematics are modelled simultaneously with the stars' intrinsic variability using a semiparametric Gaussian process model. We test this method on a week of data collected during an engineering test in 2014 January, perform checks to verify that our method does not alter intrinsic variability signals, and compute the precision as a function of magnitude on long-cadence (30 min) and planetary transit (2.5 h) time-scales. In both cases, we reach photometric precisions close to the precision reached during the nominal Kepler mission for stars fainter than 12th magnitude, and between 40 and 80 parts per million for brighter stars. These results confirm the bright prospects for planet detection and characterization, asteroseismology and stellar variability studies with K2. Finally, we perform a basic transit search on the light curves, detecting two bona fide transit-like events, seven detached eclipsing binaries and 13 classical variables.

  11. VizieR Online Data Catalog: Variable Stars in the Galactic Center (Dong+, 2017)

    NASA Astrophysics Data System (ADS)

    Dong, H.; Schodel, R.; William, B. F.; Nogueras-Lara, F.; Gallego-Cano, E.; Gallego-Calvente, T.; Wang, Q. D.; Morris, R. M.; Do, T.; Ghez, A.

    2017-06-01

    We use the 'DOLPHOT' to detect sources and extract photometry from the HST WFC3/IR observations at the F127M and F135M bands of the Galactic Centre from 2010 to 2014. The F153M observations, which are used to identify variable stars, include 290 dithered exposures from six HST programs. The detailed description of the HST dataset are given in Table 1 of the paper. We identified 33070 sources. Their F127M and F153M magnitudes, as well as their uncertainties, are given in Table 3. For each star, we used the least chi square method to identify whether it is variable or not. The output from the least chi square method are chi2y and chi2d, which are calculated from all the 290 dithered exposures and the exposures in March and April, 2014, respectively, to examine whether the star varies among years and/or days. In order to reduce the potential variation among dithered exposures, which could be potentially introduced by instrument effects, we also bin the dithered exposures and use the least chi square method to calculate chi2y,b and chi2{d,b}. We classify stars with chi2y>3 and chi2y,b>2 are variables among years and stars with chi2d>3 and chi2d,b>2 are variables among days. The detailed description about the data analysis is given in the paper. In Table 4, we gives the magnitudes of sources in individual dithered exposures, as well as the photometric uncertainties and the quality control parameters provided by 'DOLPHOT', such as signal-to-noise ratio, sharpness^2, crowd and flag. We also cross-correlated our variables with previous variable studies taken by ground-based telescopes in Table 8 and spectroscopic observations in Table 9. (4 data files).

  12. Applying Combat Application Course Techniques to Rifle Marksmanship in Basic Combat Training (BCT): Acquisition and Retention of Skills

    DTIC Science & Technology

    2010-03-01

    Uniform (interceptor body armor (IBA), load bearing vest (LBV), etc) • Weapons Safety • Fundamentals (Steady Position, Aiming, Breath Control, and...intent is that the Soldier must reacquire the target before he/she reengages; therefore, for safety considerations, the weapon is placed on “safe...Four rules of the range: A variation of the USMC Safety Rules as seen in MCRP 3- 01A (2001, para 3001, p. 3-1). o Treat the weapon as loaded. o Do

  13. Monitoring solar-type stars for luminosity variations

    NASA Technical Reports Server (NTRS)

    Lockwood, G. W.; Skiff, B. A.

    1988-01-01

    Since 1984, researchers have made more than 1500 differential photometric b (471 nm) and y (551 nm) measurements of three dozen solar-like lower main sequence stars whose chromospheric activity was previosly studied by O. C. Wilson. Here, researchers describe their methodology and the statistical tests used to distinguish intrinsic stellar variability from observational and instrument errors. The incidence of detected variability among the program and comparison stars is summarized. Among the 100 plus pairs of stars measured differentially, only a dozen were found that were unusually constant, with peak-to-peak amplitudes of seasonal mean brightness smaller than 0.3 percent (0.003 mag) over a two-to-three-year interval.

  14. Chromospherically active stars. IV - HD 178450 = V478 Lyr: An early-type BY Draconis type binary

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.

    1988-01-01

    It is shown that the variable star HD 178450 = V478 Lyr is a chromospherically active G8 V single-lined spectroscopic binary with a period of 2.130514 days. This star is characterized by strong UV emission features and a filled-in H-alpha absorption line which is variable in strength. Classified as an early-type BY Draconis system, it is similar to the BY Dra star HD 175742 = V775 Her. The unseen secondary of HD 178450 has a mass of about 0.3 solar masses and is believed to be an M2-M3 dwarf.

  15. A survey for red varibles INT he LMC - II

    NASA Astrophysics Data System (ADS)

    Reid, Neill; Glass, I. S.; Catchpole, R. M.

    1988-05-01

    Infrared photometry of a sample of 126 variables drawn from a 16 sq deg area of the northern LMC is presented. Most of these stars were previously unknown and the majority prove the be long period red-giant variables. Most of the latter stars fall within two groups in the /K(0), log(P)/ diagram, the lower luminosity ones being Miras which obey a definite period-luminosity relation. Using the latter stars as distance estimators is discussed. The /M(bol), P/ diagram is compared with the theoretical tracks calculated by Wood, Bessell & Fox (1983), and it is found that the distribution of stars is probably consistent with a lull in star formation in the LMC from about 10 to the 9th - 2 x 10 to the 8th yr ago, although this conclusion depends strongly on the luminosity at which stars of different initial mass enter the thermally pulsing AGB.

  16. Photometric Studies of Stars in the Vicinity of Cyg OB7

    NASA Astrophysics Data System (ADS)

    Melikian, N. D.; Gomez, J.

    2017-12-01

    Results of BVRI photometric studies of 131 stars in the stellar association Cyg OB7 are presented. Observational data were obtained with the 2.6-m telescope at the Byurakan Observatory during 2000, 2002, 2004, and 2011 using the ByuFOSC-2 and SCORPIO spectral cameras. Observations made in 2007 on the 182-cm telescope (Asiago, Italy) at the Padova Astronomical Observatory with the AFOSC (Asiago Faint Object Spectrograph and Camera) detector system are also used. Variations with amplitudes ranging from 0m.2 to 2m.16 are detected in 42 of the stars. Variability is observed for the first time in 31 of the 42 stars. The brightness of 32 of the stars was essentially unchanged during the time of our measurements. All of the 42 variables lie very close to the T Tau type stars on a two-color diagram.

  17. Four New Binary Stars in the Field of CL Aurigae. II

    NASA Astrophysics Data System (ADS)

    Kim, Chun-Hwey; Lee, Jae Woo; Duck, Hyun Kim; Andronov, Ivan L.

    2010-12-01

    We report on a discovery of four new variable stars (USNO-B1.0 1234-0103195, 1235- 0097170, 1236-0100293 and 1236-0100092) in the field of CL Aur. The stars are classified as eclipsing binary stars with orbital periods of 0.5137413(23) (EW type), 0.8698365(26) (EA) and 4.0055842(40) (EA with a significant orbital eccentricity), respectively. The fourth star (USNO-B1.0 1236-0100092) showed only one partial ascending branch of the light curves, although 22 nights were covered at the 61-cm telescope at the Sobaeksan Optical Astronomy Observatory (SOAO) in Korea. Fourteen minima timings for these stars are published separately. In an addition to the original discovery paper (Kim et al. 2010), we discuss methodological problems and present results of mathematical modeling of the light curves using other methods, i.e. trigonometric polynomial fits and the newly developed fit "NAV" ("New Algol Variable").

  18. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. IV. THE CENTRAL STARS OF HaTr 4 AND Hf 2-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillwig, Todd C.; Schaub, S. C.; Bond, Howard E.

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilizemore » the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.« less

  19. Star Products with Separation of Variables Admitting a Smooth Extension

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander

    2012-08-01

    Given a complex manifold M with an open dense subset Ω endowed with a pseudo-Kähler form ω which cannot be smoothly extended to a larger open subset, we consider various examples where the corresponding Kähler-Poisson structure and a star product with separation of variables on (Ω, ω) admit smooth extensions to M. We give a simple criterion of the existence of a smooth extension of a star product and apply it to these examples.

  20. Line profile variation in delta-Orionis A, l-Orionis A, and 15 Monocerotis

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Snow, T. P.; Cash, W. C.

    1984-01-01

    The results of a monitoring program with IUE and Einstein are presented for three stars, delta-Ori A, l-Ori A, and 15 Mon. Line profile variability is observed in the UV profiles accessible to IUE and the relation between the variation in the different ions suggests that the ionization level is varying in the winds of these stars. This is consistent with Einstein observations of soft X-ray variability for two of the stars.

  1. Use of the AAVSO's International Variable Star Index (VSX) in an Undergraduate Astronomy Course Capstone Project (Abstract)

    NASA Astrophysics Data System (ADS)

    Larsen, K.

    2017-12-01

    (Abstract only) The author discusses a capstone project that utilizes the AAVSO's International Variable Star Index (VSX), ASAS light curves and phase plots, and the SIMBAD astronomical data repository in a laboratory-based undergraduate Stellar and Galactic Astronomy course.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downes, R.A.

    Galactic plane ultraviolet-excess (uv-excess) objects covering about 1000 square degrees of sky were surveyed. Photographic plates were obtained with both uv and blue filters, to select the uv-excess candidates, which were then observed spectroscopically to determine their classification. Most of the objects selected were nearby early-type stars with low interstellar reddening; however, a collection of hot white dwarfs, subdwarf O (sdO) stars, subdwarf B (sdB) stars, and cataclysmic variables was also found. Photoelectric photometry was obtained for these stars and a statistical analysis was performed to determine the space densities and scale heights for the four classes of objects. Severalmore » interesting objects (or class of objects) were discovered, and data for some of these stars are presented. Among the peculiar objects found are an emission-line white dwarf similar to the pulsating PG 1159 stars, a Population II Wolf-Rayet star, a previously catalogued object with a strong Fe II emission-line spectrum, and a new class of object, resembling the sdB stars, that shows variable strength H..cap alpha.. absorption, with the H..cap alpha.. line sometimes completely filled in.« less

  3. Unravelling the Role of the SW Sextantis Stars in the Evolution of Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Torres, Manuel; Steeghs, D.; Rodriguez-Gil, P.; Gansicke, B.; Marsh Warwick, T. R.; Araujo-Betancor, S.; Long, K.

    2006-08-01

    SW Sextantis stars are a relatively large group of cataclysmic variables whose properties contradict all predictions made by the current CV evolution theories. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assesment of their evolutionary state is illusionary. We are monitoring the brightness of 33 SW Sex stars, and request here Gemini/GMOS-N time to obtain orbital phase-resolved spectroscopy if one of them enters a low state. These data will be used to accurately measure the mass ratio, white dwarf temperature, and distance of the system, eventually providing the first detailed system parameters for any SW Sex star.

  4. VizieR Online Data Catalog: Radial velocities in M3, M13, and M92 (Kamann+, 2014)

    NASA Astrophysics Data System (ADS)

    Kamann, S.; Wisotzki, L.; Roth, M. M.; Gerssen, J.; Husser, T.-O.; Sandin, C.; Weilbacher, P.

    2014-04-01

    Radial velocity data are presented for three Galactic globular clusters, M3, M13, and M92. The provided catalogues include several hundreds of stars in each cluster that cover a wide range of distances to the cluster centres. Besides the measured radial velocities, the catalogues contain measurement uncertainties, identifiers, world coordinates and variability information for each star. The velocities for stars near the centres of the clusters were obtained using PMAS integral field spectroscopy (IFS). Note that in order to facilitate future variability studies, for each star the individual velocity measurements are provided instead of a single combined velocity. The PMAS data are complemented with velocities reported in various literature studies for stars at larger distances to the centres. (6 data files).

  5. Photometry Using Kepler "Superstamps" of Open Clusters NGC 6791 & NGC 6819

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Drury, Jason A.; Bellamy, Beau R.; Stello, Dennis; Bedding, Timothy R.; Reed, Mike; Quick, Breanna

    2015-09-01

    The Kepler space telescope has proven to be a gold mine for the study of variable stars. Usually, Kepler only reads out a handful of pixels around each pre-selected target star, omitting a large number of stars in the Kepler field. Fortunately, for the open clusters NGC 6791 and NGC 6819, Kepler also read out larger "superstamps" which contained complete images of the central region of each cluster. These cluster images can be used to study additional stars in the open clusters that were not originally on Kepler's target list. We discuss our work on using two photometric techniques to analyze these superstamps and present sample results from this project to demonstrate the value of this technique for a wide variety of variable stars.

  6. Visual Spectroscopy of R Scuti (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Undreiu, L.; Chapman, A.

    2015-06-01

    (Abstract only) We are currently conducting a visual spectral analysis of the brightest known RV Tauri variable star, R Scuti. The goal of our undergraduate research project is to investigate this variable star's erratic nature by collecting spectra at different times in its cycle. Starting in late June of 2014 and proceeding into the following four months, we have monitored the alterations in the spectral characteristics that accompany the progression of R Sct's irregular cycle. During this time, we were given the opportunity to document the star's most recent descent from maximum brightness V~5 to a relatively deep minimum of V~7.5. Analysis of the data taken during the star's period of declining magnitude has provided us with several interesting findings that concur with the observations of more technically sophisticated studies. Following their collection, we compared our observations and findings with archived material in the hopes of facilitating a better understanding of the physical state of RV Tauri stars and the perplexing nature of their evolution. Although identification of the elements in the star's bright phase proved to be challenging, documenting clear absorption features in its fainter stage was far less difficult. As previously reported in similar studies, we identified prominent TiO molecular absorption bands near R Sct's faintest state, typical of mid-M spectral type stars. In addition to these TiO absorption lines, we report the presence of many more metallic lines in the spectral profiles obtained near star's minimum. Supportive of previously published hypotheses regarding the causation of its variability, we observed significant variation in the star's spectral characteristics throughout different phases of its cycle. We are hopeful that our observations will make a meaningful contribution to existing databases and help advance our collective understanding of RV Tauri stars and their evolutionary significance.

  7. Identification and period investigation of pulsation variable star UY Camelopardalis, an RR Lyrae star in binary system

    NASA Astrophysics Data System (ADS)

    Li, Lin-Jia; Qian, Sheng-Bang; Voloshina, Irina; Metlov, Vladimir G.; Zhu, Li-Ying; Liao, Wen-Ping

    2018-06-01

    We present photometric measurements of the short period variable star UY Cam, which has been classified as a δ Scuti or c-type RR Lyrae (RRc) variable in different catalogs. Based on the analyses on Fourier coefficients and (NUV - V)0, we find that UY Cam is probably an RRc star. We obtain 58 new times of light maximum for UY Cam based on several sky surveys and our observations. Combining these with the times of light maximum in literature, a total of 154 times of light maximum are used to analyze the O - C diagram of UY Cam. The results show that the O - C pattern can be described by a downward parabolic component with a rate of -6.86 ± 0.47 × 10-11 d d-1, and a cyclic variation with a period of 65.7 ± 2.4 yr. We suppose these components are caused by the stellar evolution and the light travel time effect (LiTE) of a companion in elliptical orbit, respectively. By calculation, the minimum mass of the potential companion is about 0.17 M⊙, and its mass should be less than or equal to the pulsation primary star when the inclination i > 22.5°D. Therefore, the companion should be a low-mass star, like a late-type main-sequence star or a white dwarf. Due to the unique property of UY Cam, we suggest that more observations and studies on UY Cam and other RRc stars are needed to check the nature of these stars, including the pulsations and binarities.

  8. High-resolution spectroscopy and abundance analysis of δ Scuti stars near the γ Doradus instability strip

    NASA Astrophysics Data System (ADS)

    Kahraman Aliçavuş, F.; Niemczura, E.; Polińska, M.; Hełminiak, K. G.; Lampens, P.; Molenda-Żakowicz, J.; Ukita, N.; Kambe, E.

    2017-10-01

    δ Scuti stars are remarkable objects for asteroseismology. In spite of decades of investigations, there are still important questions about these pulsating stars to be answered, such as their positions in log Teff-log g diagram, or the dependence of the pulsation modes on atmospheric parameters and rotation. Therefore, we performed a detailed spectroscopic study of 41 δ Scuti stars. The selected objects are located near the γ Doradus instability strip to make a reliable comparison between both types of variables. Spectral classification, stellar atmospheric parameters (Teff, log g, ξ) and v sin I values were determined. The spectral types and luminosity classes of stars were found to be A1-F5 and III-V, respectively. The Teff ranges from 6600 to 9400 K, whereas the obtained log g values are from 3.4 to 4.3. The v sin I values were found between 10 and 222 km s-1. The derived chemical abundances of δ Scuti stars were compared to those of the non-pulsating stars and γ Doradus variables. It turned out that both δ Scuti and γ Doradus variables have similar abundance patterns, which are slightly different from the non-pulsating stars. These chemical differences can help us to understand why there are non-pulsating stars in classical instability strip. Effects of the obtained parameters on pulsation period and amplitude were examined. It appears that the pulsation period decreases with increasing Teff. No significant correlations were found between pulsation period, amplitude and v sin I.

  9. Two Cepheid variables in the Fornax dwarf galaxy

    NASA Technical Reports Server (NTRS)

    Light, R. M.; Armandroff, T. E.; Zinn, R.

    1986-01-01

    Two fields surrounding globular clusters 2 and 3 in the Fornax dwarf spheroidal galaxy have been searched for short-period variable stars that are brighter than the horizontal branch. This survey confirmed as variable the two suspected suprahorizontal-branch variables discovered by Buonanno et al. (1985) in their photometry of the clusters. The observations show that the star in cluster 2 is a W Virginis variable of 14.4 day period. It is the first W Vir variable to be found in a dwarf spheroidal galaxy, and its proximity to the center of cluster 2 suggests that it is a cluster member. The other star appears to be an anomalous Cephpeid of 0.78 day period. It lies outside or very near the boundary of cluster 3, and is therefore probably a member of the field population of Fornax. Although no other suprahorizontal-branch variables were discovered in the survey, it did confirm as variable two of the RR Lyrae candidates of Buonanno et al., which appeared at the survey limit. The implications of these observations for the understanding of the stellar content at Fornax are discussed.

  10. The All Sky Automated Survey. The Catalog of Bright Variable Stars in the I-band, South of Declination +28o

    NASA Astrophysics Data System (ADS)

    Sitek, M.; Pojmański, G.

    2014-06-01

    This paper presents the results of our extensive search for the bright variable stars in approximately 30 000 square degrees of the south sky in the I-band data collected by 9o×9o camera of the All Sky Automated Survey between 2002 and 2009. Lists of over 27 000 variable stars brighter than 9 mag at maximum light, with amplitudes ranging from 0.02 mag to 7 mag and variability time-scales from hours to years, as well as corresponding light curves are provided. Automated classification algorithm based on stellar properties (period, Fourier coefficients, 2MASS J, H, K, colors, ASAS V-band data) was used to roughly classify objects. Despite low spatial resolution of the ASAS data (≍15'') we cross-identified all objects with other available data sources. Coordinates of the most probable 2MASS counterparts are provided. 27 705 stars brighter than I=9 mag were found to be variable, of which 7842 objects were detected to be variable for the first time. Brief statistics and discussion of the presented data is provided. All the photometric data is available over the Internet at http://www.astrouw.edu.pl/ gp/asas/AsasBrightI.html

  11. The All Sky Automated Survey. Catalog of Variable Stars. IV. 18^h-24^h Quarter of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Pojmanski, G.; Maciejewski, G.

    2005-03-01

    In this paper we present the fourth part of the photometric data from the 9 arcdeg x 9 arcdeg ASAS camera monitoring the whole southern hemisphere in V-band. Preliminary list (based on observations obtained since January 2001) of variable stars located between RA 18^h and 24^h is released. 10311 stars brighter than V=15 mag were found to be variable (1641 eclipsing, 1116 regularly pulsating, 938 Mira-type and 6616 other stars). Light curves have been classified using the automated algorithm taking into account periods, amplitudes, Fourier coefficients of the light curves, 2MASS colors and IRAS infrared fluxes. Basic photometric properties are presented in the tables and some examples of thumbnail light curves are printed for reference. All photometric data are available over the Internet at http://www.astrouw.edu.pl/~gp/asas/asas.html or http://archive.princeton.edu/~asas

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Edward G., E-mail: eschmidt1@unl.edu

    We have obtained VR photometry of 447 Cepheid variable star candidates with declinations north of -14 Degree-Sign 30', most of which were identified using the Northern Sky Variability Survey (NSVS) data archive. Periods and other photometric properties were derived from the combination of our data with the NSVS data. Atmospheric parameters were determined for 81 of these stars from low-resolution spectra. The identification of type II Cepheids based on the data presented in all four papers in this series is discussed. On the basis of spectra, 30 type II Cepheids were identified while 53 variables were identified as cool, mainmore » sequence stars and 283 as red giants following the definitions in Paper III. An additional 30 type II Cepheids were identified on the basis of light curves. The present classifications are compared with those from the Machine-learned All Sky Automated Survey Classification Catalog for 174 stars in common.« less

  13. The All Sky Automated Survey. The Catalog of Variable Stars. II. 6^h-12^h Quarter of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Pojmanski, G.

    2003-12-01

    This paper describes the second part of the photometric data from the 9 arcdeg times 9 arcdeg ASAS camera monitoring the whole southern hemisphere in the V-band. Preliminary list of variable stars based on observations obtained since January 2001 is presented. Over 2800000 stars brighter than V=15 mag on 18000 frames were analyzed and 11357 were found to be variable (2685 eclipsing, 907 regularly pulsating, 521 Mira and 7244 other, mostly SR, IRR and LPV stars). Periodic light curves have been classified using the automated algorithm, which now takes into account IRAS infrared fluxes. Basic photometric properties are presented in the tables and some examples of thumbnail light curves are printed for reference. All photometric data are available over the INTERNET at http://www.astrouw.edu.pl/~gp/asas/asas.html or http://archive.princeton.edu/~asas.

  14. The All Sky Automated Survey. Catalog of Variable Stars. III. 12h-18h Quarter of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Pojmanski, G.; Maciejewski, G.

    2004-06-01

    This paper describes the third part of the photometric data from the 9 arcdeg x 9arcdeg ASAS camera monitoring the whole southern hemisphere in V-band. Preliminary list of variable stars based on observations obtained since January 2001 is presented. Over 3200000 stars brighter than V=15 mag on 18000 frames were analyzed and 10453 were found to be variable (1718 eclipsing, 731 regularly pulsating, 849 Mira and 7155 other stars). Light curves have been classified using the improved automated algorithm, which now takes into account 2MASS colors and IRAS infrared fluxes. Basic photometric properties are presented in the tables and some examples of thumbnail light curves are printed for reference. All photometric data are available over the INTERNET at http://www.astrouw.edu.pl/\\gp/asas/asas.html or http://archive.princeton.edu/\\asas.

  15. Infinitesimal Deformations of a Formal Symplectic Groupoid

    NASA Astrophysics Data System (ADS)

    Karabegov, Alexander

    2011-09-01

    Given a formal symplectic groupoid G over a Poisson manifold ( M, π 0), we define a new object, an infinitesimal deformation of G, which can be thought of as a formal symplectic groupoid over the manifold M equipped with an infinitesimal deformation {π_0 + \\varepsilon π_1} of the Poisson bivector field π 0. To any pair of natural star products {(ast,tildeast)} having the same formal symplectic groupoid G we relate an infinitesimal deformation of G. We call it the deformation groupoid of the pair {(ast,tildeast)} . To each star product with separation of variables {ast} on a Kähler-Poisson manifold M we relate another star product with separation of variables {hatast} on M. We build an algorithm for calculating the principal symbols of the components of the logarithm of the formal Berezin transform of a star product with separation of variables {ast} . This algorithm is based upon the deformation groupoid of the pair {(ast,hatast)}.

  16. The SpaceInn-SISMA Database: Characterization of a Large Sample of Variable and Active Stars by Means of Harps Spectra

    NASA Astrophysics Data System (ADS)

    Rainer, M.; Poretti, E.; Mistò, A.; Panzera, M. R.; Molinaro, M.; Cepparo, F.; Roth, M.; Michel, E.; Monteiro, M. J. P. F. G.

    2016-12-01

    We created a large database of physical parameters and variability indicators by fully reducing and analyzing the large number of spectra taken to complement the asteroseismic observations of the COnvection, ROtation and planetary Transits (CoRoT) satellite. 7103 spectra of 261 stars obtained with the ESO echelle spectrograph HARPS have been stored in the VO-compliant database Spectroscopic Indicators in a SeisMic Archive (SISMA), along with the CoRoT photometric data of the 72 CoRoT asteroseismic targets. The remaining stars belong to the same variable classes of the CoRoT targets and were observed to better characterize the properties of such classes. Several useful variability indicators (mean line profiles, indices of differential rotation, activity and emission lines) together with v\\sin I and radial-velocity measurements have been extracted from the spectra. The atmospheric parameters {T}{eff},{log}g, and [Fe/H] have been computed following a homogeneous procedure. As a result, we fully characterize a sample of new and known variable stars by computing several spectroscopic indicators, also providing some cases of simultaneous photometry and spectroscopy.

  17. On the period determination of ASAS eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Mayangsari, L.; Priyatikanto, R.; Putra, M.

    2014-03-01

    Variable stars, or particularly eclipsing binaries, are very essential astronomical occurrence. Surveys are the backbone of astronomy, and many discoveries of variable stars are the results of surveys. All-Sky Automated Survey (ASAS) is one of the observing projects whose ultimate goal is photometric monitoring of variable stars. Since its first light in 1997, ASAS has collected 50,099 variable stars, with 11,076 eclipsing binaries among them. In the present work we focus on the period determination of the eclipsing binaries. Since the number of data points in each ASAS eclipsing binary light curve is sparse, period determination of any system is a not straightforward process. For 30 samples of such systems we compare the implementation of Lomb-Scargle algorithm which is an Fast Fourier Transform (FFT) basis and Phase Dispersion Minimization (PDM) method which is non-FFT basis to determine their period. It is demonstrated that PDM gives better performance at handling eclipsing detached (ED) systems whose variability are non-sinusoidal. More over, using semi-automatic recipes, we get better period solution and satisfactorily improve 53% of the selected object's light curves, but failed against another 7% of selected objects. In addition, we also highlight 4 interesting objects for further investigation.

  18. Cepheid variables in the flared outer disk of our galaxy.

    PubMed

    Feast, Michael W; Menzies, John W; Matsunaga, Noriyuki; Whitelock, Patricia A

    2014-05-15

    Flaring and warping of the disk of the Milky Way have been inferred from observations of atomic hydrogen but stars associated with flaring have not hitherto been reported. In the area beyond the Galactic centre the stars are largely hidden from view by dust, and the kinematic distances of the gas cannot be estimated. Thirty-two possible Cepheid stars (young pulsating variable stars) in the direction of the Galactic bulge were recently identified. With their well-calibrated period-luminosity relationships, Cepheid stars are useful distance indicators. When observations of these stars are made in two colours, so that their distance and reddening can be determined simultaneously, the problems of dust obscuration are minimized. Here we report that five of the candidates are classical Cepheid stars. These five stars are distributed from approximately one to two kiloparsecs above and below the plane of the Galaxy, at radial distances of about 13 to 22 kiloparsecs from the centre. The presence of these relatively young (less than 130 million years old) stars so far from the Galactic plane is puzzling, unless they are in the flared outer disk. If so, they may be associated with the outer molecular arm.

  19. New SX Phoenicis Variables in the Globular Cluster NGC 4833

    NASA Astrophysics Data System (ADS)

    Darragh, A. N.; Murphy, B. W.

    2012-07-01

    We report the discovery of 6 SX Phoenicis stars in the southern globular cluster NGC 4833. Images were obtained from January through June 2011 with the Southeastern Association for Research in Astronomy 0.6 meter telescope located at Cerro Tololo Interamerican Observatory. The ISIS image subtraction method was used to search for variable stars in the cluster. We confirmed 17 previously cataloged variables and have identified 10 new variables. Of the total number of confirmed variables in our 10×10 arcmin^2 field, we classified 10 RRab variables, with a mean period of 0.69591 days, 7 RRc, with a mean period of 0.39555 days, 2 possible RRe variables with a mean period of 0.30950 days, a W Ursae Majoris contact binary, an Algol-type binary, and the 6 SX Phoenicis stars with a mean period of 0.05847 days. The periods, relative numbers of RRab and RRc variables, and Bailey diagram are indicative of the cluster being of the Oosterhoff type II. We present the phased-light curves, periods of previously known variables and the periods and classifications of the newly discovered variables, and their location on the color-magnitude diagram.

  20. Yes, Aboriginal Australians can and did discover the variability of Betelgeuse

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.

    2018-04-01

    Recently, a widely publicized claim has been made that the Aboriginal Australians discovered the variability of the red star Betelgeuse in the modern Orion, plus the variability of two other prominent red stars: Aldebaran and Antares. This result has excited the usual healthy skepticism, with questions about whether any untrained peoples can discover the variability and whether such a discovery is likely to be placed into lore and transmitted for long periods of time. Here, I am offering an independent evaluation, based on broad experience with naked-eye sky viewing and astro-history. I find that it is easy for inexperienced observers to detect the variability of Betelgeuse over its range in brightness from V = 0.0 to V = 1.3, for example in noticing from season-to-season that the star varies from significantly brighter than Procyon to being greatly fainter than Procyon. Further, indigenous peoples in the Southern Hemisphere inevitably kept watch on the prominent red star, so it is inevitable that the variability of Betelgeuse was discovered many times over during the last 65 millennia. The processes of placing this discovery into a cultural context (in this case, put into morality stories) and the faithful transmission for many millennia is confidently known for the Aboriginal Australians in particular. So this shows that the whole claim for a changing Betelgeuse in the Aboriginal Australian lore is both plausible and likely. Given that the discovery and transmission is easily possible, the real proof is that the Aboriginal lore gives an unambiguous statement that these stars do indeed vary in brightness, as collected by many ethnographers over a century ago from many Aboriginal groups. So I strongly conclude that the Aboriginal Australians could and did discover the variability of Betelgeuse, Aldebaran, and Antares.

  1. Investigating the Spectroscopic Variability of Magentically Active M Dwarfs In SDSS.

    NASA Astrophysics Data System (ADS)

    Ventura, Jean-Paul; Schmidt, Sarah J.; Cruz, Kelle; Rice, Emily; Cid, Aurora

    2018-01-01

    Magnetic activity, a wide range of observable phenomena produced in the outer atmospheres of stars is, currently, not well understood for M dwarfs. In higher mass stars, magnetic activity is powered by a dynamo process involving the differential rotation of a star’s inner regions. This process generates a magnetic field, heats up regions in the chromosphere and produces Hα emission line radiation from collisional excitation. Using spectroscopic data from the Sloan Digital Sky Survey (SDSS), I compare Hα emission line strengths for a subsample of 12,000 photometric variability selected M dwarfs from Pan-STARRS1 with those of a known non-variable sample. Presumably, the photometric variability originates from the occurrence of star spots at the stellar surface, which are the result of an intense magnetic field and associated chromospheric heating. We proceed with this work in order to test whether the photometric variability of the sample correlates with chromospheric Hα emission features. If not, we explore alternate reasons for that photometric variability (e.g. binarity or transiting planetary companions)

  2. Detection of a weak maser emission pedestal associated with the SiO maser. [in variable late stars

    NASA Technical Reports Server (NTRS)

    Snyder, L. E.; Dickinson, D. F.; Brown, L. W.; Buhl, D.

    1978-01-01

    Results are reported for high-spectral-resolution observations of the v = 1, J = 1-0 SiO maser sources at 43,122.027 MHz (6.95 mm wavelength) associated with the variable stars Omega Cet, NML Tau, VY CMa, R Leo, W Hya, VX Sgr, NML Cyg, and R Cas. A weak underlying maser emission pedestal is clearly observed in the spectra of all but NML Cyg and R Cas. The data indicate that the underlying pedestal of SiO emission appears to originate in a shell-like region around the star, has a thermal appearance even though it must be due to weak maser emission, and appears to be part of the spectral signature of SiO maser emission from late-type stars. It is found that the center velocities of the pedestals may be used to determine stellar radial velocities. Observations of large-scale time variations in the intensity of the Ori A SiO maser and the detection of weak maser pedestals associated with each of the two strong emission-feature groups in Orion are also discussed. It is suggested that the Orion molecular cloud might contain two late-type long-period variable stars that may be semiregular variables.

  3. Aperture Fever and the Quality of AAVSO Visual Estimates: mu Cephei as an Example

    NASA Astrophysics Data System (ADS)

    Turner, D. G.

    2014-06-01

    (Abstract only) At the limits of human vision the eye can reach precisions of 10% or better in brightness estimates for stars. So why did the quality of AAVSO visual estimates suddenly drop to 50% or worse for many stars following World War II? Possibly it is a consequence of viewing variable stars through ever-larger aperture instruments than was the case previously, a time when many variables were observed without optical aid. An example is provided by the bright red supergiant variable mu Cephei, a star that has the potential to be a calibrating object for the extragalactic distance scale if its low-amplitude brightness variations are better defined. It appears to be a member of the open cluster Trumpler 37, so its distance and luminosity can be established provided one can pinpoint the amount of interstellar extinction between us and it. mu Cep appears to be a double-mode pulsator, as suggested previously in the literature, but with periods of roughly 700 and 1,000 days it is unexciting to observe and its red color presents a variety of calibration problems. Improving quality control for such variable stars is an issue important not only to the AAVSO, but also to science in general.

  4. VizieR Online Data Catalog: JHK lightcurves of red giants in the SMC (Takayama+, 2015)

    NASA Astrophysics Data System (ADS)

    Takayama, M.; Wood, P. R.; Ita, Y.

    2017-11-01

    This is JHK light curves of 7 oxygen rich stars and 14 carbon stars which show the variability of prominent long secondary periods (LSPs). Those stars are cross-identified with OGLE LSP variables in the Small Magellanic Cloud (Soszynski et al. 2011, J/AcA/61/217). A long-term multiband near-IR photometric survey for variable stars in the Large and Small Magellanic Clouds has been carried out at the South African Astronomical Observatory at Sutherland (Ita et al., in preparation). The SIRIUS camera attached to the IRSF 1.4 m telescope was used for this survey and more than 10 yr of observations in the near-IR bands J(1.25 μm), H(1.63 μm) and KS(2.14 μm) band were obtained. In this work, we select the SMC stars from the SIRIUS data base. We obtained the V- and I-band time series of SMC red giants from the OGLE project (Soszynski et al. 2011, J/AcA/61/217). (2 data files).

  5. Variable Stars in Large Magellanic Cloud Globular Clusters. III. Reticulum

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Dame, Kyra; Smith, Horace A.; Catelan, Márcio; Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2013-06-01

    This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  6. K2 Variable Catalogue: Variable stars and eclipsing binaries in K2 campaigns 1 and 0

    NASA Astrophysics Data System (ADS)

    Armstrong, D. J.; Kirk, J.; Lam, K. W. F.; McCormac, J.; Walker, S. R.; Brown, D. J. A.; Osborn, H. P.; Pollacco, D. L.; Spake, J.

    2015-07-01

    Aims: We have created a catalogue of variable stars found from a search of the publicly available K2 mission data from Campaigns 1 and 0. This catalogue provides the identifiers of 8395 variable stars, including 199 candidate eclipsing binaries with periods up to 60 d and 3871 periodic or quasi-periodic objects, with periods up to 20 d for Campaign 1 and 15 d for Campaign 0. Methods: Lightcurves are extracted and detrended from the available data. These are searched using a combination of algorithmic and human classification, leading to a classifier for each object as an eclipsing binary, sinusoidal periodic, quasi periodic, or aperiodic variable. The source of the variability is not identified, but could arise in the non-eclipsing binary cases from pulsation or stellar activity. Each object is cross-matched against variable star related guest observer proposals to the K2 mission, which specifies the variable type in some cases. The detrended lightcurves are also compared to lightcurves currently publicly available. Results: The resulting catalogue gives the ID, type, period, semi-amplitude, and range of the variation seen. We also make available the detrended lightcurves for each object. The catalogue is available at http://deneb.astro.warwick.ac.uk/phrlbj/k2varcat/ and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A19

  7. Exploring the SDSS Dataset with Linked Scatter Plots: I. EMP, CEMP, and CV Stars

    NASA Technical Reports Server (NTRS)

    Carbon, Duane F.; Henze, Christopher; Nelson, Bron C.

    2017-01-01

    We present the results of a search for EMP, CEMP, and cataclysmic variable stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets and can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct a search for EMP, CEMP, and cataclysmic variable stars in the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569,738 SDSS stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, C-rich EMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He II emission CV stars found by the LSP approach that have not yet been discussed in the literature.

  8. Exploring the SDSS Dataset with Linked Scatter Plots: I. EMP, CEMP, and CV Stars.

    PubMed

    Carbon, Duane F; Henze, Christopher; Nelson, Bron C

    2017-02-01

    We present the results of a search for EMP, CEMP, and cataclysmic variable stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets and can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct a search for EMP, CEMP, and cataclysmic variable stars in the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569,738 SDSS stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, C-rich EMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He II emission CV stars found by the LSP approach that have not yet been discussed in the literature.

  9. Exploring the SDSS Dataset with Linked Scatter Plots: I. EMP, CEMP, and CV Stars

    PubMed Central

    Carbon, Duane F.; Henze, Christopher; Nelson, Bron C.

    2017-01-01

    We present the results of a search for EMP, CEMP, and cataclysmic variable stars using a new exploration tool based on linked scatter plots (LSPs). Our approach is especially designed to work with very large spectrum data sets such as the SDSS, LAMOST, RAVE, and Gaia data sets and can be applied to stellar, galaxy, and quasar spectra. As a demonstration, we conduct a search for EMP, CEMP, and cataclysmic variable stars in the SDSS DR10 data set. We first created a 3326-dimensional phase space containing nearly 2 billion measures of the strengths of over 1600 spectral features in 569,738 SDSS stars. These measures capture essentially all the stellar atomic and molecular species visible at the resolution of SDSS spectra. We show how LSPs can be used to quickly isolate and examine interesting portions of this phase space. To illustrate, we use LSPs coupled with cuts in selected portions of phase space to extract EMP stars, C-rich EMP stars, and CV stars. We present identifications for 59 previously unrecognized candidate EMP stars and 11 previously unrecognized candidate CEMP stars. We also call attention to 2 candidate He II emission CV stars found by the LSP approach that have not yet been discussed in the literature. PMID:28684884

  10. Precision Photometry of Long Period Variable Stars: Flares and Bumps in the Night (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Mais, D.

    2015-06-01

    (Abstract only) Mira variable stars are a broad class of stars, which encompass spectroscopic classes of type M, S, and C. These stars are closely related in terms of their long term variability, position on the Hertzsprung-Russell diagram their intermediate mass (from ~0.8 to ~8 solar mass) and the fact that class M evolves into the S and C type stars as certain stages of shell burning around the core proceeds. Recently, evidence has accumulated to suggest that Mira variables may go through flare up stages which result in brightening on the order of several tenths of a magnitude or more and may last hours to days in length. Very little is known about these events, indeed it is not clear that these events are real. In order to address the reality of these events, we established an automated acquisition/analysis of a group of 108 Mira variables in order to obtain the densest coverage of the periods to better constrain the potential flare-ups. Telescope control scripts were put in place along with real time analysis. This allowed for unattended acquisition of data on every clear night, all night long, in the V, R, and I photometric bands. In addition, during the course of the night multiple determinations are often obtained for a given star. The light curves of many of the program stars show a Cepheid-like bump phenomenon, however these appear on the ascending part of the light curve. In general, these bumps appear in longer period Mira's (>350 days). Bumps are not obvious or easily seen in VISUAL data records, although slope changes during rising phase are seen in some cases. So far, greater than 100,000 magnitude determinations have been obtained, many closely spaced in time. This should help to further constrain the potential occurrences of flare-up events.

  11. Variable Stars and Constant Commitments: The Stellar Career of Dorrit Hoffleit

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2011-05-01

    Astronomer, educator, and science historian Dorrit Hoffleit (1907-2007) was widely respected by the amateur and professional astronomical community as a mentor and an ardent supporter of independent research. Her more than 600 catalogues, books, articles, book reviews, and news columns cover myriad aspects of astronomy, from variable stars and stellar properties to meteor showers, quasars, and rocketry. She also made important contributions to the history of astronomy. Hoffleit worked at the Harvard College Observatory from 1927-1956, where she discovered over 1200 variable stars. When Director Harlow Shapley retired from Harvard, Hoffleit gave up her tenured position and moved to Yale University, where she was placed in charge of the Yale Catalog of Bright Stars. At the same time, she was offered a position as director of the Maria Mitchell Observatory on Nantucket Island in Massachusetts. Hoffleit split her dual positions into six-month stints and remained director at the Mitchell Observatory for 21 years, developing a summer research program that engaged more than 100 undergraduate students (all but three of them women) in variable star research. Up until shortly before her death, she continued to work tirelessly on selected projects, and she was in high demand as a collaborator with colleagues at Yale and elsewhere. She was especially devoted to the American Association of Variable Star Observers (AAVSO) in part because it brought together amateur and professional astronomers in collaboration. She served on the organization's council for 23 years and as its president from 1961-1963. In 2002, the AAVS0 published her autobiography, Misfortunes as Blessings in Disguise, in which Hoffleit explains how she always felt blessed by the opportunities in her life, even those which initially seemed misfortunes, and above all else valued creativity, flexibility, collegiality, and intellectual freedom in her professional life.

  12. Variable Stars In the Unusual, Metal-Rich Globular Cluster

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Catelan, Marcio; Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have undertaken a search for variable stars in the metal-rich globular cluster NGC 6388 using time-series BV photometry. Twenty-eight new variables were found in this survey, increasing the total number of variables found near NGC 6388 to approx. 57. A significant number of the variables are RR Lyrae (approx. 14), most of which are probable cluster members. The periods of the fundamental mode RR Lyrae are shown to be unusually long compared to metal-rich field stars. The existence of these long period RRab stars suggests that the horizontal branch of NGC 6388 is unusually bright. This implies that the metallicity-luminosity relationship for RR Lyrae stars is not universal if the RR Lyrae in NGC 6388 are indeed metal-rich. We consider the alternative possibility that the stars in NGC 6388 may span a range in [Fe/H]. Four candidate Population II Cepheids were also found. If they are members of the cluster, NGC 6388 would be the most metal-rich globular cluster to contain Population II Cepheids. The mean V magnitude of the RR Lyrae is found to be 16.85 +/- 0.05 resulting in a distance of 9.0 to 10.3 kpc, for a range of assumed values of (M(sub V)) for RR Lyrae. We determine the reddening of the cluster to be E(B - V) = 0.40 +/- 0.03 mag, with differential reddening across the face of the cluster. We discuss the difficulty in determining the Oosterhoff classification of NGC 6388 and NGC 6441 due to the unusual nature of their RR Lyrae, and address evolutionary constraints on a recent suggestion that they are of Oosterhoff type II.

  13. A disk asymmetry in motion around the B[e] star MWC158

    NASA Astrophysics Data System (ADS)

    Kluska, J.; Benisty, M.; Soulez, F.; Berger, J.-P.; Le Bouquin, J.-B.; Malbet, F.; Lazareff, B.; Thiébaut, E.

    2016-06-01

    Context. MWC158 is a star with the B[e] phenomenon that shows strong spectrophotometric variability (in lines and in UV and visible continuum) attributed to phases of shell ejection. The evolutionary stage of this star was never clearly determined. Previous interferometric, spectropolarimetric and spectro-interferometric studies suggest a disk morphology for its environment. Aims: We investigate the origin of the variability within the inner astronomical unit of the central star using near-infrared interferometric observations with PIONIER at the VLTI over a two-year period. Methods: We performed an image reconstruction of the circumstellar environment using the SPARCO method. We discovered that the morphology of the circumstellar environment could vary on timescales of weeks or days. We carried out a parametric fit of the data with a model consisting of a star, a disk and a bright spot that represents a brighter emission in the disk. Results: We detect strong morphological changes in the first astronomical unit around the star, that happen on a timescale of few months. We cannot account for such variability well with a binary model. Our parametric model fits the data well and allows us to extract the location of the asymmetry for different epochs. Conclusions: For the first time, we detect a morphological variability in the environment of MWC158. This variability is reproduced by a model of a disk and a bright spot. The locations of the bright spot suggest that it is located in the disk, but its precise motion is not determined. The origin of the asymmetry in the disk is complex and may be related to asymmetric shell ejections. Based on observations performed with PIONIER mounted on the ESO Very Large Telescope interferometer (programmes: 089.C-0211, 190.C-0963).

  14. Active Learning to Overcome Sample Selection Bias: Application to Photometric Variable Star Classification

    NASA Astrophysics Data System (ADS)

    Richards, Joseph W.; Starr, Dan L.; Brink, Henrik; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; James, J. Berian; Long, James P.; Rice, John

    2012-01-01

    Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting, co-training, and active learning (AL). We argue that AL—where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up—is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable Stars, from 65.5% to 79.5%, and a significant increase in the classifier's average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.

  15. Four Star School Awards: Key Factors that Predict High Performance among Indiana School Corporations

    ERIC Educational Resources Information Center

    Veracco, Lawrence H.

    2009-01-01

    The purpose of this study was to analyze the Four Star status of Indiana school corporations in order to determine if certain variables currently existing among school corporations could be predictive of Four Star status. Differences in Four Star status were examined with respect to school corporation size, school corporation average teacher…

  16. Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Abbott, David C.; Conti, Peter S.

    1987-01-01

    The properties and evolutionary status of WR stars are examined, reviewing the results of recent observational and theoretical investigations. Topics discussed include spectral types and line strengths, magnitudes and colors, intrinsic variability, IR and radio observations, X-ray observations, the Galactic distribution of WR stars, WR stars in other galaxies, and WR binaries. Consideration is given to the inferred masses, composition, and stellar winds of WR stars; model atmospheres; WR stars and the Galactic environment; and WR stars as a phase of stellar evolution. Diagrams, graphs, and tables of numerical data are provided.

  17. Calibrating the pixel-level Kepler imaging data with a causal data-driven model

    NASA Astrophysics Data System (ADS)

    Wang, Dun; Foreman-Mackey, Daniel; Hogg, David W.; Schölkopf, Bernhard

    2015-01-01

    In general, astronomical observations are affected by several kinds of noise, each with it's own causal source; there is photon noise, stochastic source variability, and residuals coming from imperfect calibration of the detector or telescope. In particular, the precision of NASA Kepler photometry for exoplanet science—the most precise photometric measurements of stars ever made—appears to be limited by unknown or untracked variations in spacecraft pointing and temperature, and unmodeled stellar variability. Here we present the Causal Pixel Model (CPM) for Kepler data, a data-driven model intended to capture variability but preserve transit signals. The CPM works at the pixel level (not the photometric measurement level); it can capture more fine-grained information about the variation of the spacecraft than is available in the pixel-summed aperture photometry. The basic idea is that CPM predicts each target pixel value from a large number of pixels of other stars sharing the instrument variabilities while not containing any information on possible transits at the target star. In addition, we use the target star's future and past (auto-regression). By appropriately separating the data into training and test sets, we ensure that information about any transit will be perfectly isolated from the fitting of the model. The method has four hyper-parameters (the number of predictor stars, the auto-regressive window size, and two L2-regularization amplitudes for model components), which we set by cross-validation. We determine a generic set of hyper-parameters that works well on most of the stars with 11≤V≤12 mag and apply the method to a corresponding set of target stars with known planet transits. We find that we can consistently outperform (for the purposes of exoplanet detection) the Kepler Pre-search Data Conditioning (PDC) method for exoplanet discovery, often improving the SNR by a factor of two. While we have not yet exhaustively tested the method at other magnitudes, we expect that it should be generally applicable, with positive consequences for subsequent exoplanet detection or stellar variability (in which case we must exclude the autoregressive part to preserve intrinsic variability).

  18. The effective temperature of the white-dwarf star and ZZ Ceti candidate Wolf 485A

    NASA Technical Reports Server (NTRS)

    Digel, S. W.; Shipman, H. L.

    1984-01-01

    Previous multichannel observations of W485A (WD 1327-08) have placed it in the instability strip, the effective temperature range 11,000-13,000 K. In the instability strip, most of the stars (the ZZ Ceti stars) are variable, but W485A has not been detected to be variable. In this paper, high-resolution spectra of W485A and improved hydrogen-line broadening routines are used in the ATLAS model-atmospheres program to find the temperature of W485A; the estimate of effective temperature most consistent with the other data on the star is 14,600 K, outside the instability strip.

  19. THE TAIWAN-AMERICAN OCCULTATION SURVEY PROJECT STELLAR VARIABILITY. I. DETECTION OF LOW-AMPLITUDE {delta} SCUTI STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.-W.; Protopapas, P.; Alcock, C.

    2010-02-15

    We analyzed data accumulated during 2005 and 2006 by the Taiwan-American Occultation Survey (TAOS) in order to detect short-period variable stars (periods of {approx}<1 hr) such as {delta} Scuti. TAOS is designed for the detection of stellar occultation by small-size Kuiper Belt Objects and is operating four 50 cm telescopes at an effective cadence of 5 Hz. The four telescopes simultaneously monitor the same patch of the sky in order to reduce false positives. To detect short-period variables, we used the fast Fourier transform algorithm (FFT) in as much as the data points in TAOS light curves are evenly spaced.more » Using FFT, we found 41 short-period variables with amplitudes smaller than a few hundredths of a magnitude and periods of about an hour, which suggest that they are low-amplitude {delta} Scuti stars. The light curves of TAOS {delta} Scuti stars are accessible online at the Time Series Center Web site (http://timemachine.iic.harvard.edu)« less

  20. The two variables in the triple system HR 6469 = V819 Her: One eclipsing, one spotted

    NASA Technical Reports Server (NTRS)

    Van Hamme, Walter V.; Hall, Douglas S.; Hargrove, Adam W.; Henry, Gregory W.; Wasson, Rick; Barksdale, William S.; Chang, Sandy; Fried, Robert E.; Green, Charles L.; Lines, Helen C.

    1994-01-01

    A complete BV light curve, from 14 nights of good data obtained with the Vanderbilt University-Tennessee State University (VU-TSU) automatic telescope, are presented and solved with the Wilson-Devinney program. Third light is evaluated, with the companion star brighter by 0.58(sup m) in V and 0.11(sup m) in B. The eclipses are partial. Inferred color indices yield F2 V and F8 V for the eclipsing pair and G8 IV-III for the distant companion star. After removing the variability due to eclipses, we study the residual variability of the G8 IV-III star over the ten years 1982 to 1992. Each yearly light curve is fit with a two-spot model. Three relatively long-lived spots are identified, with rotation periods of 85.9(sup d), 85.9(sup d), and 86.1(sup d). The weak and intermittent variability is understood because the G8 IV-III star has a Rossby number at the threshold for the onset of heavy spottedness.

  1. Variables en la región central del cúmulo globular NGC 3201: descomposición de Fourier de las curvas de luz de las RR Lyrae y análisis de la relación período-luminosidad de las SX Phoenicis

    NASA Astrophysics Data System (ADS)

    Ahumada, J. A.; Arellano Ferro, A.; Calderón, J. H.; Kains, N.

    2015-08-01

    We present CCD time-series observations of the central region of the globular cluster NGC 3201, collected from CASLEO in March 2013, with the aim of performing the Fourier decomposition of the light curves of the RR Lyrae variables. This procedure, applied to the RRab-type stars, gave a mean value [Fe/H], for the cluster metallicity, and 5.00 0.22 kpc, for the cluster distance. The values found from two RRc stars are consistent with those derived previously. Because of differential reddening across the cluster field, individual reddenings for the RRab stars were estimated from their curves, resulting in an average value . An investigation of the light curves of stars in the blue straggler region led to the discovery of three new SX Phoenicis variables. The period-luminosity relation of the SX Phoenicis was used for an independent determination of the distance to the cluster and of the individual reddenings of these variables.

  2. Ultraviolet spectroscopy of the brightest supergiants in M31 and M33

    NASA Technical Reports Server (NTRS)

    Humphreys, R. M.; Blaha, C.; Dodorico, S.; Gull, T. R.; Benevenuti, P.

    1983-01-01

    Ultraviolet spectroscopy from the IUE, in combination with groundbased visual and infrared photometry, are to determine the energy distributions of the luminous blue variables, the Hubble-Sandage variables, in M31 and M33. The observed energy distributions, especially in the ultraviolet, show that these stars are suffering interstellar reddening. When corrected for interstellar extinction, the integrated energy distributions yield the total luminosities and black body temperatures of the stars. The resulting bolometric magnitudes and temperatures confirm that these peculiar stars are indeed very luminous, hot stars. They occupy the same regions of the sub B01 vs. log T sub e diagram as do eta Car, P Cyg and S Dor in our galaxy and the LMC. Many of the Hubble-Sandage variables have excess infrared radiation which is attributed to free-free emission from their extended atmospheres. Rough mass loss estimates from the infrared excess yield rates of 0.00001 M sub annual/yr. The ultraviolet spectra of the H-S variables are also compared with similar spectra of eta Car, P Cyg and S For.

  3. Advancing Variable Star Astronomy: The Centennial History of the American Association of Variable Star Observers

    NASA Astrophysics Data System (ADS)

    Williams, Thomas R.; Saladyga, Michael

    2011-05-01

    Preface; Part I. Pioneers in Variable Star Astronomy Prior to 1909: 1. The emergence of variable star astronomy - a need for observations; 2. A need for observers; Part II. The Founding of the AAVSO - The William Tyler Olcott Era: 3. The amateur's amateur; 4. Amateurs in the service of science; Part III. The Leon Campbell Era: 5. Leon Campbell to the rescue; 6. Formalizing relationships; 7. The Pickering Memorial Endowment; 8. Fading of the Old Guard; 9. Growing pains and distractions; Part IV. The Service Bureau - The Margaret Mayall Era: 10. Learning about independence; 11. Eviction from Harvard College Observatory; 12. Actions and reactions; 13. In search of a home; 14. Survival on Brattle Street; 15. AAVSO achievements; 16. Breathing room on Concord Avenue; Part V. Analysis and Science: The Janet Mattei Era: 17. The growth of a director; 18. Learning the ropes the hard way; 19. Managing with renewed confidence; 20. Expanding the scientific charter; Part VI. Accelerating Observational Science - The Arne Henden Era: 21. Bridging the gap; 22. Accelerating the science - the Henden era begins; Epilogue; Appendices; Index.

  4. Luminous and Variable Stars in M31 and M33. IV. Luminous Blue Variables, Candidate LBVs, B[e] Supergiants, and the Warm Hypergiants: How to Tell Them Apart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, Roberta M.; Gordon, Michael S.; Hahn, David

    In this series of papers we have presented the results of a spectroscopic survey of luminous stars in the nearby spirals M31 and M33. Here, we present spectroscopy of 132 additional stars. Most have emission-line spectra, including luminous blue variables (LBVs) and candidate LBVs, Fe ii emission line stars, the B[e] supergiants, and the warm hypergiants. Many of these objects are spectroscopically similar and are often confused with each other. We examine their similarities and differences and propose the following guidelines that can be used to help distinguish these stars in future work. (1) The B[e] supergiants have emission linesmore » of [O i] and [Fe ii] in their spectra. Most of the spectroscopically confirmed sgB[e] stars also have warm circumstellar dust in their spectral energy distributions (SEDs). (2) Confirmed LBVs do not have the [O i] emission lines in their spectra. Some LBVs have [Fe ii] emission lines, but not all. Their SEDs show free–free emission in the near-infrared but no evidence for warm dust . Their most important and defining characteristic is the S Dor-type variability. (3) The warm hypergiants spectroscopically resemble the LBVs in their dense wind state and the B[e] supergiants. However, they are very dusty. Some have [Fe ii] and [O i] emission in their spectra like the sgB[e] stars, but are distinguished by their A- and F-type absorption-line spectra. In contrast, the B[e] supergiant spectra have strong continua and few if any apparent absorption lines. Candidate LBVs should share the spectral characteristics of the confirmed LBVs with low outflow velocities and the lack of warm circumstellar dust.« less

  5. In Search of Stellar Music: Finding Pulsators for the TESS Mission

    NASA Astrophysics Data System (ADS)

    Richey-Yowell, Tyler; Pepper, Joshua; KELT Collaboration

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will search for small transiting exoplanets orbiting bright stars. One of the additional mission objectives is to observe oscillating variable stars to precisely measure these stars’ masses, radii, and internal structures. Since TESS can observe only a limited number of stars with high enough cadence to detect these oscillations, it is necessary to identify candidates that will yield the most valuable results. Using data from the Kilodegree Extremely Little Telescope (KELT), we searched for bright stars showing oscillations to be included as TESS targets. We found 2,108 variable stars with B-V < 0.5 and P < 5 days. Further analysis will be carried out to establish final candidates. This project was funded by the National Science Foundation grant PHY-1359195 to the Lehigh University REU program.

  6. Nova-like variables

    NASA Technical Reports Server (NTRS)

    Ladous, Constanze

    1993-01-01

    On grounds of different observable characteristics five classes of nova-like objects are distinguished: the UX Ursae Majoris stars, the antidwarf novae, the DQ Herculis stars, the AM Herculis stars, and the AM Canum Venaticorum stars. Some objects have not been classified specifically. Nova-like stars share most observable features with dwarf novae, except for the outburst behavior. The understanding is that dwarf novae, UX Ursae Majoris stars, and anti-dwarf novae are basically the same sort of objects. The difference between them is that in UX Ursae Majoris stars the mass transfer through the accretion disc always is high so the disc is stationary all the time; in anti-dwarf novae for some reason the mass transfer occasionally drops considerably for some time, and in dwarf novae it is low enough for the disc to undergo semiperiodic changes between high and low accretion events. DQ Herculis stars are believed to possess weakly magnetic white dwarfs which disrupt the inner disc at some distance from the central star; the rotation of the white dwarf can be seen as an additional photometric period. In AM Herculis stars, a strongly magnetic white dwarf entirely prevents the formation of an accretion disk and at the same time locks the rotation of the white dwarf to the binary orbit. Finally, AM Canum Venaticorum stars are believed to be cataclysmic variables that consist of two white dwarf components.

  7. Nearby Hot Stars May Change Our View of Distant Sources

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    As if it werent enough that quasars distant and bright nuclei of galaxies twinkle of their own accord due to internal processes, nature also provides another complication: these distant radio sources can also appear to twinkle because of intervening material between them and us. A new study has identified a possible source for the material getting in the way.Unexplained VariabilityA Spitzer infrared view of the Helix nebula, which contains ionized streamers of gas extending radially outward from the central star. [NASA/JPL-Caltech/Univ. of Ariz.]Distant quasars occasionally display extreme scintillation, twinkling with variability timescales shorter than a day. This intra-day variability is much greater than we can account for with standard models of the interstellar medium lying between the quasar and us. So what could cause this extreme scattering instead?The first clue to this mystery came from the discovery of strong variability in the radio source PKS 1322110. In setting up follow-up observations of this object, Mark Walker (Manly Astrophysics, Australia) and collaborators noticed that, in the plane of the sky, PKS 1322110 lies very near the bright star Spica. Could this be coincidence, or might this bright foreground star have something to do with the extreme scattering observed?Diagram explaining the source of the intra-day radio source variability as intervening filaments surrounding a hot star. [M. Walker/CSIRO/Manly Astrophysics]Swarms of ClumpsWalker and collaborators put forward a hypothesis: perhaps the ultraviolet photons of nearby hot stars ionize plasma around them, which in turn causes the extreme scattering of the distant background sources.As a model, the authors consider the Helix Nebula, in which a hot, evolved star is surrounded by cool globules of molecular hydrogen gas. The radiation from the star hits these molecular clumps, dragging them into long radial streamers and ionizing their outer skins.Though the molecular clumps in the Helix Nebula were thought to have formed only as the star evolved late into its lifetime, Walker and collaborators are now suggesting that all stars regardless of spectral type or evolutionary stage may be surrounded by swarms of tiny molecular clumps. Aroundstars that are hot enough, these clumps become the ionized plasma streamers that can cause interference with the light traveling to us from distant sources.Significant MassTo test this theory, Walker and collaborators explore observations of two distant radio quasars that have both exhibited intra-day variability over many years of observations. The team identified a hot A-type star near each of these two sources: J1819+3845 has Vega nearby, and PKS 1257326 has Alhakim.Locations of stars along the line of site to two distant quasars, J1819+3845 (top panel) and PKS 1257326 (bottom panel). Both have a nearby, hot star (blue markers) radially within 2 pc: Vega (z = 7.7 pc) and Alhakim (z = 18 pc), respectively. [Walker et al. 2017]By modeling the systems of the sources and stars, the authors show that the size, location, orientation, and numbers of plasma concentrations necessary to explain observations are all consistent with an environment similar to that of the Helix Nebula. Walker and collaborators find that the total mass in the molecular clumps surrounding the two stars would need to be comparable to the mass of the stars themselves.If this picture is correct, and if all stars are indeed surrounded by molecular clumps like these, then a substantial fraction of the mass of ourgalaxy could be contained in these clumps. Besides explaining distant quasar scintillation, this idea would therefore have a significant impact on our overall understanding of how mass in galaxies is distributed. More observations of twinkling quasars are the next step toward confirming this picture.CitationMark A. Walker et al 2017 ApJ 843 15. doi:10.3847/1538-4357/aa705c

  8. Observations of V420 Aur (HD 34921) needed to support spectroscopy

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2016-10-01

    Marcella Wijngaarden and Kelly Gourdji (graduate students at the University of Amsterdam/Anton Pannekoek Institute for Astronomy) have requested AAVSO observers' assistance in providing optical photometry of V420 Aur in support of their high-resolution spectroscopy with the Mercator telescope + Hermes spectrograph in La Palma 2016 October 7 through 17. They write: "[V420 Aur (HD 34921) is] the optical Be star that is part of a peculiar High Mass X-ray Binary...[that exhibits highly] complex and variable spectra...it is difficult to construct a physical model of this HMXB system, though based on these observations, the system is thought to contain a B[e] star with a dense plasma region, an accretion disk around a neutron star, a shell and circumstellar regions of cold dust. It has been over a decade since the last spectra were taken, and, given the highly variable nature of this star, we expect new observations to yield new information that will contribute to a better understanding of this system." Observations in BVRI (preferred over other bands) are requested beginning immediately and continuing through October 24. In all cases, timeseries in a few bands (i.e. BVRI) are preferred over single/a few observations in the other bands as it is the variability on relatively short timescales that is most important. "The target is bright so exposures should be long enough to reach good signal to noise in order to see the small variability amplitude but without saturating the target/comparison stars. We will study the variability on several timescales, so observations starting from a few per night to high cadence timeseries are useful." Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.

  9. Future of Ultraviolet Astronomy Based on Six Years of IUE Research

    NASA Technical Reports Server (NTRS)

    Mead, J. M. (Editor); Chapman, R. D. (Editor); Kondo, Y. (Editor)

    1984-01-01

    Physical insights into the various astronomical objects which were studied using the International Ultraviolet Explorer (IUE) satellite. Topics covered included galaxies, cool stars, hot stars, close binaries, variable stars, the interstellar medium, the solar system, and IUE follow-on missions.

  10. The Carina Project. I. Bright Variable Stars

    NASA Astrophysics Data System (ADS)

    Dall'Ora, M.; Ripepi, V.; Caputo, F.; Castellani, V.; Bono, G.; Smith, H. A.; Brocato, E.; Buonanno, R.; Castellani, M.; Corsi, C. E.; Marconi, M.; Monelli, M.; Nonino, M.; Pulone, L.; Walker, A. R.

    2003-07-01

    We present new BV time series data of the Carina dwarf spheroidal galaxy (dSph). Current data cover an area of ~0.3 deg2 around the center of the galaxy and allow us to identify 92 variables. Among them 75 are RR Lyrae stars, 15 are bona fide anomalous Cepheids, one might be a Galactic field RR Lyrae star, and one is located along the Carina red giant branch. Expanding upon the seminal photographic investigation by Saha, Monet, & Seitzer we supply, for the first time, accurate estimates of their pulsation parameters (periods, amplitudes, mean magnitudes, and colors) on the basis of CCD photometry. Approximately 50% of both RR Lyrae stars and anomalous Cepheids are new identifications. Among the RR Lyrae sample, six objects are new candidate double-mode (RRd) variables. On the basis of their pulsation properties we estimate that two variables (V158, V182) are about 50% more massive than typical RR Lyrae stars, while the bulk of the anomalous Cepheids are roughly a factor of 2 more massive than fundamental-mode (RRab) RR Lyrae stars. This finding supports the evidence that these objects are intermediate-mass stars during central He-burning phases. We adopted three different approaches to estimate the Carina distance modulus, namely, the first-overtone blue edge method, the period-luminosity-amplitude relation, and the period-luminosity-color relation. We found DM=20.19+/-0.12, a result that agrees quite well with similar estimates based on different distance indicators. The data for Carina, together with data available in the literature, strongly support the conclusion that dSph's can barely be classified into the classical Oosterhoff dichotomy. The mean period of RRab's in Carina resembles that found for Oosterhoff type II clusters, whereas the ratio between first-overtone (RRc) pulsators and the total number of RR Lyrae stars is quite similar to that found in Oosterhoff type I clusters. Based on observations collected at the European Southern Observatory, La Silla, Chile, on Osservatorio Astronomico di Capodimonte guaranteed time.

  11. Models of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Friedjung, Michael

    1993-01-01

    One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical approach with existing models and discuss unresolved problems requiring new observational and theoretical work.

  12. More Rapidly Rotating PMS M Dwarfs with Light Curves Suggestive of Orbiting Clouds of Material

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Rebull, Luisa; David, Trevor J.; Jardine, Moira; Collier Cameron, Andrew; Cody, Ann Marie; Hillenbrand, Lynne A.; Barrado, David; van Eyken, Julian; Melis, Carl; Briceno, Cesar

    2018-02-01

    In a previous paper, using data from K2 Campaign 2, we identified 11 very low mass members of the ρ Oph and Upper Scorpius star-forming region as having periodic photometric variability and phased light curves showing multiple scallops or undulations. All of the stars with the “scallop-shell” light curve morphology are mid-to-late M dwarfs without evidence of active accretion and with photometric periods generally <1 day. Their phased light curves have too much structure to be attributed to non-axisymmetrically distributed photospheric spots and rotational modulation. We have now identified an additional eight probable members of the same star-forming region plus three stars in the Taurus star-forming region with this same light curve morphology and sharing the same period and spectral type range as the previous group. We describe the light curves of these new stars in detail and present their general physical characteristics. We also examine the properties of the overall set of stars in order to identify common features that might help elucidate the causes of their photometric variability.

  13. The OGLE Collection of Variable Stars. Classical, Type II, and Anomalous Cepheids toward the Galactic Center

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Pawlak, M.; Rybicki, K.; Jacyszyn-Dobrzeniecka, A.

    2017-12-01

    We present a collection of classical, typeII, and anomalous Cepheids detected in the OGLE fields toward the Galactic center. The sample contains 87 classical Cepheids pulsating in one, two or three radial modes, 924 type II Cepheids divided into BL Her, W Vir, peculiar W Vir, and RV Tau stars, and 20 anomalous Cepheids - first such objects found in the Galactic bulge. Additionally, we upgrade the OGLE Collection of RR Lyr stars in the Galactic bulge by adding 828 newly identified variables. For all Cepheids and RRLyr stars, we publish time-series VI photometry obtained during the OGLE-IV project, from 2010 through 2017. We discuss basic properties of our classical pulsators: their spatial distribution, light curve morphology, period-luminosity relations, and position in the Petersen diagram. We present the most interesting individual objects in our collection: a typeII Cepheid with additional eclipsing modulation, WVir stars with the period doubling effect and the RVb phenomenon, a mode-switching RR Lyr star, and a triple-mode anomalous RRd star.

  14. SX Phoenecis Stars in the Extremely Metal-Poor Globular Clusters NGC 5053

    NASA Astrophysics Data System (ADS)

    Nemec, James M.; Mateo, Mario; Burke, Morgan; Olszewski, Edward W.

    1995-09-01

    The results of a major search for photometrically variable blue straggler stars (BSs) in the extremely metal-poor globular cluster NGC 5053 are presented. The survey is based on photometry of over 200 CCD frames (BVI passbands) taken on 18 nights between 1985 and 1994. Five of the 16 BSs monitored for variability are identified as SX Phe stars and their photometric characteristics derived. These five stars are among the shortest-period (49

  15. On the structure of the outer layers of cool carbon stars

    NASA Technical Reports Server (NTRS)

    Querci, F.; Querci, M.; Wing, R. F.; Cassatella, A.; Heck, A.

    1982-01-01

    Exposures on the spectra of four late C-type stars have been made with the IUE satellite in the wavelength range of the LWR camera (1900-3200 A). Two Mira variables near maximum light and two semiregular variables were observed. Although the exposure times used, which range up to 240 min in the low-resolution mode, were more than sufficient to record the continuum and emission lines of Mg II, Fe II, and Al II in normal M stars of similar magnitude and temperature, no light was recorded. It is concluded that the far-ultraviolet continuum is strongly depressed in these cool carbon stars. The absence of UV emission lines implies either that the chromospheric lines observed in M stars require an ultraviolet flux for their excitation, or that cool carbon stars have no chromosphere at all or that the opacity source is located above even the emission-line-forming region. This opacity source, which is probably some carbon condensate since it is weak or absent in M stars while absorbing strongly in C stars, is discussed both in terms of the chromospheric interpretation of the emission lines and in terms of their shock-wave interpretation.

  16. Using Photometric Variability to Detect Binarity in the Central Stars of Four Planetary Nebulae, A 43, A 74, NGC 6720, and NGC 6853

    NASA Astrophysics Data System (ADS)

    Smith, Alexander; De Marco, O.

    2007-12-01

    Recent observational evidence and theoretical models are challenging the classical paradigm of single star planetary nebula (PN) evolution, suggesting instead that binary stars play a significant role in the process of PN formation. In order to shape the 90% of PN that are non-spherical, the central star must be rotating and have a magnetic field; the most-likely source of the angular momentum needed to sustain magnetic fields is a binary companion. More observational evidence is needed to confirm that the fraction of PN with close binary central stars is indeed higher than the currently known value of 10-15%. As part of an international effort to detect binary central stars (PLAN-B - Panetary Nebula Binaries), we are carrying out a new photometric survey to look for close binary central stars of PN. Here we present the findings for 4 objects: A 43, A 74, NGC 6720, and NGC 6853. NGC 6720 and NGC 6853 show evidence of periodic variability, the former of which might even show one eclipse. Once completed, the survey will assess the binarity of about 100 central stars of PN.

  17. Stellar Variability at the Main-sequence Turnoff of the Intermediate-age LMC Cluster NGC 1846

    NASA Astrophysics Data System (ADS)

    Salinas, R.; Pajkos, M. A.; Vivas, A. K.; Strader, J.; Contreras Ramos, R.

    2018-04-01

    Intermediate-age (IA) star clusters in the Large Magellanic Cloud (LMC) present extended main-sequence turn-offs (MSTO) that have been attributed to either multiple stellar populations or an effect of stellar rotation. Recently it has been proposed that these extended main sequences can also be produced by ill-characterized stellar variability. Here we present Gemini-S/Gemini Multi-Object Spectrometer (GMOS) time series observations of the IA cluster NGC 1846. Using differential image analysis, we identified 73 new variable stars, with 55 of those being of the Delta Scuti type, that is, pulsating variables close the MSTO for the cluster age. Considering completeness and background contamination effects, we estimate the number of δ Sct belonging to the cluster between 40 and 60 members, although this number is based on the detection of a single δ Sct within the cluster half-light radius. This amount of variable stars at the MSTO level will not produce significant broadening of the MSTO, albeit higher-resolution imaging will be needed to rule out variable stars as a major contributor to the extended MSTO phenomenon. Though modest, this amount of δ Sct makes NGC 1846 the star cluster with the highest number of these variables ever discovered. Lastly, our results present a cautionary tale about the adequacy of shallow variability surveys in the LMC (like OGLE) to derive properties of its δ Sct population. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  18. Empirical-theoretical Survey of the Variety of Peculiarities and Anomalies in the Atmospheres Enveloping Actual Stars

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Phenomena observed in actual stellar atmospheres which contradict the speculative, standard thermal atmospheric model are discussed. Examples of stellar variability, emission line peculiarity, symbiotic stars and phenomena, extended atmosphere stars, superionization, and superthermic velocity are examined.

  19. Photometric light curves for seven rapidly-rotating K dwarfs in the Pleiades and Alpha Persei clusters

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.; Schild, Rudolph A.; Baliunas, Sallie L.; Africano, John L.

    1987-01-01

    Light curves and period estimates were obtained for several Pleiades and Alpha Persei cluster K dwarfs which were identified as rapid rotators in earlier spectroscopic studies. A few of the stars have previously-published light curves, making it possible to study the long-term variability of the light-curve shapes. The general cause of the photometric variability observed for these stars is an asymmetric distribution of photospheric inhomogeneities (starspots). The presence of these inhomogeneities combined with the rotation of the star lead to the light curves observed. The photometric periods derived are thus identified with the rotation period of the star, making it possible to estimate equatorial rotational velocities for these K dwarfs. These data are of particular importance because the clusters are sufficiently young that stars of this mass should have just arrived on the main sequence. These data could be used to estimate the temperatures and sizes of the spot groups necessary to produce the observed light curves for these stars.

  20. Luminous blue variables and the fates of very massive stars

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2017-09-01

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40 M⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.

  1. VizieR Online Data Catalog: OGLE RR Lyrae in LMC (Soszynski+, 2003)

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2003-11-01

    We present the catalog of RR Lyr stars discovered in a 4.5 square degrees area in the central parts of the Large Magellanic Cloud (LMC). Presented sample contains 7612 objects, including 5455 fundamental mode pulsators (RRab), 1655 first-overtone (RRc), 272 second-overtone (RRe) and 230 double-mode RR Lyr stars (RRd). Additionally we attach alist of several dozen other short-period pulsating variables. The catalog data include astrometry, periods, BVI photometry, amplitudes, and parameters of the Fourier decomposition of the I-band light curve of each object. We provide a list of six LMC star clusters which contain RR Lyr stars. The richest cluster, NGC 1835, hosts 84 RR Lyr variables. The period distribution of these stars suggests that NGC1835 shares features of Oosterhoff type I and type II groups. All presented data, including individual BVI observations and finding charts are available from the OGLE Internet archive at ftp://sirius.astrouw.edu.pl/ogle/ogle2/var_stars/lmc/rrlyr (6 data files).

  2. Photometric variability of the Be star population with the KELT survey

    NASA Astrophysics Data System (ADS)

    Labadie-Bartz, Jonathan; Pepper, Joshua; Chojnowski, S. Drew; McSwain, M. Virginia

    2017-11-01

    We are using light curves from the KELT exoplanet transit survey (Pepper et al. 2007) to study the variability of hundreds of Be stars. Combining these light curves with simultaneous time-series spectra from the APOGEE survey (Majewski et al. 2015) provides a glimpse into how changes in the circumstellar environment are correlated to brightness variations.

  3. X-Ray Variability and the Secondary Star

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Ishibashi, K.

    2012-01-01

    We discuss the history of X-ray observations of the 11 Car system, concentrating on the periodic variability discovered in the 1990s. We discuss the interpretation of these variations, concentrating on a model of the system as a "collidingwind" binary. This interpretation allows the physical and orbital parameters of eta Car and its companion star to be constrained.

  4. Asteroseismology of White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    Hansen, Carl J.

    1997-01-01

    The primary purpose of this investigation has been to study various aspects of multimode pulsations in variable white dwarfs. In particular, nonlinear interactions among pulsation modes in white dwarfs (and, to some extent, in other variable stars), analysis of recent observations where such interactions are important, and preliminary work on the effects of crystallization in cool white dwarfs are reported.

  5. Radio emission of cataclysmic variable stars

    NASA Technical Reports Server (NTRS)

    Fuerst, E.; Benz, A.; Hirth, W.; Geffert, M.; Kiplinger, A.

    1986-01-01

    Eight cataclysmic variable stars were observed at 6 cm wavelength using the Very Large Array (VLA). The objects were: CN-Ori, SS-Aur, YZ-Cnc, SU-Uma, Z-Cam, V603-Aql, EM-Cyg, and RZ-Sge. Most of these objects were in optical high stage, but none were detected beyond flux limits between 0.1 and 0.3 mJy.

  6. Early-20th-century visual observations of M13 variable stars

    NASA Astrophysics Data System (ADS)

    Osborn, W.; Barnard, E. E.

    2016-08-01

    In 1900 E. E. Barnard published 37 visual observations of Variable 2 (V2) in the globular clustter M13 made in 1899 and 1900. A review of Barnard's notebooks revealed he made many additional brightness estimates up to 1911, and he had also recorded the variations of V1 starting in 1904. These data provide the earliest-epoch light curves for these stars and thus are useful for studying their period changes. This paper presents Barnard's observations of the M13 variables along with their derived heliocentric Julian Dates and approximate V magnitudes. These include 231 unpublished observations of V2 and 94 of V1. How these data will be of value for determing period changes by these stars is described.

  7. IUE and ground-based observations of the Hubble-Sandage variables in M31 and M33

    NASA Technical Reports Server (NTRS)

    Blaha, C.; Dodorico, S.; Gull, T. R.; Benvenuti, P.; Humphreys, R. M.

    1984-01-01

    Ultraviolet spectra were obtained from the International Ultraviolet Explorer for the brightest Hubble-Sandage (H-S) variables in M31 and M33. The ultraviolet fluxes were then used in combination with ground-based visual and infrared photometry to determine the energy distributions, luminosities, and temperatures of these stars. When corrected for interstellar extinction, the integrated energy distributions yield the total luminosities and blackbody temperatures of the H-S variables. The resulting bolometric magnitudes and temperatures confirm that these peculiar stars are indeed very luminous, hot stars. They occupy the same regions of the bolometric magnitude vs temperature diagram as Eta Car and P Cyg in the Galaxy and S Dor in the LMC.

  8. Cataclysmic variables and related objects

    NASA Technical Reports Server (NTRS)

    Hack, Margherita; Ladous, Constanze; Jordan, Stuart D. (Editor); Thomas, Richard N. (Editor); Goldberg, Leo; Pecker, Jean-Claude

    1993-01-01

    This volume begins with an introductory chapter on general properties of cataclysmic variables. Chapters 2 through 5 of Part 1 are devoted to observations and interpretation of dwarf novae and nova-like stars. Chapters 6 through 10, Part 2, discuss the general observational properties of classical and recurrent novae, the theoretical models, and the characteristics and models for some well observed classical novae and recurrent novae. Chapters 11 through 14 of Part 3 are devoted to an overview of the observations of symbiotic stars, to a description of the various models proposed for explaining the symbiotic phenomenon, and to a discussion of a few selected objects, respectively. Chapter 15 briefly examines the many unsolved problems posed by the observations of the different classes of cataclysmic variables and symbiotic stars.

  9. One-milliarsecond precision parallax studies in the regions of Delta Cephei and EV Lacertae

    NASA Technical Reports Server (NTRS)

    Gatewood, George; De Jonge, Kiewiet Joost; Stephenson, Bruce

    1993-01-01

    Trigonometric parallaxes for stars in the regions of the variable stars delta Cephei and EV Lacertae are derived from data collected with the Multichannel Astrometric Photometer (MAP) and the Thaw Refractor of the University of Pittsburgh's Allegheny Observatory. The weighted mean parallax of all trigonometric studies of delta Cephei is now + 0.0030 sec + or - 0.00093 sec, corresponding to a distance modulus of 7.61 + or - 0.67 mag. This indicates that this luminosity standard star is approximately one standard deviation more distance than has been generally accepted. The weighted mean trigonometric parallax of all studies of the variable star EV Lacertae (BD + 43 deg 4305) is + 0.1993 sec + or - 0.00093 sec, implying a distance modulus of - 1.498 + or - 0.0010 mag. The calculated absolute magnitude of this star is almost exactly that predicted by its (R-I)(sub Kron) magnitude and by the Gliese (R-I) main-sequence value for stars in the solar neighborhood. We also find a parallax of 0.0189 sec + or - 0.0008 sec for the FO IVn star, HR 8666 (BD + 43 sec 4300). The derived luminosity of this star is midway between that expected for luminosity class IV and V stars at the indicated temperature.

  10. Peculiar double-periodic pulsation in RR Lyrae stars of the OGLE collection - II. Short-period stars with a dominant radial fundamental mode

    NASA Astrophysics Data System (ADS)

    Prudil, Z.; Smolec, R.; Skarka, M.; Netzel, H.

    2017-03-01

    We report the discovery of a new group of double-periodic stars in the OGLE Galactic bulge photometry. In 38 stars identified as fundamental-mode RR Lyrae and four classified as first-overtone RR Lyrae, we detected an additional shorter periodicity. The periods of the dominant variability in the newly discovered group are 0.28 < PD < 0.41 d. Period ratios (0.68-0.72) are smaller than the period ratios of the Galactic bulge RRd stars. The typical amplitude ratio (of the additional to the dominant periodicity) is 20 per cent for the stars identified as fundamental-mode RR Lyrae and 50 per cent for stars classified as first-overtone RR Lyrae. 10 stars from our sample exhibit equidistant peaks in the frequency spectrum, which suggests the Blazhko-type modulation of the main pulsation frequency and/or additional periodicity. The Fourier coefficients R21 and R31 are some of the lowest among fundamental-mode RR Lyrae stars, but among the highest for the first-overtone pulsators. For the phase Fourier coefficients φ21 and φ31, our stars lie between RRab and RRc stars. The stars discussed were compared with radial linear pulsation models. Their position in the Petersen diagram cannot be reproduced by assuming that two radial modes are excited and their physical parameters are like those characteristic of RR Lyrae stars. The non-radial-mode scenario also faces difficulties. We conclude that the dominant variability is most likely due to pulsation in the radial fundamental mode, which applies to stars classified as first-overtone mode pulsators. At this point, we cannot explain the nature of the additional periodicity. Even more, the classification of the stars as RR Lyrae should be treated as tentative.

  11. Near-infrared time-series photometry in the field of Cygnus OB2 association. I. Rotational scenario for candidate members

    NASA Astrophysics Data System (ADS)

    Roquette, J.; Bouvier, J.; Alencar, S. H. P.; Vaz, L. P. R.; Guarcello, M. G.

    2017-07-01

    Context. In recent decades, the picture of early pre-main sequence stellar rotational evolution has been constrained by studies targeting different regions at a variety of ages with respect to young star formation. Observational studies suggest a dependence of rotation with mass, and for some mass ranges a connection between rotation and the presence of a circumstellar disk. The role of environmental conditions on the rotational regulation, however, has still not been fully explored. Aims: We investigate the rotational properties of candidate members of the young massive association Cygnus OB2. By evaluating their rotational properties, we address questions regarding the effect of environment properties on PMS rotational evolution. Methods: We studied JHK-band variability in 5083 candidate members (24% of them are disk-bearing stars). We selected variable stars with the Stetson variability index and performed the period search with the Lomb-Scargle periodogram for periods between 0.83-45 days. Period detections were verified using false alarm probability levels, Saunders statistics, the string and rope length method, and visual verification of folded light curves. Results: We identified 1224 periodic variable stars (24% of the candidate member sample, 8% of the disk-bearing sample, and 28% of the non-disk-bearing sample). Monte Carlo simulations were performed in order to evaluate completeness and contamination of the periodic sample, out of which 894 measured periods were considered reliable. Our study was considered reasonably complete for periods between 2 and 30 days. Conclusions: The general scenario for the rotational evolution of young stars seen in other regions is confirmed by Cygnus OB2 period distributions with disc-bearing stars rotating on average more slowly than non-disk-bearing stars. A mass-rotation dependence was also verified, but as in NGC 6530, very low mass stars (M ≤ 0.4 M⊙) are rotating on average slower than higher mass stars (0.4M⊙

  12. The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster NGC 3201

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Rozyczka, M.; Thompson, I. B.; Narloch, W.; Mazur, B.; Pych, W.; Schwarzenberg-Czerny, A.

    2016-01-01

    The field of the globular cluster NGC 3201 was monitored between 1998 and 2009 in a search for variable stars. BV light curves were obtained for 152 periodic or likely periodic variables, fifty-seven of which are new detections. Thirty-seven newly detected variables are proper motion members of the cluster. Among them we found seven detached or semi-detached eclipsing binaries, four contact binaries, and eight SX Phe pulsators. Four of the eclipsing binaries are located in the turnoff region, one on the lower main sequence and the remaining two slightly above the subgiant branch. Two contact systems are blue stragglers, and another two reside in the turnoff region. In the blue straggler region a total of 266 objects were found, of which 140 are proper motion (PM) members of NGC 3201, and another nineteen are field stars. Seventy-eight of the remaining objects for which we do not have PM data are located within the half-light radius from the center of the cluster, and most of them are likely genuine blue stragglers. Four variable objects in our field of view were found to coincide with X-ray sources: three chromospherically active stars and a quasar at a redshift z≍0.5.

  13. Understanding of variability properties in very low mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Mondal, Soumen; Ghosh, Samrat; Khata, Dhrimadri; Joshi, Santosh; Das, Ramkrishna

    2018-04-01

    We report on photometric variability studies of a L3.5 brown dwarf 2MASS J00361617+1821104 (2M0036+18) in the field and of four young brown dwarfs in the star-forming region IC 348. From muti-epoch observations, we found significant periodic variability in 2M0036+18 with a period of 2.66 ± 0.55 hours on one occasion while it seemed to be non-variable on three other occasions. An evolving dust cloud might cause such a scenario. Among four young brown dwarfs of IC 348 in the spectral range M7.25 - M8, one brown dwarf 2MASS J03443921+3208138 shows significant variability. The K-band spectra (2.0-2.4 μm) of nine very low mass stars (M1 - M9 V) are used to characterize the water band index (H20-K2). We found that it is strongly correlated with the surface temperature of M dwarfs.

  14. New variable stars discovered in the fields of three Galactic open clusters using the VVV survey

    NASA Astrophysics Data System (ADS)

    Palma, T.; Minniti, D.; Dékány, I.; Clariá, J. J.; Alonso-García, J.; Gramajo, L. V.; Ramírez Alegría, S.; Bonatto, C.

    2016-11-01

    This project is a massive near-infrared (NIR) search for variable stars in highly reddened and obscured open cluster (OC) fields projected on regions of the Galactic bulge and disk. The search is performed using photometric NIR data in the J-, H- and Ks- bands obtained from the Vista Variables in the Vía Láctea (VVV) Survey. We performed in each cluster field a variability search using Stetson's variability statistics to select the variable candidates. Later, those candidates were subjected to a frequency analysis using the Generalized Lomb-Scargle and the Phase Dispersion Minimization algorithms. The number of independent observations range between 63 and 73. The newly discovered variables in this study, 157 in total in three different known OCs, are classified based on their light curve shapes, periods, amplitudes and their location in the corresponding color-magnitude (J -Ks ,Ks) and color-color (H -Ks , J - H) diagrams. We found 5 possible Cepheid stars which, based on the period-luminosity relation, are very likely type II Cepheids located behind the bulge. Among the newly discovered variables, there are eclipsing binaries, δ Scuti, as well as background RR Lyrae stars. Using the new version of the Wilson & Devinney code as well as the "Physics Of Eclipsing Binaries" (PHOEBE) code, we analyzed some of the best eclipsing binaries we discovered. Our results show that these studied systems turn out to be ranging from detached to double-contact binaries, with low eccentricities and high inclinations of approximately 80°. Their surface temperatures range between 3500 K and 8000 K.

  15. The RR Lyrae variables in the globular cluster M68

    NASA Technical Reports Server (NTRS)

    Clement, Christine M.; Ferance, Stephen; Simon, Norman R.

    1993-01-01

    New observations, made with the Helen Sawyer Hogg telescope at Las Campanas, have been analyzed in a search for double-mode pulsators (RRd stars) in the metal-poor globular cluster, Messier 68. Of the 30 stars studied, nine have been identified as RRd stars; V33, which exhibited the characteristics of an RRd star in 1950, now appears to be an RRc star. Reliable periods and period ratios have been determined for six of the RRd stars. Masses for these RRd stars, calculated from fitting formulas given by Kovacs et al. (1991), range from 0.75 to 0.90 solar mass, depending on the assumed luminosity and metal abundance. These masses are in the same range as those for the RRd stars in M 15, whose RRd sample resembles that of M68 very closely. Fourier parameters determined for the light curves of the M68 variables show that the RRc stars in the two clusters are also very similar. In particular, on the plot of phase parameter phi sub 31 with period, the M15 and M68 RRc samples are virtually indistinguishable. A comparison of the new M68 observations with observations made 40 yr ago shows that the periods of some of the stars have changed, but the 40 yr interval is too short for detecting period changes caused by evolutionary effects.

  16. The Optical Gravitational Lensing Experiment. Catalog of RRLyr Stars from the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Soszynski, I.; Udalski, A.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Wozniak, P.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2002-12-01

    We present the catalog of RRLyrae stars from 2.4 square degrees of central parts of the Small Magellanic Cloud (SMC). The photometric data were collected during four years of the OGLE-II microlensing survey. Photometry of each star was obtained using the Difference Image Analysis (DIA) method. The catalog contains 571 objects, including 458RRab, 56RRc variables, and 57 double mode RRLyr stars (RRd). Additionally we attach a list of variables with periods between 0.18-0.26 days, which are probably delta Sct stars. Period, BVI photometry, astrometry, amplitude, and parameters of the Fourier decomposition of the I-band light curve are provided for each object. We also present the Petersen diagram for double mode pulsators. We found that the SMC RRLyr stars are fairly uniformly distributed over the studied area, with no clear correlation to any location. The most preferred periods for RRab and RRc stars are 0.589 and 0.357 days, respectively. We noticed significant excess of stars with periods of about 0.29 days, which might be second-overtone RRLyr stars (RRe). The mean extinction free magnitudes derived for RRab stars are 18.97, 19.45 and 19.73 mag for the I, V and B-band, respectively. All presented data, including individual BVI observations, are available from the OGLE Internet archive.

  17. Long-period variable stars in NGC 147 and NGC 185 - I. Their star formation histories

    NASA Astrophysics Data System (ADS)

    Hamedani Golshan, Roya; Javadi, Atefeh; van Loon, Jacco Th.; Khosroshahi, Habib; Saremi, Elham

    2017-04-01

    NGC 147 and NGC 185 are two of the most massive satellites of the Andromeda galaxy (M 31). Close together in the sky, of similar mass and morphological type dE, they possess different amounts of interstellar gas and tidal distortion. The question therefore is, how do their histories compare? Here, we present the first reconstruction of the star formation histories of NGC 147 and NGC 185 using long-period variable stars. These represent the final phase of evolution of low- and intermediate-mass stars at the asymptotic giant branch, when their luminosity is related to their birth mass. Combining near-infrared photometry with stellar evolution models, we construct the mass function and hence the star formation history. For NGC 185, we found that the main epoch of star formation occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate. In the case of NGC 147, the star formation rate peaked only 7 Gyr ago, staying intense until ˜3 Gyr ago, but no star formation has occurred for at least 300 Myr. Despite their similar masses, NGC 147 has evolved more slowly than NGC 185 initially, but more dramatically in more recent times. This is corroborated by the strong tidal distortions of NGC 147 and the presence of gas in the centre of NGC 185.

  18. VizieR Online Data Catalog: RR Lyrae in SDSS Stripe 82 (Suveges+, 2012)

    NASA Astrophysics Data System (ADS)

    Suveges, M.; Sesar, B.; Varadi, M.; Mowlavi, N.; Becker, A. C.; Ivezic, Z.; Beck, M.; Nienartowicz, K.; Rimoldini, L.; Dubath, P.; Bartholdi, P.; Eyer, L.

    2013-05-01

    We propose a robust principal component analysis framework for the exploitation of multiband photometric measurements in large surveys. Period search results are improved using the time-series of the first principal component due to its optimized signal-to-noise ratio. The presence of correlated excess variations in the multivariate time-series enables the detection of weaker variability. Furthermore, the direction of the largest variance differs for certain types of variable stars. This can be used as an efficient attribute for classification. The application of the method to a subsample of Sloan Digital Sky Survey Stripe 82 data yielded 132 high-amplitude delta Scuti variables. We also found 129 new RR Lyrae variables, complementary to the catalogue of Sesar et al., extending the halo area mapped by Stripe 82 RR Lyrae stars towards the Galactic bulge. The sample also comprises 25 multiperiodic or Blazhko RR Lyrae stars. (8 data files).

  19. A Search for Variability in Warm and Cool C-rich DQ White Dwarfs

    NASA Astrophysics Data System (ADS)

    Dupuis, Christopher Michael; Williams, Kurtis A.

    2018-01-01

    Hot DQ white dwarfs are a rare class of white dwarfs that have atmospheres dominated by carbon with little to no hydrogen or helium. Recently it has been found that the majority of these stars are photometrically variable likely due to rapid rotation with star spots. The cool progeny of the hot DQs are expected to also be rapidly rotating as no strong braking mechanisms should be present. We present the time-series photometry of multiple warm and cool C-rich DQ white dwarfs as part of an ongoing search for variability in hot DQ white dwarfs and their progeny. This program will permit us to confirm rotation as the source of variability, compare the distribution of rotation rates to those of more common white dwarf spectral types, and constrain the evolutionary rates of hot DQ rotation. These data are one way to better understand the formation scenarios of these stars.

  20. The AAVSO as a Resource for Variable Star Research

    NASA Astrophysics Data System (ADS)

    Kafka, Stella

    2016-07-01

    The AAVSO was formed in 1911 as a group of US-based amateur observers obtaining data in support of professional astronomy projects. Now, it has evolved into an International Organization with members and observers from both the professional and non-professional astronomical community, contributing photometry to a public photometric database of about 22,000 variable objects, and using it for research projects. As such, the AAVSO's main claim to fame is that it successfully engages backyard Astronomers, educators, students and professional astronomers in astronomical research. I will present the main aspects of the association and how it has evolved with time to become a premium resource for variable star researchers. I will also discuss the various means that the AAVSO is using to support cutting-edge variable star science, and how it engages its members in projects building a stronger international astronomical community.

  1. RAPIDLY ROTATING, X-RAY BRIGHT STARS IN THE KEPLER FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, Steve B.; Mason, Elena; Boyd, Patricia

    We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type F-K, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, which are evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a processmore » believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.« less

  2. Rapidly Rotating, X-Ray Bright Stars in the Kepler Field

    NASA Technical Reports Server (NTRS)

    Howell, Steve B.; Mason, Elena; Boyd, Patricia; Smith, Krista Lynne; Gelino, Dawn M.

    2016-01-01

    We present Kepler light curves and optical spectroscopy of twenty X-ray bright stars located in the Kepler field of view. The stars, spectral type F-K, show evidence for rapid rotation including chromospheric activity 100 times or more above the Sun at maximum and flaring behavior in their light curves. Eighteen of our objects appear to be (sub)giants and may belong to the class of FK Com variables, which are evolved rapidly spinning single stars with no excretion disk and high levels of chromospheric activity. Such stars are rare and are likely the result of W UMa binary mergers, a process believed to produce the FK Com class of variable and their descendants. The FK Com stage, including the presence of an excretion disk, is short lived but leads to longer-lived stages consisting of single, rapidly rotating evolved (sub)giants with high levels of stellar activity.

  3. A PSF-based approach to Kepler/K2 data - II. Exoplanet candidates in Praesepe (M 44)

    NASA Astrophysics Data System (ADS)

    Libralato, M.; Nardiello, D.; Bedin, L. R.; Borsato, L.; Granata, V.; Malavolta, L.; Piotto, G.; Ochner, P.; Cunial, A.; Nascimbeni, V.

    2016-12-01

    In this work, we keep pushing K2 data to a high photometric precision, close to that of the Kepler main mission, using a point-spread function (PSF)-based, neighbour-subtraction technique, which also overcome the dilution effects in crowded environments. We analyse the open cluster M 44 (NGC 2632), observed during the K2 Campaign 5, and extract light curves of stars imaged on module 14, where most of the cluster lies. We present two candidate exoplanets hosted by cluster members and five by field stars. As a by-product of our investigation, we find 1680 eclipsing binaries and variable stars, 1071 of which are new discoveries. Among them, we report the presence of a heartbeat binary star. Together with this work, we release to the community a catalogue with the variable stars and the candidate exoplanets found, as well as all our raw and detrended light curves.

  4. Time-scales of stellar rotational variability and starspot diagnostics

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.; Khodachenko, Maxim L.; Lammer, Helmut; Güdel, Manuel; Lüftinger, Teresa; Johnstone, Colin P.

    2018-01-01

    The difference in stability of starspot distribution on the global and hemispherical scales is studied in the rotational spot variability of 1998 main-sequence stars observed by Kepler mission. It is found that the largest patterns are much more stable than smaller ones for cool, slow rotators, whereas the difference is less pronounced for hotter stars and/or faster rotators. This distinction is interpreted in terms of two mechanisms: (1) the diffusive decay of long-living spots in activity complexes of stars with saturated magnetic dynamos, and (2) the spot emergence, which is modulated by gigantic turbulent flows in convection zones of stars with a weaker magnetism. This opens a way for investigation of stellar deep convection, which is yet inaccessible for asteroseismology. Moreover, a subdiffusion in stellar photospheres was revealed from observations for the first time. A diagnostic diagram was proposed that allows differentiation and selection of stars for more detailed studies of these phenomena.

  5. OBSERVATIONS OF INTENSITY FLUCTUATIONS ATTRIBUTED TO GRANULATION AND FACULAE ON SUN-LIKE STARS FROM THE KEPLER MISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karoff, C.; Campante, T. L.; Ballot, J.

    2013-04-10

    Sun-like stars show intensity fluctuations on a number of timescales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars-while the strongest signatures usually originate from spots, granulation, and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 s sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-modemore » oscillations. The temporal variability of the signatures attributed to granulation, faculae, and p-mode oscillations was analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures-comparable to what is seen in the Sun.« less

  6. Searches for electromagnetic signals from extraterrestrial beings

    NASA Astrophysics Data System (ADS)

    Zuckerman, B.

    The techniques and rationale used in six radio-frequency surveys to detect possible signals from extraterrestrial beings (ETs) are reviewed. Reception attempts have been made by pointing antennas at the stars within 80 light years, toward F, G, K, andd M main sequence stars, and binary star systems with component separation less than one-third or more than three times the radius of the habitable zone around the main star. All of the searches explored narrow bandwidths, with attention given to rapid variability. Stars exhibiting variability were re-examined for longer periods, using the 21 cm bandwidth, which is not used for transmissions on earth. The best spectrum analyzer in operation for ET signal search purposes has a capacity of 200,000 channels. Further studies may be carried out at the 10 micron IR wavelength, which could detect planetary-size construction projects by ET civilizations.

  7. Estrellas variables en campos de cúmulos abiertos galácticos detectadas en el relevamiento VVV

    NASA Astrophysics Data System (ADS)

    Palma, T.; Dékany, I.; Clariá, J. J.; Minniti, D.; Alonso-García, J. A.; Ramírez Alegría, S.; Bonatto, C.

    2016-08-01

    The present project constitutes a massive search for variable stars in the field of open clusters projected on highly reddened regions of the galactic disk and bulge. This search is being performed using -, - and -band observations of the near-infrared variability Survey Vista variables in the Via Lactea. We present the first results obtained in four open clusters projected on the Galactic bulge. The new variables discovered in the current work, 182 in total, are classified on the basis of their light curves and their locations in the corresponding color-magnitude diagrams. Among the newly discovered variable stars, Cepheids, RR Lyrae, Scuti, eclipsing binaries and other types have been found.

  8. New Variable Stars Discovered by Data Mining Images Taken during Recent Asteroid Photometric Observations. II. Results from July 2015 through December 2016

    NASA Astrophysics Data System (ADS)

    Papini, R.; Marchini, A.; Salvaggio, F.; Agnetti, D.; Bacci, P.; Banfi, M.; Bianciardi, G.; Collina, M.; Franco, L.; Galli, G.; Milani, M. G. A.; Lopresti, C.; Marino, G.; Rizzuti, L.; Ruocco, N.; Quadri, U.

    2017-12-01

    This paper follows the previous publication of new variables discovered at Astronomical Observatory, DSFTA, University of Siena, while observing asteroids in order to determine their rotational periods. Usually, this task requires time series images acquisition on a single field for as long as possible on a few nights not necessarily consecutive. Checking continually this "goldmine" allowed us to discover 57 variable stars not yet listed in catalogues or databases. While most of the new variables are eclipsing binaries, a few belong to the RR Lyrae or delta Scuti class. Since asteroid work is definitely a time-consuming activity, coordinated campaigns of follow-up with other observatories have been fundamental in order to determine the elements of the ephemeris and sometimes the right subclass of variability. Further observations of these new variables are therefore strongly encouraged in order to better characterize these stars, especially pulsating ones whose data combined with those taken during professional surveys seem to suggest the presence of light curve amplitude and period variations.

  9. THE TAIWANESE-AMERICAN OCCULTATION SURVEY PROJECT STELLAR VARIABILITY. II. DETECTION OF 15 VARIABLE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, S.; Lin, C. C.; Chen, W. P.

    2010-05-15

    The Taiwanese-American Occultation Survey (TAOS) project has collected more than a billion photometric measurements since 2005 January. These sky survey data-covering timescales from a fraction of a second to a few hundred days-are a useful source to study stellar variability. A total of 167 star fields, mostly along the ecliptic plane, have been selected for photometric monitoring with the TAOS telescopes. This paper presents our initial analysis of a search for periodic variable stars from the time-series TAOS data on one particular TAOS field, No. 151 (R.A. = 17{sup h}30{sup m}6.{sup s}7, decl. = 27{sup 0}17'30'', J2000), which had beenmore » observed over 47 epochs in 2005. A total of 81 candidate variables are identified in the 3 deg{sup 2} field, with magnitudes in the range 8 < R < 16. On the basis of the periodicity and shape of the light curves, 29 variables, 15 of which were previously unknown, are classified as RR Lyrae, Cepheid, {delta} Scuti, SX Phonencis, semi-regular, and eclipsing binaries.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salinas, R.; Pajkos, M. A.; Strader, J.

    Intermediate-age star clusters in the Large Magellanic Cloud show extended main sequence turnoffs (MSTOs) that are not consistent with a canonical single stellar population. These broad turnoffs have been interpreted as evidence for extended star formation and/or stellar rotation. Since most of these studies use single frames per filter to do the photometry, the presence of variable stars near the MSTO in these clusters has remained unnoticed and their impact has been totally ignored. We model the influence of Delta Scuti using synthetic CMDs, adding variable stars following different levels of incidence and amplitude distributions. We show that Delta Scutimore » observed at a single phase will produce a broadening of the MSTO without affecting other areas of a CMD such as the upper MS or the red clump; furthermore, the amount of spread introduced correlates with cluster age, as observed. This broadening is constrained to ages ∼1–3 Gyr when the MSTO area crosses the instability strip, which is also consistent with observations. Variable stars cannot explain bifurcarted MSTOs or the extended MSTOs seen in some young clusters, but they can make an important contribution to the extended MSTOs in intermediate-age clusters.« less

  11. Fabricius, David (1564-1617) and Fabricius, Johannes (1587-1616)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Lutheran pastor and astronomer in Osteel, East Frisia (northwest Germany), discoverer (1596) of the first known variable star, mira stella (`wonderful star'), now simply Mira (Omicron Ceti). Fabricius observed the star at its brightest and thought it was a nova, after which Holwarda noticed that a star in Cetus cataloged by PTOLEMY and TYCHO was missing but then it reappeared. Eventually the long...

  12. RR Lyrae type stars

    NASA Astrophysics Data System (ADS)

    Samus, N. N.

    Basic observational data on RR Lyrae type stars are reviewed. It is noted that these stars are used widely to investigate the structure and kinematics of the spherical and intermediate components of the Galaxy, with correct data on the absolute magnitude of these variables being decisive. Attention is given to the relationship between the orbit eccentricity and inclination of osculating RR Lyrae type stars in the Galaxy and their metallicity index.

  13. Mid-IR Spectra Herbig Ae/Be Stars

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Herbig Ae/Be stars are intermediate mass pre-main sequence stars, the higher mass analogues to the T Tauri stars. Because of their higher mass, they are expected form more rapidly than the T Tauri stars. Whether the Herbig Ae/Be stars accrete only from collapsing infalling envelopes or whether accrete through geometrically flattened viscous accretion disks is of current debate. When the Herbig Ae/Be stars reach the main sequence they form a class called Vega-like stars which are known from their IR excesses to have debris disks, such as the famous beta Pictoris. The evolutionary scenario between the pre-main sequence Herbig Ae/Be stars and the main sequence Vega-like stars is not yet revealed and it bears on the possibility of the presence of Habitable Zone planets around the A stars. Photometric studies of Herbig Ae/Be stars have revealed that most are variable in the optical, and a subset of stars show non-periodic drops of about 2 magnitudes. These drops in visible light are accompanied by changes in their colors: at first the starlight becomes reddened, and then it becomes bluer, the polarization goes from less than 0.1 % to roughly 1% during these minima. The theory postulated by V. Grinnin is that large cometary bodies on highly eccentric orbits occult the star on their way to being sublimed, for systems that are viewed edge-on. This theory is one of several controversial theories about the nature of Herbig Ae/Be stars. A 5 year mid-IR spectrophotometric monitoring campaign was begun by Wooden and Butner in 1992 to look for correlations between the variations in visible photometry and mid-IR dust emission features. Generally the approximately 20 stars that have been observed by the NASA Ames HIFOGS spectrometer have been steady at 10 microns. There are a handful, however, that have shown variable mid-IR spectra, with 2 showing variations in both the continuum and features anti-correlated with visual photometry, and 3 showing variations in the emission features only while the continuum level remained unchanged. The first 2 stars mentioned probably have reprocessing envelopes. The other 3 stars gives important clues to the controversy over the geometry of the gas and dust around these pre-main sequence stars: the steady underlying 10 microns continuum and variable features indicates that an optically thick continuum probably arising from an accretion disk is decoupled from the optically thin emission features which may arise in a disk atmosphere. Bernadette Rodgers has joined this monitoring campaign in the near-IR using GRIMII with the goal of detecting variations in the hot dust continuum and the gas density in the dense accretion region close to these stars.

  14. Extreme infrared variables from UKIDSS - II. An end-of-survey catalogue of eruptive YSOs and unusual stars

    NASA Astrophysics Data System (ADS)

    Lucas, P. W.; Smith, L. C.; Contreras Peña, C.; Froebrich, D.; Drew, J. E.; Kumar, M. S. N.; Borissova, J.; Minniti, D.; Kurtev, R.; Monguió, M.

    2017-12-01

    We present a catalogue of 618 high-amplitude infrared variable stars (1 < ΔK < 5 mag) detected by the two widely separated epochs of 2.2 μm data in the UKIDSS Galactic plane survey, from searches covering ∼1470 deg2. Most were discovered by a search of all fields at 30 < l < 230°. Sources include new dusty Mira variables, three new cataclysmic variable candidates, a blazar and a peculiar source that may be an interacting binary system. However, ∼60 per cent are young stellar obbjects (YSOs), based on spatial association with star-forming regions at distances ranging from 300 pc to over 10 kpc. This confirms our initial result in Contreras Peña et al. (Paper I) that YSOs dominate the high-amplitude infrared variable sky in the Galactic disc. It is also supported by recently published VISTA Variables in the Via Lactea (VVV) results at 295 < l < 350°. The spectral energy distributions of the YSOs indicate class I or flat-spectrum systems in most cases, as in the VVV sample. A large number of variable YSOs are associated with the Cygnus X complex and other groups are associated with the North America/Pelican nebula, the Gemini OB1 molecular cloud, the Rosette complex, the Cone nebula, the W51 star-forming region and the S86 and S236 H II regions. Most of the YSO variability is likely due to variable/episodic accretion on time-scales of years, albeit usually less extreme than classical FUors and EXors. Luminosities at the 2010 Wide-field Infrared Survey Explorer epoch range from ∼0.1 to 103 L⊙ but only rarely exceed 102.5 L⊙.

  15. Kinematic predictors of star excursion balance test performance in individuals with chronic ankle instability.

    PubMed

    Hoch, Matthew C; Gaven, Stacey L; Weinhandl, Joshua T

    2016-06-01

    The Star Excursion Balance Test has identified dynamic postural control deficits in individuals with chronic ankle instability. While kinematic predictors of Star Excursion Balance Test performance have been evaluated in healthy individuals, this has not been thoroughly examined in individuals with chronic ankle instability. Fifteen individuals with chronic ankle instability completed the anterior reach direction of the Star Excursion Balance Test and weight-bearing dorsiflexion assessments. Maximum reach distances on the Star Excursion Balance Test were measured in cm and normalized to leg length. Three-dimensional trunk, hip, knee, and ankle motion of the stance limb were recorded during each anterior reach trial using a motion capture system. Sagittal, frontal, and transverse plane displacement observed from trial initiation to the point of maximum reach was calculated for each joint or segment and averaged for analysis. Pearson product-moment correlations were performed to examine the relationships between kinematic variables, maximal reach, and weight-bearing dorsiflexion. A backward multiple linear regression model was developed with maximal reach as the criterion variable and kinematic variables as predictors. Frontal plane displacement of the trunk, hip, and ankle and sagittal plane knee displacement were entered into the analysis. The final model (p=0.004) included all three frontal plane variables and explained 81% of the variance in maximal reach. Maximal reach distance and several kinematic variables were significantly related to weight-bearing dorsiflexion. Individuals with chronic ankle instability who demonstrated greater lateral trunk displacement toward the stance limb, hip adduction, and ankle eversion achieved greater maximal reach. Copyright © 2016. Published by Elsevier Ltd.

  16. Fine detrending of raw Kepler and MOST photometric data of KIC 6950556 and HD 37633

    NASA Astrophysics Data System (ADS)

    Mikulášek, Zdeněk; Paunzen, Ernst; Zejda, Miloslav; Semenko, Evgenij; Bernhard, Klaus; Hümmerich, Stefan; Zhang, Jia; Hubrig, Swetlana; Kuschnig, Rainer; Janík, Jan; Jagelka, Miroslav

    2016-07-01

    We present a simple phenomenological method for detrending of raw Kepler and MOST photometry, which is illustrated by means of photometric data processing of two periodically variable chemically peculiar stars, KIC 6950556 and HD 37633. In principle, this method may be applied to any type of periodically variable objects and satellite or ground based photometries. As a by product, we have identified KIC 6950556 as a magnetic chemically peculiar star with an ACV type variability.

  17. The VSS RASNZ Variable Star Charts: a Story of Co-Evolution

    NASA Astrophysics Data System (ADS)

    Plummer, A.; Morel, M.

    2010-06-01

    The background and history of the Charts for Southern Variables of the Variable Star Section of the Royal Astronomical Society of New Zealand (VSS RASNZ) is presented. It is seen that while there are some common origins with the charts of the AAVSO, they have undergone their own unique and important development. After much effort the two organizations' chart resources are now compatible and complementary. Some more general but nonetheless important history of the VSS is also mentioned.

  18. Variable interstellar absorption lines in young stellar aggregates

    NASA Astrophysics Data System (ADS)

    Krełowski, J.; Strobel, A.; Vješnica, S.; Melekh, D.; Bondar, A.

    2018-06-01

    The variability of interstellar atomic lines, sporadically reported in the astronomical literature, has been confirmed both in the case of the nearby hot star δ Ori and the very young and violent star-forming region η Carinae, using high-resolution echelle spectra. The presented variability concerns the intensities and profiles of Na I, K I and Ca II. The time-scale of the above-mentioned variations clearly suggests very local phenomena as their cause. It is important to say that not all interstellar lines vary in unison.

  19. Accurate radio and optical positions for the radio star HD 36705 (AB Doradus)

    NASA Technical Reports Server (NTRS)

    White, Graeme L.; Jauncey, David L.; Batty, Michael J.; Peters, W. L.; Gulkis, S.

    1988-01-01

    Arc-second position measurements of the active star HD 36705 (AB Dor) and of the variable radio source found nearby are presented. These measurements show that the radio source is clearly identified with HD 36705 and not with the nearby red-dwarf star Rst 137B.

  20. Kepler sheds new and unprecedented light on the variability of a blue supergiant: Gravity waves in the O9.5Iab star HD 188209

    NASA Astrophysics Data System (ADS)

    Aerts, C.; Símon-Díaz, S.; Bloemen, S.; Debosscher, J.; Pápics, P. I.; Bryson, S.; Still, M.; Moravveji, E.; Williamson, M. H.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Pallé, P. L.; Christensen-Dalsgaard, J.; Rogers, T. M.

    2017-06-01

    Stellar evolution models are most uncertain for evolved massive stars. Asteroseismology based on high-precision uninterrupted space photometry has become a new way to test the outcome of stellar evolution theory and was recently applied to a multitude of stars, but not yet to massive evolved supergiants.Our aim is to detect, analyse and interpret the photospheric and wind variability of the O9.5 Iab star HD 188209 from Kepler space photometry and long-term high-resolution spectroscopy. We used Kepler scattered-light photometry obtained by the nominal mission during 1460 d to deduce the photometric variability of this O-type supergiant. In addition, we assembled and analysed high-resolution high signal-to-noise spectroscopy taken with four spectrographs during some 1800 d to interpret the temporal spectroscopic variability of the star. The variability of this blue supergiant derived from the scattered-light space photometry is in full in agreement with the one found in the ground-based spectroscopy. We find significant low-frequency variability that is consistently detected in all spectral lines of HD 188209. The photospheric variability propagates into the wind, where it has similar frequencies but slightly higher amplitudes. The morphology of the frequency spectra derived from the long-term photometry and spectroscopy points towards a spectrum of travelling waves with frequency values in the range expected for an evolved O-type star. Convectively-driven internal gravity waves excited in the stellar interior offer the most plausible explanation of the detected variability. Based on photometric observations made with the NASA Kepler satellite and on spectroscopic observations made with four telescopes: the Nordic Optical Telescope operated by NOTSA and the Mercator Telescope operated by the Flemish Community, both at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias, the T13 2.0 m Automatic Spectroscopic Telescope (AST) operated by Tennessee State University at the Fairborn Observatory, and the Hertzsprung SONG telescope operated on the Spanish Observatorio del Teide on the island of Tenerife by the Aarhus and Copenhagen Universities and by the Instituto de Astrofísica de Canarias, Spain.

  1. Identification of Young Stellar Variables with KELT for K2 . I. Taurus Dippers and Rotators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Joseph E.; Cargile, Phillip A.; Ansdell, Megan

    One of the most well-studied young stellar associations, Taurus–Auriga, was observed by the extended Kepler mission, K2 , in the spring of 2017. K2 Campaign 13 (C13) is a unique opportunity to study many stars in this young association at high photometric precision and cadence. Using observations from the Kilodegree Extremely Little Telescope (KELT) survey, we identify “dippers,” aperiodic and periodic variables among K2 C13 target stars. This release of the KELT data (light curve data in e-tables) provides the community with long-time baseline observations to assist in the understanding of the more exotic variables in the association. Transient-like phenomenamore » on timescales of months to years are known characteristics in the light curves of young stellar objects, making contextual pre- and post- K2 observations critical to understanding their underlying processes. We are providing a comprehensive set of the KELT light curves for known Taurus–Auriga stars in K2 C13. The combined data sets from K2 and KELT should permit a broad array of investigations related to star formation, stellar variability, and protoplanetary environments.« less

  2. A spectroscopic and photometric investigation of the mercury-manganese star KIC 6128830

    NASA Astrophysics Data System (ADS)

    Hümmerich, Stefan; Niemczura, Ewa; Walczak, Przemysław; Paunzen, Ernst; Bernhard, Klaus; Murphy, Simon J.; Drobek, Dominik

    2018-02-01

    The advent of space-based photometry provides the opportunity for the first precise characterizations of variability in mercury-manganese (HgMn/CP3) stars, which might advance our understanding of their internal structure. We have carried out a spectroscopic and photometric investigation of the candidate CP3 star KIC 6128830. A detailed abundance analysis based on newly acquired high-resolution spectra was performed, which confirms that the star's abundance pattern is fully consistent with its proposed classification. Photometric variability was investigated using 4 yr of archival Kepler data. In agreement with results from the literature, we have identified a single significant and independent frequency f1 = 0.2065424 d-1 with a peak-to-peak amplitude of ˜3.4 mmag and harmonic frequencies up to 5f1. Drawing on the predictions of state-of-the-art pulsation models and information on evolutionary status, we discuss the origin of the observed light changes. Our calculations predict the occurrence of g-mode pulsations at the observed variability frequency. On the other hand, the strictly mono-periodic nature of the variability strongly suggests a rotational origin. While we prefer the rotational explanation, the present data leave some uncertainty.

  3. Wind properties of variable B supergiants. Evidence of pulsations connected with mass-loss episodes

    NASA Astrophysics Data System (ADS)

    Haucke, M.; Cidale, L. S.; Venero, R. O. J.; Curé, M.; Kraus, M.; Kanaan, S.; Arcos, C.

    2018-06-01

    Context. Variable B supergiants (BSGs) constitute a heterogeneous group of stars with complex photometric and spectroscopic behaviours. They exhibit mass-loss variations and experience different types of oscillation modes, and there is growing evidence that variable stellar winds and photospheric pulsations are closely related. Aims: To discuss the wind properties and variability of evolved B-type stars, we derive new stellar and wind parameters for a sample of 19 Galactic BSGs by fitting theoretical line profiles of H, He, and Si to the observed ones and compare them with previous determinations. Methods: The synthetic line profiles are computed with the non-local thermodynamic equilibrium (NLTE) atmosphere code FASTWIND, with a β-law for hydrodynamics. Results: The mass-loss rate of three stars has been obtained for the first time. The global properties of stellar winds of mid/late B supergiants are well represented by a β-law with β > 2. All stars follow the known empirical wind momentum-luminosity relationships, and the late BSGs show the trend of the mid BSGs. HD 75149 and HD 99953 display significant changes in the shape and intensity of the Hα line (from a pure absorption to a P Cygni profile, and vice versa). These stars have mass-loss variations of almost a factor of 2.8. A comparison among mass-loss rates from the literature reveals discrepancies of a factor of 1 to 7. This large variation is a consequence of the uncertainties in the determination of the stellar radius. Therefore, for a reliable comparison of these values we used the invariant parameter Qr. Based on this parameter, we find an empirical relationship that associates the amplitude of mass-loss variations with photometric/spectroscopic variability on timescales of tens of days. We find that stars located on the cool side of the bi-stability jump show a decrease in the ratio V∞/Vesc, while their corresponding mass-loss rates are similar to or lower than the values found for stars on the hot side. Particularly, for those variable stars a decrease in V∞/Vesc is accompanied by a decrease in Ṁ. Conclusions: Our results also suggest that radial pulsation modes with periods longer than 6 days might be responsible for the wind variability in the mid/late-type. These radial modes might be identified with strange modes, which are known to facilitate (enhanced) mass loss. On the other hand, we propose that the wind behaviour of stars on the cool side of the bi-stability jump could fit with predictions of the δ-slow hydrodynamics solution for radiation-driven winds with highly variable ionization. Based on observations taken with the J. Sahade Telescope at Complejo Astronómico El Leoncito (CASLEO), operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, the Secretaría de Ciencia y Tecnología de la Nación, and the National Universities of La Plata, Córdoba, and San Juan.

  4. Mass transfer cycles in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    King, A. R.; Frank, J.; Kolb, U.; Ritter, H.

    1995-01-01

    It is well known that in cataclysmic variables the mass transfer rate must fluctuate about the evolutionary mean on timescales too long to be directly observable. We show that limit-cycle behavior can occur if the radius change of the secondary star is sensitive to the instantaneous mass transfer rate. The only reasonable way in which such a dependence can arise is through irradiation of this star by the accreting component. The system oscillates between high states, in which irradiation causes slow expansion of the secondary and drives an elevated transfer rate, and low states, in which this star contracts.

  5. The Variable Stars of the DRACO DWARF Spheroidal Glaxay: Revisited

    DTIC Science & Technology

    2008-11-01

    carbon stars known in Draco (C1–C3: Aaronson et al. 1982); (C4: Azzopardi et al. 1986); (C5: Armandroff et al. 1995); (C6: Shetrone et al. 2001b). We find...1.26 0.03 0.10 P = 0.1253 days or 0.2300 days References. 1. Draco RV member ( Armandroff et al. 1995); 2. Draco RV member (Olszewski et al. 1995); 3...254, 507 Aparicio, A., Carrera, R., & Martı́nez-Delgado, D. 2001, AJ, 122, 2524 No. 5, 2008 VARIABLE STARS IN DRACO 1939 Armandroff , T. E., Olszewski

  6. A Photometric Search for Planets in the Open Cluster NGC 7086

    NASA Astrophysics Data System (ADS)

    Rosvick, Joanne M.; Robb, Russell

    2006-12-01

    In an attempt to discover short-period, Jupiter-mass planets orbiting solar-type stars in open clusters, we searched for planetary transits in the populous and relatively unstudied open cluster NGC 7086. A color-magnitude diagram constructed from new B and V photometry is presented, along with revised estimates of the cluster's color excess, distance modulus, and age. Several turnoff stars were observed spectroscopically in order to determine a color excess of E(B-V)=0.83+/-0.02. Empirically fitting the main sequences of two young open clusters and the semiempirical zero-age main sequence of Vandenberg and Poll yielded a distance modulus of (V-MV)=13.4+/-0.3 mag. This corresponds to a true distance modulus of (m-M)0=10.8 mag or a distance of 1.5 kpc to NGC 7086. These values were used with isochrones from the Padova group to obtain a cluster age of 100 Myr. Eleven nights of R-band photometry were used to search for planetary transits. Differential magnitudes were constructed for each star in the cluster. Light curves for each star were produced on a night-to-night basis and inspected for variability. No planetary transits were apparent; however, some interesting variable stars were discovered: a pulsating variable that appears to be a member of the γ Dor class and four possible eclipsing binary stars, one of which actually may be a multiple system.

  7. The discovery of nonthermal radio emission from magnetic Bp-Ap stars

    NASA Technical Reports Server (NTRS)

    Drake, Stephen A.; Abbott, David C.; Bastian, T. S.; Bieging, J. H.; Churchwell, E.

    1987-01-01

    In a VLA survey of chemically peculiar B- and A-type stars with strong magnetic fields, five of the 34 stars observed have been identified as 6 cm continuum sources. Three of the detections are helium-strong early Bp stars (Sigma Ori E, HR 1890, and Delta Ori C), and two are helium weak, silicon-strong stars with spectral types near A0p (IQ Aur = HD 34452, Babcock's star = HD 215441). The 6 cm luminosities L6 (ergs/s Hz) range from log L6 = 16.2 to 17.9, somewhat less than the OB supergiants and W-R stars. Three-frequency observations indicate that the helium-strong Bp stars are variable nonthermal sources.

  8. Spectral and Temporal Characteristics of X-Ray-Bright Stars in the Pleiades

    NASA Technical Reports Server (NTRS)

    Gagne, Marc; Caillault, Jean-Pierre; Stauffer, John R.

    1995-01-01

    We follow up our deep ROSAT imaging survey of the Pleiades (Stauffer et al. 1994) with an analysis of the spectral and temporal characteristics of the X-ray-bright stars in the Pleiades. Raymond & Smith (1977) one and two-temperature models have been used to fit the position-sensitive proportional counter (PSPC) pulse-height spectra of the dozen or so brightest sources associated with late-type Pleiades members. The best-fit temperatures suggest hot coronal temperatures for K, M, and rapidly rotating G stars, and cooler temperatures for F and slowly rotating G stars. In order to probe the many less X-ray-luminous stars, we have generated composite spectra by combining net counts from all Pleiades members according to spectral type and rotational velocity. Model fits to the composite spectra confirm the trend seen in the individual spectral fits. Particularly interesting is the apparent dependence of coronal temperature on L(sub x)/L(sub bol). A hardness-ratio analysis also confirms some of these trends. The PSPC data have also revealed a dozen or so strong X-ray flares with peak X-ray luminosities in excess of approx. 10(exp 30) ergs/sec. We have modeled the brightest of these flares with a simple quasi-static cooling loop model. The peak temperature and emission measure and the inferred electron density and plasma volume suggest a very large scale flaring event. The PSPC data were collected over a period of approx. 18 months, allowing us to search for source variability on timescales ranging from less than a day (in the case of flares) to more than a year between individual exposures. On approximately year-long timescales, roughly 25% of the late-type stars are variable. Since the Pleiades was also intensively monitored by the imaging instruments on the Einstein Observatory, we have examined X-ray luminosity variations on the 10 yr timescale between Einstein and ROSAT and find that up to 40% of the late-type stars are X-ray variable. Since there is only marginal evidence for increased variability on decade-long timescales, the variability observed on long and short timescales may have a common physical origin.

  9. The Winds of B Supergiants

    NASA Technical Reports Server (NTRS)

    Massa, Derck; West, D. (Technical Monitor)

    2002-01-01

    We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar winds in early B supergiants. The UV line profile variability in 11 B0 to B3 stars is analyzed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include 'normal' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of wind variability and highlights different structures in the winds of these stars. This work emphasizes the suitability of B supergiants for wind studies, under-pinned by the fact that they exhibit unsaturated wind lines for a wide range of ionization. The wind activity of B supergiants is substantial and has highly varied characteristics. The variability evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization variability and stratification. Similar structures can occur in stars of different fundamental parameters but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures, and highlight the challenges that these phenomena present to theoretical studies of time-dependent outflows in massive stars. In addition, SEI line-synthesis modelling of the UV wind lines is used to provide further information about the state of the winds in our program stars. Typically the range, implied by the line profile variability, in the product of mass-loss rate and ion fraction (M qi) is a factor of approximately 1.5, when integrated between 0.2 and 0.9 v infinity; it it can however be several times larger over localized velocity regions. At a given effective temperature the mean relative ion ratios can differ by a factor of 5. The general excess in predicted (forward-scattered) emission in the low velocity regime is discussed in turns of structured outflows. Mean ion fractions are estimated over the B0 to B1 spectral classes, and trends in the ionic ratios as a function of wind velocity are described. The low values obtained for the ion fractions of UV resonance lines may reflect the role of clumping in the wind.

  10. The Winds of B Supergiants

    NASA Technical Reports Server (NTRS)

    Massa, D.; Oliversen, R. (Technical Monitor)

    2002-01-01

    We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar winds in early B supergiants. The UV line profile variability in 11 B0 to B3 stars is analyzed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include 'normal' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of wind variability and highlights different structures in the winds of these stars. This work emphasises the suitability of B supergiants for wind studies, under-pinned by the fact that they exhibit unsaturated wind lines for a wide range of ionization. The wind activity of B supergiants is substantial and has highly varied characteristics. The variability evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization variability and stratification. Similar structures can occur in stars of different fundamental parameters, but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures, and highlight the challenges that these phenomena present to theoretical studies of time-dependent outflows in massive stars. In addition, SEI line-synthesis modelling of the UV wind lines is used to provide further information about the state of the winds in our program stars. Typically the range, implied by the line profile variability, in the product of mass-loss rate and ion fraction (M (dot) q(sub i)) is a factor of approximately 1.5, when integrated between 0.2 and 0.9 v infinity; it can however be several times larger over localized velocity regions. At a given effective temperature the mean relative ion ratios can differ by a factor of 5. The general excess in predicted (forward-scattered) emission in the low velocity regime is discussed in terms of structured outflows. Mean ion fractions are estimated over the B0 to B1 spectral classes, and trends in the ionic ratios as a function of wind velocity are described. The low values obtained for the ion fractions of UV resonance lines may reflect the role of clumping in the wind.

  11. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  12. Advances in stellar evolution; Proceedings of the Workshop on Stellar Ecology, Marciana Marina, Italy, June 23-29, 1996

    NASA Astrophysics Data System (ADS)

    Rood, R. T.; Renzini, A.

    1997-01-01

    The present volume on stellar evolution discusses fundamentals of stellar evolution and star clusters, variable stars, AGB stars and planetary nebulae, white dwarfs, binary star evolution, and stars in galaxies. Attention is given to the stellar population in the Galactic bulge, a photometric study of NGC 458, and HST observations of high-density globular clusters. Other topics addressed include the Cepheid instability strip in external galaxies, Hyades cluster white dwarfs and the initial-final mass relation, element diffusion in novae, mass function of the stars in the solar neighborhood, synthetic spectral indices for elliptical galaxies, and stars at the Galactic center.

  13. Massive eclipsing binary candidates

    NASA Technical Reports Server (NTRS)

    Garrison, R. F.; Schild, R. E.; Hiltner, W. A.

    1983-01-01

    New UBV data are provided for 63 southern OB stars which are either identified in the survey by Garrison, Hiltner, and Schild as having double lines or are known from Wood et al. to be eclipsing binaries. Twenty of the stars are known eclipsing variables. Four stars, not previously known as eclipsing, have both spectroscopic evidence of duplicity and significant photometric variations. Several additional stars have a marginally significant spread in V magnitude.

  14. The planetary nebula IC 4776 and its post-common-envelope binary central star

    NASA Astrophysics Data System (ADS)

    Sowicka, Paulina; Jones, David; Corradi, Romano L. M.; Wesson, Roger; García-Rojas, Jorge; Santander-García, Miguel; Boffin, Henri M. J.; Rodríguez-Gil, Pablo

    2017-11-01

    We present a detailed analysis of IC 4776, a planetary nebula displaying a morphology believed to be typical of central star binarity. The nebula is shown to comprise a compact hourglass-shaped central region and a pair of precessing jet-like structures. Time-resolved spectroscopy of its central star reveals a periodic radial velocity variability consistent with a binary system. Whilst the data are insufficient to accurately determine the parameters of the binary, the most likely solutions indicate that the secondary is probably a low-mass main-sequence star. An empirical analysis of the chemical abundances in IC 4776 indicates that the common-envelope phase may have cut short the asymptotic giant branch evolution of the progenitor. Abundances calculated from recombination lines are found to be discrepant by a factor of approximately 2 relative to those calculated using collisionally excited lines, suggesting a possible correlation between low-abundance discrepancy factors and intermediate-period post-common-envelope central stars and/or Wolf-Rayet central stars. The detection of a radial velocity variability associated with the binarity of the central star of IC 4776 may be indicative of a significant population of (intermediate-period) post-common-envelope binary central stars that would be undetected by classic photometric monitoring techniques.

  15. A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunder, Andrea; Storm, J.; Rich, R. M.

    2015-07-20

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of −372 ± 8 km s{sup −1} and true space velocity of −482 ± 22 km s{sup −1} relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, −2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal,more » at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy.« less

  16. Multifrequency observations of symbiotic stars

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.

    1988-01-01

    The discovery of symbiotic stars is described, and the results of multifrequency observations made during the past two decades are presented. Observational data identify symbiotic stars as long-period binary systems that can be divided into two basic physical classes: detached symbiotics containing a red giant (or a Mira variable), and semidetached symbiotics containing a lobe-filling red giant and a solar-type main sequence star. Three components are typically observed: (1) the cool giant component with an effective temperature of 2500-4000 K, which can be divided by the IR spectral classification into normal M giants (S-types) and heavily reddened Mira variables (D-types); (2) the hot companion displaying a bright blue continuum at UV wavelengths, which is sometimes also an X-ray source; and (3) a gaseous nebula enveloping the binary.

  17. Rotational Velocity Determinations for 118 δ Scuti Variables

    NASA Astrophysics Data System (ADS)

    Bush, Tabitha C.; Hintz, Eric G.

    2008-09-01

    A calibration method is presented for the determination of projected rotational velocities of 118 δ Scuti variables from FWHM measurements of metal lines near 4500 Å. The calibration relation used was derived from measurements of 29 stars. Of the 44 stars brighter than 8th magnitude and north of -1° declination which did not have values in the Rodríguez catalog (Rodríguez, E., López González, M. J., & López de Coca, P. 2000, A&AS, 144, 469) we present values for 38. In addition, we present new projected rotational velocity, vsin i, values for 10 stars south of -1° or fainter than 8th magnitude for a total of 48 vsin i values for stars with no previously published values.

  18. Unravelling the role of SW Sextantis stars in the evolution of cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Araujo-Betancor, Sofia; Gansicke, Boris; Long, Knox; Rodriguez-Gil, Pablo

    2005-08-01

    SW Sextantis stars are a relatively large group of cataclysmic variables whose properties contradict all predictions made by the current CV evolution theories. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assessment of their evolutionary state is illusionary. There is one particular behavior of the SW Sex stars that can allow us to overcome this problem: SW Sex stars exhibit low states during which accretion onto the white dwarf decreases or shuts off completely. Only during this rare occasions we can directly observe the white dwarf and the donor star in these systems, and measurements of the white dwarf temperature, spectral type of the donor, mass and distance to the system can be carried out. With this aim in mind, we have set up a long-term monitoring of a group of five SW Sex stars using the 1.3 m telescope at CTIO. Here we propose to activate follow-up TOOs to obtain optical spectra of the low states to accurately determine the fundamental properties of these systems.

  19. A Detailed Survey of Pulsating Variables in Five Globular Clusters (Abstract)

    NASA Astrophysics Data System (ADS)

    Murphy, B. W.

    2016-12-01

    (Abstract only) Globular clusters are ideal laboratories for conducting a stellar census. Of particular interest are pulsating variables, which provide astronomers with a tool to probe the properties of the stars and the cluster. We observed each of five globular clusters hundreds to thousands of times over a time span ranging from 2 to 4 years in B, V, and I filters using the SARA 0.6-meter telescope located at Cerro Tololo Interamerican Observatory and the 0.9-meter telescope located at Kitt Peak, Arizona. The images were analyzed using difference image analysis to identify and produce light curves of all variables found in each cluster. In total we identified 377 variables with 140 of these being newly discovered increasing the number of known variables stars in these clusters by 60%. Of the total we have identified 319 RR Lyrae variables (193 RR0, 18 RR01, 101 RR1, 7 RR2), 9 SX Phe stars, 5 Cepheid variables, 11 eclipsing variables, and 33 long period variables. For IC4499 we identified 64 RR0, 18 RR01, 14 RR1, 4 RR2, 1 SX Phe, 1 eclipsing binary, and 2 long period variables. For NGC4833 we identified 10 RR0, 7 RR1, 3 RR2, 6 SX Phe, 5 eclipsing binaries, and 9 long period variables. For NGC6171 (M107) we identified 14 RR0, 7 RR1, and 1 SX Phe. For NGC6402 (M14) we identified 55 RR0, 57 RR1, 1 RR2, 1 SX Phe, 6 Cepheids, 1 eclipsing binary, and 15 long period variables. For NGC6584 we identified 50 RR0, 16 RR1, 4 eclipsing binaries, and 7 long period variables. From our extensive data set we were able to obtain sufficient temporal and complete phase coverage of the RR Lyrae variables. This has allowed us not only to properly classify each of the RR Lyrae variables but also to use Fourier decomposition of the B, V, and I light curves to further analyze the properties of the variable stars and hence the physical properties of each globular cluster.

  20. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH STOCHASTICALLY VARYING LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauffer, John; Rebull, Luisa; Carey, Sean

    2016-03-15

    We provide CoRoT and Spitzer light curves and other supporting data for 17 classical T Tauri stars in NGC 2264 whose CoRoT light curves exemplify the “stochastic” light curve class as defined in 2014 by Cody et al. The most probable physical mechanism to explain the optical variability within this light curve class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. Where we have appropriate spectral data, we show that the veiling variability in these stars is consistent in both amplitude and timescale with the optical light curve morphology. The veiling variability is also well-correlated with the strengthmore » of the He i 6678 Å emission line, predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst light curve morphology also have variable mass accretion. The stochastic and accretion burst light curves can both be explained by a simple model of randomly occurring flux bursts, with the stochastic light curve class having a higher frequency of lower amplitude events. Members of the stochastic light curve class have only moderate mass accretion rates. Their Hα profiles usually have blueshifted absorption features, probably originating in a disk wind. The lack of periodic signatures in the light curves suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.« less

  1. Spectroscopic Study of the Variability of Three Northern Of+ Supergiants

    NASA Astrophysics Data System (ADS)

    De Becker, M.; Rauw, G.; Linder, N.

    2009-10-01

    The transition from early Of stars to WN-type objects is poorly understood. O-type supergiants with emission lines (OIf+) are considered to be intermediate between these two classes. The scope of this paper is to investigate the spectral variability of three Of+ supergiants. We constituted spectral time series of unprecedented quality for our targets (~200 spectra in total), essentially in the blue domain, covering timescales from a few hours up to a few years. Temporal Variance Spectrum and Fourier analyses were performed in order to characterize their spectral variability. We report on a correlated significant line profile variability in the prominent He II λ4686 and Hβ lines most likely related to the strong stellar winds. The variability pattern is similar for the three stars investigated (HD 14947, HD 15570, and HD 16691), and the main differences are more quantitative than qualitative. However, the reported timescales are somewhat different, and the most striking variability pattern is reported for HD 16691. We did not find any clear evidence for binarity, and we focus mainly on an interpretation based on a single-star scenario. We show that the behavior of the three stars investigated in this study present strong similarities, pointing to a putative common scenario, even though a few differences should be noted. Our preferred interpretation scheme is that of Large-Scale Corotating Structures modulating the profile of the lines that are produced in the strong stellar wind. Based on observations collected at the Observatoire de Haute-Provence (France).

  2. VizieR Online Data Catalog: uvby photometry of 4 CP stars (Adelman, 1997)

    NASA Astrophysics Data System (ADS)

    Adelman, S. J.

    1996-07-01

    Differential Stroemgren uvby photometric observations from the Four College Automated Photoelectric Telescope refine the rotational periods and define the shapes of the light curves of four magnetic Chemically Peculiar stars. HD 32633 (P=6.43000d) exhibits an in-phase variability with asymmetrically shaped light curves. 25 Sex (P=4.37900d) has a complex variability with the v, b, and y light variability crudely in phase, but quite different from that of u. HR 7224 (P=1.123095d) shows in-phase variability with two nearly equal secondary minima. HD 200311 (P=26.0042d), which was previous thought to be a long period variable, is found to be a modest photometric variable. (5 data files).

  3. Stellar variability and its implications for photometric planet detection with Kepler

    NASA Astrophysics Data System (ADS)

    Batalha, N. M.; Jenkins, J.; Basri, G. S.; Borucki, W. J.; Koch, D. G.

    2002-01-01

    Kepler is one of three candidates for the next NASA Discovery Mission and will survey the extended solar neighborhood to detect and characterize hundreds of terrestrial (and larger) planets in or near the habitable zone. Its strength lies in its ability to detect large numbers of Earth-sized planets - planets which produced a 10-4 change in relative stellar brightness during a transit across the disk of a sun-like parent star. Such a detection requires high instrumental relative precision and is facilitated by observing stars which are photometrically quiet on hourly timescales. Probing stellar variability across the HR diagram, one finds that many of the photometrically quietest stars are the F and G dwarfs. The Hipparcos photometric database shows the lowest photometric variances among stars of this spectral class. Our own Sun is a prime example with RMS variations over a few rotational cycles of typically (3 - 4)×10-4 (computed from VIRGO/DIARAD data taken Jan-Mar 2001). And variability on the hourly time scales crucial for planet detection is significantly smaller: just (2 - 5)×10-5. This bodes well for planet detection programs such as Kepler and Eddington. With significant numbers of photometrically quiet solar-type stars, Earth-sized planets should be readily identified provided they are abundant in the solar neighborhood. In support of the Kepler science objectives, we have initiated a study of stellar variability and its implications for planet detection. Herein, we summarize existing observational and theoretrical work with the objective of determining the percentage of stars in the Kepler field of view expected to be photometrically stable at a level which allows for Earth-sized planet detection.

  4. Revisiting the variable star population in NGC 6229 and the structure of the horizontal branch

    NASA Astrophysics Data System (ADS)

    Arellano Ferro, A.; Mancera Piña, P. E.; Bramich, D. M.; Giridhar, Sunetra; Ahumada, J. A.; Kains, N.; Kuppuswamy, K.

    2015-09-01

    We report an analysis of new V and I CCD time series photometry of the distant globular cluster NGC 6229. The principal aims were to explore the field of the cluster in search of new variables, and to Fourier decompose the RR Lyrae light curves in pursuit of physical parameters. We found 25 new variables: 10 RRab, 5 RRc, 6 SR, 1 CW, 1 SX Phe, and 2 that we were unable to classify. Secular period changes were detected and measured in some favourable cases. The classifications of some of the known variables were rectified. The Fourier decomposition of RRab and RRc light curves was used to independently estimate the mean cluster value of [Fe/H] and distance. From the RRab stars we found [Fe/H]UVES = -1.31 ± 0.01(statistical) ± 0.12(systematic) ([Fe/H]ZW = -1.42) and a distance of 30.0 ± 1.5 kpc, and from the RRc stars we found [Fe/H]UVES = -1.29 ± 0.12 and a distance of 30.7 ± 1.1 kpc, respectively. Absolute magnitudes, radii and masses are also reported for individual RR Lyrae stars. Also discussed are the independent estimates of the cluster distance from the tip of the red giant branch, 34.9 ± 2.4 kpc and from the period-luminosity relation of SX Phe stars, 28.9 ± 2.2 kpc. The distribution of RR Lyrae stars in the horizontal branch shows a clear empirical border between stable fundamental and first overtone pulsators which has been noted in several other clusters; we interpret it as the red edge of the first overtone instability strip.

  5. Variability of young stars: Determination of rotational periods of weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region

    NASA Astrophysics Data System (ADS)

    Koeltzsch, A.; Mugrauer, M.; Raetz, St.; Schmidt, T. O. B.; Roell, T.; Eisenbeiss, T.; Hohle, M. M.; Vaňko, M.; Ginski, Ch.; Marka, C.; Moualla, M.; Schreyer, K.; Broeg, Ch.; Neuhäuser, R.

    2009-05-01

    We report on observation and determination of rotational periods of ten weak-line T Tauri stars in the Cepheus-Cassiopeia star-forming region. Observations were carried out with the Cassegrain-Teleskop-Kamera (CTK) at University Observatory Jena between 2007 June and 2008 May. The periods obtained range between 0.49 d and 5.7 d, typical for weak-line and post T Tauri stars. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  6. New insight into the physics of atmospheres of early type stars

    NASA Technical Reports Server (NTRS)

    Lamers, H. J. G. L. M.

    1981-01-01

    The phenomenon of mass loss and stellar winds from hot stars are discussed. The mass loss rate of early type stars increases by about a factor of 100 to 1000 during their evolution. This seems incompatible with the radiation driven wind models and may require another explanation for the mass loss from early type stars. The winds of early type stars are strongly variable and the stars may go through active phases. Eclipses in binary systems by the stellar winds can be used to probe the winds. A few future IUE studies are suggested.

  7. Invited Talk: Photometry of Bright Variable Stars with the BRITE Constellation Nano-Satellites: Opportunities for Amateur Astronomers

    NASA Astrophysics Data System (ADS)

    Guinan, E. F.

    2014-06-01

    (Abstract only) The BRIght Target Explorer (BRITE) is a joint Austrian-Canadian-Polish Astronomy mission to carry out high precision photometry of bright (mv < 4 mag.) variable stars. BRITE consists of a "Constellation" of 20 × 20 × 20-cm nano-satellite cubes equipped with wide field (20 × 24 deg.) CCD cameras, control systems, solar panels, onboard computers, and so on. The first two (of up to six) satellites were successfully launched during February 2013. After post-launch commissioning, science operations commenced during October 2013. The primary goals are to carry out continuous multi-color (currently blue and red filters) high-precision millimag (mmag) photometry in particular locations in the sky. Typically these pointings will last for two to four months and secure simultaneous blue/red photometry of bright variable stars within the field. The first science pointing is centered on the Orion region. Since most bright stars are intrinsically luminous, hot O/B stars, giants, and supergiants will be the most common targets. However, some bright eclipsing binaries (such as Algol, b Lyr, e Aur) and a few chromospherically-active RS CVn stars (such as Capella) may be eventually be monitored. The BRITE-Constellation program of high precision, two color photometry of bright stars offers a great opportunity to study a wide range of stellar astrophysical problems. Bright stars offer convenient laboratories to study many current and important problems in stellar astrophysics. These include probing stellar interiors and pulsation in pulsating stars, tests of stellar evolution and structure for Cepheids and other luminous stars. To scientifically enhance the BRITE science returns, the BRITE investigators are very interested in securing contemporaneous ground-based spectroscopy and standardized photometry of target stars. The BRITE Ground Based Observations Team is coordinating ground-based observing efforts for BRITE targets. The team helps coordinate collaborations with amateur and professional astronomer. The ground-based coordinators are: Thomas Eversberg (thomas.eversberg@dlr.de) and, for spectroscopy, Contanze Zwintz (konstanze@ster.kuleuven.be). Detailed information about the BRITE Mission is provided at: www.brite-contellation.at.

  8. HIGHLY VARIABLE YOUNG MASSIVE STARS IN ATLASGAL CLUMPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M. S. N.; Contreras Peña, C.; Lucas, P. W.

    High-amplitude variability in young stellar objects (YSOs) is usually associated with episodic accretion events. It has not been observed so far in massive YSOs. Here, the high-amplitude variable star sample of Contreras Peña et al. has been used to search for highly variable (Δ K  ≥ 1 mag) sources coinciding with dense clumps mapped using the 850  μ m continuum emission by the ATLASGAL survey. A total of 18 variable sources are centered on the submillimeter clump peaks and coincide (<1″) with a 24  μ m point or compact (<10″) source. Of these 18 sources, 13 can be fit by YSOmore » models. The 13 variable YSOs (VYSOs) have luminosities of ∼10{sup 3} L {sub ⊙}, an average mass of 8  M {sub ⊙}, and a range of ages up to 10{sup 6} yr. A total of 11 of these 13 VYSOs are located in the midst of infrared dark clouds. Nine of the 13 sources have Δ K  > 2 mag, significantly higher compared to the mean variability of the entire VVV sample. The light curves of these objects sampled between 2010 and 2015 display rising, declining, or quasi-periodic behavior but no clear periodicity. Light-curve analysis using the Plavchan method shows that the most prominent phased signals have periods of a few hundred days. The nature and timescale of variations found in 6.7 Ghz methanol maser emission in massive stars are similar to that of the VYSO light curves. We argue that the origin of the observed variability is episodic accretion. We suggest that the timescale of a few hundred days may represent the frequency at which a spiraling disk feeds dense gas to the young massive star.« less

  9. Low-Frequency Temporal Variability in Mira and Semiregular Variables

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.; Karovska, M.; Waagen, E. O.

    2012-01-01

    We investigate low-frequency variability in a large sample of Mira and semiregular variables with long-term visual light curves from the AAVSO International Database. Our aim is to determine whether we can detect and measure long-timescale variable phenomena in these stars, for example photometric variations that might be associated with supergranular convection. We analyzed the long-term light curves of 522 variable stars of the Mira and SRa, b, c, and d classes. We calculated their low-frequency time-series spectra to characterize rednoise with the power density spectrum index, and then correlate this index with other observable characteristics such as spectral type and primary pulsation period. In our initial analysis of the sample, we see that the semiregular variables have a much broader range of spectral index than the Mira types, with the SRb subtype having the broadest range. Among Mira variables we see that the M- and S-type Miras have similarly wide ranges of index, while the C-types have the narrowest with generally shallower slopes. There is also a trend of steeper slope with larger amplitude, but at a given amplitude, a wide range of slopes are seen. The ultimate goal of the project is to identify stars with strong intrinsic red noise components as possible targets for resolved surface imaging with interferometry.

  10. Differential rotation in magnetic chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Mikulášek, Z.; Krtička, J.; Paunzen, E.; Švanda, M.; Hummerich, S.; Bernhard, K.; Jagelka, M.; Janík, J.; Henry, G. W.; Shultz, M. E.

    2018-01-01

    Magnetic chemically peculiar (mCP) stars constitute about 10% of upper-main-sequence stars and are characterized by strong magnetic fields and abnormal photospheric abundances of some chemical elements. Most of them exhibit strictly periodic light, magnetic, radio, and spectral variations that can be fully explained by a rigidly rotating main-sequence star with persistent surface structures and a stable global magnetic field. Long-term observations of the phase curves of these variations enable us to investigate possible surface differential rotation with unprecedented accuracy and reliability. The analysis of the phase curves in the best-observed mCP stars indicates that the location and the contrast of photometric and spectroscopic spots as well as the geometry of the magnetic field remain constant for at least many decades. The strict periodicity of mCP variables supports the concept that the outer layers of upper-main-sequence stars do not rotate differentially. However, there is a small, inhomogeneous group consisting of a few mCP stars whose rotation periods vary on timescales of decades. The period oscillations may reflect real changes in the angular velocity of outer layers of the stars which are anchored by their global magnetic fields. In CU Vir, V901 Ori, and perhaps BS Cir, the rotational period variation indicates the presence of vertical differential rotation; however, its exact nature has remained elusive until now. The incidence of mCP stars with variable rotational periods is currently investigated using a sample of fifty newly identified Kepler mCP stars.

  11. SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars

    NASA Technical Reports Server (NTRS)

    Tanner, Angelle; Beichman, Charles; Akeson, Rachel; Ghez, Andrea; Grankin, Konstantin N.; Herbst, William; Hillenbrand, Lynne; Huerta, Marcos; Konopacky, Quinn; Metchev, Stanimir; hide

    2008-01-01

    We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of <5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1(sigma) >0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that removes the most targets from the SIM-YSO program is photometric variability.

  12. Stellar parameters and H α line profile variability of Be stars in the BeSOS survey

    NASA Astrophysics Data System (ADS)

    Arcos, C.; Kanaan, S.; Chávez, J.; Vanzi, L.; Araya, I.; Curé, M.

    2018-03-01

    The Be phenomenon is present in about 20 per cent of B-type stars. Be stars show variability on a broad range of time-scales, which in most cases is related to the presence of a circumstellar disc of variable size and structure. For this reason, a time-resolved survey is highly desirable in order to understand the mechanisms of disc formation, which are still poorly understood. In addition, a complete observational sample would improve the statistical significance of the study of stellar and disc parameters. The `Be Stars Observation Survey' (BeSOS) is a survey containing reduced spectra obtained using the Pontifica Universidad Católica High Echelle Resolution Optical Spectrograph (PUCHEROS) with a spectral resolution of 17 000 in the range 4260-7300 Å. BeSOS's main objective is to offer consistent spectroscopic and time-resolved data obtained with one instrument. The user can download or plot the data and obtain stellar parameters directly from the website. We also provide a star-by-star analysis based on photometric, spectroscopic and interferometric data, as well as general information about the whole BeSOS sample. Recently, BeSOS led to the discovery of a new Be star HD 42167 and facilitated study of the V/R variation of HD 35165 and HD 120324, the steady disc of HD 110335 and the Be shell status of HD 127972. Optical spectra used in this work, as well as the stellar parameters derived, are available online at http://besos.ifa.uv.cl.

  13. Determination of Pulsation Periods and Other Parameters of 2875 Stars Classified as MIRA in the All Sky Automated Survey (ASAS)

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Contreras-Quijada, A.; Fuentes-Morales, I.; Vogt-Geisse, S.; Arcos, C.; Abarca, C.; Agurto-Gangas, C.; Caviedes, M.; DaSilva, H.; Flores, J.; Gotta, V.; Peñaloza, F.; Rojas, K.; Villaseñor, J. I.

    2016-11-01

    We have developed an interactive PYTHON code and derived crucial ephemeris data of 99.4% of all stars classified as “Mira” in the ASAS database, referring to pulsation periods, mean maximum magnitudes, and whenever possible, the amplitudes among others. We present a statistical comparison between our results and those given by the International Variable Star Index (VSX) of the American Association of Variable Star Observers, as well as those determined with the machine learning automatic procedure of Richards et al. Our periods are in good agreement with those of the VSX in more than 95% of the stars. However, when comparing our periods with those of Richards et al., the coincidence rate is only 76% and most of the remaining cases refer to aliases. We conclude that automatic codes still require more refinements in order to provide reliable period values. Period distributions of the target stars show three local maxima around 215, 275, and 330 days, apparently of universal validity; their relative strength seems to depend on galactic longitude. Our visual amplitude distribution turns out to be bimodal, however, 1/3 of the targets have rather small amplitudes (A < 2.5m) and could refer to semiregular variables (SR). We estimate that about 20% of our targets belong to the SR class. We also provide a list of 63 candidates for period variations and a sample of 35 multiperiodic stars that seem to confirm the universal validity of typical sequences in the double period and in the Petersen diagrams.

  14. Photometric detection of a candidate low-mass giant binary system at the Milky Way Galactic Center

    NASA Astrophysics Data System (ADS)

    Krishna Gautam, Abhimat; Do, Tuan; Ghez, Andrea; Sakai, Shoko; Morris, Mark; Lu, Jessica; Witzel, Gunther; Jia, Siyao; Becklin, Eric Eric; Matthews, Keith

    2018-01-01

    We present the discovery of a new periodic variable star at the Milky Way Galactic Center (GC). This study uses laser guide-star adaptive optics data collected with the W. M. Keck 10 m telescope in the K‧-band (2.2 µm) over 35 nights spanning an 11 year time baseline, and 5 nights of additional H-band (1.6 µm) data. We implemented an iterative photometric calibration and local correction technique, resulting in a photometric uncertainty of Δm_K‧ ∼ 0.03 to a magnitude of m_K‧ ∼ 16.The periodically variable star has a 39.42 day period. We find that the star is not consistent with known periodically variable star classes in this period range with its observed color and luminosity, nor with an eclipsing binary system. The star's color and luminosity are however consistent with an ellipsoidal binary system at the GC, consisting of a K-giant and a dwarf component with an orbital period of 78.84 days. If a binary system, it represents the first detection of a low-mass giant binary system in the central half parsec of the GC. Such long-period binary systems can easily evaporate in the dense environment of the GC due to interactions with other stars. The existence and properties of a low-mass, long-period binary system can thus place valuable constraints on dynamical models of the GC environment and probe the density of the hypothesized dark cusp of stellar remnants at the GC.

  15. ASAS-SN Discovery of a Bright Be Star Undergoing a Possible Outburst

    NASA Astrophysics Data System (ADS)

    Jayasinghe, T.; Stanek, K. Z.; Kochanek, C. S.; Thorstensen, J.; Rupert, J.; Prieto, J. L.; Shields, J. V.; Thompson, T. A.; Holoien, T. W.-S.; Shappee, B. J.; Dong, Subo

    2017-09-01

    As part of an ongoing effort by ASAS-SN project (Shappee et al. 2014; Kochanek et al. 2017) to characterize and catalog all bright variable stars (e.g., Jayasinghe et al. 2017, ATel #10634, #10677), we report the discovery of a bright Be star undergoing a possible outburst.

  16. The origin and pulsations of extreme helium stars†

    NASA Astrophysics Data System (ADS)

    Jeffery, C. Simon

    2014-02-01

    Stars consume hydrogen in their interiors but, generally speaking, their surfaces continue to contain some 70% hydrogen (by mass) throughout their lives. Nevertheless, many types of star can be found with hydrogen-deficient surfaces, in some cases with as little as one hydrogen atom in 10 000. Amongst these, the luminous B- and A-type extreme helium stars are genuinely rare; only ~15 are known within a very substantial volume of the Galaxy. Evidence from surface composition suggests a connection to the cooler R CrB variables and some of the hotter helium-rich subdwarf O stars. Arguments currently favour an origin in the merger of two white dwarfs; thus there are also connections with AM CVn variables and Type Ia supernovae. Pulsations in many extreme helium stars provide an opportune window into their interiors. These pulsations have unusual properties, some being ``strange'' modes, and others being driven by Z-bump opacities. They have the potential to deliver distance-independent masses and to provide a unique view of pulsation physics. We review the evolutionary origin and pulsations of these stars, and introduce recent progress and continuing challenges.

  17. Luminous blue variables and the fates of very massive stars.

    PubMed

    Smith, Nathan

    2017-10-28

    Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40  M ⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).

  18. A Photometric Survey of the Open Clusters NGC 7789 and M67

    NASA Astrophysics Data System (ADS)

    Janes, Kenneth

    2010-01-01

    Although there is strong evidence that stellar activity declines as a star ages, beyond about the age of the Hyades (600 Myr) there is little direct confirmation of this decline in stars of known age. This report is an update of an earlier report (Hayes-Gehrke, et al., 2004, AJ, 128, 2862) of a long-term project to explore stellar activity in old open clusters. I have now accumulated 12 years of photometry of the old clusters NGC 7789 (about 1.8 Gyr) and M 67 (about 4 Gyr). An analysis of these data has revealed a substantial number of low-amplitude variable stars in both clusters, including a number of previously-discovered eclipsing binary stars, and several stars near the main sequence turnoff of both clusters that exhibit apparently erratic variations. Some of the M 67 erratics are known X-ray sources. On the main sequence, the large majority of stars show little or no evidence for variability at the 0.1% - 0.2% level, consistent with a regular systematic decline in activity level with age.

  19. Quasiperiodic Oscillations in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    van der Klis, M.; Murdin, P.

    2000-11-01

    The term quasiperiodic oscillation (QPO) is used in high-energy astrophysics for any type of non-periodic variability that is constrained to a relatively narrow range of variability frequencies. X-RAY BINARIES are systems in which a `compact object', either a BLACK HOLE or a NEUTRON STAR, orbits a normal star and captures matter from it. The matter spirals down to the compact object and heats up ...

  20. Eta Carinae and Other Luminous Blue Variables

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.

    2006-01-01

    Luminous Blue Variables (LBVs) are believed to be evolved, extremely massive stars close to the Eddington Limit and hence prone to bouts of large-scale, unstable mass loss. I discuss current understanding of the evolutionary state of these objects, the role duplicity may play and known physical characteristics of these stars using the X-ray luminous LBVs Eta Carinae and HD 5980 as test cases.

Top