NASA Technical Reports Server (NTRS)
Goldberg, Leo
1987-01-01
Observational evidence for mass loss from cool stars is reviewed. Spectra line profiles are used for the derivation of mass-loss rates with the aid of the equation of continuity. This equation implies steady mass loss with spherical symmetry. Data from binary stars, Mira variables, and red giants in globular clusters are examined. Silicate emission is discussed as a useful indicator of mass loss in the middle infrared spectra. The use of thermal millimeter-wave radiation, Very Large Array (VLA) measurement of radio emission, and OH/IR masers are discussed as a tool for mass loss measurement. Evidence for nonsteady mass loss is also reviewed.
A Method to Estimate the Masses of Asymptotic Giant Branch Variable Stars
NASA Astrophysics Data System (ADS)
Takeuti, Mine; Nakagawa, Akiharu; Kurayama, Tomoharu; Honma, Mareki
2013-06-01
AGB variable stars are at the transient phase between low and high mass-loss rates; estimating the masses of these stars is necessary to study the evolutionary processes and mass-loss processes during the AGB stage. We applied the pulsation constant theoretically derived by Xiong and Deng (2007 MNRAS, 378, 1270) to 15 galactic AGB stars in order to estimate their masses. We found that using the pulsation constant is effective to estimate the mass of a star pulsating with two different pulsation modes, such as S Crt and RX Boo, which provides mass estimates comparable to theoretical results of AGB star evolution. We also extended the use of the pulsation constant to single-mode variables, and analyzed the properties of AGB stars related to their masses.
Dynamics of Variable Mass Systems
NASA Technical Reports Server (NTRS)
Eke, Fidelis O.
1998-01-01
This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.
Surface melt dominates Alaska glacier mass balance
Larsen Chris F,; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.
2015-01-01
Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.
Hirabayashi, Yukiko; Nakano, Kazunari; Zhang, Yong; Watanabe, Satoshi; Tanoue, Masahiro; Kanae, Shinjiro
2016-07-20
Observational evidence indicates that a number of glaciers have lost mass in the past. Given that glaciers are highly impacted by the surrounding climate, human-influenced global warming may be partly responsible for mass loss. However, previous research studies have been limited to analyzing the past several decades, and it remains unclear whether past glacier mass losses are within the range of natural internal climate variability. Here, we apply an optimal fingerprinting technique to observed and reconstructed mass losses as well as multi-model general circulation model (GCM) simulations of mountain glacier mass to detect and attribute past glacier mass changes. An 8,800-year control simulation of glaciers enabled us to evaluate detectability. The results indicate that human-induced increases in greenhouse gases have contributed to the decreased area-weighted average masses of 85 analyzed glaciers. The effect was larger than the mass increase caused by natural forcing, although the contributions of natural and anthropogenic forcing to decreases in mass varied at the local scale. We also showed that the detection of anthropogenic or natural influences could not be fully attributed when natural internal climate variability was taken into account.
NASA Astrophysics Data System (ADS)
Hirabayashi, Yukiko; Nakano, Kazunari; Zhang, Yong; Watanabe, Satoshi; Tanoue, Masahiro; Kanae, Shinjiro
2016-07-01
Observational evidence indicates that a number of glaciers have lost mass in the past. Given that glaciers are highly impacted by the surrounding climate, human-influenced global warming may be partly responsible for mass loss. However, previous research studies have been limited to analyzing the past several decades, and it remains unclear whether past glacier mass losses are within the range of natural internal climate variability. Here, we apply an optimal fingerprinting technique to observed and reconstructed mass losses as well as multi-model general circulation model (GCM) simulations of mountain glacier mass to detect and attribute past glacier mass changes. An 8,800-year control simulation of glaciers enabled us to evaluate detectability. The results indicate that human-induced increases in greenhouse gases have contributed to the decreased area-weighted average masses of 85 analyzed glaciers. The effect was larger than the mass increase caused by natural forcing, although the contributions of natural and anthropogenic forcing to decreases in mass varied at the local scale. We also showed that the detection of anthropogenic or natural influences could not be fully attributed when natural internal climate variability was taken into account.
Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains
NASA Astrophysics Data System (ADS)
Harig, Christopher; Simons, Frederik J.
2015-04-01
While multiple data sources have confirmed that Antarctica is losing ice at an accelerating rate, different measurement techniques estimate the details of its geographically highly variable mass balance with different levels of accuracy, spatio-temporal resolution, and coverage. Some scope remains for methodological improvements using a single data type. In this study we report our progress in increasing the accuracy and spatial resolution of time-variable gravimetry from the Gravity Recovery and Climate Experiment (GRACE). We determine the geographic pattern of ice mass change in Antarctica between January 2003 and June 2014, accounting for glacio-isostatic adjustment (GIA) using the IJ05_R2 model. Expressing the unknown signal in a sparse Slepian basis constructed by optimization to prevent leakage out of the regions of interest, we use robust signal processing and statistical estimation methods. Applying those to the latest time series of monthly GRACE solutions we map Antarctica's mass loss in space and time as well as can be recovered from satellite gravity alone. Ignoring GIA model uncertainty, over the period 2003-2014, West Antarctica has been losing ice mass at a rate of - 121 ± 8 Gt /yr and has experienced large acceleration of ice mass losses along the Amundsen Sea coast of - 18 ± 5 Gt /yr2, doubling the mass loss rate in the past six years. The Antarctic Peninsula shows slightly accelerating ice mass loss, with larger accelerated losses in the southern half of the Peninsula. Ice mass gains due to snowfall in Dronning Maud Land have continued to add about half the amount of West Antarctica's loss back onto the continent over the last decade. We estimate the overall mass losses from Antarctica since January 2003 at - 92 ± 10 Gt /yr.
Wind properties of variable B supergiants. Evidence of pulsations connected with mass-loss episodes
NASA Astrophysics Data System (ADS)
Haucke, M.; Cidale, L. S.; Venero, R. O. J.; Curé, M.; Kraus, M.; Kanaan, S.; Arcos, C.
2018-06-01
Context. Variable B supergiants (BSGs) constitute a heterogeneous group of stars with complex photometric and spectroscopic behaviours. They exhibit mass-loss variations and experience different types of oscillation modes, and there is growing evidence that variable stellar winds and photospheric pulsations are closely related. Aims: To discuss the wind properties and variability of evolved B-type stars, we derive new stellar and wind parameters for a sample of 19 Galactic BSGs by fitting theoretical line profiles of H, He, and Si to the observed ones and compare them with previous determinations. Methods: The synthetic line profiles are computed with the non-local thermodynamic equilibrium (NLTE) atmosphere code FASTWIND, with a β-law for hydrodynamics. Results: The mass-loss rate of three stars has been obtained for the first time. The global properties of stellar winds of mid/late B supergiants are well represented by a β-law with β > 2. All stars follow the known empirical wind momentum-luminosity relationships, and the late BSGs show the trend of the mid BSGs. HD 75149 and HD 99953 display significant changes in the shape and intensity of the Hα line (from a pure absorption to a P Cygni profile, and vice versa). These stars have mass-loss variations of almost a factor of 2.8. A comparison among mass-loss rates from the literature reveals discrepancies of a factor of 1 to 7. This large variation is a consequence of the uncertainties in the determination of the stellar radius. Therefore, for a reliable comparison of these values we used the invariant parameter Qr. Based on this parameter, we find an empirical relationship that associates the amplitude of mass-loss variations with photometric/spectroscopic variability on timescales of tens of days. We find that stars located on the cool side of the bi-stability jump show a decrease in the ratio V∞/Vesc, while their corresponding mass-loss rates are similar to or lower than the values found for stars on the hot side. Particularly, for those variable stars a decrease in V∞/Vesc is accompanied by a decrease in Ṁ. Conclusions: Our results also suggest that radial pulsation modes with periods longer than 6 days might be responsible for the wind variability in the mid/late-type. These radial modes might be identified with strange modes, which are known to facilitate (enhanced) mass loss. On the other hand, we propose that the wind behaviour of stars on the cool side of the bi-stability jump could fit with predictions of the δ-slow hydrodynamics solution for radiation-driven winds with highly variable ionization. Based on observations taken with the J. Sahade Telescope at Complejo Astronómico El Leoncito (CASLEO), operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, the Secretaría de Ciencia y Tecnología de la Nación, and the National Universities of La Plata, Córdoba, and San Juan.
High-velocity winds from a dwarf nova during outburst
NASA Technical Reports Server (NTRS)
Cordova, F. A.; Mason, K. O.
1982-01-01
An ultraviolet spectrum of the dwarf nova TW Vir during an optical outburst shows shortward-shifted absorption features with edge velocities as high as 4800 km/s, about the escape velocity of a white dwarf. A comparison of this spectrum with the UV spectra of other cataclysmic variables suggests that mass loss is evident only for systems with relatively high luminosities (more than about 10 solar luminosities) and low inclination angles with respect to the observer's line of sight. The mass loss rate for cataclysmic variables is of order 10 to the -11th solar mass per yr; this is from 0.01 to 0.001 of the mass accretion rate onto the compact star in the binary. The mass loss may occur by a mechanism similar to that invoked for early-type stars, i.e., radiation absorbed in the lines accelerates the accreting gas to the high velocities observed.
Effects of ice shelf basal melt variability on evolution of Thwaites Glacier
NASA Astrophysics Data System (ADS)
Hoffman, M. J.; Fyke, J. G.; Price, S. F.; Asay-Davis, X.; Perego, M.
2017-12-01
Theory, modeling, and observations indicate that marine ice sheets on a retrograde bed, including Thwaites Glacier, Antarctica, are only conditionally stable. Previous modeling studies have shown that rapid, unstable retreat can occur when steady ice-shelf basal melting causes the grounding line to retreat past restraining bedrock bumps. Here we explore the initiation and evolution of unstable retreat of Thwaites Glacier when the ice-shelf basal melt forcing includes temporal variability mimicking realistic climate variability. We use the three-dimensional, higher-order Model for Prediction Across Scales-Land Ice (MPASLI) model forced with an ice shelf basal melt parameterization derived from previous coupled ice sheet/ocean simulations. We add sinusoidal temporal variability to the melt parameterization that represents shoaling and deepening of Circumpolar Deep Water. We perform an ensemble of 250 year duration simulations with different values for the amplitude, period, and phase of the variability. Preliminary results suggest that, overall, variability leads to slower grounding line retreat and less mass loss than steady simulations. Short period (2 yr) variability leads to similar results as steady forcing, whereas decadal variability can result in up to one-third less mass loss. Differences in phase lead to a large range in mass loss/grounding line retreat, but it is always less than the steady forcing. The timing of ungrounding from each restraining bedrock bump, which is strongly affected by the melt variability, is the rate limiting factor, and variability-driven delays in ungrounding at each bump accumulate. Grounding line retreat in the regions between bedrock bumps is relatively unaffected by ice shelf melt variability. While the results are sensitive to the form of the melt parameterization and its variability, we conclude that decadal period ice shelf melt variability could potentially delay marine ice sheet instability by up to many decades. However, it does not alter the eventual mass loss and sea level rise at centennial scales. The potential differences are significant enough to highlight the need for further observations to constrain the amplitude and period of the modes of climate and ocean variability relevant to Antarctic ice shelf melting.
Individual Variability in Aerobic Fitness Adaptations to 70-d of Bed Rest and Exercise Training
NASA Technical Reports Server (NTRS)
Downs, Meghan; Buxton, Roxanne; Goetchius, Elizabeth; DeWitt, John; Ploutz-Snyder, Lori
2016-01-01
Change in maximal aerobic capacity (VO2pk) in response to exercise training and disuse is highly variable among individuals. Factors that could contribute to the observed variability (lean mass, daily activity, diet, sleep, stress) are not routinely controlled in studies. The NASA bed rest (BR) studies use a highly controlled hospital based model as an analog of spaceflight. In this study, diet, hydration, physical activity and light/dark cycles were precisely controlled and provided the opportunity to investigate individual variability. PURPOSE. Evaluate the contribution of exercise intensity and lean mass on change in VO2pk during 70-d of BR or BR + exercise. METHODS. Subjects completed 70-d of BR alone (CON, N=9) or BR + exercise (EX, N=17). The exercise prescription included 6 d/wk of aerobic exercise at 70 - 100% of max and 3 d/wk of lower body resistance exercise. Subjects were monitored 24 hr/d. VO2pk and lean mass (iDXA) were measured pre and post BR. ANOVA was used to evaluate changes in VO2pk pre to post BR. Subjects were retrospectively divided into high and low responders based on change in VO2pk (CON > 20% loss, n=5; EX >10% loss, n=4, or 5% gain, n=4) to further understand individual variability. RESULTS. VO2pk decreased from pre to post BR in CON (P<0.05) and was maintained in EX; however, significant individual variability was observed (CON: -22%, range: -39% to -.5%; EX: -1.8%, range: -16% to 12.6%). The overlap in ranges between groups included 3 CON who experienced smaller reduction in VO2pk (<16%) than the worst responding EX subjects. Individual variability was maintained when VO2pk was normalized to lean mass (range, CON: -33.7% to -5.7%; EX: -15.8% to 11%), and the overlap included 5 CON with smaller reductions in VO2pk than the worst responding EX subjects. High responders to disuse also lost the most lean mass; however, this relationship was not maintained in EX (i.e. the largest gains/losses in lean mass were observed in both high and low responders). Change in VO2pk was not related to exercise intensity. CONCLUSION. Change in VO2pk in response to disuse and exercise was highly variable among individuals, even in this tightly controlled study. Loss in lean mass accounts for a significant degree of variability in the CON; however, training induced gains in VO2pk appear unrelated to lean mass or exercise intensity.
Irradiation and Enhanced Magnetic Braking in Cataclysmic Variables
NASA Astrophysics Data System (ADS)
McCormick, P. J.; Frank, J.
1998-12-01
In previous work we have shown that irradiation driven mass transfer cycles can occur in cataclysmic variables at all orbital periods if an additional angular momentum loss mechanism is assumed. Earlier models simply postulated that the enhanced angular momentum loss was proportional to the mass transfer rate without any specific physical model. In this paper we present a simple modification of magnetic braking which seems to have the right properties to sustain irradiation driven cycles at all orbital periods. We assume that the wind mass loss from the irradiated companion consists of two parts: an intrinsic stellar wind term plus an enhancement that is proportional to the irradiation. The increase in mass flow reduces the specific angular momentum carried away by the flow but nevertheless yields an enhanced rate of magnetic braking. The secular evolution of the binary is then computed numerically with a suitably modified double polytropic code (McCormick & Frank 1998). With the above model and under certain conditions, mass transfer oscillations occur at all orbital periods.
Beavers, Kristen M; Lyles, Mary F; Davis, Cralen C; Wang, Xuewen; Beavers, Daniel P; Nicklas, Barbara J
2011-09-01
Despite the well-known recidivism of obesity, surprisingly little is known about the composition of body weight during weight regain. The objective of this study was to determine whether the composition of body weight regained after intentional weight loss is similar to the composition of body weight lost. The design was a follow-up to a randomized controlled trial of weight loss in which body composition was analyzed and compared in 78 postmenopausal women before the intervention, immediately after the intervention, and 6 and 12 mo after the intervention. All body mass and composition variables were lower immediately after weight loss than at baseline (all P < 0.05). More fat than lean mass was lost with weight loss, which resulted in body-composition changes favoring a lower percentage of body fat and a higher lean-to-fat mass ratio (P < 0.001). Considerable interindividual variability in weight regain was noted (CV = 1.07). In women who regained ≥2 kg body weight, a decreasing trend in the lean-to-fat mass ratio was observed, which indicated greater fat mass accretion than lean mass accretion (P < 0.001). Specifically, for every 1 kg fat lost during the weight-loss intervention, 0.26 kg lean tissue was lost; for every 1 kg fat regained over the following year, only 0.12 kg lean tissue was regained. Although not all postmenopausal women who intentionally lose weight will regain it within 1 y, the data suggest that fat mass is regained to a greater degree than is lean mass in those who do experience some weight regain. The health ramifications of our findings remain to be seen.
NASA Astrophysics Data System (ADS)
Wang, L.; Davis, J. L.; Tamisiea, M. E.
2017-12-01
The Antarctic ice sheet (AIS) holds about 60% of all fresh water on the Earth, an amount equivalent to about 58 m of sea-level rise. Observation of AIS mass change is thus essential in determining and predicting its contribution to sea level. While the ice mass loss estimates for West Antarctica (WA) and the Antarctic Peninsula (AP) are in good agreement, what the mass balance over East Antarctica (EA) is, and whether or not it compensates for the mass loss is under debate. Besides the different error sources and sensitivities of different measurement types, complex spatial and temporal variabilities would be another factor complicating the accurate estimation of the AIS mass balance. Therefore, a model that allows for variabilities in both melting rate and seasonal signals would seem appropriate in the estimation of present-day AIS melting. We present a stochastic filter technique, which enables the Bayesian separation of the systematic stripe noise and mass signal in decade-length GRACE monthly gravity series, and allows the estimation of time-variable seasonal and inter-annual components in the signals. One of the primary advantages of this Bayesian method is that it yields statistically rigorous uncertainty estimates reflecting the inherent spatial resolution of the data. By applying the stochastic filter to the decade-long GRACE observations, we present the temporal variabilities of the AIS mass balance at basin scale, particularly over East Antarctica, and decipher the EA mass variations in the past decade, and their role in affecting overall AIS mass balance and sea level.
Age-associated bone loss and intraskeletal variability in the Imperial Romans.
Cho, Helen; Stout, Sam Darrel
2011-01-01
An Imperial Roman sample from the Isola Sacra necropolis (100-300 A.D.) offered an opportunity to histologically examine bone loss and intraskeletal variability in an urban archaeological population. Rib and femur samples were analyzed for static indices of bone remodeling and measures of bone mass. The Imperial Romans experienced normal age-associated bone loss via increased intracortical porosity and endosteal expansion, with females exhibiting greater bone loss and bone turnover rates than in males. Life events such as menopause and lactation coupled with cultural attitudes and practices regarding gender and food may have led to increased bone loss in females. Remodeling dynamics differ between the rib and femur and the higher remodeling rates in the rib may be attributed to different effective age of the adult compacta or loading environment. This study demonstrates that combining multiple methodologies to examine bone loss is necessary to shed light on the biocultural factors that influence bone mass and bone loss.
Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong
Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less
Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability
Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong
2017-11-15
Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less
New insight into the physics of atmospheres of early type stars
NASA Technical Reports Server (NTRS)
Lamers, H. J. G. L. M.
1981-01-01
The phenomenon of mass loss and stellar winds from hot stars are discussed. The mass loss rate of early type stars increases by about a factor of 100 to 1000 during their evolution. This seems incompatible with the radiation driven wind models and may require another explanation for the mass loss from early type stars. The winds of early type stars are strongly variable and the stars may go through active phases. Eclipses in binary systems by the stellar winds can be used to probe the winds. A few future IUE studies are suggested.
An adolescent weight-loss program integrating family variables reduces energy intake.
Kitzman-Ulrich, Heather; Hampson, Robert; Wilson, Dawn K; Presnell, Katherine; Brown, Alan; O'Boyle, Mary
2009-03-01
Family variables such as cohesion and nurturance have been associated with adolescent weight-related health behaviors. Integrating family variables that improve family functioning into traditional weight-loss programs can provide health-related benefits. The current study evaluated a family-based psychoeducational and behavioral skill-building weight-loss program for adolescent girls that integrated Family Systems and Social Cognitive Theories. Forty-two overweight (> or = 95th percentile) female adolescent participants and parents participated in a 16-week randomized controlled trial comparing three groups: multifamily therapy plus psychoeducation (n=15), psychoeducation-only (n=16), or wait list (control; n=11) group. Body mass index, energy intake, and family measures were assessed at baseline and posttreatment. Adolescents in the psychoeducation-only group demonstrated a greater decrease in energy intake compared to the multifamily therapy plus psychoeducation and control groups (P<0.01). Positive changes in family nurturance were associated with lower levels of adolescent energy intake (P<0.05). No significant effects were found for body mass index. Results provide preliminary support for a psychoeducational program that integrates family variables to reduce energy intake in overweight adolescent girls. Results indicate that nurturance can be an important family variable to target in future adolescent weight-loss and dietary programs.
Variability and mass loss in IA O-B-A supergiants
NASA Technical Reports Server (NTRS)
Schild, R. E.; Garrison, R. F.; Hiltner, W. A.
1983-01-01
Recently completed catalogs of MK spectral types and UBV photometry of 1227 OB stars in the southern Milky Way have been analyzed to investigate brightness and color variability among the Ia supergiants. It is found that brightness variability is common among the O9-B1 supergiants with typical amplitudes about 0.1 and time scales longer than a week and shorter than 1000 days. Among the A supergiants fluctuations in U-B color are found on similar time scales and with amplitude about 0.1. For many early Ia supergiants there is a poor correlation between Balmer jump and spectral type, as had been known previously. An attempt to correlate the Balmer jump deficiency with mass loss rate yielded uncertain results.
Gamma-ray burst progenitors and the population of rotating Wolf-Rayet stars.
Vink, Jorick S
2013-06-13
In our quest for gamma-ray burst (GRB) progenitors, it is relevant to consider the progenitor evolution of normal supernovae (SNe). This is largely dominated by mass loss. We discuss the mass-loss rate for very massive stars up to 300M⊙. These objects are in close proximity to the Eddington Γ limit. We describe the new concept of the transitional mass-loss rate, enabling us to calibrate wind mass loss. This allows us to consider the occurrence of pair-instability SNe in the local Universe. We also discuss luminous blue variables and their link to luminous SNe. Finally, we address the polarization properties of Wolf-Rayet (WR) stars, measuring their wind asphericities. We argue to have found a group of rotating WR stars that fulfil the required criteria to make long-duration GRBs.
Movement simulation of the variable masses in the Gylden-Meshcherskii problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starinova, Olga L.; Salmin, Vadim V.
The Gylden-Meshcherskii problem is used for various cases of dynamics of two points of the variable mass. For example, it describes of double star evolution due to mass loss at the photon expense and the corpuscular activity. Except, it is mathematical model for the movement of spacecraft with propulsion system. In the present work the mass variation laws, allowing a stationary form of the movement differential equations are considered. Movement simulation for all cases was conducted. The relative movement trajectories was constructed as for known Eddington-Jeans laws and for other mass variation laws.
A phylogenetic approach to total evaporative water loss in mammals.
Van Sant, Matthew J; Oufiero, Christopher E; Muñoz-Garcia, Agustí; Hammond, Kimberly A; Williams, Joseph B
2012-01-01
Maintaining appropriate water balance is a constant challenge for terrestrial mammals, and this problem can be exacerbated in desiccating environments. It has been proposed that natural selection has provided desert-dwelling mammals physiological mechanisms to reduce rates of total evaporative water loss. In this study, we evaluated the relationship between total evaporative water loss and body mass in mammals by using a recent phylogenetic hypothesis. We compared total evaporative water loss in 80 species of arid-zone mammals to that in 56 species that inhabit mesic regions, ranging in size from 4 g to 3,500 kg, to test the hypothesis that mammals from arid environments have lower rates of total evaporative water loss than mammals from mesic environments once phylogeny is taken into account. We found that arid species had lower rates of total evaporative water loss than mesic species when using a dichotomous variable to describe habitat (arid or mesic). We also found that total evaporative water loss was negatively correlated with the average maximum and minimum environmental temperature as well as the maximum vapor pressure deficit of the environment. Annual precipitation and the variable Q (a measure of habitat aridity) were positively correlated with total evaporative water loss. These results support the hypothesis that desert-dwelling mammals have lower rates of total evaporative water loss than mesic species after controlling for body mass and evolutionary relatedness regardless of whether categorical or continuous variables are used to describe habitat.
Using GRACE and climate model simulations to predict mass loss of Alaskan glaciers through 2100
Wahr, John; Burgess, Evan; Swenson, Sean
2016-05-30
Glaciers in Alaska are currently losing mass at a rate of ~–50 Gt a –1, one of the largest ice loss rates of any regional collection of mountain glaciers on Earth. Existing projections of Alaska's future sea-level contributions tend to be divergent and are not tied directly to regional observations. Here we develop a simple, regional observation-based projection of Alaska's future sea-level contribution. We compute a time series of recent Alaska glacier mass variability using monthly GRACE gravity fields from August 2002 through December 2014. We also construct a three-parameter model of Alaska glacier mass variability based on monthly ERA-Interimmore » snowfall and temperature fields. When these three model parameters are fitted to the GRACE time series, the model explains 94% of the variance of the GRACE data. Using these parameter values, we then apply the model to simulated fields of monthly temperature and snowfall from the Community Earth System Model, to obtain predictions of mass variations through 2100. Here, we conclude that mass loss rates may increase between –80 and –110 Gt a –1by 2100, with a total sea-level rise contribution of 19 ± 4 mm during the 21st century.« less
Sea Level Budget along the East Coast of North America
NASA Astrophysics Data System (ADS)
Pease, A. M.; Davis, J. L.; Vinogradova, N. T.
2016-12-01
We analyzed tide gauge data, taken from 1955 to 2015, from 29 locations along the east coast of North America. A well-documented period of sea-level acceleration began around 1990. The sea level rate (referenced to epoch 1985.0) and acceleration (post-1990) are spatially and temporally variable, due to various physical processes, each of which is also spatially and temporally variable. To determine the sea-level budgets for rate and acceleration, we considered a number of major contributors to sea level change: ocean density and dynamics, glacial isostatic adjustment (GIA), the inverted barometer effect, and mass change associated with the Greenland Ice Sheet (GIS) and the Antarctic Ice Sheet (AIS). The geographic variability in the budgets for sea-level rate is dominated by GIA. At some sites, GIA is the largest contributor to the rate. The geographic variability in the budgets for sea-level acceleration is dominated by ocean dynamics and density and GIS mass loss. The figure below shows budgets for sea-level rate (left) and acceleration (right) for Key West, Fla., (top) and The Battery in New York City (bottom). The blue represents values (with error bar shown) estimated from tide gauge observations, and the yellow represents the total values estimated from the individual model contributions (each in red, green, cyan, pink, and black). The estimated totals for rate and acceleration are good matches to the tide-gauge inferences. To achieve a reasonable fit, a scaling factor (admittance) for the combined contribution of ocean dynamics and density was estimated; this admittance may reflect the low spatial sampling of the GECCO2 model we used, or other problems in modeling coastal sea-level. The significant contributions of mass loss to the acceleration enable us to predict that, if such mass-loss continues or increases, the character of sea-level change on the North American east coast will change in the next 50-100 years. In particular, whereas GIA presently dominates the spatial variability of sea-level change, mass loss from Greenland and Antarctica will dominate it by 2050-2100. However, the long-term contribution of ocean dynamics and density remain more of a question.
NASA Astrophysics Data System (ADS)
Bauer, I. E.; Bhatti, J. S.; Hurdle, P. A.
2004-05-01
Field-based decomposition studies that examine several site types tend to use one of two approaches: Either the decay of one (or more) standard litters is examined in all sites, or litters native to each site type are incubated in the environment they came from. The first of these approaches examines effects of environment on decay, whereas the latter determines rates of mass loss characteristic of each site type. Both methods are usually restricted to a limited number of litters, and neither allows for a direct estimate of ecosystem-level parameters (e.g. heterotrophic respiration). In order to examine changes in total organic matter turnover along forest - peatland gradients in central Saskatchewan, we measured mass loss of native peat samples from six different depths (surface to 50 cm) over one year. Samples were obtained by sectioning short peat cores, and cores and samples were returned to their original position after determining the initial weight of each sample. A standard litter (birch popsicle sticks) was included at each depth, and water tables and soil temperature were monitored over the growing season. After one year, average mass loss in surface peat samples was similar to published values from litter bag studies, ranging from 12 to 21 percent in the environments examined. Native peat mass loss showed few systematic differences between sites or along the forest - peatland gradient, with over 60 percent of the total variability explained by depth alone. Mass loss of standard litter samples was highly variable, with high values in areas at the transition between upland and peatland that may have experienced recent disturbance. In combination, these results suggest strong litter-based control over natural rates of organic matter turnover. Estimates of heterotrophic respiration calculated from the mass loss data are higher than values obtained by eddy covariance or static chamber techniques, probably reflecting loss of material during the handling of samples or increased mass loss from manipulated profiles. Nevertheless, the core-based method is a useful tool in examining carbon dynamics of organic soils, since it provides a good relative index of organic matter turnover, and allows for separate examination of environmental and litter-based effects.
Reijnierse, Esmee M.; Trappenburg, Marijke C.; Leter, Morena J.; Blauw, Gerard Jan; de van der Schueren, Marian A. E.; Meskers, Carel G. M.; Maier, Andrea B.
2015-01-01
Objectives Diagnostic criteria for sarcopenia include measures of muscle mass, muscle strength and physical performance. Consensus on the definition of sarcopenia has not been reached yet. To improve insight into the most clinically valid definition of sarcopenia, this study aimed to compare the association between parameters of malnutrition, as a risk factor in sarcopenia, and diagnostic measures of sarcopenia in geriatric outpatients. Material and Methods This study is based on data from a cross-sectional study conducted in a geriatric outpatient clinic including 185 geriatric outpatients (mean age 82 years). Parameters of malnutrition included risk of malnutrition (assessed by the Short Nutritional Assessment Questionnaire), loss of appetite, unintentional weight loss and underweight (body mass index <22 kg/m2). Diagnostic measures of sarcopenia included relative muscle mass (lean mass and appendicular lean mass [ALM] as percentages), absolute muscle mass (total lean mass and ALM/height2), handgrip strength and walking speed. All diagnostic measures of sarcopenia were standardized. Associations between parameters of malnutrition (independent variables) and diagnostic measures of sarcopenia (dependent variables) were analysed using multivariate linear regression models adjusted for age, body mass, fat mass and height in separate models. Results None of the parameters of malnutrition was consistently associated with diagnostic measures of sarcopenia. The strongest associations were found for both relative and absolute muscle mass; less stronger associations were found for muscle strength and physical performance. Underweight (p = <0.001) and unintentional weight loss (p = 0.031) were most strongly associated with higher lean mass percentage after adjusting for age. Loss of appetite (p = 0.003) and underweight (p = 0.021) were most strongly associated with lower total lean mass after adjusting for age and fat mass. Conclusion Parameters of malnutrition relate differently to diagnostic measures of sarcopenia in geriatric outpatients. The association between parameters of malnutrition and diagnostic measures of sarcopenia was strongest for both relative and absolute muscle mass, while less strong associations were found with muscle strength and physical performance. PMID:26284368
NASA Technical Reports Server (NTRS)
Stothers, Richard B.; Hansen, James E. (Technical Monitor)
2002-01-01
Theoretical models of the remnants of massive stars in a very hot, post-red-supergiant phase display no obvious instability if standard assumptions are made. However, the brightest observed classical luminous blue variables (LBVs) may well belong to such a phase. A simple time-dependent theory of moving stellar envelopes is developed in order to treat deep hydrodynamical disturbances caused by surface mass loss and to test the moving envelopes for dynamical instability. In the case of steady-state outflow, the theory reduces to the equivalent of the Castor, Abbott, and Klein formulation for optically thick winds at distances well above the sonic point. The time-dependent version indicates that the brightest and hottest LBVs are both dynamically and radiatively unstable, as a result of the substantial lowering of the generalized Eddington luminosity limit by the mass-loss acceleration. It is suggested that dynamical instability, by triggering secular cycles of mass loss, is primarily what differentiates LBVs from the purely radiatively unstable Wolf-Rayet stars. Furthermore, when accurate main-sequence mass-loss rates are used to calculate the evolutionary tracks, the predicted surface hydrogen and nitrogen abundances of the blue remnants agree much better with observations of the brightest LBVs than before.
Short-term variability and mass loss in Be stars. I. BRITE satellite photometry of η and μ Centauri
NASA Astrophysics Data System (ADS)
Baade, D.; Rivinius, Th.; Pigulski, A.; Carciofi, A. C.; Martayan, Ch.; Moffat, A. F. J.; Wade, G. A.; Weiss, W. W.; Grunhut, J.; Handler, G.; Kuschnig, R.; Mehner, A.; Pablo, H.; Popowicz, A.; Rucinski, S.; Whittaker, G.
2016-04-01
Context. Empirical evidence for the involvement of nonradial pulsations (NRPs) in the mass loss from Be stars ranges from (I) a singular case (μ Cen) of repetitive mass ejections triggered by multi-mode beating to (II) several photometric reports about enormous numbers of pulsation modes that suddenly appear during outbursts and on to (III) effective single-mode pulsators. Aims: The purpose of this study is to develop a more detailed empirical description of the star-to-disk mass transfer and to check the hypothesis that spates of transient nonradial pulsation modes accompany and even drive mass-loss episodes. Methods: The BRITE Constellation of nanosatellites was used to obtain mmag photometry of the Be stars η and μ Cen. Results: In the low-inclination star μ Cen, light pollution by variable amounts of near-stellar matter prevented any new insights into the variability and other properties of the central star. In the equator-on star η Cen, BRITE photometry and Heros echelle spectroscopy from the 1990s reveal an intricate clockwork of star-disk interactions. The mass transfer is modulated with the frequency difference of two NRP modes and an amplitude three times as large as the amplitude sum of the two NRP modes. This process feeds a high-amplitude circumstellar activity running with the incoherent and slightly lower so-called Štefl frequency. The mass-loss-modulation cycles are tightly coupled to variations in the value of the Štefl frequency and in its amplitude, albeit with strongly drifting phase differences. Conclusions: The observations are well described by the decomposition of the mass loss into a pulsation-related engine in the star and a viscosity-dominated engine in the circumstellar disk. Arguments are developed that large-scale gas-circulation flows occur at the interface. The propagation rates of these eddies manifest themselves as Štefl frequencies. Bursts in power spectra during mass-loss events can be understood as the noise inherent to these gas flows. Based on data collected by the BRITE-Constellation satellite mission, built, launched and operated thanks to support from the Austrian Aeronautics and Space Agency and the University of Vienna, the Canadian Space Agency (CSA), and the Foundation for Polish Science & Technology (FNiTP MNiSW) and National Science Centre (NCN). Based in part also on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 093.D-0367(A).
Recent Changes in Ices Mass Balance of the Amundsen Sea Sector
NASA Astrophysics Data System (ADS)
Sutterley, T. C.; Velicogna, I.; Rignot, E. J.; Mouginot, J.; Flament, T.; van den Broeke, M. R.; van Wessem, M.; Reijmer, C.
2014-12-01
The glaciers flowing into the Amundsen Sea Embayment (ASE) sector of West Antarctica were confirmed in the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE) to be the dominant contributors to the current Antarctic ice mass loss, and recently recognized to be undergoing marine ice sheet instability. Here, we investigate their regional ice mass balance using a time series of satellite and airborne data combined with model output products from the Regional Atmospheric and Climate Model (RACMO). Our dataset includes laser altimetry from NASA's ICESat-1 satellite mission and from Operation IceBridge (OIB) airborne surveys, satellite radar altimetry data from ESA's Envisat mission, time-variable gravity data from NASA/DLR's GRACE mission, surface mass balance products from RACMO, ice velocity from a combination of international synthetic aperture radar satellites and ice thickness data from OIB. We find a record of ice mass balance for the ASE where all the analyzed techniques agree remarkably in magnitude and temporal variability. The mass loss of the region has been increasing continuously since 1992, with no indication of a slow down. The mass loss during the common period averaged 91 Gt/yr and accelerated 20 Gt/yr2. In 1992-2013, the ASE contributed 4.5 mm global sea level rise. Overall, our results demonstrate the synergy of multiple analysis techniques for examining Antarctic Ice Sheet mass balance at the regional scale. This work was performed at UCI and JPL under a contract with NASA.
Does tidal capture produce cataclysmic variables?
NASA Technical Reports Server (NTRS)
Bailyn, Charles D.; Grindlay, Jonathan E.; Garcia, Michael R.
1990-01-01
It is shown that earlier estimates of the number of cataclysmic variables (CVs) to be expected from tidal capture in globular clusters may have been considerably too high, since many such binaries will result in unstable mass transfer, and thus not become CVs after all. In particular, CVs with white dwarf masses less than or obout 1.0 solar mass will be supressed. Such unstable mass transfer events may produce some of the cluster mass loss required to stabilize the cluster core. The smaller number of stable CVs predicted may suggest a reconsideration of the nature of some of the low-luminosity cluster X-ray sources.
NASA Technical Reports Server (NTRS)
Lamers, H. J. G. L. M.; Stalio, R.; Kondo, Y.
1978-01-01
Results are presented for a study of mass loss from A and late-B supergiants based on high-resolution mid-UV spectra obtained with the echelle spectrograph of the Balloon-borne Ultraviolet Stellar Spectrometer. Spectra of Alpha Cyg, Beta Ori, Eta Leo, and Alpha Lyr are compared in selected wavelength regions; particular attention is given to previous observations of each star, the Mg II and Fe II resonance lines, lines due to other ions, and evidence for mass ejection. The results indicate that mass loss from late-B and A supergiants is variable, that a considerable fraction of envelope material is ejected in 'puffs', and that the puffs may be due to photospheric instabilities. A mass-loss rate of about 1 hundred-millionth of a solar mass per year is derived for Alpha Cyg and shown to be two orders of magnitude smaller than the value determined from the observed IR excess. This discrepancy is attributed to excess ionization in the envelope.
X-ray Variations at the Orbital Period from Cygnus X-1 IN the High/Soft State
NASA Astrophysics Data System (ADS)
Boroson, Bram; Vrtilek, Saeqa Dil
2010-02-01
Orbital variability has been found in the X-ray hardness of the black hole candidate Cygnus X-1 during the soft/high X-ray state using light curves provided by the Rossi X-ray Timing Explorer's All-Sky Monitor. We are able to set broad limits on how the mass-loss rate and X-ray luminosity vary between the hard and soft states. The folded light curve shows diminished flux in the soft X-ray band at phi = 0 (defined as the time of the superior conjunction of the X-ray source). Models of the orbital variability provide slightly superior fits when the absorbing gas is concentrated in neutral clumps and better explain the strong variability in hardness. In combination with the previously established hard/low state dips, our observations give a lower limit to the mass-loss rate in the soft state (\\dot{M}<2× 10^{-6} M_{⊙} yr-1) than the limit in the hard state (\\dot{M}<4× 10^{-6} M_{⊙} yr-1). Without a change in the wind structure between X-ray states, the greater mass-loss rate during the low/hard state would be inconsistent with the increased flaring seen during the high-soft state.
Antarctic Ice Mass Balance from GRACE
NASA Astrophysics Data System (ADS)
Boening, C.; Firing, Y. L.; Wiese, D. N.; Watkins, M. M.; Schlegel, N.; Larour, E. Y.
2014-12-01
The Antarctic ice mass balance and rates of change of ice mass over the past decade are analyzed based on observations from the Gravity Recovery and Climate Experiment (GRACE) satellites, in the form of JPL RL05M mascon solutions. Surface mass balance (SMB) fluxes from ERA-Interim and other atmospheric reanalyses successfully account for the seasonal GRACE-measured mass variability, and explain 70-80% of the continent-wide mass variance at interannual time scales. Trends in the residual (GRACE mass - SMB accumulation) mass time series in different Antarctic drainage basins are consistent with time-mean ice discharge rates based on radar-derived ice velocities and thicknesses. GRACE also resolves accelerations in regional ice mass change rates, including increasing rates of mass gain in East Antarctica and accelerating ice mass loss in West Antarctica. The observed East Antarctic mass gain is only partially explained by anomalously large SMB events in the second half of the record, potentially implying that ice discharge rates are also decreasing in this region. Most of the increasing mass loss rate in West Antarctica, meanwhile, is explained by decreasing SMB (principally precipitation) over this time period, part of the characteristic decadal variability in regional SMB. The residual acceleration of 2+/-1 Gt/yr, which is concentrated in the Amundsen Sea Embayment (ASE) basins, represents the contribution from increasing ice discharge rates. An Ice Sheet System Model (ISSM) run with constant ocean forcing and stationary grounding lines both underpredicts the largest trends in the ASE and produces negligible acceleration or interannual variability in discharge, highlighting the potential importance of ocean forcing for setting ice discharge rates at interannual to decadal time scales.
Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes.
Marzeion, Ben; Cogley, J Graham; Richter, Kristin; Parkes, David
2014-08-22
The ongoing global glacier retreat is affecting human societies by causing sea-level rise, changing seasonal water availability, and increasing geohazards. Melting glaciers are an icon of anthropogenic climate change. However, glacier response times are typically decades or longer, which implies that the present-day glacier retreat is a mixed response to past and current natural climate variability and current anthropogenic forcing. Here we show that only 25 ± 35% of the global glacier mass loss during the period from 1851 to 2010 is attributable to anthropogenic causes. Nevertheless, the anthropogenic signal is detectable with high confidence in glacier mass balance observations during 1991 to 2010, and the anthropogenic fraction of global glacier mass loss during that period has increased to 69 ± 24%. Copyright © 2014, American Association for the Advancement of Science.
Mass loss from interacting close binary systems
NASA Technical Reports Server (NTRS)
Plavec, M. J.
1981-01-01
The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.
Computer program for design analysis of radial-inflow turbines
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1976-01-01
A computer program written in FORTRAN that may be used for the design analysis of radial-inflow turbines was documented. The following information is included: loss model (estimation of losses), the analysis equations, a description of the input and output data, the FORTRAN program listing and list of variables, and sample cases. The input design requirements include the power, mass flow rate, inlet temperature and pressure, and rotational speed. The program output data includes various diameters, efficiencies, temperatures, pressures, velocities, and flow angles for the appropriate calculation stations. The design variables include the stator-exit angle, rotor radius ratios, and rotor-exit tangential velocity distribution. The losses are determined by an internal loss model.
Leońska-Duniec, Agata; Jastrzębski, Zbigniew; Jażdżewska, Aleksandra; Moska, Waldemar; Lulińska-Kuklik, Ewelina; Sawczuk, Marek; Gubaydullina, Svetlana I.; Shakirova, Alsu T.; Cięszczyk, Pawel; Maszczyk, Adam; Ahmetov, Ildus I.
2018-01-01
The effectiveness of physical exercise on fat loss and improvement of aerobic capacity varies considerably between individuals. A strong linkage exists between common allelic variants of the adrenergic receptor genes and weight gain, as well as changes in body composition. Therefore we aimed to check if body composition and metabolic variables were modulated by the ADRB2 (Gly16Arg and Glu27Gln), ADRB3 (Trp64Arg) and ADRA2A (rs553668 G/A) gene polymorphisms in 163 Polish sedentary women (age 19-24; body mass index (BMI) 21.7 ± 0.2 kg·m-2) involved in a 12-week aerobic training program. Only 74.8% of participants lost fat mass. On average, participants lost 5.8 (10.4)% of their relative fat mass with training (range: +28.3 to -63.6%). The improvement of VO2max was significantly greater in women who could lose their fat mass compared to women who were unsuccessful in fat loss (4.5 (5.6)% vs. 1.5 (3.8)%; p = 0.0045). The carriers of a low number (0-3) of obesity-related risk alleles (ADRB2 Gly16, ADRB2 Glu27, ADRA2A rs553668 G) were more successful in fat mass loss compared to the carriers of a high number (5-6) of risk alleles (7.7 (9.8) vs 4.0 (9.4)%, p = 0.0362). The presented results support the assumption that variation within adrenergic receptor genes contributes to interindividual changes of body composition in response to physical exercise. Key points There is a wide range of individual variability in the change of relative fat mass and BMI in response to a 12-week aerobic training program. The efficiency of fat loss was inversely correlated with the improvement of VO2max in response to a 12-week aerobic training. The carriers of a low number of obesity-related risk alleles were more successful in fat mass loss compared to the carriers of a high number of risk alleles. PMID:29535587
Theron, Laetitia; Fernandez, Xavier; Marty-Gasset, Nathalie; Chambon, Christophe; Viala, Didier; Pichereaux, Carole; Rossignol, Michel; Astruc, Thierry; Molette, Caroline
2013-01-30
Fat loss during cooking of duck "foie gras" is the main problem for both manufacturers and consumers. Despite the efforts of the processing industry to control fat loss, the variability of fatty liver cooking yields remains high and uncontrolled. To understand the biochemical effects of postslaughter processing on fat loss during cooking, this study characterizes for the first time the protein expression of fatty liver during chilling using a proteomic approach. For this purpose the proteins were separated according to their solubility: the protein fraction soluble in a buffer of low ionic strength (S) and the protein fraction insoluble in the same buffer (IS). Two-dimensional electrophoresis was used to analyze the S fraction and mass spectrometry for the identification of spots of interest. This analysis revealed 36 (21 identified proteins) and 34 (26 identified proteins) spots of interests in the low-fat-loss and high-fat-loss groups, respectively. The expression of proteins was lower after chilling, which revealed a suppressive effect of chilling on biological processes. The shot-gun strategy was used to analyze the IS fraction, with the identification of all the proteins by mass spectrometry. This allowed identification of 554 and 562 proteins in the low-fat-loss and high-fat-loss groups, respectively. Among these proteins, only the proteins that were up-regulated in the high-fat-loss group were significant (p value = 3.17 × 10(-3)) and corresponded to protein from the cytoskeleton and its associated proteins. Taken together, these results suggest that the variability of technological yield observed in processing plants could be explained by different aging states of fatty livers during chilling, most likely associated with different proteolytic patterns.
A new technique for solving the Parker-type wind equations
NASA Technical Reports Server (NTRS)
Melia, Fulvio
1988-01-01
Substitution of the novel function Phi for velocity, as one of the dependent variables in Parker-type solar wind equations, removes the critical point, and therefore the numerical difficulties encountered, from the set of coupled differential wind equations. The method has already been successfully used in a study of radiatively-driven mass loss from the surface of X-ray bursting neutron stars. The present technique for solving the equations of time-independent mass loss can be useful in similar applications.
Determining Mass-Loss Rates of Evolved Stars in the Galactic Bulge from Infrared Surveys
NASA Astrophysics Data System (ADS)
Riley, Allyssa; Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.
2018-06-01
To investigate the relationship between mass loss from evolved stars and host galaxy metallicity, we are computing the dust mass loss budget due to red supergiant (RSG) and asymptotic giant branch (AGB) stars in the Galactic Bulge and comparing this result to that previously obtained for the Magellanic Clouds. We construct spectral energy distributions (SEDs) for our candidate RSG and AGB stars using observations from various infrared surveys, including the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). Because Robitaille et al (2008, AJ, 136, 2413) have already identified Intrinsically Red Objects from the GLIMPSE I and II surveys, we use their method as a starting point and expand the study by using the GLIMPSE 3D survey. Because AGB stars can be variable, we also match the GLIMPSE I, II, and 3D sources to other surveys, such as DEEP GLIMPSE, WISE, VVV, and DENIS, in order to characterize the variability across the spectral energy distribution (SED) of each source. This allows us to determine the source’s average SED over multiple epochs. We use extinction curves derived from Spitzer studies of extinction in the Galaxy to determine the extinction corrections for our sample. To establish mass-loss rates of evolved stars in the Bulge, we use the Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS) of dust-enshrouded evolved stars (2011, A&A, 532, A54; 2011, ApJ, 728, 93). This allows us to determine the total mass return to the Bulge from these stars. This work has been supported by NASA ADAP grant 80NSSC17K0057.
Brachs, Maria; Wiegand, Susanna; Leupelt, Verena; Ernert, Andrea; Kintscher, Ulrich; Jumpertz von Schwarzenberg, Reiner; Decker, Anne-Marie; Bobbert, Thomas; Hübner, Norbert; Chen, Wei; Krude, Heiko; Spranger, Joachim; Mai, Knut
2016-06-01
In weight loss trials, a considerable inter-individual variability in reduction of fat mass and changes of insulin resistance is observed, even under standardized study conditions. The underlying mechanisms are not well understood. Given the metabolic properties of the atrial natriuretic peptide (ANP) system, we hypothesized that ANP signaling might be involved in this phenomenon by changes of ANP secretion or receptor balance. Therefore, we investigated the impact of systemic, adipose and myocellular ANP system on metabolic and anthropometric improvements during weight loss. We comprehensively investigated 143 subjects (31 male, 112 female) before and after a 3 month-standardized weight loss program. The time course of BMI, fat mass, insulin sensitivity, circulating mid-regional proANP (MR-proANP) levels as well as adipose and myocellular natriuretic receptor A (NPR-A) and C (NPR-C) mRNA expression were investigated. BMI decreased by -12.6±3.7%. This was accompanied by a remarkable decrease of adipose NPR-C expression (1005.0±488.4 vs. 556.7±465.6; p<0.001) as well as a tendency towards increased adipose NPR-A expression (4644.7±946.8 vs. 4877.6±869.8; p=0.051). Weight loss induced changes in NPR-C (ΔNPR-C) was linked to relative reduction of total fat mass (ΔFM) (r=0.281; p<0.05), reduction of BMI (r=0.277; p<0.01), and increase of free fatty acids (ΔFFA) (r=-0.258; p<0.05). Basal NPR-C expression and weight loss induced ΔNPR-C independently explained 22.7% of ΔFM. In addition, ΔMR-proANP was independently associated with improvement of insulin sensitivity (standardized ß=0.246, p<0.01). ANP receptor expression predicted the degree of weight loss induced fat mass reduction. Our comprehensive human data support that peripheral ANP signalling is involved in control of adipose tissue plasticity and function during weight loss. (Funded by the Deutsche Forschungsgemeinschaft (KFO281/2), the Berlin Institute of Health (BIH) and the German Centre for Cardiovascular Research (DZHK/BMBF); ClinicalTrials.gov number: NCT00850629). Copyright © 2016 Elsevier Inc. All rights reserved.
Instability, finite amplitude pulsation and mass-loss in models of massive OB-type stars
NASA Astrophysics Data System (ADS)
Yadav, Abhay Pratap; Glatzel, Wolfgang
2017-11-01
Variability and mass-loss are common phenomena in massive OB-type stars. It is argued that they are caused by violent strange mode instabilities identified in corresponding stellar models. We present a systematic linear stability analysis with respect to radial perturbations of massive OB-type stars with solar chemical composition and masses between 23 and 100 M⊙. For selected unstable stellar models, we perform non-linear simulations of the evolution of the instabilities into the non-linear regime. Finite amplitude pulsations with periods in the range between hours and 100 d are found to be the final result of the instabilities. The pulsations are associated with a mean acoustic luminosity which can be the origin of a pulsationally driven wind. Corresponding mass-loss rates lie in the range between 10-9 and 10-4 M⊙ yr-1 and may thus affect the evolution of massive stars.
Hypsometric control on glacier mass balance sensitivity in Alaska
NASA Astrophysics Data System (ADS)
McGrath, D.; Sass, L.; Arendt, A. A.; O'Neel, S.; Kienholz, C.; Larsen, C.; Burgess, E. W.
2015-12-01
Mass loss from glaciers in Alaska is dominated by strongly negative surface balances, particularly on small, continental glaciers but can be highly variable from glacier to glacier. Glacier hypsometry can exert significant control on mass balance sensitivity, particularly if the equilibrium line altitude (ELA) is in a broad area of low surface slope. In this study, we explore the spatial variability in glacier response to future climate forcings on the basis of hypsometry. We first derive mass balance sensitivities (30-70 m ELA / 1° C and 40-90 m ELA / 50% decrease in snow accumulation) from the ~50-year USGS Benchmark glaciers mass balance record. We subsequently assess mean climate fields in 2090-2100 derived from the IPCC AR5/CMIP5 RCP 6.0 5-model mean. Over glaciers in Alaska, we find 2-4° C warming and 10-20% increase in precipitation relative to 2006-2015, but a corresponding 0-50% decrease in snow accumulation due to rising temperatures. We assess changes in accumulation area ratios (AAR) to a rising ELA using binned individual glacier hypsometries. For an ELA increase of 150 m, the mean statewide AAR drops by 0.45, representing a 70% reduction in accumulation area on an individual glacier basis. Small, interior glaciers are the primary drivers of this reduction and for nearly 25% of all glaciers, the new ELA exceeds the glacier's maximum elevation, portending eventual loss. The loss of small glaciers, particularly in the drier interior of Alaska will significantly modify streamflow properties (flashy hydrographs, earlier and reduced peak flows, increased interannual variability, warmer temperatures) with poorly understood downstream ecosystem and oceanographic impacts.
Parr, Evelyn B; Camera, Donny M; Burke, Louise M; Phillips, Stuart M; Coffey, Vernon G; Hawley, John A
2016-01-01
Interactions between diet, physical activity and genetic predisposition contribute to variable body mass changes observed in response to weight loss interventions. Circulating microRNAs (c-miRNAs) may act as 'biomarkers' that are associated with the rate of change in weight loss, and/or play a role in regulating the biological variation, in response to energy restriction. To quantify targeted c-miRNAs with putative roles in energy metabolism and exercise adaptations following a 16 wk diet and exercise intervention in individuals with large (high responders; HiRes) versus small (low responders; LoRes) losses in body mass. From 89 male and female overweight/obese participants who completed the intervention (energy restriction from diet, 250 kcal/d, and exercise, 250 kcal/d), subgroups of HiRes (>10% body mass loss, n = 22) and LoRes (<5% body mass loss, n = 18) were identified. From resting plasma samples collected after an overnight fast pre and post intervention, RNA was extracted, quantified and reverse transcribed. Thirteen c-miRNA selected a priori were analysed using a customised 96-well miScript miRNA PCR Array. Loss of body mass (-11.0 ± 2.3 kg vs. -3.0 ± 1.3 kg; P<0.01) and fat mass (-11.1 ± 2.6 kg vs. -3.9 ± 1.6 kg; P<0.01) was greater for HiRes than LoRes (P<0.001). Expression of c-miR-935 was higher in LoRes compared to HiRes pre- (~47%; P = 0.025) and post- (~100%; P<0.01) intervention and was the only c-miRNA differentially expressed at baseline between groups. The abundance of c-miR-221-3p and -223-3p increased pre- to post-intervention in both groups (~57-69% and ~25-90%, P<0.05). There was a post-intervention increase in c-miR-140 only in LoRes compared to HiRes (~23%, P = 0.016). The differential expression and responses of selected c-miRNAs in overweight/obese individuals to an exercise and diet intervention suggests a putative role for these 'biomarkers' in the prediction or detection of individual variability to weight loss interventions.
Parr, Evelyn B.; Camera, Donny M.; Burke, Louise M.; Phillips, Stuart M.; Coffey, Vernon G.; Hawley, John A.
2016-01-01
Background Interactions between diet, physical activity and genetic predisposition contribute to variable body mass changes observed in response to weight loss interventions. Circulating microRNAs (c-miRNAs) may act as ‘biomarkers’ that are associated with the rate of change in weight loss, and/or play a role in regulating the biological variation, in response to energy restriction. Objective To quantify targeted c-miRNAs with putative roles in energy metabolism and exercise adaptations following a 16 wk diet and exercise intervention in individuals with large (high responders; HiRes) versus small (low responders; LoRes) losses in body mass. Methods From 89 male and female overweight/obese participants who completed the intervention (energy restriction from diet, 250 kcal/d, and exercise, 250 kcal/d), subgroups of HiRes (>10% body mass loss, n = 22) and LoRes (<5% body mass loss, n = 18) were identified. From resting plasma samples collected after an overnight fast pre and post intervention, RNA was extracted, quantified and reverse transcribed. Thirteen c-miRNA selected a priori were analysed using a customised 96-well miScript miRNA PCR Array. Results Loss of body mass (-11.0 ± 2.3 kg vs. -3.0 ± 1.3 kg; P<0.01) and fat mass (-11.1 ± 2.6 kg vs. -3.9 ± 1.6 kg; P<0.01) was greater for HiRes than LoRes (P<0.001). Expression of c-miR-935 was higher in LoRes compared to HiRes pre- (~47%; P = 0.025) and post- (~100%; P<0.01) intervention and was the only c-miRNA differentially expressed at baseline between groups. The abundance of c-miR-221-3p and -223-3p increased pre- to post-intervention in both groups (~57–69% and ~25–90%, P<0.05). There was a post-intervention increase in c-miR-140 only in LoRes compared to HiRes (~23%, P = 0.016). Conclusion The differential expression and responses of selected c-miRNAs in overweight/obese individuals to an exercise and diet intervention suggests a putative role for these ‘biomarkers’ in the prediction or detection of individual variability to weight loss interventions. PMID:27101373
Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013
NASA Astrophysics Data System (ADS)
Seo, Ki-Weon; Wilson, Clark R.; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E.; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung
2015-05-01
Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr2. Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr2. Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr2.
Surface Mass Balance Contributions to Acceleration of Antarctic Ice Mass Loss during 2003- 2013
NASA Astrophysics Data System (ADS)
Seo, K. W.; Wilson, C. R.; Scambos, T. A.; Kim, B. M.; Waliser, D. E.; Tian, B.; Kim, B.; Eom, J.
2015-12-01
Recent observations from satellite gravimetry (the GRACE mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6±7.2 GTon/yr2. Of this total, we find that the surface mass balance component is -8.2±2.0 GTon/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8±5.8 GTon/yr2. Correcting for this yields an ice discharge acceleration of -15.1±6.5 GTon/yr2.
Hélias, A; Mirade, P-S; Corrieu, G
2007-11-01
A model of the mass loss of Camembert-type cheese was established with data obtained from 2 experimental ripening trials carried out in 2 pilot ripening chambers. During these experiments, a cheese was continuously weighed and the relative humidity, temperature, oxygen, and carbon dioxide concentrations in the ripening chamber were recorded online. The aim was to establish a simple but accurate model that would predict cheese mass changes according to available online measurements. The main hypotheses were that 1) the cheese water activity was constant during ripening, 2) the respiratory activity of the microflora played a major role by inducing heat production, combined with important water evaporation, 3) the temperature gradient existing inside the cheese was negligible, and the limiting phenomenon was the convective transfer. The water activity and the specific heat of the cheeses were assessed by offline measurements. The others parameters in the model were obtained from the literature. This dynamic model was built with 2 state variables: the cheese mass and the surface temperature of the cheese. In this way, only the heat transfer coefficient had to be fitted, and it was strongly determined by the airflow characteristics close to the cheeses. Model efficiency was illustrated by comparing the estimated and measured mass and the mass loss rate for the 2 studied runs; the relative errors were less than 1.9 and 3.2% for the mass loss and the mass loss rate, respectively. The dynamic effects of special events, such as room defrosting or changes in chamber relative humidity, were well described by the model, especially in terms of kinetics (mass loss rates).
NASA Astrophysics Data System (ADS)
Tedesco, M.; Alexander, P.; Porter, D. F.; Fettweis, X.; Luthcke, S. B.; Mote, T. L.; Rennermalm, A.; Hanna, E.
2017-12-01
Despite recent changes in Greenland surface mass losses and atmospheric circulation over the Arctic, little attention has been given to the potential role of large-scale atmospheric processes on the spatial and temporal variability of mass loss and partitioning of the GrIS mass loss. Using a combination of satellite gravimetry measurements, outputs of the MAR regional climate model and reanalysis data, we show that changes in atmospheric patterns since 2013 over the North Atlantic region of the Arctic (NAA) modulate total mass loss trends over Greenland together with the spatial and temporal distribution of mass loss partitioning. For example, during the 2002 - 2012 period, melting persistently increased, especially along the west coast, as a consequence of increased insulation and negative NAO conditions characterizing that period. Starting in 2013, runoff along the west coast decreased while snowfall increased substantially, when NAO turned to a more neutral/positive state. Modeled surface mass balance terms since 1950 indicate that part of the GRACE-period, specifically the period between 2002 and 2012, was exceptional in terms of snowfall over the east and northeast regions. During that period snowfall trend decreased to almost 0 Gt/yr from a long-term increasing trend, which presumed again in 2013. To identify the potential impact of atmospheric patterns on mass balance and its partitioning, we studied the spatial and temporal correlations between NAO and snowfall/runoff. Our results indicate that the correlation between summer snowfall and NAO is not stable during the 1950 - 2015 period. We further looked at changes in patterns of circulation using self organizing maps (SOMs) to identify the atmospheric patterns characterizing snowfall during different periods. We discuss potential implications for past changes and future GCM and RCM simulations.
North Atlantic Oscillation Drives Regional Greenland Glacier Volume During the 20th Century
NASA Astrophysics Data System (ADS)
Bjork, A. A.; Aagaard, S.; Hallander, A. M.; Khan, S. A.; Box, J. E.; Kjeldsen, K. K.; Larsen, N. K.; Korsgaard, N. J.; Cappelen, J.; Colgan, W. T.; Machguth, H.; Andresen, C. S.; Kjaer, K. H.
2016-12-01
While most areas of the Greenland ice sheet have undergone rapid mass loss since c. 1990, the central eastern section of the ice sheet has advanced and gained mass. This contrasting regional trend has been attributed to positive surface mass balance (SMB) in the absence of significant dynamic mass loss. To constrain the atypical behavior in this region, we mapped glacier length fluctuations of nearly 200 peripheral glaciers and ice caps (PGICs) over a 103-year period, and compare the results with c. 150 new glacier length records from central west Greenland. We demonstrate that the regional response in ice volume is closely correlated to changes in precipitation, governed by circulation patterns associated with the North Atlantic Oscillation (NAO) and secondarily influenced by temperature forcing in certain periods. More broadly, we find that the NAO contributes to contrasting precipitation variability in East and West Greenland, where it appears to be responsible for at least 10% and more than 25%, respectively, of the variability in ice sheet accumulation rate. This east-west asymmetry, which influences both LGICs and the ice sheet, illustrates how substantial uncertainty in NAO projections directly contributes to uncertainty in mass balance projections.
NASA Technical Reports Server (NTRS)
Meitner, P. L.; Glassman, A. J.
1980-01-01
An off-design performance loss model for a radial turbine with pivoting, variable-area stators is developed through a combination of analytical modeling and experimental data analysis. A viscous loss model is used for the variation in stator loss with setting angle, and stator vane end-clearance leakage effects are predicted by a clearance flow model. The variation of rotor loss coefficient with stator setting angle is obtained by means of an analytical matching of experimental data for a rotor that was tested with six stators, having throat areas from 20 to 144% of the design area. An incidence loss model is selected to obtain best agreement with experimental data. The stator vane end-clearance leakage model predicts increasing mass flow and decreasing efficiency as a result of end-clearances, with changes becoming significantly larger with decreasing stator area.
NASA Astrophysics Data System (ADS)
Song, Chunqiao; Ke, Linghong; Huang, Bo; Richards, Keith S.
2015-01-01
The southeast Tibetan Plateau (SETP) includes the majority of monsoonal temperate glaciers in High Mountain Asia (HMA), which is an important source of water for the upper reaches of several large Asian river systems. Climatic change and variability has substantial impacts on cryosphere and hydrological processes in the SETP. The Gravity Recovery and Climate Experiment (GRACE) gravimetry observations between 2003 and 2009 suggest that there was an average mass loss rate of - 5.99 ± 2.78 Gigatonnes (Gt)/yr in this region. Meanwhile, the hydrological data by model calculations from the GLDAS/Noah and CPC are used to estimate terrestrial water storage (TWS) changes with a slight negative trend of about - 0.3 Gt/yr. The recent studies (Kääb et al., 2012; Gardner et al., 2013) reported the thinning rates of mountain glaciers in HMA based on the satellite laser altimetry, and an approximate estimation of the glacier mass budget in the SETP was 4.69 ± 2.03 Gt/yr during 2003-2009. This estimate accounted for a large proportion ( 78.3%) of the difference between the GRACE TWS and model-calculated TWS changes. To better understand the cause of sharp mass loss existing in the SETP, the correlations between key climatic variables (precipitation and temperature) and the GRACE TWS changes are examined at different timescales between 2003 and 2011. The results show that precipitation is the leading factors of abrupt, seasonal and multi-year undulating signals of GRACE TWS anomaly time series, but with weak correlations with the inter-annual trend and annual mass budget of GRACE TWS. In contrast, the annual mean temperature is tightly associated with the annual net mass budget (r = 0.81, p < 0.01), which indirectly suggests that the GRACE-observed mass loss in the SETP may be highly related to glacial processes.
Mass Loss from the Nuclei of Active Galaxies
NASA Technical Reports Server (NTRS)
Crenshaw, Michael; Kraemer, Steven B.; George, Ian M.
2003-01-01
Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .
Mendes, Sandro H; Tritto, Aline C; Guilherme, João Paulo L F; Solis, Marina Y; Vieira, Douglas E; Franchini, Emerson; Lancha, Antonio H; Artioli, Guilherme G
2013-12-01
Studies failing to show a negative effect of rapid weight loss (RWL) on performance have been conducted in athletes who have been cycling weight for years. It has been suggested that chronic weight cycling could lead combat athletes to become resistant to the stresses associated with weight loss. To investigate the effects of RWL up to 5% of body mass on high-intensity intermittent performance in weight cyclers (WC) and non-weight cyclers (non-WC). Eighteen male combat athletes (WC: n=10; non-WC: n=8) reduced up to 5% of their body mass in 5 days. Body composition, high-intensity performance and plasma lactate were assessed preweight loss and postweight loss. Athletes had 4 h to re-feed and rehydrate following the weigh-in. Food intake was recorded during the weight loss and the recovery periods. Athletes significantly decreased body mass, lean body mass (most likely due to fluid loss) and fat mass following weight loss. No significant changes in performance were found from preweight loss to postweight loss in both groups. Plasma lactate was significantly elevated after exercise in both groups, but no differences were found between groups and in response to RWL. For all these variables no differences were observed between groups. Athletes from both groups ingested high amounts of energy and carbohydrates during the recovery period after the weigh-in. Chronic weight cycling does not protect athletes from the negative impact of RWL on performance. The time to recover after weigh-in and the patterns of food and fluid ingestion during this period is likely to play the major role in restoring performance to baseline levels.
Investigating ice shelf mass loss processes from continuous satellite altimetry
NASA Astrophysics Data System (ADS)
Fricker, H. A.
2017-12-01
The Antarctic Ice Sheet continually gains mass through snowfall over its large area and, to remain approximately in equilibrium, it sheds most of this excess mass through two processes, basal melting and iceberg calving, that both occur in the floating ice shelves surrounding the continent. Small amounts of mass are also lost by surface melting, which occurs on many ice shelves every summer to varying degrees, and has been linked to ice-shelf collapse via hydrofracture on ice shelves that have been pre-weakened. Ice shelves provide mechanical support to `buttress' seaward flow of grounded ice, so that ice-shelf thinning and retreat result in enhanced ice discharge to the ocean. Ice shelves are susceptible to changes in forcing from both the atmosphere and the ocean, which both change on a broad range of timescales to modify mass gains and losses at the surface and base, and from internal instabilities of the ice sheet itself. Mass loss from iceberg calving is episodic, with typical intervals between calving events on the order of decades. Since ice shelves are so vast, the only viable way to monitor them is with satellites. Here, we discuss results from satellite radar and laser altimeter data from one NASA satellite (ICESat), and four ESA satellites (ERS-1, ERS-2, Envisat, CryoSat-2) to obtain estimates of ice-shelf surface height since the early 1990s. The continuous time series show accelerated losses in total Antarctic ice-shelf volume from 1994 to 2017, and allow us to investigate the processes causing ice-shelf mass change. For Larsen C, much of the variability comes from changing atmospheric conditions affecting firn state. In the Amundsen Sea, the rapid thinning is a combination of accelerated ocean-driven thinning and ice dynamics. This long-term thinning signal is, however, is strongly modulated by ENSO-driven interannual variability. However, observations of ocean variability around Antarctica are sparse, since these regions are often covered in sea ice and difficult to access. Some innovative methods are being used to acquire these data, including airborne deployment of ALAMO profiling floats which we tested in the Ross Sea as part of the ROSETTA-Ice project. Combining these altimeter datasets and in situ ocean datasets will allow us to examine processes causing basal melting in the sub-ice-shelf cavities.
Mind the Gap when Data Mining the Ritter-Kolb Cataclysmic Variable Catalogue
NASA Astrophysics Data System (ADS)
Sparks, Warren M.; Sion, Edward M.
2017-01-01
The cataclysmic variable (CV) binary consists of a white dwarf primary and a low-mass secondary which overflows its Roche lobe. The Ritter-Kolb catalogue (2003, A&A, 404, 301) is a collection (~1000) of CV binaries and related objects. We have mined this catalogue for CVs with unevolved secondaries whose mass ratio (secondary/primary) is known (~130). A plot of the secondary mass verses the log of the orbital period exhibits the well-known period gap at 2-3 hrs. In addition, this plot shows that the secondary masses just above the period gap are collectively much larger than those just below. The average of the first ten secondary masses above the period is 180% larger than the average below the gap.The disrupted magnetic braking hypothesis (Howell, Nelson, and Rappaport 2001, ApJ, 550, 897 [HNR]) predicts that when the secondary becomes fully convective, the magnetic braking, which has driven the secondary out of thermal equilibrium, stops. In adjusting to thermal equilibrium the secondary shrinks below its Roche lobe and no longer loses mass. The binary system ceases to appear as a CV until gravitational radiation loss brings the secondary back in contact with its Roche lobe. This scenario is at odds with the apparent secondary mass loss across the period gap. Either the secondary continues to lose mass while crossing the period gap or the secondary masses are miscalculated!Magnetic braking causes the secondary to expand or inflate larger than its single star counterpart. Any orbital parameter calculation which assumes a radius-mass relationship based on single main-sequence stars will overestimate the mass of the secondary. We can approximate this mass overestimation from calculations by HNR which take into account the thermal heating from magnetic braking. Using this approximation as a first-order correction to the secondary mass, we replot the deflated secondary mass versus the binary period. The deflated masses immediately above and below the period gap are similar and do not indicate secondary mass loss across the gap. Thus, magnetic braking not only explains the period gap but the apparent secondary mass shift across it. Orbital parameters must be based upon actual secondary mass-radius observations.
Berecki-Gisolf, J; Spallek, M; Hockey, R; Dobson, A
2010-03-01
This study explores risk factors for height loss and consequences in terms of health and wellbeing, in older women. Osteoporosis, low body-mass index, being born in Europe and using medications for both sleep and anxiety were risk factors for height loss. Height loss was associated with digestive problems; excessive height loss was also associated with urinary stress-incontinence and a decline in self-rated health. Height loss is associated with osteoporosis, but little is known about its consequences. We aimed to examine the risk factors for height loss and the symptoms associated with height loss. Elderly participants of the Australian Longitudinal Study on Women's Health (aged 70-75 in 1996) who provided data on height at any two consecutive surveys (held in 1996, 1999, 2002, and 2005) were included (N = 9,852). A regression model was fitted with height loss as the outcome and sociodemographics, osteoporosis, and other risk factors as explanatory variables. Symptoms related to postural changes or raised intra-abdominal pressure were analyzed using height loss as an explanatory variable. Over 9 years, average height loss per year was -0.12% (95% confidence intervals [95% CI] = -0.13 to -0.12) of height at baseline. Height loss was greater among those with osteoporosis and low body mass index and those taking medications for sleep and anxiety. After adjusting for confounders, symptoms associated with height loss of > or =2% were heartburn/indigestion (odds ratio [OR] = 1.19, 95% CI = 1.01 to 1.40), constipation (OR = 1.18, 95% CI = 1.01 to 1.37), and urinary stress incontinence (OR = 1.20, 95% CI = 1.02 to 1.41). These findings highlight the importance of monitoring height among the elderly in general practice and targeting associated symptoms.
Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013.
Seo, Ki-Weon; Wilson, Clark R; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung
2015-05-01
Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr 2 . Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr 2 . However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr 2 . Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr 2 .
New Variable Stars in the KP2001 Catalog from the Data Base of the Northern Sky Variability Survey
NASA Astrophysics Data System (ADS)
Petrosyan, G. V.
2018-03-01
The optical variability of stars in the KP2001 catalog is studied. Monitor data from the automatic Northern Sky Variability Survey (NSVS) are used for this purpose. Of the 257 objects that were studied, 5 are Mira Ceti variables (mirids), 33 are semiregular (SR), and 108 are irregular variables (Ir). The light curves of the other objects show no noticeable signs of variability. For the first time, 11 stars are assigned to the semiregular and 105 stars to the irregular variables. Of the irregular variables, the light curves of two, No. 8 and No. 194, are distinct and are similar to the curves for eclipsing variables. The periods and amplitudes of the mirids and semiregular variables are determined using the "VStar" program package from AAVSO. The absolute stellar magnitudes M K and distances are also estimated, along with the mass loss for the mirids. The behavior of stars from KP2001 in 2MASS and WISE color diagrams is examined.
NASA Astrophysics Data System (ADS)
Velicogna, I.; Hsu, C. W.; Ciraci, E.; Sutterley, T. C.
2015-12-01
We use observations of time variable gravity from GRACE to estimate mass changes for the Antarctic and Greenland Ice Sheets, the Glaciers and Ice Caps (GIC) and land water storage for the time period 2002-2015 and evaluate their total contribution to sea level. We calculate regional sea level changes from these present day mass fluxes using an improved scaling factor for the GRACE data that accounts for the spatial and temporal variability of the observed signal. We calculate a separate scaling factor for the annual and the long-term components of the GRACE signal. To estimate the contribution of the GIC, we use a least square mascon approach and we re-analyze recent inventories to optimize the distribution of mascons and recover the GRACE signal more accurately. We find that overall, Greenland controls 43% of the global trend in eustatic sea level rise, 16% for Antarctica and 29% for the GIC. The contribution from the GIC is dominated by the mass loss of the Canadian Arctic Archipelago, followed by Alaska, Patagonia and the High Mountains of Asia. We report a marked increase in mass loss for the Canadian Arctic Archipelago. In Greenland, following the 2012 high summer melt, years 2013 and 2014 have slowed down the increase in mass loss, but our results will be updated with summer 2015 observations at the meeting. In Antarctica, the mass loss is still on the rise with increased contributions from the Amundsen Sea sector and surprisingly from the Wilkes Land sector of East Antarctica, including Victoria Land. Conversely, the Queen Maud Land sector experienced a large snowfall in 2009-2013 and has now resumed to a zero mass gain since 2013. We compare sea level changes from these GRACE derived mass fluxes after including the atmospheric and ocean loading signal with sea level change from satellite radar altimetry (AVISO) corrected for steric signal of the ocean using Argo measurements and find an excellent agreement in amplitude, phase and trend in these estimates. This work was conducted at UC Irvine and at Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program.
Excessive loss of skeletal muscle mass in older adults with type 2 diabetes.
Park, Seok Won; Goodpaster, Bret H; Lee, Jung Sun; Kuller, Lewis H; Boudreau, Robert; de Rekeneire, Nathalie; Harris, Tamara B; Kritchevsky, Stephen; Tylavsky, Frances A; Nevitt, Michael; Cho, Yong-wook; Newman, Anne B
2009-11-01
A loss of skeletal muscle mass is frequently observed in older adults. The aim of the study was to investigate the impact of type 2 diabetes on the changes in body composition, with particular interest in the skeletal muscle mass. We examined total body composition with dual-energy X-ray absorptiometry annually for 6 years in 2,675 older adults. We also measured mid-thigh muscle cross-sectional area (CSA) with computed tomography in year 1 and year 6. At baseline, 75-g oral glucose challenge tests were performed. Diagnosed diabetes (n = 402, 15.0%) was identified by self-report or use of hypoglycemic agents. Undiagnosed diabetes (n = 226, 8.4%) was defined by fasting plasma glucose (>or=7 mmol/l) or 2-h postchallenge plasma glucose (>or=11.1 mmol/l). Longitudinal regression models were fit to examine the effect of diabetes on the changes in body composition variables. Older adults with either diagnosed or undiagnosed type 2 diabetes showed excessive loss of appendicular lean mass and trunk fat mass compared with nondiabetic subjects. Thigh muscle CSA declined two times faster in older women with diabetes than their nondiabetic counterparts. These findings remained significant after adjusting for age, sex, race, clinic site, baseline BMI, weight change intention, and actual weight changes over time. Type 2 diabetes is associated with excessive loss of skeletal muscle and trunk fat mass in community-dwelling older adults. Older women with type 2 diabetes are at especially high risk for loss of skeletal muscle mass.
Patterns and correlates of grip strength change with age in Afro-Caribbean men.
Forrest, Kimberly Y Z; Bunker, Clareann H; Sheu, Yahtyng; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M
2012-05-01
muscle strength is essential for physical functions and an indicator of morbidity and mortality in older adults. Among the factors associated with muscle strength loss with age, ethnicity has been shown to play an important role. to examine the patterns and correlates of muscle strength change with age in a population-based cohort of middle-aged and older Afro-Caribbean men. handgrip strength and body composition were measured in 1,710 Afro-Caribbean men. Data were also collected for demographic variables, medical history and lifestyle behaviours. the age range of the study population was 29-89 years. Grip strength increased below age 50 years, and decreased after age 50 years over 4.5-year follow-up. The average loss in grip strength was 2.2% (0.49% per year) for ages 50 years or older and 3.8% (0.64% per year) for ages 65 years or older. The significant independent predictors of grip strength loss included older age, a greater body mass index, lower initial arm lean mass and greater loss of arm lean mass. Afro-Caribbean men experience a significant decline in muscle strength with advanced age. The major independent factors associated with strength loss were similar to other ethnic groups, including age, body weight and lean mass.
Modest weight loss in moderately overweight postmenopausal women improves heart rate variability.
Mouridsen, Mette Rauhe; Bendsen, Nathalie Tommerup; Astrup, Arne; Haugaard, Steen Bendix; Binici, Zeynep; Sajadieh, Ahmad
2013-08-01
To evaluate the effects of weight loss on heart rate (HR) and heart rate variability (HRV) parameters in overweight postmenopausal women. Forty-nine overweight postmenopausal women with an average body mass index of 28.8 ± 1.9 kg/m(2) underwent a 12-week dietary weight-loss programme. Accepted variables for characterization of HRV were analysed before and after the weight loss by 24-h ambulatory ECG monitoring; mean and standard deviation for the time between normal-to-normal complexes (MeanNN and SDNN, respectively), and the mean of standard deviations of normal-to-normal intervals for each 5-min period (SDNNindex). Baseline body fat mass (FM%) and changes in body composition was determined by dual X-ray absorptiometry. Before and after the weight-loss period, total abdominal fat, intra-abdominal fat (IAAT), and subcutaneous abdominal fat (SCAT) were measured by single-slice MRI at L3. The weight loss of 3.9 ± 2.0 kg was accompanied by an improvement of HRV. SDNN increased by 9.2% (p = 0.003) and SDNNindex increased by 11.4% (p = 0.0003). MeanNN increased by 2.4%, reflecting a decrease in mean heart rate from 74.1 to 72.3 beats/min (p = 0.033). Systolic blood pressure (SBP) decreased by 2.7%, total cholesterol by 5.1% and high-sensitivity C-reactive protein (hsCRP) by 15.8% (p = 0.002). Improvements in SDNN and cholesterol were correlated with weight loss (r = -0.329, p = 0.024 and r = 0.327, p = 0.020, respectively) but changes in HR, SBP, and hsCRP were not. IAAT and the IAAT/SCAT-ratio were found to be negatively associated with HRV parameters but changes in body composition were not associated with changes in HRV. The observed improvement of HRV seems to be facilitated by weight loss. IAAT and the IAAT/SCAT ratio were found to be associated with low HRV.
Robinson, Athena H.; Adler, Sarah; Stevens, Helen B.; Darcy, Alison M.; Morton, John M.; Safer, Debra L.
2014-01-01
Background Prior evidence indicates that predictors of weight loss outcomes after gastric bypass surgery fall within 5 domains: 1) presurgical factors; 2) postsurgical psychosocial variables (e.g., support group attendance); 3) postsurgical eating patterns; 4) postsurgical physical activity; and 5) follow-up at postsurgical clinic. However, little data exist on which specific behavioral predictors are most associated with successful outcomes (e.g., ≥50% excess weight loss) when considering the 5 domains simultaneously. Objectives Specify the behavioral variables, and their respective cutoff points, most associated with successful weight loss outcomes. Setting On-line survey. Methods Signal Detection Analysis evaluated associations between 84 pre-and postsurgical behavioral variables (within the 5 domains) and successful weight loss at ≥1 year in 274 post-gastric bypass surgery patients. Results Successful weight loss was highest (92.6%) among those reporting dietary adherence of >3 on a 9 point scale (median=5) who grazed no more than once-per-day. Among participants reporting dietary adherence <3 and grazing daily or less, success rates more than doubled when highest lifetime Body Mass Index was <53.7 kg/m2. Success rates also doubled for participants with dietary adherence =3 if attending support groups. No variables from the physical activity or postsurgical follow-up domains were significant, nor were years since surgery. The overall model’s sensitivity =.62, specificity =.92. Conclusions To our knowledge, this is the first study to simultaneously consider the relative contribution of behavioral variables within 5 domains and offer clinicians an assessment algorithm identifying cut-off points for behaviors most associated with successful postsurgical weight loss. Such data may inform prospective study designs and postsurgical interventions. PMID:24913590
Mass loss from red giants - Infrared spectroscopy
NASA Technical Reports Server (NTRS)
Wannier, P. G.
1985-01-01
A discussion is presented of IR spectroscopy, particularly high-resolution spectroscopy in the approximately 1-20 micron band, as it impacts the study of circumstellar envelopes. The molecular bands within this region contain an enormous amount of information, especially when observed with sufficient resolution to obtain kinematic information. In a single spectrum, it is possible to resolve lines from up to 50 different rotational/vibrational levels of a given molecule and to detect several different isotopic variants. When high resolution techniques are combined with mapping techniques and/or time sequence observations of variable stars, the resulting information can paint a very detailed picture of the mass-loss phenomenon. To date, near-IR observations have been made of 20 molecular species. CO is the most widely observed molecule and useful information has been gleaned from the observed rotational excitation, kinematics, time variability and spatial structure of its lines. Examples of different observing techniques are discussed in the following sections.
NASA Astrophysics Data System (ADS)
Bjork, A. A.; Kjeldsen, K. K.; Boeckel, M. V.; Korsgaard, N. J.; Fenty, I. G.; Khan, S. A.; Mouginot, J.; Morlighem, M.; Rignot, E. J.; Dowdeswell, J. A.; Kjaer, K. H.
2017-12-01
Mass loss acceleration from the Greenland Ice Sheet is a dominant contributor in recent global sea-level rise, and has been for several decades. While ice sheet wide mass loss has recently been documented from the end of the Little Ice Age (c. 1900 CE) to the 1980s, the detailed changes during this period remain poorly known. In this study, we map glacier margins of Greenland's 310 largest outlet glaciers in order to get the full picture of the 20th Century mass loss. We take advantage of the rich history of aerial photography over Greenland and combine photos from archives in Denmark, Norway, United Kingdom, and United States. We supplement the historical aerial photographs with declassified US spy satellite imagery and recent satellite imagery to document glacial retreat and advance on a decadal scale. With recent advances in bathymetry mapping and subglacial topography mapping, we are able to show that spatial differences in retreat throughout the last 100 years are largely controlled by the underlying topography. Our study further highlights hotspots of past rapid mass loss in Greenland, and discusses implications for periods of regional stability and advance.
Physical Activity, Body Size, Intentional Weight Loss and Breast Cancer Risk: Fellowship
2000-10-01
unconditional logistic regression and were adjusted for physical activity at other time periods, age, body mass index , smoking status, postmenopausal hormone use ...This variable was used to evaluate tests for trend within the ’any vigorous activity’ group. Body mass index (BMI) was computed using recent weight... used to evaluate the relation of diabetes to the risk of endometrial cancer on the basis of body mass index (BMI). Cases (n = 723) were identified
Minor degree of hypohydration adversely influences cognition: a mediator analysis.
Benton, David; Jenkins, Kimberly T; Watkins, Heather T; Young, Hayley A
2016-09-01
Because the assumption that small changes in hydration status are readily compensated by homeostatic mechanisms has been little studied, the influence of hypohydration on cognition was examined. We assessed whether a loss of <1% of body mass due to hypohydration adversely influenced cognition, and examined the possible underlying mechanisms. A total of 101 individuals were subjected to a temperature of 30°C for 4 h and randomly either did or did not consume 300 mL H2O during that period. Changes in body mass, urine osmolality, body temperature, and thirst were monitored. Episodic memory, focused attention, mood, and the perceived difficulty of tasks were measured on 3 occasions. The data were analyzed with the use of a regression-based approach whereby we looked for variables that mediated the influence of hypohydration on psychological functioning. Drinking water improved memory and focused attention. In the short-term, thirst was associated with poorer memory. Later, a greater loss of body mass was associated with poorer memory and attention (mean loss: 0.72%). At 90 min, an increase in thirst was associated with a decline in subjective energy and increased anxiety and depression, effects that were reduced by drinking water. At 180 min, subjects found the tests easier if they had consumed water. Drinking water was shown, for the first time to our knowledge, to benefit cognitive functioning when there was a loss of <1% body mass at levels that may occur during everyday living. Establishing the variables that generate optimal fluid consumption will help to tailor individual advice, particularly in clinical situations. This trial was registered at clinicaltrials.gov as NCT02671149. © 2016 American Society for Nutrition.
Byrne, N M; Wood, R E; Schutz, Y; Hills, A P
2012-11-01
We investigated to what extent changes in metabolic rate and composition of weight loss explained the less-than-expected weight loss in obese men and women during a diet-plus-exercise intervention. In all, 16 obese men and women (41 ± 9 years; body mass index (BMI) 39 ± 6 kg m(-2)) were investigated in energy balance before, after and twice during a 12-week very-low-energy diet(565-650 kcal per day) plus exercise (aerobic plus resistance training) intervention. The relative energy deficit (EDef) from baseline requirements was severe (74%-87%). Body composition was measured by deuterium dilution and dual energy X-ray absorptiometry, and resting metabolic rate (RMR) was measured by indirect calorimetry. Fat mass (FM) and fat-free mass (FFM) were converted into energy equivalents using constants 9.45 kcal per g FM and 1.13 kcal per g FFM. Predicted weight loss was calculated from the EDef using the '7700 kcal kg(-1) rule'. Changes in weight (-18.6 ± 5.0 kg), FM (-15.5 ± 4.3 kg) and FFM (-3.1 ± 1.9 kg) did not differ between genders. Measured weight loss was on average 67% of the predicted value, but ranged from 39% to 94%. Relative EDef was correlated with the decrease in RMR (R=0.70, P<0.01), and the decrease in RMR correlated with the difference between actual and expected weight loss (R=0.51, P<0.01). Changes in metabolic rate explained on average 67% of the less-than-expected weight loss, and variability in the proportion of weight lost as FM accounted for a further 5%. On average, after adjustment for changes in metabolic rate and body composition of weight lost, actual weight loss reached 90% of the predicted values. Although weight loss was 33% lower than predicted at baseline from standard energy equivalents, the majority of this differential was explained by physiological variables. Although lower-than-expected weight loss is often attributed to incomplete adherence to prescribed interventions, the influence of baseline calculation errors and metabolic downregulation should not be discounted.
NASA Astrophysics Data System (ADS)
Gordon, Michael Scott; Humphreys, Roberta; Jones, Terry J.; Gehrz, Robert D.
2018-01-01
To what extent mass loss and periods of enhanced stellar outflow can influence the terminal state of the most massive stars remains an outstanding question in the fields of stellar physics, chemical enrichment of the Local Universe, andsupernova research. For my dissertation, I focus on characterizing the stellar ejecta around supergiants through a combination of observing techniques. Using the LBT, MMT, IRTF, VLT, and SOFIA observatories, I have performed high-resolution imaging, spectroscopy, and polarimetry—methods that provide us with keen insight on mass-loss histories and 3D morphology of the Local Group's most fascinating stars.Based on spectroscopic evidence for mass loss in the optical and the presence ofcircumstellar (CS) dust in infrared SEDs, we find that 30%–40% of observed yellow supergiants in M31 and M33 are likely in a post-RSG state. We also presentnear-IR spectra from IRTF/SPeX of optically-obscured RSGs in M33. These IR-bright sources likely have some of the highest mass-loss rates and are self-obscured in the optical by their own CS ejecta. For Galactic red supergiants (RSGs), we are able to observe the gas and CS dust ejecta both close in to the central star and at larger distances. The resulting radial profiles are valuable probes on timescale for the ejecta when combined with radiative-transfer models. We find evidence for both variable/high mass-loss events and constant mass loss over the last few thousand years. Finally, we discuss the use of high-resolution imaging polarimetry with VLT/NACO of two co-eval RSG clusters toward the Galactic center. The resulting polarized intensity images in the near-infrared provide unprecedented spatial and contrast resolution of the scattered light from extended nebular material.
High Resolution Studies of Mass Loss from Massive Binary Stars
NASA Astrophysics Data System (ADS)
Corcoran, Michael F.; Gull, Theodore R.; Hamaguchi, Kenji; Richardson, Noel; Madura, Thomas; Post Russell, Christopher Michael; Teodoro, Mairan; Nichols, Joy S.; Moffat, Anthony F. J.; Shenar, Tomer; Pablo, Herbert
2017-01-01
Mass loss from hot luminous single and binary stars has a significant, perhaps decisive, effect on their evolution. The combination of X-ray observations of hot shocked gas embedded in the stellar winds and high-resolution optical/UV spectra of the cooler mass in the outflow provides unique ways to study the unstable process by which massive stars lose mass both through continuous stellar winds and rare, impulsive, large-scale mass ejections. The ability to obtain coordinated observations with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and other X-ray observatories has allowed, for the first time, studies of resolved line emisssion over the temperature range of 104- 108K, and has provided observations to confront numerical dynamical models in three dimensions. Such observations advance our knowledge of mass-loss asymmetries, spatial and temporal variabilities, and the fundamental underlying physics of the hot shocked outflow, providing more realistic constraints on the amount of mass lost by different luminous stars in a variety of evolutionary stages. We discuss the impact that these joint observational studies have had on our understanding of dynamical mass outflows from massive stars, with particular emphasis on two important massive binaries, Delta Ori Aa, a linchpin of the mass luminosity relation for upper HRD main sequence stars, and the supermassive colliding wind binary Eta Carinae.
Dust composition and mass-loss return from the luminous blue variable R71 in the LMC
NASA Astrophysics Data System (ADS)
Guha Niyogi, S.; Min, M.; Meixner, M.; Waters, L. B. F. M.; Seale, J.; Tielens, A. G. G. M.
2014-09-01
Context. We present an analysis of mid- and far-infrared (IR) spectrum and spectral energy distribution (SED) of the luminous blue variable (LBV) R71 in the Large Magellanic Cloud (LMC). Aims: This work aims to understand the overall contribution of high-mass LBVs to the total dust-mass budget of the interstellar medium (ISM) of the LMC and compare this with the contribution from low-mass asymptotic giant branch (AGB) stars. As a case study, we analyze the SED of R71. Methods: We compiled all the available photometric and spectroscopic observational fluxes from various telescopes for a wide wavelength range (0.36-250 μm). We determined the dust composition from the spectroscopic data, and derived the ejected dust mass, dust mass-loss rate, and other dust shell properties by modeling the SED of R71. We noted nine spectral features in the dust shell of R71 by analyzing Spitzer Space Telescope spectroscopic data. Among these, we identified three new crystalline silicate features. We computed our model spectrum by using 3D radiative transfer code MCMax. Results: Our model calculation shows that dust is dominated by amorphous silicates, with some crystalline silicates, metallic iron, and a very tiny amount of polycyclic aromatic hydrocarbon (PAH) molecules. The presence of both silicates and PAHs indicates that the dust has a mixed chemistry. We derived a dust mass of 0.01 M⊙, from which we arrive at a total ejected mass of ≈5 M⊙. This implies a time-averaged dust mass-loss rate of 2.5 × 10-6 M⊙ yr-1 with an explosion about 4000 years ago. We assume that the other five confirmed dusty LBVs in the LMC loose mass at a similar rate, and estimate the total contribution to the mass budget of the LMC to be ≈10-5 M⊙ yr-1, which is comparable to the contribution by all the AGB stars in the LMC. Conclusions: Based on our analysis on R71, we speculate that LBVs as a class may be an important dust source in the ISM of the LMC.
Definition and classification of cancer cachexia: an international consensus.
Fearon, Kenneth; Strasser, Florian; Anker, Stefan D; Bosaeus, Ingvar; Bruera, Eduardo; Fainsinger, Robin L; Jatoi, Aminah; Loprinzi, Charles; MacDonald, Neil; Mantovani, Giovanni; Davis, Mellar; Muscaritoli, Maurizio; Ottery, Faith; Radbruch, Lukas; Ravasco, Paula; Walsh, Declan; Wilcock, Andrew; Kaasa, Stein; Baracos, Vickie E
2011-05-01
To develop a framework for the definition and classification of cancer cachexia a panel of experts participated in a formal consensus process, including focus groups and two Delphi rounds. Cancer cachexia was defined as a multifactorial syndrome defined by an ongoing loss of skeletal muscle mass (with or without loss of fat mass) that cannot be fully reversed by conventional nutritional support and leads to progressive functional impairment. Its pathophysiology is characterised by a negative protein and energy balance driven by a variable combination of reduced food intake and abnormal metabolism. The agreed diagnostic criterion for cachexia was weight loss greater than 5%, or weight loss greater than 2% in individuals already showing depletion according to current bodyweight and height (body-mass index [BMI] <20 kg/m(2)) or skeletal muscle mass (sarcopenia). An agreement was made that the cachexia syndrome can develop progressively through various stages--precachexia to cachexia to refractory cachexia. Severity can be classified according to degree of depletion of energy stores and body protein (BMI) in combination with degree of ongoing weight loss. Assessment for classification and clinical management should include the following domains: anorexia or reduced food intake, catabolic drive, muscle mass and strength, functional and psychosocial impairment. Consensus exists on a framework for the definition and classification of cancer cachexia. After validation, this should aid clinical trial design, development of practice guidelines, and, eventually, routine clinical management. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sargent, Benjamin; Groenewegen, M. A. T.
2018-01-01
The asymptotic giant branch (AGB) phase is one of the last phases of a star's life. AGB stars lose mass in an outflow in which dust condenses and is pushed away from the star. Extreme AGB stars are so named because their very red colors suggest very large amounts of dust, which in turn suggests extremely high mass loss rates. AGB stars also vary in brightness, and studies show that extreme AGB stars tend to have longer periods than other AGB stars and are more likely to be fundamental mode pulsators than other AGB stars. Extreme AGB stars are difficult to study, as their colors are so red due to their copious amounts of circumstellar dust that they are often not detected at optical wavelengths. Therefore, they must be observed at infrared wavelengths to explore their variability. Using the Spitzer Space Telescope, my team and I have observed a sample of extreme AGB stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) over Cycles 9 through 12 during the Warm Spitzer mission. For each cycle, we typically observed a set of extreme AGB stars at both 3.6 and 4.5 microns wavelength approximately monthly for most of a year. These observations reveal a wide range of variability properties. I present results from our analysis of the data obtained from these Spitzer variability programs, including light curve analyses and comparison to period-luminosity diagrams. Funding is acknowledged from JPL RSA # 1561703.
Eta Carinae and Other Luminous Blue Variables
NASA Technical Reports Server (NTRS)
Corcoran, M. F.
2006-01-01
Luminous Blue Variables (LBVs) are believed to be evolved, extremely massive stars close to the Eddington Limit and hence prone to bouts of large-scale, unstable mass loss. I discuss current understanding of the evolutionary state of these objects, the role duplicity may play and known physical characteristics of these stars using the X-ray luminous LBVs Eta Carinae and HD 5980 as test cases.
Earth System Data Records of Mass Transport from Time-Variable Gravity Data
NASA Astrophysics Data System (ADS)
Zlotnicki, V.; Talpe, M.; Nerem, R. S.; Landerer, F. W.; Watkins, M. M.
2014-12-01
Satellite measurements of time variable gravity have revolutionized the study of Earth, by measuring the ice losses of Greenland, Antarctica and land glaciers, changes in groundwater including unsustainable losses due to extraction of groundwater, the mass and currents of the oceans and their redistribution during El Niño events, among other findings. Satellite measurements of gravity have been made primarily by four techniques: satellite tracking from land stations using either lasers or Doppler radio systems, satellite positioning by GNSS/GPS, satellite to satellite tracking over distances of a few hundred km using microwaves, and through a gravity gradiometer (radar altimeters also measure the gravity field, but over the oceans only). We discuss the challenges in the measurement of gravity by different instruments, especially time-variable gravity. A special concern is how to bridge a possible gap in time between the end of life of the current GRACE satellite pair, launched in 2002, and a future GRACE Follow-On pair to be launched in 2017. One challenge in combining data from different measurement systems consists of their different spatial and temporal resolutions and the different ways in which they alias short time scale signals. Typically satellite measurements of gravity are expressed in spherical harmonic coefficients (although expansions in terms of 'mascons', the masses of small spherical caps, has certain advantages). Taking advantage of correlations among spherical harmonic coefficients described by empirical orthogonal functions and derived from GRACE data it is possible to localize the otherwise coarse spatial resolution of the laser and Doppler derived gravity models. This presentation discusses the issues facing a climate data record of time variable mass flux using these different data sources, including its validation.
Modelled and observed mass balance of Rikha Samba Glacier, Nepal, Central Himalaya
NASA Astrophysics Data System (ADS)
Gurung, T. R.; Kayastha, R. B.; Fujita, K.; Sinisalo, A. K.; Stumm, D.; Joshi, S.; Litt, M.
2016-12-01
Glacier mass balance variability has an implication for the regional water resources and it helps to understand the response of glacier to climate change in the Himalayan region. Several mass balance studies have been started in the Himalayan region since 1970s, but they are characterized by frequent temporal gaps and a poor spatial representatively. This study aims at bridging the temporal gaps in a long term mass balance series of the Rikha Samba glacier (5383 - 6475 m a.s.l.), a benchmark glacier located in the Hidden Valley, Mustang, Nepal. The ERA Interim reanalysis data for the period 2011-2015 is calibrated with the observed meteorological variables from an AWS installed near the glacier terminus. We apply an energy mass balance model, validated with the available in-situ measurements for the years 1998 and 2011-2015. The results show that the glacier is shrinking at a moderate negative mass balance rate for the period 1995 to 2015 and the high altitude location of Rikha Samba also prevents a bigger mass loss compared to other small Himalayan glaciers. Precipitation from July to January and the mean air temperature from June to October are the most influential climatic parameters of the annual mass balance variability of Rikha Samba glacier.
Investigating evaporation of melting ice particles within a bin melting layer model
NASA Astrophysics Data System (ADS)
Neumann, Andrea J.
Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the first melting layer profile on 10 May 2011 from the Midlatitude Continental Convective Clouds Experiment (MC3E) that is neither too saturated nor too subsaturated is possible and shows considerable mass loss for all particle sizes. Most melting layer profiles sampled during MC3E were too saturated for more than a dozen or two of the smallest particle sizes to experience significant mass loss. The aggregation, accretion, and collision and coalescence processes also countered significant mass loss at the largest particles sizes because these particles are efficient at collecting smaller particles due to their relative large sweep-out area. From these results, it appears that the assumption of negligible mass loss due to evaporation while melting is occurring is not always valid. Studies that use large, low-density snowflakes and high RH environments can safely use the assumption of negligible mass loss. Studies that use small ice particles or low RH environments (RH less than about 80%) cannot use the assumption of negligible mass loss due to evaporation. Retrieval algorithms may be overestimating surface precipitation rates and intensities in subsaturated environments due to the assumptions of negligible mass loss while melting and near-saturated melting layer environments.
NASA Astrophysics Data System (ADS)
Iijima, T.; Naito, H.
2017-04-01
Context. The outburst of the symbiotic recurrent nova V407 Cyg in 2010 has been studied by numerous authors. On the other hand, its spectral variations in the quiescent stage have not been well studied yet. This paper is probably the first report for the relation between the pulsation of the secondary Mira variable and the temperature of the primary hot component for V407 Cyg. Aims: The spectral variation in the post-outburst stage has been monitored to study the properties of this object. In the course of this work, we found some unexpected spectral variations around the light maximum of the secondary Mira variable in 2012. The relation between the mass transfer in the binary system and the pulsation of the secondary Mira variable is studied. Methods: High- and low-resolution optical spectra obtained at the Astronomical Observatories at Asiago were used. The photometric data depend on the database of the VSNET. Results: The secondary Mira variable reached its light maximum in 2012, when an absorption spectrum of a late-M-type giant developed and the emission line of Hδ became stronger than those of Hβ and Hγ, which are typical spectral features of Mira variables at light maxima. On the other hand, intensity ratios to Hβ of the emission lines of He I, He II, [Fe VII], etc., which obviously depended on the temperature of the hot component, rapidly varied around the light maximum. The intensity ratios started to decrease at phase about 0.9 of the periodical light variation of the Mira variable. This phenomenon suggests that the mass transfer rate, as well as the mass accretion rate onto the hot component, decreased according to the contraction of the Mira variable. However, these intensity ratios somewhat recovered just on the light maximum: phase 0.99. There might have occurred a temporal mass loss from the Mira variable at that time. The intensity ratios decreased again after the light maximum, then recovered and returned to the normal level at phase about 0.1. Since the mass transfer rate seems to have been closely related to the pulsation of the secondary component, the mass transfer in this binary system was likely due to a normal Roche-lobe overflow. If this is the case, the orbital period should be shorter than five years. Each of the Na I D1 and D2 lines had five emission and one absorption components around the light maximum. It seems that there were two pairs of mass outflows from the Mira variable with velocities of ± 79 km s-1 and ± 44 km s-1. These velocities were much higher than those of mass loss from usual Mira variables. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A96
Mass balance of the Antarctic ice sheet.
Wingham, D J; Shepherd, A; Muir, A; Marshall, G J
2006-07-15
The Antarctic contribution to sea-level rise has long been uncertain. While regional variability in ice dynamics has been revealed, a picture of mass changes throughout the continental ice sheet is lacking. Here, we use satellite radar altimetry to measure the elevation change of 72% of the grounded ice sheet during the period 1992-2003. Depending on the density of the snow giving rise to the observed elevation fluctuations, the ice sheet mass trend falls in the range -5-+85Gtyr-1. We find that data from climate model reanalyses are not able to characterise the contemporary snowfall fluctuation with useful accuracy and our best estimate of the overall mass trend-growth of 27+/-29Gtyr-1-is based on an assessment of the expected snowfall variability. Mass gains from accumulating snow, particularly on the Antarctic Peninsula and within East Antarctica, exceed the ice dynamic mass loss from West Antarctica. The result exacerbates the difficulty of explaining twentieth century sea-level rise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reshetenko, T. V.; Bender, G.; Bethune, K.
The overall current density that is measured in a proton exchange membrane fuel cell (PEMFC) represents the average of the local reaction rates. The overall and local PEMFC performances are determined by several primary loss mechanisms, namely activation, ohmic, and mass transfer. Spatial performance and loss variabilities are significant and depend on the cell design and operating conditions. A segmented cell system was used to quantify different loss distributions along the gas channel to understand the effects of gas humidification. A reduction in the reactant stream humidification decreased cell performance and resulted in non-uniform distributions of overpotentials and performance alongmore » the flow field. Activation and ohmic overpotentials increased with a relative humidity decrease due to insufficient membrane and catalyst layer hydration. The relative humidity of the cathode had a strong impact on the mass transfer overpotential due to a lower oxygen permeability through the dry Nafion film covering the catalyst surface. The mass transfer loss distribution was non-uniform, and the mass transfer overpotential increased for the outlet segments due to the oxygen consumption at the inlet segments, which reduced the oxygen concentration downstream, and a progressive water accumulation from upstream segments. Electrochemical impedance spectroscopy (EIS) and an equivalent electric circuit (EEC) facilitated the analysis and interpretation of the segmented cell data.« less
Loss of H2 and CO from protonated aldehydes in electrospray ionization mass spectrometry.
Neta, Pedatsur; Simón-Manso, Yamil; Liang, Yuxue; Stein, Stephen E
2014-09-15
Electrospray ionization mass spectrometry (ESI-MS) of many protonated aldehydes shows loss of CO as a major fragmentation pathway. However, we find that certain aldehydes undergo loss of H2 followed by reaction with water in the collision cell. This complicates interpretation of tandem mass (MS/MS) spectra and affects multiple reaction monitoring (MRM) results. 3-Formylchromone and other aldehydes were dissolved in acetonitrile/water/formic acid and studied by ESI-MS to record their MS(2) and MS(n) spectra in several mass spectrometers (QqQ, QTOF, ion trap (IT), and Orbitrap HCD). Certain product ions were found to react with water and the rate of reaction was determined in the IT instrument using zero collision energy and variable activation times. Theoretical calculations were performed to help with the interpretation of the fragmentation mechanism. Protonated 3-formylchromones and 3-formylcoumarins undergo loss of H2 as a major fragmentation route to yield a ketene cation, which reacts with water to form a protonated carboxylic acid. In general, protonated aldehydes which contain a vicinal group that forms a hydrogen bridge with the formyl group undergo significant loss of H2. Subsequent losses of CO and C3O are also observed. Theoretical calculations suggest mechanistic details for these losses. Loss of H2 is a major fragmentation channel for protonated 3-formychromones and certain other aldehydes and it is followed by reaction with water to produce a protonated carboxylic acid, which undergoes subsequent fragmentation. This presents a problem for reference libraries and raises concerns about MRM results. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.
Zacarías-Flores, Mariano; Sánchez-Rodríguez, Martha A; García-Anaya, Oswaldo Daniel; Correa-Muñoz, Elsa; Mendoza-Núñez, Víctor Manuel
2018-04-09
Endocrine changes due to menopause have been associated to oxidative stress and muscle mass loss. The study objective was to determine the relationship between both variables in early postmenopause. An exploratory, cross-sectional study was conducted in 107 pre- and postmenopausal women (aged 40-57 years). Levels of serum lipid peroxides and uric acid and enzymes superoxide dismutase and glutathione peroxidase, as well as total plasma antioxidant capacity were measured as oxidative stress markers. Muscle mass using bioelectrical impedance and muscle strength using dynamometry were also measured. Muscle mass, skeletal muscle index, fat-free mass, and body mass index were calculated. More than 90% of participants were diagnosed with overweight or obesity. Postmenopausal women had lower values of muscle mass and strength markers, with a negative correlation between lipid peroxide level and skeletal muscle index (r= -0.326, p<.05), and a positive correlation between uric acid and skeletal muscle index (r=0.295, p<.05). A multivariate model including oxidative stress markers, age, and waist circumference showed lipid peroxide level to be the main contributor to explain the decrease in skeletal muscle mass in postmenopause, since for every 0.1μmol/l increase in lipid peroxide level, skeletal muscle index decreases by 3.03 units. Our findings suggest an association between increased oxidative stress and muscle mass loss in early postmenopause. Copyright © 2018 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.
North Atlantic warming and the retreat of Greenland's outlet glaciers.
Straneo, Fiammetta; Heimbach, Patrick
2013-12-05
Mass loss from the Greenland ice sheet quadrupled over the past two decades, contributing a quarter of the observed global sea-level rise. Increased submarine melting is thought to have triggered the retreat of Greenland's outlet glaciers, which is partly responsible for the ice loss. However, the chain of events and physical processes remain elusive. Recent evidence suggests that an anomalous inflow of subtropical waters driven by atmospheric changes, multidecadal natural ocean variability and a long-term increase in the North Atlantic's upper ocean heat content since the 1950s all contributed to a warming of the subpolar North Atlantic. This led, in conjunction with increased runoff, to enhanced submarine glacier melting. Future climate projections raise the potential for continued increases in warming and ice-mass loss, with implications for sea level and climate.
The first mass and angular momentum loss measurements for a CV-like binary
NASA Astrophysics Data System (ADS)
Drake, Jeremy
2015-10-01
The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a magnetic switch found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22
The first mass and angular momentum loss measurements for a CV-like binary
NASA Astrophysics Data System (ADS)
Drake, Jeremy
2014-10-01
The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a "magnetic switch" found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22
The first mass and angular momentum loss measurements for a CV-like binary
NASA Astrophysics Data System (ADS)
Drake, Jeremy
2016-10-01
The period distribution of close binaries, cataclysmic variables, novae and single-degenerate SN1a progenitor candidates is largely controlled by magnetically-driven mass and angular momentum loss (AML) from the M dwarf secondary. The mass loss rates for these spun-up stars remain essentially unknown and impossible to observe directly, with likely values in the range 1e-12 to 1e-15 Msun/yr. AML presciptions for CVs differ by orders of magnitude. One way to measure the mass loss rate is to observe the dM wind accrete onto its WD companion in a pre-CV very close to Roche Lobe overflow but lacking the obscuring complications and emission from an accretion disk. The measurement can be combined with realistic MHD models to understand the accretion fraction, the mass that escapes, and the AML. The best-studied nearby pre-CV is QS Vir (48pc, P=3.6hr). However, its wind accretion rates measured from 1999 HST UV spectra of the WD metal absorption lines and 2006 XMM-Newton CCD spectroscopy differ by a factor of a thousand, pointing to either a dominant CME stochastic component, or a magnetic switch found in MHD simulations and driven by cyclic activity on the M dwarf. HST COS spectra combined with XMM-Newton monitoring on timescales from weeks to years will tease out CME vs cyclic accretion variations. UV and X-ray measurements will provide the first consistency check of both accretion rate measurement methods. MHD models tailored to the system will enable the first quasi-direct measurements of the mass loss and AML from a CV-like binary. Our project requires 6 HST/COS orbits in Cycles 22-24, and 60ksec on XMM in Cycle 22
Glaciers and ice caps outside Greenland
Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.
2015-01-01
Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (ΔM) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).
Ocean Tide Influences on the Antarctic and Greenland Ice Sheets
NASA Astrophysics Data System (ADS)
Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.
2018-03-01
Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.
Investigating mass transfer in symbiotic systems with hydrodynamic simulations
NASA Astrophysics Data System (ADS)
de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.
2014-06-01
We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.
Capesius, Joseph P.; Arnold, L. Rick
2012-01-01
The Mass Balance results were quite variable over time such that they appeared suspect with respect to the concept of groundwater flow as being gradual and slow. The large degree of variability in the day-to-day and month-to-month Mass Balance results is likely the result of many factors. These factors could include ungaged stream inflows or outflows, short-term streamflow losses to and gains from temporary bank storage, and any lag in streamflow accounting owing to streamflow lag time of flow within a reach. The Pilot Point time series results were much less variable than the Mass Balance results and extreme values were effectively constrained. Less day-to-day variability, smaller magnitude extreme values, and smoother transitions in base-flow estimates provided by the Pilot Point method are more consistent with a conceptual model of groundwater flow being gradual and slow. The Pilot Point method provided a better fit to the conceptual model of groundwater flow and appeared to provide reasonable estimates of base flow.
Interactions in Massive Colliding Wind Binaries
NASA Technical Reports Server (NTRS)
Corcoran, M.
2012-01-01
The most massive stars (M> 60 Solar Mass) play crucial roles in altering the chemical and thermodynamic properties of their host galaxies. Stellar mass is the fundamental stellar parameter that determines their ancillary properties and which ultimately determines the fate of these stars and their influence on their galactic environs. Unfortunately, stellar mass becomes observationally and theoretically less well constrained as it increases. Theory becomes uncertain mostly because very massive stars are prone to strong, variable mass loss which is difficult to model. Observational constraints are uncertain too. Massive stars are rare, and massive binary stars (needed for dynamical determination of mass) are rarer still: and of these systems only a fraction have suitably high orbital inclinations for direct photometric and spectroscopic radial-velocity analysis. Even in the small number of cases in which a high-inclination binary near the upper mass limit can be identified, rotational broadening and contamination of spectral line features from thick circumstellar material (either natal clouds or produced by strong stellar wind driven mass loss from one or both of he stellar components) biases the analysis. In the wilds of the upper HR diagram, we're often left with indirect and circumstantial means of determining mass, a rather unsatisfactory state of affairs.
Analysis of Seasonal Variability in Gulf of Alaska Glacier Mass Balance using GRACE
NASA Astrophysics Data System (ADS)
Arendt, A. A.; Luthcke, S. B.; Oneel, S.; Gardner, A. S.; Hill, D. F.
2011-12-01
Mass variations of glaciers in Alaska/northwestern Canada must be quantified in order to assess impacts on ecosystems, human infrastructure, and global sea level. Here we combine Gravity Recovery and Climate Experiment (GRACE) observations with a wide range of satellite and field data to investigate drivers of these recent changes, with a focus on seasonal variations. Our central focus will be the exceptionally high mass losses of 2009, which do not correlate with weather station temperature and precipitation data, but may be linked to ash fall from the March 31, 2009 eruption of Mt. Redoubt. The eruption resulted in a significant decrease in MODIS-derived surface albedo over many Alaska glacier regions, and likely contributed to some of the 2009 anomalous mass loss observed by GRACE. We also focus on the Juneau and Stikine Icefield regions that are far from the volcanic eruption but experienced the largest mass losses of any region in 2009. Although rapid drawdown of tidewater glaciers was occurring in southeast Alaska during 2009, we show these changes were probably not sufficiently widespread to explain all of the GRACE signal in those regions. We examine additional field and satellite datasets to quantify potential errors in the climate and GRACE fields that could result in the observed discrepancy.
NASA Astrophysics Data System (ADS)
Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.
2017-04-01
Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass (0.26 M⊙) RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as binary evolution pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass-loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (losing up to 90 per cent of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 M⊙, and the orbital period in range 10-2 500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8 and 5 per cent, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.
NASA Astrophysics Data System (ADS)
Goldman, Steven R.; van Loon, Jacco Th.; Zijlstra, Albert A.; Green, James A.; Wood, Peter R.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Matsuura, Mikako; Groenewegen, Martin A. T.; Gómez, José F.
2017-02-01
We present the results of our survey of 1612-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud (LMC). We have discovered four new circumstellar maser sources in the LMC, and increased the number of reliable wind speeds from infrared (IR) stars in the LMC from 5 to 13. Using our new wind speeds, as well as those from Galactic sources, we have derived an updated relation for dust-driven winds: vexp ∝ ZL0.4. We compare the subsolar metallicity LMC OH/IR stars with carefully selected samples of more metal-rich OH/IR stars, also at known distances, in the Galactic Centre and Galactic bulge. We derive pulsation periods for eight of the bulge stars for the first time by using near-IR photometry from the Vista Variables in the Via Lactea survey. We have modelled our LMC OH/IR stars and developed an empirical method of deriving gas-to-dust ratios and mass-loss rates by scaling the models to the results from maser profiles. We have done this also for samples in the Galactic Centre and bulge and derived a new mass-loss prescription which includes luminosity, pulsation period, and gas-to-dust ratio dot{M} = 1.06^{+3.5}_{-0.8} × }10^{-5 (L/10^4 L_{⊙})^{0.9± 0.1}(P/500 {d})^{0.75± 0.3} (r_gd/200)^{-0.03± 0.07} M⊙ yr-1. The tightest correlation is found between mass-loss rate and luminosity. We find that the gas-to-dust ratio has little effect on the mass-loss of oxygen-rich AGB stars and RSGs within the Galaxy and the LMC. This suggests that the mass-loss of oxygen-rich AGB stars and RSGs is (nearly) independent of metallicity between a half and twice solar.
NASA Astrophysics Data System (ADS)
Gordon, Michael S.; Humphreys, Roberta M.; Jones, Terry J.; Shenoy, Dinesh; Gehrz, Robert D.; Helton, L. Andrew; Marengo, Massimo; Hinz, Philip M.; Hoffmann, William F.
2018-05-01
New MMT/MIRAC (9–11 μm), SOFIA/FORCAST (11–37 μm), and Herschel/PACS (70 and 160 μm) infrared (IR) imaging and photometry is presented for three famous OH/IR red supergiants (NML Cyg, VX Sgr, and S Per) and two normal red supergiants (RS Per and T Per). We model the observed spectral energy distributions (SEDs) using radiative-transfer code DUSTY. Azimuthal average profiles from the SOFIA/FORCAST imaging, in addition to dust mass distribution profiles from DUSTY, constrain the mass-loss histories of these supergiants. For all of our observed supergiants, the DUSTY models suggest that constant mass-loss rates do not produce enough dust to explain the observed infrared emission in the stars’ SEDs. Combining our results with Shenoy et al. (Paper I), we find mixed results with some red supergiants showing evidence for variable and high mass-loss events while others have constant mass loss over the past few thousand years. Based on observations obtained with: (1) the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA). SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart; and (2) the MMT Observatory on Mt. Hopkins, AZ, a joint facility of the Smithsonian Institution and the University of Arizona.
NASA Astrophysics Data System (ADS)
Davis, J. L.; Vinogradova, N. T.
2017-12-01
Tide-gauge records from the North Atlantic reveal significant acceleration in sea level starting in the late 20th century. We have analyzed the tide-gauge data using a model in which the accelerations are assumed to be zero prior to 1990. The estimated accelerations range from -1 to +3 m cy-2 and exhibit a systematic spatial variability. Davis and Vinogradova [2017] demonstrated that to model this variability in sea-level acceleration requires contributions from several distinct physical processes: accelerated mass loss from the Greenland and Antarctic Ice Sheets and acceleration associated with ocean circulation and heat uptake. Atmospheric pressure also contributes to the observed changes in sea level, at a much smaller amplitude. Because we are focusing on sea-level accelerations (i.e., sea-level rate changes), the contribution from Glacial Isostatic Adjustment (GIA) is negligible. Modeling of observed sea-level acceleration is achieved using external constraints for the important physical processes. Using GRACE results, we can calculate the sea-level "fingerprints" for Greenland and Antarctica associated with mass loading and gravitational perturbations. For the North Atlantic, Greenland induces a significant spatial variation in sea-level change—dominated by the solid-Earth response to the mass loss—whereas Antarctica contributes a spatially constant acceleration. The observations prefer a scaling of the solid-Earth/gravitational response, and we present the implications of this result for ice-mass changes prior to the onset of GRACE observations (2002-3).
Using data mining to predict success in a weight loss trial.
Batterham, M; Tapsell, L; Charlton, K; O'Shea, J; Thorne, R
2017-08-01
Traditional methods for predicting weight loss success use regression approaches, which make the assumption that the relationships between the independent and dependent (or logit of the dependent) variable are linear. The aim of the present study was to investigate the relationship between common demographic and early weight loss variables to predict weight loss success at 12 months without making this assumption. Data mining methods (decision trees, generalised additive models and multivariate adaptive regression splines), in addition to logistic regression, were employed to predict: (i) weight loss success (defined as ≥5%) at the end of a 12-month dietary intervention using demographic variables [body mass index (BMI), sex and age]; percentage weight loss at 1 month; and (iii) the difference between actual and predicted weight loss using an energy balance model. The methods were compared by assessing model parsimony and the area under the curve (AUC). The decision tree provided the most clinically useful model and had a good accuracy (AUC 0.720 95% confidence interval = 0.600-0.840). Percentage weight loss at 1 month (≥0.75%) was the strongest predictor for successful weight loss. Within those individuals losing ≥0.75%, individuals with a BMI (≥27 kg m -2 ) were more likely to be successful than those with a BMI between 25 and 27 kg m -2 . Data mining methods can provide a more accurate way of assessing relationships when conventional assumptions are not met. In the present study, a decision tree provided the most parsimonious model. Given that early weight loss cannot be predicted before randomisation, incorporating this information into a post randomisation trial design may give better weight loss results. © 2017 The British Dietetic Association Ltd.
Quantitative results of stellar evolution and pulsation theories.
NASA Technical Reports Server (NTRS)
Fricke, K.; Stobie, R. S.; Strittmatter, P. A.
1971-01-01
The discrepancy between the masses of Cepheid variables deduced from evolution theory and pulsation theory is examined. The effect of input physics on evolutionary tracks is first discussed; in particular, changes in the opacity are considered. The sensitivity of pulsation masses to opacity changes and to the ascribed values of luminosity and effective temperature are then analyzed. The Cepheid mass discrepancy is discussed in the light of the results already obtained. Other astronomical evidence, including the mass-luminosity relation for main sequence stars, the solar neutrino flux, and cluster ages are also considered in an attempt to determine the most likely source of error in the event that substantial mass loss has not occurred.
NASA Technical Reports Server (NTRS)
Bohm-Vitense, Erika; Querci, Monique
1987-01-01
The characteristics of intrinsically variable stars are examined, reviewing the results of observations obtained with the IUE satellite since its launch in 1978. Selected data on both medium-spectral-class pulsating stars (Delta Cep stars, W Vir stars, and related groups) and late-type variables (M, S, and C giants and supergiants) are presented in spectra, graphs, and tables and described in detail. Topics addressed include the calibration of the the period-luminosity relation, Cepheid distance determination, checking stellar evolution theory by the giant companions of Cepheids, Cepheid masses, the importance of the hydrogen convection zone in Cepheids, temperature and abundance estimates for Population II pulsating stars, mass loss in Population II Cepheids, SWP and LWP images of cold giants and supergiants, temporal variations in the UV lines of cold stars, C-rich cold stars, and cold stars with highly ionized emission lines.
A Thermodynamic Study of the Turbojet Engine
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Karp, Irvin M
1947-01-01
Charts are presented for computing thrust, fuel consumption, and other performance values of a turbojet engine for any given set of operating conditions and component efficiencies. The effects of pressure losses in the inlet duct and the combustion chamber, of variation in physical properties of the gas as it passes through the system, of reheating of the gas due to turbine losses, and of change in mass flow by the addition of fuel are included. The principle performance chart shows the effects of primary variables and correction charts provide the effects of secondary variables and of turbine-loss reheat on the performance of the system. The influence of characteristics of a given compressor and turbine on performance of a turbojet engine containing a matched set of these given components is discussed for cases of an engine with a centrifugal-flow compressor and of an engine with an axial-flow compressor.
Wind accretion and formation of disk structures in symbiotic binary systems
NASA Astrophysics Data System (ADS)
de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.
2015-05-01
We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.
Significant and serious dehydration does not affect skeletal muscle cramp threshold frequency.
Braulick, Kyle W; Miller, Kevin C; Albrecht, Jay M; Tucker, Jared M; Deal, James E
2013-07-01
Many clinicians believe that exercise-associated muscle cramps (EAMC) occur because of dehydration. Experimental research supporting this theory is lacking. Mild hypohydration (3% body mass loss) does not alter threshold frequency (TF), a measure of cramp susceptibility, when fatigue and exercise intensity are controlled. No experimental research has examined TF following significant (3-5% body mass loss) or serious hypohydration (>5% body mass loss). Determine if significant or serious hypohydration, with moderate electrolyte losses, decreases TF. A prepost experimental design was used. Dominant limb flexor hallucis brevis cramp TF, cramp electromyography (EMG) amplitude and cramp intensity were measured in 10 euhydrated, unacclimated men (age=24±4 years, height=184.2±4.8 cm, mass=84.8±11.4 kg). Subjects alternated exercising with their non-dominant limb or upper body on a cycle ergometer every 15 min at a moderate intensity until 5% body mass loss or volitional exhaustion (3.8±0.8 h; 39.1±1.5°C; humidity 18.4±3%). Cramp variables were reassessed posthypohydration. Subjects were well hydrated at the study's onset (urine specific gravity=1.005±0.002). They lost 4.7±0.5% of their body mass (3.9±0.5 litres of fluid), 4.0±1.5 g of Na(+) and 0.6±0.1 g K(+) via exercise-induced sweating. Significant (n=5) or serious hypohydration (n=5) did not alter cramp TF (euhydrated=15±5 Hz, hypohydrated=13±6 Hz; F1,9=3.0, p=0.12), cramp intensity (euhydrated= 94.2±41%, hypohydrated=115.9±73%; F1,9=1.9, p=0.2) or cramp EMG amplitude (euhydrated=0.18±0.06 µV, hypohydrated= 0.18±0.09 µV; F1,9=0.1, p=0.79). Significant and serious hypohydration with moderate electrolyte losses does not alter cramp susceptibility when fatigue and exercise intensity are controlled. Neuromuscular control may be more important in the onset of muscle cramps than dehydration or electrolyte losses.
NASA Astrophysics Data System (ADS)
Shean, D. E.; Arendt, A. A.; Osmanoglu, B.; Montesano, P.
2017-12-01
High Mountain Asia (HMA) constitutes the largest glacierized region outside of the Earth's polar regions. Although available observations are limited, long-term records indicate sustained regional glacier mass loss since 1850, with increased loss in recent decades. Recent satellite data (e.g., GRACE, ICESat-1) show spatially variable glacier mass balance, with significant mass loss in the Himalaya and Hindu Kush and slight mass gain in the Karakoram. We generated 4000 high-resolution digital elevation models (DEMs) from sub-meter commercial stereo imagery (DigitalGlobe WorldView/GeoEye) acquired over glaciers in High-mountain Asia from 2002-present (mostly 2013-present). We produced a regional 8-m DEM mosaic for 2015 and estimated 15-year geodetic mass balance for 40000 glaciers larger than 0.1 km2. We are combining with other regional DEM sources to systematically document the spatiotemporal evolution of glacier mass balance for the entire HMA region. We also generated monthly to interannual DEM and velocity time series for high-priority sites distributed across the region, with >15-20 DEMs available for some locations from 2010-present. These records document glacier dynamics, seasonal snow accumulation/redistribution, and processes that affect glacier mass balance (e.g., ice-cliff retreat, debris cover evolution). These efforts will provide basin-scale assessments of snow/ice melt runoff contributions for model cal/val and downstream water resources applications. We will continue processing all archived and newly available commercial stereo imagery for HMA, and will release all DEMs through the HiMAT DAAC.
A systematic investigation of the mass loss mechanism in dust forming long-period variable stars
NASA Astrophysics Data System (ADS)
Winters, J. M.; Le Bertre, T.; Jeong, K. S.; Helling, Ch.; Sedlmayr, E.
2000-09-01
In order to investigate the relations between the mass loss from pulsating red giants and quantities which can be obtained from observations, we have explored the behavior of theoretical models which treat the time-dependent hydrodynamics of circumstellar outflows, including a detailed treatment of the dust formation process. This approach, while ignoring effects such as a possible non-sphericity of the stellar atmospheres which are difficult to assess, accounts correctly for factors such as the grain formation and destruction which are crucial to the mass-loss mechanism. We built a grid of ~ 150 models covering a wide range of physical situations. This grid allows us to characterize the effects of different parameters, such as the stellar luminosity and temperature, the period and the amplitude of the pulsation, and the C/O element abundance ratio, on the behavior of AGB winds and on the rates of mass loss. We find two regimes for the stellar outflows. The first one (A) is characterized by stable winds with a layered structure of the circumstellar dust shell, outflow velocities in excess of 5 km s-1, and a large rate of mass loss. These outflows are dominated by radiation pressure on dust. For these models we find good correlations between near-infrared colors and the mass loss rates. In the second regime (B), the winds are slow and do not present a layered structure. The outflows displaying the second behavior come, e.g., from red giants with low luminosity, high temperature, or short period. For them there is no correlation between color and mass loss rate. The mass loss rates are low and never exceed 3 10-7 Msunyr-1. Radiation pressure on dust plays only a minor role in this regime. We have explored the effect of different parameters on the behavior of the stellar winds. We find that, in general, all other parameters been kept identical, there is a narrow range of values for each parameter within which the models abruptly change from B to A, and that once a model is stabilized in the A mode the changes in the values of each parameter have only a smooth effect on the wind characteristics. Table~2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
Barsalani, R; Riesco, É; Perreault, K; Imbeault, P; Brochu, M; Dionne, I J
2015-03-01
We showed that obese insulin resistant postmenopausal women are characterized by higher lean body mass and elevated C-reactive protein. Although counterintuitive, we hypothesized that losses in muscle mass following caloric restriction and increase in muscle quality will be associated with improvements in glucose homeostasis through decreases in C-reactive protein. To determine 1) if improvements in C-reactive protein concentrations occurs through losses in lean body mass; and 2) if decreases in C-reactive protein levels contribute to improvements in insulin sensitivity. 50 postmenopausal women (body mass index>26 kg/m(²)) with impaired glucose disposal (<7.5 mg/kg/min) completed a 6-month caloric restriction program. Outcome measures were: Glucose disposal rate: M value (by hyperinsulinemic-euglycemic clamp), body composition (total, trunk, and appendicluar). LBM and FM by DXA), LBM index (LBM (kg)/height (m(2)), body fat distribution (VAT and SAT by CT scan) and plasma high-sensitive C-reactive protein (hsCRP) and interleukin-6 (Il-6). Significant correlations were observed between Δ hsCRP levels with Δ Il-6 (r=0.33, p≤0.05), Δ total LBM index (r=0.44, p≤0.01), Δ trunk LBM (r=0.38, p≤0.01) Δ SAT (r=0.35, p≤0.05) and ∆ glucose disposal rate (r=- 0.44, p≤0.01). After including all the correlated variables in Stepwise linear regression model, Δ LBM index was the only independent predictor of the reduction in hsCRP levels (R(2)=0.20, p≤0.01). Losses in total lean body mass are independently associated with improvements in inflammatory state (CRP levels) in obese postmenopausal women with impaired glucose disposal. © Georg Thieme Verlag KG Stuttgart · New York.
Constraining the weak-wind problem: an XMM-HST campaign for the magnetic O9.7 V star HD 54879
NASA Astrophysics Data System (ADS)
Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.
2018-01-01
Mass-loss rates of massive, late type main sequence stars are much weaker than currently predicted, but their true values are very difficult to measure. We suggest that confined stellar winds of magnetic stars can be exploited to constrain the true mass-loss rates Ṁ of massive main sequence stars. We acquired UV, X-ray, and optical amateur data of HD 54879 (O9.7 V), one of a few O-type stars with a detected atmospheric magnetic field (Bd ≳ 2 kG). We analyze these data with the Potsdam Wolf-Rayet (PoWR) and XSPEC codes. We can roughly estimate the mass-loss rate the star would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 M⊙yr-1. Since the wind is partially trapped within the Alfvén radius rA ≳ 12 R*, the true mass-loss rate of HD 54879 is log Ṁ ≲ -10.2 M⊙yr-1. Moreover, we find that the microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (< 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred. We derive a mean X-ray emitting temperature of log TX = 6.7 K and an X-ray luminosity of log LX = 32 erg s-1. The latter implies a significant X-ray excess (log LX/LBol ≈ -6.0), most likely stemming from collisions at the magnetic equator. A tentative period of P ≈ 5 yr is derived from variability of the Hα line. Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence stars.
Hydration: special issues for playing football in warm and hot environments.
Shirreffs, S M
2010-10-01
The high metabolic rates and body temperatures sustained by football players during training and matches causes sweating--particularly when in warm or hot environments. There is limited published data on the effects of this sweat loss on football performance. The limited information available, together with knowledge of the effects of sweat loss in other sports with skill components as well as endurance and sprint components, suggests that the effects of sweating will be similar as in these other activities. Therefore, the generalization that, on average, a body mass reduction equivalent to 2% should be the acceptable limit of sweat losses seems reasonable. This magnitude and more, of sweat loss is a common occurrence for some players. Sodium is the main electrolyte lost in sweat but there is large variability in sodium losses between players. However, the extent of sodium losses in some players may be such that its replacement is warranted for these players. Although football is a team sport, the great individual variability in sweat and electrolyte losses of players in the same training session or match dictates that individual monitoring to determine individual water and electrolyte requirements should be an essential part of a player's nutrition strategy. © 2010 John Wiley & Sons A/S.
Performance Charts for the Turbojet Engine
NASA Technical Reports Server (NTRS)
Pinkel, Benjamin; Karp, Irving M.
1947-01-01
Charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet engine for any given set of operating conditions and component efficiencies. The effects of the pressure losses in the inlet duct and combustion chamber, the variation in the physical properties of the gas as it passes through the cycle, and the change in mass flow by the addition of fuel are included. The principle performance charts show the effects of the primary variables and correction charts provide the effects of the secondary variables.
Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance
NASA Astrophysics Data System (ADS)
von Keyserlingk, C. W.; Conduit, G. J.
2011-05-01
We study the emergence of itinerant ferromagnetism in an ultracold atomic gas with a variable mass ratio between the up- and down-spin species. Mass imbalance breaks the SU(2) spin symmetry, leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles. Second, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These could help future experiments to better identify the putative ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes that handicap the formation of a ferromagnetic state. Finally, we study the time-dependent formation of the ferromagnetic phase following a quench in the interaction strength.
Harper, Jason W; Sinanan, Mika N; Zisman, Timothy L
2013-09-01
Obesity is an emerging problem in the care of inflammatory bowel disease (IBD) patients and has been associated with a diminished response to adalimumab. Whether obesity influences the response to infliximab (IFX) is not known. A retrospective cohort of 124 subjects with IBD initiating IFX, naive to biologic therapy, was identified. Subjects were stratified according to their weight and body mass index (BMI). The primary outcome was the first occurrence of an IBD flare defined as dose escalation of IFX, corticosteroid use, discontinuation of IFX, hospitalization, or surgery. Multivariable logistic regression was performed considering body mass and BMI as categorical and continuous variables. Obese (BMI > 30 kg/m) patients with Crohn's disease were more likely to have an IBD flare than nonobese patients (adjusted hazard ratio [HR]: 3.03, P < 0.001); overweight (BMI > 25 kg/m) patients with ulcerative colitis trended toward a similar observation (HR: 9.68, P = 0.06). When considered as continuous variables, increasing mass and BMI were associated with earlier IBD flare in both Crohn's disease (adjusted HR: 1.06 per unit increase in BMI [P = 0.02] and 1.02 per kg increase in body mass [P = 0.02]) and ulcerative colitis (adjusted HR: 1.3 per unit increase in BMI [P = 0.01] and 1.11 per kg increase in body mass [P = 0.004]). Increased body weight is associated with an earlier time to loss of response to IFX in Crohn's disease and ulcerative colitis, a novel finding given that IFX is the only antitumor necrosis factor agent whose dosing reflects increased body weight.
Garaulet, Marta; Vera, Beatriz; Bonnet-Rubio, Gemma; Gómez-Abellán, Purificación; Lee, Yu-Chi; Ordovás, José M
2016-10-01
We propose that eating lunch late impairs the mobilization of fat from adipose tissue, particularly in carriers of PERILIPIN1 (PLIN1) variants. The aim was to test the hypothesis that PLIN1, a circadian lipid-stabilizing protein in the adipocyte, interacts with the timing of food intake to affect weight loss. A total of 1287 overweight and obese subjects [229 men and 1058 women; mean ± SD body mass index (in kg/m 2 ): 31 ± 5] who attended outpatient obesity clinics were enrolled in the ONTIME (Obesity, Nutrigenetics, Timing, Mediterranean) study. Timing of food intake was estimated with a validated questionnaire. Anthropometric variables and PLIN1 genotypes were analyzed, including 6209T>C (rs2289487), 11482G>A (rs894160), 13041A>G (rs2304795), and 14995A>T (rs1052700). The main outcomes were effectiveness of the program and weight-loss progression during 28 wk of treatment. The PLIN1 locus was associated with variability in response to a weight-loss program. Specifically, carrying the minor C allele at the PLIN1 6209T>C was associated with better weight-loss response (P = 0.035). The probability of being a better responder [percentage of weight loss ≥7.5% (median)] was 33% higher among C than among TT carriers (OR: 1.32; 95% CI: 1.05, 1.67; P = 0.017). We found an interaction of PLIN1 × food timing between the 14995A>T variant and timing of lunch eating for total weight loss (P = 0.035). Among AA carriers, eating late was associated with less weight loss (P < 0.001), whereas time of eating did not influence weight loss among TT carriers (P = 0.326). Variability at the PLIN1 locus is associated with variability in weight loss. Moreover, eating late is related to lower weight-loss effectiveness among carriers of the AA genotype at the PLIN1 14995A>T variant. These results contribute to our ability to implement more precise and successful obesity treatments. The ONTIME study was registered at clinicaltrials.gov as NCT02829619. © 2016 American Society for Nutrition.
Devic, Emilie; Guyot, Sylvain; Daudin, Jean-Dominique; Bonazzi, Catherine
2010-01-13
Several cultivars of apples (Malus domestica) were chosen for their variable concentrations and compositions in phenolic compounds. Cubed samples (1 cm3) were subjected to osmotic dehydration, and the effect of temperature was studied at 45 and 60 degrees C. Water loss, sucrose impregnation, and the evolution of some natural components of the product were followed to quantify mass transfer. Ascorbic acid and polyphenols were quantified by HPLC for several osmotic dehydration times and regardless of the quantity of impregnated sugar. Changes in antioxidant components differed as a function of the nature of molecules. Their concentrations decreased in line with temperature, and few differences were observed between cultivars. Processing at a lower temperature (45 degrees C) caused a total loss in ascorbic acid but allowed the retention of between 74 and 85% of initial polyphenols, depending on the cultivar. Cultivars containing highly polymerized procyanidins (such as Guillevic) experienced less loss. Hydroxycinnamic acids and monomeric catechins displayed the most marked changes. Leaching with water into the soaking solution was the principal mechanism retained to explain these losses.
NASA Astrophysics Data System (ADS)
Alexander, Patrick M.; Tedesco, Marco; Schlegel, Nicole-Jeanne; Luthcke, Scott B.; Fettweis, Xavier; Larour, Eric
2016-06-01
Improving the ability of regional climate models (RCMs) and ice sheet models (ISMs) to simulate spatiotemporal variations in the mass of the Greenland Ice Sheet (GrIS) is crucial for prediction of future sea level rise. While several studies have examined recent trends in GrIS mass loss, studies focusing on mass variations at sub-annual and sub-basin-wide scales are still lacking. At these scales, processes responsible for mass change are less well understood and modeled, and could potentially play an important role in future GrIS mass change. Here, we examine spatiotemporal variations in mass over the GrIS derived from the Gravity Recovery and Climate Experiment (GRACE) satellites for the January 2003-December 2012 period using a "mascon" approach, with a nominal spatial resolution of 100 km, and a temporal resolution of 10 days. We compare GRACE-estimated mass variations against those simulated by the Modèle Atmosphérique Régionale (MAR) RCM and the Ice Sheet System Model (ISSM). In order to properly compare spatial and temporal variations in GrIS mass from GRACE with model outputs, we find it necessary to spatially and temporally filter model results to reproduce leakage of mass inherent in the GRACE solution. Both modeled and satellite-derived results point to a decline (of -178.9 ± 4.4 and -239.4 ± 7.7 Gt yr-1 respectively) in GrIS mass over the period examined, but the models appear to underestimate the rate of mass loss, especially in areas below 2000 m in elevation, where the majority of recent GrIS mass loss is occurring. On an ice-sheet-wide scale, the timing of the modeled seasonal cycle of cumulative mass (driven by summer mass loss) agrees with the GRACE-derived seasonal cycle, within limits of uncertainty from the GRACE solution. However, on sub-ice-sheet-wide scales, some areas exhibit significant differences in the timing of peaks in the annual cycle of mass change. At these scales, model biases, or processes not accounted for by models related to ice dynamics or hydrology, may lead to the observed differences. This highlights the need for further evaluation of modeled processes at regional and seasonal scales, and further study of ice sheet processes not accounted for, such as the role of subglacial hydrology in variations in glacial flow.
VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)
NASA Astrophysics Data System (ADS)
Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.
2016-02-01
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely circumscribes the range in qad as a function of the orbital period in which they are found. These results are intended to advance the verisimilitude of population synthesis models of close binary evolution. (3 data files).
Effects of the LBV Primary's Mass-loss Rate on the 3D Hydrodynamics of eta Carinae's Colliding Winds
NASA Technical Reports Server (NTRS)
Madura, Thomas I.; Gull, Theodore R.; Cocoran, M.; Okazaki, A.; Owocki, S.; Russell, C.; Hamaguchi, K.; Clementel, N; Groh, J.; Hillier, D. J.
2013-01-01
At the heart of eta Carinae's spectacular "Homunculus" nebula lies an extremely luminous (L(sub Total) greater than approximately 5 × 10(exp 6) solar luminosity) colliding wind binary with a highly eccentric (e approximately 0.9), 5.54-year orbit (Figure 1). The primary of the system, a Luminous Blue Variable (LBV), is our closest (D approximately 2.3 kpc) and best example of a pre-hypernova or pre-gamma ray burst environment. The remarkably consistent and periodic RXTE X-ray light curve surprisingly showed a major change during the system's last periastron in 2009, with the X-ray minimum being approximately 50% shorter than the minima of the previous two cycles1. Between 1998 and 2011, the strengths of various broad stellar wind emission lines (e.g. Halpha, Fe II) in line-of-sight (l.o.s.) also decreased by factors of 1.5 - 3 relative to the continuum2. The current interpretation for these changes is that they are due to a gradual factor of 2 - 4 drop in the primary's mass-loss rate over the last approximately 15 years1, 2. However, while a secular change is seen for a direct view of the central source, little to no change is seen in profiles at high stellar latitudes or reflected off of the dense, circumbinary material known as the "Weigelt blobs"2, 3. Moreover, model spectra generated with CMFGEN predict that a factor of 2 - 4 drop in the primary's mass-loss rate should lead to huge changes in the observed spectrum, which thus far have not been seen. Here we present results from large- (plus or minus 1620 AU) and small- (plus or minus 162 AU) domain, full 3D smoothed particle hydrodynamics (SPH) simulations of eta Car's massive binary colliding winds for three different primary-star mass-loss rates (2.4, 4.8, and 8.5 × 10(exp -4) solar mass/yr). The goal is to investigate how the mass-loss rate affects the 3D geometry and dynamics of eta Car's optically-thick wind and spatially-extended wind-wind collision (WWC) regions, both of which are known sources of observed X-ray, optical, UV, and near-IR emission and absorption. We use two domain sizes in order to better understand how the primary's mass-loss rate influences the various observables that form at different length scales. The 3D simulations provide information important for helping constrain ? Car's recent mass-loss history and future state.
Morgado, P Cresta; Giorlando, A; Castro, M; Navigante, A
2016-09-01
This study aims to determine the influence of significant weight loss on parameters of skeletal muscle function in a population of advanced cancer patients with fatigue. A cross-sectional and comparative study was designed between two arms of advanced cancer patients with fatigue (fatigue numeral scale (FNS) ≥4). A arm (n = 27) with ≥5 % weight loss in the last 6 months, and B arm (n = 22) without weight loss. Muscle strength was examined by hand grip technique and measurements of body composition by bioimpedance analysis (BIA), values of hemoglobin, albumin, lactic dehydrogenase (LDH), c-reactive protein (CRP), urine creatinine, and FNS. These variables were compared between both groups and correlated within each group. here were no differences concerning parameters of muscle strength between both arms. A arm had values of CRP ≥10 ug/dl in 77 % compared with 38.5 % of B arm (p = 0.004). A arm showed a higher percentage of body cell mass (%BCM) than B arm (p = 0.005). The A arm also showed a lower percentage of fat mass (%FM) (p = 0.014) when compared to the B arm. FNS was higher in A arm (median 7 vs 5; p = 0.047). All the variables of muscle strength had a significant positive correlation. In A arm, BCM had a negative significant correlation with CRP (p = 0.021). In this study, significant weight loss and high CRP did not have influence on parameters of skeletal muscular function. We consider that further studies should be necessary, preferably with longitudinal designs to evaluate these findings.
Astronomy in Denver: Spectropolarimetric Observations of 5 Wolf-Rayet Binary Stars with SALT/RSS
NASA Astrophysics Data System (ADS)
Fullard, Andrew; Ansary, Zyed; Azancot Luchtan, Daniel; Gallegos, Hunter; Luepker, Martin; Hoffman, Jennifer L.; Nordsieck, Kenneth H.; SALT observation team
2018-06-01
Mass loss from massive stars is an important yet poorly understood factor in shaping their evolution. Wolf-Rayet (WR) stars are of particular interest due to their stellar winds, which create large regions of circumstellar material (CSM). They are also supernova and possible gamma-ray burst (GRB) progenitors. Like other massive stars, WR stars often occur in binaries, where interaction can affect their mass loss rates and provide the rapid rotation thought to be required for GRB production. The diagnostic tool of spectropolarimetry, along with the potentially eclipsing nature of a binary system, helps us to better characterize the CSM created by the stars’ colliding winds. Thus, we can determine mass loss rates and infer rapid rotation. We present spectropolarimetric results for five WR+O eclipsing binary systems, obtained with the Robert Stobie Spectrograph at the South African Large Telescope, between April 2017 and April 2018. The data allow us to map both continuum and emission line polarization variations with phase, which constrains where different CSM components scatter light in the systems. We discuss our initial findings and interpretations of the polarimetric variability in each binary system, and compare the systems.
Norris, Leigh E; Collene, Angela L; Asp, Michelle L; Hsu, Jason C; Liu, Li-Fen; Richardson, Julia R; Li, Dongmei; Bell, Doris; Osei, Kwame; Jackson, Rebecca D
2009-01-01
Background: Weight loss may improve glucose control in persons with type 2 diabetes. The effects of fat quality, as opposed to quantity, on weight loss are not well understood. Objective: We compared the effects of 2 dietary oils, conjugated linoleic acid (CLA) and safflower oil (SAF), on body weight and composition in obese postmenopausal women with type 2 diabetes. Design: This was a 36-wk randomized, double-masked, crossover study. Fifty-five obese postmenopausal women with type 2 diabetes received SAF or CLA (8 g oil/d) during two 16-wk diet periods separated by a 4-wk washout period. Subjects met monthly with the study coordinator to receive new supplements and for assessment of energy balance, biochemical endpoints, or anthropometric variables. Results: Thirty-five women completed the 36-wk intervention. Supplementation with CLA reduced body mass index (BMI) (P = 0.0022) and total adipose mass (P = 0.0187) without altering lean mass. The effect of CLA in lowering BMI was detected during the last 8 wk of each 16-wk diet period. In contrast, SAF had no effect on BMI or total adipose mass but reduced trunk adipose mass (P = 0.0422) and increased lean mass (P = 0.0432). SAF also significantly lowered fasting glucose (P = 0.0343) and increased adiponectin (P = 0.0051). No differences were observed in dietary energy intake, total fat intake, and fat quality in either diet period for either intervention. Conclusions: Supplementation with CLA and SAF exerted different effects on BMI, total and trunk adipose mass, and lean tissue mass in obese postmenopausal women with type 2 diabetes. Supplementation with these dietary oils may be beneficial for weight loss, glycemic control, or both. PMID:19535429
Norris, Leigh E; Collene, Angela L; Asp, Michelle L; Hsu, Jason C; Liu, Li-Fen; Richardson, Julia R; Li, Dongmei; Bell, Doris; Osei, Kwame; Jackson, Rebecca D; Belury, Martha A
2009-09-01
Weight loss may improve glucose control in persons with type 2 diabetes. The effects of fat quality, as opposed to quantity, on weight loss are not well understood. We compared the effects of 2 dietary oils, conjugated linoleic acid (CLA) and safflower oil (SAF), on body weight and composition in obese postmenopausal women with type 2 diabetes. This was a 36-wk randomized, double-masked, crossover study. Fifty-five obese postmenopausal women with type 2 diabetes received SAF or CLA (8 g oil/d) during two 16-wk diet periods separated by a 4-wk washout period. Subjects met monthly with the study coordinator to receive new supplements and for assessment of energy balance, biochemical endpoints, or anthropometric variables. Thirty-five women completed the 36-wk intervention. Supplementation with CLA reduced body mass index (BMI) (P = 0.0022) and total adipose mass (P = 0.0187) without altering lean mass. The effect of CLA in lowering BMI was detected during the last 8 wk of each 16-wk diet period. In contrast, SAF had no effect on BMI or total adipose mass but reduced trunk adipose mass (P = 0.0422) and increased lean mass (P = 0.0432). SAF also significantly lowered fasting glucose (P = 0.0343) and increased adiponectin (P = 0.0051). No differences were observed in dietary energy intake, total fat intake, and fat quality in either diet period for either intervention. Supplementation with CLA and SAF exerted different effects on BMI, total and trunk adipose mass, and lean tissue mass in obese postmenopausal women with type 2 diabetes. Supplementation with these dietary oils may be beneficial for weight loss, glycemic control, or both.
Changes in the Mass Balance of the Greenland Ice Sheet in a Warming Climate During 2003-2009
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Luthcke, Scott
2010-01-01
Mass changes of the Greenland ice sheet (GIS) derived from ICESat and GRACE data both show that the net mass loss from GIS during 2003-2009 is about 175 Gt/year, which contributes 0.5mm/yr global sea-level rise. The rate of mass loss has increased significantly since the 1990's when the GIS was close to mass balance. Even though the GIS was close to mass balance during the 1990's, it was already showing characteristics of responding to8 warmer climate, specifically thinning at the margins and thickening inland at higher elevations. During 2003-2009, increased ice thinning due to increases in melting and acceleration of outlet glaciers began to strongly exceed the inland thickening from increases in accumulation. Over the entire GIS, the mass loss between the two periods, from increased melting and ice dynamics, increased by about 190 Gt/year while the mass gain, from increased precipitation and accumulation, increased by only about 15Gt/year. These ice changes occurred during a time when the temperature on GIS changed at rate of about 2K/decade. The distribution of elevation and mass changes derived from ICESat have high spatial resolution showing details over outlet glaciers, by drainage systems, and by elevation. However, information on the seasonal cycle of changes from ICESat data is limited, because the ICESat lasers were only operated during two to three campaigns per year of about 35 days duration each. In contrast, the temporal resolution of GRACE data, provided by the continuous data collection, is much better showing details of the seasonal cycle and the inter-annual variability. The differing sensitivity of the ICESat altimetry and the GRACE gravity methods to motion of the underlying bedrock from glacial isostatic adjustment (GIA) is used to evaluate the GIA corrections provided by models. The two data types are also combined to make estimates of the partitioning of the mass gains and losses among accumulation, melting, and ice discharge from outlet glaciers.
The VLTI/MIDI view on the inner mass loss of evolved stars from the Herschel MESS sample
NASA Astrophysics Data System (ADS)
Paladini, C.; Klotz, D.; Sacuto, S.; Lagadec, E.; Wittkowski, M.; Richichi, A.; Hron, J.; Jorissen, A.; Groenewegen, M. A. T.; Kerschbaum, F.; Verhoelst, T.; Rau, G.; Olofsson, H.; Zhao-Geisler, R.; Matter, A.
2017-04-01
Context. The mass-loss process from evolved stars is a key ingredient for our understanding of many fields of astrophysics, including stellar evolution and the chemical enrichment of the interstellar medium (ISM) via stellar yields. Nevertheless, many questions are still unsolved, one of which is the geometry of the mass-loss process. Aims: Taking advantage of the results from the Herschel Mass loss of Evolved StarS (MESS) programme, we initiated a coordinated effort to characterise the geometry of mass loss from evolved red giants at various spatial scales. Methods: For this purpose we used the MID-infrared interferometric Instrument (MIDI) to resolve the inner envelope of 14 asymptotic giant branch stars (AGBs) in the MESS sample. In this contribution we present an overview of the interferometric data collected within the frame of our Large Programme, and we also add archive data for completeness. We studied the geometry of the inner atmosphere by comparing the observations with predictions from different geometric models. Results: Asymmetries are detected for the following five stars: R Leo, RT Vir, π1Gruis, omi Ori, and R Crt. All the objects are O-rich or S-type, suggesting that asymmetries in the N band are more common among stars with such chemistry. We speculate that this fact is related to the characteristics of the dust grains. Except for one star, no interferometric variability is detected, I.e. the changes in size of the shells of non-mira stars correspond to changes of the visibility of less than 10%. The observed spectral variability confirms previous findings from the literature. The detection of dust in our sample follows the location of the AGBs in the IRAS colour-colour diagram: more dust is detected around oxygen-rich stars in region II and in the carbon stars in region VII. The SiC dust feature does not appear in the visibility spectrum of the U Ant and S Sct, which are two carbon stars with detached shells. This finding has implications for the theory of SiC dust formation. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 073.D-0711, 076.D-0620, 077.D-0294, 078.D-0122, 080.D-0801, 081.D-0021, 083.D-0234, 086.D-0737, 086.D-899, 187.D-0924, 089.D-0562, 090.D-410, 091.C-0468, 091.D-0344.
Multiple rings around Wolf-Rayet evolution
NASA Technical Reports Server (NTRS)
Marston, A. P.
1995-01-01
We present optical narrow-band imaging of multiple rings existing around galactic Wolf-Rayet (WR) stars. The existence of multiple rings of material around Wolf-Rayet stars clearly illustrates the various phases of evolution that massive stars go through. The objects presented here show evidence of a three stage evolution. O stars produce an outer ring with the cavity being partially filled by ejecta from a red supergiant of luminous blue variable phase. A wind from the Wolf-Rayet star then passes into the ejecta materials. A simple model is presented for this three stage evolution. Using observations of the size and dynamics of the rings allows estimates of time scales for each stage of the massive star evolution. These are consistent with recent theoretical evolutionary models. Mass estimates for the ejecta, from the model presented, are consistent with previous ring nebula mass estimates from IRAS data, showing a number of ring nebulae to have large masses, most of which must in be in the form of neutral material. Finally, we illustrate how further observations will allow the determination of many of the parameters of the evolution of massive stars such as total mass loss, average mass loss rates, stellar abundances, and total time spent in each evolutionary phase.
40 Years of Glacier Change across the Himalayas
NASA Astrophysics Data System (ADS)
Maurer, J. M.; Schaefer, J. M.; Rupper, S.
2017-12-01
Himalayan glaciers are central to societies, ecologies, and landscapes in South Asia. Retreating glaciers have been observed in the Himalayas from in-situ and satellite remote sensing measurements, yet different approaches provide a wide range of mass budget estimates. As glaciers respond dynamically to climate over decades and centuries, more observations of past glacier states are needed to gain perspective on existing shorter-timespan ice loss estimates, minimize effects of interannual variability, and to robustly evaluate glacier dynamics. Here we use a new suite of DEMs (digital elevation models) to estimate geodetic mass balance for over 1000 Himalayan glaciers spanning a 2000 km transect, during the years 1975-2000 and 2001-2016. Recent advances in DEM extraction from declassified Hexagon filmstrips, along with new public access to the global ASTER database have allowed for this large-scale analysis of regional ice loss. An average trendline (using a 30-glacier moving-window) reveals a spatially coherent ice loss signal across the entire transect during both periods, consistent with atmospheric warming as the primary Himalaya-wide driver of change. Our estimate of mean annual ice losses during the more recent period is approximately twice as negative (-0.39 ± 0.1 m.w.e. a-1) compared to the 1975-2000 baseline (-0.18 ± 0.1 m.w.e. a-1). This two-fold acceleration of ice loss during the 21st century agrees with the global average, parallel with recent observations of increasing rates of sea level rise. These surface-integrated geodetic mass balances are negligibly influenced by ice flow dynamics, thus are indicative of climate-driven glacier responses. Further analyses utilizing satellite-derived ice surface velocities will afford deconvolution of the surface mass balance and ice fluxes, providing additional insights into the dynamic responses of the glaciers.
Myette-Côté, Étienne; Doucet, Éric; Prud'homme, Denis; Rabasa-Lhoret, Rémi; Lavoie, Jean-Marc; Brochu, Martin
2015-01-01
This study aims to investigate individual characteristics that explain interindividual variations in glucose disposal in response to a 6-month weight loss program in obese postmenopausal women. The cohort was divided into tertiles based on changes in glucose disposal after weight loss. Only women in the upper tertile (positive responders: Δ glucose disposal ≥ 0.92 mg/kg/min; n = 19) and lower tertile (negative responders: Δ glucose disposal ≤ -0.23 mg/kg/min; n = 19) were considered for analyses. Outcome measures included body weight, lean body mass (LBM), LBM index (= LBM / height [m]), fat mass (FM), FM index (= FM / height [m]), visceral fat, subcutaneous abdominal fat, high-sensitivity C-reactive protein (hsCRP) levels, interleukin-6, lipid profile, physical activity levels, fasting blood glucose and insulin levels, glucose disposal by hyperinsulinemic-euglycemic clamp technique, and resting blood pressure. At baseline, positive responders had higher triglycerides and hsCRP levels and lower glucose disposal (0.01 < P < 0.05) than negative responders. Except for visceral fat, the entire cohort showed significant decreases in all measures of body composition (P < 0.005) after weight loss, with greater decreases in body weight, body mass index, and FM index in positive responders (P < 0.005). Finally, data revealed that only positive responders showed decreases in LBM, LBM index, and hsCRP levels after weight loss (P between 0.01 and 0.001). An important interindividual variability in changes in glucose disposal after weight loss is observed. Interestingly, participants who display improvements in glucose disposal also show significant decreases in LBM, LBM index, and hsCRP after weight loss.
Itinerant ferromagnetism in an interacting Fermi gas with mass imbalance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyserlingk, C. W. von; Conduit, G. J.; Physics Department, Ben Gurion University, Beer Sheva 84105
2011-05-15
We study the emergence of itinerant ferromagnetism in an ultracold atomic gas with a variable mass ratio between the up- and down-spin species. Mass imbalance breaks the SU(2) spin symmetry, leading to a modified Stoner criterion. We first elucidate the phase behavior in both the grand canonical and canonical ensembles. Second, we apply the formalism to a harmonic trap to demonstrate how a mass imbalance delivers unique experimental signatures of ferromagnetism. These could help future experiments to better identify the putative ferromagnetic state. Furthermore, we highlight how a mass imbalance suppresses the three-body loss processes that handicap the formation ofmore » a ferromagnetic state. Finally, we study the time-dependent formation of the ferromagnetic phase following a quench in the interaction strength.« less
The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems
NASA Astrophysics Data System (ADS)
Belkus, H.; van Bever, J.; Vanbeveren, D.
In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.
NASA Astrophysics Data System (ADS)
Wouters, Bert; Ligtenberg, Stefan; Moholdt, Geir; Gardner, Alex S.; Noel, Brice; Kuipers Munneke, Peter; van den Broeke, Michiel; Bamber, Jonathan L.
2016-04-01
Historically, ice loss from mountain glaciers and ice caps has been one of the largest contributors to sea level rise over the last century. Of particular interest are the glaciers and ice caps in the North-Atlantic region of the Arctic. Despite the cold climate in this area, considerable melting and runoff occurs in summer. A small increase in temperature will have an immediate effect on these processes, so that a large change in the Arctic ice volume can be expected in response to the anticipated climate change in the coming century. Unfortunately, direct observations of glaciers are sparse and are biased toward glaciers systems in accessible, mostly maritime, climate conditions. Remote sensing is therefore essential to monitor the state of the the North-Atlantic glaciers and ice caps. In this presentation, we will discuss the progress that has been made in estimating the ice mass balance of these regions, with a particular focus on measurements made by ESA's Cryosat-2 radar altimeter mission (2010-present). Compared to earlier altimeter mission, Cryosat-2 provides unprecedented coverage of the cryosphere, with a resolution down to 1 km or better and sampling at monthly intervals. Combining the Cryosat-2 measurements with the laser altimetry data from ICESat (2003-2009) gives us a 12 yr time series of glacial mass loss in the North Atlantic. We find excellent agreement between the altimetry measurements and independent observations by the GRACE mission, which directly 'weighs' the ice caps, albeit at a much lower resolution. Mass loss in the region has increased from 120 Gigatonnes per year in 2003-2009 to roughly 140 Gt/yr in 2010-2014, with an important contribution from Greenland's peripheral glaciers and ice caps. Importantly, the mass loss is not stationary, but shows large regional interannual variability, with mass loss shifting between eastern and western regions from year to year. Comparison with regional climate models shows that these shifts can be explained by changes in surface mass balance processes, highlighting the sensitivity of the glaciers and ice caps to changes in the atmospheric circulation and underscoring the need for long-term observations of the region.
Climate change and the selective signature of the Late Ordovician mass extinction.
Finnegan, Seth; Heim, Noel A; Peters, Shanan E; Fischer, Woodward W
2012-05-01
Selectivity patterns provide insights into the causes of ancient extinction events. The Late Ordovician mass extinction was related to Gondwanan glaciation; however, it is still unclear whether elevated extinction rates were attributable to record failure, habitat loss, or climatic cooling. We examined Middle Ordovician-Early Silurian North American fossil occurrences within a spatiotemporally explicit stratigraphic framework that allowed us to quantify rock record effects on a per-taxon basis and assay the interplay of macrostratigraphic and macroecological variables in determining extinction risk. Genera that had large proportions of their observed geographic ranges affected by stratigraphic truncation or environmental shifts at the end of the Katian stage were particularly hard hit. The duration of the subsequent sampling gaps had little effect on extinction risk, suggesting that this extinction pulse cannot be entirely attributed to rock record failure; rather, it was caused, in part, by habitat loss. Extinction risk at this time was also strongly influenced by the maximum paleolatitude at which a genus had previously been sampled, a macroecological trait linked to thermal tolerance. A model trained on the relationship between 16 explanatory variables and extinction patterns during the early Katian interval substantially underestimates the extinction of exclusively tropical taxa during the late Katian interval. These results indicate that glacioeustatic sea-level fall and tropical ocean cooling played important roles in the first pulse of the Late Ordovician mass extinction in Laurentia.
Clark, Brian C; Manini, Todd M
2008-08-01
Maximal voluntary force (strength) production declines with age and contributes to physical dependence and mortality. Consequently, a great deal of research has focused on identifying strategies to maintain muscle mass during the aging process and elucidating key molecular pathways of atrophy, with the rationale that the loss of strength is primarily a direct result of the age-associated declines in mass (sarcopenia). However, recent evidence questions this relationship and in this Green Banana article we argue the role of sarcopenia in mediating the age-associated loss of strength (which we will coin as dynapenia) does not deserve the attention it has attracted in both the scientific literature and popular press. Rather, we propose that alternative mechanisms underlie dynapenia (i.e., alterations in contractile properties or neurologic function), and urge that greater attention be paid to these variables in determining their role in dynapenia.
Strength changes induced by extreme dieting and exercise in severely obese females.
Pronk, N P; Donnelly, J E; Pronk, S J
1992-04-01
Strength changes, induced by very low-calorie diet (VLCD, 520 kcal/day) alone and in combination with exercise, were determined in 109 severely obese females (46.8 +/- 4.69% fat). Experimental treatments included VLCD alone (LC, n = 40), VLCD with endurance exercise (EE, n = 23), VLCD with endurance exercise and resistance strength training (EERST, n = 23), and VLCD with resistance strength training (RST, n = 23). All subjects participated in the study for 90 days while EE, EERST, and RST exercised four times/week according to specified schedules. Results indicated significant differences for the change scores (baseline to 90 days) for bench press, knee flexion, upper body and lower body composite strength scores between RST and all other groups. RST was the only treatment that increased upper and lower body strength. No differences between groups were found for body mass losses, decrease in percent fat and fat mass. In contrast, these variables showed significant change scores for all groups. Decreases in fat-free mass (FFM) were 5.18 +/- 3.40 kg, 4.79 +/- 4.15 kg (p = 0.001), 4.64 +/- 4.23 kg, and 3.26 +/- 2.67 kg for EE, LC, RST, and EERST, respectively. These data suggest that the combination of resistance strength training and VLCD increases strength despite a loss of FFM. However, endurance exercise and VLCD do not seem to affect body mass loss or FFM loss per se. Moreover, it seems that these increases in strength may represent a training effect which might imply improved central neuromuscular function rather than muscular hypertrophy since FFM decreased in all groups.
Baker, Lindsay B
2017-03-01
Athletes lose water and electrolytes as a consequence of thermoregulatory sweating during exercise and it is well known that the rate and composition of sweat loss can vary considerably within and among individuals. Many scientists and practitioners conduct sweat tests to determine sweat water and electrolyte losses of athletes during practice and competition. The information gleaned from sweat testing is often used to guide personalized fluid and electrolyte replacement recommendations for athletes; however, unstandardized methodological practices and challenging field conditions can produce inconsistent/inaccurate results. The primary objective of this paper is to provide a review of the literature regarding the effect of laboratory and field sweat-testing methodological variations on sweating rate (SR) and sweat composition (primarily sodium concentration [Na + ]). The simplest and most accurate method to assess whole-body SR is via changes in body mass during exercise; however, potential confounding factors to consider are non-sweat sources of mass change and trapped sweat in clothing. In addition, variability in sweat [Na + ] can result from differences in the type of collection system used (whole body or localized), the timing/duration of sweat collection, skin cleaning procedure, sample storage/handling, and analytical technique. Another aim of this paper is to briefly review factors that may impact intra/interindividual variability in SR and sweat [Na + ] during exercise, including exercise intensity, environmental conditions, heat acclimation, aerobic capacity, body size/composition, wearing of protective equipment, sex, maturation, aging, diet, and/or hydration status. In summary, sweat testing can be a useful tool to estimate athletes' SR and sweat Na + loss to help guide fluid/electrolyte replacement strategies, provided that data are collected, analyzed, and interpreted appropriately.
Anthropometry of elderly residents in the city of São Paulo, Brazil.
Barbosa, Aline R; Souza, José M P; Lebrão, Maria L; Laurenti, Ruy; Marucci, Maria de Fátima N
2005-01-01
The article presents gender and age-specific selected anthropometric data for a representative sample of elderly Brazilians in the city of São Paulo. This was a cross-sectional, population-based household survey. A total of 1,894 older adults (men and women, > 60 years) were examined from January to March 2001. Data were presented as means and percentiles for body mass (BM); height or stature (ST); body mass index (BMI); waist (WC), hip (HC), arm (AC), and calf (CC) circumferences; triceps skinfold thickness (TST); and arm muscle circumference (AMC), and differences were described according to age (all variables) and gender (BMI). Except for HC (men), all anthropometric variables were lower in the oldest than in the youngest individuals (p < 0.01) in both genders. BMI was significantly higher (p < 0.01) in women than men (all age groups). The observations suggest that there is loss of muscle mass and redistribution and reduction of fat mass with age (both genders). The data can be used in clinical practice and epidemiological studies based on interpretation of anthropometric measurements in the elderly in São Paulo.
The SW Sex Phenomenon as an Evolutionary Stage of Cataclysmic Variables
NASA Astrophysics Data System (ADS)
Schmidtobreick, L.
From recent large observing campaigns, one finds that nearly all non- or weakly magnetic cataclysmic variables in the orbital period range between 2.8 and 4 hours are of SW Sex type and as such experience very high mass transfer rates. The evolution of cataclysmic variables as for any interacting binary is driven by angular momentum loss which results in a decrease of the orbital period on evolutionary time scales. In particular, all long-period systems need to cross the SW Sex regime of the orbital period distribution before entering the period gap. This makes the SW Sex phenomenon an evolutionary stage in the life of a cataclysmic variable. Here, I present a short overview of the current state of research on these systems.
The Seasonal and Interannual Variability of the Budgets of N2O and CCl3F
NASA Technical Reports Server (NTRS)
Wong, Sun; Prather, Michael J.; Rind, David H.
1999-01-01
The 6-year wind archives from the Goddard Institute for Space Studies/Global Climate-Middle Atmosphere Model (GISS/GCMAM) were in- put to the GISS/Harvard/Irvine Chemical Transport Model (G/H/I CTM) to study the seasonal and interannual variability of the budgets and distributions of nitrous oxide (N2O) and trichlorofluoromethane (CCl3F), with the corresponding chemical loss frequencies recycled and boundary conditions kept unchanged from year to year. The effects of ozone feedback and quasi-biennial oscillation (QBO) were not included. However, the role of circulation variation in driving the lifetime variability is investigated. It was found that the global loss rates of these tracers are related to the extratropical planetary wave activity, which drives the tropical upward mass flux. For N2O, a semiannual signal in the loss rate variation is associated with the interhemispheric asymmetry in the upper stratospheric wave activity. For CCl3F, the semiannual signal is weaker, associated with the comparatively uniform wave episodes in the lower stratosphere. The loss rates lag behind the wave activity by about 1-2 months. The interannual variation of the GCM generated winds drives the interannual variation of the annually averaged lifetime. The year-to-year variations of the annually averaged lifetimes can be about 3% for N2O and 4% for CCl3F.
IR photometry and models for the dust shells of two oxygen Mira variables
NASA Astrophysics Data System (ADS)
Bogdanov, M. B.; Taranova, O. G.; Shenavrin, V. I.
2015-05-01
Long-term JHKLM photometric measurements of the oxygen Mira variables RU Her and RS Vir are presented. Variations of the brightnesses and colors of these stars over the observation period are analyzed, and master light curves and color indices of these stars are derived. A linear trend was present in the mean infrared brightness of RS Vir on a time scale of ˜6000 day, possibly related to changes in the dust shell of the Mira. The results of model calculations of spherically symmetric dust shells of stars based on mean-flux data supplemented by observations from the IRAS and AKARI satellites in the intermediate- and far-IR are presented. The visual optical depth of the dust shell of RU Her, which has a temperature at its inner boundary T 1 = 590 K, is quite low: τ V = 0.33. The dust shell of RS Vir is much cooler ( T 1 = 410 K), and has τ V = 0.77. The estimated mass-loss rate of RU Her is 6.2 × 10-7 M ⊙/yr, while the mass-loss rate of RS Vir is 7.1 × 10-7 M ⊙/yr.
Extended 60 μm Emission from Nearby Mira Variables
NASA Astrophysics Data System (ADS)
Bauer, W. H.; Stencel, R. E.
1993-01-01
Circumstellar dust envelopes around some optically visible late-type stars are so extensive that they are detectable as extended at an arc-minute scale by the IRAS survey observations (Stencel, Pesce and Bauer 1988, Astron. J 95, 141; Hawkins 1990, Astron. Ap. 229, L8). The width of the IRAS scan profiles at 10% of peak intensity is an indicator of source extension. Wyatt and Cahn (1983, Ap. J. 275, 225) presented a sample of 124 Mira variables in the solar neighborhood. Of this sample, 11 Miras which show silicate emission are bright enough at 60 microns for a significant determination of the width of a scan at 10% of peak flux. Individual scans and maps were examined in order to determine whether any observed extension was associated with the central star. Five stars showed significant extension apparently due to mass loss from the central star: R Leo, o Cet, U Ori, R Cas and R Hor. IRAS LRS spectra, point source fluxes and observed extensions of these sources are compared to the predictions of model dust shells which assume steady mass loss. This work was supported in part by NASA grant NAG 5-1213 to Wellesley College.
The use of moderated mediated analysis to study the influence of hypo-hydration on working memory.
Young, Hayley A; Benton, David
2016-07-13
To date, dehydration has been typically reported to infl uence psychological parameters when there has been at least a 2% loss of body mass, although there has been little examination of those going about their everyday lives, those who have lost less than 1% of body mass. In such situations factors such as the initial hydration status and individual differences in the response to a reduced fl uid intake are likely to be infl uential. Yet to study the complexity added by such additional variables novel methods of statistical analysis are required. The present study describes the use of moderated mediation, an approach that asks various questions: fi rstly, is drinking infl uential?; secondly, does a mediator (e.g.,thirst) sit between an independent and dependent variable?; and thirdly, does an effect only occur under certain conditions such as initial osmolality? In the study, 118 subjects were exposed to 30 °C for four hours during which they half drank 300 ml water. The serial sevens test of working memory was performed before and at the end of the procedure. A 0.6% loss of body mass reduced the effi ciency of working memory. Those who consumed water had better working memory; working memory was worse in participants who lost more body mass or became thirstier, but only in those with higher levels of baseline osmolality. Small variations in hydration status infl uenced cognitive functioning although there were individual differences in the response. The parameters that influence an adverse response to hypo-hydration need to be established to allow giving appropriate advice.
Ultraendurance cycling in a hot environment: thirst, fluid consumption, and water balance.
Armstrong, Lawrence E; Johnson, Evan C; McKenzie, Amy L; Ellis, Lindsay A; Williamson, Keith H
2015-04-01
The purpose of this field investigation was to identify and clarify factors that may be used by strength and conditioning professionals to help athletes drink adequately but not excessively during endurance exercise. A universal method to accomplish this goal does not exist because the components of water balance (i.e., sweat rate, fluid consumed) are different for each athlete and endurance events differ greatly. Twenty-six male cyclists (mean ± SD; age, 41 ± 8 years; height, 177 ± 7 cm; body mass, 81.85 ± 8.95 kg) completed a summer 164-km road cycling event in 7.0 ± 2.1 hours (range, 4.5-10.4 hours). Thirst ratings, fluid consumed, indices of hydration status, and body water balance (ingested fluid volume - [urine excreted + sweat loss]) were the primary outcome variables. Measurements were taken before the event, at designated aid stations on the course (52, 97, and 136 km), and at the finish line. Body water balance during exercise was not significantly correlated with exercise time on the course, height, body mass, or body mass index. Thirst ratings were not significantly correlated with any variable. We also observed a wide range of total sweat losses (4.9-12.7 L) and total fluid intakes (2.1-10.5 L) during this ultraendurance event. Therefore, we recommend that strength and conditioning professionals develop an individualized drinking plan for each athlete, by calculating sweat rate (milliliter per hour) on the basis of body mass change (in kilograms), during field simulations of competition.
Chronic exercise preserves lean muscle mass in masters athletes.
Wroblewski, Andrew P; Amati, Francesca; Smiley, Mark A; Goodpaster, Bret; Wright, Vonda
2011-09-01
Aging is commonly associated with a loss of muscle mass and strength, resulting in falls, functional decline, and the subjective feeling of weakness. Exercise modulates the morbidities of muscle aging. Most studies, however, have examined muscle-loss changes in sedentary aging adults. This leaves the question of whether the changes that are commonly associated with muscle aging reflect the true physiology of muscle aging or whether they reflect disuse atrophy. This study evaluated whether high levels of chronic exercise prevents the loss of lean muscle mass and strength experienced in sedentary aging adults. A cross-section of 40 high-level recreational athletes ("masters athletes") who were aged 40 to 81 years and trained 4 to 5 times per week underwent tests of health/activity, body composition, quadriceps peak torque (PT), and magnetic resonance imaging of bilateral quadriceps. Mid-thigh muscle area, quadriceps area (QA), subcutaneous adipose tissue, and intramuscular adipose tissue were quantified in magnetic resonance imaging using medical image processing, analysis, and visualization software. One-way analysis of variance was used to examine age group differences. Relationships were evaluated using Spearman correlations. Mid-thigh muscle area (P = 0.31) and lean mass (P = 0.15) did not increase with age and were significantly related to retention of mid-thigh muscle area (P < 0.0001). This occurred despite an increase in total body fat percentage (P = 0.003) with age. Mid-thigh muscle area (P = 0.12), QA (P = 0.17), and quadriceps PT did not decline with age. Specific strength (strength per QA) did not decline significantly with age (P = 0.06). As muscle area increased, PT increased significantly (P = 0.008). There was not a significant relationship between intramuscular adipose tissue (P = 0.71) or lean mass (P = 0.4) and PT. This study contradicts the common observation that muscle mass and strength decline as a function of aging alone. Instead, these declines may signal the effect of chronic disuse rather than muscle aging. Evaluation of masters athletes removes disuse as a confounding variable in the study of lower-extremity function and loss of lean muscle mass. This maintenance of muscle mass and strength may decrease or eliminate the falls, functional decline, and loss of independence that are commonly seen in aging adults.
Koehler, K; De Souza, M J; Williams, N I
2017-03-01
Normal-weight women frequently restrict their caloric intake and exercise, but little is known about the effects on body weight, body composition and metabolic adaptations in this population. We conducted a secondary analysis of data from a randomized controlled trial in sedentary normal-weight women. Women were assigned to a severe energy deficit (SEV: -1062±80 kcal per day; n=9), a moderate energy deficit (MOD: -633±71 kcal per day; n=7) or energy balance (BAL; n=9) while exercising five times per week for 3 months. Outcome variables included changes in body weight, body composition, resting metabolic rate (RMR) and metabolic hormones associated with energy conservation. Weight loss occurred in SEV (-3.7±0.9 kg, P<0.001) and MOD (-2.7±0.8 kg; P=0.003), but weight loss was significantly less than predicted (SEV: -11.1±1.0 kg; MOD: -6.5±1.1 kg; both P<0.001 vs actual). Fat mass declined in SEV (P<0.001) and MOD (P=0.006), whereas fat-free mass remained unchanged in all groups (P>0.33). RMR decreased by -6±2% in MOD (P=0.020). In SEV, RMR did not change on a group level (P=0.66), but participants whose RMR declined lost more weight (P=0.020) and had a higher baseline RMR (P=0.026) than those whose RMR did not decrease. Characteristic changes in leptin (P=0.003), tri-iodothyronine (P=0.013), insulin-like growth factor-1 (P=0.016) and ghrelin (P=0.049) occurred only in SEV. The energy deficit and adaptive changes in RMR explained 54% of the observed weight loss. In normal-weight women, caloric restriction and exercise resulted in less-than-predicted weight loss. In contrast to previous literature, weight loss consisted almost exclusively of fat mass, whereas fat-free mass was preserved.
Luminous blue variables and the fates of very massive stars
NASA Astrophysics Data System (ADS)
Smith, Nathan
2017-09-01
Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40 M⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.
RW Sextantis, a disk with a hot, high-velocity wind
NASA Astrophysics Data System (ADS)
Greenstein, J. L.; Oke, J. B.
1982-07-01
The continuum spectrum of the flickering blue variable RW Sex was observed from 10,000 to 1150 A. The star is a cataclysmic variable currently stabilized at maximum, and the spectrum is dominated by an accretion disk, with flat spectrum in the ultraviolet, except at more than 5000 A, where a blackbody near 7000 K is seen. A distance of 400 pc is derived, if the latter arises from an F type main sequence star. The accretion rate required is near 10 to the -8th solar masses per year. Only weak emission is seen, except for Lyman alpha; strong, broad UV absorption lines are seen with centers displaced up to -3000 km/s, with terminal velocities up to -4500 km/s, the velocity of escape from a white dwarf. The low X-ray flux may arise from absorption within an unusually dense, hot wind from the innermost portions of the disk. The estimated mass loss rate is nearly 10 to the -12th solar masses per year.
RW Sextantis, a disk with a hot, high-velocity wind
NASA Technical Reports Server (NTRS)
Greenstein, J. L.; Oke, J. B.
1982-01-01
The continuum spectrum of the flickering blue variable RW Sex was observed from 10,000 to 1150 A. The star is a cataclysmic variable currently stabilized at maximum, and the spectrum is dominated by an accretion disk, with flat spectrum in the ultraviolet, except at more than 5000 A, where a blackbody near 7000 K is seen. A distance of 400 pc is derived, if the latter arises from an F type main sequence star. The accretion rate required is near 10 to the -8th solar masses per year. Only weak emission is seen, except for Lyman alpha; strong, broad UV absorption lines are seen with centers displaced up to -3000 km/s, with terminal velocities up to -4500 km/s, the velocity of escape from a white dwarf. The low X-ray flux may arise from absorption within an unusually dense, hot wind from the innermost portions of the disk. The estimated mass loss rate is nearly 10 to the -12th solar masses per year.
Space artificial gravity facilities - An approach to their construction
NASA Technical Reports Server (NTRS)
Wercinski, P. F.; Searby, N. D.; Tillman, B. W.
1988-01-01
In the course of adaptation to a space microgravity environment, humans experience cardiovascular deconditioning, loss of muscle mass, and loss of bone minerals. One possible solution to these space adaptation problems is to simulate earth's gravity using the centripetal acceleration created by a rotating system. The design and construction of rotating space structures pose many challenges. Before committing to the use of artificial gravity in future space missions, a man-rated Variable Gravity Research Facility (VGRF) should be developed in earth orbit as a gravitational research tool and testbed. This paper addresses the requirements and presents preliminary concepts for such a facility.
Can GRACE Explain Some of the Main Interannual Polar Motion Signatures?
NASA Astrophysics Data System (ADS)
Adhikari, S.; Ivins, E. R.; Larour, E. Y.
2016-12-01
GRACE has provided a series of monthly solutions for water mass transport that now span a 14-year period. A natural question to ask is how much of this mass transport information might be used to reconstruct, theoretically, the non-tidal and non-Chandlerian polar motion at interannual time scales. Reconstruction of the pole position at interannual time scales since 2002 has been performed by Chen et al. (2013, GRL) and Adhikari and Ivins (2016, Science Advances). (The main feature of polar motion that has been evolving since the mid 1990's is the increasing dominance of Greenland ice mass loss.) Here we discuss this reconstruction and the level of error that occurs because of missing information about the spherical harmonic degree 1 and 2 terms and the lack of terms associated with angular momentum transfer in the Louiville equations. Using GRACE observations and complementary solutions of self-attraction/loading problem on an elastically compressible rotating earth, we show that ice mass losses from polar ice sheets, and when combined with changes in continental hydrology, explain nearly the entire amplitude (83±23%) and mean directional shift (within 5.9±7.6°) of recently observed eastward polar motion. We also show that decadal scale pole variations are directly linked to global changes in continental hydrology. The energy sources for such motions are likely to be associated with decadal scale ocean and atmospheric oscillations that also drive 20th century continental wet-dry variability. Interannual variability in pole position, therefore, offers a tool for assessing past stability of our climate, and for the future, now faced with an increased intensity in the water cycle and more vulnerable to ice sheet instability. Figure caption: Observed and reconstructed mean annual pole positions with respect to the 2003-2015 mean position. Blue error band is associated with the reconstructed solution; red signifies additional errors that are related to uncertainty in the long-term linear trend. Notice the interannual variability during the GRACE period.
Sibutramine versus continuous positive airway pressure in obese obstructive sleep apnoea patients.
Ferland, A; Poirier, P; Sériès, F
2009-09-01
The aim of the present study was to compare the efficacy of 1 yr of sibutramine-induced weight loss versus continuous positive airway pressure (CPAP) treatment on sleep-disordered breathing, cardiac autonomic function and systemic blood pressure in obese patients with obstructive sleep apnoea. Subjects with a body mass index of > or =30 kg.m(-2) without previous treatment for obstructive sleep apnoea underwent either sibutramine (n = 22) or CPAP (n = 18) treatment for 1 yr. Sibutramine induced a 5.4+/-1.4 kg decrease in body weight compared to the CPAP group, in which no changes in anthropometric variables were observed. The CPAP treatment improved all sleep and respiratory variables, whereas sibutramine-induced weight loss improved only nocturnal arterial oxygen saturation profile. Only CPAP treatment improved night-time systolic and diastolic blood pressure and 24-h and daytime ambulatory diastolic blood pressure. Sibutramine-induced weight loss had no impact on indices of heart rate variability, whereas CPAP treatment increased daytime time domain indices. CPAP treatment for 1 yr had beneficial impacts on nocturnal breathing disturbances, and improved nocturnal oxygenation, night-time systolic and diastolic blood pressure, and daytime cardiac parasympathetic modulation. Sibutramine did not improve sleep-disordered breathing, systemic blood pressure or heart rate variability. There were no adverse effects, such as increment in blood pressure or arrhythmias, associated with this treatment regimen.
Predictors of long-term weight maintenance.
Vogels, Neeltje; Diepvens, Kristel; Westerterp-Plantenga, Margriet S
2005-12-01
The purpose of this study was to evaluate available variables of a long-term weight maintenance study to investigate possible factors predisposing to weight regain after a period of weight loss. The Maastricht Weight Maintenance Study is an ongoing longitudinal study of healthy men and women (29 men and 62 women; 18 to 65 years of age; BMI = 30.2 +/- 3.1 kg/m(2)). A variety of parameters were measured before and after a very-low-energy diet and after a follow-up of at least 2 years. Mean weight loss was 7.9 +/- 3.6 kg, and percent weight regain was 113.8 +/- 98.1%. Percent BMI regain was negatively associated with an increase in dietary restraint (r = -0.47, p < 0.05). Percent weight regain was negatively correlated with baseline resting metabolic rate (r = -0.38, p = 0.01) and baseline fat mass (r = -0.24, p = 0.05) and positively correlated with the magnitude of change in body weight (BW) expressed as maximum amplitude of BW (r = 0.21, p < 0.05). In addition, amplitude of BW was positively correlated with the frequency of dieting (r = 0.57, p < 0.01). The best predictors for weight maintenance after weight loss were an increase in dietary restraint during weight loss, a high baseline resting metabolic rate, a relatively high baseline fat mass favoring a fat-free mass-sparing effect during weight loss, a rather stable BW, and a low frequency of dieting. Therefore, BW maintenance after BW loss seems to be a multifactorial issue, including mechanisms that regulate an individuals' energy expenditure, body composition, and eating behavior in such a way that energy homeostasis is maintained.
Former extent of glacier-like forms on Mars
NASA Astrophysics Data System (ADS)
Brough, Stephen; Hubbard, Bryn; Hubbard, Alun
2016-08-01
Mars' mid-latitude glacier-like forms (GLFs) have undergone substantial mass loss and recession since a hypothesised last martian glacial maximum (LMGM) stand. To date, there is a lack of knowledge of the nature and timing of the LMGM, the subsequent mass loss and whether this mass loss has been spatially variable. Here, we present the results of a population-scale inventory of recessional GLFs, derived from analysis of 1293 GLFs3 identified within Context Camera (CTX) imagery, to assess the distribution and controls on GLF recession. A total of 436 GLFs were identified showing strong evidence of recession: 197 in the northern hemisphere and 239 in the southern hemisphere. Relative to their parent populations, recessional GLFs are over-represented in the low latitude belts between 25 and 40° and in areas of high relief, suggesting that these zones exert some control over GLF sensitivity and response to forcing. This analysis is complemented by the reconstruction of the maximum extent and morphology of a specific GLF for which High Resolution Imaging Science Experiment (HiRISE) derived digital elevation data are available. Using Nye's (Nye, J.F. [1951] Proc. Roy. Soc. Lond, Ser. a - Mat. Phys. Sci., 207, 554-572) perfect plastic approximation of ice flow applied to multiple flow-lines under an optimum yield strength of 22 kPa, we calculate that the reconstructed GLF has lost an area of 6.86 km2 with a corresponding volume loss of 0.31 km3 since the LMGM. Assuming the loss reconstructed at this GLF occurred at all mid-latitude GLFs yields a total planetary ice loss from Mars' GLFs of 135 km3, similar to the current ice volume in the European Alps on Earth.
On the Origin of the Wind Variability of 55 Cyg
NASA Astrophysics Data System (ADS)
Haucke, M.; Kraus, M.; Venero, R. O. J.; Tomić, S.; Cidale, L. S.; Nickeler, D. H.; Curé, M.
2014-10-01
The early B-type supergiant 55 Cygni exhibits pronounced night-to-night variations in its Hα P-Cygni line profile, probably related to a strong variable stellar wind. In this work we studied a sample of spectroscopic observations, taken at the Observatory of Ondřejov (Czech Republic), in order to analyze the variations in the stellar and wind parameters. The observations were modeled using FASTWIND code (Santolaya-Rey, Puls & Herrero 1997, A&A 323, 488-512). Although we were not able to find an exact period from the Hα line profile variations, the same pattern (shape and intensity) seems to have a cyclic behaviour of about 17 days. The values for the wind and stellar parameters suggest changes of the mass loss rate by a factor of three during a cycle of variability. On the other hand, Kraus et al. (Precision Asteroseismology Proceedings, IAU Symposium 301, 2014) found that the HeI λ 6678 photospheric absorption line presents a 1.09 day period, which could be superimposed over a longer period. From the analysis of our theoretical parameters we found that a gravitational mode of pulsation could not be the only agent responsible for the observed variations. As the stars evolving from the main sequence to the red supergiant stage (RSG) have different pulsation properties than those evolving back to the blue supergiant region (Saio, Georgy & Meynet, 2013, MNRAS, 433, 1246), we conclude that 55 Cygni could be in a post-RSG phase with multiperiodic pulsation modes. The variable mass loss could be attributed to the coupling of the oscillation modes.
Parreño, María A; Scannapieco, Alejandra C; Remis, María I; Juri, Marianela; Vera, María T; Segura, Diego F; Cladera, Jorge L; Lanzavecchia, Silvia B
2014-01-01
Anastrepha fraterculus is one of the most important fruit fly plagues in the American continent and only chemical control is applied in the field to diminish its population densities. A better understanding of the genetic variability during the introduction and adaptation of wild A. fraterculus populations to laboratory conditions is required for the development of stable and vigorous experimental colonies and mass-reared strains in support of successful Sterile Insect Technique (SIT) efforts. The present study aims to analyze the dynamics of changes in genetic variability during the first six generations under artificial rearing conditions in two populations: a) a wild population recently introduced to laboratory culture, named TW and, b) a long-established control line, named CL. Results showed a declining tendency of genetic variability in TW. In CL, the relatively high values of genetic variability appear to be maintained across generations and could denote an intrinsic capacity to avoid the loss of genetic diversity in time. The impact of evolutionary forces on this species during the adaptation process as well as the best approach to choose strategies to introduce experimental and mass-reared A. fraterculus strains for SIT programs are discussed.
2014-01-01
Background Anastrepha fraterculus is one of the most important fruit fly plagues in the American continent and only chemical control is applied in the field to diminish its population densities. A better understanding of the genetic variability during the introduction and adaptation of wild A. fraterculus populations to laboratory conditions is required for the development of stable and vigorous experimental colonies and mass-reared strains in support of successful Sterile Insect Technique (SIT) efforts. Methods The present study aims to analyze the dynamics of changes in genetic variability during the first six generations under artificial rearing conditions in two populations: a) a wild population recently introduced to laboratory culture, named TW and, b) a long-established control line, named CL. Results Results showed a declining tendency of genetic variability in TW. In CL, the relatively high values of genetic variability appear to be maintained across generations and could denote an intrinsic capacity to avoid the loss of genetic diversity in time. Discussion The impact of evolutionary forces on this species during the adaptation process as well as the best approach to choose strategies to introduce experimental and mass-reared A. fraterculus strains for SIT programs are discussed. PMID:25471362
The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.
Notz, Dirk
2009-12-08
We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.
The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss
Notz, Dirk
2009-01-01
We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet. PMID:19884496
ADIABATIC MASS LOSS IN BINARY STARS. II. FROM ZERO-AGE MAIN SEQUENCE TO THE BASE OF THE GIANT BRANCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Hongwei; Chen, Xuefei; Han, Zhanwen
2015-10-10
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M{sub ⊙}–100 M{sub ⊙} from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. Formore » intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio q{sub ad} (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ M{sub donor}/M{sub accretor}) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, q{sub ad} plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with q{sub ad} declining with decreasing mass, and asymptotically approaching q{sub ad} = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated q{sub ad} values agree well with the behavior of time-dependent models by Chen and Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely circumscribes the range in q{sub ad} as a function of the orbital period in which they are found. These results are intended to advance the verisimilitude of population synthesis models of close binary evolution.« less
Molecular shells in IRC+10216: tracing the mass loss history
NASA Astrophysics Data System (ADS)
Cernicharo, J.; Marcelino, N.; Agúndez, M.; Guélin, M.
2015-03-01
Thermally-pulsating AGB stars provide three-fourths of the matter returned to the interstellar medium. The mass and chemical composition of their ejecta largely control the chemical evolution of galaxies. Yet, both the mass loss process and the gas chemical composition remain poorly understood. We present maps of the extended 12CO and 13CO emissions in IRC+10216, the envelope of CW Leo, the high mass loss star the closest to the Sun. IRC+10216 is nearly spherical and expands radially with a velocity of 14.5 km s-1. The observations were made On-the-Fly with the IRAM 30 m telescope; their sensibility, calibration, and angular resolution are far higher than all previous studies. The telescope resolution at λ = 1.3 mm (11'' HPBW) corresponds to an expansion time of 500 yr. The CO emission consists of a centrally peaked pedestal and a series of bright, nearly spherical shells. It peaks on CW Leo and remains relatively strong up to rphot = 180''. Further out the emission becomes very weak and vanishes as CO gets photodissociated. As CO is the best tracer of the gas up to rphot, the maps show the mass loss history in the last 8000 yr. The bright CO shells denote over-dense regions. They show that the mass loss process is highly variable on timescales of hundreds of years. The new data, however, do not support previous claims of a strong decrease of the average mass loss in the last few thousand years. The over-dense shells are not perfectly concentric and extend farther to the N-NW. The typical shell separation is 800-1000 yr in the middle of the envelope, but seems to increase outwards. The shell-intershell brightness contrast is ≥3. All those key features can be accounted for if CW Leo has a companion star with a period ≃800 yr that increases the mass loss rate when it comes close to periastron. Higher angular resolution observations are needed to fully resolve the dense shells and measure the density contrast. The latter plays an essential role in our understanding of the envelope chemistry. This work was based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Movies associated to Figs. 3, 5, 7, 8, and 10 are available in electronic form at http://www.aanda.orgData cubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A91
NASA Technical Reports Server (NTRS)
Koopmann, Rebecca A.; Lee, Young-Wook; Demarque, Pierre; Howard, Jamie M.
1994-01-01
Mass loss on the horizontal branch has been invoked in the literature to explain such phenomena as the color (mass) dispersion of the horizontal branch and the observed distribution of period changes in RR Lyrae stars. To test these claims, the Yale stellar evolution code was used to evolve horizontal branch models of masses 0.64, 0.66, 0.68, 0.70, and 0.72 solar mass with Z of 0.001, core mass of 0.4893, main-sequence helium abundance of 0.23, and constant mass loss rates of 0, 10(exp -10), 5 x 10(exp -10), and 10(exp -9) solar mass/yr. Mass loss was assumed to occur only in the instability strip, where a mechanism is most likely to exist. Synthetic horizontal branches, constructed from the models, show that mass loss on the horizontal branch cannot produce the observed color dispersion even for the highest mass-loss rate of 10(exp -9) solar mass/yr. Mass loss is unlikely to occur at a higher rate without significant effects on the horizontal branch morphology, which would destroy the good agreement between standard synthetic models without mass loss and observed horizontal branches. Periods and period changes were calculated for all models. The period changes are not significantly larger for models with mass loss. The effect of mass loss in clusters of other metallicities is discussed.
Local topography increasingly influences the mass balance of a retreating cirque glacier
Florentine, Caitlyn; Harper, Joel T.; Fagre, Daniel B.; Moore, Johnnie; Peitzsch, Erich H.
2018-01-01
Local topographically driven processes – such as wind drifting, avalanching, and shading – are known to alter the relationship between the mass balance of small cirque glaciers and regional climate. Yet partitioning such local effects from regional climate influence has proven difficult, creating uncertainty in the climate representativeness of some glaciers. We address this problem for Sperry Glacier in Glacier National Park, USA, using field-measured surface mass balance, geodetic constraints on mass balance, and regional climate data recorded at a network of meteorological and snow stations. Geodetically derived mass changes during 1950–1960, 1960–2005, and 2005–2014 document average mass change rates during each period at −0.22 ± 0.12, −0.18 ± 0.05, and −0.10 ± 0.03 m w.e. yr−1, respectively. A correlation of field-measured mass balance and regional climate variables closely (i.e., within 0.08 m w.e. yr−1) predicts the geodetically measured mass loss from 2005 to 2014. However, this correlation overestimates glacier mass balance for 1950–1960 by +1.20 ± 0.95 m w.e. yr−1. Our analysis suggests that local effects, not represented in regional climate variables, have become a more dominant driver of the net mass balance as the glacier lost 0.50 km2 and retreated further into its cirque.
Antarctic mass balance changes from GRACE
NASA Astrophysics Data System (ADS)
Kallenberg, B.; Tregoning, P.
2012-04-01
The Antarctic ice sheet contains ~30 million km3 of ice and constitutes a significant component of the global water balance with enough freshwater to raise global sea level by ~60 m. Altimetry measurements and climate models suggest variable behaviour across the Antarctic ice sheet, with thickening occurring in a vast area of East Antarctica and substantial thinning in West Antarctica caused by increased temperature gradients in the surrounding ocean. However, the rate at which the polar ice cap is melting is still poorly constrained. To calculate the mass loss of an ice sheet it is necessary to separate present day mass balance changes from glacial isostatic adjustment (GIA), the response of the Earth's crust to mass loss, wherefore it is essential to undertake sufficient geological and geomorphological sampling. As there is only a limited possibility for this in Antarctica, all models (i.e. geological, hydrological as well as atmospheric) are very poorly constrained. Therefore, space-geodetic observations play an important role in detecting changes in mass and spatial variations in the Earth's gravity field. The Gravity Recovery And Climate Experiment (GRACE) observed spatial variations in the Earth's gravity field over the past ten years. The satellite detects mass variations in the Earth system including geophysical, hydrological and atmospheric shifts. GRACE itself is not able to separate the GIA from mass balance changes and, due to the insufficient geological and geomorphological database, it is not possible to model the GIA effect accurately for Antarctica. However, the results from GRACE can be compared with other scientific results, coming from other geodetic observations such as satellite altimetry and GPS or by the use of geological observations. In our contribution we compare the GRACE data with recorded precipitation patterns and mass anomalies over East Antarctica to separate the observed GRACE signal into its two components: GIA as a result of mass loss and present day surface load changes due to possible snow/ice accumulation.
Messier, Virginie; Hayek, Jessy; Karelis, Antony D; Messier, Lyne; Doucet, Eric; Prud'homme, Denis; Rabasa-Lhoret, Rémi; Strychar, Irene
2010-04-01
The objective of the present study was to examine anthropometric, metabolic, psychosocial and dietary factors associated with dropout in a 6-month weight loss intervention aimed at reducing body weight by 10 %. The study sample included 137 sedentary, overweight and obese postmenopausal women, participating in a weight loss intervention that consisted of either energy restriction (ER) or ER with resistance training (ER+RT). Anthropometric (BMI, percent lean body mass, percent fat mass, visceral adipose tissue and waist circumference), metabolic (total energy expenditure, RMR, insulin sensitivity and fasting plasma levels of leptin and ghrelin), psychosocial (body esteem, self-esteem, stress, dietary restraint, disinhibition, hunger, quality of life, self-efficacy, perceived benefits for controlling weight and perceived risk) and dietary (3-d food record) variables were measured. Thirty subjects out of 137 dropped out of the weight loss programme (22 %), with no significant differences in dropout rates between those in the ER and the ER+RT groups. Overall, amount of weight loss was significantly lower in dropouts than in completers ( - 1.7 (sd 3.5) v. - 5.6 (sd 4.3) kg, P < 0.05); weekly weight loss during the first 4 weeks was also significantly lower. Dropouts consumed fewer fruit servings than completers (1.7 (sd 1.1) v. 2.7 (sd 1.53), P < 0.05) and had higher insulin sensitivity levels (12.6 (sd 3.8) v. 11.1 (sd 2.8) mg glucose/min per kg fat-free mass, P < 0.05). The present results suggest that the rate of weight loss during the first weeks of an intervention plays an important role in the completion of the programme. Thus, participants with low rates of initial weight loss should be monitored intensely to undertake corrective measures to increase the likelihood of completion.
NASA Astrophysics Data System (ADS)
Bartolucci, S. F.; Miller, M. J.; Warrender, J. M.
2016-12-01
The behavior of carbon nanotube composites subjected to laser pulse heating with a 1070 nm variable pulse duration laser has been studied. Previous work has shown that carbon nanotube composites form a protective network on the surface of a composite, which reduces heat input to the underlying polymer and slows mass loss. In this work, we have studied the interaction between the incident laser and the plume formed above the composite. We have correlated these interactions with features observed in the time-resolved mass loss data and confirmed them with observations using high-speed video of the laser irradiations. Beam interactions were studied as a function of laser irradiance and nanotube content. It is shown that beam-plume interactions occur for the carbon nanotube composites and that the interactions occur at shorter pulse durations for increased nanotube content and laser irradiance. When we eliminate beam-plume interaction through alteration of the sample orientation relative to the incident beam, we are able to elucidate the individual contributions of the carbon nanotube surface network and the plume to the observed decrease in mass loss after laser irradiation. We examine the plume content using microscopy and Raman spectroscopy and show that greater beam absorption occurs when there is a higher graphitic content in the plume.
A comparative analysis of North American adolescent and adult mass murderers.
Meloy, J Reid; Hempel, Anthony G; Gray, B Thomas; Mohandie, Kris; Shiva, Andrew; Richards, Thomas C
2004-01-01
Thirty adult mass murderers and 34 adolescent mass murderers in North America are compared on both offender and offense variables to delineate similarities and differences. Findings indicate a plethora of psychiatric disturbances and odd/reclusive and acting-out personality traits. Predisposing factors include a fascination with weapons and war among many of the adolescents and the development of a "warrior mentality" in most of the adults. Precipitating factors indicate a major rejection or loss in the hours or days preceding the mass murder. Results are interpreted through the lens of threat assessment for targeted violence (Borum, Fein, Vossekuil, & Bergland 1999), recognizing that a fact-based, dynamic behavioral approach is most useful for mitigating risk of such an extremely low-base-rate violent crime. Copyright 2004 John Wiley & Sons, Ltd.
Protein intake and lean tissue mass retention following bariatric surgery.
Moizé, Violeta; Andreu, Alba; Rodríguez, Lucía; Flores, Lilliam; Ibarzabal, Ainitze; Lacy, Antonio; Jiménez, Amanda; Vidal, Josep
2013-08-01
Since current protein intake (PI) recommendations for the bariatric surgery (BS) patient are not supported by conclusive evidence, we aimed to evaluate the relationship between PI and lean tissue mass (LTM) loss following BS. Observational study including patients undergoing gastric bypass (GBP; n = 25) or sleeve gastrectomy (SG; n = 25). Dietary advice and daily PI were assessed prior to, and at 2- and 6-weeks, 4-, 8-, and 12-months after surgery. Body composition was assessed by dual energy X-ray absorptiometry (DXA). LTM loss as percent of weight loss (%LTM loss) at 4- and 12-months after surgery were the main outcome variables. A PI ≥ 60 g/d was associated with lower %LTM loss at 4- (p = 0.030) and 12-months (p = 0.013). Similar results were obtained when a PI ≥ 1.1 g/kg of ideal body weight (IBW)/d was considered. Multilinear regression showed the only independent predictor of %LTM loss at 4-months was PI (expressed as g/kg IBW/d) (OR: -0.376, p = 0.017), whereas PI (OR: -0.468, p = 0.001) and surgical technique (OR: 0.399, p = 0.006) predicted 12-months %LTM loss. Our data provide supportive evidence for the PI goals of >60 g/d or 1.1 g/kg IBW/d as a being associated with better LTM preservation in the BS patient. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
The Origin Of Cosmic Rays And The Stars Of Berkeley 87
NASA Astrophysics Data System (ADS)
Turner, David G.; Majaess, D. J.; Lane, D. J.; Balam, D. D.
2010-01-01
Spectroscopic observations and the results of photometric monitoring are presented for members of the heavily-reddened, young, 1.2 kpc-distant, open cluster Berkeley 87, which is spatially coincident with the strongest source of cosmic rays in the northern sky. Many cluster members exhibit evidence for extreme loss of mass over their lifetimes: the M3 Ia supergiant BC Cyg has an evolutionary mass half that of stars at the main-sequence turnoff, the B2 Iabe emission-line supergiant HDE 229059 also has an evolutionary mass smaller than that of the main-sequence turnoff, the WO2 star WR 142, the only example of an oxygen sequence Wolf-Rayet star in an open cluster, displays evidence for variable, high velocity winds in its spectrum, the curious object V439 Cyg (B0: Vnne) appears to be an example of a recent binary merger, and Vatican Emission Star VES 203 (B0.5 Ve) displays a strong P Cygni signature in its Balmer line emission. It appears that heavy mass loss is a common factor associated with cluster stars. Could that be associated with the location of a cosmic ray production factory from the vicinity of Berkeley 87?
NASA Astrophysics Data System (ADS)
Tsai, C. Y.; Forest, C. E.; Pollard, D.
2017-12-01
The Antarctic ice sheet (AIS) has the potential to be a major contributor to future sea-level rise (SLR). Current projections of SLR due to AIS mass loss remain highly uncertain. Better understanding of how ice sheets respond to future climate forcing and variability is essential for assessing the long-term risk of SLR. However, the predictability of future climate is limited by uncertainties from emission scenarios, model structural differences, and the internal variability that is inherently generated within the fully coupled climate system. Among those uncertainties, the impact of internal variability on the AIS changes has not been explicitly assessed. In this study, we quantify the effect of internal variability on the AIS evolutions by using climate fields from two large-ensemble experiments using the Community Earth System Model to force a three-dimensional ice sheet model. We find that internal variability of climate fields, particularly atmospheric fields, among ensemble members leads to significantly different AIS responses. Our results show that the internal variability can cause about 80 mm differences of AIS contribution to SLR by 2100 compared to the ensemble-mean contribution of 380-450 mm. Moreover, using ensemble-mean climate fields as the forcing in the ice sheet model does not produce realistic simulations of the ice loss. Instead, it significantly delays the onset of retreat of the West Antarctic Ice Sheet for up to 20 years and significantly underestimates the AIS contribution to SLR by 0.07-0.11 m in 2100 and up to 0.34 m in the 2250's. Therefore, because the uncertainty caused by internal variability is irreducible, we seek to highlight a critical need to assess the role of internal variability in projecting the AIS loss over the next few centuries. By quantifying the impact of internal variability on AIS contribution to SLR, policy makers can obtain more robust estimates of SLR and implement suitable adaptation strategies.
Sousa, Paula; Bastos, Ana Pinto; Venâncio, Carla; Vaz, Ana Rita; Brandão, Isabel; Costa, José Maia; Machado, Paulo; Conceição, Eva
2014-01-01
Depressive symptoms have been reported as prevalent after bariatric surgery. This study aims to analyze the role of weight, eating behaviors and body image in depressive symptomatology in bariatric surgery patients assessed post-operatively. This is a cross-sectional study including 52 bariatric surgery patients assessed post-operatively with a follow-up time ranging from 22 to 132 months. Psychological assessment included a clinical interview (Eating Disorder Examination) to assess eating disorders psychopathology, and three self-report measures: Outcome Questionnaire 45--general distress; Beck Depression Inventory--depressive symptoms; and Body Shape Questionnaire--body image. Our data show that depressive symptoms after surgery are associated with loss of control over eating, increased concerns with body image, and body mass index regain. Multiple linear regressions was tested including these variables and showed that body mass index regain after surgery, loss of control over eating and concerns with body image significantly explained 50% of the variance of post-operative depressive symptoms, being the concern with body image the most significant variable: greater dissatisfaction with body image was associated with more depressive symptoms. The results of this study showed that a subgroup of patients presents a significant weight gain after bariatric surgery, which is associated with episodes of loss of control over eating, concerns with body image and depressive symptoms. These results stress the relevance of body image concerns after surgery and the importance of clinically addressing these issues to optimize psychological functioning after bariatric surgery.
Mechanism and novel therapeutic approaches to wasting in chronic disease.
Ebner, Nicole; Springer, Jochen; Kalantar-Zadeh, Kamyar; Lainscak, Mitja; Doehner, Wolfram; Anker, Stefan D; von Haehling, Stephan
2013-07-01
Cachexia is a multifactorial syndrome defined by continuous loss of skeletal muscle mass - with or without loss of fat mass - which cannot be fully reversed by conventional nutritional support and which may lead to progressive functional impairment and increased death risk. Its pathophysiology is characterized by negative protein and energy balance driven by a variable combination of reduced food intake and abnormal metabolism. Muscle wasting is encountered in virtually all chronic disease states in particular during advanced stages of the respective illness. Several pre-clinical and clinical studies are ongoing to ameliorate this clinical problem. The mechanisms of muscle wasting and cachexia in chronic diseases such as cancer, chronic heart failure, chronic obstructive pulmonary disease and chronic kidney disease are described. We discuss therapeutic targets and such potential modulators as appetite stimulants, selective androgen receptor modulators, amino acids and naturally occurring peptide hormones. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.; Barsanti, Kelley C.; Hatch, Lindsay E.; May, Andrew A.; Kreidenweis, Sonia M.; Pierce, Jeffrey R.
2017-04-01
Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated. We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms.We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol-microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g., fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.In comparison of laboratory and plume results, the possible inconsistency of OA enhancement between them could be in part attributed to the effect of chamber walls and plume dilution. Our results highlight that laboratory and field experiments that focus on the fuel and fire conditions also need to consider the effects of plume dilution or vapor losses to walls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.
Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated.more » We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms. We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol-microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g., fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.In comparison of laboratory and plume results, the possible inconsistency of OA enhancement between them could be in part attributed to the effect of chamber walls and plume dilution. Lastly, our results highlight that laboratory and field experiments that focus on the fuel and fire conditions also need to consider the effects of plume dilution or vapor losses to walls.« less
Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.; ...
2017-04-28
Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated.more » We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms. We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol-microphysical model to estimate how SOA formation may vary under different ambient-plume conditions (e.g., fire size, emission mass flux, atmospheric stability). Smoke from small fires, such as typical prescribed burns, dilutes rapidly, which drives evaporation of organic vapor from the particle phase, leading to more effective SOA formation. Emissions from large fires, such as intense wildfires, dilute slowly, suppressing OA evaporation and subsequent SOA formation in the near field. We also demonstrate that different approaches to the calculation of OA enhancement in ambient plumes can lead to different conclusions regarding SOA formation. OA mass enhancement ratios of around 1 calculated using an inert tracer, such as black carbon or CO, have traditionally been interpreted as exhibiting little or no SOA formation; however, we show that SOA formation may have greatly contributed to the mass in these plumes.In comparison of laboratory and plume results, the possible inconsistency of OA enhancement between them could be in part attributed to the effect of chamber walls and plume dilution. Lastly, our results highlight that laboratory and field experiments that focus on the fuel and fire conditions also need to consider the effects of plume dilution or vapor losses to walls.« less
NASA Technical Reports Server (NTRS)
Johnson, Hollis Ralph; Querci, Francois R.; Jordan, Stuart (Editor); Thomas, Richard (Editor); Goldberg, Leo; Pecker, Jean-Claude
1987-01-01
The papers in this volume cover the following topics: (1) basic properties and photometric variability of M and related stars; (2) spectroscopy and nonthermal processes; (3) circumstellar radio molecular lines; (4) circumstellar shells, the formation of grains, and radiation transfer; (5) mass loss; (6) circumstellar chemistry; (7) thermal atmospheric models; (8) quasi-thermal models; (9) observations on the atmospheres of M dwarfs; and (1) theoretical work on M dwarfs.
Radio and submillimetre observations of wind structure in zeta Puppis
NASA Astrophysics Data System (ADS)
Blomme, R.; van de Steene, G. C.; Prinja, R. K.; Runacres, M. C.; Clark, J. S.
2003-09-01
We present radio and submillimetre observations of the O4I(n)f star zeta Pup, and discuss structure in the outer region of its wind ( ~ 10-100 R_*). The properties of bremsstrahlung, the dominant emission process at these wavelengths, make it sensitive to structure and allow us to study how the amount of structure changes in the wind by comparing the fluxes at different wavelengths. Possible forms of structure at these distances include Corotating Interaction Regions (CIRs), stochastic clumping, a disk or a polar enhancement. As the CIRs are azimuthally asymmetric, they should result in variability at submillimetre or radio wavelengths. To look for this variability, we acquired 3.6 and 6 cm observations with the Australia Telescope Compact Array (ATCA), covering about two rotational periods of the star. We supplemented these with archive observations from the NRAO Very Large Array (VLA), which cover a much longer time scale. We did not find variability at more than the +/-20% level. The long integration time does allow an accurate determination of the fluxes at 3.6 and 6 cm. Converting these fluxes into a mass loss rate, we find dot {M} = 3.5 x 10-6 Msun/yr. This value confirms the significant discrepancy with the mass loss rate derived from the Hα profile, making zeta Pup an exception to the usually good agreement between the Hα and radio mass loss rates. To study the run of structure as a function of distance, we supplemented the ATCA data by observing zeta Pup at 850 mu m with the James Clerk Maxwell Telescope (JCMT) and at 20 cm with the VLA. A smooth wind model shows that the millimetre fluxes are too high compared to the radio fluxes. While recombination of helium in the outer wind cannot be discounted as an explanation, the wealth of evidence for structure strongly suggests this as the explanation for the discrepancy. Model calculations show that the structure needs to be present in the inner ~ 70 R_* of the wind, but that it decays significantly, or maybe even disappears, beyond that radius.
A model for the spectroscopic variations of the peculiar symbiotic star MWC 560
NASA Technical Reports Server (NTRS)
Shore, Steven N.; Aufdenberg, Jason P.; Michalitsianos, A. G.
1994-01-01
In this note, we show that the ultraviolet and optical spectroscopic variability of this unique symbiotic star can be understood in terms of a time variable collimated stellar wind with a rapid acceleration near the source. Using the radial velocities observed during the ultraviolet bright phase, we find that a variation in the mass loss rate of a factor of ten can explain the ultraviolet spectral changes. The acceleration is far faster than normally observed in radiatively driven stellar winds and may be due to mechanical driving of the outflow from the disk.
Predictive factors of insulin resistance resolution with adjustable gastric band surgery.
Colsa Gutiérrez, Pablo; Kharazmi Taghavi, Mahgol; Sosa Medina, Rocío; Gutiérrez Cabezas, José Manuel; Ovejero Gómez, Víctor Jacinto; Ruiz, José Luis; Ingelmo Setién, Alfredo
2015-03-01
The aim of the study was to evaluate preoperative factors associated with remission of diabetes and weight loss after laparoscopic gastric band surgery. A retrospective cohort of 95 patients who had an adjustable gastric band placed were included. A preliminary descriptive study of prognostic factors was performed using the logistic regression model with SPSS 17.0. The independent variables were age, sex, body mass index (BMI), diabetes status and degree of obesity; dependent variables were the proportion of weight loss, change in diabetes status score and percent changes in fasting sugar and glycosylated hemoglobin. The variables that were significantly associated with the percentage of changes in fasting blood sugar and glycated hemoglobin were: the degree of obesity in the first year; preoperative and diabetes status respectively. The analysis of the need for antidiabetic treatment using the modified diabetes status score showed preoperative BMI, age and gender as significant predictors. In patients undergoing gastric band surgery, weight loss is the fundamental mechanism by which insulin sensitivity increases. This improvement in glucose metabolism is influenced by factors such as sex, age, insulin treatment, duration of diabetes and degree of preoperative obesity. Copyright © 2014 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
A decade of sea level rise slowed by climate-driven hydrology.
Reager, J T; Gardner, A S; Famiglietti, J S; Wiese, D N; Eicker, A; Lo, M-H
2016-02-12
Climate-driven changes in land water storage and their contributions to sea level rise have been absent from Intergovernmental Panel on Climate Change sea level budgets owing to observational challenges. Recent advances in satellite measurement of time-variable gravity combined with reconciled global glacier loss estimates enable a disaggregation of continental land mass changes and a quantification of this term. We found that between 2002 and 2014, climate variability resulted in an additional 3200 ± 900 gigatons of water being stored on land. This gain partially offset water losses from ice sheets, glaciers, and groundwater pumping, slowing the rate of sea level rise by 0.71 ± 0.20 millimeters per year. These findings highlight the importance of climate-driven changes in hydrology when assigning attribution to decadal changes in sea level. Copyright © 2016, American Association for the Advancement of Science.
Faghri, Pouran D; Simon, Julia; Huedo-Medina, Tania; Gorin, Amy
2017-05-01
To evaluate if self-efficacy (SE) and financial incentives (FI) mediate the effect of health behavior on weight loss in a group of overweight and obese nursing-home employees participating in a 16-week weight-loss intervention with 12-week follow-up. Ninety nine overweight/obese (body mass index [BMI] > 25) employees from four nursing-homes participated, with a mean age of 46.98 years and BMI of 35.33. Nursing-homes were randomized to receiving an incentive-based intervention (n = 51) and no incentive (n = 48). Participants' health behaviors and eating and exercise self-efficacy (Ex-SE) were assessed at week 1, 16, and 28 using a self-reported questionnaire. Mediation and moderated mediation analysis assessed relationships among these variables. Eating self-efficacy (Eat-SE) and Ex-SE were significant mediators between health behaviors and weight loss (P < 0.05). Incentives significantly moderated the effects of self-efficacy (P = 0.00) on weight loss. Self-efficacy and FI may affect weight loss and play a role in weight-loss interventions.
Influence of sleep restriction on weight loss outcomes associated with caloric restriction.
Wang, Xuewen; Sparks, Joshua R; Bowyer, Kimberly P; Youngstedt, Shawn D
2018-05-01
To examine the effects of moderate sleep restriction (SR) on body weight, body composition, and metabolic variables in individuals undergoing caloric restriction (CR). Overweight or obese adults were randomized to an 8 week caloric restriction (CR) regimen alone (n = 15) or combined with sleep restriction (CR + SR) (n = 21). All participants were instructed to restrict daily calorie intake to 95 per cent of their measured resting metabolic rate. Participants in the CR + SR group were also instructed to reduce time in bed on five nights and to sleep ad libitum on the other two nights each week. The CR + SR group reduced sleep by 57 ± 36 min per day during SR days and increased sleep by 59 ± 38 min per day during ad libitum sleep days, resulting in a sleep reduction of 169 ± 75 min per week. The CR and CR + SR groups lost similar amounts of weight, lean mass, and fat mass. However, the proportion of total mass lost as fat was significantly greater (p = 0.016) in the CR group. This proportion was greater than body fat percentage at baseline for the CR (p = 0.0035), but not the CR + SR group. Resting respiratory quotient was reduced (p = 0.033) only in CR, and fasting leptin concentration was reduced only in CR + SR (p = 0.029). Approximately 1 hr of SR on five nights a week led to less proportion of fat mass loss in individuals undergoing hypocaloric weight loss, despite similar weight loss. SR may adversely affect changes in body composition and "catch-up" sleep may not completely reverse it. ClinicalTrials.gov (NCT02413866).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordaro, Joseph Gabriel; Kruizenga, Alan Michael; Nissen, April
2013-10-01
Two classes of materials, poly(methylene diphenyl diisocyanate) or PMDI foam, and cross-linked epoxy resins, were characterized using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), to help understand the effects of aging and %E2%80%9Cbake-out%E2%80%9D. The materials were evaluated for mass loss and the onset of decomposition. In some experiments, volatile materials released during heating were analyzed via mass spectroscopy. In all, over twenty materials were evaluated to compare the mass loss and onset temperature for decomposition. Model free kinetic (MFK) measurements, acquired using variable heating rate TGA experiments, were used to calculate the apparent activation energy of thermal decomposition.more » From these compiled data the effects of aging, bake-out, and sample history on the thermal stability of materials were compared. No significant differences between aged and unaged materials were detected. Bake-out did slightly affect the onset temperature of decomposition but only at the highest bake-out temperatures. Finally, some recommendations for future handling are made.« less
Transient ice mass variations over Greenland detected by the combination of GPS and GRACE data
NASA Astrophysics Data System (ADS)
Zhang, B.; Liu, L.; Khan, S. A.; van Dam, T. M.; Zhang, E.
2017-12-01
Over the past decade, the Greenland Ice Sheet (GrIS) has been undergoing significant warming and ice mass loss. Such mass loss was not always a steady process but had substantial temporal and spatial variabilities. Here we apply multi-channel singular spectral analysis to crustal deformation time series measured at about 50 Global Positioning System (GPS) stations mounted on bedrock around the Greenland coast and mass changes inferred from Gravity Recovery and Climate Experiment (GRACE) to detect transient changes in ice mass balance over the GrIS. We detect two transient anomalies: one is a negative melting anomaly (Anomaly 1) that peaked around 2010; the other is a positive melting anomaly (Anomaly 2) that peaked between 2012 and 2013. The GRACE data show that both anomalies caused significant mass changes south of 74°N but negligible changes north of 74°N. Both anomalies caused the maximum mass change in southeast GrIS, followed by in west GrIS near Jakobshavn. Our results also show that the mass change caused by Anomaly 1 first reached the maximum in late 2009 in the southeast GrIS and then migrated to west GrIS. However, in Anomaly 2, the southeast GrIS was the last place that reached the maximum mass change in early 2013 and the west GrIS near Jakobshavn was the second latest place that reached the maximum mass change. Most of the GPS data show similar spatiotemporal patterns as those obtained from the GRACE data. However, some GPS time series show discrepancies in either space or time, because of data gaps and different sensitivities of mass loading change. Namely, loading deformation measured by GPS can be significantly affected by local dynamical mass changes, which, yet, has little impact on GRACE observations.
Interacting supernovae and supernova impostors
NASA Astrophysics Data System (ADS)
Tartaglia, Leonardo
2016-02-01
Massive stars are thought to end their lives with spectacular explosions triggered by the gravitational collapse of their cores. Interacting supernovae are generally attributed to supernova explosions occurring in dense circumstellar media, generated through mass-loss which characterisie the late phases of the life of their progenitors. In the last two decades, several observational evidences revealed that mass-loss in massive stars may be related to violent eruptions involving their outer layers, such as the luminous blue variables. Giant eruptions of extragalactic luminous blue variables, similar to that observed in Eta Car in the 19th century, are usually labelled 'SN impostors', since they mimic the behaviour of genuine SNe, but are not the final act of the life of the progenitor stars. The mechanisms producing these outbursts are still not understood, although the increasing number of observed cases triggered the efforts of the astronomical community to find possible theoretical interpretations. More recently, a number of observational evidences suggested that also lower-mass stars can experience pre-supernova outbursts, hence becoming supernova impostors. Even more interestingly, there is growing evidence of a connection among massive stars, their outbursts and interacting supernovae. All of this inspired this research, which has been focused in particular on the characterisation of supernova impostors and the observational criteria that may allow us to safely discriminate them from interacting supernovae. Moreover, the discovery of peculiar transients, motivated us to explore the lowest range of stellar masses that may experience violent outbursts. Finally, the quest for the link among massive stars, their giant eruptions and interacting supernovae, led us to study the interacting supernova LSQ13zm, which possibly exploded a very short time after an LBV-like major outburst.
Ybarra, J; James, R W; Makoundou, V; Bioletto, S; Golay, A
2001-12-01
We assessed the efficacy of a modest weight loss (1.5 +/- 0.3 kg) and simultaneous rapid improvement in glycemic control on fasting an post-prandial lipoprotein sub-fractions in nine overweight (BMI=28 +/- 1.7 kg/m(2)) well controlled Type 2 diabetic patients (HbA(1c)=7.3 +/- 0.1%). They followed a non-drastical hypocaloric balanced diet (1 561 +/- 39 kcal/day) over ten days in hospital. The fat content of the diet was significantly lowered from 96 +/- 12 g/day to 62 +/- 4 g/day (p<0.03). Plasma lipid and lipoprotein levels were measured in fasting and four hours after standard breakfast and four hours after standard lunch twice before and after ten days of hospitalization. The sub-fractions of very low density and low density lipoprotein were obtained by cumulative flotation ultracentrifugation. This weight loss reduced two well known independent cardiovascular risk factors such as the post-prandial glycemic excursions (p<0.05) and the post-prandial lipemia (p<0.05). Multiple linear regression analyses identified weight loss as an independent variable accounting for the ability to predict post-prandial capillary triglyceride clearance (p<0.05). Improvements in post-prandial glycemic excursions which was also entered as a parameter did not appear as a variable being able to predict these changes (p=0.4). In addition to the 23% improvement in post-prandial capillary triglyceride clearance (p<0.02), a decrement in post-prandial VLDL-2 triglyceride enrichment was found (p<0.05). Finally, fasting and post-prandial LDL-3 cholesterol levels were diminished (p<0.05) and the LDL-2/LDL-3 mass ratio post-prandial kinetics were improved (p<0.05). Even a modest weight loss in overweight, average controlled type 2 diabetic patients can achieve a significant improvement in two cardiovascular risk factors, namely post-prandial triglyceride excursions and the LDL-2/LDL-3 mass ratio kinetics independently from glycemic control improvements.
Variable carbon losses from recurrent fires in drained tropical peatlands.
Konecny, Kristina; Ballhorn, Uwe; Navratil, Peter; Jubanski, Juilson; Page, Susan E; Tansey, Kevin; Hooijer, Aljosja; Vernimmen, Ronald; Siegert, Florian
2016-04-01
Tropical peatland fires play a significant role in the context of global warming through emissions of substantial amounts of greenhouse gases. However, the state of knowledge on carbon loss from these fires is still poorly developed with few studies reporting the associated mass of peat consumed. Furthermore, spatial and temporal variations in burn depth have not been previously quantified. This study presents the first spatially explicit investigation of fire-driven tropical peat loss and its variability. An extensive airborne Light Detection and Ranging data set was used to develop a prefire peat surface modelling methodology, enabling the spatially differentiated quantification of burned area depth over the entire burned area. We observe a strong interdependence between burned area depth, fire frequency and distance to drainage canals. For the first time, we show that relative burned area depth decreases over the first four fire events and is constant thereafter. Based on our results, we revise existing peat and carbon loss estimates for recurrent fires in drained tropical peatlands. We suggest values for the dry mass of peat fuel consumed that are 206 t ha(-1) for initial fires, reducing to 115 t ha(-1) for second, 69 t ha(-1) for third and 23 t ha(-1) for successive fires, which are 58-7% of the current IPCC Tier 1 default value for all fires. In our study area, this results in carbon losses of 114, 64, 38 and 13 t C ha(-1) for first to fourth fires, respectively. Furthermore, we show that with increasing proximity to drainage canals both burned area depth and the probability of recurrent fires increase and present equations explaining burned area depth as a function of distance to drainage canal. This improved knowledge enables a more accurate approach to emissions accounting and will support IPCC Tier 2 reporting of fire emissions. © 2015 John Wiley & Sons Ltd.
Association of Periodontal Diseases with Elevation of Serum C-reactive Protein and Body Mass Index.
Chitsazi, Mohammad Taghi; Pourabbas, Reza; Shirmohammadi, Adileh; Ahmadi Zenouz, Gazaleh; Vatankhah, Amir Hossein
2008-01-01
C-reactive protein (CRP) is a well-known acute-phase reactant produced by the liver in response to inflammation caused by various stimuli. Periodontal disease is a chronic infection of tooth-supporting structures characterized by attachment loss and alveolar bone loss. The aim of this study was to assess the relationship between serum C-reactive protein levels and periodontal diseases. The study was conducted on 166 patients referring to Tabriz Faculty of Dentistry. The age range was between 35 and 59 years. 83 subjects with periodontitis according to NHANES III index as test group and 83 healthy individuals as controls participated in this study. Body mass index (BMI), waist circumference (WC), probing depth, attachment loss and CRP levels were measured in both test and control groups. Data was analyzed with Student's t-test, odds ratio (OR), Chi-square test and Spearman's correlation coefficient, using SPSS 13.0 software. The results revealed a statistically significant difference between all of the analyzed variables in test and control groups (P < 0.05). Classifying the test subjects into two subgroups (subjects with CRP ≥ 3 mg/l and subjects with CRP < 3 mg/l), the highest OR in females belonged to WC (OR = 6.4; 95% CI: 1.18-35.2, P = 0.02) and in males to obesity (OR = 4.8; 95% CI: 0.65-35.19, P = 0.05). Considering the correlation between obesity, overweight, WC and CRP with probing depth and attachment loss denoted that obesity presented the highest (r = 1, P = 0.00) and overweight the lowest (r = 0.4, P = 0.07) association. In females, CRP was related to the severity of periodontitis and attachment loss (r = 0.662, P = 0.00). Excluding overweight, the association between all the variables was statistically significant (P < 0.05). Our findings indicate that periodontal disease is correlated with CRP elevation and dis-eases associated with obesity.
Clinical Predictors of Residual Sleep Apnea after Weight Loss Therapy in Obese Adolescents.
Van Eyck, Annelies; De Guchtenaere, Ann; Van Gaal, Luc; De Backer, Wilfried; Verhulst, Stijn L; Van Hoorenbeeck, Kim
2018-05-01
To investigate clinical factors that could predict residual sleep-disordered breathing (SDB) after weight loss. Obese subjects between 10 and 19 years of age were recruited while entering an in-patient weight loss treatment program. All subjects underwent anthropometry and sleep screening using a portable device at baseline and after 4-6 months of therapy. Sleep and International Study of Asthma and Allergies in Childhood questionnaires were completed at baseline. A total of 339 patients were included. Median age was 15.4 years (10.1-19.1). Body mass index z score at baseline was 2.75 ± 0.42, and 35% of subjects were boys. SDB was present in 32%. After a mean decrease in body mass index z score of 32%, residual SDB was found in 20% of subjects with SDB at baseline. Subjects with more severe SDB (OR 1.18; CI 1.01-1.34; P = .02) and respiratory allergies (OR 7.85; CI 1.20-51.39; P = .03) were at higher risk of developing residual SDB, unlike age, sex, and anthropometric variables. Weight loss was successful for treating SDB in 80% of patients. More severe SDB and the presence of respiratory allergies at baseline were associated with a higher risk of residual SDB after weight loss. Copyright © 2017 Elsevier Inc. All rights reserved.
Boo, Sunjoo
2013-12-01
This study were to assess the relationships among BMI, body weight perception, and efforts to lose weight in a public sample of Korean women who are overweight and obese and to examine the mediating role of body weight perception on the relationship between BMI and weight loss efforts. This cross-sectional study used data from the 2008 Korea National Health and Nutrition Examination Survey. The sample was 1,739 Korean women 20 years old or older with body mass index (BMI) ≥ 23 kg/m(2). Bivariate relationships among variables of interests were assessed. Three separate regressions were used to test the mediating role of body weight perception on the relationship between BMI and weight loss efforts. BMI and body weight perception were significant correlates of weight loss efforts. BMI was significantly associated with weight perception, but a large proportion of women underestimated their weight. Weight perception partially mediated the relationship between BMI and weight loss efforts in Korean women. In light of the high prevalence of overweight or obesity and the many health consequences associated with obesity, Korean women should be aware of a healthy body weight and try to achieve that weight. Nursing interventions should consider body weight perception to effectively motivate overweight and obese Korean women to lose weight, as necessary. Copyright © 2013. Published by Elsevier B.V.
Hattar, Anne; Hagger, Martin S; Pal, Sebely
2015-02-27
Overweight and obesity are major health problems worldwide. This protocol describes the HEALTHI (Healthy Eating and Active LifesTyle Health Intervention) Program, a 12-week randomised-controlled weight-loss intervention that adopts two theory-based intervention techniques, mental imagery and implementation intentions, a behaviour-change technique based on planning that have been shown to be effective in promoting health-behaviour change in previous research. The effectiveness of goal-reminder text messages to augment intervention effects will also be tested. The trial will determine the effects of a brief, low cost, theory-based weight-loss intervention to improve dietary intake and physical activity behaviour and facilitate weight-loss in overweight and obese individuals. Overweight or obese participants will be randomly allocated to one of three conditions: (1) a psycho-education plus an implementation intentions and mental imagery condition; (2) a psycho-education plus an implementation intentions and mental imagery condition with text messages; or (3) a psycho-education control condition. The intervention will be delivered via video presentation to increase the intervention's applicability in multiple contexts and keep costs low. We hypothesise that the intervention conditions will lead to statistically-significant changes in the primary and secondary outcome variables measured at 6 and 12 weeks post-intervention relative to the psycho-education control condition after controlling for baseline values. The primary outcome variable will be body weight and secondary outcome variables will be biomedical (body mass, body fat percentage, muscle mass, waist-hip circumference ratio, systolic and diastolic blood pressure, low-density lipoprotein, high-density lipoprotein, total cholesterol, triglycerides, blood glucose and insulin levels), psychological (quality of life, motivation, risk perception, outcome expectancy, intention, action self-efficacy, maintenance self-efficacy, goal setting and planning), and behavioural (self-reported diet intake, and physical activity involvement) measures. We also expect the intervention condition augmented with text messages to lead to statistically significant differences in the primary and secondary outcome variables at the follow up periods after controlling for baseline values. The planned trial will test the effectiveness of the theory-based HEALTHI program intervention to reduce weight and salient psychological, biomedical, and behavioural outcomes in overweight and obese adults. The study has been designed to maximise applicability to real world settings and could be integrated into existing weight management practices. ACTRN: ACTRN12613001274763. Registration date 19/11/2013.
Bertolo, Riccardo; Fiori, Cristian; Piramide, Federico; Amparore, Daniele; Barrera, Monica; Sardo, Diego; Veltri, Andrea; Porpiglia, Francesco
2018-05-14
To evaluate the correlation between the loss of renal function as assessed by Tc99MAG-3 renal scan and the loss of renal volume as calculated by volumetric assessment on CT-scan in patients who underwent minimally-invasive partial nephrectomy (PN). PN prospectively-maintained database was retrospectively queried for patients who underwent minimally-invasive PN (2012-2017) for renal mass
NASA Astrophysics Data System (ADS)
Mazzoleni, L. R.; Habib, D.; Zhao, Y.; Dalbec, M.; Samburova, V.; Hallar, G.; Zielinska, B.; Lowenthal, D.
2013-12-01
Water-soluble organic carbon (WSOC) is a complex mixture of thousands of organic compounds which may have significant influence on the climate-relevant properties of atmospheric aerosols. An improved understanding of the molecular composition of WSOC is needed to evaluate the effect of aerosol composition upon aerosol physical properties. Products of gas phase, aqueous phase and particle phase reactions contribute to pre-existing aerosol organic mass or nucleate new aerosol particles. Thus, ambient aerosols carry a complex array of WSOC components with variable chemical signatures depending upon its origin and aerosol life-cycle processes. In this work, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize aerosol WSOC collected during the summer of 2010 at the Storm Peak Laboratory (3210 m a.s.l.) near Steamboat Springs, CO. Approximately 4000 molecular formulas were assigned in the mass range of m/z 100-800 after negative-ion electrospray ionization. The observed trends indicate significant non-oxidative accretion reaction pathways for the formation of high molecular weight WSOC components closely associated with terpene ozonolysis secondary organic aerosol (SOA). The aerosol WSOC was further characterized using ultrahigh resolution tandem MS analysis with infrared multiphoton dissociation to determine the functional groups and structural properties of 1700 WSOC species up to m/z 600. Due to the complex nature of the WSOC, multiple precursor ions were simultaneously fragmented. The exact mass measurements of the precursor and product ions facilitated molecular formula assignments and matching of neutral losses. The most important neutral losses are CO2, H2O, CH3OH, HNO3, CH3NO3, SO3 and SO4. The presence and frequency of these losses indicate the type of functional groups contained in the precursor structures. Consistent with the acidic nature of WSOC compounds, the most frequently observed losses were CO2 (~65%), H2O (~60%) and CH3OH (~40%). Several of the studied precursors had two or more losses associated with them and combinations of neutral losses such as, H4O2, CH2O3, C2H4O3 and C2O4. These neutral losses clearly indicate a multifunctional nature of the studied aerosol WSOC. Analysis of the fragment ions which were not associated with typical neutral losses indicates an overall aliphatic SOA-like structure with regular differences of 14 Da and 18 Da between low molecular weight fragment ions. Many of the fragment ions were observed in 85% or more of the MS2 spectra. The patterns observed in the low molecular weight fragment ions were very consistent over all of the mass spectra providing evidence for the significance of the non-oxidative accretion formation pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bougamont, M.; Christoffersen, P.; Price, S. F.
Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less
Probing the pre-PN Mass Loss Histories in the PPN Dust Shells
NASA Astrophysics Data System (ADS)
Ueta, T.
2001-12-01
Proto-planetary nebulae (PPNs) are immediate progenitors of planetary nebulae (PNs) rapidly evolving over a relatively short time scale. Unlike the full-fledged PNs, the circumstellar dust shells of PPNs have neither been photo-ionized nor been swept up by fast winds. Since the PPN shells retain pristine fossil records of mass loss histories of these stars during the pre-PN phases, these dust shells provide ideal astronomical laboratories in which to investigate the origin of complex PN structures that we observe. We have conducted imaging surveys of the PPN shells in mid-infrared and optical wavelengths, probing the dust distribution directly via mid-infrared thermal dust emission arising from the shells and indirectly via dust-scattered stellar optical emission passing through the shells. From these surveys, we have found that (1) the PPN shells are intrinsically axisymmetric due to equatorially-enhanced superwind mass loss that occurred immediately before the beginning of the PPN phase, and (2) the variable degree of equatorial enhancement in the shells, which is probably related to the progenitor mass, has resulted in different optical depths and morphologies. To characterize the PPN shell geometries, we have developed and employed a 2.5 dimensional radiative transfer code that treats dust absorption, reemission, and an/isotropic scattering in any axisymmetric system illuminated by a central energy source. In the code, the dust optical properties are derived from the laboratory-measured refractive index using Mie theory allowing a distribution of sizes for each species in each composition layer in the shell. Our numerical analysis would be able to de-project and recover 3-D geometrical quantities, such as the pole-to-equator density ratio, from the observational data. These model calculations would provide constraining parameters for hydrodynamical models intended to generate equatorial enhancements during dust mass loss as well as initial parameters for magneto-hydrodynamical models aimed to reproduce highly complex PN morphologies.
NASA Astrophysics Data System (ADS)
Volokh, K. Y.
2017-12-01
Cracks are created by massive breakage of molecular or atomic bonds. The latter, in its turn, leads to the highly localized loss of material, which is the reason why even closed cracks are visible by a naked eye. Thus, fracture can be interpreted as the local material sink. Mass conservation is violated locally in the area of material failure. We consider a theoretical formulation of the coupled mass and momenta balance equations for a description of fracture. Our focus is on brittle fracture and we propose a finite strain hyperelastic thermodynamic framework for the coupled mass-flow-elastic boundary value problem. The attractiveness of the proposed framework as compared to the traditional continuum damage theories is that no internal parameters (like damage variables, phase fields, etc.) are used while the regularization of the failure localization is provided by the physically sound law of mass balance.
Thermodynamics of weight loss diets.
Fine, Eugene J; Feinman, Richard D
2004-12-08
BACKGROUND: It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? RESULTS: Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. CONCLUSIONS: Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms.
Thermodynamics of weight loss diets
Fine, Eugene J; Feinman, Richard D
2004-01-01
Background It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? Results Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. Conclusions Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms. PMID:15588283
Oceanic Transport of Surface Meltwater from the Southern Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Luo, Hao; Castelao, Renato M.; Rennermalm, Asa K.; Tedesco, Marco; Bracco, Annalisa; Yager, Patricia L.; Mote, Thomas L.
2016-01-01
The Greenland ice sheet has undergone accelerating mass losses during recent decades. Freshwater runoff from ice melt can influence fjord circulation and dynamic1 and the delivery of bioavailable micronutrients to the ocean. It can also have climate implications, because stratification in the adjacent Labrador Sea may influence deep convection and the strength of the Atlantic meridional overturning circulation. Yet, the fate of the meltwater in the ocean remains unclear. Here, we use a high-resolution ocean model to show that only 1-15% of the surface meltwater runoff originating from southwest Greenland is transported westwards. In contrast, up to 50-60% of the meltwater runoff originating from southeast Greenland is transported westwards into the northern Labrador Sea, leading to significant salinity and stratification anomalies far from the coast. Doubling meltwater runoff, as predicted in future climate scenarios, results in a more-than-double increase in anomalies offshore that persists further into the winter. Interannual variability in offshore export of meltwater is tightly related to variability in wind forcing. The new insight that meltwaters originating from the west and east coasts have different fates indicates that future changes in mass loss rates and surface runoff will probably impact the ocean differently, depending on their Greenland origins.
Bomba, Monica; Riva, Anna; Veggo, Federica; Grimaldi, Marco; Morzenti, Sabrina; Neri, Francesca; Nacinovich, Renata
2013-02-19
Anorexia nervosa commonly arises during adolescence and is associated with more than one medical morbidity. Abnormalities in brain structure (defined as "pseudoatrophy") are common in adolescents with anorexia nervosa; however, their correlations with endocrinological profiles and clinical parameters are still unclear. In particular, no study has described the impact of BMI (body mass index) variations (speed and magnitude of weight loss) on cerebral trophism changes. Eleven adolescents with anorexia nervosa and 8 healthy controls underwent cerebral MRI (magnetic resonance imaging) examination to obtain global and partial volumes (gray matter, white matter and cerebrospinal fluid) and clinical evaluation. The Mann-Whitney U test was used to compare partial volumes and clinical variables between cases and controls. The Spearman non-parametric test was performed in order to explore correlations between the variables studied. The patients diagnosed with AN showed significantly increased cerebrospinal fluid (CSF) volumes and decreased total gray (GM) and white matter (WM) volumes. The degree of weight loss (deltaBMI) correlated inversely with the GM volume; the increase of CSF compartment correlated directly with the rapidity of weight loss (DeltaBMI/disease duration). This study suggests a correlation between cerebral alterations in AN and the speed and magnitude of weight loss, and outlines its importance for the therapeutic treatment.
Risk Factors for the Loss of Lean Body Mass After Gastrectomy for Gastric Cancer.
Aoyama, Toru; Sato, Tsutomu; Segami, Kenki; Maezawa, Yukio; Kano, Kazuki; Kawabe, Taiichi; Fujikawa, Hirohito; Hayashi, Tsutomu; Yamada, Takanobu; Tsuchida, Kazuhito; Yukawa, Norio; Oshima, Takashi; Rino, Yasushi; Masuda, Munetaka; Ogata, Takashi; Cho, Haruhiko; Yoshikawa, Takaki
2016-06-01
Lean body mass loss after surgery, which decreases the compliance of adjuvant chemotherapy, is frequently observed in gastric cancer patients who undergo gastrectomy for gastric cancer. However, the risk factors for loss of lean body mass remain unclear. The current study retrospectively examined the patients who underwent curative gastrectomy for gastric cancer between June 2010 and March 2014 at Kanagawa Cancer Center. All the patients received perioperative care for enhanced recovery after surgery. The percentage of lean body mass loss was calculated by the percentile of lean body mass 1 month after surgery to preoperative lean body mass. Severe lean body mass loss was defined as a lean body mass loss greater than 5 %. Risk factors for severe lean body mass loss were determined by both uni- and multivariate logistic regression analyses. This study examined 485 patients. The median loss of lean body mass was 4.7 %. A lean body mass loss of 5 % or more occurred for 225 patients (46.4 %). Both uni- and multivariate logistic analyses demonstrated that the significant independent risk factors for severe lean body mass loss were surgical complications with infection or fasting (odds ratio [OR] 3.576; p = 0.001), total gastrectomy (OR 2.522; p = 0.0001), and gender (OR 1.928; p = 0.001). Nutritional intervention or control of surgical invasion should be tested in future clinical trials for gastric cancer patients with these risk factors to maintain lean body mass after gastrectomy.
Hargrove, James L; Heinz, Grete; Heinz, Otto
2008-01-01
Background This study evaluated whether the changes in several anthropometric and functional measures during caloric restriction combined with walking and treadmill exercise would fit a simple model of approach to steady state (a plateau) that can be solved using spreadsheet software (Microsoft Excel®). We hypothesized that transitions in waist girth and several body compartments would fit a simple exponential model that approaches a stable steady-state. Methods The model (an equation) was applied to outcomes reported in the Minnesota starvation experiment using Microsoft Excel's Solver® function to derive rate parameters (k) and projected steady state values. However, data for most end-points were available only at t = 0, 12 and 24 weeks of caloric restriction. Therefore, we derived 2 new equations that enable model solutions to be calculated from 3 equally spaced data points. Results For the group of male subjects in the Minnesota study, body mass declined with a first order rate constant of about 0.079 wk-1. The fractional rate of loss of fat free mass, which includes components that remained almost constant during starvation, was 0.064 wk-1, compared to a rate of loss of fat mass of 0.103 wk-1. The rate of loss of abdominal fat, as exemplified by the change in the waist girth, was 0.213 wk-1. On average, 0.77 kg was lost per cm of waist girth. Other girths showed rates of loss between 0.085 and 0.131 wk-1. Resting energy expenditure (REE) declined at 0.131 wk-1. Changes in heart volume, hand strength, work capacity and N excretion showed rates of loss in the same range. The group of 32 subjects was close to steady state or had already reached steady state for the variables under consideration at the end of semi-starvation. Conclusion When energy intake is changed to new, relatively constant levels, while physical activity is maintained, changes in several anthropometric and physiological measures can be modeled as an exponential approach to steady state using software that is widely available. The 3 point method for parameter estimation provides a criterion for testing whether change in a variable can be usefully modelled with exponential kinetics within the time range for which data are available. PMID:18840293
Edmands, William M B; Barupal, Dinesh K; Scalbert, Augustin
2015-03-01
MetMSLine represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker-MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R). All source code and suggested parameters are available in an un-encapsulated layout on http://wmbedmands.github.io/MetMSLine/. Readme files and a synthetic dataset of both X-variables (simulated LC-MS data), Y-variables (simulated continuous variables) and metabolite theoretical masses are also available on our GitHub repository. © The Author 2014. Published by Oxford University Press.
Edmands, William M. B.; Barupal, Dinesh K.; Scalbert, Augustin
2015-01-01
Summary: MetMSLine represents a complete collection of functions in the R programming language as an accessible GUI for biomarker discovery in large-scale liquid-chromatography high-resolution mass spectral datasets from acquisition through to final metabolite identification forming a backend to output from any peak-picking software such as XCMS. MetMSLine automatically creates subdirectories, data tables and relevant figures at the following steps: (i) signal smoothing, normalization, filtration and noise transformation (PreProc.QC.LSC.R); (ii) PCA and automatic outlier removal (Auto.PCA.R); (iii) automatic regression, biomarker selection, hierarchical clustering and cluster ion/artefact identification (Auto.MV.Regress.R); (iv) Biomarker—MS/MS fragmentation spectra matching and fragment/neutral loss annotation (Auto.MS.MS.match.R) and (v) semi-targeted metabolite identification based on a list of theoretical masses obtained from public databases (DBAnnotate.R). Availability and implementation: All source code and suggested parameters are available in an un-encapsulated layout on http://wmbedmands.github.io/MetMSLine/. Readme files and a synthetic dataset of both X-variables (simulated LC–MS data), Y-variables (simulated continuous variables) and metabolite theoretical masses are also available on our GitHub repository. Contact: ScalbertA@iarc.fr PMID:25348215
The missing Northern European winter cooling response to Arctic sea ice loss
Screen, James A.
2017-01-01
Reductions in Arctic sea ice may promote the negative phase of the North Atlantic Oscillation (NAO−). It has been argued that NAO-related variability can be used an as analogue to predict the effects of Arctic sea ice loss on mid-latitude weather. As NAO− events are associated with colder winters over Northern Europe, a negatively shifted NAO has been proposed as a dynamical pathway for Arctic sea ice loss to cause Northern European cooling. This study uses large-ensemble atmospheric simulations with prescribed ocean surface conditions to examine how seasonal-scale NAO− events are affected by Arctic sea ice loss. Despite an intensification of NAO− events, reflected by more prevalent easterly flow, sea ice loss does not lead to Northern European winter cooling and daily cold extremes actually decrease. The dynamical cooling from the changed NAO is ‘missing', because it is offset (or exceeded) by a thermodynamical effect owing to advection of warmer air masses. PMID:28262679
Luminous blue variables and the fates of very massive stars.
Smith, Nathan
2017-10-28
Luminous blue variables (LBVs) had long been considered massive stars in transition to the Wolf-Rayet (WR) phase, so their identification as progenitors of some peculiar supernovae (SNe) was surprising. More recently, environment statistics of LBVs show that most of them cannot be in transition to the WR phase after all, because LBVs are more isolated than allowed in this scenario. Additionally, the high-mass H shells around luminous SNe IIn require that some very massive stars above 40 M ⊙ die without shedding their H envelopes, and the precursor outbursts are a challenge for understanding the final burning sequences leading to core collapse. Recent evidence suggests a clear continuum in pre-SN mass loss from super-luminous SNe IIn, to regular SNe IIn, to SNe II-L and II-P, whereas most stripped-envelope SNe seem to arise from a separate channel of lower-mass binary stars rather than massive WR stars.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).
Improving Estimates of Greenland Ice Sheet Surface Mass Balance with Satellite Observations
NASA Astrophysics Data System (ADS)
Briggs, K.
2016-12-01
Mass losses from the Greenland Ice Sheet have been accelerating over recent years (e.g. McMillan et al., 2016; Velicogna et al., 2014). This acceleration has predominantly been linked to increasing rates of negative surface mass balance, and in particular, increasing ice surface melt rates (e.g. McMillan et al., 2016; Velicogna et al., 2014). At the ice sheet scale, SMB is assessed using SMB model outputs, which in addition to enabling understanding of the origin of mass balance signals, are required as ancillary data in mass balance assessments from altimetry and the mass budget method. Due to the importance of SMB for mass balance over Greenland and the sensitivity of mass balance assessments to SMB model outputs, high accuracy of these models is crucial. A critical limiting factor in SMB modeling is however, a lack of in-situ data that is required for model constraint and evaluation. Such data is limited in time and space due to inherent logistical and financial constraints. Remote sensing datasets, being spatially extensive and relatively densely sampled in both space and time, do not suffer such constraints. Here, we show satellite observations of Greenland SMB. McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W.K., Hogg, A., Kuipers Munneke, P., van den Broeke, M., Noël, B., van de Berg, W., Ligtenberg, S., Horwath, M., Groh, A. , Muir, A. and Gilbert, L. 2016. A high resolution record of Greenland Mass Balance. Geophysical Research Letters. 43, doi:10.1002/2016GL069666 Velicogna, I., Sutterley, T. C. and van den Broeke, M. R. 2014. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters. 41, 8130-8137, doi:10.1002/2014GL061052
Near-infrared Observations of SiO Maser-emitting Asymptotic Giant Branch (AGB) Stars
NASA Astrophysics Data System (ADS)
Chibueze, James O.; Miyahara, Takeshi; Omodaka, Toshihiro; Ohta, Takashi; Fujii, Takahiro; Tanaka, Masuo; Motohara, Kentaro; Makoto, Miyoshi
2016-02-01
Near-infrared (NIR) monitoring observations of asymptotic giant branch stars exciting bright SiO masers have been made with the 1 m telescope of Kagoshima University. In order to investigate the properties of these stars and their envelopes, we combined our NIR photometric data with mid- and far-infrared flux data obtained by the IRAS satellite, SiO maser flux data provided by the Nobeyama Radio Observatory, visual magnitude data provided by the AAVSO, and the reported data on the expansion velocities of the circumstellar envelopes. The absolute magnitudes at the K-band and the distances are estimated using the period-luminosity relation of Mira variables determined by Feast et al. Then, mass-loss rates and isotropic luminosities of an SiO maser are estimated. The mass-loss rates range from approximately 10-8 {M}⊙ \\{{yr}}-1 to over 10-5 {M}⊙ {{yr}}-1. We found that the NIR pulsation amplitudes are correlated with the pulsation periods and the observed wavelengths. We also found correlations of the isotropic luminosities of SiO masers with the mass-loss rates and absolute magnitudes at the K-band. These results will help us to understand the pumping mechanism of SiO masers. We measured, for the first time, the periods and/or NIR magnitudes of TX Cam, BW Cam, IRAS 06297+4045, IRAS 18387-0423, and RT Cep.
James, Stacy M.; Little, Edward E.; Semlitsch, Raymond D.
2004-01-01
The soil ecotoxicology literature has focused primarily on a few major taxa, to the neglect of other fossorial organisms such as amphibians. We selected cadmium (Cd) and the American toad (Bufo americanus) as a model contaminant and biological species to assess the impact of soil contamination on amphibian hibernation survival and post-hibernation condition. Soil sand composition (50, 70, 90%) and hydration (100, 150% water holding capacity (WHC)) were manipulated in addition to Cd concentration (0, 56, 165, 483 μg/g) to determine whether these soil properties affect toxicity. Soil Cd concentration significantly reduced survival and locomotor performance, and was correlated negatively with percent mass loss and positively with whole body Cd concentration. Higher sand content resulted in less mass loss and greater Cd uptake. Toads that were hibernated in 50% sand hydrated to 100% WHC had higher survival, less mass loss, and better sprint performance than those hibernated in 50% sand, 150% WHC. This study demonstrates that concentrations of Cd found in soil at highly contaminated sites can be bioaccumulated by hibernating amphibians and may reduce fitness. Differences in microhabitat use may cause species to vary in their exposure and susceptibility to soil contamination. The toxicity of Cd to amphibians could be greater in natural systems where there are multiple stressors and fluctuations in environmental variables.
De Jong, TR; Harris, BN; Perea-Rodriguez, JP; Saltzman, W
2013-01-01
Social environment and parental state affect stress responses in mammals, but their impact may depend on the social and reproductive strategy of the species. The influences of cohabitation with a male or female conspecific, and the birth of offspring, on the physiological and endocrine responses to chronic variable stress were studied in the monogamous and biparental California mouse (Peromyscus californicus). Adult male California mice were housed either with a male cage mate (virgin males, VM), a female cage mate (pair-bonded males, PBM), or a female cage mate and their first newborn litter (new fathers, NF). VM, PBM and NF underwent a 7-day chronic variable stress paradigm (CVS, three stressors per day at semi-random times, n=7-8 per housing condition). Compared to control males (CON, n=6-7 per housing condition), CVS caused loss of body mass, increased basal plasma corticosterone concentrations, and increased basal expression of arginine vasopressin (AVP) mRNA in the paraventricular nucleus of the hypothalamus (PVN). These effects were independent of housing condition. Neither CVS nor housing condition altered novel-stressor-induced corticosterone release, spleen or testis mass, or basal expression of corticotropin-releasing hormone (CRH) mRNA in the PVN. Although CVS appeared to increase adrenal mass and reduce thymus mass specifically in NF, these effects were explained by the lower adrenal mass and higher thymus mass of NF compared to PBM and VM under control conditions. These results suggest that neither engaging in a pair bond nor becoming a father attenuates typical responses to CVS, but that fatherhood may provide a buffer against transient mild stressors (i.e., weighing and blood sampling in the control groups) in this monogamous and biparental rodent. PMID:23582312
A turbulent wake as a tracer of 30,000 years of Mira's mass loss history.
Martin, D Christopher; Seibert, Mark; Neill, James D; Schiminovich, David; Forster, Karl; Rich, R Michael; Welsh, Barry Y; Madore, Barry F; Wheatley, Jonathan M; Morrissey, Patrick; Barlow, Tom A
2007-08-16
Mira is one of the first variable stars ever discovered and it is the prototype (and also the nearest example) of a class of low-to-intermediate-mass stars in the late stages of stellar evolution. These stars are relatively common and they return a large fraction of their original mass to the interstellar medium (ISM) (ref. 2) through a processed, dusty, molecular wind. Thus stars in Mira's stage of evolution have a direct impact on subsequent star and planet formation in their host galaxy. Previously, the only direct observation of the interaction between Mira-type stellar winds and the ISM was in the infrared. Here we report the discovery of an ultraviolet-emitting bow shock and turbulent wake extending over 2 degrees on the sky, arising from Mira's large space velocity and the interaction between its wind and the ISM. The wake is visible only in the far ultraviolet and is consistent with an unusual emission mechanism whereby molecular hydrogen is excited by turbulent mixing of cool molecular gas and shock-heated gas. This wind wake is a tracer of the past 30,000 years of Mira's mass-loss history and provides an excellent laboratory for studying turbulent stellar wind-ISM interactions.
Mass loss from solar-type stars
NASA Technical Reports Server (NTRS)
Hartmann, L.
1985-01-01
The present picture of mass loss from solar-type (low-mass) stars is described, with special emphasis on winds from pre-main-sequence stars. Attention is given to winds from T Tauri stars and to angular momentum loss. Prospects are good for further advances in our understanding of the powerful mass loss observed from young stars; ultraviolet spectra obtainable with the Space Telescope should provide better estimates of mass loss rates and a clearer picture of physical conditions in the envelopes of these stars. To understand the mass ejection from old, slowly rotating main-sequence stars, we will have to study the sun.
An overabundance of low-density Neptune-like planets
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Erkaev, Nikolai V.; Juvan, Ines; Fossati, Luca; Johnstone, Colin P.; Lammer, Helmut; Lendl, Monika; Odert, Petra; Kislyakova, Kristina G.
2017-04-01
We present a uniform analysis of the atmospheric escape rate of Neptune-like planets with estimated radius and mass (restricted to Mp < 30 M⊕). For each planet, we compute the restricted Jeans escape parameter, Λ, for a hydrogen atom evaluated at the planetary mass, radius, and equilibrium temperature. Values of Λ ≲ 20 suggest extremely high mass-loss rates. We identify 27 planets (out of 167) that are simultaneously consistent with hydrogen-dominated atmospheres and are expected to exhibit extreme mass-loss rates. We further estimate the mass-loss rates (Lhy) of these planets with tailored atmospheric hydrodynamic models. We compare Lhy to the energy-limited (maximum-possible high-energy driven) mass-loss rates. We confirm that 25 planets (15 per cent of the sample) exhibit extremely high mass-loss rates (Lhy > 0.1 M⌖ Gyr-1), well in excess of the energy-limited mass-loss rates. This constitutes a contradiction, since the hydrogen envelopes cannot be retained given the high mass-loss rates. We hypothesize that these planets are not truly under such high mass-loss rates. Instead, either hydrodynamic models overestimate the mass-loss rates, transit-timing-variation measurements underestimate the planetary masses, optical transit observations overestimate the planetary radii (due to high-altitude clouds), or Neptunes have consistently higher albedos than Jupiter planets. We conclude that at least one of these established estimations/techniques is consistently producing biased values for Neptune planets. Such an important fraction of exoplanets with misinterpreted parameters can significantly bias our view of populations studies, like the observed mass-radius distribution of exoplanets for example.
Observations on saliva osmolality during progressive dehydration and partial rehydration.
Taylor, Nigel A S; van den Heuvel, Anne M J; Kerry, Pete; McGhee, Sheena; Peoples, Gregory E; Brown, Marc A; Patterson, Mark J
2012-09-01
A need exists to identify dehydrated individuals under stressful settings beyond the laboratory. A predictive index based on changes in saliva osmolality has been proposed, and its efficacy and sensitivity was appraised across mass (water) losses from 1 to 7%. Twelve euhydrated males [serum osmolality: 286.1 mOsm kg(-1) H(2)O (SD 4.3)] completed three exercise- and heat-induced dehydration trials (35.6°C, 56% relative humidity): 7% dehydration (6.15 h), 3% dehydration (with 60% fluid replacement: 2.37 h), repeat 7% dehydration (5.27 h). Expectorated saliva osmolality, measured at baseline and at each 1% mass change, was used to predict instantaneous hydration state relative to mass losses of 3 and 6%. Saliva osmolality increased linearly with dehydration, although its basal osmolality and its rate of change varied among and within subjects across trials. Receiver operating characteristic curves indicated a good predictive power for saliva osmolality when used with two, single-threshold cutoffs to differentiate between hydrated and dehydrated individuals (area under curve: 3% cutoff = 0.868, 6% cutoff = 0.831). However, when analysed using a double-threshold detection technique (3 and 6%), as might be used in a field-based monitor, <50% of the osmolality data could correctly identify individuals who exceeded 3% dehydration. Indeed, within the 3-6% dehydration range, its sensitivity was 64%, while beyond 6% dehydration, this fell to 42%. Therefore, while expectorated saliva osmolality tracked mass losses within individuals, its large intra- and inter-individual variability limited its predictive power and sensitivity, rendering its utility questionable within a universal dehydration monitor.
NASA Astrophysics Data System (ADS)
Ke, L.; Ding, X.; Song, C.; Sheng, Y.
2016-12-01
Temperate glaciers can be highly sensitive to global climate change due to relatively humid and warm local climate. Numerous temperate glaciers are distributed in the southeastern Tibet Plateau (SETP) and their changes are still poorly represented. Based on a latest glacier inventory and ICESat altimetry measurements, we examine the spatial heterogeneity of glacier change in the SETP (including the central and eastern Nyainqêntanglha ranges) and further analyze its relation with climate change by using station-based and gridded meteorological data. Our results show that SETP glaciers experienced drastic surface lowering at about -0.84±0.26 m a-1 on average over 2003-2008. Debris-covered ice thinned at an average rate of -1.13±0.32 m a-1, in comparison with -0.92±0.17 m a-1 over the debris-free ice areas. The thinning rate is the strongest in the southeastern sub-region (up to -1.24 m a-1 ) and moderate ( -0.45 m a-1 ) in the central and northwestern parts, which is in general agreement with the pattern of surface mass changes based on the GRACE gravimetry observation. Long-term climate data at weather stations show that, in comparison with the period of 1992-2002, mean temperature increased by 0.46 °C - 0.59 °C in the recent decade (2003-2013); while the change of summer precipitation exhibited remarkably spatial variability, following a southeast-northwest contrasting pattern (decreasing by over 10% in the southeast, to stable level in the central region, and increment up to 10% in the northwest). This spatially variable precipitation change is consistent with results from CN05 grid data and ERA re-analysis data, and agrees well with the spatial pattern of glacier surface elevation changes. The results suggest that overall negative glacier mass balances in SETP are governed by temperature rising, while the different precipitation change could contribute to inconsistent glacier thinning rates. The spatial pattern of precipitation decrease and mass loss might be tele-connected with the dynamics of the Indian summer monsoon.
Fondell, Thomas F.; Flint, Paul L.; Schmutz, Joel A.; Schamber, Jason L.; Nicolai, Christopher A.
2013-01-01
Birds employ varying strategies to accommodate the energetic demands of moult, one important example being changes in body mass. To understand better their physiological and ecological significance, we tested three hypotheses concerning body mass dynamics during moult. We studied Black Brant in 2006 and 2007 moulting at three sites in Alaska which varied in food availability, breeding status and whether geese undertook a moult migration. First we predicted that if mass loss during moult were simply the result of inadequate food resources then mass loss would be highest where food was least available. Secondly, we predicted that if mass loss during moult were adaptive, allowing birds to reduce activity during moult, then birds would gain mass prior to moult where feeding conditions allowed and mass loss would be positively related to mass at moult initiation. Thirdly, we predicted that if mass loss during moult were adaptive, allowing birds to regain flight sooner, then across sites and groups, mass at the end of the flightless period would converge on a theoretical optimum, i.e. the mass that permits the earliest possible return to flight. Mass loss was greatest where food was most available and thus our results did not support the prediction that mass loss resulted from inadequate food availability. Mass at moult initiation was positively related to both food availability and mass loss. In addition, among sites and years, variation in mass was high at moult initiation but greatly reduced at the end of the flightless period, appearing to converge. Thus, our results supported multiple predictions that mass loss during moult was adaptive and that the optimal moulting strategy was to gain mass prior to the flightless period, then through behavioural modifications use these body reserves to reduce activity and in so doing also reduce wing loading. Geese that undertook a moult migration initiated moult at the highest mass, indicating that they were more than able to compensate for the energetic cost of the migration. Because Brant frequently change moult sites between years in relation to breeding success, the site-specific variation in body mass dynamics we observed suggests individual plasticity in moult body mass dynamics.
Ubiquitous time variability of integrated stellar populations.
Conroy, Charlie; van Dokkum, Pieter G; Choi, Jieun
2015-11-26
Long-period variable stars arise in the final stages of the asymptotic giant branch phase of stellar evolution. They have periods of up to about 1,000 days and amplitudes that can exceed a factor of three in the I-band flux. These stars pulsate predominantly in their fundamental mode, which is a function of mass and radius, and so the pulsation periods are sensitive to the age of the underlying stellar population. The overall number of long-period variables in a population is directly related to their lifetimes, which is difficult to predict from first principles because of uncertainties associated with stellar mass-loss and convective mixing. The time variability of these stars has not previously been taken into account when modelling the spectral energy distributions of galaxies. Here we construct time-dependent stellar population models that include the effects of long-period variable stars, and report the ubiquitous detection of this expected 'pixel shimmer' in the massive metal-rich galaxy M87. The pixel light curves display a variety of behaviours. The observed variation of 0.1 to 1 per cent is very well matched to the predictions of our models. The data provide a strong constraint on the properties of variable stars in an old and metal-rich stellar population, and we infer that the lifetime of long-period variables in M87 is shorter by approximately 30 per cent compared to predictions from the latest stellar evolution models.
Mass-loss From Evolved Stellar Populations In The Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Riebel, David
2012-01-01
I have conducted a study of a sample of 30,000 evolved stars in the Large Magellanic Cloud (LMC) and 6,000 in the Small Magellanic Cloud (SMC), covering their variability, mass-loss properties, and chemistry. The initial stages of of my thesis work focused on the infrared variability of Asymptotic Giant Branch (AGB) stars in the LMC. I determined the period-luminosity (P-L) relations for 6 separate sequences of 30,000 evolved star candidates at 8 wavelengths, as a function of photometrically assigned chemistry, and showed that the P-L relations are different for different chemical populations (O-rich or C-rich). I also present results from the Grid of Red supergiant and Asymptotic giant branch star ModelS (GRAMS) radiative transfer (RT) model grid applied to the evolved stellar population of the LMC. GRAMS is a pre-computed grid of RT models of RSG and AGB stars and surrounding circumstellar dust. Best-fit models are determined based on 12 bands of photometry from the optical to the mid-infrared. Using a pre-computed grid, I can present the first reasonably detailed radiative transfer modeling for tens of thousands of stars, allowing me to make statistically accurate estimations of the carbon-star luminosity function and the global dust mass return to the interstellar medium from AGB stars, both key parameters for stellar population synthesis models to reproduce. In the SAGE-Var program, I used the warm Spitzer mission to take 4 additional epochs of observations of 7500 AGB stars in the LMC and SMC. These epochs, combined with existing data, enable me to derive mean fluxes at 3.6 and 4.5 microns, that will be used for tighter constraints for GRAMS, which is currently limited by the variability induced error on the photometry. This work is support by NASA NAG5-12595 and Spitzer contract 1415784.
Anomalous double-mode RR Lyrae stars in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Soszyński, I.; Smolec, R.; Dziembowski, W. A.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Skowron, D.; Skowron, J.; Mróz, P.; Pawlak, M.
2016-12-01
We report the discovery of a new subclass of double-mode RR Lyrae stars in the Large and Small Magellanic Clouds. The sample of 22 pulsating stars has been extracted from the latest edition of the Optical Gravitational Lensing Experiment collection of RR Lyrae variables in the Magellanic System. The stars pulsating simultaneously in the fundamental (F) and first-overtone (1O) modes have distinctly different properties than regular double-mode RR Lyrae variables (RRd stars). The P1O/PF period ratios of our anomalous RRd stars are within a range of 0.725-0.738, while `classical' double-mode RR Lyrae variables have period ratios in the range of 0.742-0.748. In contrast to the typical RRd stars, in the majority of the anomalous pulsators, the F-mode amplitudes are higher than the 1O-mode amplitudes. The light curves associated with the F-mode in the anomalous RRd stars show different morphology than the light curves of, both, regular RRd stars and single-mode RRab stars. Most of the anomalous double-mode stars show long-term modulations of the amplitudes (Blazhko-like effect). Translating the period ratios into the abundance parameter, Z, we find for our stars Z ∈ (0.002, 0.005) - an order of magnitude higher values than typical for RR Lyrae stars. The mass range of the RRd stars inferred from the WI versus PF diagram is (0.55-0.75) M⊙. These parameters cannot be accounted for with single star evolution assuming a Reimers-like mass-loss. Much greater mass-loss caused by interaction with other stars is postulated. We blame the peculiar pulsation properties of our stars to the parametric resonance instability of the 1O-mode to excitation of the F- and 2O-modes as with the inferred parameters of the stars 2ω1O ≈ ωF + ω2O.
Non-conservative evolution in Algols: where is the matter?
NASA Astrophysics Data System (ADS)
Deschamps, R.; Braun, K.; Jorissen, A.; Siess, L.; Baes, M.; Camps, P.
2015-05-01
Context. There is indirect evidence of non-conservative evolutions in Algols. However, the systemic mass-loss rate is poorly constrained by observations and generally set as a free parameter in binary-star evolution simulations. Moreover, systemic mass loss may lead to observational signatures that still need to be found. Aims: Within the "hotspot" ejection mechanism, some of the material that is initially transferred from the companion star via an accretion stream is expelled from the system due to the radiative energy released on the gainer's surface by the impacting material. The objective of this paper is to retrieve observable quantities from this process and to compare them with observations. Methods: We investigate the impact of the outflowing gas and the possible presence of dust grains on the spectral energy distribution (SED). We used the 1D plasma code Cloudy and compared the results with the 3D Monte-Carlo radiative transfer code Skirt for dusty simulations. The circumbinary mass-distribution and binary parameters were computed with state-of-the-art binary calculations done with the Binstar evolution code. Results: The outflowing material reduces the continuum flux level of the stellar SED in the optical and UV. Because of the time-dependence of this effect, it may help to distinguish between different ejection mechanisms. If present, dust leads to observable infrared excesses, even with low dust-to-gas ratios, and traces the cold material at large distances from the star. By searching for this dust emission in the WISE catalogue, we found a small number of Algols showing infrared excesses, among which the two rather surprising objects SX Aur and CZ Vel. We find that some binary B[e] stars show the same strong Balmer continuum as we predict with our models. However, direct evidence of systemic mass loss is probably not observable in genuine Algols, since these systems no longer eject mass through the hotspot mechanism. Furthermore, owing to its high velocity, the outflowing material dissipates in a few hundred years. If hot enough, the hotspot may produce highly ionised species, such as Si iv, and observable characteristics that are typical of W Ser systems. Conclusions: If present, systemic mass loss leads to clear observational imprints. These signatures are not to be found in genuine Algols but in the closely related β Lyraes, W Serpentis stars, double periodic variables, symbiotic Algols, and binary B[e] stars. We emphasise the need for further observations of such objects where systemic mass loss is most likely to occur. Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Keszthelyi, Z.; Puls, J.; Wade, G. A.
2017-02-01
Context. Stellar evolution models of massive stars are very sensitive to the adopted mass-loss scheme. The magnitude and evolution of mass-loss rates significantly affect the main sequence evolution, and the properties of post-main sequence objects, including their rotational velocities. Aims: Driven by potential discrepancies between theoretically predicted and observationally derived mass-loss rates in the OB star range, we aim in particular to investigate the response to mass-loss rates that are lower than currently adopted, in parallel with the mass-loss behavior at the "first" bi-stability jump. Methods: We performed 1D hydrodynamical model calculations of single 20-60 M⊙ Galactic (Z = 0.014) stars where the effects of stellar winds are already significant in the main sequence phase. We have developed an experimental wind routine to examine the behavior and response of the models under the influence of different mass-loss rates. This observationally guided, simple and flexible wind routine is not a new mass-loss description but a useful tool based on the wind-momentum luminosity relation and other scaling relations, and provides a meaningful base for various tests and comparisons. Results: The main result of this study indicates a dichotomy between solutions of currently debated problems regarding mass-loss rates of hot massive stars. In a fully diffusive approach, and for commonly adopted initial rotational velocities, lower mass-loss rates than theoretically predicted require to invoke an additional source of angular momentum loss (either due to bi-stability braking, or yet unidentified) to brake down surface rotational velocities. On the other hand, a large jump in the mass-loss rates due to the bi-stability mechanism (a factor of 5-7 predicted by Vink et al. (2000, A&A, 362, 295), but a factor of 10-20 in modern models of massive stars) is challenged by observational results, and might be avoided if the early mass-loss rates agreed with the theoretically predicted values. Conclusions: We conclude that simultaneously adopting lower mass-loss rates and a significantly smaller jump in the mass-loss rates over the bi-stability region (both compared to presently used prescriptions) would require an additional mechanism for angular momentum loss to be present in massive stars. Otherwise, the observed rotational velocities of a large population of B supergiants, that are thought to be the evolutionary descendants of O stars, would remain unexplained.
Potoczna, Natascha; Wertli, Maria; Steffen, Rudolph; Ricklin, Thomas; Lentes, Klaus-Ulrich; Horber, Fritz F
2004-11-01
Both the gene encoding the alpha subunit of G stimulatory proteins (GNAS1) and the beta3 subunit gene (GNB3) of G proteins are associated with obesity and/or hypertension. Moreover, the TT/TC825 polymorphism of GNB3 predicts greater weight loss than the CC825 polymorphism in obese patients (mean body mass index, 35 kg/m2) undergoing a structured nonpharmacologic weight loss program. Gastric banding enforces a low-calorie diet by diminishing the need for volitional adherence. It is unknown whether these polymorphisms predict the variable weight loss in patients after bariatric surgery. Three hundred and four severely obese patients (mean +/- SEM age, 42 +/- 1 years; 245 women and 59 men; mean +/- SEM body mass index, 43.9 +/- 0.3 kg/m2) followed prospectively for at least 3 years after surgery were genotyped for the GNB3 C825T, G814A, and GNAS1 T393 polymorphisms. All analyses were performed blinded to the phenotypic characteristics of the study group. Frequencies of polymorphisms were comparable to those previously published. No polymorphism studied predicted 3-year weight loss or was associated with high blood pressure in severely obese patients after gastric banding. Multivariate analysis of potentially confounding factors such as reoperation rate or use of sibutramine or orlistat revealed similar results (P > 0.1). Regardless of the mechanism(s) involved for these discordant findings, GNB3 C825T, G814A, and GNAS1 T393C polymorphisms do not seem to be reliable predictors of long-term weight loss.
Global hot-star wind models for stars from Magellanic Clouds
NASA Astrophysics Data System (ADS)
Krtička, J.; Kubát, J.
2018-04-01
We provide mass-loss rate predictions for O stars from Large and Small Magellanic Clouds. We calculate global (unified, hydrodynamic) model atmospheres of main sequence, giant, and supergiant stars for chemical composition corresponding to Magellanic Clouds. The models solve radiative transfer equation in comoving frame, kinetic equilibrium equations (also known as NLTE equations), and hydrodynamical equations from (quasi-)hydrostatic atmosphere to expanding stellar wind. The models allow us to predict wind density, velocity, and temperature (consequently also the terminal wind velocity and the mass-loss rate) just from basic global stellar parameters. As a result of their lower metallicity, the line radiative driving is weaker leading to lower wind mass-loss rates with respect to the Galactic stars. We provide a formula that fits the mass-loss rate predicted by our models as a function of stellar luminosity and metallicity. On average, the mass-loss rate scales with metallicity as Ṁ Z0.59. The predicted mass-loss rates are lower than mass-loss rates derived from Hα diagnostics and can be reconciled with observational results assuming clumping factor Cc = 9. On the other hand, the predicted mass-loss rates either agree or are slightly higher than the mass-loss rates derived from ultraviolet wind line profiles. The calculated P V ionization fractions also agree with values derived from observations for LMC stars with Teff ≤ 40 000 K. Taken together, our theoretical predictions provide reasonable models with consistent mass-loss rate determination, which can be used for quantitative study of stars from Magellanic Clouds.
Modeling of Red Giant and AGB Stars Atmospheres: Constraints from VLTI and HST Observations
NASA Astrophysics Data System (ADS)
Rau, Gioia
2018-04-01
The chemical enrichment of the Universe is considerably affected by the contributions of low-to-intermediate mass stars through the mass-loss provided via their stellar winds. First, we will present our investigation in the near-IR with VLTI/GRAVITY (Wittkowski, Rau, et al., in prep.). Our aim was to verify at different epochs the model-predicted variability of the visibility spectra. We use CODEX model atmospheres, as well as best-fit 3D radiation hydrodynamic simulations (e.g. Freytag et al., 2017), for comparison with the observations. Our preliminary results on R Peg suggest a decreasing contribution by extended CO layers as the star transitions from maximum to minimum phase. Second, we will show a preliminary modeling of UV spectra obtained with HST/GHRS that contain chromospheric emission lines of, e.g., Mg II and Fe II. Via Sobolev with Exact Integration (SEI) modeling, we determined for the two M-giant stars γ Cru and µ Gem the characteristics of their winds (turbulence, acceleration, and opacity), and their average global mass-loss rates (Rau, Carpenter et al., in prep.). Finally, we briefly discuss the impact of instruments on board JWST in progressing this investigation.
NASA Astrophysics Data System (ADS)
Santin, C.; Doerr, S.; Merino, A.
2016-12-01
Pyrogenic carbon (PyC) produced during vegetation fires represents one of the most degradation resistant organic carbon pools and has important implications for the global carbon cycle. Its long-term fate in the environment and the processes leading to its degradation are the subject of much debate. Its consumption in subsequent fires is usually highlighted in the literature as a possible major abiotic loss mechanism of PyC in soils. However, the only two studies that have empirically tested this hypothesis found only minor losses of existing PyC, suggesting that subsequent fire is not a major cause of PyC loss (Santin et al. 2013 median mass losses <15% in an experimental boreal forest fire and Saiz et al. 2014 average mass losses <8% in a prescribed fire in an open savannah woodland). Here we present new empirical data obtained in i) a high-intensity crown fire; ii) a surface low-intensity fire, and iii) a smouldering wildfire in boreal forests and show that the actual PyC combustion during subsequent fires is very variable and depends on both the characteristics of the fire and on the properties of the PyC. References- Saiz G, Goodrick I, Wurster C, Zimmermann MPN, Bird MI (2014) Charcoal recombustion efficiency in tropical savannas. Geoderma, 219, 40-45. - Santin C, Doerr SH, Preston C, Bryant R (2013) Consumption of residual pyrogenic carbon by wildfire. International Journal of Wildland Fire, 22, 1072-1077.
Transfusions and blood loss in total hip and knee arthroplasty: a prospective observational study.
Carling, Malin S; Jeppsson, Anders; Eriksson, Bengt I; Brisby, Helena
2015-03-28
There is a high prevalence of blood product transfusions in orthopedic surgery. The reported prevalence of red blood cell transfusions in unselected patients undergoing hip or knee replacement varies between 21% and 70%. We determined current blood loss and transfusion prevalence in total hip and knee arthroplasty when tranexamic acid was used as a routine prophylaxis, and further investigated potential predictors for excessive blood loss and transfusion requirement. In total, 193 consecutive patients undergoing unilateral hip (n = 114) or knee arthroplasty (n = 79) were included in a prospective observational study. Estimated perioperative blood loss was calculated and transfusions of allogeneic blood products registered and related to patient characteristics and perioperative variables. Overall transfusion rate was 16% (18% in hip patients and 11% in knee patients, p = 0.19). Median estimated blood loss was significantly higher in hip patients (984 vs 789 mL, p < 0.001). Preoperative hemoglobin concentration was the only independent predictor of red blood cell transfusion in hip patients while low hemoglobin concentration, body mass index, and operation time were independent predictors for red blood cell transfusion in knee patients. The prevalence of red blood cell transfusion was lower than previously reported in unselected total hip or knee arthroplasty patients. Routine use of tranexamic acid may have contributed. Low preoperative hemoglobin levels, low body mass index, and long operation increase the risk for red blood cell transfusion.
Modified Treatment Algorithm for Pseudogynecomastia After Massive Weight Loss.
Ziegler, Ulrich E; Lorenz, Udo; Daigeler, Adrien; Ziegler, Selina N; Zeplin, Philip H
2018-06-19
Pseudogynecomastia is the increased aggregation of fatty tissue in the area of the male breast with resultant female appearance. Two forms can appear: pseudogynecomastia after massive weight loss (pseudogynecomastia obese [PO]) and pseudogynecomastia, which is caused only by adipose tissue (pseudogynecomastia fat). For PO, only the Gusenoff classification with corresponding operative treatment options exists. However, this classification is limited by the fact that it underestimates the extensive variability of residual fat tissue and skin excess, both crucial factors for operative planning. For this reason, we propose a modification of the treatment algorithm for the Gusenoff classification based on our results to achieve more masculine results. A total of 43 male patients with PO were included in this retrospective study (grade 1a, n = 1; grade 1b, n = 1; grade 2, n = 17; grade 3, n = 24). Forty-two mastectomies with a free nipple-areola complex (NAC) transposition (grades 2 and 3) and 1 with a subcutaneous mastectomy (grade 1a) with periareolar lifting were performed. A retrospective chart review was performed to obtain data regarding age, body mass index, body mass index loss, weight loss, reason for weight loss, comorbidities, nicotine, and additional procedures, postoperative sensitive on the NAC transplants and complications. None of the free-nipple grafts were lost. Forty (95%) of 42 patients with mastectomy had a resensitivity on the NAC. For pseudogynecomastia, the treatment algorithm of the Gusenoff classification should be modified and adapted according to our recommendations to achieve more optimal masculine results.
Trumble, Benjamin C; Stieglitz, Jonathan; Jaeggi, Adrian V; Beheim, Bret; Schwartz, Matthew; Seabright, Edmond; Cummings, Daniel; Kaplan, Hillard; Gurven, Michael
2018-05-02
The physiology of fatherhood is a growing field of study, and variability in hormonal mediators of reproductive effort (e.g. testosterone, cortisol) can predict variability in paternal investment. Studies often find that lower testosterone levels are associated with increased paternal investment, though most studies are conducted under relatively stable ecological conditions. In this paper, we examine parental physiological correlates of crop loss and family health problems among Tsimane forager-horticulturalists following a catastrophic flood in lowland Bolivia. Immediately after a devastating 2014 flood that impacted >75% of Tsimane communities, we conducted structured interviews examining crop losses and morbidity, and collected saliva specimens from 421 parents (n = 292 households) to analyze cortisol and testosterone. Over 98% of interviewees reported horticultural losses, with the average family losing 88% of their crops, while 80% of families reported flood-induced injuries or illnesses. Controlling for age, body mass index, and time of specimen collection, men's testosterone was negatively associated with both absolute cropland losses (Std. β = -0.16, p = 0.037), and percent of cropland lost (Std. β = -0.16, p = 0.040). Female testosterone was not associated with crop losses. Using the same control variables, both male and female cortisol was negatively associated with a composite measure of child health burden (fathers: Std. β = -0.34, p < 0.001; mothers: Std. β = -0.23, p = 0.037). These results are discussed in the cultural context of a strong sexual division of labor among Tsimane; we highlight the physiological and psychosocial costs of experiencing a natural disaster, especially for paternal caregivers in a nutritionally and pathogenically stressed subsistence population where cultigens provide the majority of calories in the diet. Copyright © 2018 Elsevier Inc. All rights reserved.
Analysis of a GRACE Global Mascon Solution for Gulf of Alaska Glaciers
NASA Technical Reports Server (NTRS)
Arendt, Anthony; Luthcke, Scott B.; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed
2013-01-01
We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of -6511 Gt a(exp.-1) for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of -6111 Gt a(exp. -1) from GRACE, which compares well with -6512 Gt a(exp. -1) from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June-August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements atWolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.
Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers
Arendt, Anthony; Luthcke, Scott; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed
2013-01-01
We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of –65 ± 11 Gt a–1 for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of –61 ± 11 Gt a–1 from GRACE, which compares well with –65 ± 12 Gt a–1 from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June–August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements at Wolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.
Accounting for planet-shaped planetary nebulae
NASA Astrophysics Data System (ADS)
Sabach, Efrat; Soker, Noam
2018-01-01
By following the evolution of several observed exoplanetary systems, we show that by lowering the mass-loss rate of single solar-like stars during their two giant branches, these stars will swallow their planets at the tip of their asymptotic giant branch (AGB) phase. This will most likely lead the stars to form elliptical planetary nebulae (PNe). Under the traditional mass-loss rate these stars will hardly form observable PNe. Stars with a lower mass-loss rate as we propose, about 15 per cent of the traditional mass-loss rate of single stars, leave the AGB with much higher luminosities than what traditional evolution produces. Hence, the assumed lower mass-loss rate might also account for the presence of bright PNe in old stellar populations. We present the evolution of four exoplanetary systems that represent stellar masses in the range of 0.9-1.3 M⊙. The justification for this low mass-loss rate is our assumption that the stellar samples that were used to derive the traditional average single-star mass-loss rate were contaminated by stars that suffer binary interaction.
Sinsabaugh, R. L.; Carreiro, M.M.; Repert, D.A.
2002-01-01
Decomposition of plant material is a complex process that requires interaction among a diversity of microorganisms whose presence and activity is subject to regulation by a wide range of environmental factors. Analysis of extracellular enzyme activity (EEA) provides a way to relate the functional organization of microdecomposer communities to environmental variables. In this study, we examined EEA in relation to litter composition and nitrogen deposition. Mesh bags containing senescent leaves of Quercus borealis (red oak), Acer rubrum (red maple) and Cornus florida (flowering dogwood) were placed on forest floor plots in southeastern New York. One-third of the plots were sprayed monthly with distilled water. The other plots were sprayed monthly with NH4NO3 solution at dose rates equivalent to 2 or 8 g N m-2 y-1. Mass loss, litter composition, fungal mass, and the activities of eight enzymes were measured on 13 dates for each litter type. Dogwood was followed for one year, maple for two, oak for three, For each litter type and treatment, enzymatic turnover activities were calculated from regressions of LN (%mass remaining) vs. cumulative activity. The decomposition of dogwood litter was more efficient than that of maple and oak. Maple litter had the lowest fungal mass and required the most enzymatic work to decompose, even though its mass loss rate was twice that of oak. Across litter types, N amendment reduced apparent enzymatic efficiencies and shifted EEA away from N acquisition and toward P acquisition, and away from polyphenol oxidation and toward polysaccharide hydrolysis. The effect of these shifts on decomposition rate varied with litter composition: dogwood was stimulated, oak was inhibited and maple showed mixed effects. The results show that relatively small shifts in the activity of one or two critical enzymes can significantly alter decomposition rates.
Seismic rate changes associated with seasonal, annual, and decadal changes in the cryosphere
NASA Astrophysics Data System (ADS)
Sauber, J. M.; Luthcke, S. B.; Hall, D. K.
2012-12-01
Near the Bering Glacier Global Fiducial Program (GFP) in southern Alaska large cryospheric fluctuations occur in a region of upper crustal faulting and folding associated with collision and accretion of the Yakutat terrane. In this study we report constraints on seasonal, annual and decadal cryospheric changes estimated over the last decade from field, aircraft and satellite measurements and we evaluate the influence of cryospheric changes on the background seismic rate. Multi-year images from the Bering Glacier GFP are available since mid-2003 to constrain changes in extent of the Bering Glacier and to discern feature changes in the glacial surface. Starting around the same time, satellite gravimetric measurements from the Gravity Recovery and Climate experiment (GRACE) commenced. Large spatial-scale mass change calculated from the GRACE mascon solution of Luthcke et al. [2012] indicate a general trend of annual ice mass loss for southern Alaska but with large, variable seasonal mass fluctuations. Since 2007 the station position of a continuous GPS site near Cape Yakataga (Alaska EarthScope PBO site, AB35) has been available as well. In addition to changes in the geodetic position due to tectonic motion, this GPS station shows large seasonal excursions in the detrended vertical and horizontal position components consistent with snow loading in the fall and winter and melt onset/mass decrease in the spring/summer. To better understand the timing of processes responsible for the onset of cryospheric mass loss documented in the GRACE data, we examined changes in the snow cover extent and the onset of melt in the spring. We calculated the elastic displacements of the solid Earth and theoretical earthquake failure criteria associated with these annual and seasonal ice and snow changes. Additionally, we compared the seismic rate (M>1.8) from a reference background time period against other time periods with variable ice or tectonic change characteristics to test the significance of seismic rate changes. Our earlier results suggest statistically significant changes in the background seismic rate associated with large seasonal mass changes.
Seismic Rate Changes Associated with Seasonal, Annual, and Decadal Changes in the Cryosphere
NASA Technical Reports Server (NTRS)
Sauber-Rosenberg, Jeanne
2012-01-01
Near the Bering Glacier Global Fiducial site in southern Alaska large cryospheric fluctuations occur in a region of upper crustal faulting and folding associated with collision and accretion of the Yakutat terrane. In this study we report constraints on seasonal, annual and decadal cryospheric changes estimated over the last decade from field, aircraft and satellite measurements, and we evaluate the influence of cryospheric changes on the background seismic rate. Multi-year images from the Bering Glacier global fiducial site are available since mid-2003 to constrain changes in extent of the Bering Glacier and to discern feature changes in the glacial surface. Starting around the same time, satellite gravimetric measurements from the Gravity Recovery and Climate experiment (GRACE) commenced. Large spatial-scale mass change calculated from the GRACE 1deg x 1deg mascon solution of Luthcke et al. [2012] indicate a general trend of annual ice mass loss for southern Alaska but with large, variable seasonal mass fluctuations. Since 2007, the station position of a continuous GPS site near Cape Yakataga (Alaska EarthScope PBO site, AB35) has been available as well. In addition to changes in the geodetic position due to tectonic motion, this GPS station shows large seasonal excursions in the detrended vertical and horizontal position components consistent with snow loading in the fall and winter and melt onset/mass decrease in the spring/summer. To better understand the timing of processes responsible for the onset of cryospheric mass loss documented in the GRACE data, we examined changes in the snow cover extent and the onset of melt in the spring. We calculated the surface displacements of the solid Earth and theoretical earthquake failure criteria associated with these annual and seasonal ice and snow changes using layered elastic half-space. Additionally, we compared the seismic rate (M>1.8) from a reference background time period against other time periods with variable ice or tectonic change characteristics to test the significance of seismic rate changes. Our earlier results suggest statistically significant changes in the background seismic rate associated with large seasonal mass changes. INDEX
Tritium plume dynamics in the shallow unsaturated zone in an arid environment
Maples, S.R.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Pohll, G.; Michel, R.L.
2014-01-01
The spatiotemporal variability of a tritium plume in the shallow unsaturated zone and the mechanisms controlling its transport were evaluated during a 10-yr study. Plume movement was minimal and its mass declined by 68%. Upward-directed diffusive-vapor tritium fluxes and radioactive decay accounted for most of the observed plume-mass declines.Effective isolation of tritium (3H) and other contaminants at waste-burial facilities requires improved understanding of transport processes and pathways. Previous studies documented an anomalously widespread (i.e., theoretically unexpected) distribution of 3H (>400 m from burial trenches) in a dry, sub-root-zone gravelly layer (1–2-m depth) adjacent to a low-level radioactive waste (LLRW) burial facility in the Amargosa Desert, Nevada, that closed in 1992. The objectives of this study were to: (i) characterize long-term, spatiotemporal variability of 3H plumes; and (ii) quantify the processes controlling 3H behavior in the sub-root-zone gravelly layer beneath native vegetation adjacent to the facility. Geostatistical methods, spatial moment analyses, and mass flux calculations were applied to a spatiotemporally comprehensive, 10-yr data set (2001–2011). Results showed minimal bulk-plume advancement during the study period and limited Fickian spreading of mass. Observed spreading rates were generally consistent with theoretical vapor-phase dispersion. The plume mass diminished more rapidly than would be expected from radioactive decay alone, indicating net efflux from the plume. Estimates of upward 3H efflux via diffusive-vapor movement were >10× greater than by dispersive-vapor or total-liquid movement. Total vertical fluxes were >20× greater than lateral diffusive-vapor fluxes, highlighting the importance of upward migration toward the land surface. Mass-balance calculations showed that radioactive decay and upward diffusive-vapor fluxes contributed the majority of plume loss. Results indicate that plume losses substantially exceeded any continuing 3H contribution to the plume from the LLRW facility during 2001 to 2011 and suggest that the widespread 3H distribution resulted from transport before 2001.
Irradiation-driven Mass Transfer Cycles in Compact Binaries
NASA Astrophysics Data System (ADS)
Büning, A.; Ritter, H.
2005-08-01
We elaborate on the analytical model of Ritter, Zhang, & Kolb (2000) which describes the basic physics of irradiation-driven mass transfer cycles in semi-detached compact binary systems. In particular, we take into account a contribution to the thermal relaxation of the donor star which is unrelated to irradiation and which was neglected in previous studies. We present results of simulations of the evolution of compact binaries undergoing mass transfer cycles, in particular also of systems with a nuclear evolved donor star. These computations have been carried out with a stellar evolution code which computes mass transfer implicitly and models irradiation of the donor star in a point source approximation, thereby allowing for much more realistic simulations than were hitherto possible. We find that low-mass X-ray binaries (LMXBs) and cataclysmic variables (CVs) with orbital periods ⪉ 6hr can undergo mass transfer cycles only for low angular momentum loss rates. CVs containing a giant donor or one near the terminal age main sequence are more stable than previously thought, but can possibly also undergo mass transfer cycles.
Elsawy, Gehan; Abdelrahman, Osama; Hamza, Amr
2014-03-27
Taekwondo and judo competitions are divided into weight categories. Many athletes reduce their body mass a few days before competition in order to obtain a competitive advantage over lighter opponents. To achieve fast body mass reduction, athletes use a number of nutritional strategies, including choline supplementation. The goal of this study was to identify the effects of choline supplementation on body mass reduction and leptin levels among female taekwondo and judo athletes. Twenty-two female athletes (15 taekwondo and 7 judo athletes) were selected from different weight categories and divided into two groups, according to weight. The players in the experimental group took choline tablets for one week before a competition. The results revealed significant differences between pre- and post-competition measurements of leptin, free plasma choline, urine choline and urine malondialdehyde levels; body mass was also reduced in the post-competition measurements. In conclusion, choline supplementation could rapidly reduce body mass without any side effects on biochemical levels or static strength.
The evolution of massive stars including mass loss - Presupernova models and explosion
NASA Technical Reports Server (NTRS)
Woosley, S. E.; Langer, Norbert; Weaver, Thomas A.
1993-01-01
The evolution of massive stars of 35, 40, 60, and 85 solar masses is followed through all stages of nuclear burning to the point of Fe core collapse. Critical nuclear reaction and mass-loss rates are varied. Efficient mass loss during the Wolf-Rayet (WR) stage is likely to lead to final masses as small as 4 solar masses. For a reasonable parameterization of the mass loss, there may be convergence of all WR stars, both single and in binaries, to a narrow band of small final masses. Our representative model, a 4.25 solar-mass WR presupernova derived from a 60 solar mass star, is followed through a simulated explosion, and its explosive nucleosynthesis and light curve are determined. Its properties are similar to those observed in Type Ib supernovae. The effects of the initial mass and mass loss on the presupernova structure of small mass WR models is also explored. Important properties of the presupernova star and its explosion can only be obtained by following the complete evolution starting on the main sequence.
Categorisation of built environment characteristics: the trouble with tertiles.
Lamb, Karen E; White, Simon R
2015-02-15
In the analysis of the effect of built environment features on health, it is common for researchers to categorise built environment exposure variables based on arbitrary percentile cut-points, such as median or tertile splits. This arbitrary categorisation leads to a loss of information and a lack of comparability between studies since the choice of cut-point is based on the sample distribution. In this paper, we highlight the various drawbacks of adopting percentile categorisation of exposure variables. Using data from the SocioEconomic Status and Activity in Women (SESAW) study from Melbourne, Australia, we highlight alternative approaches which may be used instead of percentile categorisation in order to assess built environment effects on health. We discuss these approaches using an example which examines the association between the number of accessible supermarkets and body mass index. We show that alternative approaches to percentile categorisation, such as transformations of the exposure variable or factorial polynomials, can be implemented easily using standard statistical software packages. These procedures utilise all of the available information available in the data, avoiding a loss of power as experienced when categorisation is adopted.We argue that researchers should retain all available information by using the continuous exposure, adopting transformations where necessary.
Eta Carinae: X-ray Line Variations during the 2003 X-ray Minimum, and the Orbit Orientation
NASA Technical Reports Server (NTRS)
Corcoran, M. F.; Henley, D.; Hamaguchi, K.; Khibashi, K.; Pittard, J. M.; Stevens, I. R.; Gull, T. R.
2007-01-01
The future evolution of Eta Carinae will be as a supernova (or hypernova) and black hole. The evolution is highly contingent on mass and angular momentum changes and instabilities. The presence of a companion can serve to trigger instabilities and provide pathways for mass and angular momentum exchange loss. X-rays can be used a a key diagnostic tool: x-ray temperatures trace pre-shock wind velocities, periodic x-ray variability traces the orbit, and x-ray line variations traces the flow and orientation of shocked gas. This brief presentation highlights x-ray line variations from the HETG and presents a model of the colliding wind flow.
The sn stars - Magnetically controlled stellar winds among the helium-weak stars
NASA Technical Reports Server (NTRS)
Shore, Steven N.; Brown, Douglas N.; Sonneborn, George
1987-01-01
The paper reports observations of magnetically controlled stellar mass outflows in three helium-weak sn stars: HD 21699 = HR 1063; HD 5737 = Alpha Scl; and HD 79158 = 36 Lyn. IUE observations show that the C IV resonance doublet is variable on the rotational timescale but that there are no other strong-spectrum variations in the UV. Magnetic fields, which reverse sign on the rotational timescale, are present in all three stars. This phenomenology is interpreted in terms of jetlike mass loss above the magnetic poles, and these objects are discussed in the context of a general survey of the C IV and Si IV profiles of other more typical helium-weak stars.
Reed-Sternberg cells in breast FNA of a patient with left breast mass.
Park, Jaemin; Rizzo, Monica; Jackson, Simona; Bates, Sandra R; Green, Victoria; Oprea-Ilies, Gabriela
2010-09-01
Hodgkin's lymphoma is a potentially curable malignancy of the lymphatic system characterized by a variable number of scattered and large mononucleated and multinucleated tumor cells, the Hodgkin and Reed-Sternberg cells residing in an abundant heterogeneous admixture of non-neoplastic inflammatory cells. It represents approximately 30% of all lymphomas according to the World Health Organization (WHO). Patients with Hodgkin's lymphoma typically present with painless peripheral adenopathy, fever, night sweats, and weight loss. We report a rare case of Hodgkin's lymphoma presented as a breast mass in a 23-year-old woman diagnosed on fine needle aspiration (FNA). At presentation, she had no B symptoms, or palpable lymphadenopathy. Copyright 2010 Wiley-Liss, Inc.
Fat King Penguins Are Less Steady on Their Feet
Willener, Astrid S. T.; Handrich, Yves; Halsey, Lewis G.; Strike, Siobhán
2016-01-01
Returning to the shore after a feeding sojourn at sea, king penguins often undertake a relatively long terrestrial journey to the breeding colony carrying a heavy, mostly frontal, accumulation of fat along with food in the stomach for chick-provisioning. There they must survive a fasting period of up to a month in duration, during which their complete reliance on endogenous energy stores results in a dramatic loss in body mass. Our aim was to determine if the king penguin’s walking gait changes with variations in body mass. We investigated this by walking king penguins on a treadmill while instrumented with an acceleration data logger. The stride frequency, dynamic body acceleration (DBA) and posture of fat (pre-fasting; 13.2 kg) and slim (post fasting; 11 kg) king penguins were assessed while they walked at the same speed (1.4km/h) on a treadmill. Paired statistical tests indicated no evidence for a difference in dynamic body acceleration or stride frequency between the two body masses however there was substantially less variability in both leaning angle and the leaning amplitude of the body when the birds were slimmer. Furthermore, there was some evidence that the slimmer birds exhibited a decrease in waddling amplitude. We suggest the increase in variability of both leaning angle and amplitude, as well as a possibly greater variability in the waddling amplitude, is likely to result from the frontal fat accumulation when the birds are heavier, which may move the centre of mass anteriorly, resulting in a less stable upright posture. This study is the first to use accelerometry to better understand the gait of a species within a specific ecological context: the considerable body mass change exhibited by king penguins. PMID:26886216
Fat King Penguins Are Less Steady on Their Feet.
Willener, Astrid S T; Handrich, Yves; Halsey, Lewis G; Strike, Siobhán
2016-01-01
Returning to the shore after a feeding sojourn at sea, king penguins often undertake a relatively long terrestrial journey to the breeding colony carrying a heavy, mostly frontal, accumulation of fat along with food in the stomach for chick-provisioning. There they must survive a fasting period of up to a month in duration, during which their complete reliance on endogenous energy stores results in a dramatic loss in body mass. Our aim was to determine if the king penguin's walking gait changes with variations in body mass. We investigated this by walking king penguins on a treadmill while instrumented with an acceleration data logger. The stride frequency, dynamic body acceleration (DBA) and posture of fat (pre-fasting; 13.2 kg) and slim (post fasting; 11 kg) king penguins were assessed while they walked at the same speed (1.4 km/h) on a treadmill. Paired statistical tests indicated no evidence for a difference in dynamic body acceleration or stride frequency between the two body masses however there was substantially less variability in both leaning angle and the leaning amplitude of the body when the birds were slimmer. Furthermore, there was some evidence that the slimmer birds exhibited a decrease in waddling amplitude. We suggest the increase in variability of both leaning angle and amplitude, as well as a possibly greater variability in the waddling amplitude, is likely to result from the frontal fat accumulation when the birds are heavier, which may move the centre of mass anteriorly, resulting in a less stable upright posture. This study is the first to use accelerometry to better understand the gait of a species within a specific ecological context: the considerable body mass change exhibited by king penguins.
Szendrei, Barbara; González-Lamuño, Domingo; Amigo, Teresa; Wang, Guan; Pitsiladis, Yannis; Benito, Pedro J; Gomez-Candela, Carmen; Calderón, Francisco J; Cupeiro, Rocío
2016-03-01
The β-2 and β-3 adrenergic receptors (ADRB2 and ADRB3) are thought to play a role in energy expenditure and lipolysis. However, the effects of the ADRB2 glutamine (Gln) 27 glutamic acid (glutamate) (Glu) and ADRB3 tryptophan (Trp) 64 arginine (Arg) polymorphisms on weight loss remain controversial. The aim of this study was to investigate the effect of these polymorphisms on changes in weight and body composition during a controlled weight-loss program. One hundred seventy-three healthy overweight and obese participants (91 women, 82 men) aged 18-50 years participated in a 22-week-long intervention based on a hypocaloric diet and exercise. They were randomly assigned to 1 of 4 groups: strength, endurance, strength and endurance combined, and physical activity recommendations only. Body weight, body mass index (BMI), and body composition variables were assessed before and after the intervention. Genetic analysis was carried out according to standard protocols. No effect of the ADRB2 gene was shown on final weight, BMI, or body composition, although in the supervised male group, Glu27 carriers tended to have greater weight (p = 0.019, 2.5 kg) and BMI (p = 0.019, 0.88 kg/m(2)) reductions than did noncarriers. There seems to be an individual effect of the ADRB3 polymorphism on fat mass (p = 0.004) and fat percentage (p = 0.036), in addition to an interaction with exercise for fat mass (p = 0.038). After the intervention, carriers of the Arg64 allele had a greater fat mass and fat percentage than did noncarriers (p = 0.004, 2.8 kg). In conclusion, the ADRB2 Gln27Glu and ADRB3 Trp64Arg polymorphisms may influence weight loss and body composition, although the current evidence is weak; however, further studies are necessary to clarify their roles.
Cabrera, Jorge L; Wilks, Edward G; Symons, Jenna E; Blankson, Kwabena L; Cole, Renee E
2012-03-01
Assess body mass index (BMI) reduction through a multidisciplinary intervention with sibutramine in adolescents of military parents and examine characteristics and behavioral traits as predictors of successful weight loss. A prospective study where participants received sibutramine daily for 6 months. Adolescents ages 12 to 18 with BMI-for-age and sex greater than 95 percentile and good health were enrolled. Outcome variables are BMI, biochemical indices, and clinical measurements. Predictor variables are participant demographics, family history, lifestyle changes, and behavioral traits assessed with behavioral assessment for children. One hundred participants were recruited with 81% completion. In those participants who completed the 6-month intervention, a mean participant BMI reduction of 3.1 kg/m2 (-9.3%) (p < 0.001; 95% CI: -10.5% to -7.9%) was obtained with 79% successfully meeting the weight loss goal. Sibutramine dose was increased from 10 to 15 mg at 3 months for participant with <2.5% BMI reduction from baseline. Sibutramine dose at 3 months (p < 0.001) and participants perception of relationship with parents (p = 0.05) were statistically significant predictors of successful weight loss (> or =10% reduction in BMI). Sibutramine was effective at promoting minimum beneficial BMI reduction of 5% in adolescents with service-connected parents; however, increasing dosage at 3 months did not improve the likelihood of being successful.
Liposuction of the arm concurrent with brachioplasty in the massive weight loss patient: is it safe?
Bossert, Ronald P; Dreifuss, Stephanie; Coon, Devin; Wollstein, Adi; Clavijo-Alvarez, Julio; Gusenoff, Jeffrey A; Rubin, J Peter
2013-02-01
Brachioplasty continues to be a sought-after procedure among the massive weight loss population. Residual adiposity of the upper arm can make this procedure more difficult. The authors sought to determine the safety of arm liposuction outside the region of excision with concomitant excisional brachioplasty. Data were analyzed from a prospective registry of massive weight loss patients who underwent brachioplasty alone or with concurrent arm liposuction. Variables examined included age, sex, body mass index, method of weight loss, medical comorbidities, and smoking status. Outcomes included complications such as seroma, wound dehiscence, infection, hematoma, lymphedema, and need for revision. Multivariate analyses were performed to assess outcome measures. One hundred forty-four patients (139 women and five men; mean body mass index, 29.6 ± 4.1 kg/m; mean age, 46 ± 10.7 years) underwent brachioplasty. Sixty-four patients had concomitant arm liposuction at the time of brachioplasty. The remaining 80 patients underwent excisional brachioplasty alone. Despite significantly higher operative body mass indices among those undergoing concurrent liposuction, no significant differences in complication rates were seen between the liposuction and excision-alone cohorts for seroma (19.1 percent versus 23.1 percent), wound dehiscence (7.9 percent versus 2.6 percent), infection (4.8 percent versus 6.4 percent), hematoma (3.2 percent versus 0 percent), or lymphedema (3.2 percent versus 1.3 percent). Revision rates were similar between the two groups (9.5 percent with liposuction and 8.9 percent without liposuction). Liposuction can be performed safely and effectively outside the region of excision at the time of brachioplasty without the need for prior debulking or staged arm-contouring procedures. Therapeutic, III.
Regnault, Nolwenn; Botton, Jérémie; Blanc, Laurence; Hankard, Régis; Forhan, Anne; Goua, Valérie; Thiebaugeorges, Olivier; Kaminski, Monique; Heude, Barbara; Charles, Marie-Aline
2011-05-01
We aimed to study the determinants of neonatal weight loss measured on the third day of life in term-infants. The EDEN mother-child cohort is a prospective study that recruited 2002 pregnant women before 24 weeks of gestation in two French university hospitals. Neonates were weighed every day until discharge that occurred on average 4.5 days after birth. Altogether, 1557 healthy term neonates with data on weight at day 3 and feeding mode available were included. The outcome variable was weight loss at day 3 (D3WL), expressed as a percentage of birth weight lost in the first 3 days of life. Our main explanatory variables were maternal pre-pregnancy body mass index (BMI), gestational weight gain, gestational diabetes, birth weight, gestational age and feeding mode. Factors associated with greater D3WL, whatever the feeding mode, were: higher birth weight, gestational diabetes and caesarean section; higher gestational age was associated with a reduced D3WL. The association between maternal pre-pregnancy BMI and D3WL differed by feeding mode (interaction p value=0.0002). In breastfed babies, mean D3WL ranged from 4.9% for neonates of underweight mothers to 5.8% for neonates of obese mothers (p trend=0.0005). In formula-fed babies, D3WL was highest for neonates of underweight mothers (4.1%) and lowest for those of obese mothers (2.6%) (p trend=0.01). The lower D3WL in formula-fed neonates, especially in neonates of obese mothers, suggests a relative overfeeding in the early days compared with breastfed neonates, which may potentially have consequences on later health. Overweight and obese mothers may need extra support to prevent early breastfeeding discontinuation.
Rao, Shengbin; Fujimura, Tatsuya; Matsunari, Hitomi; Sakuma, Tetsushi; Nakano, Kazuaki; Watanabe, Masahito; Asano, Yoshinori; Kitagawa, Eri; Yamamoto, Takashi; Nagashima, Hiroshi
2016-01-01
Myostatin (MSTN) is a negative regulator of myogenesis, and disruption of its function causes increased muscle mass in various species. Here, we report the generation of MSTN-knockout (KO) pigs using genome editing technology combined with somatic-cell nuclear transfer (SCNT). Transcription activator-like effector nuclease (TALEN) with non-repeat-variable di-residue variations, called Platinum TALEN, was highly efficient in modifying genes in porcine somatic cells, which were then used for SCNT to create MSTN KO piglets. These piglets exhibited a double-muscled phenotype, possessing a higher body weight and longissimus muscle mass measuring 170% that of wild-type piglets, with double the number of muscle fibers. These results demonstrate that loss of MSTN increases muscle mass in pigs, which may help increase pork production for consumption in the future. © 2015 Wiley Periodicals, Inc.
Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium
NASA Technical Reports Server (NTRS)
Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.
A path model of sarcopenia on bone mass loss in elderly subjects.
Rondanelli, M; Guido, D; Opizzi, A; Faliva, M A; Perna, S; Grassi, M
2014-01-01
Aging is associated with decreases in muscle mass, strength, power (sarcopenia) and bone mineral density (BMD). The aims of this study were to investigate in elderly the role of sarcopenia on BMD loss by a path model, including adiposity, inflammation, and malnutrition associations. Body composition and BMD were measured by dual X-ray absorptiometry in 159 elderly subjects (52 male/107 female; mean age 80.3 yrs). Muscle strength was determined with dynamometer. Serum albumin and PCR were also assessed. Structural equations examined the effect of sarcopenia (measured by Relative Skeletal Muscle Mass, Total Muscle Mass, Handgrip, Muscle Quality Score) on osteoporosis (measured by Vertebral and Femoral T-scores) in a latent variable model including adiposity (measured by Total Fat Mass, BMI, Ginoid/Android Fat), inflammation (PCR), and malnutrition (serum albumin). The sarcopenia assumed a role of moderator in the adiposity-osteoporosis relationship. Specifically, increasing the sarcopenia, the relationship adiposity-osteoporosis (β: -0.58) decrease in intensity. Adiposity also influences sarcopenia (β: -0.18). Malnutrition affects the inflammatory and the adiposity states (β: +0.61, and β: -0.30, respectively), while not influencing the sarcopenia. Thus, adiposity has a role as a mediator of the effect of malnutrition on both sarcopenia and osteoporosis. Malnutrition decreases adiposity; decreasing adiposity, in turn, increase the sarcopenia and osteoporosis. This study suggests such as in a group of elderly sarcopenia affects the link between adiposity and BMD, but not have a pure independent effect on osteoporosis.
Bougamont, M.; Christoffersen, P.; Price, S. F.; ...
2015-10-21
Ongoing, centennial-scale flow variability within the Ross ice streams of West Antarctica suggests that the present-day positive mass balance in this region may reverse in the future. Here we use a three-dimensional ice sheet model to simulate ice flow in this region over 250 years. The flow responds to changing basal properties, as a subglacial till layer interacts with water transported in an active subglacial hydrological system. We show that a persistent weak bed beneath the tributaries of the dormant Kamb Ice Stream is a source of internal ice flow instability, which reorganizes all ice streams in this region, leadingmore » to a reduced (positive) mass balance within decades and a net loss of ice within two centuries. This hitherto unaccounted for flow variability could raise sea level by 5 mm this century. Furthermore, better constraints on future sea level change from this region will require improved estimates of geothermal heat flux and subglacial water transport.« less
NASA Astrophysics Data System (ADS)
Belloni, Diogo; Schreiber, Matthias R.; Zorotovic, Mónica; Iłkiewicz, Krystian; Hurley, Jarrod R.; Giersz, Mirek; Lagos, Felipe
2018-06-01
The predicted and observed space density of cataclysmic variables (CVs) have been for a long time discrepant by at least an order of magnitude. The standard model of CV evolution predicts that the vast majority of CVs should be period bouncers, whose space density has been recently measured to be ρ ≲ 2 × 10-5 pc-3. We performed population synthesis of CVs using an updated version of the Binary Stellar Evolution (BSE) code for single and binary star evolution. We find that the recently suggested empirical prescription of consequential angular momentum loss (CAML) brings into agreement predicted and observed space densities of CVs and period bouncers. To progress with our understanding of CV evolution it is crucial to understand the physical mechanism behind empirical CAML. Our changes to the BSE code are also provided in details, which will allow the community to accurately model mass transfer in interacting binaries in which degenerate objects accrete from low-mass main-sequence donor stars.
Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution
Kender, Sev; McClymont, Erin L.; Elmore, Aurora C.; Emanuele, Dario; Leng, Melanie J.; Elderfield, Henry
2016-01-01
Understanding the interaction between climate and biotic evolution is crucial for deciphering the sensitivity of life. An enigmatic mass extinction occurred in the deep oceans during the Mid Pleistocene, with a loss of over 100 species (20%) of sea floor calcareous foraminifera. An evolutionarily conservative group, benthic foraminifera often comprise >50% of eukaryote biomass on the deep-ocean floor. Here we test extinction hypotheses (temperature, corrosiveness and productivity) in the Tasman Sea, using geochemistry and micropalaeontology, and find evidence from several globally distributed sites that the extinction was caused by a change in phytoplankton food source. Coccolithophore evolution may have enhanced the seasonal ‘bloom' nature of primary productivity and fundamentally shifted it towards a more intra-annually variable state at ∼0.8 Ma. Our results highlight intra-annual variability as a potential new consideration for Mid Pleistocene global biogeochemical climate models, and imply that deep-sea biota may be sensitive to future changes in productivity. PMID:27311937
NASA Astrophysics Data System (ADS)
Pratap, B.
2015-12-01
The glacier mass balance is undelayed, unfiltered and direct method to assess the impact of climate change on the glaciers. Many studies suggest that some of the Himalayan glaciers have lost their mass at an increased rate during the past few decades. Furthermore, the mass balance gradient and hypsometric analysis are important to understand the glacier response towards climatic perturbations. Our long term in-situ monitoring on the Dokriani Glacier provides great insights to understand the variability in central Himalayan glaciers. We report the relationship between glacier hypsometry and annual mass balance gradient (12 years) to understand the glacier's response towards climate change. Dokriani Glacier in the Bhagirathi basin is a small (7 km2) NNW exposed glacier in the western part of central Himalaya, India. The study analysed the annual balance, mass balance gradient and length changes observed during first decade of 21st century (2007-2013) and compare with the previous observations of 1990s (1992-2000). A large spatial variability in the mass balance gradients of two different periods has been observed. The equilibrium-line altitude (ELA) was fluctuated between 5000 and 5100 m a.s.l. and the derived time averaged ELA (ELAn) and balance budget ELA (ELA0) were 5075 and 4965 m a.s.l respectively during 1992-2013. The observed time-averaged accumulation-area ratio (AARn) and balance budget AAR (AAR0) were 0.67 and 0.72 respectively during 1992-2013. The higher value of AAR comprises due to flat and broader accumulation area (4.50 km2) of the glacier. Although, having larger accumulation area, the glacier has faced strong mass wasting with average annual ablation of -1.82 m w.e. a-1 in the ablation zone as compare to residual average annual accumulation of 0.41 m w.e. a-1. Based on the annual mass balance series (12 years) Dokriani Glacier has continuous negative annual balances with monotonically negative cumulative mass loss of -3.86 m w.e with the average loss of -0.32 m w.e a-1. Dokriani Glacier also showed continues recession from 1992 to present. Snout was ascended 95 m a.s.l. from an elevation of 3870 m a.s.l. in 1992 to an elevation of 3965 m a.s.l. in 2013. The progressive retreat of the glacier affects its extension and volume and covered by continuous enhancement of debris in the lower ablation zone.
Solar array model corrections from Mars Pathfinder lander data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewell, R.C.; Burger, D.R.
1997-12-31
The MESUR solar array power model initially assumed values for input variables. After landing early surface variables such as array tilt and azimuth or early environmental variables such as array temperature can be corrected. Correction of later environmental variables such as tau versus time, spectral shift, dust deposition, and UV darkening is dependent upon time, on-board science instruments, and ability to separate effects of variables. Engineering estimates had to be made for additional shadow losses and Voc sensor temperature corrections. Some variations had not been expected such as tau versus time of day, and spectral shift versus time of day.more » Additions needed to the model are thermal mass of lander petal and correction between Voc sensor and temperature sensor. Conclusions are: the model works well; good battery predictions are difficult; inclusion of Isc and Voc sensors was valuable; and the IMP and MAE science experiments greatly assisted the data analysis and model correction.« less
Emotion Dysregulation and Loss-of-Control Eating in Children and Adolescents
Kelly, Nichole R.; Tanofsky-Kraff, Marian; Vannucci, Anna; Ranzenhofer, Lisa M.; Altschul, Annie M.; Schvey, Natasha A.; Shank, Lisa M.; Brady, Sheila M.; Galescu, Ovidiu; Kozlosky, Merel; Yanovski, Susan Z.; Yanovski, Jack A.
2016-01-01
Objective To examine the associations among self-reported loss-of-control (LOC) eating, emotion dysregulation, body mass, and objective energy intake among youth. Emotion dysregulation may be one individual factor that promotes excess energy intake and increases in body mass among youth with LOC eating. Methods Children and adolescents (N=230; 8 to 17 years) enrolled in a non-intervention study completed a structured interview to determine the presence or absence of self-reported LOC eating. Children’s emotion dysregulation was assessed via parent-report with the Child Behavior Checklist. Youth also completed two test meals to capture “binge” and “normal” eating. Body composition was examined using air displacement plethysmography. Results After controlling for relevant covariates, youth with self-reported LOC eating had higher parent-reported emotion dysregulation than those without LOC. Parent-reported emotion dysregulation was also associated with greater observed energy intake (after accounting for body mass), as well as higher fat mass. Emotion dysregulation also moderated associations between LOC status/sex and body mass variables; among youth with self-reported LOC eating and girls, those with high parent-described emotion dysregulation (versus low) had significantly higher fat mass and BMIz. Conclusions Data from the current study suggest that emotion dysregulation may play a role in energy intake and obesity, particularly among youth with self-reported LOC eating and girls. Additional studies are needed to identify the prospective mechanisms linking poor emotion regulation and LOC eating. These mechanisms, in turn, may inform future interventions targeting excess energy intake and obesity in pediatric samples. PMID:27505194
NASA Astrophysics Data System (ADS)
Klug, Christoph; Nicholson, Lindsey; Rieg, Lorenzo; Sailer, Rudolf; Wirbel, Anna
2016-04-01
Debris-covered glaciers in the eastern Himalaya have pronounced surface relief consisting of hummocks and hollows, ice cliffs, lakes and former lake beds. This relief and spatially variable surface properties are expected to influence the spatially distributed surface energy balance and related ice mass loss and atmospheric interactions, but only a few studies have so far explicitly examined the nature of the surface terrain and its textures . In this work we present a new high-resolution digital terrain model (DTM) of a portion of the Khumbu Himal in the eastern Nepalese Himalaya, derived from Pléiades satellite imagery sampled in spring 2015. We use this DTM to study the terrain characteristics of five sample glaciers and analyse the inter- and intra- glacier variability of terrain characteristics in the context of glacier flow velocities and surface changes presented in previous studies in the area. In parallel to this analysis we also present the seasonal geodetic mass balance between spring and fall 2015, and relate it to the terrain properties, surface velocity and limited knowledge of the local lapse rates in meteorological conditions during this monsoon season.
Elegido, Ana; Graell, Montserrat; Andrés, Patricia; Gheorghe, Alina; Marcos, Ascensión; Nova, Esther
2017-03-01
Anorexia nervosa (AN) is an atypical form of malnutrition with peculiar changes in the immune system. We hypothesized that different lymphocyte subsets are differentially affected by malnutrition in AN, and thus, our aim was to investigate the influence of body mass loss on the variability of lymphocyte subsets in AN patients. A group of 66 adolescent female patients, aged 12-17 years, referred for their first episode of either AN or feeding or eating disorders not elsewhere classified were studied upon admission (46 AN-restricting subtype, 11 AN-binge/purging subtype, and 9 feeding or eating disorders not elsewhere classified). Ninety healthy adolescents served as controls. White blood cells and lymphocyte subsets were analyzed by flow cytometry. Relationships with the body mass index (BMI) z score were assessed in linear models adjusted by diagnostic subtype and age. Leukocyte numbers were lower in AN patients than in controls, and relative lymphocytosis was observed in AN-restricting subtype. Lower CD8 + , NK, and memory CD8 + counts were found in eating disorder patients compared with controls. No differences were found for CD4 + counts or naive and memory CD4 + subsets between the groups. Negative associations between lymphocyte percentage and the BMI z score, as well as between the B cell counts, naive CD4 + percentage and counts, and the BMI z score, were found. In conclusion, increased naive CD4 + and B lymphocyte subsets associated with body mass loss drive the relative lymphocytosis observed in AN patients, which reflects an adaptive mechanism to preserve the adaptive immune response. Copyright © 2017 Elsevier Inc. All rights reserved.
Carey, Daniel G; Raymond, Robert L
2008-07-01
The primary objective of this study was to assess the validity of body mass index (BMI) in predicting percent body fat and changes in percent body fat with weight loss in bariatric surgery patients. Twenty-two bariatric patients (17 female, five male) began the study designed to include 12 months of testing, including data collection within 1 week presurgery and 1 month, 3 months, 6 months, and 1 year postsurgery. Five female subjects were lost to the study between 6 months and 12 months postsurgery, resulting in 17 subjects (12 female, five male) completing the 12 months of testing. Variables measured in the study included height, weight, percent fat (% fat) by hydrostatic weighing, lean mass, fat mass, and basal metabolic rate. Regression analyses predicting % fat from BMI yielded the following results: presurgery r = 0.173, p = 0.479, standard error of estimate (SEE) = 3.86; 1 month r = 0.468, p = 0.043, SEE = 4.70; 3 months r = 0.553, p = 0.014, SEE = 6.2; 6 months r = 0.611, p = 0.005, SEE = 5.88; 12 months r = 0.596, p = 0.007, SEE = 7.13. Regression analyses predicting change in % fat from change in BMI produced the following results: presurgery to 1 month r = -0.134, p = 0.583, SEE = 2.44%; 1-3 months r = 0.265, p = 0.272, SEE = 2.36%; 3-6 months r = 0.206, p = 0.398, SEE = 3.75%; 6-12 months r = 0.784, p = 0.000, SEE = 3.20. Although some analyses resulted in significant correlation coefficients (p < 0.05), the relatively large SEE values would preclude the use of BMI in predicting % fat or change in % fat with weight loss in bariatric surgery patients.
SEA-LEVEL RISE. Sea-level rise due to polar ice-sheet mass loss during past warm periods.
Dutton, A; Carlson, A E; Long, A J; Milne, G A; Clark, P U; DeConto, R; Horton, B P; Rahmstorf, S; Raymo, M E
2015-07-10
Interdisciplinary studies of geologic archives have ushered in a new era of deciphering magnitudes, rates, and sources of sea-level rise from polar ice-sheet loss during past warm periods. Accounting for glacial isostatic processes helps to reconcile spatial variability in peak sea level during marine isotope stages 5e and 11, when the global mean reached 6 to 9 meters and 6 to 13 meters higher than present, respectively. Dynamic topography introduces large uncertainties on longer time scales, precluding robust sea-level estimates for intervals such as the Pliocene. Present climate is warming to a level associated with significant polar ice-sheet loss in the past. Here, we outline advances and challenges involved in constraining ice-sheet sensitivity to climate change with use of paleo-sea level records. Copyright © 2015, American Association for the Advancement of Science.
Navarro-Barrientos, J.-Emeterio; Rivera, Daniel E.; Collins, Linda M.
2011-01-01
We present a dynamical model incorporating both physiological and psychological factors that predicts changes in body mass and composition during the course of a behavioral intervention for weight loss. The model consists of a three-compartment energy balance integrated with a mechanistic psychological model inspired by the Theory of Planned Behavior (TPB). The latter describes how important variables in a behavioural intervention can influence healthy eating habits and increased physical activity over time. The novelty of the approach lies in representing the behavioural intervention as a dynamical system, and the integration of the psychological and energy balance models. Two simulation scenarios are presented that illustrate how the model can improve the understanding of how changes in intervention components and participant differences affect outcomes. Consequently, the model can be used to inform behavioural scientists in the design of optimised interventions for weight loss and body composition change. PMID:21673826
EVOLUTIONARY MODELS OF SUPER-EARTHS AND MINI-NEPTUNES INCORPORATING COOLING AND MASS LOSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Alex R.; Burrows, Adam, E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu
We construct models of the structural evolution of super-Earth- and mini-Neptune-type exoplanets with H{sub 2}–He envelopes, incorporating radiative cooling and XUV-driven mass loss. We conduct a parameter study of these models, focusing on initial mass, radius, and envelope mass fractions, as well as orbital distance, metallicity, and the specific prescription for mass loss. From these calculations, we investigate how the observed masses and radii of exoplanets today relate to the distribution of their initial conditions. Orbital distance and the initial envelope mass fraction are the most important factors determining planetary evolution, particularly radius evolution. Initial mass also becomes important belowmore » a “turnoff mass,” which varies with orbital distance, with mass–radius curves being approximately flat for higher masses. Initial radius is the least important parameter we study, with very little difference between the hot start and cold start limits after an age of 100 Myr. Model sets with no mass loss fail to produce results consistent with observations, but a plausible range of mass-loss scenarios is allowed. In addition, we present scenarios for the formation of the Kepler-11 planets. Our best fit to observations of Kepler-11b and Kepler-11c involves formation beyond the snow line, after which they moved inward, circularized, and underwent a reduced degree of mass loss.« less
Impact of menstruation on select hematology and clinical chemistry variables in cynomolgus macaques.
Perigard, Christopher J; Parrula, M Cecilia M; Larkin, Matthew H; Gleason, Carol R
2016-06-01
In preclinical studies with cynomolgus macaques, it is common to have one or more females presenting with menses. Published literature indicates that the blood lost during menses causes decreases in red blood cell mass variables (RBC, HGB, and HCT), which would be a confounding factor in the interpretation of drug-related effects on clinical pathology data, but no scientific data have been published to support this claim. This investigation was conducted to determine if the amount of blood lost during menses in cynomolgus macaques has an effect on routine hematology and serum chemistry variables. Ten female cynomolgus macaques (Macaca fascicularis), 5 to 6.5 years old, were observed daily during approximately 3 months (97 days) for the presence of menses. Hematology and serum chemistry variables were evaluated twice weekly. The results indicated that menstruation affects the erythrogram including RBC, HGB, HCT, MCHC, MCV, reticulocyte count, RDW, the leukogram including neutrophil, lymphocyte, and monocyte counts, and chemistry variables, including GGT activity, and the concentrations of total proteins, albumin, globulins, and calcium. The magnitude of the effect of menstruation on susceptible variables is dependent on the duration of the menstrual phase. Macaques with menstrual phases lasting ≥ 7 days are more likely to develop changes in variables related to chronic blood loss. In preclinical toxicology studies with cynomolgus macaques, interpretation of changes in several commonly evaluated hematology and serum chemistry variables requires adequate clinical observation and documentation concerning presence and duration of menses. There is a concern that macaques with long menstrual cycles can develop iron deficiency anemia due to chronic menstrual blood loss. © 2016 American Society for Veterinary Clinical Pathology.
Mass transit ridership and self-reported hearing health in an urban population.
Gershon, Robyn R M; Sherman, Martin F; Magda, Lori A; Riley, Halley E; McAlexander, Tara P; Neitzel, Richard
2013-04-01
Information on prevalence and risk factors associated with self-reported hearing health among mass transit riders is extremely limited, even though evidence suggests mass transit may be a source of excessive exposure to noise. Data on mass transit ridership were collected from 756 study participants using a self-administered questionnaire. Hearing health was measured using two symptom items (tinnitus and temporary audiometric threshold shift), two subjective measures (self-rated hearing and hearing ability), and two medical-related questions (hearing testing and physician-diagnosed hearing loss). In logistic regression analyses that controlled for possible confounders, including demographic variables, occupational noise exposure, nonoccupational noise exposure (including MP3 player use) and use of hearing protection, frequent and lengthy mass transit (all forms) ridership (1,100 min or more per week vs. 350 min or less per week) was the strongest predictor of temporary threshold shift symptoms. Noise abatement strategies, such as engineering controls, and the promotion of hearing protection use should be encouraged to reduce the risk of adverse impacts on the hearing health of mass transit users.
de Wit, J J; Dijkman, R; Guerrero, P; Calvo, J; Gonzalez, A; Hidalgo, H
2017-12-01
In the period from July 2008 to 2010, a disease episode resulting in serious economic losses in the major production area of the Chilean poultry industry was reported. These losses were associated with respiratory problems, increase of condemnations, drops in egg production and nephritis in breeders, laying hens and broilers due to infections with infectious bronchitis virus (IBV). Twenty-five IBV isolates were genotyped and four strains were selected for further testing by pathotyping and protectotyping. Twenty-four IBV isolates were of the Q1 genotype. The experiments also included comparing the ability of six vaccination programmes to induce virus neutralizing antibodies (VNA) in layers against four selected Chilean strains. Despite the high genetic homology in the S1 gene between the four strains, the heterogeneity in biological behaviour of these different Q1 strains was substantial. These differences were seen in embryonated eggs, in cell culture, in pathogenicity and in level of cross-protection by IBV Massachusetts (Mass) vaccination. This variability underlines the importance of testing more than one strain per serotype or genotype to determine the characteristics of a certain serotype of genotype. The combination of Mass and 793B vaccine provided a high level of protection to the respiratory tract and the kidney for each strain tested in the young birds. The combination of broad live priming using Mass and 793B vaccines and boosting with multiple inactivated IBV antigens induced the highest level of VNA against Q1 strains, which might be indicative for higher levels of protection against Q1 challenge in laying birds.
A model on CME/Flare initiation: Loss of Equilibrium caused by mass loss of quiescent prominences
NASA Astrophysics Data System (ADS)
Miley, George; Chon Nam, Sok; Kim, Mun Song; Kim, Jik Su
2015-08-01
Coronal Mass Ejections (CMEs) model should give an answer to enough energy storage for giant bulk plasma into interplanetary space to escape against the sun’s gravitation and its explosive eruption. Advocates of ‘Mass Loading’ model (e.g. Low, B. 1996, SP, 167, 217) suggested a simple mechanism of CME initiation, the loss of mass from a prominence anchoring magnetic flux rope, but they did not associate the mass loss with the loss of equilibrium. The catastrophic loss of equilibrium model is considered as to be a prospective CME/Flare model to explain sudden eruption of magnetic flux systems. Isenberg, P. A., et al (1993, ApJ, 417, 368)developed ideal magnetohydrodynamic theory of the magnetic flux rope to show occurrence of catastrophic loss of equilibrium according to increasing magnetic flux transported into corona.We begin with extending their study including gravity on prominence’s material to obtain equilibrium curves in case of given mass parameters, which are the strengths of the gravitational force compared with the characteristic magnetic force. Furthermore, we study quasi-static evolution of the system including massive prominence flux rope and current sheet below it to obtain equilibrium curves of prominence’s height according to decreasing mass parameter in a properly fixed magnetic environment. The curves show equilibrium loss behaviors to imply that mass loss result in equilibrium loss. Released fractions of magnetic energy are greater than corresponding zero-mass case. This eruption mechanism is expected to be able to apply to the eruptions of quiescent prominences, which is located in relatively weak magnetic environment with 105 km of scale length and 10G of photospheric magnetic field.
Vogel, Anja; Eisenhauer, Nico; Weigelt, Alexandra; Scherer-Lorenzen, Michael
2013-09-01
Human activities are decreasing biodiversity and changing the climate worldwide. Both global change drivers have been shown to affect ecosystem functioning, but they may also act in concert in a non-additive way. We studied early-stage litter mass loss rates and soil microbial properties (basal respiration and microbial biomass) during the summer season in response to plant species richness and summer drought in a large grassland biodiversity experiment, the Jena Experiment, Germany. In line with our expectations, decreasing plant diversity and summer drought decreased litter mass loss rates and soil microbial properties. In contrast to our hypotheses, however, this was only true for mass loss of standard litter (wheat straw) used in all plots, and not for plant community-specific litter mass loss. We found no interactive effects between global change drivers, that is, drought reduced litter mass loss rates and soil microbial properties irrespective of plant diversity. High mass loss rates of plant community-specific litter and low responsiveness to drought relative to the standard litter indicate that soil microbial communities were adapted to decomposing community-specific plant litter material including lower susceptibility to dry conditions during summer months. Moreover, higher microbial enzymatic diversity at high plant diversity may have caused elevated mass loss of standard litter. Our results indicate that plant diversity loss and summer drought independently impede soil processes. However, soil decomposer communities may be highly adapted to decomposing plant community-specific litter material, even in situations of environmental stress. Results of standard litter mass loss moreover suggest that decomposer communities under diverse plant communities are able to cope with a greater variety of plant inputs possibly making them less responsive to biotic changes. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Smith, Nathan
2007-02-01
Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron. In addition, η Car shows long term changes as it is still recovering from its giant 19th century outburst. Both types of variability are directly linked to the current mass-loss rate and dust formation in its wind. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and trace dust formation episodes. This will provide a direct measurement of the mass ejected. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with GNIRS will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula.
Spectral Properties and Variability of BIS objects
NASA Astrophysics Data System (ADS)
Gaudenzi, S.; Nesci, R.; Rossi, C.; Sclavi, S.; Gigoyan, K. S.; Mickaelian, A. M.
2017-10-01
Through the analysis and interpretation of newly obtained and of literature data we have clarified the nature of poorly investigated IRAS point sources classified as late type stars, belonging to the Byurakan IRAS Stars catalog. From medium resolution spectroscopy of 95 stars we have strongly revised 47 spectral types and newly classified 31 sources. Nine stars are of G or K types, four are N carbon stars in the Asymptotic Giant Branch, the others being M-type stars. From literature and new photometric observations we have studied their variability behaviour. For the regular variables we determined distances, absolute magnitudes and mass loss rates. For the other stars we estimated the distances, ranging between 1.3 and 10 kpc with a median of 2.8 kpc from the galactic plane, indicating that BIS stars mostly belong to the halo population.
Soil erosion assessment - Mind the gap
NASA Astrophysics Data System (ADS)
Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone
2016-12-01
Accurate assessment of erosion rates remains an elusive problem because soil loss is strongly nonunique with respect to the main drivers. In addressing the mechanistic causes of erosion responses, we discriminate between macroscale effects of external factors - long studied and referred to as "geomorphic external variability", and microscale effects, introduced as "geomorphic internal variability." The latter source of erosion variations represents the knowledge gap, an overlooked but vital element of geomorphic response, significantly impacting the low predictability skill of deterministic models at field-catchment scales. This is corroborated with experiments using a comprehensive physical model that dynamically updates the soil mass and particle composition. As complete knowledge of microscale conditions for arbitrary location and time is infeasible, we propose that new predictive frameworks of soil erosion should embed stochastic components in deterministic assessments of external and internal types of geomorphic variability.
Variability in life-history and ecological traits is a buffer against extinction in mammals.
González-Suárez, Manuela; Revilla, Eloy
2013-02-01
Anthropogenic degradation of the world's ecosystems is leading to a widespread and accelerating loss of biodiversity. However, not all species respond equally to existing threats, raising the question: what makes a species more vulnerable to extinction? We propose that higher intraspecific variability may reduce the risk of extinction, as different individuals and populations within a species may respond differently to occurring threats. Supporting this prediction, our results show that mammalian species with more variable adult body masses, litter sizes, sexual maturity ages and population densities are less vulnerable to extinction. Our findings reveal the role of local variation among populations, particularly of large mammals, as a buffering mechanism against extinction, and emphasise the importance of considering trait variation in comparative analyses and conservation management. © 2012 Blackwell Publishing Ltd/CNRS.
Mosing, M; German, A J; Holden, S L; MacFarlane, P; Biourge, V; Morris, P J; Iff, I
2013-11-01
This prospective clinical study examined the effect of obesity and subsequent weight loss on oxygenation and ventilation during deep sedation in pet dogs. Data from nine dogs completing a formalised weight loss programme were evaluated. Dual-energy X-ray absorptiometry (DEXA) was used to quantify body fat mass prior to and after weight loss. Dogs were deeply sedated and positioned in dorsal recumbency. Sedation was scored using a semi-objective scheme. As part of the monitoring of sedation, arterial oxygen partial pressure (PaO2) and arterial carbon dioxide partial pressure (PaCO2) were measured after 10 min in dorsal recumbency. Oxygen saturation of haemoglobin (SpO2) was monitored continuously using pulse oximetry, starting oxygen supplementation where indicated (SpO2<90%) via a face mask. Morphometric measurements were taken from DEXA images and compared before and after weight loss. Several oxygen indices were calculated and correlated with body fat variables evaluated by DEXA. All body fat variables improved significantly after weight loss. PaO2 increased from 27.9±19.2 kPa to 34.8±24.4 kPa, while FiO2 decreased from 0.74±0.31 to 0.66±0.35. Morphometric measurements improved significantly after weight loss. PaO2/FiO2 (inspired oxygen fraction) and Pa/AO2 (ratio of PaO2 to alveolar PO2) also improved significantly, but there was no change in f-shunt and PaCO2 after weight loss. On multiple linear regression analysis, all oxygen indices were negatively associated with thoracic fat percentage. In conclusion, obesity decreases oxygenation in dogs during deep sedation. Oxygenation status improves with successful weight loss, but ventilation is not influenced by obesity. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Berger, Sophie; Drews, Reinhard; Helm, Veit; Sun, Sainan; Pattyn, Frank
2017-11-01
Ice shelves control the dynamic mass loss of ice sheets through buttressing and their integrity depends on the spatial variability of their basal mass balance (BMB), i.e. the difference between refreezing and melting. Here, we present an improved technique - based on satellite observations - to capture the small-scale variability in the BMB of ice shelves. As a case study, we apply the methodology to the Roi Baudouin Ice Shelf, Dronning Maud Land, East Antarctica, and derive its yearly averaged BMB at 10 m horizontal gridding. We use mass conservation in a Lagrangian framework based on high-resolution surface velocities, atmospheric-model surface mass balance and hydrostatic ice-thickness fields (derived from TanDEM-X surface elevation). Spatial derivatives are implemented using the total-variation differentiation, which preserves abrupt changes in flow velocities and their spatial gradients. Such changes may reflect a dynamic response to localized basal melting and should be included in the mass budget. Our BMB field exhibits much spatial detail and ranges from -14.7 to 8.6 m a-1 ice equivalent. Highest melt rates are found close to the grounding line where the pressure melting point is high, and the ice shelf slope is steep. The BMB field agrees well with on-site measurements from phase-sensitive radar, although independent radar profiling indicates unresolved spatial variations in firn density. We show that an elliptical surface depression (10 m deep and with an extent of 0.7 km × 1.3 km) lowers by 0.5 to 1.4 m a-1, which we tentatively attribute to a transient adaptation to hydrostatic equilibrium. We find evidence for elevated melting beneath ice shelf channels (with melting being concentrated on the channel's flanks). However, farther downstream from the grounding line, the majority of ice shelf channels advect passively (i.e. no melting nor refreezing) toward the ice shelf front. Although the absolute, satellite-based BMB values remain uncertain, we have high confidence in the spatial variability on sub-kilometre scales. This study highlights expected challenges for a full coupling between ice and ocean models.
Preserving Healthy Muscle during Weight Loss123
Cava, Edda; Yeat, Nai Chien; Mittendorfer, Bettina
2017-01-01
Weight loss is the cornerstone of therapy for people with obesity because it can ameliorate or completely resolve the metabolic risk factors for diabetes, coronary artery disease, and obesity-associated cancers. The potential health benefits of diet-induced weight loss are thought to be compromised by the weight-loss–associated loss of lean body mass, which could increase the risk of sarcopenia (low muscle mass and impaired muscle function). The objective of this review is to provide an overview of what is known about weight-loss–induced muscle loss and its implications for overall physical function (e.g., ability to lift items, walk, and climb stairs). The currently available data in the literature show the following: 1) compared with persons with normal weight, those with obesity have more muscle mass but poor muscle quality; 2) diet-induced weight loss reduces muscle mass without adversely affecting muscle strength; 3) weight loss improves global physical function, most likely because of reduced fat mass; 4) high protein intake helps preserve lean body and muscle mass during weight loss but does not improve muscle strength and could have adverse effects on metabolic function; 5) both endurance- and resistance-type exercise help preserve muscle mass during weight loss, and resistance-type exercise also improves muscle strength. We therefore conclude that weight-loss therapy, including a hypocaloric diet with adequate (but not excessive) protein intake and increased physical activity (particularly resistance-type exercise), should be promoted to maintain muscle mass and improve muscle strength and physical function in persons with obesity. PMID:28507015
A rational use of glucocorticoids in patients with early arthritis has a minimal impact on bone mass
2010-01-01
Introduction Glucocorticoid (GC)-induced osteoporosis is a frequent complication in patients with rheumatoid arthritis. However, little information exists about the consequences of GC use in patients with early arthritis. Here we describe the variables underlying the use of GC in early arthritis, as well as its effect on bone-mineral density. Methods Data from 116 patients in our early arthritis register were analyzed (90 women; median age, 52.5 years, interquartile range (IQR, 38.5-66); 6-month median disease duration at entry (IQR, 4-9)). In this register, the clinical and treatment information was recorded systematically, including the cumulative GC dose. Lumbar spine, hip, and forearm bone-mineral density (BMD) measurements were performed at entry and after a 2-year follow-up. A multivariate analysis was performed to establish the variables associated with the use of GCs, as well as those associated with variations in BMD. Results Of the patients with early arthritis studied, 67% received GCs during the 2-year follow-up. GCs were more frequently prescribed to elderly patients, those with higher basal disease activity and disability, and patients with positive rheumatoid factor. When adjusted for these variables, GCs were less frequently prescribed to female patients. The use of GCs was associated with an increase of BMD in the ultradistal region of the forearm, although it induced a significant loss of BMD in the medial region of the forearm. No relevant effect of GC was noted on the BMD measured at other locations. Conclusions The frequent use of GCs as a "bridge therapy" in patients with early arthritis does not seem to be associated with relevant loss of bone mass. Moreover, cumulative GC administration might be associated with an increase of juxtaarticular BMD. PMID:20331862
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shindell, D.T.; Rind, D.; Balachandran, N.
1999-06-15
Simulations were performed with the Goddard Institute for Space Studies GCM including a prescribed quasi-biennial oscillation (QBO), applied at a constant maximum value, and a physically realistic parameterization of the heterogeneous chemistry responsible for severe polar ozone loss. While the QBO is primarily a stratospheric phenomenon, in this model the QBO modulates the amount and propagation of planetary wave energy in the troposphere as well as in the stratosphere. Dynamical activity is greater in the easterly than in the unforced case, while westerly years are dynamically more quiescent. By altering zonal winds and potential vorticity, the QBO forcing changes themore » refraction of planetary waves beginning in midwinter, causing the lower-stratospheric zonal average temperatures at Southern Hemisphere high latitudes to be [approximately]3--5 K warmer in the easterly phase than in the westerly during the late winter and early spring. Ozone loss varies nonlinearly with temperature, due to the sharp threshold for formation of heterogeneous chemistry surfaces, so that the mean daily total mass of ozone depleted in this region during September was 8.7 [times] 10[sup 10] kg in the QBO easterly maximum, as compared with 12.0 [times] 10[sup 10] kg in the westerly maximum and 10.3 [times] 10[sup 10] kg in the unforced case. Through this mechanism, the midwinter divergence of the Eliassen-Palm flux is well correlated with the subsequent springtime total ozone loss (R[sup 2] = 0.6). The chemical ozone loss differences are much larger than QBO-induced transport differences in the authors' model. Inclusion of the QBO forcing also increased the maximum variability in total ozone loss from the [approximately]20% value found in the unforced runs to [approximately]50%. These large variations in ozone depletion are very similar in size to the largest observed variations in the severity of the ozone hole. The results suggest that both random variability and periodic QBO forcing are important components, perhaps explaining some of the difficulties encountered in previous attempts to correlate the severity of the ozone hole with the QBO phase.« less
Ad libitum fluid consumption via self- or external administration.
Yeargin, Susan W; Finn, Megan E; Eberman, Lindsey E; Gage, Matthew J; McDermott, Brendon P; Niemann, Andrew
2015-01-01
During team athletic events, athletic trainers commonly provide fluids with water bottles. When a limited number of water bottles exist, various techniques are used to deliver fluids. To determine whether fluid delivered via water-bottle administration influenced fluid consumption and hydration status. Crossover study. Outdoor field (22.2°C ± 3.5°C). Nineteen participants (14 men, 5 women, age = 30 ± 10 years, height = 176 ± 8 cm, mass = 72.5 ± 10 kg) were recruited from the university and local running clubs. The independent variable was fluid delivery with 3 levels: self-administration with mouth-to-bottle direct contact (SA-DC), self-administration with no contact between mouth and bottle (SA-NC), and external administration with no contact between the mouth and the bottle (EA-NC). Participants warmed up for 10 minutes before completing 5 exercise stations, after which an ad libitum fluid break was given, for a total of 6 breaks. We measured the fluid variables of total volume consumed, total number of squirts, and average volume per squirt. Hydration status via urine osmolality and body-mass loss, and perceptual variables for thirst and fullness were recorded. We calculated repeated-measures analyses of variance to assess hydration status, fluid variables, and perceptual measures to analyze conditions across time. The total volume consumed for EA-NC was lower than for SA-DC (P = .001) and SA-NC (P = .001). The total number of squirts for SA-DC was lower than for SA-NC (P = .009). The average volume per squirt for EA-NC was lower than for SA-DC (P = .020) and SA-NC (P = .009). Participants arrived (601.0 ± 21.3 mOsm/L) and remained (622.3 ± 38.3 mOsm/L) hydrated, with no difference between conditions (P = .544); however, the EA-NC condition lost more body mass than did the SA-DC condition (P = .001). There was no main effect for condition on thirst (P = .147) or fullness (P = .475). External administration of fluid decreased total volume consumed via a decreased average volume per squirt. The SA-DC method requires fewer squirts within a specific time frame. Fluid breaks every 15 minutes resulted in maintenance of euhydration; however, loss of body mass was influenced by fluid administration. Athletic trainers should avoid external administration to promote positive hydration behaviors. When fluid is self-administered, individual bottles may be the best clinical practice because more volume can be consumed per squirt.
Association between fat mass, lean mass, and bone loss: the Dubbo Osteoporosis Epidemiology Study.
Yang, S; Center, J R; Eisman, J A; Nguyen, T V
2015-04-01
Lower body fat mass is a risk factor for bone loss at lumbar spine in postmenopausal women, but not in men. Body lean mass and fat mass were not associated with femoral neck bone loss in either gender. Bone density and body mass are closely associated. Whole body lean mass (LM) and fat mass (FM) together account for approximately 95 % of body mass. Bone loss is associated with loss of body mass but which of the components of body mass (FM or LM) is related to bone loss is not well understood. Therefore, in this study, we sought to assess whether baseline FM or LM has predictive value for future relative rate of bone mineral density (BMD) changes (%/year). The present population-based cohort study was part of the ongoing Dubbo Osteoporosis Epidemiology Study (DOES). BMD, FM, and LM were measured with dual energy X-ray absorptiometry (GE-LUNAR Corp, Madison, WI). BMD measurements were taken in approximately every 2 years between 2000 and 2010. We only included the participants with at least two BMD measurements at the femoral neck and lumbar spine. In total, 717 individuals (204 men and 513 women) aged 50 years or older were studied. Rate of bone loss at femoral neck and lumbar spine was faster in women than in men (all P < 0.01). In bivariable regression analysis, each 5 kg greater FM in women was associated with 0.4 %/year (P = 0.003) lower bone loss at lumbar spine. This magnitude of association remained virtually unchanged after adjusting for LM and/or other covariates (P = 0.03). After adjusting for covariates, variation of FM accounted for ∼1.5 % total variation in lumbar spine bone loss. However, there was no significant association between FM and change in femoral neck BMD in either men or women. Lower FM was an independent but modest risk factor for greater bone loss at the lumbar spine in women but not in men. If further studies confirm our findings, FM can help predict lumbar spine bone loss in women.
Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurokawa, H.; Nakamoto, T., E-mail: kurokawa@nagoya-u.jp
2014-03-01
During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain theirmore » envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (≅ 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.« less
Polymorphism in the CLOCK gene may influence the effect of fat intake reduction on weight loss.
Loria-Kohen, Viviana; Espinosa-Salinas, Isabel; Marcos-Pasero, Helena; Lourenço-Nogueira, Thais; Herranz, Jesús; Molina, Susana; Reglero, Guillermo; Ramirez de Molina, Ana
2016-04-01
The aim of this study was to assess the effect of a weight loss treatment on obesity- associated variables with respect to the CLOCK and FTO genotypes. In all, 179 volunteers (78% female) participated in a 12-week calorie-restriction program; hypocaloric diets of between 5442 and 10048 kJ/d were individually prescribed to all participants. Dietetic, anthropometric, and biochemical data were collected at baseline and at the end of the intervention. When treatment was over, five single nucleotide polymorphisms (SNPs) were sought in CLOCK and FTO in all participants who provided consent. Bonferroni-corrected linear regression models were used to examine the influence of interactions of the type genotype × dietetic change on obesity-associated variables. Variation in the CLOCK and FTO genotypes had no significant influence on the change in obesity-associated variables. The interaction genotype × percentage intake of dietary fat had a significant influence on body mass index (BMI; adjusted P = 0.03). Participants carrying CLOCK rs3749474 (TT + CT) showed a positive association between the change in percentage intake of dietary fat and change in BMI (β = 0.044; 95% confidence interval [CI], 0.0119-0.0769; P = 0.008), whereas participants homozygous for the wild-type allele (CC) showed a negative, although nonsignificant association (β = -0.032; 95% CI, -0.0694 to 0.036; P = 0.077). The possession of CLOCK rs3749474 may influence the effect of reducing the percentage intake of dietary fat on obesity-associated variables. Participants carrying this SNP might benefit more than others from weight loss treatment involving dietary fat restriction. The treatment of obesity might therefore be customized, depending on the alleles carried. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.
2017-10-01
Context. HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. Despite their importance, little is known about the winds and evolution of magnetized massive stars. Aims: To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray data of HD 54879 using the Hubble Space Telescope and the XMM-Newton satellite. In addition, 35 optical amateur spectra were secured to study the variability of HD 54879. Methods: A multiwavelength (X-ray to optical) spectral analysis is performed using the Potsdam Wolf-Rayet (PoWR) model atmosphere code and the xspec software. Results: The photospheric parameters (T∗ = 30.5 kK, log g = 4.0 [cm s-2], log L = 4.45 [L⊙]) are typical for an O9.7 V star. The microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (ξph,vmac,vsini ≤ 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred from evolutionary tracks. We derive a mean X-ray emitting temperature of log TX = 6.7 [K] and an X-ray luminosity of LX = 1 × 1032 erg s-1. Short- and long-scale variability is seen in the Hα line, but only a very long period of P ≈ 5 yr could be estimated. Assessing the circumstellar density of HD 54879 using UV spectra, we can roughly estimate the mass-loss rate HD 54879 would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 [M⊙ yr-1]. The magnetic field traps the stellar wind up to the Alfvén radius rA ≳ 12 R∗, implying that its true mass-loss rate is log Ṁ ≲ -10.2 [M⊙ yr-1]. Hence, density enhancements around magnetic stars can be exploited to estimate mass-loss rates of non-magnetic stars of similar spectral types, essential for resolving the weak wind problem. Conclusions: Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence stars. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.
Nonequilibrium thermodynamics and energy efficiency in weight loss diets.
Feinman, Richard D; Fine, Eugene J
2007-07-30
Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models), but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie"). Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1) dietary carbohydrate, via its effect on hormone levels controls fatty acid flux and oxidation, 2) the rate of lipolysis is a primary target of insulin, postprandial, and 3) chronic carbohydrate-restricted diets reduce the levels of plasma TAG in response to a single meal. In summary, we propose that, in isocaloric diets of different macronutrient composition, there is variable flux of stored TAG controlled by the kinetic effects of insulin and other hormones. Because the fatty acid-TAG cycle never comes to equilibrium, net gain or loss is possible. The greater weight loss on carbohydrate restricted diets, popularly referred to as metabolic advantage can thus be understood in terms of the principles of nonequilibrium thermodynamics and is a consequence of the dynamic nature of bioenergetics where it is important to consider kinetic as well as thermodynamic variables.
Nonequilibrium thermodynamics and energy efficiency in weight loss diets
Feinman, Richard D; Fine, Eugene J
2007-01-01
Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models), but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie"). Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1) dietary carbohydrate, via its effect on hormone levels controls fatty acid flux and oxidation, 2) the rate of lipolysis is a primary target of insulin, postprandial, and 3) chronic carbohydrate-restricted diets reduce the levels of plasma TAG in response to a single meal. In summary, we propose that, in isocaloric diets of different macronutrient composition, there is variable flux of stored TAG controlled by the kinetic effects of insulin and other hormones. Because the fatty acid-TAG cycle never comes to equilibrium, net gain or loss is possible. The greater weight loss on carbohydrate restricted diets, popularly referred to as metabolic advantage can thus be understood in terms of the principles of nonequilibrium thermodynamics and is a consequence of the dynamic nature of bioenergetics where it is important to consider kinetic as well as thermodynamic variables. PMID:17663761
THE ASTROPHYSICAL IMPLICATIONS OF DUST FORMATION DURING THE ERUPTIONS OF HOT, MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochanek, C. S.
2011-12-10
Dust formation in the winds of hot stars is inextricably linked to the classic eruptive state of luminous blue variables because it requires very high mass-loss rates, M-dot {approx}>10{sup -2.5} M{sub sun} year{sup -1}, for grains to grow and for the non-dust optical depth of the wind to shield the dust formation region from the true stellar photosphere. Thus, dusty shells around hot stars trace the history of 'great' eruptions, and the statistics of such shells in the Galaxy indicate that these eruptions are likely the dominant mass-loss mechanism for evolved, M{sub ZAMS} {approx}> 40 M{sub Sun} stars. Dust formationmore » at such high M-dot also explains why very large grains (a{sub max} {approx}> 1 {mu}m) are frequently found in these shells, since a{sub max}{proportional_to} M-dot . The statistics of these shells (numbers, ages, masses, and grain properties such as a{sub max}) provide an archaeological record of this mass-loss process. In particular, the velocities v{sub shell}, transient durations (where known), and ejected masses M{sub shell} of the Galactic shells and the supernova (SN) 'impostors' proposed as their extragalactic counterparts are very different. While much of the difference is a selection effect created by shell lifetimes {proportional_to}(v{sub shell}{radical}(M{sub shell})){sup -1}, more complete Galactic and extragalactic surveys are needed to demonstrate that the two phenomena share a common origin given that their observed properties are essentially disjoint. If even small fractions (1%) of SNe show interactions with such dense shells of ejecta, as is currently believed, then the driving mechanism of the eruptions must be associated with the very final phases of stellar evolution, suggestive of some underlying nuclear burning instability.« less
Jacober, S J; Rosenstock, J; Bergenstal, R M; Prince, M J; Qu, Y; Beals, J M
2014-04-01
The basal insulin analogue LY2605541, a PEGylated insulin lispro with prolonged duration of action, was previously shown to be associated with modest weight loss in Phase 2, randomized, open-label trials in type 2 (N=288) and type 1 (N=137) diabetes mellitus (T2DM and T1DM), compared with modest weight gain with insulin glargine. Exploratory analyses were conducted to further characterize these findings. Pearson correlations between change in body weight and other variables were calculated. Continuous variables were analysed using a mixed linear model with repeated measurements. Proportions of subjects with weight loss were analysed using Fisher's exact test for T2DM and Nagelkerke's method for T1DM. Weight loss was more common in LY2605541-treated patients than in patients treated with insulin glargine (T2DM: 56.9 vs. 40.2%, p=0.011; T1DM: 66.1 vs. 40.3%, p<0.001). More LY2605541-treated patients experienced ≥5% weight loss compared to patients treated with glargine (T2DM: 4.8 vs. 0%, p=0.033; T1DM: 11.9 vs. 0.8%, p<0.001). In both the T1DM and T2DM studies, weight change did not correlate with baseline body mass index (BMI), or change in HDL-cholesterol in either treatment group. No consistent correlations were found across both studies between weight change and any of the variables assessed; however, weight change was significantly correlated with hypoglycaemia rate in glargine-treated T2DM patients. In two Phase 2 trials, improved glycaemic control with long-acting basal insulin analogue LY2605541 is associated with weight loss in previously insulin-treated patients. This weight change is independent of baseline BMI or hypoglycaemia.
Winds from stripped low-mass helium stars and Wolf-Rayet stars
NASA Astrophysics Data System (ADS)
Vink, Jorick S.
2017-11-01
We present mass-loss predictions from Monte Carlo radiative transfer models for helium (He) stars as a function of stellar mass, down to 2 M⊙. Our study includes both massive Wolf-Rayet (WR) stars and low-mass He stars that have lost their envelope through interaction with a companion. For these low-mass He stars we predict mass-loss rates that are an order of magnitude smaller than by extrapolation of empirical WR mass-loss rates. Our lower mass-loss rates make it harder for these elusive stripped stars to be discovered via line emission, and we should attempt to find these stars through alternative methods instead. Moreover, lower mass-loss rates make it less likely that low-mass He stars provide stripped-envelope supernovae (SNe) of type Ibc. We express our mass-loss predictions as a function of L and Z and not as a function of the He abundance, as we do not consider this physically astute given our earlier work. The exponent of the M⊙ versus Z dependence is found to be 0.61, which is less steep than relationships derived from recent empirical atmospheric modelling. Our shallower exponent will make it more challenging to produce "heavy" black holes of order 40 M⊙, as recently discovered in the gravitational wave event GW 150914, making low metallicity for these types of events even more necessary.
Using MODIS and GRACE to assess water storage in regional Wetlands: Iraqi and Sudd Marsh systems
NASA Astrophysics Data System (ADS)
Becker, R.
2015-12-01
Both The Iraqi (Mesopotamian) Marshes, an extensive wetlands system in Iraq, and the Sudd Marshlands, located in Sudan have been heavily impacted by both human and climate forces over the past decades. The Sudd wetlands are highly variable in size, averaging roughly 30,000 km2, but extending to as large as ~130,000 km2 during the wet seasons, while the Iraqi marshes are smaller, at ~15,000 km2, without the same extent of intra-annual variability. A combination of MODIS and GRACE images from 2003-2015 for the study areas were used to determine the time dependent change in surface water area (SWA) in the marshes, marshland extent and variability in total water storage. Combined open water area and vegetation abundance and cover, as determined by MODIS (NDVI and MNDWI), is highly correlated with total mass variability observed by GRACE (RL05 Tellus land grid). Annual variability in the Iraqi marshes correlates well with combined SWA and vegetation extent. Variability of vegetation in the Sudd marshes is seen to correlate well on an annual basis with water storage variation, and with a 2 month lag (water mass increases and decreases lead vegetation increases and decreases) when examined on a monthly basis. As a result, in both systems, the overall wetlands extent and health is observed to be water limited. Predictions for precipitation variability and human diversions of water through either dam storage or navigation modifications are predicted to lower water availability and lower variability in these systems. These two regional wetlands systems will shrink, with resulting loss in habitat and other ecosystem services.
NASA Astrophysics Data System (ADS)
Ivins, E. R.; Wiese, D. N.; Watkins, M. M.; Landerer, F. W.; Simms, A.; Yuan, D.; Boening, C.
2013-12-01
Warming on the Antarctic Peninsula (AP) land mass and adjacent islands has been ocurring for more than 100 years. The rate of warming is at the extreme end of all Earth observations: during the 2nd half of the 20th century the rate is 3.5°C per century and has a dramatic effect of glaciers: west coast glaciers show diminishing outlet heights at a rate of 0.28 × 0.03 m/yr since the mid-1960s (Kunz et al., 2012). Since the late 1980's, notably on the northeastern edge of the AP, many of the outlet glaciers have experienced the loss of ice shelf buttressing forces that retard the outlet flow velocity (e.g., Berthier et al., 2012). The loss of these buttressing forces has caused outlet glaciers to speed up. It is clear from ice core and in situ records that the AP snow accumulation has also been increasing. While there is growing confidence that all space borne data are consistent with a net mass loss of the Antarctic Peninsula since 1990, there is relatively little convergence on the total mass loss, and its temporal variability, other than that measured by the Gravity Recovery and Climate Experiment (GRACE). Employing JPL mascon analyses, Ivins et al. (2011) employed 6.25 years of GRACE data, glacial isostatic adjustment (GIA) modeling with GPS data, to determine the mass trend of Graham Land (north of 67° S) at -32 × 6 Gt/yr and -9.5 × 3 Gt/yr for the remainder of the AP (74° S - 67° S). Neither region exhibited any significant non-secular signatures during 2003-2009.25. However, some outlet glaciers have shown both height and velocity changes over the period 2002-2012 that indicate increasing rates of loss - via laser altimetry and InSAR measurements (Anya Wendt, personal communication, 2012). In a combined examination of AP mass balance (with a slightly larger area for AP definition), recent work extended to mid 2013, indicates that the region of the Antarctic Peninsula has a loss rate of about -32.5 × 12 Gt/yr, with distinct and significant speed-up after 2007. Release 05 GRACE data and JPL-mascon time series are examined in conjuction with GPS uplift rates and ICESat data in order to better define the region experiencing this speed-up and its possible origin. A more extensive search for the parameters defining GIA and model interpretation is also presented. References Berthier, E., T. A. Scambos and C.A. Shuman, (2012), Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002, GRL, 39, L13501, doi:10.1029/2012GL051755. Ivins, E. R., M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke (2011), On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003--2009, J. Geophys. Res.,116, B02403, doi:10.1029/2010JB007607. Kunz, M., M.A. King, J.P. Mills, P.E. Miller, A.J. Fox, D.G. Vaughan and S.H. Marsh (2012), Multi-decadal glacier surface lowering in the Antarctic Peninsula, GRL, 39, L19502, doi:10.1029/2012GL052823.
NASA Astrophysics Data System (ADS)
Zhao, Zijian; Ma, Qing; Mu, Jun; Yi, Songlin; He, Zhengbin
Eucalyptus particles, lamellas and boards were applied to explore a simply-implemented method with neglected heat and mass transfer to inspect the mass loss during the heat-treatment course. The results revealed that the mass loss of a certain period was theoretically the definite integration of loss rate to time in this period, and a monitoring model for mass loss speed was developed with the particles and validated with the lamellas and boards. The loss rate was correlated to the temperature and temperature-evolving speed in the model which was composed of three functions during different temperature-evolving period. The sample mass loss was calculated in the MATLAB for the lamellas and boards and the model was validated and adjusted based on the difference between the computed results and the practically measured loss values. The error ranges of the new models were -16.30% to 18.35% for wood lamellas and -9.86% to 6.80% for wood boards. This method made it possible to acquire the instantaneous loss value through continuously detecting the wood temperature evolution. This idea could provide a reference for the Eucalyptus heat-treatment to detect the treating course and control the final material characteristics.
NASA Astrophysics Data System (ADS)
Keifer, David Z.; Alexander, Andrew W.; Jarrold, Martin F.
2017-03-01
Spontaneous mass and charge losses from individual multi-megadalton ions have been observed with charge detection mass spectrometry (CDMS) by trapping single hepatitis B virus (HBV) capsids for 3 s. Gradual increases in the oscillation frequency of single ions in the ion trap are attributed mainly to mass loss (probably solvent, water, and/or salt). The total mass lost during the 3 s trapping period peaks at around 20 kDa for 4 MDa HBV T = 4 capsids. Discrete frequency drops punctuate the gradual increases in the oscillation frequencies. The drops are attributed to a sudden loss of charge. In most cases a single positive charge is lost along with some mass (on average around 1000 Da). Charge loss occurs for over 40% of the trapped ions. It usually occurs near the beginning of the trapping event, and it occurs preferentially in regions of the trap with strong electric fields, indicating that external electric fields promote charge loss. This process may contribute to the decrease in m/ z resolution that often occurs with megadalton ions.
Increasing agility in unmanned ground vehicles using variable internal mass and inertial properties
NASA Astrophysics Data System (ADS)
Nie, Chenghui; Cusi Van Dooren, Simo; Shah, Jainam; Spenko, Matthew
2009-05-01
Unmanned Ground Vehicles (UGV) that possess agility, or the ability to quickly change directions without a significant loss in speed, would have several advantages in field operations over conventional UGVs. The agile UGVs would have greater maneuverability in cluttered environments and improved obstacle avoidance capabilities. The UGVs would also be able to better recover from unwanted dynamic behaviors. This paper presents a novel method of increasing UGV agility by actively altering the location of the vehicle's center of mass during locomotion. This allows the vehicle to execute extreme dynamic maneuvers by controlling the normal force acting on the wheels. A theoretical basis for this phenomenon is presented and experimental results are shown that validate the approach.
Late-time Dust Emission from the Type IIn Supernova 1995N
NASA Astrophysics Data System (ADS)
Van Dyk, Schuyler D.
2013-05-01
Type IIn supernovae (SNe IIn) have been found to be associated with significant amounts of dust. These core-collapse events are generally expected to be the final stage in the evolution of highly massive stars, either while in an extreme red supergiant phase or during a luminous blue variable phase. Both evolutionary scenarios involve substantial pre-supernova mass loss. I have analyzed the SN IIn 1995N in MCG -02-38-017 (Arp 261), for which mid-infrared archival data obtained with the Spitzer Space Telescope in 2009 (~14.7 yr after explosion) and with the Wide-field Infrared Survey Explorer in 2010 (~15.6-16.0 yr after explosion) reveal a luminous (~2 × 107 L ⊙) source detected from 3.4 to 24 μm. These observations probe the circumstellar material, set up by pre-SN mass loss, around the progenitor star and indicate the presence of ~0.05-0.12 M ⊙ of pre-existing, cool dust at ~240 K. This is at least a factor ~10 lower than the dust mass required to be produced from SNe at high redshift, but the case of SN 1995N lends further evidence that highly massive stars could themselves be important sources of dust.
Baehr, Leslie M.; West, Daniel W. D.; Marshall, Andrea G.; Marcotte, George R.; Baar, Keith
2017-01-01
Disuse is a potent inducer of muscle atrophy, but the molecular mechanisms driving this loss of muscle mass are highly debated. In particular, the extent to which disuse triggers decreases in protein synthesis or increases in protein degradation, and whether these changes are uniform across muscles or influenced by age, is unclear. We aimed to determine the impact of disuse on protein synthesis and protein degradation in lower limb muscles of varied function and fiber type in adult and old rats. Alterations in protein synthesis and degradation were measured in the soleus, medial gastrocnemius, and tibialis anterior (TA) muscles of adult and old rats subjected to hindlimb unloading (HU) for 3, 7, or 14 days. Loss of muscle mass was progressive during the unloading period, but highly variable (−9 to −38%) across muscle types and between ages. Protein synthesis decreased significantly in all muscles, except for the old TA. Atrophy-associated gene expression was only loosely associated with protein degradation as muscle RING finger-1, muscle atrophy F-box (MAFbx), and Forkhead box O1 expression significantly increased in all muscles, but an increase in proteasome activity was only observed in the adult soleus. MAFbx protein levels were significantly higher in the old muscles compared with adult muscles, despite the old having higher expression of microRNA-23a. These results indicate that adult and old muscles respond similarly to HU, and the greatest loss in muscle mass occurs in predominantly slow-twitch extensor muscles due to a concomitant decrease in protein synthesis and increase in protein degradation. NEW & NOTEWORTHY In this study, we showed that age did not intensify the atrophy response to unloading in rats, but rather that the degree of atrophy was highly variable across muscles, indicating that changes in protein synthesis and protein degradation occur in a muscle-specific manner. Our data emphasize the importance of studying muscles of varying fiber-type and physiological function at multiple time points to fully understand the molecular mechanisms responsible for disuse atrophy. PMID:28336537
The Roles of Tidal Evolution and Evaporative Mass Loss in the Origin of CoRoT-7 b
NASA Technical Reports Server (NTRS)
Jackson, Brian; Miller, Neil; Barnes, Rory; Raymond, Sean N.; Fortney, Jonathan J.; Greenberg, Richard
2010-01-01
CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital semimajor axis of 0.0172 au, its origins may be unlike any rocky planet in our Solar System. In this study, we consider the roles of tidal evolution and evaporative mass loss in CoRoT-7 b's history, which together have modified the planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation may have driven off almost half its original mass, but the mass loss may depend sensitively on the extent of tidal decay of its orbit. As tides caused CoRoT-7 b's orbit to decay, they brought the planet closer to its host star, thereby enhancing the mass loss rate. Such a large mass loss also suggests the possibility that CoRoT-7 b began as a gas giant planet and had its original atmosphere completely evaporated. In this case, we find that CoRoT-7 b's original mass probably did not exceed 200 Earth masses (about two-third of a Jupiter mass). Tides raised on the host star by the planet may have significantly reduced the orbital semimajor axis, perhaps causing the planet to migrate through mean-motion resonances with the other planet in the system, CoRoT-7 c. The coupling between tidal evolution and mass loss may be important not only for CoRoT-7 b but also for other close-in exoplanets, and future studies of mass loss and orbital evolution may provide insight into the origin and fate of close-in planets, both rocky and gaseous.
Updated Estimates of Glacier Mass Change for Western North America
NASA Astrophysics Data System (ADS)
Menounos, B.; Gardner, A. S.; Howat, I.; Berthier, E.; Dehecq, A.; Noh, M. J.; Pelto, B. M.
2017-12-01
Alpine glaciers are critical components in Western North America's hydrologic cycle. We use varied remotely-sensed datasets to provide updated mass change estimates for Region 2 of the Randolf Glacier Inventory (RGI-02 - all North American glaciers outside of Alaska). Our datasets include: i) aerial laser altimetry surveys completed over many thousands of square kilometers; and ii) multiple Terabytes of high resolution optical stereo imagery (World View 1-3 and Pleiades). Our data from the period 2014-2017 includes the majority of glaciers in RGI-02, specifically those ice masses in the Rocky Mountains (US and Canada), Interior Ranges in British Columbia and the Cascade Mountains (Washington). We co-registered and bias corrected the recent surface models to the Shuttle Radar Topographic Mapping (SRTM) data acquired in February, 2000. In British Columbia, our estimates of mass change are within the uncertainty estimates obtained for the period 1985-2000, but estimates from some regions indicate accelerated mass loss. Work is also underway to update glacier mass change estimates for glaciers in Washington and Montana. Finally, we use re-analysis data (ERA interim and ERA5) to evaluate the meteorological drivers that explain the temporal and spatial variability of mass change evident in our analysis.
Bell, Christina L; Tamura, Bruce K; Masaki, Kamal H; Amella, Elaine J
2013-02-01
Weight loss and poor nutrition have been important considerations in measuring quality of nursing home care since 1987. Our purpose was to examine, synthesize, and provide a systematic review of the current literature on the prevalence and definitions of nutritional problems in nursing home residents. In the fall of 2011, we performed MEDLINE searches of English-language articles published after January 1, 1990. Articles were systematically selected for inclusion if they presented prevalence data for general nursing home populations on at least one of the following: weight loss, low body mass index, Mini-Nutritional Assessment or other measure of malnutrition, poor oral intake, or dependency for feeding. Data on each study, including study author, year, setting, population, type of study (study design), measures, and results, were systematically extracted onto standard matrix tables by consensus by a team of two fellowship-trained medical school faculty geriatrician clinician-researchers with significant experience in long term care. The MEDLINE search yielded 672 studies plus 229 studies identified through related citations and reference lists. Of the 77 studies included, 11 articles provided prevalence data from the baseline data of an intervention study, and 66 articles provided prevalence data in the context of an observational study of nutrition. There is a wide range of prevalence of low body mass index, poor appetite, malnutrition, and eating disability reported among nursing home residents. Studies demonstrate a lack of standardized definitions and great variability among countries. Of all the measures, the Minimum Data Set (MDS) weight loss definition of ≥5% in 1 month or ≥10% in 6 months had the narrowest range of prevalence rate: 6% to 15%. Weight loss, as measured by the MDS, may be the most easily replicated indicator of nutritional problems in nursing home residents for medical directors to follow for quality-improvement purposes. Additional studies are needed, reporting the prevalence of the MDS weight loss definition among international nursing home residents. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
Bellincontro, A; Matarese, F; D'Onofrio, C; Accordini, D; Tosi, E; Mencarelli, F
2016-12-15
Amarone wine is different from regular dry wine due to the postharvest withering of Corvina, Corvinone and Rondinella grapes. Grapes were withered in a commercial facility with variability in terms of temperature and relative humidity (R.H.). Sugar content reached 230-240gL(-1) and 280gL(-1) at 20% and 30% mass loss, respectively. Most of VOCs (volatile organic compounds) decreased during withering but few VOCs increased during withering and we considered as markers; in Corvinone they were methylhexanoate, dimethylsuccinate, nerol, nonanoic acid, and benzyl alcohol; in Corvina, benzyl alcohol, isoamyl alcohol, 1-hexanol, p-cymen-8-ol, 2,3 pinanediol, 3-oxo-ionol and 3-methyl-1-pentanol, coumaran and damascenone; in Rondinella, hexanol, nonanoic acid, methyl vanillate, damascenone, 3-oxo-ionol, eugenol, p-cymen-8-ol, 2,3 pinanediol, coumaran and raspberry keton. Olfactive descriptors of the wines and the potential aroma of the combination of Corvina wine with the wines of the other two varieties at different percentages of mass loss are reported. Copyright © 2016 Elsevier Ltd. All rights reserved.
Velasco, Josefa; Millán, Andrés; Bilton, David T.; Arribas, Paula
2016-01-01
Background Desiccation resistance shapes the distribution of terrestrial insects at multiple spatial scales. However, responses to drying stress have been poorly studied in aquatic groups, despite their potential role in constraining their distribution and diversification, particularly in arid and semi-arid regions. Methods We examined desiccation resistance in adults of four congeneric water beetle species (Enochrus, family Hydrophilidae) with contrasting habitat specificity (lentic vs. lotic systems and different salinity optima from fresh- to hypersaline waters). We measured survival, recovery capacity and key traits related to desiccation resistance (fresh mass, % water content, % cuticle content and water loss rate) under controlled exposure to desiccation, and explored their variability within and between species. Results Meso- and hypersaline species were more resistant to desiccation than freshwater and hyposaline ones, showing significantly lower water loss rates and higher water content. No clear patterns in desiccation resistance traits were observed between lotic and lentic species. Intraspecifically, water loss rate was positively related to specimens’ initial % water content, but not to fresh mass or % cuticle content, suggesting that the dynamic mechanism controlling water loss is mainly regulated by the amount of body water available. Discussion Our results support previous hypotheses suggesting that the evolution of desiccation resistance is associated with the colonization of saline habitats by aquatic beetles. The interespecific patterns observed in Enochrus also suggest that freshwater species may be more vulnerable than saline ones to drought intensification expected under climate change in semi-arid regions such as the Mediterranean Basin. PMID:27635346
NASA Astrophysics Data System (ADS)
Ribó, M.; Negueruela, I.; Blay, P.; Torrejón, J. M.; Reig, P.
2006-04-01
Massive X-ray binaries are usually classified by the properties of the donor star in classical, supergiant and Be X-ray binaries, the main difference being the mass transfer mechanism between the two components. The massive X-ray binary 4U 2206+54 does not fit in any of these groups, and deserves a detailed study to understand how the transfer of matter and the accretion on to the compact object take place. To this end we study an IUE spectrum of the donor and obtain a wind terminal velocity (v_∞) of ~350 km s-1, which is abnormally slow for its spectral type. We also analyse here more than 9 years of available RXTE/ASM data. We study the long-term X-ray variability of the source and find it to be similar to that observed in the wind-fed supergiant system Vela X-1, reinforcing the idea that 4U 2206+54 is also a wind-fed system. We find a quasi-period decreasing from ~270 to ~130 d, noticed in previous works but never studied in detail. We discuss possible scenarios for its origin and conclude that long-term quasi-periodic variations in the mass-loss rate of the primary are probably driving such variability in the measured X-ray flux. We obtain an improved orbital period of P_orb=9.5591±0.0007 d with maximum X-ray flux at MJD 51856.6±0.1. Our study of the orbital X-ray variability in the context of wind accretion suggests a moderate eccentricity around 0.15 for this binary system. Moreover, the low value of v_∞ solves the long-standing problem of the relatively high X-ray luminosity for the unevolved nature of the donor, BD +53°2790, which is probably an O9.5 V star. We note that changes in v_∞ and/or the mass-loss rate of the primary alone cannot explain the different patterns displayed by the orbital X-ray variability. We finally emphasize that 4U 2206+54, together with LS 5039, could be part of a new population of wind-fed HMXBs with main sequence donors, the natural progenitors of supergiant X-ray binaries.
Neta, Pedatsur; Farahani, Mahnaz; Simón-Manso, Yamil; Liang, Yuxue; Yang, Xiaoyu; Stein, Stephen E
2014-12-15
Certain product ions in electrospray ionization tandem mass spectrometry are found to react with residual water in the collision cell. This reaction often leads to the formation of ions that cannot be formed directly from the precursor ions, and this complicates the mass spectra and may distort MRM (multiple reaction monitoring) results. Various drugs, pesticides, metabolites, and other compounds were dissolved in acetonitrile/water/formic acid and studied by electrospray ionization mass spectrometry to record their MS(2) and MS(n) spectra in several mass spectrometers (QqQ, QTOF, IT, and Orbitrap HCD). Certain product ions were found to react with residual water in collision cells. The reaction was confirmed by MS(n) studies and the rate of reaction was determined in the IT instrument using zero collision energy and variable activation times. Examples of product ions reacting with water include phenyl and certain substituted phenyl cations, benzoyl-type cations formed from protonated folic acid and similar compounds by loss of the glutamate moiety, product ions formed from protonated cyclic siloxanes by loss of methane, product ions formed from organic phosphates, and certain negative ions. The reactions of product ions with residual water varied greatly in their rate constant and in the extent of reaction (due to isomerization). Various types of product ions react with residual water in mass spectrometer collision cells. As a result, tandem mass spectra may contain unexplained peaks and MRM results may be distorted by the occurrence of such reactions. These often unavoidable reactions must be taken into account when annotating peaks in tandem mass spectra and when interpreting MRM results. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.
Mass Loss of Larsen B Tributary Glaciers (Antarctic Peninsula) Unabated Since 2002
NASA Technical Reports Server (NTRS)
Berthier, Etienne; Scambos, Ted; Shuman, Christopher A.
2012-01-01
Ice mass loss continues at a high rate among the large glacier tributaries of the Larsen B Ice Shelf following its disintegration in 2002. We evaluate recent mass loss by mapping elevation changes between 2006 and 201011 using differencing of digital elevation models (DEMs). The measurement accuracy of these elevation changes is confirmed by a null test, subtracting DEMs acquired within a few weeks. The overall 2006201011 mass loss rate (9.0 2.1 Gt a-1) is similar to the 2001022006 rate (8.8 1.6 Gt a-1), derived using DEM differencing and laser altimetry. This unchanged overall loss masks a varying pattern of thinning and ice loss for individual glacier basins. On Crane Glacier, the thinning pulse, initially greatest near the calving front, is now broadening and migrating upstream. The largest losses are now observed for the HektoriaGreen glacier basin, having increased by 33 since 2006. Our method has enabled us to resolve large residual uncertainties in the Larsen B sector and confirm its state of ongoing rapid mass loss.
O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data
NASA Astrophysics Data System (ADS)
Cohen, David
O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra in order to determine the values of physically meaningful model parameters, and to place confidence limits on them. We have incorporated second-order effects into our models, including resonance scattering. We have also developed tools for modeling the X-ray opacity of the cold, X-ray absorbing wind component, which is a crucial ingredient of the technique we have developed for determining wind mass-loss rates from analyzing the ensemble of emission lines from a given star's X-ray spectrum. In addition to testing state-of-the-art wind shock models and measuring O star mass-loss rates, an important component of our proposed research program is the education of talented undergraduates. Swarthmore undergraduates have made significant contributions to the development of our line profile modeling, the wind opacity modeling, and related research topics such as laboratory astrophysics before going on to PhD programs. Two have been named as finalists for the APS's Apker prize. The research we propose here will involve two undergraduates and will likely lead to honors theses, refereed papers, and the opportunity to present their research results at national and international meetings. By measuring mass-loss rates for all the O stars for which high-resolution X-ray spectra exist and by constraining X-ray production mechanisms, we will address issues important to our understanding of stellar and galactic evolution: including the frequency of core collapse supernovae, the energetics of the Galactic interstellar medium, and the radiation conditions in star formation regions where not only new, solar-type stars form, but also where their planetary systems form and are subject to effects of high-energy emission from nearby stars. In this way, the work we are proposing in this project will make a contribution to NASA's mission to understand cosmic evolution and the conditions for generating and sustaining life in the Universe.
Araujo, Patricia I; Yahdjian, Laura; Austin, Amy T
2012-01-01
Surface litter decomposition in arid and semiarid ecosystems is often faster than predicted by climatic parameters such as annual precipitation or evapotranspiration, or based on standard indices of litter quality such as lignin or nitrogen concentrations. Abiotic photodegradation has been demonstrated to be an important factor controlling aboveground litter decomposition in aridland ecosystems, but soil fauna, particularly macrofauna such as termites and ants, have also been identified as key players affecting litter mass loss in warm deserts. Our objective was to quantify the importance of soil organisms on surface litter decomposition in the Patagonian steppe in the absence of photodegradative effects, to establish the relative importance of soil organisms on rates of mass loss and nitrogen release. We estimated the relative contribution of soil fauna and microbes to litter decomposition of a dominant grass using litterboxes with variable mesh sizes that excluded groups of soil fauna based on size class (10, 2, and 0.01 mm), which were placed beneath shrub canopies. We also employed chemical repellents (naphthalene and fungicide). The exclusion of macro- and mesofauna had no effect on litter mass loss over 3 years (P = 0.36), as litter decomposition was similar in all soil fauna exclusions and naphthalene-treated litter. In contrast, reduction of fungal activity significantly inhibited litter decomposition (P < 0.001). Although soil fauna have been mentioned as a key control of litter decomposition in warm deserts, biogeographic legacies and temperature limitation may constrain the importance of these organisms in temperate aridlands, particularly in the southern hemisphere.
Mass Loss during Late Stellar Evolution
NASA Astrophysics Data System (ADS)
Olofsson, Hans
1999-10-01
Extensive post-main sequence mass loss occurs for low- and intermediate-mass (up to ~8MSun) stars on the asymptotic giant branch (AGB), and for the higher-mass stars during their red supergiant evolution. These winds have a profound effect on the evolution of the stars, as well as for the enrichment of the interstellar medium with heavy elements and grain particles. The mass loss on the AGB is the by far most well studied, but a good deal of the basic processes are still not understood or cannot be described in a proper quantitative way, e.g., the mass loss mechanism itself. Furthermore, these objects provide us with fascinating systems, where intricate interplays between various physical and chemical processes take place, and their relative simplicity in terms of geometry, density distribution, and kinematics makes them excellent astrophysical laboratories. In this review we will concentrate on those aspects of AGB mass loss that are particularly well studied using a large millimetre array.
Perna, Simone; Guido, Davide; Grassi, Mario; Rondanelli, Mariangela
2015-01-01
Background Sarcopenia, the decrease in muscle mass and function, may lead to various negative health outcomes in elderly. The association among sarcopenia with adiposity and metabolic markers has rarely been studied in the elderly population, with controversial results. The aim of this study is to evaluate this relationship in older subjects. Methods A cross-sectional study was conducted in 290 elderly patients, focusing on the possible association between muscle mass loss, assessed by relative skeletal muscle mass (RSMM), and an adipo-metabolic profile (AMP) defined by adiposity and metabolic biochemical markers. Measurements of body composition were assessed by dual energy X-ray absorptiometry. Biochemical parameters, such as albumin, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol, triglycerides, C-reactive protein, and homocysteine and its related markers (folate and vitamin B12) were measured. Using canonical correlation analysis and structural equation modeling, an individual score of AMP was created and correlated with RSMM. Results The AMP–RSMM correlation was equal to +0.642 (95% confidence interval, +0.512 to +0.773; P<0.001). Hence, a negative association between sarcopenia severity and adiposity/metabolic biochemical markers was highlighted. Conclusion This study contained a novel way to examine the relationship between the variables of interest based on a composite index of adiposity and metabolic conditions. Results shed light on the orientation and magnitude of adiposity and metabolic markers in preventing muscle mass loss. There might be a protective effect of adiposity, compatible with the “obesity paradox.” PMID:25759569
Energy conservation through utilization of mechanical energy storage
NASA Astrophysics Data System (ADS)
Eisenhaure, D. B.; Bliamptis, T. E.; Downer, J. R.; Heinemann, P. C.
Potential benefits regarding fuel savings, necessary technology, and evaluation criteria for the development of flywheel-hybrid vehicles are examined. A case study is quoted in which adoption of flywheel-hybrid vehicles in a taxi fleet would result in an increase of 10 mpg average to 32 mpg. Two proposed systems are described, one involving direct engine power to the flywheel and the second regenerating the flywheel from braking energy through a continuously variable transmission. Fuel consumption characteristics are considered the ultimate determinant in the choice of configuration, while material properties and housing shape determine the flywheel speed range. Vehicle losses are characterized and it is expected that a flywheel at 12,000 rpm will experience less than one hp average parasitic power loss. Flywheel storage is suitable for smaller engines because larger engines dominate the power train mass. Areas considered important for further investigation include reliability of an engine run near maximum torque, noise and vibration associated with flywheel operation, start up delays, compatibility of driver controls, integration of normal with regenerative braking systems, and, most importantly, the continuously variable transmission.
Krediet, R T
2001-01-01
This study reviews publications on the history of cancer antigen 125 (CA125), the background of its use as a marker of mesothelial cell mass, determination in peritoneal effluent, and its practical use in both the follow-up of peritoneal dialysis (PD) patients and as a marker of in vivo biocompatibility of dialysis solutions. Review article. CA125 is a high molecular weight glycoprotein. Previous studies in ascites suggested its release by mesothelial cells. In vitro studies with cultured mesothelial cells showed constitutive production, the majority of which was dependent on mesothelial cell mass. Serum CA125 is normal in PD patients, but its concentration in peritoneal dialysate suggests local release, probably from mesothelial cells. Effluent CA125 can be considered a marker of mesothelial cell mass in stable PD patients, but large amounts are found during peritonitis, due probably to necrosis of mesothelial cells. The majority of studies found no relationship between dialysate CA125 and peritoneal transport parameters. Some cross-sectional studies reported a relationship with duration of PD, but others were unable to confirm this, due probably to the large interindividual variability. Longitudinal follow-up has shown a decrease in dialysate CA125, indicating loss of mesothelial cell mass. Application of theoretically more-biocompatible PD solutions causes an increase in dialysate CA125. Dialysate CA125 is a mesothelial cell mass marker. The concentration of CA125 should be determined after a standardized dwell. A single low value is not informative. A decrease with time on PD suggests loss of mesothelial cell mass. Dialysate CA125 is a marker of in vivo biocompatibility of (new) dialysis solutions. More research is necessary on the best methodology for measuring low concentrations and establishing normal values and a significant change.
Environmental physiology of a small marsupial inhabiting arid floodplains.
Warnecke, L; Cooper, C E; Geiser, F; Withers, P C
2010-09-01
Giles' planigale (Planigale gilesi) is among the smallest extant marsupials and inhabits deep soil cracks in arid floodplains. We examined whether its physiology shows specific adaptations to its extreme habitat. Metabolic rate, body temperature, evaporative water loss and thermal conductance were measured for eight planigales (average mass 9 g) exposed to four different ambient temperatures ranging from 10 degrees C to 32 degrees C. Water economy and respiratory variables were measured for the first time in this species. All of these standard physiological variables conformed to allometrically-predicted values for a marsupial. All variables were significantly affected by ambient temperature, except tidal volume and dry thermal conductance. Metabolic rate increased substantially at low ambient temperatures, as required to maintain a relatively constant body temperature of about 32-34 degrees C. This increased oxygen demand was accommodated by increased ventilation rather than increased oxygen extraction. Planigales had a comparatively high point of relative water economy of 19.1 degrees C, consistent with their small body size and arid habitat. Torpor reduced energy expenditure by 79% and evaporative water loss by 62%. Our study suggests that torpor use, along with behavioural adaptations, suffice for P. gilesi to live underground in arid habitats without further physiological adaptations. Copyright (c) 2010 Elsevier Inc. All rights reserved.
2011-01-01
Introduction To develop a scoring method for quantifying nutrition risk in the intensive care unit (ICU). Methods A prospective, observational study of patients expected to stay > 24 hours. We collected data for key variables considered for inclusion in the score which included: age, baseline APACHE II, baseline SOFA score, number of comorbidities, days from hospital admission to ICU admission, Body Mass Index (BMI) < 20, estimated % oral intake in the week prior, weight loss in the last 3 months and serum interleukin-6 (IL-6), procalcitonin (PCT), and C-reactive protein (CRP) levels. Approximate quintiles of each variable were assigned points based on the strength of their association with 28 day mortality. Results A total of 597 patients were enrolled in this study. Based on the statistical significance in the multivariable model, the final score used all candidate variables except BMI, CRP, PCT, estimated percentage oral intake and weight loss. As the score increased, so did mortality rate and duration of mechanical ventilation. Logistic regression demonstrated that nutritional adequacy modifies the association between the score and 28 day mortality (p = 0.01). Conclusions This scoring algorithm may be helpful in identifying critically ill patients most likely to benefit from aggressive nutrition therapy. PMID:22085763
An herbal supplement containing Ma Huang-Guarana for weight loss: a randomized, double-blind trial.
Boozer, C N; Nasser, J A; Heymsfield, S B; Wang, V; Chen, G; Solomon, J L
2001-03-01
To examine in overweight humans the short-term safety and efficacy for weight loss of an herbal supplement containing Ma Huang, Guarana and other ingredients. An 8 week randomized, double-blind placebo controlled study of a herbal dietary supplement (72 mg/day ephedrine alkaloids and 240 mg/day caffeine). Overweight men and women (body mass index, > or =29 and < or =35 kg/m2). The primary outcome variable was body weight change. Secondary variables included anthropometric, metabolic and cardiovascular changes. Sixty-seven subjects were randomized to either placebo (n=32) or active Ma Huang/Guarana (n=35). Twenty-four subjects in each group completed the study. Active treatment produced significantly (P<0.006) greater loss of weight (X+/-s.d.,-4.0+/-3.4 kg) and fat (-2.1+/-3.0% fat) over the 8-week treatment period than did placebo (-0.8+/-2.4 kg and 0.2+/-2.3% fat). Active treatment also produced greater reductions in hip circumference and serum triglyceride levels. Eight of the 35 actively treated subjects (23%) and none of the 32 placebo-treated control subjects withdrew from the protocol because of potential treatment-related effects. Dry mouth, insomnia and headache were the adverse symptoms reported most frequently by the herbal vs placebo group at the final evaluation visit. This herbal mixture of Ma Huang and Guarana effectively promoted short-term weight and fat loss. Safety with long-term use requires further investigation.
Further studies of the pulsation period and orbital elements of Centaurus X-3
NASA Technical Reports Server (NTRS)
Fabbiano, G.; Schreier, E. J.
1977-01-01
The long- and short-term variability of the 4.8-s pulsation and the 2.1-day orbital periods of Centaurus X-3 are studied. The pulsation period decreases over 4 yr with a fractional change of -0.00028 per yr, but with rms fluctuations of 0.0002 s. In August-September 1972, a continuous transition from speedup to slowdown was observed. The orbital period also decreases over 4 yr with decrease of approximately 8 millionths per yr, and with significant fluctuations of the order of 0.00001 day over months. The orbital eccentricity is found to be about 0.0008. The pulsation-period variability is found to be consistent with a near balance between the Alfven and corotation radii in an accretion-disk model. The orbital-period variability is interpreted in terms of tidal circularization and possible mass transfer and loss.
Beketov, Mikhail A; Liess, Matthias
2008-12-01
For flowing water bodies no information is available about patterns of contaminant distribution in flowing water compared to macrophyte-dominated structures. The aim of the study was to examine temporal dynamic and spatial cross-channel variability of pulse exposure of the insecticide thiacloprid in outdoor stream mesocosms. Two distinct cross-channel sections have been considered: macrophyte-dominated littoral and non-vegetated midstream. Median disappearance time ranged from 17 to 43 h (water phase, midstream). We showed that during the exposure pulse (10h) thiacloprid concentrations in the macrophyte-dominated section were 20-60% lower than those in the non-vegetated section. This suggests that spatial variability in contaminant concentrations, particularly in streams containing macrophytes, should be taken into account to enable a more realistic assessment of (i) exposure and associated effects and (ii) mass transport of pesticides and other chemicals into river systems (e.g. losses with surface runoff).
Mediators of weight loss in a family-based intervention presented over the internet.
White, Marney A; Martin, Pamela D; Newton, Robert L; Walden, Heather M; York-Crowe, Emily E; Gordon, Stewart T; Ryan, Donna H; Williamson, Donald A
2004-07-01
To assess the process variables involved in a weight loss program for African-American adolescent girls. Several process variables have been identified as affecting success in in vivo weight loss programs for adults and children, including program adherence, self-efficacy, and social support. The current study sought to broaden the understanding of these process variables as they pertain to an intervention program that is presented using the Internet. It was hypothesized that variables such as program adherence, dietary self-efficacy, psychological factors, and family environment factors would mediate the effect of the experimental condition on weight loss. Participants were 57 adolescent African-American girls who joined the program with one obese parent; family pairs were randomized to either a behavioral or control condition in an Internet-based weight loss program. Outcome data (weight loss) are reported for the first 6 months of the intervention. Results partially supported the hypotheses. For weight loss among adolescents, parent variables pertaining to life and family satisfaction were the strongest mediating variables. For parental weight loss, changes in dietary practices over the course of 6 months were the strongest mediators. The identification of factors that enhance or impede weight loss for adolescents is an important step in improving weight loss programs for this group. The current findings suggest that family/parental variables exert a strong influence on weight loss efforts for adolescents and should be considered in developing future programs. Copyright 2004 NAASO
The assessment and impact of sarcopenia in lung cancer: a systematic literature review.
Collins, Jemima; Noble, Simon; Chester, John; Coles, Bernadette; Byrne, Anthony
2014-01-02
There is growing awareness of the relationship between sarcopenia (loss of muscle mass and function), and outcomes in cancer, making it a potential target for future therapies. In order to inform future research and practice, we undertook a systematic review of factors associated with loss of muscle mass, and the relationship between muscle function and muscle mass in lung cancer, a common condition associated with poor outcomes. We conducted a computerised systematic literature search on five databases. Studies were included if they explored muscle mass as an outcome measure in patients with lung cancer, and were published in English. Secondary care. Patients with lung cancer. Factors associated with loss of muscle mass and muscle function, or sarcopenia, and the clinical impact thereof in patients with lung cancer. We reviewed 5726 citations, and 35 articles were selected for analysis. Sarcopenia, as defined by reduced muscle mass alone, was found to be very prevalent in patients with lung cancer, regardless of body mass index, and where present was associated with poorer functional status and overall survival. There were diverse studies exploring molecular and metabolic factors in the development of loss of muscle mass; however, the precise mechanisms that contribute to sarcopenia and cachexia remain uncertain. The effect of nutritional supplements and ATP infusions on muscle mass showed conflicting results. There are very limited data on the correlation between degree of sarcopenia and muscle function, which has a non-linear relationship in older non-cancer populations. Loss of muscle mass is a significant contributor to morbidity in patients with lung cancer. Loss of muscle mass and function may predate clinically overt cachexia, underlining the importance of evaluating sarcopenia, rather than weight loss alone. Understanding this relationship and its associated factors will provide opportunities for focused intervention to improve clinical outcomes.
Invited article: Time accurate mass flow measurements of solid-fueled systems.
Olliges, Jordan D; Lilly, Taylor C; Joslyn, Thomas B; Ketsdever, Andrew D
2008-10-01
A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.
Invited Article: Time accurate mass flow measurements of solid-fueled systems
NASA Astrophysics Data System (ADS)
Olliges, Jordan D.; Lilly, Taylor C.; Joslyn, Thomas B.; Ketsdever, Andrew D.
2008-10-01
A novel diagnostic method is described that utilizes a thrust stand mass balance (TSMB) to directly measure time-accurate mass flow from a solid-fuel thruster. The accuracy of the TSMB mass flow measurement technique was demonstrated in three ways including the use of an idealized numerical simulation, verifying a fluid mass calibration with high-speed digital photography, and by measuring mass loss in more than 30 hybrid rocket motor firings. Dynamic response of the mass balance was assessed through weight calibration and used to derive spring, damping, and mass moment of inertia coefficients for the TSMB. These dynamic coefficients were used to determine the mass flow rate and total mass loss within an acrylic and gaseous oxygen hybrid rocket motor firing. Intentional variations in the oxygen flow rate resulted in corresponding variations in the total propellant mass flow as expected. The TSMB was optimized to determine mass losses of up to 2.5 g and measured total mass loss to within 2.5% of that calculated by a NIST-calibrated digital scale. Using this method, a mass flow resolution of 0.0011 g/s or 2% of the average mass flow in this study has been achieved.
Rawson, Eric S; Nolan, Amy; Silver, Kristi; Shuldiner, Alan R; Poehlman, Eric T
2002-06-01
The Trp64Arg polymorphism in the beta(3)-adrenoceptor gene has been associated with increased prevalence of obesity, type 2 diabetes, and low rates of energy expenditure, although these findings are not unanimous. It is currently unknown if the presence of the Trp64Arg gene variant impedes the loss of body weight in obese, postmenopausal women via a reducing effect on energy expenditure. The objective of this study was to compare body composition and energy expenditure in carriers and noncarriers of the Trp64Arg variant in the beta(3)-adrenoceptor before and after weight loss. We measured body composition, total daily energy expenditure (TEE), resting metabolic rate (RMR), physical activity energy expenditure (PAEE), thermic effect of feeding (TEF), and respiratory quotient (RQ) in 34 obese, postmenopausal women (19 carriers and 15 noncarriers for the Trp64Arg variant) before and after a weight loss intervention. There were no differences in body composition or daily energy expenditure and its components between the 2 groups at baseline. There were significant reductions in body mass, body mass index (BMI), percent body fat, fat-free mass, and fat mass (main effect, all P <.0001) when analyzed with the 2 genotypes combined, but no significant differences between carriers and noncarriers with respect to change in these variables (group x time interaction term, all P >.05). Total energy expenditure tended to be reduced (490 kJ x d(-1), P =.13) in both groups following weight loss, but there was no significant group x time interaction term (P =.78), indicating no difference in the response of the 2 genotypes. There was a 9% reduction in RMR (611 kJ x d(-1), P <.001) when both groups were considered together, but no significant group x time interaction term (P =.84), suggesting that both groups responded in a similar manner to the weight loss intervention. PAEE and the TEF were not different following weight loss (both P >.60). There was a trend for RQ to be reduced after weight loss (P =.07), but there was no difference between carriers or noncarriers of the Trp64Arg variant (P =.58). In summary, we found that obese postmenopausal women who carry the Trp64Arg variant in the beta(3)-adrenoceptor had similar changes in body composition and energy expenditure to noncarriers of the variant in response to prolonged caloric restriction. These results suggest that the presence of the Trp64Arg variant in the beta(3)-adrenoceptor should not be a hindrance to weight reduction. Copyright 2002, Elsevier Science (USA). All rights reserved.
Influence of diet, exercise and serum vitamin D on sarcopenia in post-menopausal women
Mason, Caitlin; Xiao, Liren; Imayama, Ikuyo; Duggan, Catherine R.; Foster-Schubert, Karen E.; Kong, Angela; Campbell, Kristin L.; Wang, Ching-Yun; Villasenor, Adriana; Neuhouser, Marian L.; Alfano, Catherine M.; Blackburn, George L.; McTiernan, Anne
2012-01-01
Purpose To investigate the effects of 12 months of dietary weight loss and/or aerobic exercise on lean mass and the measurements defining sarcopenia in postmenopausal women, and to examine the potential moderating effect of serum 25-hydroxyvitamin D (25(OH)D) and age. Methods 439 overweight and obese postmenopausal women were randomized to: diet modification (N=118); exercise (N=117), diet+exercise (N=117), or control (N=87). The diet intervention was a group-based program with a 10% weight loss goal. The exercise intervention was 45 mins/day, 5 days/week of moderate-to-vigorous intensity aerobic activity. Total and appendicular lean mass were quantified by dual Xray absorptiometry (DXA) at baseline and 12 months. A skeletal muscle index (SMI=appendicular lean mass (kg)/m2) and the prevalence of sarcopenia (SMI<5.67 kg/m2) were calculated. Serum 25(OH)D was assayed using a competitive chemiluminescent immunoassay. Results Dietary weight loss resulted in a significant decrease in lean mass, and a borderline significant decrease in appendicular lean mass and SMI compared to controls. In contrast, aerobic exercise significantly preserved appendicular lean mass and SMI. Diet + exercise attenuated the loss of appendicular lean mass and SMI compared to diet alone, and did not result in significant loss of total- or appendicular lean mass compared to controls. Neither serum 25(OH)D nor age were significant moderators of the intervention effects. Conclusions Aerobic exercise added to dietary weight loss can attenuate the loss of appendicular lean mass during weight loss, and may be effective for the prevention and treatment of sarcopenia among overweight and obese postmenopausal women. PMID:23190588
The evolution of rotating very massive stars with LMC composition
NASA Astrophysics Data System (ADS)
Köhler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Gräfener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.
2015-01-01
Context. With growing evidence for the existence of very massive stars at subsolar metallicity, there is an increased need for corresponding stellar evolution models. Aims: We present a dense model grid with a tailored input chemical composition appropriate for the Large Magellanic Cloud (LMC). Methods: We use a one-dimensional hydrodynamic stellar evolution code, which accounts for rotation, transport of angular momentum by magnetic fields, and stellar wind mass loss to compute our detailed models. We calculate stellar evolution models with initial masses from 70 to 500 M⊙ and with initial surface rotational velocities from 0 to 550 km s-1, covering the core-hydrogen burning phase of evolution. Results: We find our rapid rotators to be strongly influenced by rotationally induced mixing of helium, with quasi-chemically homogeneous evolution occurring for the fastest rotating models. Above 160 M⊙, homogeneous evolution is also established through mass loss, producing pure helium stars at core hydrogen exhaustion independent of the initial rotation rate. Surface nitrogen enrichment is also found for slower rotators, even for stars that lose only a small fraction of their initial mass. For models above ~150 M⊙ at zero age, and for models in the whole considered mass range later on, we find a considerable envelope inflation due to the proximity of these models to their Eddington limit. This leads to a maximum ZAMS surface temperature of ~56 000 K, at ~180 M⊙, and to an evolution of stars in the mass range 50 M⊙...100 M⊙ to the regime of luminous blue variables in the Hertzsprung-Russell diagram with high internal Eddington factors. Inflation also leads to decreasing surface temperatures during the chemically homogeneous evolution of stars above ~180 M⊙. Conclusions: The cool surface temperatures due to the envelope inflation in our models lead to an enhanced mass loss, which prevents stars at LMC metallicity from evolving into pair-instability supernovae. The corresponding spin-down will also prevent very massive LMC stars to produce long-duration gamma-ray bursts, which might, however, originate from lower masses. The dataset of the presented stellar evolution models is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A71Appendices are available in electronic form at http://www.aanda.org
Ice sheet-ocean interactions and sea level change
NASA Astrophysics Data System (ADS)
Heimbach, Patrick
2014-03-01
Mass loss from the Greenland and Antarctic ice sheets has increased rapidly since the mid-1990s. Their combined loss now accounts for about one-third of global sea level rise. In Greenland, a growing body of evidence points to the marine margins of these glaciers as the region from which this dynamic response originated. Similarly, ice streams in West Antarctica that feed vast floating ice shelves have exhibited large decadal changes. We review observational evidence and present physical mechanisms that might explain the observed changes, in particular in the context of ice sheet-ocean interactions. Processes involve cover 7 orders of magnitudes of scales, ranging from mm boundary-layer processes to basin-scale coupled atmosphere-ocean variability. We discuss observational needs to fill the gap in our mechanistic understanding.
NASA Astrophysics Data System (ADS)
Wilson, T. J.; Konfal, S. A.; Bevis, M. G.; Spada, G.; Melini, D.; Barletta, V. R.; Kendrick, E. C.; Saddler, D.; Smalley, R., Jr.; Dalziel, I. W. D.; Willis, M. J.
2016-12-01
Crustal motions measured by GPS provide a unique proxy record of ice mass change, due to the elastic and viscoelastic response of the earth to removal of ice loads. The ANET/POLENET array of bedrock GPS sites spans much of the Antarctic interior, encompassing regions where glacial isostatic adjustment (GIA) models predict large crustal displacements due to LGM ice loss and including coastal West Antarctica where major modern ice mass loss is documented. To isolate the long-term GIA component of measured crustal motions, we computed and removed elastic displacements due to recent ice mass change. We used the annually resolved ice mass balance data from Martín-Español et al. (2016) derived from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003-2013. The Regional Elastic Rebound Calculator (REAR) [Melini et al., 2015] was used to compute elastic vertical and horizontal surface displacements. Uplift due to elastic rebound is substantial in West Antarctica, very minimal in East Antarctica, and variable across the Weddell Embayment. The ANET GPS-derived crustal motion patterns ascribed to non-elastic GIA are spatially complex and differ significantly in magnitude from model predictions. We present a systematic comparison of measured and predicted velocities within different sectors of Antarctica, in order to examine spatial patterns relative to modern ice mass changes, ice history model uncertainties, and lateral variations in earth properties. In the Weddell Embayment region most vertical velocities are lower than uplift predicted by GIA models. Several sites in the southernmost Transantarctic Mountains and the Whitmore Mountains, where small ice mass increase occurs, have vertical uplift significantly exceeding GIA model predictions. There is an intriguing spatial correlation of these fast-moving sites with a low-velocity anomaly in the upper mantle documented by analysis of teleseismic Rayleigh waves by Heeszel et al. (2016). Significant non-elastic GIA velocities occur in the Amundsen Sea Embayment sector, with high uplift flanked by subsiding regions. This pattern can be modeled as a viscoelastic response to ice loss on decadal-centennial time scales in a region with weak upper mantle, consistent with seismic results in the region.
A Study of the Mass Loss Rates of Symbiotic Star Systems
NASA Technical Reports Server (NTRS)
Korreck, K. E.; Kellogg, E.; Sokoloski, J. L.
2007-01-01
The amount of mass loss in symbiotic systems is investigated, specifically mass loss via the formation of jets in R Aquarii (R Aqr). The jets in R Aqr have been observed in the X-ray by Chandra over a four year time period. The jet changes on times scales of a year and new outflows have been observed. Understanding the amount of mass and the frequency of ejection further constrain the ability of the white dwarf in the system to accrete enough mass to become a Type la supernova progenitor. The details of multi-wavelength studies, such as speed, density and spatial extent of the jets will be discussed in order to understand the mass balance in the binary system. We examine other symbiotic systems to determine trends in mass loss in this class of objects.
The Impact of Progenitor Mass Loss on the Dynamical and Spectral Evolution of Supernova Remnants
NASA Astrophysics Data System (ADS)
Patnaude, Daniel J.; Lee, Shiu-Hang; Slane, Patrick O.; Badenes, Carles; Nagataki, Shigehiro; Ellison, Donald C.; Milisavljevic, Dan
2017-11-01
There is now substantial evidence that the progenitors of some core-collapse supernovae undergo enhanced or extreme mass loss prior to explosion. The imprint of this mass loss is observed in the spectra and dynamics of the expanding blast wave on timescales of days to years after core collapse, and the effects on the spectral and dynamical evolution may linger long after the supernova has evolved into the remnant stage. In this paper, we present, for the first time, largely self-consistent end-to-end simulations for the evolution of a massive star from the pre-main sequence, up to and through core collapse, and into the remnant phase. We present three models and compare and contrast how the progenitor mass-loss history impacts the dynamics and spectral evolution of the supernovae and supernova remnants. We study a model that only includes steady mass loss, a model with enhanced mass loss over a period of ˜5000 yr prior to core collapse, and a model with extreme mass loss over a period of ˜500 yr prior to core collapse. The models are not meant to address any particular supernova or supernova remnant, but rather to highlight the important role that the progenitor evolution plays in the observable qualities of supernovae and supernova remnants. Through comparisons of these three different progenitor evolution scenarios, we find that the mass loss in late stages (during and after core carbon burning) can have a profound impact on the dynamics and spectral evolution of the supernova remnant centuries after core collapse.
Effects of Main-Sequence Mass Loss on Stellar and Galactic Chemical Evolution.
NASA Astrophysics Data System (ADS)
Guzik, Joyce Ann
1988-06-01
L. A. Willson, G. H. Bowen and C. Struck -Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10^{-9}M o/yr, diminishing over several times 10^8 years. We attempted to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M o, and mass-loss rates decreasing exponentially over 2-3 times 10^8 years. Compared to a constant -mass model, these models require a reduced initial ^4He abundance, have deeper envelope convection zones and higher ^8B neutrino fluxes. Early processing of present surface layers at higher interior temperatures increases the surface ^3He abundance, destroys Li, Be and B, and decreases the surface C/N ratio following first dredge-up. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 Mo and mass loss timescales 0.2 to 2.0 Gyr. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M o and a metallicity -dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus -remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main sequence to the present. The ratio of stars to stellar remnants and the white dwarf age distribution may prove valuable in distinguishing between explanations for the observed bimodal present-day stellar mass function.
Iannelli, Antonio; Martini, Francesco; Rodolphe, Anty; Schneck, Anne-Sophie; Gual, Philippe; Tran, Albert; Hébuterne, Xavier; Gugenheim, Jean
2014-02-01
Laparoscopic Roux-en-Y gastric bypass (LRYGBP) is currently the most common bariatric procedure and results in a substantial weight loss and recovery from obesity-related comorbidities, both of which are maintained in the long term. However, besides the desired loss of fat mass, LRYGBP is also followed by the loss of fat-free mass (FFM). We aimed to determine the factors associated with the loss of ≥20 % of the initial FFM 1 year after LRYGBP in a prospective series of 115 Caucasian, premenopausal women. Anthropometrics, body composition (bioelectrical impedance analysis), resting energy expenditure (REE) (indirect calorimetry), inflammation, insulin resistance, and lipid disturbances were determined before and 1 year after LRYGBP. The mean loss of initial FFM was 15.3 ± 13.8 %. 1 year after LRYGBP, 81 women lost <20 % (<20 % FFM group) and 35 lost ≥20 % (≥20 % FFM group) of the initial FFM. Before surgery, the FFM, weight, BMI, excess BMI, brachial circumference, waist circumference, and REE were significantly higher in the ≥20 % FFM group while inflammation, insulin resistance, and lipid disturbances were comparable between the two groups. 1 year after LRYGBP, the FFM, weight, BMI, excess BMI, brachial circumference, waist circumference, and REE decreased significantly and were comparable between the two groups. Inflammation, insulin resistance, and lipid disturbances improved comparably between the two groups after surgery. The only variable associated with the loss of ≥20 % of the initial FFM in the multivariable analysis was the presence of more FFM before surgery (67.0 ± 9.9 vs. 53.5 ± 6.7 kg). One year after LRYGBP the loss of ≥20 % of the initial FFM occurred mainly in women with more FFM before surgery and resulted in the same body composition of women who lost <20 % of the initial FFM.
Mass loss in O-type stars - Parameters which affect it
NASA Technical Reports Server (NTRS)
Garmany, C. D.; Conti, P. S.
1984-01-01
Newly determined mass loss rates are presented for sixteen O-type stars in three open clusters. Combining the data with that already in the literature, no evidence is found that the rates are different in clusters with differing galactocentric distances and compositions, at least near the sun. There is still appreciable dispersion in the relationship between the mass loss rate and the stellar luminosity. It may be that the mass loss depends additionally on the stellar mass and/or radius, but these data cannot unequivocally indicate which physical dependence is correct. Evidence is found that a stellar wind increases as a massive star evolves from the zero-age main sequence.
Surface composition changes in massive star evolution with mass loss
NASA Technical Reports Server (NTRS)
Noels, A.; Gabriel, M.; Vreux, J.-M.; Conti, P. S.
1980-01-01
A series of evolutionary models of 40-100 solar mass objects undergoing mass loss are constructed with the explicit inclusion of the surface composition of H, He, C, N, O elements. Mass loss rates similar to those observed in Of stars, 4 to 7 x 10 to the -6th solar masses/yr, result in an appearance at the surface of equilibrium CNO products, i.e. enhanced nitrogen and diminished carbon, while that star is still burning hydrogen in the core. This result obtains because the initial convection core is a relatively large fraction of the total mass and rather modest loss exposes levels of anomalous composition. It is suggested that these objects might reasonably be identified as those luminous late type WN stars still containing surface hydrogen.
PULSATION-TRIGGERED MASS LOSS FROM AGB STARS: THE 60 DAY CRITICAL PERIOD
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, I.; Zijlstra, A. A., E-mail: iain.mcdonald-2@jb.man.ac.uk, E-mail: albert.zijlstra@manchester.ac.uk
2016-06-01
Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here, we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalog. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately coincides with the point where the star transitions to themore » first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increasing at this point, by a factor of ∼10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode at a period of ∼300 days.« less
Resolving combinatorial ambiguities in dilepton t t¯ event topologies with constrained M2 variables
NASA Astrophysics Data System (ADS)
Debnath, Dipsikha; Kim, Doojin; Kim, Jeong Han; Kong, Kyoungchul; Matchev, Konstantin T.
2017-10-01
We advocate the use of on-shell constrained M2 variables in order to mitigate the combinatorial problem in supersymmetry-like events with two invisible particles at the LHC. We show that in comparison to other approaches in the literature, the constrained M2 variables provide superior ansätze for the unmeasured invisible momenta and therefore can be usefully applied to discriminate combinatorial ambiguities. We illustrate our procedure with the example of dilepton t t ¯ events. We critically review the existing methods based on the Cambridge MT 2 variable and MAOS reconstruction of invisible momenta, and show that their algorithm can be simplified without loss of sensitivity, due to a perfect correlation between events with complex solutions for the invisible momenta and events exhibiting a kinematic endpoint violation. Then we demonstrate that the efficiency for selecting the correct partition is further improved by utilizing the M2 variables instead. Finally, we also consider the general case when the underlying mass spectrum is unknown, and no kinematic endpoint information is available.
NASA Technical Reports Server (NTRS)
Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.
2004-01-01
Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30 x 30 x 10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/sq m. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.
NASA Technical Reports Server (NTRS)
Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.
2004-01-01
Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30x30x10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/m2. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.
Pieters, Marlien; Oosthuizen, Welma; Jerling, Johann C; Loots, Du Toit; Mukuddem-Petersen, Janine; Hanekom, Susanna M
2005-09-01
We investigated the effect of a high walnut and cashew diet on haemostatic variables in people with the metabolic syndrome. Factor analysis was used to determine how the haemostatic variables cluster with other components of the metabolic syndrome and multiple regression to determine possible predictors. This randomized, control, parallel, controlled-feeding trial included 68 subjects who complied with the Third National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol criteria. After a 3-week run-in following the control diet, subjects were divided into three groups receiving either walnuts or cashews (20 energy%) or a control diet for 8 weeks. The nut intervention had no significant effect on von Willebrand factor antigen, fibrinogen, factor VII coagulant activity, plasminogen activator inhibitor 1 activity, tissue plasminogen activator activity or thrombin activatable fibrinolysis inhibitor. Statistically, fibrinogen clustered with the body-mass-correlates and acute phase response factors, and factor VII coagulant activity clustered with high-density lipoprotein cholesterol (HDL-C). Tissue plasminogen activator activity, plasminogen activator inhibitor 1 activity and von Willebrand factor antigen clustered into a separate endothelial function factor. HDL-C and markers of obesity were the strongest predictors of the haemostatic variables. We conclude that high walnut and cashew diets did not influence haemostatic factors in this group of metabolic syndrome subjects. The HDL-C increase and weight loss may be the main focus of dietary intervention for the metabolic syndrome. Furthermore, diet composition may have only limited effects if weight loss is not achieved.
LMC O Supergiant Mass Loss Rates Determined from P V, S V and IR Excesses
NASA Astrophysics Data System (ADS)
Massa, Derck; Prinja, R.; Fullerton, A.; Lennon, D.
2012-05-01
We use HST/STIS and FUSE spectra and Spitzer/IRAC photometry to obtain independent mass loss rates for 7 LMC O supergiants. The mass loss rates are derived from the P Cygni profiles of the P V 1118, 1128 resonance doublet, the S V 1502 and N IV 1718 excited state lines, and the IR excesses of a combination of ground based and Spitzer photometry. The different mass loss rates are compared to each other and to theoretical expectations. We discuss the causes for the differences between the various determinations.
Effects of Rapid Weight Loss on Balance and Reaction Time in Elite Judo Athletes.
Morales, Jose; Ubasart, Carla; Solana-Tramunt, Mónica; González, Luis-Millán; Fukuda, David; Franchini, Emerson
2018-05-29
Balance, reaction time, and strength are key factors affecting judo performance. While ample research exists examining potential strength changes caused by weight loss prior to competition, changes in balance and reaction time, have been overlooked. The objective of this study was to examine the effects of rapid and progressive weight loss (RWL and PWL) on balance, reaction time, and strength in a group of elite judo athletes. 38 female and male judo athletes (age = 20.6 ± 2.6 years) completed balance, reaction time, and strength assessments one week prior to an official weigh-in (pre-test) and immediately after the weigh-in (post-test). The judo athletes were divided into three groups, one control group who maintained regular training and eating habits, one experimental group who engaged in PWL (<3% reductions in body mass) and a second experimental group who used RWL techniques (>3% reductions in body mass). RWL group showed significant decreases (p<0.05) in balance performance (Ellipse area: 4.83±0.87 vs. 6.31±1.39 mm 2 with eyes closed; Mean Mediolateral Velocity: 2.07±0.2 vs. 2.52±0.45 mms -1 with eyes closed; Mean Anteroposterior Velocity: 2.25±0.20 vs. 2.51±0.32 mms -1 with eyes open and 2.44±0.26 vs. 3.06±0.56 mms -1 with eyes closed) and reaction time (0.38±0.04 vs. 0.42±0.06 seconds) with no changes in strength from pre- to post-testing. The judo athletes in the progressive weight loss and control groups maintained performance in all variables. These findings demonstrate negative effects on perceptual motor skill performance in judo athletes engaging in rapid weight loss strategies prior to competition.
Cryan, P.M.; Wolf, B. O.
2003-01-01
This study quantifies sex differences in thermoregulation and water loss of a small (20-35 g) insectivorous heterothermic mammal, the hoary bat Lasiurus cinereus, during its spring migration. We measured body temperature, metabolic rate and evaporative water loss, and calculated wet thermal conductance, for bats exposed to air temperatures ranging from 0 to 40°C for periods of 2-5 h. Pregnant females maintained normothermic body temperatures (35.7±0.7°C; mean ± s.e.m.) independent of air temperature. In contrast, males became torpid during the majority (68%) of exposures to air temperatures <25°C. The thermal neutral zone (TNZ) ranged between approximately 30°C and 34°C in both sexes and, within the TNZ, females had lower mass-specific metabolic rates (6.1±0.2 mW g-1) than males (9.0±0.9 mW g-1). Wet thermal conductance values in torpid bats (0.7±0.5 mW g-1 deg.-1) were lower than those of normothermic individuals (1.1±0.3 mW g-1 deg.-1). Mass-specific rates of evaporative water loss in males were consistently higher than in females at most air temperatures and rates of water loss in torpid bats were 63±6% of normothermic values. These results suggest that male and pregnant female L. cinereus employ different thermoregulatory strategies during their spring migration. Females defend normothermic body temperatures, presumably to expedite embryonic growth, while males use torpor, presumably to minimize energy and water deficits. These variable thermoregulatory strategies may reflect continental differences in the summer distribution of the sexes.
NASA Astrophysics Data System (ADS)
Nanouris, N.; Kalimeris, A.; Antonopoulou, E.; Rovithis-Livaniou, H.
2015-03-01
Context. The credibility of an eclipse timing variation (ETV) diagram analysis is investigated for various manifestations of the mass transfer and gravitational radiation processes in binary systems. The monotonicity of the period variations and the morphology of the respective ETV diagrams are thoroughly explored in both the direct impact and the accretion disk mode of mass transfer, accompanied by different types of mass and angular momentum losses (through a hot-spot emission from the gainer and via the L2/L3 points). Aims: Our primary objective concerns the traceability of each physical mechanism by means of an ETV diagram analysis. Also, possible critical mass ratio values are sought for those transfer modes that involve orbital angular momentum losses strong enough to dictate the secular period changes even when highly competitive mechanisms with the opposite direction act simultaneously. Methods: The dot{J-dot{P}} relation that governs the orbital evolution of a binary system is set to provide the exact solution for the period and the function expected to represent the subsequent eclipse timing variations. The angular momentum transport is parameterized through appropriate empirical relations, which are inferred from semi-analytical ballistic models. Then, we numerically determine the minimum temporal range over which a particular mechanism is rendered measurable, as well as the critical mass ratio values that signify monotonicity inversion in the period modulations. Results: Mass transfer rates comparable to or greater than 10-8 M⊙ yr-1 are measurable for typical noise levels of the ETV diagrams, regardless of whether the process is conservative. However, the presence of a transient disk around the more massive component defines a critical mass ratio (qcr ≈ 0.83) above which the period turns out to decrease when still in the conservative regime, rendering the measurability of the anticipated variations a much more complicated task. The effects of gravitational radiation proved to be rather undetectable, except for systems with physical characteristics that only refer to cataclysmic variables. Conclusions: The monotonicity of the period variations and the curvature of the respective ETV diagrams depend strongly on the accretion mode and the degree of conservatism of the transfer process. Unlike the hot-spot effects, the Lagrangian points L2 and L3 support very efficient routes of strong angular momentum loss. It is further shown that escape of mass via the L3 point - when the donor is the less massive component - safely provides critical mass ratios above which the period is expected to decrease, no matter how intense the process is.
An Analytical Approach to the Evolution and Death of AGB Stars
NASA Astrophysics Data System (ADS)
Prager, Henry Alexander; Willson, Lee Anne M.; Marengo, Massimo; Creech-Eakman, Michelle J.
2017-01-01
Pop. I and II stars have a significant amount of metals throughout their structure, In the final stages of their evolution, intermediate mass stars (between 0.7 and 2 solar masses) ascend the Asymptotic Giant Branch (AGB). During their last few hundred thousand years on the AGB, these stars quickly lose their envelopes, recycling their metals as dust into the interstellar medium. The rate at which this happens consequently impacts the formation rate of stars, stellar systems, and the wider distribution of s-process isotopes.At the end of their life cycles, AGB stars experience a steep increase in mass loss rate. We can define the death line in two steps. First we define the critical mass loss rate to be where the mass loss rate equals the initial mass divided by the evolution time. Then the death line is where the rate of change of logMdot equals the rate of change of logL. Most of the stars we observe to be rapidly losing mass appear in the death zone between 0.1 and 10 times the critical mass loss rate.Assuming the mass loss rate increases exponentially with time, or, equivalently, the luminosity increases as a power of a characteristic exponent b, then the width of the death zone is the change in logL. This directly implies time is inversely proportional to b. This can be found for any mass-loss rate formula near the death line. By combining this with what we know about the initial-final mass relation and the core mass-luminosity relation, we can test for b with three observables — duration (width) of the death zone, the amplitude of mass loss variations (when L varies on an observable time scale such as a shell flash), and distributions of luminosity and pulsation period.By applying the initial mass function (IMF) and star formation rate (SFR) of an observed region, we can relate these observables to the characteristic exponent. We will need to look at nearby regions where we can see large numbers of AGB stars, such as the Magellanic clouds. We will show that by fixing the death line and the characteristic exponent that intermediate changes in the mass loss rate better fit observations than extreme values. This is consistent with dust-driven as opposed to pulsation-driven processes.
NASA Technical Reports Server (NTRS)
Corcoran, Michael F.; Nichols, Joy; Naze, Yael; Rauw, Gregor; Pollock, Andrew; Moffat, Anthony; Richardson, Noel; Evans, Nancy; Hamaguchi, Kenji; Oskinova, Lida;
2013-01-01
Delta Ori is the nearest massive, single-lined eclipsing binary (O9.5 II + B0.5III). As such it serves as a fundamental calibrator of the mass-radius-luminosity relation in the upper HR diagram. It is also the only eclipsing O-type binary system which is bright enough to be observable with the CHANDRA gratings in a reasonable exposure. Studies of resolved X-ray line complexes provide tracers of wind mass loss rate and clumpiness; occultation by the X-ray dark companion of the line emitting region can provide direct spatial information on the location of the X-ray emitting gas produced by shocks embedded in the wind of the primary star. We obtained phase-resolved spectra with Chandra in order to determine the level of phase-dependent vs. secular variability in the shocked wind. Along with the Chandra observations we obtained simultaneous photometry from space with the Canadian MOST satellite to help understand the relation between X-ray and photospheric variability.
Performance Charts for a Turbojet System
NASA Technical Reports Server (NTRS)
Karp, Irving M.
1947-01-01
Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.
Petrich, Nicholas T.; Spak, Scott N.; Carmichael, Gregory R.; Hu, Dingfei; Martinez, Andres; Hornbuckle, Keri C.
2013-01-01
Passive air samplers (PAS) including polyurethane foam (PUF) are widely deployed as an inexpensive and practical way to sample semi-volatile pollutants. However, concentration estimates from PAS rely on constant empirical mass transfer rates, which add unquantified uncertainties to concentrations. Here we present a method for modeling hourly sampling rates for semi-volatile compounds from hourly meteorology using first-principle chemistry, physics, and fluid dynamics, calibrated from depuration experiments. This approach quantifies and explains observed effects of meteorology on variability in compound-specific sampling rates and analyte concentrations; simulates nonlinear PUF uptake; and recovers synthetic hourly concentrations at a reference temperature. Sampling rates are evaluated for polychlorinated biphenyl congeners at a network of Harner model samplers in Chicago, Illinois during 2008, finding simulated average sampling rates within analytical uncertainty of those determined from loss of depuration compounds, and confirming quasi-linear uptake. Results indicate hourly, daily and interannual variability in sampling rates, sensitivity to temporal resolution in meteorology, and predictable volatility-based relationships between congeners. We quantify importance of each simulated process to sampling rates and mass transfer and assess uncertainty contributed by advection, molecular diffusion, volatilization, and flow regime within the PAS, finding PAS chamber temperature contributes the greatest variability to total process uncertainty (7.3%). PMID:23837599
NASA Astrophysics Data System (ADS)
Davis, Stephen E., III; Childers, Daniel L.
2007-01-01
The southern Everglades mangrove ecotone is characterized by extensive dwarf Rhizophora mangle L. shrub forests with a seasonally variable water source (Everglades - NE Florida Bay) and residence times ranging from short to long. We conducted a leaf leaching experiment to understand the influence that water source and its corresponding water quality have on (1) the early decay of R. mangle leaves and (2) the early exchange of total organic carbon (TOC) and total phosphorus (TP) between leaves and the water column. Newly senesced leaves collected from lower Taylor River (FL) were incubated in bottles containing water from one of three sources (Everglades, ambient mangrove, and Florida Bay) that spanned a range of salinity from 0 to 32‰, [TOC] from 710 to 1400 μM, and [TP] from 0.17 to 0.33 μM. We poisoned half the bottles in order to quantify abiotic processes (i.e., leaching) and assumed that non-poisoned bottles represented both biotic (i.e., microbial) and abiotic processes. We sacrificed bottles after 1,2, 5, 10, and 21 days of incubation and quantified changes in leaf mass and changes in water column [TOC] and [TP]. We saw 10-20% loss of leaf mass after 24 h—independent of water treatment—that leveled off by Day 21. After 3 weeks, non-poisoned leaves lost more mass than poisoned leaves, and there was only an effect of salinity on mass loss in poisoned incubations—with greatest leaching-associated losses in Everglades freshwater. Normalized concentrations of TOC in the water column increased by more than two orders of magnitude after 21 days with no effect of salinity and no difference between poisoned and non-poisoned treatments. However, normalized [TP] was lower in non-poisoned incubations as a result of immobilization by epiphytic microbes. This immobilization was greatest in Everglades freshwater and reflects the high P demand in this ecosystem. Immobilization of leached P in mangrove water and Florida Bay water was delayed by several days and may indicate an initial microbial limitation by labile C during the dry season.
Mapping Greenland’s mass loss in space and time
Harig, Christopher; Simons, Frederik J.
2012-01-01
The melting of polar ice sheets is a major contributor to global sea-level rise. Early estimates of the mass lost from the Greenland ice cap, based on satellite gravity data collected by the Gravity Recovery and Climate Experiment, have widely varied. Although the continentally and decadally averaged estimated trends have now more or less converged, to this date, there has been little clarity on the detailed spatial distribution of Greenland’s mass loss and how the geographical pattern has varied on relatively shorter time scales. Here, we present a spatially and temporally resolved estimation of the ice mass change over Greenland between April of 2002 and August of 2011. Although the total mass loss trend has remained linear, actively changing areas of mass loss were concentrated on the southeastern and northwestern coasts, with ice mass in the center of Greenland steadily increasing over the decade. PMID:23169646
Hot horizontal branch stars: Predictions for mass loss. Winds, rotation, and the low gravity problem
NASA Astrophysics Data System (ADS)
Vink, Jorick S.; Cassisi, Santi
2002-09-01
We predict mass-loss rates for the late evolutionary phases of low-mass stars, with special emphasis on the consequences for the morphology of the Horizontal Branch (HB). We show that the computed rates, as predicted by the most plausible mechanism of radiation pressure on spectral lines, are too low to produce EHB/sdB stars. This invalidates the scenario recently outlined by Yong et al. (2000) to create these objects by mass loss on the HB. We argue, however, that mass loss plays a role in the distribution of rotational velocities of hot HB stars, and may - together with the enhancement of heavy element abundances due to radiative levitation - provide an explanation for the so-called ``low gravity'' problem. The mass loss recipe derived for hot HB (and extreme HB, sdB, sdOB) stars may also be applied to post-HB (AGB-manqué, UV-bright) stars over a range in effective temperatures between 12 500-40 000 K.
Szewczyk, Mariusz; Jesionek-Kupnicka, Dorota; Lipiński, Marek Ireneusz; Lipinski, Piotr; Różański, Waldemar
2014-01-01
The aim of this study is to compare the changes in the incision line of prostatic adenoma using a monopolar cutting electrode and holmium laser, as well as the assessment of associated tissue mass and volume loss of benign prostatic hyperplasia (BPH). The material used in this study consisted of 74 preparations of prostatic adenoma obtained via open retropubic adenomectomy, with an average volume of 120.7 ml. The material obtained cut in vitro before fixation in formaldehyde. One lobe was cut using holmium laser, the other using a monopolar cutting electrode. After the incision was made, tissue mass and volume loss were evaluated. Thermocoagulation changes in the incision line were examinedunder light microscope. In the case of the holmium laser incision, the average tissue mass loss was 1.73 g, tissue volume loss 3.57 ml and the depth of thermocoagulation was 1.17 mm. When the monopolar cutting electrode was used average tissue mass loss was 0.807 g, tissue volume loss 2.48 ml and the depth of thermocoagulation was 0.19 mm. Where holmium laser was used, it was observed that the layer of tissue with thermocoagulation changes was deeper than in the case of the monopolar cutting electrode. Moreover, it was noticed that holmium laser caused bigger tissue mass and volume loss than the cutting electrode.
Wandrag, Liesl; Siervo, Mario; Riley, Heather L; Khosravi, Maryam; Fernandez, Bernadette O; Leckstrom, Carl A; Martin, Daniel S; Mitchell, Kay; Levett, Denny Z H; Montgomery, Hugh E; Mythen, Monty G; Stroud, Michael A; Grocott, Michael P W; Feelisch, Martin
2017-10-01
Sarcopenia refers to the involuntary loss of skeletal muscle and is a predictor of physical disability/mortality. Its pathogenesis is poorly understood, although roles for altered hypoxic signaling, oxidative stress, adipokines and inflammatory mediators have been suggested. Sarcopenia also occurs upon exposure to the hypoxia of high altitude. Using data from the Caudwell Xtreme Everest expedition we therefore sought to analyze the extent of hypoxia-induced body composition changes and identify putative pathways associated with fat-free mass (FFM) and fat mass (FM) loss. After baseline testing in London (75m), 24 investigators ascended from Kathmandu (1300m) to Everest base camp (EBC 5300m) over 13 days. Fourteen investigators climbed above EBC, eight of whom reached the summit (8848m). Assessments were conducted at baseline, during ascent and after one, six and eight week(s) of arrival at EBC. Changes in body composition (FM, FFM, total body water, intra- and extra-cellular water) were measured by bioelectrical impedance. Biomarkers of nitric oxide and oxidative stress were measured together with adipokines, inflammatory, metabolic and vascular markers. Participants lost a substantial, but variable, amount of body weight (7.3±4.9kg by expedition end; p<0.001). A progressive loss of both FM and FFM was observed, and after eight weeks, the proportion of FFM loss was 48% greater than FM loss (p<0.008). Changes in protein carbonyls (p<0.001) were associated with a decline in FM whereas 4-hydroxynonenal (p<0.001) and IL-6 (p<0.001) correlated with FFM loss. GLP-1 (r=-0.45, p<0.001) and nitrite (r=-0.29, p<0.001) concentration changes were associated with FFM loss. In a multivariate model, GLP-1, insulin and nitrite were significant predictors of FFM loss while protein carbonyls were predicted FM loss. The putative role of GLP-1 and nitrite as mediators of the effects of hypoxia on FFM is an intriguing finding. If confirmed, nutritional and pharmacological interventions targeting these pathways may offer new avenues for prevention and treatment of sarcopenia. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
[Weight loss in overweight or obese patients and family functioning].
Jaramillo-Sánchez, Rosalba; Espinosa-de Santillana, Irene; Espíndola-Jaramillo, Ilia Angélica
2012-01-01
to determine the association between weight loss and family functioning. a cohort of 168 persons with overweight or obesity from 20-49 years, either sex, with no comorbidity was studied at the nutrition department. A sociodemographic data was obtained and FACES III instrument to measure family functioning was applied. At the third month a new assessment of the body mass index was measured. Descriptive statistical analysis and relative risk were done. obesity presented in 50.6 %, 59.53 % of them did not lose weight. Family dysfunction was present in 56.6 % of which 50 % did not lose weight. From 43.4 % of functional families, 9.52 % did not lose weight (p = 0.001). The probability or risk of not losing weight was to belong to a dysfunctional family is 4.03 % (CI = 2.60-6.25). A significant association was found between the variables: weight loss and family functioning. Belonging to a dysfunctional family may be a risk factor for not losing weight.
Human chorionic gonadotrophin and weight loss. A double-blind, placebo-controlled trial.
Bosch, B; Venter, I; Stewart, R I; Bertram, S R
1990-02-17
Low-dose human chorionic gonadotrophin (HCG) combined with a severe diet remains a popular treatment for obesity, despite equivocal evidence of its effectiveness. In a double-blind, placebo-controlled study, the effects of HCG on weight loss were compared with placebo injections. Forty obese women (body mass index greater than 30 kg/m2) were placed on the same diet supplying 5,000 kJ per day and received daily intramuscular injections of saline or HCG, 6 days a week for 6 weeks. A psychological profile, hunger level, body circumferences, a fasting blood sample and food records were obtained at the start and end of the study, while body weight was measured weekly. Subjects receiving HCG injections showed no advantages over those on placebo in respect of any of the variables recorded. Furthermore, weight loss on our diet was similar to that on severely restricted intake. We conclude that there is no rationale for the use of HCG injections in the treatment of obesity.
Oxidation-specific epitopes restrain bone formation.
Ambrogini, Elena; Que, Xuchu; Wang, Shuling; Yamaguchi, Fumihiro; Weinstein, Robert S; Tsimikas, Sotirios; Manolagas, Stavros C; Witztum, Joseph L; Jilka, Robert L
2018-06-06
Atherosclerosis and osteoporosis are epidemiologically linked and oxidation specific epitopes (OSEs), such as phosphocholine (PC) of oxidized phospholipids (PC-OxPL) and malondialdehyde (MDA), are pathogenic in both. The proatherogenic effects of OSEs are opposed by innate immune antibodies. Here we show that high-fat diet (HFD)-induced bone loss is attenuated in mice expressing a single chain variable region fragment of the IgM E06 (E06-scFv) that neutralizes PC-OxPL, by increasing osteoblast number and stimulating bone formation. Similarly, HFD-induced bone loss is attenuated in mice expressing IK17-scFv, which neutralizes MDA. Notably, E06-scFv also increases bone mass in mice fed a normal diet. Moreover, the levels of anti-PC IgM decrease in aged mice. We conclude that OSEs, whether produced chronically or increased by HFD, restrain bone formation, and that diminished defense against OSEs may contribute to age-related bone loss. Anti-OSEs, therefore, may represent a novel therapeutic approach against osteoporosis and atherosclerosis simultaneously.
Temporary employment and tooth loss: a cross-sectional study from the J-SHINE study.
Sato, Yukihiro; Tsuboya, Toru; Watt, Richard G; Aida, Jun; Osaka, Ken
2018-02-21
Temporary employment leads to psychological distress and higher mortality, but data on its associations with oral health is limited. We examined whether having the experience of temporary employment was associated with tooth loss among working adults in Japan. We conducted a cross-sectional study from the 2010-2011 Japanese Study on Stratification, Health, Income, and Neighborhood study that analyzed 2652 participants aged 25-50 years (men = 1394; women = 1258). Independent variable was changes in employment status (continuous regular employment and the experience of temporary employment). Dependent variable was self-reported tooth loss (none, 1 tooth, 2 teeth, 3 teeth, 4 teeth, and more than 4 teeth). Covariates were sex, age, years of education, self-rated household economic status in early life at 5 years old, marital status, number of family members in the household, history of diabetes, and body mass index. We conducted a negative binomial regression analysis to estimate prevalence rate ratios (PRRs) and 95% confidence intervals (95%CIs) for tooth loss. We also confirmed the interaction term between changes in employment status and sex. The median age of the participants was 37 years. The percentages of men and women who experienced temporary employment were 14.5% and 61.3%, respectively. Compared with continuous regular employment, the experience of temporary employment was significantly associated with tooth loss in both sexes after adjusting for the covariates (men: PRR = 1.50 [95%CI = 1.13, 2.00]; women: PRR = 1.42 [95%CI = 1.14, 1.76]). The interaction term between employment status and sex was not significant (p = 0.71). Temporary employment is adversely associated with oral health.
Psychosocial outcomes in a weight loss camp for overweight youth
QUINLAN, NICOLE P.; KOLOTKIN, RONETTE L.; FUEMMELER, BERNARD F.; COSTANZO, PHILIP R.
2015-01-01
Objective There is good evidence that youth attending weight loss camps in the UK and US are successful at achieving weight loss. Limited research suggests improvement in body image and self-esteem as well. This study evaluated changes in eight psychosocial variables following participation in a weight loss camp and examined the role of gender, age, length of stay, and body mass index (BMI) in these changes. Methods This was an observational and self-report study of 130 participants (mean age=12.8; mean BMI=33.5; 70% female; 77% Caucasian). The program consisted of an 1 800 kcal/day diet, daily supervised physical activities, cooking/nutrition classes, and weekly psycho-educational/support groups led by psychology staff. Participants completed measures of anti-fat attitudes, values (e.g., value placed on appearance, athletic ability, popularity), body- and self-esteem, weight- and health-related quality of life, self-efficacy, and depressive symptoms. Results Participants experienced significant BMI reduction (average decrease of 7.5 kg [standard deviation, SD=4.2] and 2.9 BMI points [SD=1.4]). Participants also exhibited significant improvements in body esteem, self-esteem, self-efficacy, generic and weight-related quality of life, anti-fat attitudes, and the importance placed on appearance. Changes in self-efficacy, physical functioning and social functioning remained significant even after adjusting for initial zBMI, BMI change, and length of stay. Gender differences were found on changes in self-efficacy, depressive symptoms, and social functioning. Conclusion Participation in weight loss programs in a group setting, such as a camp, may have added benefit beyond BMI reduction. Greater attention to changes in psychosocial variables may be warranted when designing such programs for youth. PMID:19107660
Wakabayashi, Hidetaka; Takahashi, Rimiko; Watanabe, Naoko; Oritsu, Hideyuki; Shimizu, Yoshitaka
2017-06-01
The aim of this study was to assess the prevalence of skeletal muscle mass loss and its association with swallowing function in patients with dysphagia after cardiovascular surgery. A retrospective cohort study was performed in 65 consecutive patients with dysphagia after cardiovascular surgery who were prescribed speech therapy. Skeletal muscle index (SMI) was calculated as total psoas muscle area assessed via abdominal computed tomography divided by height squared. Cutoff values were 6.36 cm 2 /m 2 for men and 3.92 cm 2 /m 2 for women. The Food Intake Level Scale (FILS) was used to assess the swallowing function. Univariate and ordered logistic regression analyses were applied to examine the associations between skeletal muscle mass loss and dysphagia. The study included 50 men and 15 women (mean age 73 ± 8 y). The mean SMI was 4.72 ± 1.37 cm 2 /m 2 in men and 3.33 ± 1.42 cm 2 /m 2 in women. Skeletal muscle mass loss was found in 53 (82%) patients. Twelve had tracheostomy cannula. Thirteen were non-oral feeding (FILS levels 1-3), 5 were oral food intake and alternative nutrition (levels 4-6), and 47 were oral food intake alone (levels 7-9) at discharge. The FILS at discharge was significantly lower in patients with skeletal muscle mass loss. Ordered logistic regression analysis of swallowing function showed that skeletal muscle mass loss and tracheostomy cannula were associated independently with the FILS at discharge. The prevalence of skeletal muscle mass loss is very high, and skeletal muscle mass loss is associated with swallowing function. Copyright © 2017 Elsevier Inc. All rights reserved.
Parr, Evelyn B; Coffey, Vernon G; Cato, Louise E; Phillips, Stuart M; Burke, Louise M; Hawley, John A
2016-05-01
This study determined the effects of 16-week high-dairy-protein, variable-carbohydrate (CHO) diets and exercise training (EXT) on body composition in men and women with overweight/obesity. One hundred and eleven participants (age 47 ± 6 years, body mass 90.9 ± 11.7 kg, BMI 33 ± 4 kg/m(2) , values mean ± SD) were randomly stratified to diets with either: high dairy protein, moderate CHO (40% CHO: 30% protein: 30% fat; ∼4 dairy servings); high dairy protein, high CHO (55%: 30%: 15%; ∼4 dairy servings); or control (55%: 15%: 30%; ∼1 dairy serving). Energy restriction (500 kcal/day) was achieved through diet (∼250 kcal/day) and EXT (∼250 kcal/day). Body composition was measured using dual-energy X-ray absorptiometry before, midway, and upon completion of the intervention. Eighty-nine (25 M/64 F) of 115 participants completed the 16-week intervention, losing 7.7 ± 3.2 kg fat mass (P < 0.001) and gaining 0.50 ± 1.75 kg lean mass (P < 0.01). There was no difference in the changes in body composition (fat mass or lean mass) between groups. Compared to a healthy control diet, energy-restricted high-protein diets containing different proportions of fat and CHO confer no advantage to weight loss or change in body composition in the presence of an appropriate exercise stimulus. © 2016 The Obesity Society.
Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss?
Varady, K A
2011-07-01
Dietary restriction is an effective strategy for weight loss in obese individuals. The most common form of dietary restriction implemented is daily calorie restriction (CR), which involves reducing energy by 15-60% of usual caloric intake every day. Another form of dietary restriction employed is intermittent CR, which involves 24 h of ad libitum food consumption alternated with 24 h of complete or partial food restriction. Although both diets are effective for weight loss, it remains unknown whether one of these interventions produces superior changes in body weight and body composition when compared to the other. Accordingly, this review examines the effects of daily CR versus intermittent CR on weight loss, fat mass loss and lean mass retention in overweight and obese adults. Results reveal similar weight loss and fat mass loss with 3 to 12 weeks' intermittent CR (4-8%, 11-16%, respectively) and daily CR (5-8%, 10-20%, respectively). In contrast, less fat free mass was lost in response to intermittent CR versus daily CR. These findings suggest that these diets are equally as effective in decreasing body weight and fat mass, although intermittent CR may be more effective for the retention of lean mass. © 2011 The Author. obesity reviews © 2011 International Association for the Study of Obesity.
Evolved Late-Type Star FUV Spectra: Mass Loss and Fluorescence
NASA Technical Reports Server (NTRS)
Harper, Graham M.
2005-01-01
This proposal was for a detailed analysis of the far ultraviolet (FUV) photoionizing radiation that provides crucial input physics for mass loss studies, e.g., observations of the flux below 10448, allow us to constrain the Ca II/Ca III balance and make significant progress beyond previous optical studies on stellar mass loss and circumstellar photochemistry. Our targets selection provided good spectral-type coverage required to help unravel the Ca II/Ca III balance as the mass-loss rates increase by over three orders of magnitude from K5 III to M5 III. We also explored the relationship between the FUV radiation field and other UV diagnostics to allow us to empirically estimate the FUV radiation field for the vast majority of stars which are too faint to be observed with FUSE, and to improve upon their uncertain mass-loss rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaud, G.; Bergeron, P.; Wesemael, F.
The abundance anomalies generated by diffusion in the envelopes of hot, hydrogen-rich subdwarfs are studied. It is shown that unimpeded diffusion cannot lead to the large silicon underabundance observed in those stars at effective temperatures above 30,000 K. Calculations of diffusion of heavy elements in the presence of mass loss are also performed. For a mass-loss rate of 2.5 x 10 to the -15th solar masses/year, the observed abundance patterns of C, N, and Si are reproduced on a time scale of about 100,000 yr. Lower mass-loss rates would necessitate longer time scales. The pattern of abundance anomalies may eventuallymore » be used to constrain both the mass-loss rate and the stellar lifetime in the sdB evolutionary phase. 12 references.« less
Effect of micro-particles on cavitation erosion of Ti6Al4V alloy in sulfuric acid solution.
Li, D G; Long, Y; Liang, P; Chen, D R
2017-05-01
The influences of micro-particles on ultrasonic cavitation erosion of Ti6Al4V alloy in 0.1M H 2 SO 4 solution were investigated using mass loss weight, scanning electron microscopy (SEM) and white light interferometer. Mass loss results revealed that the cavitation erosion damage obviously decreased with increasing particle size and mass concentration. Open circuit potential recorded during cavitation erosion shifted to positive direction with the decreased mass loss. Meanwhile, the mass loss sharply decreased with applying a positive potential during the entire ultrasonic cavitation erosion, and the relationship between the open circuit potential and the cavitation erosion resistance was discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Daniel L. Lindner; Rimvydas Vasaitis; Ariana Kubartova; Johan Allmer; Hanna Johannesson; Mark T. Banik; Jan. Stenlid
2011-01-01
Picea abies logs were inoculated with Resinicium bicolor, Fomitopsis pinicola or left un-inoculated and placed in an old-growth boreal forest. Mass loss and fungal community data were collected after 6 yr to test whether simplification of the fungal community via inoculation affects mass loss and fungal community development. Three...
Identifying the production process of new physics at colliders; symmetric or asymmetric?
NASA Astrophysics Data System (ADS)
Lim, Sung Hak
2016-06-01
We propose a class of kinematic variables, which is a smooth generalization of min-max type mass variables such as the Cambridge- M T 2 and M 2, for measuring a mass spectrum of intermediate resonances in a semi-invisibly decaying pair production. While kinematic endpoints of min-max type mass variables are only sensitive to a heavier resonance mass, kinematic endpoints of new variables are sensitive to all masses. These new mass variables can be used to resolve a mass spectrum, so that if the true mass spectrum is asymmetric, then the kinematic endpoints are separate while the endpoints are the same for the symmetric true mass spectrum. We demonstrate the behavior of kinematic endpoint of these new variables in pair production of two-body and three-body decays with one invisible particle.
Metabolic Changes After Roux-N-Y Bariatric Surgery In Hispanics.
Hernández-Gil de Lamadrid, José; Nieves-Rivera, Juan J; Mora, Laura; Corretjer, Lisa; Altieri, Pablo I; Suárez, Albert; Banchs, Héctor L; Muñiz, Jesús; Soto, Marie Ivelisse; Escobales, Nelson; Crespo, María
2015-01-01
The objective was to describe the metabolic outcomes 12 months after bariatric surgery (Roux-N-Y) in morbidly obese Hispanic patients, and evaluate the correlation between weight loss and the observed changes. Medical records from a hundred-and-two Hispanic obese patients who underwent bariatric surgery were identified at the University of Puerto Rico (UPR) Hospital. The following variables were obtained before and 12 months after surgery: Body Mass Index (BMI), body weight, total cholesterol (TC), triglycerides, high density lipoprotein (HDL), low density lipoprotein (LDL), and fasting blood sugar (FBS). Ninety-seven percent of patients underwent Roux-N-Y surgery; 79.4% were females and 44% were diabetics. We observed statistically significant reductions (p < 0.05) 12 months after surgery in: BMI -14.3 (± 6.2) kg/m2, weight -86.1 (± 34.4) Ibs, TC -17.9 (± 32.4) mg/dL, triglycerides -28.7(± 40.6) mg/dL, LDL-15.4 (± 30.6) mg/dL, and FBS -11.3 (± 23.5) mg/dL. HDL, instead increased +5.22 (± 12.9) mg/dL (p < 0.0006). Gastric bypass surgery of the Roux-N-Y significantly improves the lipid profile and FBS levels in obese Hispanic patients. The poor correlation factor between weight loss and these variables suggests that other mechanisms, independent from weight loss, are responsible for these changes.
Silva, Rafael P.; Mündel, Toby; Altoé, Janaína L.; Saldanha, Mônica R.; Ferreira, Fabrícia G.; Marins, João C.B.
2010-01-01
Urine specific gravity is often used to assess hydration status. Athletes who are hypohydrated prior to exercise tend to ingest more fluid during the exercise, possibly to compensate for their pre exercise fluid deficit. The purpose of this study was to evaluate the effect of additional fluid intake on fluid balance and gastrointestinal tract comfort during 1h running in a thermoneutral environment when athletes followed their habitual fluid and dietary regimes. Sixteen men and sixteen women ingested a 6% carbohydrate-electrolyte solution immediately prior to exercise and then every 15 minutes during two runs, with a consumption rate of 2 mL.kg-1 (LV, lower volume) or 3 mL.kg-1 (HV, higher volume) body mass. Urine specific gravity and body mass changes were determined before and after the tests to estimate hydration status. During exercise subjects verbally responded to surveys inquiring about gastrointestinal symptoms, sensation of thirst and ratings of perceived exertion. Plasma glucose, heart rate and blood pressure were also evaluated. Men had higher preexercise urine specific gravity than women (1.025 vs. 1.016 g·mL-1 HV; and 1.024 vs. 1.017 g·mL-1 LV) and greater sweat loss (1.21 ± 0.27 L vs. 0.83 ± 0.21 L HV; and 1.18 ± 0.23 L vs. 0.77 ± 0.17 LV). Prevalence of gastrointestinal discomfort increased after 45 min. No significant differences on heart rate, rate of perceived exertion, blood pressure or glycemia was observed with the additional fluid intake. From these results it appears that additional fluid intake reduces body mass loss and thirst sensation. When compared to the men, however, preexercise euhydration was more common in women and an increased fluid intake increases the risk of body mass gain and gastrointestinal discomfort. Key points There seems to be a wide variability in pre-exercise hydration status between male and female and efforts aimed at educating athletes about the importance of pregame hydration must be emphasized. The fluid ingestion during running exercise in a moderate environment reduces body mass loss and thirst sensation, but an increased fluid intake at rates to match the fluid loss might raise the risk of body mass gain in women during prolonged activities. Individual gastric tolerance and familiarization with fluid replacement should be taken into account when providing athletes with strategies for hydration during exercise. PMID:24149642
NASA Astrophysics Data System (ADS)
Young, E. D.
2017-12-01
Recent advances in our ability to measure stable isotope ratios of light, rock-forming elements, including those for Zn, K, Fe, Si, and Mg, among others, has resulted in an emerging hypothesis that collisions among rocky planetesimals, planetary embryos, and/or proto-planets caused losses of moderately volatile elements (e.g., K) and "common" or moderately refractory elements (e.g., Mg and Si). The primary evidence is in the form of heavy isotope enrichments in rock-forming elements relative to the chondrite groups that are thought to be representative of planetary precursors. Equilibrium volatility-controlled isotope fractionation for planetesimal magma oceans might have occurred for bodies larger than 0.1% of an Earth mass (½ the mass of Pluto) as these bodies had sufficient gravity to overpower the escape velocities of hot gas at 2000K. Both Jean's escape and viscous drag hydrodynamic escape can obviate the escape velocity limit but will fractionate by mass, not by volatility. Equilibrium vapor/melt fractionation is qualitatively consistent with the greater disparity in 29Si/28Si between Earth and chondrites than in 25Mg/24Mg. However, losses of large masses of vapor are required to record the fractionation in the melts. We consider that if Earth was derived from E chondrite-like materials, the bulk composition of the Earth, assuming refractory Ca was retained, requires > 60% loss of Mg. This is a lot of vapor loss for a process relying on at least intermittent equilibrium, although it comports with the isotopic lever-rule requirements. Paradoxically, the alternative of evaporative loss of rock-forming elements requires less total mass loss. For example, the calculated Mg and Si isotopic compositions of residues resulting from evaporation of chondritic melts can fit the Mg and Si isotopic compositions of Earth, Mars, and angrites with varying background pressures and with total mass losses of near 5% or less. These mass losses are closer to, and even lower than, those suggested by Ca concentrations relative to CI chondrite. Equilibrium models achieve greater Si than Mg isotope fractionation by large mass losses while evaporation models produce this effect for small mass losses. Additional constraints involving other isotope systems as well as models for vapor loss can distinguish between the two scenarios.
Patoine, Guillaume; Thakur, Madhav P; Friese, Julia; Nock, Charles; Hönig, Lydia; Haase, Josephine; Scherer-Lorenzen, Michael; Eisenhauer, Nico
2017-11-01
A better understanding of the mechanisms driving litter diversity effects on decomposition is needed to predict how biodiversity losses affect this crucial ecosystem process. In a microcosm study, we investigated the effects of litter functional diversity and two major groups of soil macro-detritivores on the mass loss of tree leaf litter mixtures. Furthermore, we tested the effects of litter trait community means and dissimilarity on litter mass loss for seven traits relevant to decomposition. We expected macro-detritivore effects on litter mass loss to be most pronounced in litter mixtures of high functional diversity. We used 24 leaf mixtures differing in functional diversity, which were composed of litter from four species from a pool of 16 common European tree species. Earthworms, isopods, or a combination of both were added to each litter combination for two months. Litter mass loss was significantly higher in the presence of earthworms than in that of isopods, whereas no synergistic effects of macro-detritivore mixtures were found. The effect of functional diversity of the litter material was highest in the presence of both macro-detritivore groups, supporting the notion that litter diversity effects are most pronounced in the presence of different detritivore species. Species-specific litter mass loss was explained by nutrient content, secondary compound concentration, and structural components. Moreover, dissimilarity in N concentrations increased litter mass loss, probably because detritivores having access to nutritionally diverse food sources. Furthermore, strong competition between the two macro-detritivores for soil surface litter resulted in a decrease of survival of both macro-detritivores. These results show that the effects of litter functional diversity on decomposition are contingent upon the macro-detritivore community and composition. We conclude that the temporal dynamics of litter trait diversity effects and their interaction with detritivore diversity are key to advancing our understanding of litter mass loss in nature.
Patoine, Guillaume; Thakur, Madhav P.; Friese, Julia; Nock, Charles; Hönig, Lydia; Haase, Josephine; Scherer-Lorenzen, Michael; Eisenhauer, Nico
2017-01-01
A better understanding of the mechanisms driving litter diversity effects on decomposition is needed to predict how biodiversity losses affect this crucial ecosystem process. In a microcosm study, we investigated the effects of litter functional diversity and two major groups of soil macro-detritivores on the mass loss of tree leaf litter mixtures. Furthermore, we tested the effects of litter trait community means and dissimilarity on litter mass loss for seven traits relevant to decomposition. We expected macro-detritivore effects on litter mass loss to be most pronounced in litter mixtures of high functional diversity. We used 24 leaf mixtures differing in functional diversity, which were composed of litter from four species from a pool of 16 common European tree species. Earthworms, isopods, or a combination of both were added to each litter combination for two months. Litter mass loss was significantly higher in the presence of earthworms than in that of isopods, whereas no synergistic effects of macro-detritivore mixtures were found. The effect of functional diversity of the litter material was highest in the presence of both macro-detritivore groups, supporting the notion that litter diversity effects are most pronounced in the presence of different detritivore species. Species-specific litter mass loss was explained by nutrient content, secondary compound concentration, and structural components. Moreover, dissimilarity in N concentrations increased litter mass loss, probably because detritivores having access to nutritionally diverse food sources. Furthermore, strong competition between the two macro-detritivores for soil surface litter resulted in a decrease of survival of both macro-detritivores. These results show that the effects of litter functional diversity on decomposition are contingent upon the macro-detritivore community and composition. We conclude that the temporal dynamics of litter trait diversity effects and their interaction with detritivore diversity are key to advancing our understanding of litter mass loss in nature. PMID:29180828
Data mining for rapid prediction of facility fit and debottlenecking of biomanufacturing facilities.
Yang, Yang; Farid, Suzanne S; Thornhill, Nina F
2014-06-10
Higher titre processes can pose facility fit challenges in legacy biopharmaceutical purification suites with capacities originally matched to lower titre processes. Bottlenecks caused by mismatches in equipment sizes, combined with process fluctuations upon scale-up, can result in discarding expensive product. This paper describes a data mining decisional tool for rapid prediction of facility fit issues and debottlenecking of biomanufacturing facilities exposed to batch-to-batch variability and higher titres. The predictive tool comprised advanced multivariate analysis techniques to interrogate Monte Carlo stochastic simulation datasets that mimicked batch fluctuations in cell culture titres, step yields and chromatography eluate volumes. A decision tree classification method, CART (classification and regression tree) was introduced to explore the impact of these process fluctuations on product mass loss and reveal the root causes of bottlenecks. The resulting pictorial decision tree determined a series of if-then rules for the critical combinations of factors that lead to different mass loss levels. Three different debottlenecking strategies were investigated involving changes to equipment sizes, using higher capacity chromatography resins and elution buffer optimisation. The analysis compared the impact of each strategy on mass output, direct cost of goods per gram and processing time, as well as consideration of extra capital investment and space requirements. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Research opportunities in loss of red blood cell mass in space flight
NASA Technical Reports Server (NTRS)
Talbot, J. M.; Fisher, K. D.
1985-01-01
Decreases of red blood cell mass and plasma volume have been observed consistently following manned space flights. Losses of red cell mass by United States astronauts have averaged 10 to 15% (range: 2 to 21%). Based on postflight estimates of total hemoglobin, Soviet cosmonauts engaged in space missions lasting from 1 to 7 months have exhibited somewhat greater losses. Restoration of red cell mass requires from 4 to 6 weeks following return to Earth, regardless of the duration of space flight.
NASA Technical Reports Server (NTRS)
Crotts, Arlin P. S.
2000-01-01
The goal of this project is to determine the mass loss history of a sample of seven mass losing Asymptotic Giant Branch stars. This is done by observing their circumstellar dust shells which contain a record of the most recent mass loss history. The further away from the star we are able to detect this increasingly fainter dust emission the further back we can look into the mass loss history.
Polar ice-sheet contributions to sea level during past warm periods
NASA Astrophysics Data System (ADS)
Dutton, A.
2015-12-01
Recent sea-level rise has been dominated by thermal expansion and glacier loss, but the contribution from mass loss from the Greenland and Antarctic ice sheets is expected to exceed other contributions under future sustained warming. Due to limitations of existing ice sheet models and the lack of relevant analogues in the historical record, projecting the timing and magnitude of polar ice sheet mass loss in the future remains challenging. One approach to improving our understanding of how polar ice-sheet retreat will unfold is to integrate observations and models of sea level, ice sheets, and climate during past intervals of warmth when the polar ice sheets contributed to higher sea levels. A recent review evaluated the evidence of polar ice sheet mass loss during several warm periods, including interglacials during the mid-Pliocene warm period, Marine Isotope Stage (MIS) 11, 5e (Last Interglacial), and 1 (Holocene). Sea-level benchmarks of ice-sheet retreat during the first of these three periods, when global mean climate was ~1 to 3 deg. C warmer than preindustrial, are useful for understanding the long-term potential for future sea-level rise. Despite existing uncertainties in these reconstructions, it is clear that our present climate is warming to a level associated with significant polar ice-sheet loss in the past, resulting in a conservative estimate for a global mean sea-level rise of 6 meters above present (or more). This presentation will focus on identifying the approaches that have yielded significant advances in terms of past sea level and ice sheet reconstruction as well as outstanding challenges. A key element of recent advances in sea-level reconstructions is the ability to recognize and quantify the imprint of geophysical processes, such as glacial isostatic adjustment (GIA) and dynamic topography, that lead to significant spatial variability in sea level reconstructions. Identifying specific ice-sheet sources that contributed to higher sea levels is a challenge that is currently hindered by limited field evidence at high latitudes. Finally, I will explore the concept of how increasing the quantity and quality of paleo sea level and ice sheet reconstructions can lead to improved quantification of contemporary changes in ice sheets and sea level.
Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas.
Mousseau, Timothy A; Milinevsky, Gennadi; Kenney-Hunt, Jane; Møller, Anders Pape
2014-05-01
The effects of radioactive contamination from Chernobyl on decomposition of plant material still remain unknown. We predicted that decomposition rate would be reduced in the most contaminated sites due to an absence or reduced densities of soil invertebrates. If microorganisms were the main agents responsible for decomposition, exclusion of large soil invertebrates should not affect decomposition. In September 2007 we deposited 572 bags with uncontaminated dry leaf litter from four species of trees in the leaf litter layer at 20 forest sites around Chernobyl that varied in background radiation by more than a factor 2,600. Approximately one quarter of these bags were made of a fine mesh that prevented access to litter by soil invertebrates. These bags were retrieved in June 2008, dried and weighed to estimate litter mass loss. Litter mass loss was 40% lower in the most contaminated sites relative to sites with a normal background radiation level for Ukraine. Similar reductions in litter mass loss were estimated for individual litter bags, litter bags at different sites, and differences between litter bags at pairs of neighboring sites differing in level of radioactive contamination. Litter mass loss was slightly greater in the presence of large soil invertebrates than in their absence. The thickness of the forest floor increased with the level of radiation and decreased with proportional loss of mass from all litter bags. These findings suggest that radioactive contamination has reduced the rate of litter mass loss, increased accumulation of litter, and affected growth conditions for plants.
Miller, G D
2010-06-01
Physicians are often reluctant to advise older obese patients to lose weight for fear of compromised nutrition and excessive loss of muscle mass and strength, all of which may lead to a loss of independence and accelerate disability. Therefore, the purpose of this study was to examine nutrient intake in older obese adults undergoing a weight loss intervention. The study setting was at a university research facility. A total of 71 participants (age, 69.5 (SD = 5.8) yrs; 62% female; BMI, 34.6 (4.4) kg/m2) were recruited. Individuals were randomized into either a weight stable (WS) control group or an intensive weight loss (WL) group. The WL intervention was for 6 months and utilized partial meal replacements (PMR) and a facility-based 3 d/wk, 60 min/session exercise training program encompassing both aerobic and strength exercises. Weight loss goal for WL was 10% from baseline at 6-months. Variables were obtained at baseline and 6-months and included 3 day dietary records along with daily step counts for 7 days. Total energy, macronutrients (g and % of energy), micronutrients (vitamins and minerals), as well as use of PMR were assessed from the diet records. Body mass and body fat (g and % of body mass) were determined at the 2 time points. Estimated marginal means (SEM) for weight loss at 6-months was -8.8 (0.7)% for WL and -0.1 (0.7)% for WS. Daily energy intake at 6-months was lower for WL (1396 (64) kcals) compared to WS (1817 (71) kcals). Additionally, those in the WL group (compared to WS) had lower intakes of total fat (27.5 (1.2)%, WL vs. 36.1 (4.6)%, WS) and saturated fatty acids (8.5 (0.4)% vs. 10.8 (0.5)%), and had higher levels of carbohydrates (57.6 (1.5)% vs. 49.0 (1.7)%), protein (18.4 (0.5% vs. 16.2 (0.6)%), and dietary fiber (21.0 (0.9) g vs. 17.4 (1.0) g) at 6-months. Even with reduced total calorie intake, key micronutrients (calcium, iron, vitamin D, vitamin E, vitamin C) were higher for WL vs. WS at 6-months. Total daily step counts were higher for WL vs. WS at 6-months. A nutrition intervention to promote weight loss in older obese adults was achieved using PMR as a primary strategy. Diet quality was improved for WL vs. WS in using the nutrient fortified product, even with a reduction in total energy intake.
Gupta, Supriya; Wu, Xianrui; Moore, Travis; Shen, Bo
2014-02-01
Bone loss in patients with inflammatory bowel disease (IBD) with ostomy has not been systemically studied. The aims of the study were to evaluate the frequency, risk factors, and sequelae of bone loss in patients with IBD and stomas and to monitor the change in bone mineral density (BMD) over time after ostomy. A total of 126 patients met the inclusion criteria (i.e., those with IBD diagnosis and stoma), including ileostomy (N = 120), colostomy (N = 3), and jejunostomy (N = 3). BMD was measured on dual-energy X-ray absorptiometry (DEXA). Patients were classified as having normal or low BMD based on the International Society for Clinical Densitometry criteria. Thirty-two demographic and clinical variables were evaluated with logistic regression models. At a median of 6.6 years (interquartile range, 2-18.7 yr) after stoma, 37 (29.4%) patients had a low BMD. On univariate analysis, there were no significant differences between the normal and low BMD groups in the following variables: gender, race, age at diagnosis of IBD, prevalence of Crohn's disease and ulcerative colitis, age at ostomy, duration from diagnosis to DEXA and from ostomy to DEXA, menopausal age, diabetes, hypothyroidism, renal stones, short bowel syndrome, history of smoking or excessive alcohol use, family history of IBD or osteoporosis, daily calcium and vitamin D supplement, estrogen replacement, and steroid use. Body mass index was significantly lower in the low BMD group than the normal BMD group (23.3 ± 5.5 versus 26.0 ± 5.2, P = 0.013). Fragility fracture occurred in 8 (21.6%) patients in low BMD group and 4 (4.5%) patients in normal BMD group (P = 0.006). In a multivariate analysis, low body mass index was the only covariate-adjusted factor associated with low BMD. In patients with multiple DEXA scans available over time after ostomy, hip BMD was found to improve marginally, and the lumbar and femoral BMD remained stable. Low BMD was common in patients with IBD after ostomy, largely based on the findings in patients with CD with ileostomy. Fragility fracture was 5 times more frequent in patients with ostomy with low BMD compared with those with normal BMD. The low BMD was associated with a low body mass index. Screening and surveillance of BMD should routinely be performed, particularly in these patients at risk. Bone mass tends to stabilize over time after stoma.
High-Resolution Monitoring of Himalayan Glacier Dynamics Using Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Immerzeel, W.; Kraaijenbrink, P. D. A.; Shea, J.; Shrestha, A. B.; Pellicciotti, F.; Bierkens, M. F.; de Jong, S. M.
2014-12-01
Himalayan glacier tongues are commonly debris covered and play an important role in modulating the glacier response to climate . However, they remain relatively unstudied because of the inaccessibility of the terrain and the difficulties in field work caused by the thick debris mantles. Observations of debris-covered glaciers are therefore limited to point locations and airborne remote sensing may bridge the gap between scarce, point field observations and coarse resolution space-borne remote sensing. In this study we deploy an Unmanned Airborne Vehicle (UAV) on two debris covered glaciers in the Nepalese Himalayas: the Lirung and Langtang glacier during four field campaigns in 2013 and 2014. Based on stereo-imaging and the structure for motion algorithm we derive highly detailed ortho-mosaics and digital elevation models (DEMs), which we geometrically correct using differential GPS observations collected in the field. Based on DEM differencing and manual feature tracking we derive the mass loss and the surface velocity of the glacier at a high spatial resolution and accuracy. We also assess spatiotemporal changes in supra-glacial lakes and ice cliffs based on the imagery. On average, mass loss is limited and the surface velocity is very small. However, the spatial variability of melt rates is very high, and ice cliffs and supra-glacial ponds show mass losses that can be an order of magnitude higher than the average. We suggest that future research should focus on the interaction between supra-glacial ponds, ice cliffs and englacial hydrology to further understand the dynamics of debris-covered glaciers. Finally, we conclude that UAV deployment has large potential in glaciology and it represents a substantial advancement over methods currently applied in studying glacier surface features.
Adams, William M; Ferraro, Elizabeth M; Huggins, Robert A; Casa, Douglas J
2014-08-01
The purpose of this review was to compare the changes in heart rate (HR) for every 1% change in body mass loss (ΔBML) in individuals while exercising in the heat. PubMed, SPORTDiscus, ERIC, CINAHL, and Scopus were searched from the earliest entry to February 2013 using the search terms dehydration, heart rate, and exercise in various combinations. Original research articles that met the following criteria were included: (a) valid measure of HR, (b) exercise in the heat (>26.5° C [79.7 °F]), (c) the level of dehydration reached at least 2%, (d) a between-group comparison (a euhydrated group or a graded dehydration protocol) was evident, and (e) for rehydration protocols, only oral rehydration was considered for inclusion. Twenty articles were included in the final analysis. Mean values and SDs for HR and percentage of body mass loss immediately after exercise were used for this review. The mean change in HR for every 1% ΔBML was 3 b·min-1. In trials where subjects arrived euhydrated and hypohydrated, the mean change in HR for every 1% ΔBML was 3 and 3 b·min-1, respectively. Fixed intensity and variable intensity trials exhibited a mean HR change of 4 and 1 b·min-1, respectively. Exercising in the heat while hypohydrated (≥2%) resulted in an increased HR after exercise. This increase in HR for every 1% ΔBML exacerbates cardiovascular strain in exercising individuals, thus causing decrements in performance. It should be encouraged that individuals should maintain an adequate level of hydration to maximize performance, especially in the heat.
Mass loss and stellar superwinds
NASA Astrophysics Data System (ADS)
Vink, Jorick S.
2017-09-01
Mass loss bridges the gap between massive stars and supernovae (SNe) in two major ways: (i) theoretically, it is the amount of mass lost that determines the mass of the star prior to explosion and (ii) observations of the circumstellar material around SNe may teach us the type of progenitor that made the SN. Here, I present the latest models and observations of mass loss from massive stars, both for canonical massive O stars, as well as very massive stars that show Wolf-Rayet type features. This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'.
Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.
Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L
2013-01-29
In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.
Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments
Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V.; Rodriguez-Zas, Sandra L.
2013-01-01
In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments. PMID:24031159
Mass loss in red giants and supergiants
NASA Technical Reports Server (NTRS)
Sanner, F.
1975-01-01
The circumstellar envelopes surrounding late-type giants and supergiants were studied using high resolution, photoelectric scans of strong optical resonance lines. A method for extracting the circumstellar from the stellar components of the lines allowed a quantitative determination of the physical conditions in the envelopes and the rates of mass loss at various positions in the red giant region of the HR diagram. The observed strengthening of the circumstellar spectrum with increasing luminosity and later spectral type is probably caused by an increase in the mass of the envelopes. The mass loss rate for individual stars is proportional to the visual luminosity; high rates for the supergiants suggest that mass loss is important in their evolution. The bulk of the mass return to the interstellar medium in the red giant region comes from the normal giants, at a rate comparable to that of planetary nebulae.
NASA Astrophysics Data System (ADS)
Keszthelyi, Zsolt; Wade, Gregg A.; Petit, Veronique
2017-11-01
Large-scale dipolar surface magnetic fields have been detected in a fraction of OB stars, however only few stellar evolution models of massive stars have considered the impact of these fossil fields. We are performing 1D hydrodynamical model calculations taking into account evolutionary consequences of the magnetospheric-wind interactions in a simplified parametric way. Two effects are considered: i) the global mass-loss rates are reduced due to mass-loss quenching, and ii) the surface angular momentum loss is enhanced due to magnetic braking. As a result of the magnetic mass-loss quenching, the mass of magnetic massive stars remains close to their initial masses. Thus magnetic massive stars - even at Galactic metallicity - have the potential to be progenitors of "heavy" stellar mass black holes. Similarly, at Galactic metallicity, the formation of pair instability supernovae is plausible with a magnetic progenitor.
[FACTORS WHICH INFLUENCE THE LEAN MASS LOSS IN CANCER PATIENTS].
Sánchez Sánchez, Eduardo; Muñoz Alferez, Maria José
2015-10-01
cancer is an important illness in the sanitary field due to phisic and functional consequences involved in it. Among these consequences there is the malnutrition which can cause a loss of lean mass and with it a decrease in the Quality of Life, an increase in hospital stays, social and health costs and so on. The aim of this research is to know which factors can influence in the loss of the lean mass. it is a cross-sectional study in a sample of 72 patients who receive a radiotherapy with curative intent during a period from February 07th and May 14th, 2014. from this pattern Of the total 64 patients were studied, of which 43.7% of the patients presented loss of lean mass, with 21.8% the percentage of patients losing < 2%, 4.7% those with a loss between 2-5% and > 5%, 17.2% of patients. Among the factors studied that can influence the loss of lean mass, only the presence of digestive symptoms have statistical significance (OR = 3.3 or 6.6, as we take as a reference the percentage loss). the aim of the health staff who are working with these patients is to avoid the consequences that accompanies the loss of lean mass. For all this, it is very important to act before the digestive symptoms, by anticipating to them, or early implementation of an individualized nutritional intervention. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Szewczyk, Mariusz; Jesionek–Kupnicka, Dorota; Lipinski, Piotr; Różański, Waldemar
2014-01-01
Introduction The aim of this study is to compare the changes in the incision line of prostatic adenoma using a monopolar cutting electrode and holmium laser, as well as the assessment of associated tissue mass and volume loss of benign prostatic hyperplasia (BPH). Material and methods The material used in this study consisted of 74 preparations of prostatic adenoma obtained via open retropubic adenomectomy, with an average volume of 120.7 ml. The material obtained cut in vitro before fixation in formaldehyde. One lobe was cut using holmium laser, the other using a monopolar cutting electrode. After the incision was made, tissue mass and volume loss were evaluated. Thermocoagulation changes in the incision line were examinedunder light microscope. Results In the case of the holmium laser incision, the average tissue mass loss was 1.73 g, tissue volume loss 3.57 ml and the depth of thermocoagulation was 1.17 mm. When the monopolar cutting electrode was used average tissue mass loss was 0.807 g, tissue volume loss 2.48 ml and the depth of thermocoagulation was 0.19 mm. Conclusions Where holmium laser was used, it was observed that the layer of tissue with thermocoagulation changes was deeper than in the case of the monopolar cutting electrode. Moreover, it was noticed that holmium laser caused bigger tissue mass and volume loss than the cutting electrode. PMID:25247088
Labouesse, Marie A; Gertz, Erik R; Piccolo, Brian D; Souza, Elaine C; Schuster, Gertrud U; Witbracht, Megan G; Woodhouse, Leslie R; Adams, Sean H; Keim, Nancy L; Van Loan, Marta D
2014-07-01
Weight loss reduces co-morbidities of obesity, but decreases bone mass. Our aims were to (1) determine if adequate dairy intake attenuates weight loss-induced bone loss; (2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; and (3) model the contribution of these variables to post weight-loss BMD and BMC. Overweight/obese women (BMI: 28-37 kg/m2) were enrolled in an energy reduced (-500 kcal/d; -2092 kJ/d) diet with adequate dairy (AD: 3-4 servings/d; n=25, 32.2±8.8 years) or low dairy (LD: ≤1 serving/d; n=26, 31.7±8.4 years). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. Following weight loss, AD intake resulted in significantly greater (p=0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post-body fat was negatively associated with hip and lumbar spine BMC (r=-0.28, p=0.04 to -0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = -0.29 (p=0.04) to r = -0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss factors. Pre-weight loss factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the factors contributed to the variance in lumbar spine BMD. AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD. Significant negative associations were observed between bone and inflammatory markers suggesting that inflammation suppresses bone metabolism. Using factor analysis, 19.6% of total variance in post-weight loss hip BMD could be explained by endocrine, immune, and anthropometric variables, but not lumbar spine BMD. Published by Elsevier Inc.
Labouesse, Marie A.; Gertz, Erik R.; Piccolo, Brian D.; Souza, Elaine C.; Schuster, Gertrud U.; Witbracht, Megan G.; Woodhouse, Leslie R.; Adams, Sean H.; Keim, Nancy L.; Van Loan, Marta D.
2015-01-01
INTRODUCTION Weight loss reduces co-morbidities of obesity, but decreases bone mass. PURPOSE Our aims were to 1) determine if adequate dairy intake attenuates weight loss-induced bone loss; 2) evaluate the associations of endocrine, inflammatory and bone markers, anthropometric and other parameters to bone mineral density and content (BMD, BMC) pre- and post-weight loss; 3) model the contribution of these variables to post weight-loss BMD and BMC METHODS Overweight/obese women (BMI: 28–37 kg/m2) were enrolled in an energy reduced (−500 kcal/d; −2092 kJ/d) diet with adequate dairy (AD: 3–4 servings/d; n=25, 32.2 ± 8.8y) or low dairy (LD: ≤ 1 serving/d; n=26, 31.7 ± 8.4 y). BMD, BMC and body composition were measured by DXA. Bone markers (CTX, PYD, BAP, OC), endocrine (PTH, vitamin D, leptin, adiponectin, ghrelin, amylin, insulin, GLP-1, PAI-1, HOMA) and inflammatory markers (CRP, IL1-β, IL-6, IL-8, TNF-α, cortisol) were measured in serum or plasma. PA was assessed by accelerometry. RESULTS Following weight loss, AD intake resulted in significantly greater (p= 0.004) lumbar spine BMD and serum osteocalcin (p=0.004) concentration compared to LD. Pre- and post- body fat were negatively associated with hip and lumbar spine BMC (r= −0.28, p=0.04 to −0.45, p=0.001). Of note were the significant negative associations among bone markers and IL-1β, TNFα and CRP ranging from r = −0.29 (p=0.04) to r = −0.34 (p=0.01); magnitude of associations did not change with weight loss. Adiponectin was negatively related to change in osteocalcin. Factor analysis resulted in 8 pre- and post-weight loss Factors. Pre-weight loss Factors accounted for 13.7% of the total variance in pre-weight loss hip BMD; post-weight loss Factors explained 19.6% of the total variance in post-weight loss hip BMD. None of the Factors contributed to the variance in lumbar spine BMD. CONCLUSION AD during weight loss resulted in higher lumbar spine BMD and osteocalcin compared to LD. Significant negative associations were observed between bone and inflammatory markers suggesting inflammation suppresses bone metabolism. Using Factor Analysis, 19.6% of total variance in post-weight loss hip BMD could be explained by endocrine, immune, and anthropometric variables, but not lumbar spine BMD. PMID:24709689
Improvements in insulin sensitivity are blunted by subclinical hypothyroidism.
Amati, Francesca; Dubé, John J; Stefanovic-Racic, Maja; Toledo, Frederico G; Goodpaster, Bret H
2009-02-01
Exercise- and weight loss-induced improvements in insulin resistance (IR) are variable; some individuals experience robust enhancements in insulin sensitivity, whereas others do not. Thyroid hormone status is related to IR, but it is not clear whether subclinical hypothyroidism may help to explain the variability in improvements in IR with diet and exercise. The purpose of this study was to examine whether thyroid hormone status is related to the improvement in insulin sensitivity and physical fitness after weight loss and exercise training. By retrospective nested case-control analysis, eight subclinical hypothyroid (sHT) subjects and eight matched euthyroid controls underwent a euglycemic hyperinsulinemic clamp and peak oxygen uptake test, before and after a 16-wk program of moderate aerobic exercise combined with diet-induced weight loss. All subjects were middle-aged (57.3 +/- 3.3 yr), were overweight to obese (body mass index = 33.1 +/- 0.8 kg m(-2)), and had impaired glucose tolerance. The improvement in insulin sensitivity was significantly lower (P < 0.05) in the sHT group than in the euthyroid group. Both groups performed similar amounts of regular exercise and lost a significant amount of body weight during the intervention. VO(2peak) tended to improve in the euthyroid group but not in the sHT group. Subclinical hypothyroidism may interfere with beneficial adaptations on muscle metabolism and physical fitness that typically occur with weight loss and increased physical activity. These results may have significant clinical implications because of the high prevalence of both hypothyroidism and insulin resistance in the aging population.
The slippery slope: prediction of successful weight maintenance in anorexia nervosa
Kaplan, A. S.; Walsh, B. T.; Olmsted, M.; Attia, E.; Carter, J. C.; Devlin, M. J.; Pike, K. M.; Woodside, B.; Rockert, W.; Roberto, C. A.; Parides, M.
2015-01-01
Background Previous research has found that many patients with anorexia nervosa (AN) are unable to maintain normal weight after weight restoration. The objective of this study was to identify variables that predicted successful weight maintenance among weight-restored AN patients. Method Ninety-three patients with AN treated at two sites (Toronto and New York) through in-patient or partial hospitalization achieved a minimally normal weight and were then randomly assigned to receive fluoxetine or placebo along with cognitive behavioral therapy (CBT) for 1 year. Clinical, demographic and psychometric variables were assessed after weight restoration prior to randomization and putative predictors of successful weight maintenance at 6 and 12 months were examined. Results The most powerful predictors of weight maintenance at 6 and 12 months following weight restoration were pre-randomization body mass index (BMI) and the rate of weight loss in the first 28 days following randomization. Higher BMI and lower rate of weight loss were associated with greater likelihood of maintaining a normal BMI at 6 and 12 months. An additional predictor of weight maintenance was site; patients in Toronto fared better than those in New York. Conclusions This study found that the best predictors of weight maintenance in weight-restored AN patients over 6 and 12 months were the level of weight restoration at the conclusion of acute treatment and the avoidance of weight loss immediately following intensive treatment. These results suggest that outcome might be improved by achieving a higher BMI during structured treatment programs and on preventing weight loss immediately following discharge from such programs. PMID:18845008
Annesi, James J; Porter, Kandice J
2013-12-05
A better understanding of interrelations of exercise and improved eating, and their psychosocial correlates of self-efficacy, mood, and self-regulation, may be useful for the architecture of improved weight loss treatments. Theory-based research within field settings, with samples possessing high probabilities of health risks, might enable rapid application of useful findings. Adult volunteers with severe obesity (body mass index [BMI] 35-50 kg/m²; age = 43.0 ± 9.5 y; 83% female) were randomly assigned to six monthly cognitive-behavioral exercise support sessions paired with either group-based nutrition education (n = 145) or cognitive behavioral methods applied to improved eating (n = 149). After specification of mediation models using a bias-corrected bootstrapping procedure, a series of reciprocal effects analyses assessed: a) the reciprocal effects of changes in exercise and fruit and vegetable intake, resulting from the treatments, b) the reciprocal effects of changes in the three psychosocial variables tested (i.e. self-efficacy, mood, and self-regulation) and fruit and vegetable change, resulting from change in exercise volume, and c) the reciprocal effects of changes in the three psychosocial variables and exercise change, resulting from change in fruit and vegetable intake. Mediation analyses suggested a reciprocal effect between changes in exercise volume and fruit and vegetable intake. After inclusion of psychosocial variables, also found were reciprocal effects between change in fruit and vegetable intake and change in mood, self-efficacy for controlled eating, and self-regulation for eating; and change in exercise volume and change in mood and exercise-related self-regulation. Findings had implications for behavioral weight-loss theory and treatment. Specifically, results suggested that treatments should focus upon, and leverage, the transfer effects from each of the primary weight-loss behaviors (exercise and healthy eating) to the other. Findings on psychosocial correlates of these behavioral processes may also have practical applications.
NASA Astrophysics Data System (ADS)
Pan, Y.; Shen, W.; Hwang, C.
2015-12-01
As an elastic Earth, the surface vertical deformation is in response to hydrological mass change on or near Earth's surface. The continuous GPS (CGPS) records show surface vertical deformations which are significant information to estimate the variation of terrestrial water storage. We compute the loading deformations at GPS stations based on synthetic models of seasonal water load distribution and then invert the synthetic GPS data for surface mass distribution. We use GRACE gravity observations and hydrology models to evaluate seasonal water storage variability in Nepal and Himalayas. The coherence among GPS inversion results, GRACE and hydrology models indicate that GPS can provide quantitative estimates of terrestrial water storage variations by inverting the surface deformation observations. The annual peak-to-peak surface mass change derived from GPS and GRACE results reveal seasonal loads oscillations of water, snow and ice. Meanwhile, the present uplifting of Nepal and Himalayas indicates the hydrology mass loss. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).
Therapeutic approach to malnutrition and sarcopenia.
Burgos Peláez, Rosa
2012-01-01
Sarcopenia is a syndrome characterized by the progressive loss of muscle mass and strength with a risk of undesirable effects such as physical disability, poor quality of life and death, and it is a major contributing factor of disability and loss of independence in the elderly. Its etiopathogenics include different mechanisms that are both intrinsic to the muscle itself and related to changes in the central nervous system, as well as hormonal and lifestyle factors. Several hormones and cytokines affect muscle function and mass. The reduction in testosterone and estrogens associated with ageing speeds up the loss of muscle mass. Growth hormone is also involved in the loss of lean body mass. Although sarcopenia does not completely revert with exercise, the absence of physical activity accelerates muscle mass loss. Diagnosing sarcopenia is hindered by a lack of reliable methods for measuring muscle mass. Different strategies have been tested for its treatment: testosterone replacement therapy/other anabolic androgens, estrogens in women, growth hormone, nutritional treatment and exercise. Of all the therapeutic options available, only resistance training with or without nutritional supplementation has shown its efficacy in increasing skeletal muscle mass. Copyright © 2012 S. Karger AG, Basel.
BOPP, MELANIE J.; HOUSTON, DENISE K.; LENCHIK, LEON; EASTER, LINDA; KRITCHEVSKY, STEPHEN B.; NICKLAS, BARBARA J.
2013-01-01
The health and quality-of-life implications of overweight and obesity span all ages in the United States. We investigated the association between dietary protein intake and loss of lean mass during weight loss in postmenopausal women through a retrospective analysis of a 20-week randomized, controlled diet and exercise intervention in women aged 50 to 70 years. Weight loss was achieved by differing levels of caloric restriction and exercise. The diet-only group reduced caloric intake by 2,800 kcal/week, and the exercise groups reduced caloric intake by 2,400 kcal/week and expended ~400 kcal/week through aerobic exercise. Total and appendicular lean mass was measured using dual energy x-ray absorptiometry. Linear regression analysis was used to examine the association between changes in lean mass and appendicular lean mass and dietary protein intake. Average weight loss was 10.8±4.0 kg, with an average of 32% of total weight lost as lean mass. Protein intake averaged 0.62 g/kg body weight/day (range=0.47 to 0.8 g/kg body weight/day). Participants who consumed higher amounts of dietary protein lost less lean mass and appendicular lean mass r(=0.3, P=0.01 and r=0.41, P<0.001, respectively). These associations remained significant after adjusting for intervention group and body size. Therefore, inadequate protein intake during caloric restriction may be associated with adverse body-composition changes in postmenopausal women. PMID:18589032
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Eric D.; Fortney, Jonathan J.
2013-10-10
We use models of coupled thermal evolution and photo-evaporative mass loss to understand the formation and evolution of the Kepler-36 system. We show that the large contrast in mean planetary density observed by Carter et al. can be explained as a natural consequence of photo-evaporation from planets that formed with similar initial compositions. However, rather than being due to differences in XUV irradiation between the planets, we find that this contrast is due to the difference in the masses of the planets' rock/iron cores and the impact that this has on mass-loss evolution. We explore in detail how our coupledmore » models depend on irradiation, mass, age, composition, and the efficiency of mass loss. Based on fits to large numbers of coupled evolution and mass-loss runs, we provide analytic fits to understand threshold XUV fluxes for significant atmospheric loss, as a function of core mass and mass-loss efficiency. Finally we discuss these results in the context of recent studies of the radius distribution of Kepler candidates. Using our parameter study, we make testable predictions for the frequency of sub-Neptune-sized planets. We show that 1.8-4.0 R{sub ⊕} planets should become significantly less common on orbits within 10 days and discuss the possibility of a narrow 'occurrence valley' in the radius-flux distribution. Moreover, we describe how photo-evaporation provides a natural explanation for the recent observations of Ciardi et al. that inner planets are preferentially smaller within the systems.« less
Cazenave, Anny; Llovel, William
2010-01-01
Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion.
Submarine melting from repeat UAV surveys of icebergs
NASA Astrophysics Data System (ADS)
Hubbard, A., II; Ryan, J.; Smith, L. C.; Hamilton, G. S.
2017-12-01
Greenland's tidewater glaciers are a primary contributor to global sea-level rise, yet their future trajectory remains uncertain due to their non-linear response to oceanic forcing: particularly with respect to rapid submarine melting and under-cutting of their calving fronts. To improve understanding of ice-ocean interactions, we conducted repeat unmanned aerial vehicle (UAV) surveys across the terminus of Store Glacier and its adjacent fjord between May and June 2014. The derived imagery provides insight into frontal plume dynamics and the changing freeboard volume of icebergs in the fjord as they ablate. Following the methodology of Enderlin and Hamilton (2014), by differencing iceberg freeboard volume, we constrain submarine melt rates adjacent to the calving front. We find that plume and submarine melt rates are critical to mass loss variability across the calving front. Although the frontal ablation of Store Glacier is dominated by large mechanical calving events, the undercutting induced by the meltwater plume increases the frequency of calving and initiates frontal retreat. We conclude that even small increases in submarine melting due to changes in the meltwater plume duration and/or circulation patterns can have important consequences for frontal mass loss from large outlet glaciers draining the Greenland ice sheet.
Family ties of WR to LBV nebulae yielding clues for stellar evolution
NASA Astrophysics Data System (ADS)
Weis, K.
Luminous Blue Variables (LBVs) are stars is a transitional phase massive stars may enter while evolving from main-sequence to Wolf-Rayet stars. The to LBVs intrinsic photometric variability is based on the modulation of the stellar spectrum. Within a few years the spectrum shifts from OB to AF type and back. During their cool phase LBVs are close to the Humphreys-Davidson (equivalent to Eddington/Omega-Gamma) limit. LBVs have a rather high mass loss rate, with stellar winds that are fast in the hot and slower in the cool phase of an LBV. These alternating wind velocities lead to the formation of LBV nebulae by wind-wind interactions. A nebula can also be formed in a spontaneous giant eruption in which larger amounts of mass are ejected. LBV nebulae are generally small (< 5 pc) mainly gaseous circumstellar nebulae, with a rather large fraction of LBV nebulae being bipolar. After the LBV phase the star will turn into a Wolf-Rayet star, but note that not all WR stars need to have passed the LBV phase. Some follow from the RSG and the most massive directly from the MS phase. In general WRs have a large mass loss and really fast stellar winds. The WR wind may interact with winds of earlier phases (MS, RSG) to form WR nebulae. As for WR with LBV progenitors the scenario might be different, here no older wind is present but an LBV nebula! The nature of WR nebulae are therefore manifold and in particular the connection (or family ties) of WR to LBV nebulae is important to understand the transition between these two phases, the evolution of massive stars, their winds, wind-wind and wind-nebula interactions. Looking at the similarities and differences of LBV and WR nebula, figuring what is a genuine LBV and WR nebula are the basic question addressed in the analysis presented here.
Myers, Candice A; Johnson, William D; Earnest, Conrad P; Rood, Jennifer C; Tudor-Locke, Catrine; Johannsen, Neil M; Cocreham, Shannon; Harris, Melissa; Church, Timothy S; Martin, Corby K
2014-06-07
Weight loss induced only by exercise is frequently less than expected, possibly because of compensatory changes in energy intake and/or energy expenditure. The purpose of the Examination of Mechanisms (E-MECHANIC) of Exercise-Induced Weight Compensation trial is to examine whether increased energy intake and/or reduced spontaneous activity or energy expenditure (outside of structured exercise) account for the less than expected, exercise-associated weight loss. E-MECHANIC is a three-arm, 6-month randomized (1:1:1) controlled trial. The two intervention arms are exercise doses that reflect current recommendations for (1) general health (8 kcal/kg body weight per week (8 KKW), about 900 kcal/wk) and (2) weight loss (20 KKW, about 2,250 kcal/wk). The third arm, a nonexercise control group, will receive health information only. The sample will include a combined total of 198sedentary, overweight or obese (body mass index: ≥25 kg/m² to ≤45 kg/m²) men and women ages 18 to 65 years. The exercise dose will be supervised and tightly controlled in an exercise training laboratory. The primary outcome variables are energy intake, which will be measured using doubly labeled water (adjusted for change in energy stores) and laboratory-based food intake tests, and the discrepancy between expected weight loss and observed weight loss. Secondary outcomes include changes in resting metabolic rate (adjusted for change in body mass), activity levels (excluding structured exercise) and body composition. In an effort to guide the development of future interventions, the participants will be behaviorally phenotyped and defined as those who do compensate (that is, fail to lose the amount of weight expected) or do not compensate (that is, lose the amount of weight expected or more). In this study, we will attempt to identify underlying mechanisms to explain why exercise elicits less weight loss than expected. This information will guide the development of interventions to increase exercise-induced weight loss and maximize weight loss retention and related health benefits. ClinicalTrials.gov ID: NCT01264406 (registration date: 20 December 2010).
Nolte, Heinrich W; Noakes, Timothy D; van Vuuren, Bernard
2011-11-01
The extent to which humans need to replace fluid losses during exercise remains contentious despite years of focused research. The primary objective was to evaluate ad libitum drinking on hydration status to determine whether body mass loss can be used as an accurate surrogate for changes in total body water (TBW) during exercise. Data were collected during a 14.6-km route march (wet bulb globe temperature of 14.1°C ). 18 subjects with an average age of 26 ± 2.5 (SD) years participated. Their mean ad libitum total fluid intake was 2.1 ± 1.4 litres during the exercise. Predicted sweat rate was 1.289 ± 0.530 l/h. There were no significant changes (p>0.05) in TBW, urine specific gravity or urine osmolality despite an average body mass loss (p<0.05) of 1.3 ± 0.45 kg during the march. Core temperature rose as a function of marching speed and was unrelated to the % change in body mass. This suggests that changes in mass do not accurately predict changes in TBW (r=-0.16) because either the body mass loss during exercise includes losses other than water or there is an endogenous body water source that is released during exercise not requiring replacement during exercise, or both. Ad libitum water replacement between 65% and 70% of sweat losses maintained safe levels of hydration during the experiment. The finding that TBW was protected by ad libitum drinking despite approximately 2% body mass loss suggests that the concept of 'voluntary dehydration' may require revision.
NASA Technical Reports Server (NTRS)
Stroud, C. W.; Rummler, D. R.
1980-01-01
Coated, reinforced carbon-carbon (RCC) is used for the leading edges of the space shuttle. The mass loss characteristics of RCC specimens coated with tetraethyl orthosilicate (TEOS) were determine for conditions which simulated the environment expected at the lug attachment area of the leading edge. Mission simulation included simultaneous application of load, temperature, and oxygen partial pressure. Maximum specimen temperature was 900 K (1160 F). Specimens were exposed for up to 80 simulated missions. Stress levels up to 6.8 MPa (980 psi) did not significantly affect the mass loss characteristics of the TEOS-coated RCC material. Mass loss was correlated with the bulk density of the specimens.
Lonkvist, Camilla K; Lønbro, Simon; Vinther, Anders; Zerahn, Bo; Rosenbom, Eva; Primdahl, Hanne; Hojman, Pernille; Gehl, Julie
2017-06-03
Head and neck cancer patients undergoing concomitant chemoradiotherapy (CCRT) frequently experience loss of muscle mass and reduced functional performance. Positive effects of exercise training are reported for many cancer types but biological mechanisms need further elucidation. This randomized study investigates whether progressive resistance training (PRT) may attenuate loss of muscle mass and functional performance. Furthermore, biochemical markers and muscle biopsies will be investigated trying to link biological mechanisms to training effects. At the Departments of Oncology at Herlev and Aarhus University Hospitals, patients with stage III/IV squamous cell carcinoma of the head and neck, scheduled for CCRT are randomized 1:1 to either a 12-week PRT program or control group, both with 1 year follow-up. Planned enrollment is 72 patients, and stratification variables are study site, sex, p16-status, and body mass index. Primary endpoint is difference in change in lean body mass (LBM) after 12 weeks of PRT, assessed by dual-energy X-ray absorptiometry (DXA). The hypothesis is that 12 weeks of PRT can attenuate the loss of LBM by at least 25%. Secondary endpoints include training adherence, changes in body composition, muscle strength, functional performance, weight, adverse events, dietary intake, self-reported physical activity, quality of life, labor market affiliation, blood biochemistry, plasma cytokine concentrations, NK-cell frequency in blood, sarcomeric protein content in muscles, as well as muscle fiber type and fiber size in muscle biopsies. Muscle biopsies are optional. This randomized study investigates the impact of a 12-week progressive resistance training program on lean body mass and several other physiological endpoints, as well as impact on adverse events and quality of life. Furthermore, a translational approach is integrated with extensive biological sampling and exploration into cytokines and mechanisms involved. The current paper discusses decisions and methods behind exercise in head and neck cancer patients undergoing concomitant chemoradiotherapy. Approved by the Regional Ethics Committee for the Capital Region of Denmark (protocol id: H-15003725) and registered retrospectively at ClinicalTrials.gov ( NCT02557529 ) September 11th 2015.
Long term ice sheet mass change rates and inter-annual variability from GRACE gravimetry.
NASA Astrophysics Data System (ADS)
Harig, C.
2017-12-01
The GRACE time series of gravimetry now stretches 15 years since its launch in 2002. Here we use Slepian functions to estimate the long term ice mass trends of Greenland, Antarctica, and several glaciated regions. The spatial representation shows multi-year to decadal regional shifts in accelerations, in agreement with increases in radar derived ice velocity. Interannual variations in ice mass are of particular interest since they can directly link changes in ice sheets to the drivers of change in the polar ocean and atmosphere. The spatial information retained in Slepian functions provides a tool to determine how this link varies in different regions within an ice sheet. We present GRACE observations of the 2013-2014 slowdown in mass loss of the Greenland ice sheet, which was concentrated in specific parts of the ice sheet and in certain months of the year. We also discuss estimating the relative importance of climate factors that control ice mass balance, as a function of location of the glacier/ice cap as well as the spatial variation within an ice sheet by comparing gravimetry with observations of surface air temperature, ocean temperature, etc. as well as model data from climate reanalysis products.
Super-atmospheric pressure chemical ionization mass spectrometry.
Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo
2013-03-01
Super-atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H](+) which was not so common in APCI, was also observed with high ion abundance under super-atmospheric pressure condition. Copyright © 2013 John Wiley & Sons, Ltd.
Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars
NASA Astrophysics Data System (ADS)
Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.
2016-06-01
We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.
NASA Astrophysics Data System (ADS)
Velicogna, I.; Sutterley, T. C.; A, G.; van den Broeke, M. R.; Ivins, E. R.
2016-12-01
We use Gravity Recovery and Climate Experiment (GRACE) monthly gravity fields to determine the regional acceleration in ice mass loss in Antarctica for 2002-2016. We find that the total mass loss is controlled by only a few regions. In Antarctica, the Amundsen Sea (AS) sector and the Antarctic Peninsula account for 65% and 18%, respectively, of the total loss (186 ± 10 Gt/yr) mainly from ice dynamics. The AS sector contributes most of the acceleration in loss (9 ± 1 Gt/yr2 ), and Queen Maud Land, East Antarctica, is the only sector with a significant mass gain due to a local increase in SMB (57 ± 5 Gt/yr). We compare GRACE regional mass balance estimates with independent estimates from ICESat-1 and Operation IceBridge laser altimetry, CryoSat-2 radar altimetry, and surface mass balance outputs from RACMO2.3. In the Amundsen Sea Embayment of West Antarctica, an area experiencing rapid retreat and mass loss to the sea, we find good agreement between GRACE and altimetry estimates. Comparison of GRACE with these independent techniques in East Antarctic shows that GIA estimates from the new regional ice deglaciation models underestimate the GIA correction in the EAIS interior, which implies larger losses of the Antarctica ice sheet by about 70 Gt/yr. Sectors where we are observing the largest losses are closest to warm circumpolar water, and with polar constriction of the westerlies enhanced by climate warming, we expect these sectors to contribute more and more to sea level as the ice shelves that protect these glaciers will melt faster in contact with more heat from the surrounding oc
Predictors of weight loss in low-income mothers of young children.
Clarke, Kristine K; Freeland-Graves, Jeanne; Klohe-Lehman, Deborah M; Bohman, Thomas M
2007-07-01
To identify predictors of weight loss in a tri-ethnic population of low-income mothers. An 8-week dietary and physical activity program was tested. Demographic data were collected at baseline; anthropometric, dietary, physical activity, and psychosocial data were measured at baseline and week 8. A convenience sample of 114 Hispanic, African-American, and white, low-income mothers with a body mass index > or = 25 (calculated as kg/m2) participated in the intervention. Weight-loss classes that incorporated nutrition, physical activity, and behavior modification were administered for 8 weeks. Anthropometry (body weight, weight loss). Analysis of variance, chi2 tests, and Spearman and Pearson correlations were used to test for associations between baseline and change data and total weight loss. Hierarchical regression was employed to assess the marginal importance of factors beyond socioeconomic influences. Correlates of weight loss included less satisfaction with appearance (r=0.24), greater percentage of energy from protein (r=-0.22), enhanced nutrition knowledge (r=-0.23), and higher scores for benefits of weight loss (r =-0.20) at baseline; and the change in healthful eating attitudes (r=-0.28) and social support (r=-0.21) at 8 weeks. The predictive models of baseline and change variables represented 11.4% and 13.8% of the variance, respectively. Weight-management programs serving low-income mothers should provide techniques to enhance social support, attitudes toward healthful eating, benefits of weight loss, and nutrition knowledge.
NASA Astrophysics Data System (ADS)
Cassinelli, Joseph P.; Churchwell, Edward B.
1993-01-01
Various papers on massive stars and their relationship to the interstellar medium are presented. Individual topics addressed include: observations of newly formed massive stars, star formation with nonthermal motions, embedded stellar clusters in H II regions, a Milky Way concordance, NH3 and H2O masers, PIGs in the Trapezium, star formation in photoevaporating molecular clouds, massive star evolution, mass loss from cool supergiant stars, massive runaway stars, CNO abundances in three A-supergiants, mass loss from late-type supergiants, OBN stars and blue supergiant supernovae, the most evolved W-R stars, X-ray variability in V444 Cygni, highly polarized stars in Cassiopeia, H I bubbles around O stars, interstellar H I LY-alpha absorption, shocked ionized gas in 30 Doradus, wind mass and energy deposition. Also discussed are: stellar wind bow shocks, O stars giant bubbles in M33, Eridanus soft X-ray enhancement, wind-blown bubbles in ejecta medium, nebulae around W-R stars, highly ionized gas in the LMC, cold ionized gas around hot H II regions, initial mass function in the outer Galaxy, late stages in SNR evolution, possible LBV in NGC 1313, old SN-pulsar association, cold bright matter near SN1987A, starbursts in the nearby universe, giant H II regions, powering the superwind in NGC 253, obscuration effects in starburst Galactic nuclei, starburst propagation in dwarf galaxies, 30 Doradus, W-R content of NGC 595 and NGC 604, Cubic Cosmic X-ray Background Experiment.
Hung, Sheng-Hui; Hwang, Shiow-Li; Su, Mei-Ju; Lue, Shih-Ho; Hsu, Chien-Yeh; Chen, Hsiao-Lien; Chen, Heng-Shuen
2008-10-01
Obesity in adolescents is continuing to rise at an alarming rate and is becoming an important public health problem in Taiwan. Therefore, the aims of this study were (1) to evaluate the effectiveness of a Weight-loss E-learning Program (WEP) on obese Chinese adolescents and (2) to gauge this group's satisfaction with the WEP. The design was quasi-experimental, using purposive samples from two junior high schools in Taipei, Taiwan. Obese adolescents between 12 and 14 years of age with body mass indexes (BMI) over 25 kg/m2 were recruited. A 14-week WEP was developed to expedite weight loss for the selected adolescents. Data such as BMI, waist-to-hip ratio, waist circumference, hip circumference, mid-arm circumference, triceps skinfold, blood pressure, and physical fitness were collected through standardized instruments and methods before and after the WEP. The satisfaction of the subjects and four psychosocial variables were evaluated and taken into account by authoritative scales and questionnaires. In total, 37 adolescents participated in this study. After the WEP, we found significant decreases in BMI (p < 0.05), waist circumference (p < 0.05), and triceps skinfold (p < 0.001) in the sample population. Improvements were found in three of four tests of physical fitness (p < 0.001, p < 0.05, and p < 0.01, respectively). All psychosocial variables showed significant favorable changes (p < 0.01 for self-esteem scores, p < 0.001 for the other three variables) and satisfaction levels for the WEP ranged from 56.6% to 83.8% in four different criteria. The WEP was effective in helping obese Chinese adolescents lose weight. However, there is still room for improvement.
Gilardini, Luisa; Redaelli, Gabriella; Croci, Marina; Conti, Antonio; Pasqualinotto, Lucia; Invitti, Cecilia
2016-01-01
To assess the effect of a lifestyle intervention in lowering/normalizing blood pressure (BP) levels in hypertensive (controlled or not) obese patients. In this prospective observational study, 490 obese hypertensive patients, 389 controlled (BP < 140/90 mm Hg; CH) and 101 uncontrolled (BP ≥ 140/90 mm Hg; UH) attended a 3-month lifestyle intervention. Before and after the intervention we assessed weight, waist circumference, fat mass, BP, metabolic and renal variables, and physical activity. A multivariate regression model was used to determine the predictors of BP changes. 18.9% of CH and 20.0% of UH were on ≥ 3 antihypertensive drugs. Weight change (average -4.9 ± 2.7%) was independent of the antihypertensive drugs employed. Systolic BP (SBP) decreased by 23 mm Hg and diastolic BP (DBP) by 9 mm Hg, in patients with UH most of whom (89%) normalized BP levels (in 49% after a weight loss < 5%). Age, gender, whole and central obesity, concomitance of type 2 diabetes, chronic renal disease, physical activity intensification, and pharmacological therapy did not affect BP lowering. In the regression analysis with SBP change as dependent variable, weight reduction (β = 0.523, p = 0.005) and group (UH vs. CH, β = -19.40, p = 0.0005) remained associated with SBP reduction. When DBP change was entered as dependent variable, baseline uric acid remained associated with DBP reduction (β = 0.824, p < 0.05). Lifestyle interventions are useful for all obese hypertensive patients in most of whom a modest weight loss is sufficient to normalize BP levels avoiding the aggressive use of multiple antihypertensive drugs. © 2016 The Author(s) Published by S. Karger GmbH, Freiburg.
Gilardini, Luisa; Redaelli, Gabriella; Croci, Marina; Conti, Antonio; Pasqualinotto, Lucia; Invitti, Cecilia
2016-01-01
Objective To assess the effect of a lifestyle intervention in lowering/normalizing blood pressure (BP) levels in hypertensive (controlled or not) obese patients. Methods In this prospective observational study, 490 obese hypertensive patients, 389 controlled (BP < 140/90 mm Hg; CH) and 101 uncontrolled (BP ≥ 140/90 mm Hg; UH) attended a 3-month lifestyle intervention. Before and after the intervention we assessed weight, waist circumference, fat mass, BP, metabolic and renal variables, and physical activity. A multivariate regression model was used to determine the predictors of BP changes. Results 18.9% of CH and 20.0% of UH were on ≥ 3 antihypertensive drugs. Weight change (average −4.9 ± 2.7%) was independent of the antihypertensive drugs employed. Systolic BP (SBP) decreased by 23 mm Hg and diastolic BP (DBP) by 9 mm Hg, in patients with UH most of whom (89%) normalized BP levels (in 49% after a weight loss < 5%). Age, gender, whole and central obesity, concomitance of type 2 diabetes, chronic renal disease, physical activity intensification, and pharmacological therapy did not affect BP lowering. In the regression analysis with SBP change as dependent variable, weight reduction (β = 0.523, p = 0.005) and group (UH vs. CH, β = −19.40, p = 0.0005) remained associated with SBP reduction. When DBP change was entered as dependent variable, baseline uric acid remained associated with DBP reduction (β = 0.824, p < 0.05). Conclusion Lifestyle interventions are useful for all obese hypertensive patients in most of whom a modest weight loss is sufficient to normalize BP levels avoiding the aggressive use of multiple antihypertensive drugs. PMID:27454447
Variable Basal Melt Rates of Antarctic Peninsula Ice Shelves, 1994-2016
NASA Astrophysics Data System (ADS)
Adusumilli, Susheel; Fricker, Helen Amanda; Siegfried, Matthew R.; Padman, Laurie; Paolo, Fernando S.; Ligtenberg, Stefan R. M.
2018-05-01
We have constructed 23-year (1994-2016) time series of Antarctic Peninsula (AP) ice-shelf height change using data from four satellite radar altimeters (ERS-1, ERS-2, Envisat, and CryoSat-2). Combining these time series with output from atmospheric and firn models, we partitioned the total height-change signal into contributions from varying surface mass balance, firn state, ice dynamics, and basal mass balance. On the Bellingshausen coast of the AP, ice shelves lost 84 ± 34 Gt a-1 to basal melting, compared to contributions of 50 ± 7 Gt a-1 from surface mass balance and ice dynamics. Net basal melting on the Weddell coast was 51 ± 71 Gt a-1. Recent changes in ice-shelf height include increases over major AP ice shelves driven by changes in firn state. Basal melt rates near Bawden Ice Rise, a major pinning point of Larsen C Ice Shelf, showed large increases, potentially leading to substantial loss of buttressing if sustained.
Rise in central west Greenland surface melt unprecedented over the last three centuries
NASA Astrophysics Data System (ADS)
Trusel, Luke; Das, Sarah; Osman, Matthew; Evans, Matthew; Smith, Ben; McConnell, Joe; Noël, Brice; van den Broeke, Michiel
2017-04-01
Greenland Ice Sheet surface melting has intensified and expanded over the last several decades and is now a leading component of ice sheet mass loss. Here, we constrain the multi-century temporal evolution of surface melt across central west Greenland by quantifying layers of refrozen melt within well-dated firn and ice cores collected in 2014 and 2015, as well as from a core collected in 2004. We find significant agreement among ice core, satellite, and regional climate model melt datasets over recent decades, confirming the fidelity of the ice core melt stratigraphy as a reliable record of past variability in the magnitude of surface melt. We also find a significant correlation between the melt records derived from our new 100-m GC-2015 core (2436 m.a.s.l.) and the older (2004) 150-m D5 core (2472 m.a.s.l.) located 50 km to the southeast. This agreement demonstrates the robustness of the ice core-derived melt histories and the potential for reconstructing regional melt evolution from a single site, despite local variability in melt percolation and refreeze processes. Our array of upper percolation zone cores reveals that although the overall frequency of melt at these sites has not increased, the intensification of melt over the last three decades is unprecedented within at least the last 365 years. Utilizing the regional climate model RACMO 2.3, we show that this melt intensification is a nonlinear response to warming summer air temperatures, thus underscoring the heightened sensitivity of this sector of Greenland to further climate warming. Finally, we examine spatial correlations between the ice core melt records and modeled melt fields across the ice sheet to assess the broader representation of each ice core record. This analysis reveals wide-ranging significant correlations, including to modeled meltwater runoff. As such, our ice core melt records may furthermore offer unique, observationally-constrained insights into past variability in ice sheet mass loss.
Wang, Faming; Gao, Chuansi; Kuklane, Kalev; Holmér, Ingvar
2011-08-01
This paper addresses selection between two calculation options, i.e heat loss option and mass loss option, for thermal manikin measurements on clothing evaporative resistance conducted in an isothermal condition (T(manikin) = T(a) = T(r)). Five vocational clothing ensembles with a thermal insulation range of 1.05-2.58 clo were selected and measured on a sweating thermal manikin 'Tore'. The reasons why the isothermal heat loss method generates a higher evaporative resistance than that of the mass loss method were thoroughly investigated. In addition, an indirect approach was applied to determine the amount of evaporative heat energy taken from the environment. It was found that clothing evaporative resistance values by the heat loss option were 11.2-37.1% greater than those based on the mass loss option. The percentage of evaporative heat loss taken from the environment (H(e,env)) for all test scenarios ranged from 10.9 to 23.8%. The real evaporative cooling efficiency ranged from 0.762 to 0.891, respectively. Furthermore, it is evident that the evaporative heat loss difference introduced by those two options was equal to the heat energy taken from the environment. In order to eliminate the combined effects of dry heat transfer, condensation, and heat pipe on clothing evaporative resistance, it is suggested that manikin measurements on the determination of clothing evaporative resistance should be performed in an isothermal condition. Moreover, the mass loss method should be applied to calculate clothing evaporative resistance. The isothermal heat loss method would appear to overestimate heat stress and thus should be corrected before use.
NASA Astrophysics Data System (ADS)
Çeven, E. K.; Günaydın, G. K.
2017-10-01
The aim of this study is filling the gap in the literature about investigating the effect of yarn and fabric structural parameters on burning behavior of polyester fabrics. According to the experimental design three different fabric types, three different weft densities and two different weave types were selected and a total of eighteen different polyester drapery fabrics were produced. All statistical procedures were conducted using the SPSS Statistical software package. The results of the Analysis of Variance (ANOVA) tests indicated that; there were statistically significant (5% significance level) differences between the mass loss ratios (%) in weft and mass loss ratios (%) in warp direction of different fabrics calculated after the flammability test. The Student-Newman-Keuls (SNK) results for mass loss ratios (%) both in weft and warp directions revealed that the mass loss ratios (%) of fabrics containing Trevira CS type polyester were lower than the mass loss ratios of polyester fabrics subjected to washing treatment and flame retardancy treatment.
Laura E. Hasburgh; Robert H. White; Mark A. Dietenberger; Charles R. Boardman
2015-01-01
There is a growing demand for material properties to be used as inputs in fi re behavior models designed to address building fire safety. This comparative study evaluates using the mass loss calorimeter as an alternative to the cone calorimeter for obtaining heat release rates of wood-based materials. For this study, a modified mass loss calorimeter utilized an...
NASA Astrophysics Data System (ADS)
Kidner, M. R. F.; Fuller, C. R.; Gardner, B.
2006-06-01
The insertion loss of standard acoustic blankets can be significantly improved at low frequencies by the addition of randomly placed mass inclusions to the poro-elastic layers. The improvement is much greater than that due to the mass effect alone. The mass inclusions act as resonant systems and so increase the structure impedance. This paper reports the results of experimental investigations into this phenomenon. Increases in insertion loss of 15 dB in the 100 Hz third octave band are reported.
Magnetic massive stars as progenitors of `heavy' stellar-mass black holes
NASA Astrophysics Data System (ADS)
Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.
2017-04-01
The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.
NASA Astrophysics Data System (ADS)
Yoon, Sung-Chul
2017-10-01
Hydrogen-deficient Wolf-Rayet (WR) stars are potential candidates of Type Ib/Ic supernova (SN Ib/Ic) progenitors and their evolution is governed by mass-loss. Stellar evolution models with the most popular prescription for WR mass-loss rates given by Nugis & Lamers have difficulties in explaining the luminosity distribution of WR stars of WC and WO types and the SN Ic progenitor properties. Here, we suggest some improvements in the WR mass-loss rate prescription and discuss its implications for the evolution of WR stars and SN Ib/Ic progenitors. Recent studies on Galactic WR stars clearly indicate that the mass-loss rates of WC stars are systematically higher than those of WNE stars for a given luminosity. The luminosity and initial metallicity dependences of WNE mass-loss rates are also significantly different from those of WC stars. These factors have not been adequately considered together in previous stellar evolution models. We also find that an overall increase of WR mass-loss rates by about 60 per cent compared to the empirical values obtained with a clumping factor of 10 is needed to explain the most faint WC/WO stars. This moderate increase with our new WR mass-loss rate prescription results in SN Ib/Ic progenitor models more consistent with observations than those given by the Nugis & Lamers prescription. In particular, our new models predict that the properties of SN Ib and SN Ic progenitors are distinctively different, rather than they form a continuous sequence.
NASA Astrophysics Data System (ADS)
Han, Zhen; Cui, Baoshan; Zhang, Yongtao
2015-09-01
Rhizomes are essential organs for growth and expansion of Phragmites australis. They function as an important source of organic matter and as a nutrient source, especially in the artificial land-water transitional zones (ALWTZs) of shallow lakes. In this study, decomposition experiments on 1- to 6-year-old P. australis rhizomes were conducted in the ALWTZ of Lake Baiyangdian to evaluate the contribution of the rhizomes to organic matter accumulation and nutrient release. Mass loss and changes in nutrient content were measured after 3, 7, 15, 30, 60, 90, 120, and 180 days. The decomposition process was modeled with a composite exponential model. The Pearson correlation analysis was used to analyze the relationships between mass loss and litter quality factors. A multiple stepwise regression model was utilized to determine the dominant factors that affect mass loss. Results showed that the decomposition rates in water were significantly higher than those in soil for 1- to 6-year-old rhizomes. However, the sequence of decomposition rates was identical in both water and soil. Significant relationships between mass loss and litter quality factors were observed at a later stage, and P-related factors proved to have a more significant impact than N-related factors on mass loss. According to multiple stepwise models, the C/P ratio was found to be the dominant factor affecting the mass loss in water, and the C/N and C/P ratios were the main factors affecting the mass loss in soil. The combined effects of harvesting, ditch broadening, and control of water depth should be considered for lake administrators.
Mass loss and stellar superwinds.
Vink, Jorick S
2017-10-28
Mass loss bridges the gap between massive stars and supernovae (SNe) in two major ways: (i) theoretically, it is the amount of mass lost that determines the mass of the star prior to explosion and (ii) observations of the circumstellar material around SNe may teach us the type of progenitor that made the SN. Here, I present the latest models and observations of mass loss from massive stars, both for canonical massive O stars, as well as very massive stars that show Wolf-Rayet type features.This article is part of the themed issue 'Bridging the gap: from massive stars to supernovae'. © 2017 The Author(s).
Reduction Behavior of Assmang and Comilog ore in the SiMn Process
NASA Astrophysics Data System (ADS)
Kim, Pyunghwa Peace; Holtan, Joakim; Tangstad, Merete
The reduction behavior of raw materials from Assmang and Comilog based charges were experimentally investigated with CO gas up to 1600 °C. Quartz, HC FeMn slag or limestone were added to Assmang or Comilog according to the SiMn production charge, and mass loss results were obtained by using a TGA furnace. The results showed that particle size, type of manganese ore and mixture have close relationship to the reduction behavior of raw materials during MnO and SiO2 reduction. The influence of particle size to mass loss was apparent when Assmang or Comilog was mixed with only coke (FeMn) while it became insignificant when quartz and HC FeMn slag (SiMn) were added. This implied that quartz and HC FeMn slag had favored the incipient slag formation regardless of particle size. This explained the similar mass loss tendencies of SiMn charge samples between 1200-1500 °C, contrary to FeMn charge samples where different particle sizes showed significant difference in mass loss. Also, while FeMn charge samples showed progressive mass loss, SiMn charge samples showed diminutive mass loss until 1500 °C. However, rapid mass losses were observed with SiMn charge samples in this study above 1500 °C, and they have occurred at different temperatures. This implied rapid reduction of MnO and SiO2 and the type of ore and addition of HC FeMn slag have significant influence determining these temperatures. The temperatures observed for the rapid mass loss were approximately 1503 °C (Quartz and HC FeMn slag addition in Assmang), 1543 °C (Quartz addition in Assmang) and 1580-1587 °C (Quartz and limestone addition in Comilog), respectively. These temperatures also showed indications of possible SiMn production at process temperatures lower than 1550 °C.
Ultraviolet spectroscopy of the brightest supergiants in M31 and M33
NASA Technical Reports Server (NTRS)
Humphreys, R. M.; Blaha, C.; Dodorico, S.; Gull, T. R.; Benevenuti, P.
1983-01-01
Ultraviolet spectroscopy from the IUE, in combination with groundbased visual and infrared photometry, are to determine the energy distributions of the luminous blue variables, the Hubble-Sandage variables, in M31 and M33. The observed energy distributions, especially in the ultraviolet, show that these stars are suffering interstellar reddening. When corrected for interstellar extinction, the integrated energy distributions yield the total luminosities and black body temperatures of the stars. The resulting bolometric magnitudes and temperatures confirm that these peculiar stars are indeed very luminous, hot stars. They occupy the same regions of the sub B01 vs. log T sub e diagram as do eta Car, P Cyg and S Dor in our galaxy and the LMC. Many of the Hubble-Sandage variables have excess infrared radiation which is attributed to free-free emission from their extended atmospheres. Rough mass loss estimates from the infrared excess yield rates of 0.00001 M sub annual/yr. The ultraviolet spectra of the H-S variables are also compared with similar spectra of eta Car, P Cyg and S For.
A grid of MHD models for stellar mass loss and spin-down rates of solar analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.; Drake, J. J.
2014-03-01
Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the successmore » of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.« less
Robust design of mass-uncertain rolling-pendulum TMDs for the seismic protection of buildings
NASA Astrophysics Data System (ADS)
Matta, Emiliano; De Stefano, Alessandro
2009-01-01
Commonly used for mitigating wind- and traffic-induced vibrations in flexible structures, passive tuned mass dampers (TMDs) are rarely applied to the seismic control of buildings, their effectiveness to impulsive loads being conditional upon adoption of large mass ratios. Instead of recurring to cumbersome metal or concrete devices, this paper suggests meeting that condition by turning into TMDs non-structural masses sometimes available atop buildings. An innovative roof-garden TMD, for instance, sounds a promising tool capable of combining environmental and structural protection in one device. Unfortunately, the amount of these masses being generally variable, the resulting mass-uncertain TMD (MUTMD) appears prone to mistuning and control loss. In an attempt to minimize such adverse effects, robust analysis and synthesis against mass variations are applied in this study to MUTMDs of the rolling-pendulum type, a configuration characterized by mass-independent natural period. Through simulations under harmonic and recorded ground motions of increasing intensity, the performance of circular and cycloidal rolling-pendulum MUTMDs is evaluated on an SDOF structure in order to illustrate their respective advantages as well as the drawbacks inherent in their non-linear behavior. A possible implementation of a roof-garden TMD on a real building structure is described and its control efficacy numerically demonstrated, showing that in practical applications MUTMDs can become a good alternative to traditional TMDs.
Haddad, Renato; Catharino, Rodrigo Ramos; Marques, Lygia Azevedo; Eberlin, Marcos Nogueira
2008-11-01
Perfume counterfeiting is an illegal worldwide practice that involves huge economic losses and potential consumer risk. EASI is a simple, easily performed and rapidly implemented desorption/ionization technique for ambient mass spectrometry (MS). Herein we demonstrate that EASI-MS allows nearly instantaneous perfume typification and counterfeit detection. Samples are simply sprayed onto a glass rod or paper surface and, after a few seconds of ambient drying, a profile of the most polar components of the perfume is acquired. These components provide unique and reproducible chemical signatures for authentic perfume samples. Counterfeiting is readily recognized since the exact set and relative proportions of the more polar chemicals, sometimes at low concentrations, are unknown or hard to reproduce by the counterfeiters and hence very distinct and variable EASI-MS profiles are observed for the counterfeit samples.
NASA Astrophysics Data System (ADS)
Haubner, Konstanze; Box, Jason E.; Schlegel, Nicole J.; Larour, Eric Y.; Morlighem, Mathieu; Solgaard, Anne M.; Kjeldsen, Kristian K.; Larsen, Signe H.; Rignot, Eric; Dupont, Todd K.; Kjær, Kurt H.
2018-04-01
Tidewater glacier velocity and mass balance are known to be highly responsive to terminus position change. Yet it remains challenging for ice flow models to reproduce observed ice margin changes. Here, using the Ice Sheet System Model (ISSM; Larour et al. 2012), we simulate the ice velocity and thickness changes of Upernavik Isstrøm (north-western Greenland) by prescribing a collection of 27 observed terminus positions spanning 164 years (1849-2012). The simulation shows increased ice velocity during the 1930s, the late 1970s and between 1995 and 2012 when terminus retreat was observed along with negative surface mass balance anomalies. Three distinct mass balance states are evident in the reconstruction: (1849-1932) with near zero mass balance, (1932-1992) with ice mass loss dominated by ice dynamical flow, and (1998-2012), when increased retreat and negative surface mass balance anomalies led to mass loss that was twice that of any earlier period. Over the multi-decadal simulation, mass loss was dominated by thinning and acceleration responsible for 70 % of the total mass loss induced by prescribed change in terminus position. The remaining 30 % of the total ice mass loss resulted directly from prescribed terminus retreat and decreasing surface mass balance. Although the method can not explain the cause of glacier retreat, it enables the reconstruction of ice flow and geometry during 1849-2012. Given annual or seasonal observed terminus front positions, this method could be a useful tool for evaluating simulations investigating the effect of calving laws.
Wind Variability of B Supergiants. No. 1; The Rapid Rotator HD 64760 (B0.5 Ib)
NASA Technical Reports Server (NTRS)
Massa, Derck; Prinja, Raman K.; Fullerton, Alexander W.
1995-01-01
We present the results of a 6 day time series of observations of the rapidly rotating B0.5 Ib star HD 64760. We point out several reasons why such intermediate luminosity B supergiants are ideal targets for wind variability studies and then present our results that show the following: continuous wind activity throughout the 6 day run with the wind never in steady state for more than a few hr; wind variability very near nu = 0 km sec(exp -1) in the resonance lines from the lower ionization stages (Al III and C II); a distinct correlation between variability in the Si III ; lambda(lambda)1300 triplets, the strong C III (lambda)1247 singlet, and the onset of extremely strong wind activity, suggesting a connection between photospheric and wind activity; long temporal coherence in the behavior of the strong absorption events; evidence for large-scale spatial coherence, implied by a whole scale, simultaneous weakening in the wind absorption over a wide range in velocities; and ionization variability in the wind accompanying the largest changes in the absorption strengths of the wind lines. In addition, modeling of the wind lines provides the following information about the state the wind in HD 64760. The number of structures on the portion of a constant velocity surface occulting the stellar disk at a particular time must be quite small, while the number on the entire constant velocity surface throughout the wind must be large. The escape probability at low velocity is overestimated by a normal beta approx. 1 velocity law, perhaps due to the presence of low-velocity shocks deep in the wind or a shallow velocity gradient at low velocity. Estimates of the ionization structure in the wind indicate that the ionization ratios are not those expected from thermal equilibrium wind models or from an extrapolation of previous O star results. The large observed q(N V)/q(Si IV) ratio is almost certainly due to distributed X-rays, but the level of ionization predicted by distributed X-ray wind models is inconsistent with the predicted mass-loss rate. Thus, it is impossible to reconcile the observed ionization ratios and the predicted mass-loss rate within the framework of the available models.
2012-01-01
Caloric restriction is one of the most efficient ways to promote weight loss and is known to activate protective metabolic pathways. Frequently reported with weight loss is the undesirable consequence of fat free (lean muscle) mass loss. Weight loss diets with increased dietary protein intake are popular and may provide additional benefits through preservation of fat free mass compared to a standard protein, high carbohydrate diet. However, the precise mechanism by which a high protein diet may mitigate dietary weight loss induced reductions in fat free mass has not been fully elucidated. Maintenance of fat free mass is dependent upon nutrient stimulation of protein synthesis via the mTOR complex, although during caloric restriction a decrease (atrophy) in skeletal muscle may be driven by a homeostatic shift favouring protein catabolism. This review evaluates the relationship between the macronutrient composition of calorie restricted diets and weight loss using metabolic indicators. Specifically we evaluate the effect of increased dietary protein intake and caloric restricted diets on gene expression in skeletal muscle, particularly focusing on biosynthesis, degradation and the expression of genes in the ubiquitin-proteosome (UPP) and mTOR signaling pathways, including MuRF-1, MAFbx/atrogin-1, mTORC1, and S6K1. PMID:22974011
Heymsfield, Steven B.; Cristina Gonzalez, M. C.; Shen, Wei; Redman, Leanne; Thomas, Diana
2014-01-01
Maximizing fat loss while preserving lean tissue mass and function is a central goal of modern obesity treatments. A widely cited rule guiding expected loss of lean tissue as fat-free mass (FFM) states that approximately one-fourth of weight loss will be FFM (i.e., ΔFFM/ΔWeight = ~0.25) with the remaining three-fourths fat mass. This review examines the dynamic relations between FFM, fat mass, and weight changes that follow induction of negative energy balance with hypocaloric dieting and/or exercise. Historical developments in the field are traced with the “Quarter FFM Rule” used as a framework to examine evolving concepts on obesity tissue, excess weight, and what is often cited as “Forbes’ Rule”. Temporal effects in the fractional contribution of FFM to changes in body weight are examined as are lean tissue moderating effects such as aging, inactivity, and exercise that frequently accompany structured low-calorie diet weight loss protocols. Losses of lean tissue with dieting typically tend to be small, raising questions about study design, power, and applied measurement method reliability. Our review elicits important questions related to the fractional loss of lean tissues with dieting and provides a foundation for future research on this topic. PMID:24447775
Oganov, V S; Skripnikova, I A; Novikov, V E; Bakulin, A V; Kabitskaia, O E; Murashko, L M
2011-01-01
Analysis of the results of long-term investigations of bones in cosmonauts flown on the orbital station MIR and International space station (n = 80) was performed. Theoretically predicted (evolutionary predefined) change in mass of different skeleton bones was found to correlate (r = 0.904) with position relatively the Earth's gravity vector. Vector dependence of bone loss ensues from local specificity of expression of bone metabolism genes which reflects mechanic prehistory of skeleton structures in the evolution of Homo erectus. Genetic polymorphism is accountable for high individual variability of bone loss attested by the dependence of bone loss rate on polymorphism of certain bone metabolism markers. Parameters of one and the other orbital vehicle did not modulate individual-specific stability of the bone loss ratio in different segments of the skeleton. This fact is considered as a phenotype fingerprint of local metabolism in the form of a locus-unique spatial structure of distribution of noncollagenous proteins responsible for position regulation of endosteal metabolism. Drug treatment of osteoporosis (n = 107) evidences that recovery rate depends on bone location; the most likely reason is different effectiveness of local osteotrophic intervention into areas of bustling resorption.
Lim, Seung-Lark; Bruce, Amanda S
2015-01-01
We developed a novel decision-making paradigm that allows us to apply prospect theory in behavioral economics to body mass. 67 healthy young adults completed self-report measures and two decision-making tasks for weight-loss, as well as for monetary rewards. We estimated risk-related preference and loss aversion parameters for each individual, separately for weight-loss and monetary rewards choice data. Risk-seeking tendency for weight-loss was positively correlated with body mass index in individuals who desired to lose body weight, whereas the risk-seeking for momentary rewards was not. Risk-seeking for weight-loss was correlated to excessive body shape preoccupations, while aversion to weight-gain was correlated with self-reports of behavioral involvement for successful weight-loss. We demonstrated that prospect theory can be useful in explaining the decision-making process related to body mass. Applying prospect theory is expected to advance our understanding of decision-making mechanisms in obesity, which might prove helpful for improving healthy choices.
Lim, Seung-Lark; Bruce, Amanda S.
2015-01-01
We developed a novel decision-making paradigm that allows us to apply prospect theory in behavioral economics to body mass. 67 healthy young adults completed self-report measures and two decision-making tasks for weight-loss, as well as for monetary rewards. We estimated risk-related preference and loss aversion parameters for each individual, separately for weight-loss and monetary rewards choice data. Risk-seeking tendency for weight-loss was positively correlated with body mass index in individuals who desired to lose body weight, whereas the risk-seeking for momentary rewards was not. Risk-seeking for weight-loss was correlated to excessive body shape preoccupations, while aversion to weight-gain was correlated with self-reports of behavioral involvement for successful weight-loss. We demonstrated that prospect theory can be useful in explaining the decision-making process related to body mass. Applying prospect theory is expected to advance our understanding of decision-making mechanisms in obesity, which might prove helpful for improving healthy choices. PMID:25852628
Using a 3D profiler and infrared camera to monitor oven loading in fully cooked meat operations
NASA Astrophysics Data System (ADS)
Stewart, John; Giorges, Aklilu
2009-05-01
Ensuring meat is fully cooked is an important food safety issue for operations that produce "ready to eat" products. In order to kill harmful pathogens like Salmonella, all of the product must reach a minimum threshold temperature. Producers typically overcook the majority of the product to ensure meat in the most difficult scenario reaches the desired temperature. A difficult scenario can be caused by an especially thick piece of meat or by a surge of product into the process. Overcooking wastes energy, degrades product quality, lowers the maximum throughput rate of the production line and decreases product yield. At typical production rates of 6000lbs/hour, these losses from overcooking can have a significant cost impact on producers. A wide area 3D camera coupled with a thermal camera was used to measure the thermal mass variability of chicken breasts in a cooking process. Several types of variability are considered including time varying thermal mass (mass x temperature / time), variation in individual product geometry and variation in product temperature. The automatic identification of product arrangement issues that affect cooking such as overlapping product and folded products is also addressed. A thermal model is used along with individual product geometry and oven cook profiles to predict the percentage of product that will be overcooked and to identify products that may not fully cook in a given process.
Coronado-Zarco, Roberto; Diez-García, María del Pilar; Chávez-Arias, Daniel; León-Hernández, Saúl Renán; Cruz-Medina, Eva; Arellano-Hernández, Aurelia
2005-01-01
Bone and skeletal muscle mass loss is related to age. Mechanisms by which they interact have not been well established. To establish a relationship of age with serum levels of IGF-1, skeletal muscle and appendicular muscle mass index, and their influence in isokinetic parameters in osteoporotic female patients. Pearson correlation coefficient and linear regression analyses were used. There were 38 patients with a mean age of 65.16 years (range: 50-84 years), mean appendicular skeletal mass index (ASMI) of 6.3 kg/m2 (range: 4.3-8.3) and mean skeletal mass index (SMI) of 12.4 kg/m2 (range: 9.6-15.7), mean serum IGF-1 levels of 82.97 ng/ml (range: 22-177). Linear regression predicted hip mineral bone density by SMI (p = 0.19) and age (p = 0.017, r = 0.50). Some isokinetic parameters had a positive correlation for work with age. Knee acceleration time had a positive correlation with age. Osteoporosis and sarcopenia may have related pathophysiologic mechanisms. Growth factor study must include the influence of sex hormones. Some isokinetic parameters are determined by the predominant muscle fiber, skeletal mass index and age.
NASA Technical Reports Server (NTRS)
Sackmann, I.-Juliana; Boothroyd, Arnold I.
2001-01-01
The relatively warm temperatures required on early Earth and Mars have been difficult to account for with warming from greenhouse gases. A slightly more massive young Sun would be brighter than predicted by the standard solar model, simultaneously resolving this problem for both Earth and Mars. We computed high-precision solar models with seven initial masses, from Mi = 1.01 to 1.07 solar mass - the latter being the maximum permitted if the early Earth is not to lose its water via a moist greenhouse effect. The relatively modest early mass loss that is required remains consistent with observational limits on mass loss from young stars and with estimates of the past solar wind obtained from lunar rocks. We considered three types of mass loss rates: (1) a reasonable choice of a simple exponential decline, (2) an extreme step-function case that gives the maximum effect consistent with observations, and (3) the radical case of a linear decline which is inconsistent with the solar wind mass loss estimates from lunar rocks. Our computations demonstrated that mass loss leaves a fingerprint oil the Sun's internal structure large enough to be detectable with helioseismic observations. All of our mass-losing solar models were consistent with the helioseismic observations; in fact, our preferred mass-losing cases were in marginally better agreement with the helioseismology than the standard solar model was, although this difference was smaller than the effects of other uncertainties in the input physics and in the solar composition. Mass loss has only a relatively minor effect on the predicted lithium depletion; the major portion of the solar lithium depletion must still be due to rotational mixing. Thus the modest mass loss cases considered here cannot be ruled out by observed lithium depletions. For the three mass loss types considered, the preferred initial masses were 1.07 solar mass for the exponential case and 1.04 solar mass for the step-function and linear cases; all of these provided high enough solar fluxes at Mars 3.8 Gyr ago to be consistent with the existence of liquid water. For a more massive early Sun, the planets would have had to be closer to the young Sun in order to end up in their present orbits; the orbital radii of the planets would vary inversely with the solar mass. Both of these effects contribute to the fact that the early solar flux at the planets would have been considerably higher than that of the standard solar model at that time. In fact, the 1.07 solar mass exponential case has a flux at birth 5% higher than the present solar flux, while the radical 1.04 solar mass linear case has a nearly constant flux over the first 3 Gyr only about 10% lower than at present. The early solar evolution would be in the opposite direction in the H-R diagram to that of the standard Sun.
Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Schröter, Kai; Merz, Bruno
2016-05-01
Flood risk management increasingly relies on risk analyses, including loss modelling. Most of the flood loss models usually applied in standard practice have in common that complex damaging processes are described by simple approaches like stage-damage functions. Novel multi-variable models significantly improve loss estimation on the micro-scale and may also be advantageous for large-scale applications. However, more input parameters also reveal additional uncertainty, even more in upscaling procedures for meso-scale applications, where the parameters need to be estimated on a regional area-wide basis. To gain more knowledge about challenges associated with the up-scaling of multi-variable flood loss models the following approach is applied: Single- and multi-variable micro-scale flood loss models are up-scaled and applied on the meso-scale, namely on basis of ATKIS land-use units. Application and validation is undertaken in 19 municipalities, which were affected during the 2002 flood by the River Mulde in Saxony, Germany by comparison to official loss data provided by the Saxon Relief Bank (SAB).In the meso-scale case study based model validation, most multi-variable models show smaller errors than the uni-variable stage-damage functions. The results show the suitability of the up-scaling approach, and, in accordance with micro-scale validation studies, that multi-variable models are an improvement in flood loss modelling also on the meso-scale. However, uncertainties remain high, stressing the importance of uncertainty quantification. Thus, the development of probabilistic loss models, like BT-FLEMO used in this study, which inherently provide uncertainty information are the way forward.
Laddu, Deepika R; Cawthon, Peggy M; Parimi, Neeta; Hoffman, Andrew R; Orwoll, Eric; Miljkovic, Iva; Stefanick, Marcia L
2017-06-05
Excess adiposity gains and significant lean mass loss may be risk factors for chronic disease in old age. Long-term patterns of change in physical activity (PA) and their influence on body composition decline during aging has not been characterized. We evaluated the interrelationships of PA and body composition at the outset and over longitudinal follow-up to changes in older men. Self-reported PA by the Physical Activity Scale for the Elderly (PASE), clinic body weight, and whole-body lean mass (LM) and fat mass, by dual-energy x-ray absorptiometry (DXA), were assessed in 5964 community-dwelling men aged ≥65 years at baseline (2000-2002) and at two subsequent clinic visits up until March 2009 (an average 4.6 and 6.9 years later). Group-based trajectory modeling (GBTM) identified patterns of change in PA and body composition variables. Relationships of PA and body composition changes were then assessed. GBTM identified three discrete trajectory patterns, all with declining PA, associated primarily with initial PA levelshigh-activity (7.2% of men), moderate-activity (50.0%), and low-activity (42.8%). In separate models, GBTM identified eight discrete total weight change groups, five fat mass change groups, and six LM change groups. Joint trajectory modeling by PA and body composition group illustrated significant declines in total weight and LM, whereas fat mass levels were relatively unchanged among high-activity and low-activity-declining groups, and significantly increased in the moderate-activity-declining group. Although patterns of change in PA and body composition were identified, groups were primarily differentiated by initial PA or body composition rather than by distinct trajectories of change in these variables.
Orbital period studies of the two contact binaries TZ Bootis and Y Sextantis
NASA Astrophysics Data System (ADS)
Qian, S.; Liu, Q.
2000-03-01
The physical properties of the two A-type contact binaries TZ Boo and Y Sex are nearly the same. In the present paper, many of their published times of light minima are collected and the changes in their orbital periods are analyzed. It is indicated that the orbital period of TZ Boo shows several alternating jumps while it undergoes a secular decrease of -11.8x10-8 days/year. Several random jumps superposed on a secular decrease (-5.5x10-8 days/year) are also found in the period of Y Sex. The secular decrease is usually interpreted as mass transfer from the more to the less massive components, or mass and angular momentum loss (AML) from the systems. According to the AML theory, on the contact stage, the orbital AML is mainly caused by the mass transfer from the less to the more massive component and the mass ratio decreasing and orbital period gradually increasing are the corresponding results. The extremely low mass ratio and orbital angular momentum of the two systems show that they are evolved via AML and the present secular decrease in the periods may suggest that the magnetic activity in the two systems are very strong. The relation between the changes of the orbital periods and the magnetic activity in the two systems are discussed. We think that the interplay between the variable AML and variable magnetic coupling can explain both the jumps and secular decrease in the orbital periods of the two systems. Table~2 and Table~4 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strabg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html
NASA Astrophysics Data System (ADS)
Zhao, Huabiao; Yang, Wei; Yao, Tandong; Tian, Lide; Xu, Baiqing
2016-08-01
Rapid climate change at high elevations has accelerated glacier retreat in the Himalayas and Tibetan Plateau. However, due to the lack of long-term glaciological measurements, there are still uncertainties regarding when the mass loss began and what the magnitude of mass loss is at such high elevations. Based on in situ glaciological observations during the past 9 years and a temperature-index mass balance model, this study investigates recent mass loss of the Naimona’nyi Glacier in the western Himalayas and reconstructs a 41-year (1973/74-2013/14) equilibrium line altitude (ELA) and glacier-wide mass loss. The result indicates that even at 6000 m above sea level (a.s.l.), the annual mass loss reaches ~0.73 m water equivalent (w.e.) during the past 9 years. Concordant with the abrupt climate shift in the end of 1980s, the ELA has dramatically risen from ~5969 ± 73 m a.s.l. during 1973/74-1988/89 to ~6193 ± 75 m a.s.l. during 1989/90-2013/14, suggesting that future ice cores containing uninterrupted climate records could only be recovered at least above 6200 m a.s.l. in the Naimona’nyi region. The glacier-wide mass balance over the past 41 years is averaged to be approximately -0.40 ± 0.17 m w.e., exhibiting a significant increase in the decadal average from -0.01 ± 0.15 to -0.69 ± 0.21 m w.e.
Antarctic Mass Loss from GRACE from Space- and Time-Resolved Modeling with Slepian Functions
NASA Astrophysics Data System (ADS)
Simons, F. J.; Harig, C.
2013-12-01
The melting of polar ice sheets is a major contributor to global sea-level rise. Antarctica is of particular interest since most of the mass loss has occurred in West Antarctica, however updated glacial isostatic adjustment (GIA) models and recent mass gains in East Antarctica have reduced the continent-wide integrated decadal trend of mass loss. Here we present a spatially and temporally resolved estimation of the Antarctic ice mass change using Slepian localization functions. With a Slepian basis specifically for Antarctica, the basis functions maximize their energy on the continent and we can project the geopotential fields into a sparse set of orthogonal coefficients. By fitting polynomial functions to the limited basis coefficients we maximize signal-to-noise levels and need not perform smoothing or destriping filters common to other approaches. In addition we determine an empirical noise covariance matrix from the GRACE data to estimate the uncertainty of mass estimation. When applied to large ice sheets, as in our own recent Greenland work, this technique is able to resolve both the overall continental integrated mass trend, as well as the spatial distribution of the mass changes over time. Using CSR-RL05 GRACE data between Jan. 2003 and Jan 2013, we estimate the regional accelerations in mass change for several sub-regions and examine how the spatial pattern of mass has changed. The Amundsen Sea coast of West Antarctica has experienced a large acceleration in mass loss (-26 Gt/yr^2). While mass loss is concentrated near Pine Island and Thwaites glaciers, it has also increased along the coast further towards the Ross ice shelf.
NASA Astrophysics Data System (ADS)
Valle, G.; Dell'Omodarme, M.; Prada Moroni, P. G.; Degl'Innocenti, S.
2018-01-01
Aims: We aim to perform a theoretical evaluation of the impact of the mass loss indetermination on asteroseismic grid based estimates of masses, radii, and ages of stars in the red giant branch (RGB) phase. Methods: We adopted the SCEPtER pipeline on a grid spanning the mass range [0.8; 1.8] M⊙. As observational constraints, we adopted the star effective temperatures, the metallicity [Fe/H], the average large frequency spacing Δν, and the frequency of maximum oscillation power νmax. The mass loss was modelled following a Reimers parametrization with the two different efficiencies η = 0.4 and η = 0.8. Results: In the RGB phase, the average random relative error (owing only to observational uncertainty) on mass and age estimates is about 8% and 30% respectively. The bias in mass and age estimates caused by the adoption of a wrong mass loss parameter in the recovery is minor for the vast majority of the RGB evolution. The biases get larger only after the RGB bump. In the last 2.5% of the RGB lifetime the error on the mass determination reaches 6.5% becoming larger than the random error component in this evolutionary phase. The error on the age estimate amounts to 9%, that is, equal to the random error uncertainty. These results are independent of the stellar metallicity [Fe/H] in the explored range. Conclusions: Asteroseismic-based estimates of stellar mass, radius, and age in the RGB phase can be considered mass loss independent within the range (η ∈ [0.0,0.8]) as long as the target is in an evolutionary phase preceding the RGB bump.
VanEngelsdorp, Dennis; Speybroeck, Niko; Evans, Jay D; Nguyen, Bach Kim; Mullin, Chris; Frazier, Maryann; Frazier, Jim; Cox-Foster, Diana; Chen, Yanping; Tarpy, David R; Haubruge, Eric; Pettis, Jeffrey S; Saegerman, Claude
2010-10-01
Colony collapse disorder (CCD), a syndrome whose defining trait is the rapid loss of adult worker honey bees, Apis mellifera L., is thought to be responsible for a minority of the large overwintering losses experienced by U.S. beekeepers since the winter 2006-2007. Using the same data set developed to perform a monofactorial analysis (PloS ONE 4: e6481, 2009), we conducted a classification and regression tree (CART) analysis in an attempt to better understand the relative importance and interrelations among different risk variables in explaining CCD. Fifty-five exploratory variables were used to construct two CART models: one model with and one model without a cost of misclassifying a CCD-diagnosed colony as a non-CCD colony. The resulting model tree that permitted for misclassification had a sensitivity and specificity of 85 and 74%, respectively. Although factors measuring colony stress (e.g., adult bee physiological measures, such as fluctuating asymmetry or mass of head) were important discriminating values, six of the 19 variables having the greatest discriminatory value were pesticide levels in different hive matrices. Notably, coumaphos levels in brood (a miticide commonly used by beekeepers) had the highest discriminatory value and were highest in control (healthy) colonies. Our CART analysis provides evidence that CCD is probably the result of several factors acting in concert, making afflicted colonies more susceptible to disease. This analysis highlights several areas that warrant further attention, including the effect of sublethal pesticide exposure on pathogen prevalence and the role of variability in bee tolerance to pesticides on colony survivorship.
FOC Imaging of the Dusty Envelopes of Mass-Losing Supergiants
NASA Astrophysics Data System (ADS)
Kastner, Joel
1996-07-01
Stars more massive than 10 M_odot are destined to explode as supernovae {SN}. Pre-SN mass loss can prolong core buildup, and the rate and duration of mass loss therefore largely determines a massive star's post-main sequence evolution and its position in the H-R diagram prior to SN detonation. The envelope ejected by a mass-losing supergiant also plays an important role in the formation and evolution of a SN remnant. We propose to investigate these processes with HST. We will use the FOC to image two massive stars that are in different stages of post-main sequence evolution: VY CMa, the prototype for a class of heavily mass-losing OH/IR supergiants, and HD 179821, a post-red supergiant that is likely in transition to the Wolf-Rayet phase. Both are known to possess compact reflection nebulae, but ground-based techniques are unable to separate the inner nebulosities from the PSF of the central stars. We will use the unparalleled resolution of the FOC to probe the structure of these nebulae at subarcsecond scales. These data will yield the mass loss histories of the central stars and will demonstrate the presence or absence of axisymmetric mass loss and circumstellar disks. In so doing, our HST/FOC program will define the role of mass loss in determining the fates of SN progenitors and SN remnants.
Lobet, S; Detrembleur, C; Hermans, C
2013-03-01
Few studies have assessed the changes produced by multiple joint impairments (MJI) of the lower limbs on gait in patients with haemophilia (PWH). In patients with MJI, quantifiable outcome measures are necessary if treatment benefits are to be compared. This study was aimed at observing the metabolic cost, mechanical work and efficiency of walking among PWH with MJI and to investigate the relationship between joint damage and any changes in mechanical and energetic variables. This study used three-dimensional gait analysis to investigate the kinematics, cost, mechanical work and efficiency of walking in 31 PWH with MJI, with the results being compared with speed-matched values from a database of healthy subjects. Regarding energetics, the mass-specific net cost of transport (C(net)) was significantly higher for PWH with MJI compared with control and directly related to a loss in dynamic joint range of motion. Surprisingly, however, there was no substantial increase in mechanical work, with PWH being able to adopt a walking strategy to improve energy recovery via the pendulum mechanism. This probable compensatory mechanism to economize energy likely counterbalances the supplementary work associated with an increased vertical excursion of centre of mass (CoM) and lower muscle efficiency of locomotion. Metabolic variables were probably the most representative variables of gait disability for these subjects with complex orthopaedic degenerative disorders. © 2012 Blackwell Publishing Ltd.
A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps
NASA Astrophysics Data System (ADS)
Noël, B.; van de Berg, W. J.; Lhermitte, S.; Wouters, B.; Machguth, H.; Howat, I.; Citterio, M.; Moholdt, G.; Lenaerts, J. T. M.; van den Broeke, M. R.
2017-03-01
Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (+/-5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36+/-16 Gt-1, or ~14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming.
Mountain Glaciers and Ice Caps
Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.
2011-01-01
Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.
White Dwarf/M Dwarf Binaries as Single Degenerate Progenitors of Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Wheeler, J. Craig
2012-10-01
Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, MV >~ 8.4 on the SN Ia in SNR 0509-67.5 and MV >~ 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a "magnetic bottle" connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the "nova limit" and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.
Ultraviolet line diagnostics of accretion disk winds in cataclysmic variables
NASA Technical Reports Server (NTRS)
Vitello, Peter; Shlosman, Isaac
1993-01-01
The IUE data base is used to analyze the UV line shapes of the cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating biconical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low-inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they: (1) require a much lower ratio of mass-loss rate to accretion rate and are therefore more plausible energetically; (2) provide a natural source for a biconical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low-inclination systems and pure line emission profiles at high inclination with the absence of eclipses in UV lines; and (3) produce rotation-broadened pure emission lines at high inclination.
A Numerical Evaluation on the Viability of Heap Thermophilic Bioleaching of Chalcopyrite
NASA Astrophysics Data System (ADS)
Vilcaez, J.; Suto, K.; Inoue, C.
2007-03-01
The present numerical evaluation explores into the interactions among the many variables governing the mass and heat transport processes that take place in a heap thermophilic bioleaching system. The necessity of using mesophiles together with thermophiles is proved by tracing the activity of both microorganisms individually at each point throughout the heap. The role of key variables such as the fraction of FeS2 per CuFeS2 leached was quantified and its importance highlighted. In this evaluation, the heat transfer process plays the main role because of the heat accumulation required to maintain the heap temperature within the range of 60 °C to 80 °C where thermophilic microorganisms are capable of completing the unfinished dissolution of copper started by mesophilic microorganisms at 30 °C. The evaluation was done taking into consideration: biological activity as function of the temperature in the heap, heat loss due to conduction and advection from the top and bottom of the heap, and mass transfer between the gas and liquid phases as a function of temperature. The exothermic nature of the leaching reactions of CuFeS2 and FeS2 makes the system auto-thermal.
UV line diagnostics of accretion disk winds in cataclysmic variables
NASA Technical Reports Server (NTRS)
Vitello, Peter; Shlosman, Isaac
1992-01-01
The IUE data base is used to analyze the UV line shapes of cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating bi-conical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3-D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they (1) require a much lower ratio of mass loss rate to accretion rate and are therefore more plausible energetically, (2) provide a natural source for a bi-conical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low inclination systems, and pure line emission profiles at high inclination with the absence of eclipses in UV lines, and (3) produce rotation broadened pure emission lines at high inclination.
Chromospheres and mass loss in metal-deficient giant stars
NASA Technical Reports Server (NTRS)
Dupree, A. K.; Hartmann, L.; Avrett, E. H.
1984-01-01
Semiempirical atmospheric models indicate that the characteristic emission in the wings of the H-alpha line observed in Population II giant stars can arise naturally within static chromospheres. Radial expansion gives an asymmetric, blueshifted H-alpha core accompanied by greater emission in the red line wing than in the blue wing. Wind models with extended atmospheres suggest mass loss rates much smaller than 2 x 10 to the -9th solar mass per yr. Thus H-alpha provides no evidence that steady mass loss can significantly affect the evolution of stars on the red giant branch of globular clusters.
Sun, Yu; Bak, Beata; Schoenmakers, Nadia; van Trotsenburg, A.S. Paul; Oostdijk, Wilma; Voshol, Peter; Cambridge, Emma; White, Jacqueline K.; le Tissier, Paul; Gharavy, S. Neda Mousavy; Martinez-Barbera, Juan P.; Stokvis-Brantsma, Wilhelmina H.; Vulsma, Thomas; Kempers, Marlies J.; Persani, Luca; Campi, Irene; Bonomi, Marco; Beck-Peccoz, Paolo; Zhu, Hongdong; Davis, Timothy M.E.; Hokken-Koelega, Anita C.S.; Del Blanco, Daria Gorbenko; Rangasami, Jayanti J.; Ruivenkamp, Claudia A.L.; Laros, Jeroen F.J.; Kriek, Marjolein; Kant, Sarina G.; Bosch, Cathy A.J.; Biermasz, Nienke R.; Appelman-Dijkstra, Natasha M.; Corssmit, Eleonora P.; Hovens, Guido C.J.; Pereira, Alberto M.; den Dunnen, Johan T.; Wade, Michael G.; Breuning, Martijn H.; Hennekam, Raoul C.; Chatterjee, Krishna; Dattani, Mehul T.; Wit, Jan M.; Bernard, Daniel J.
2012-01-01
Congenital central hypothyroidism occurs either in isolation or in conjunction with other pituitary hormone deficits. Using exome and candidate gene sequencing, we identified eight distinct mutations and two deletions in IGSF1 in males from eleven unrelated families with central hypothyroidism, testicular enlargement, and variably low prolactin concentrations. IGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary gland and the identified mutations impair its trafficking to the cell surface in heterologous cells. Igsf1-deficient male mice show diminished pituitary and serum thyroid-stimulating hormone (TSH) concentrations, reduced pituitary thyrotropin-releasing hormone (TRH) receptor expression, decreased triiodothyronine concentrations, and increased body mass. Collectively, our observations delineate a novel X-linked disorder in which loss-of-function mutations in IGSF1 cause central hypothyroidism, likely secondary to an associated impairment in pituitary TRH signaling. PMID:23143598
Wind-driven angular momentum loss in binary systems. I - Ballistic case
NASA Technical Reports Server (NTRS)
Brookshaw, Leigh; Tavani, Marco
1993-01-01
We study numerically the average loss of specific angular momentum from binary systems due to mass outflow from one of the two stars for a variety of initial injection geometries and wind velocities. We present results of ballistic calculations in three dimensions for initial mass ratios q of the mass-losing star to primary star in the range q between 10 exp -5 and 10. We consider injection surfaces close to the Roche lobe equipotential surface of the mass-losing star, and also cases with the mass-losing star underfilling its Roche lobe. We obtain that the orbital period is expected to have a negative time derivative for wind-driven secular evolution of binaries with q greater than about 3 and with the mass-losing star near filling its Roche lobe. We also study the effect of the presence of an absorbing surface approximating an accretion disk on the average final value of the specific angular momentum loss. We find that the effect of an accretion disk is to increase the wind-driven angular momentum loss. Our results are relevant for evolutionary models of high-mass binaries and low-mass X-ray binaries.
de Kerviler, S; Hüsler, R; Banic, A; Constantinescu, M A
2009-05-01
This study analyzed the impact of weight reduction method, preoperative, and intraoperative variables on the outcome of reconstructive body contouring surgery following massive weight reduction. All patients presenting with a maximal BMI >/=35 kg/m(2) before weight reduction who underwent body contouring surgery of the trunk following massive weight loss (excess body mass index loss (EBMIL) >/= 30%) between January 2002 and June 2007 were retrospectively analyzed. Incomplete records or follow-up led to exclusion. Statistical analysis focused on weight reduction method and pre-, intra-, and postoperative risk factors. The outcome was compared to current literature results. A total of 104 patients were included (87 female and 17 male; mean age 47.9 years). Massive weight reduction was achieved through bariatric surgery in 62 patients (59.6%) and dietetically in 42 patients (40.4%). Dietetically achieved excess body mass index loss (EBMIL) was 94.20% and in this cohort higher than surgically induced reduction EBMIL 80.80% (p < 0.01). Bariatric surgery did not present increased risks for complications for the secondary body contouring procedures. The observed complications (26.9%) were analyzed for risk factors. Total tissue resection weight was a significant risk factor (p < 0.05). Preoperative BMI had an impact on infections (p < 0.05). No impact on the postoperative outcome was detected in EBMIL, maximal BMI, smoking, hemoglobin, blood loss, body contouring technique or operation time. Corrective procedures were performed in 11 patients (10.6%). The results were compared to recent data. Bariatric surgery does not increase risks for complications in subsequent body contouring procedures when compared to massive dietetic weight reduction.
Masuo, Kazuko; Katsuya, Tomohiro; Kawaguchi, Hideki; Fu, Yuxiao; Rakugi, Hiromi; Ogihara, Toshio; Tuck, Michael L
2005-11-01
A successful weight loss program is essential treatment for obesity-related diseases, but it is well known that the majority of individuals do not succeed in weight loss maintenance. The present study evaluates hormonal mechanisms and the relationship of beta2-adrenoceptor polymorphisms involved in individuals who regain weight after initially successful weight loss. Overweight Japanese men (n = 154) were enrolled in a 24-month weight loss program. Body mass index (BMI), total body fat mass, plasma norepinephrine (NE) and leptin levels, and beta2-adrenoceptor polymorphisms (Arg16Gly, Gln27Glu) were measured every 6 months for the 24-month period. Maintenance of weight loss was defined as significant weight loss (>or=10% reduction) from entry weight at 6 months and maintenance of the weight loss for an additional 18 months. Rebound weight gain was defined as significant weight loss at 6 months but subsequent regain of body weight during the next 18 months. The results showed that 37 subjects maintained weight loss during 24 months, whereas 36 subjects had rebound weight gain. The BMI at entry and calorie intake and physical activity at each period were similar between the two groups. Subjects who maintained weight loss had at entry a significantly lower fat mass and plasma NE levels compared to those with rebound weight gain. Body fat mass, NE, and leptin levels at entry predicted the degree of change in body weight during the 24-month study period. Subjects with rebound weight gain had a significantly higher frequency of the Gly16 allele for the beta2-adrenoceptor polymorphism compared to subjects who had a 24-month maintenance of weight loss. Subjects carrying the Gly16 allele also had significantly higher plasma NE, leptin, and body fat mass levels and a greater waist-to-hip ratio both at entry and throughout the study. A high initial degree of body fat mass and high plasma NE levels as determined by the Gly16 allele for the beta2-adrenoceptor polymorphisms predict those individuals who will have rebound weight gain after their initial successful weight loss.
The Role of Stress in the Corrosion Cracking of Aluminum Alloys
2013-03-01
Corrosion IGSCC Intergranular Stress Corrosion Cracking NAMLT Nitric Acid Mass Loss Test SCC Stress Corrosion Cracking TGSCC Transgranular Stress...solution at a nitric acid mass loss test (NAMLT) value of 49 mg/cm 2 with an applied voltage of 0.73 VSCE. They also showed that the amount of corrosion ...for determining the susceptibility to intergranualr corrosion of 5XXX series aluminum alloys by mass loss after exposure to nitric acid ," vol.
Physiological and Physical Effects of Different Milk Protein Supplements in Elite Soccer Players
Lollo, Pablo Christiano Barboza; Amaya-Farfan, Jaime; de Carvalho-Silva, Luciano Bruno
2011-01-01
Brazilian soccer championships involve a large number of teams and are known to cause stress and loss of muscle mass besides other negative physical consequences. This study was designed to compare the effects produced by three types of protein supplements on body composition, biochemical parameters and performance of a top Brazilian professional soccer team during an actual tournament. Twenty-four athletes assessed as having a normal nutrient intake were divided into three groups according to supplementation. Immediately after each daily training, the athletes received 1 g × kg−1 of body weight × day−1 of either whey protein (WP), hydrolyzed whey protein (HWP) or casein (CAS) for eight weeks. Before and after the experimental period, anthropometric characteristics, physical performance by the yo-yo and 3000m tests, and several biochemical variables in blood (uric acid, total cholesterol, HDL-cholesterol, creatinine, glucose) were measured. While no improvement in physical performance was observed with regard to the applied treatments, casein supplementation resulted in muscle mass increase (p<0.039), while WP and HWP favoured the maintenance of the initial muscle mass. Moreover, the eight-week intervention was found to cause no abnormalities in biochemical and anthropometric variables monitored, but instead, the intervention showed to be positive in comparison to the adverse anthropometric changes, when no supplementation was made. It was concluded that supplementation immediately after training sessions with any of the three sources of protein during the competitive period is beneficial and safe, as well as capable of sustaining or even increasing muscle mass. PMID:23486231
Weight loss and bone mineral density.
Hunter, Gary R; Plaisance, Eric P; Fisher, Gordon
2014-10-01
Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low bone mineral density (BMD), fearing BMD will be decreased. Confusion exists concerning the effects that weight loss has on bone health. Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid or large weight loss is often associated with loss of bone density, slower or smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. Although dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss.
A survey of mass loss from Be and shell stars using ultraviolet data from Copernicus
NASA Technical Reports Server (NTRS)
Marlborough, J. M.; Snow, T. P., Jr.
1976-01-01
Ultraviolet spectra of intermediate resolution have been obtained with Copernicus of twelve objects classified as Be or shell stars, and an additional 19 dwarfs of spectral classes B0-B4. Some of these spectra show marked asymmetries in certain resonance lines, especially the Si IV doublet at 1400 A, indicating the presence of outflowing material with maximum velocities of nearly 1000 km/sec. Direct evidence for mass loss at these velocities is seen for the first time in dwarf stars as late as B1.5. Later than B0.5, the only survey objects showing this phenomenon are Be stars. Among the stars considered there is a correlation between the presence of mass-loss effects and projected rotational velocity, suggesting that the UV flux from B1-B3 dwarfs is sufficient to drive high-velocity stellar winds only if rotation reduces the effective gravity near the equator. The role of mass-loss in producing the Be star phenomenon and the effects of rotation on mass loss are discussed.
Role of Anti-Inflammatory Cytokines on Muscle Mass and Performance Changes in Elderly Men and Women.
Rossi, A P; Budui, S; Zoico, E; Caliari, C; Mazzali, G; Fantin, F; D'Urbano, M; Paganelli, R; Zamboni, M
2017-01-01
Investigate the presence of a correlation between systemic inflammatory profile of community-dwelling individuals and the loss of muscular mass and performance in old age over a 4.5y follow-up, focusing on the role of anti-inflammatory cytokines in muscular changes in elderly. Longitudinal clinical study. Subjects were randomly selected from lists of 11 general practitioners in the city of Verona, Italy. The study included 120 subjects, 92 women and 28 men aged 72.27±2.06 years and with BMI of 26.52±4.07 kg/m2 at baseline. Six minutes walking test (6MWT), appendicular and leg fat free mass (FFM) as measured with Dual Energy X-ray absorptiometry, were obtained at baseline and after 4.5 years (4.5y) of mean follow-up. Height, weight, body mass index (BMI), and circulating levels of TNFα, IL-4, IL-10, and IL-13 were evaluated at baseline. A significant reduction of appendicular FFM, leg FFM and 6MWT performance (all p<0.001) was observed after 4.5 y follow-up. In a stepwise regression model, considering appendicular FFM decline as dependent variable, lnIL-4, BMI, baseline appendicular FFM, lnTNFα and lnIL-13 were significant predictors of appendicular FFM decline explaining 30.8% of the variance. While building a stepwise multiple regression considering leg FFM as a dependent variable, lnIL-4, BMI and leg FFM were significant predictors of leg FFM decline and explained 27.4% of variance. When considering 6MWT decline as a dependent variable, baseline 6MWT, lnIL-13 and lnTNFα were significant predictors of 6MWT decline to explain 22.9% of variance. Our study suggest that higher serum levels of anti-inflammatory markers, and in particular IL-4 and IL-13, may play a protective role on FFM and performance maintenance in elderly subjects.
NASA Astrophysics Data System (ADS)
Moelg, T.; Cullen, N. J.; Hardy, D. R.; Winkler, M.; Kaser, G.
2009-04-01
The use of spatially distributed (2-D) mass balance models has increased in recent years, but mostly focuses on extratropical glacier surfaces. Here we present the first application of a process-based 2-D model to an African glacier: Kersten Glacier on Kilimanjaro. Multi-year data from an automatic weather station (AWS) at 5873 m a.s.l. (500 hPa) serve to force the model. Validation variables comprise surface temperature, surface height change, snow depth, and incoming radiation - all of which indicate a good model performance. Analyses of the interannual variability in the most significant total mass budget terms (surface accumulation, melt, and sublimation), as well as in the related energy fluxes, exhibit a strong link to atmospheric moisture of a particular year. This is because net shortwave radiation (a result of both cloudiness and surface albedo) is the most variable energy flux on monthly to annual time scales. Internal accumulation (refreezing of melt water), however, shows a time lag and is strongest after a very wet year. Due to the limited validation data at lower elevations, we also perform a detailed sensitivity study by varying 17 model parameters - which yields a total mass loss estimate of 522 +/- 105 kg/m2/year under present climate conditions. Moreover, the verified model allows us to perform backward modeling of the last maximum extent of Kersten Glacier in the 1880s, which is indicated by a well preserved terminal moraine. This step reveals decreases in precipitation (30-45%), water vapor pressure (0.1-0.3 hPa) and cloud cover (2-4 percentage units) as the most likely local climate change between late 19th century and present. Thus, the study also demonstrates how 2-D modeling can help reconstruct past climate for a remote place prior to the availability of measurements. In our case these findings have great relevance for the debate of surface versus mid-tropospheric climate change in the tropics.
The life cycles of Be viscous decretion discs: The case of ω CMa
NASA Astrophysics Data System (ADS)
Ghoreyshi, M. R.; Carciofi, A. C.; Rímulo, L. R.; Vieira, R. G.; Faes, D. M.; Baade, D.; Bjorkman, J. E.; Otero, S.; Rivinius, Th
2018-06-01
We analyzed V-band photometry of the Be star ω CMa, obtained during the last four decades, during which the star went through four complete cycles of disc formation and dissipation. The data were simulated by hydrodynamic models based on a time-dependent implementation of the viscous decretion disc (VDD) paradigm, in which a disc around a fast-spinning Be star is formed by material ejected by the star and driven to progressively larger orbits by means of viscous torques. Our simulations offer a good description of the photometric variability during phases of disc formation and dissipation, which suggests that the VDD model adequately describes the structural evolution of the disc. Furthermore, our analysis allowed us to determine the viscosity parameter α, as well as the net mass and angular momentum (AM) loss rates. We find that α is variable, ranging from 0.1 to 1.0, not only from cycle to cycle but also within a given cycle. Additionally, build-up phases usually have larger values of α than the dissipation phases. Furthermore, during dissipation the outward AM flux is not necessarily zero, meaning that ω CMa does not experience a true quiescence but, instead, switches between a high to a low AM loss rate during which the disc quickly assumes an overall lower density but never zero. We confront the average AM loss rate with predictions from stellar evolution models for fast-rotating stars, and find that our measurements are smaller by more than one order of magnitude.
NASA Technical Reports Server (NTRS)
Downes, Stephanie M.; Farneti, Riccardo; Uotila, Petteri; Griffies, Stephen M.; Marsland, Simon J.; Bailey, David; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne;
2015-01-01
We characterise the representation of the Southern Ocean water mass structure and sea ice within a suite of 15 global ocean-ice models run with the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) protocol. The main focus is the representation of the present (1988-2007) mode and intermediate waters, thus framing an analysis of winter and summer mixed layer depths; temperature, salinity, and potential vorticity structure; and temporal variability of sea ice distributions. We also consider the interannual variability over the same 20 year period. Comparisons are made between models as well as to observation-based analyses where available. The CORE-II models exhibit several biases relative to Southern Ocean observations, including an underestimation of the model mean mixed layer depths of mode and intermediate water masses in March (associated with greater ocean surface heat gain), and an overestimation in September (associated with greater high latitude ocean heat loss and a more northward winter sea-ice extent). In addition, the models have cold and fresh/warm and salty water column biases centred near 50 deg S. Over the 1988-2007 period, the CORE-II models consistently simulate spatially variable trends in sea-ice concentration, surface freshwater fluxes, mixed layer depths, and 200-700 m ocean heat content. In particular, sea-ice coverage around most of the Antarctic continental shelf is reduced, leading to a cooling and freshening of the near surface waters. The shoaling of the mixed layer is associated with increased surface buoyancy gain, except in the Pacific where sea ice is also influential. The models are in disagreement, despite the common CORE-II atmospheric state, in their spatial pattern of the 20-year trends in the mixed layer depth and sea-ice.
Ongoing drought-induced uplift in the western United States.
Borsa, Adrian Antal; Agnew, Duncan Carr; Cayan, Daniel R.
2014-01-01
The western United States has been experiencing severe drought since 2013. The solid earth response to the accompanying loss of surface and near-surface water mass should be a broad region of uplift. We use seasonally adjusted time series from continuously operating global positioning system stations to measure this uplift, which we invert to estimate mass loss. The median uplift is 5 millimeters (mm), with values up to 15 mm in California’s mountains. The associated pattern of mass loss, ranging up to 50 centimeters (cm) of water equivalent, is consistent with observed decreases in precipitation and streamflow. We estimate the total deficit to be ~240 gigatons, equivalent to a 10-cm layer of water over the entire region, or the annual mass loss from the Greenland Ice Sheet.
Minderico, C S; Silva, A M; Fields, D A; Branco, T L; Martins, S S; Teixeira, P J; Sardinha, L B
2008-03-01
This study was designed to compare measured and predicted thoracic gas volume (V (TG)) after weight loss and to analyze the effect of body composition confounders such as waist circumference (WC) on measured V (TG) changes. Prospective intervention study. Outpatient University Laboratory, Lisbon, Portugal. Eighty-five overweight and obese women (body mass index = 30.0+/-3.5 kg/m(2); age = 39.0+/-5.7 years) participating in a 16-month university-based weight control program designed to increase physical activity and improve diet. Body weight (Wb), body volume (Vb), body density (Db), fat mass (FM), percent fat mass (%FM) and fat-free mass (FFM) were assessed by air-displacement plethysmography (ADP) at baseline and at post-intervention (16 months). The ADP assessment included a protocol to measure V (TG) and a software-based predicted V (TG). Dual-energy X-ray absorptiometry (DXA) (Hologic QDR 1500) was also used to estimate FM, %FM and FFM. Maximal oxygen uptake (VO(2) max) was assessed with a modified Balke cardiopulmonary exercise testing protocol with a breath-by-breath gas analysis. Significant differences between the baseline and post-weight loss intervention were observed for body weight and composition (Vb, Db, %FM, FM and FFM), and measures of V (TG) (measured: Delta=0.2 l, P<0.001; predicted: Delta=0.01 l, P<0.010) variables. Measured V (TG) change was negatively associated with the change in the WC (P=0.008), controlling for VO(2) max and age (P=0.007, P=0.511 and P=0.331). Linear regression analysis results indicated that %FM and FM using the measured and predicted V (TG) explained 72 and 76%, and 86 and 90% respectively, of the variance in %FM and FM changes using dual-energy x-ray absorptiometry. After weight loss, measured V (TG) increased significantly, which was partially attributed to changes is an indicator of body fat distribution such as WC. Consequently, measured and predicted V (TG) should not be used interchangeably when tracking changes in body composition. The mechanisms relating the reduction of an upper body fat distribution with an increase measured V (TG) are worthy of future investigation.
Mass-losing peculiar red giants - The comparison between theory and observations
NASA Technical Reports Server (NTRS)
Jura, M.
1989-01-01
The mass loss from evolved red giants is considered. It seems that red giants on the Asymptotic Giant Branch (AGB) are losing between 0.0003 and 0.0006 solar mass/sq kpc yr in the solar neighborhood. If all the main sequence stars between 1 and 5 solar masses ultimately evolve into white dwarfs with masses of 0.7 solar mass, the predicted mass loss rate in the solar neighborhood from these stars is 0.0008 solar mass/sq kpc yr. Although there are still uncertainties, it appears that there is no strong disagreement between theory and observation.
Titon, Braz; Gomes, Fernando Ribeiro
2015-01-01
Amphibian species richness increases toward the equator, particularly in humid tropical forests. This relation between amphibian species richness and environmental water availability has been proposed to be a consequence of their high rates of evaporative water loss. In this way, traits that estimate water balance are expected to covary with climate and constrain a species’ geographic distribution. Furthermore, we predicted that coexisting species of anurans would have traits that are adapted to local hydric conditions. We compared the traits that describe water balance in 17 species of anurans that occur in the mesic Atlantic Forest and xeric Cerrado (savannah) habitats of Brazil. We predicted that species found in the warmer and dryer areas would show a lower sensitivity of locomotor performance to dehydration (SLPD), increased resistance to evaporative water loss (REWL) and higher rates of water uptake (RWU) than species restricted to the more mesic areas. We estimated the allometric relations between the hydric traits and body mass using phylogenetic generalized least squares. These regressions showed that REWL scaled negatively with body mass, whereas RWU scaled positively with body mass. Additionally, species inhabiting areas characterized by higher and more seasonally uniform temperatures, and lower and more seasonally concentrated precipitation, such as the Cerrado, had higher RWU and SLPD than species with geographical distributions more restricted to mesic environments, such as the Atlantic Forest. These results support the hypothesis that the interspecific variation of physiological traits shows an adaptation pattern to abiotic environmental traits. PMID:26469787
DORIS-based point mascons for the long term stability of precise orbit solutions
NASA Astrophysics Data System (ADS)
Cerri, L.; Lemoine, J. M.; Mercier, F.; Zelensky, N. P.; Lemoine, F. G.
2013-08-01
In recent years non-tidal Time Varying Gravity (TVG) has emerged as the most important contributor in the error budget of Precision Orbit Determination (POD) solutions for altimeter satellites' orbits. The Gravity Recovery And Climate Experiment (GRACE) mission has provided POD analysts with static and time-varying gravity models that are very accurate over the 2002-2012 time interval, but whose linear rates cannot be safely extrapolated before and after the GRACE lifespan. One such model based on a combination of data from GRACE and Lageos from 2002-2010, is used in the dynamic POD solutions developed for the Geophysical Data Records (GDRs) of the Jason series of altimeter missions and the equivalent products from lower altitude missions such as Envisat, Cryosat-2, and HY-2A. In order to accommodate long-term time-variable gravity variations not included in the background geopotential model, we assess the feasibility of using DORIS data to observe local mass variations using point mascons. In particular, we show that the point-mascon approach can stabilize the geographically correlated orbit errors which are of fundamental interest for the analysis of regional Mean Sea Level trends based on altimeter data, and can therefore provide an interim solution in the event of GRACE data loss. The time series of point-mass solutions for Greenland and Antarctica show good agreement with independent series derived from GRACE data, indicating a mass loss at rate of 210 Gt/year and 110 Gt/year respectively.
Blowing Snow Sublimation at a High Altitude Alpine Site and Effects on the Surface Boundary Layer
NASA Astrophysics Data System (ADS)
Vionnet, V.; Guyomarc'h, G.; Sicart, J. E.; Deliot, Y.; Naaim-Bouvet, F.; Bellot, H.; Merzisen, H.
2017-12-01
In alpine terrain, wind-induced snow transport strongly influences the spatial and temporal variability of the snow cover. During their transport, blown snow particles undergo sublimation with an intensity depending on atmospheric conditions (air temperature and humidity). The mass loss due to blowing snow sublimation is a source of uncertainty for the mass balance of the alpine snowpack. Additionally, blowing snow sublimation modifies humidity and temperature in the surface boundary layer. To better quantify these effects in alpine terrain, a dedicated measurement setup has been deployed at the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps, Cryobs-Clim network) since winter 2015/2016. It consists in three vertical masts measuring the near-surface vertical profiles (0.2-5 m) of wind speed, air temperature and humidity and blowing snow fluxes and size distribution. Observations collected during blowing snow events without concurrent snowfall show only a slight increase in relative humidity (10-20%) and near-surface saturation is never observed. Estimation of blowing snow sublimation rates are then obtained from these measurements. They range between 0 and 5 mmSWE day-1 for blowing snow events without snowfall in agreement with previous studies in different environments (North American prairies, Antarctica). Finally, an estimation of the mass loss due to blowing snow sublimation at our experimental site is proposed for two consecutive winters. Future use of the database collected in this study includes the evaluation of blowing snow models in alpine terrain.
McMahon, C D; Chai, R; Radley-Crabb, H G; Watson, T; Matthews, K G; Sheard, P W; Soffe, Z; Grounds, M D; Shavlakadze, T
2014-12-01
The age-related loss of skeletal muscle mass and function is termed sarcopenia and has been attributed to a decline in concentrations of insulin-like growth factor-1 (IGF-1). We hypothesized that constitutively expressed IGF-1 within skeletal muscles with or without exercise would prevent sarcopenia. Male transgenic mice that overexpress IGF-1 Ea in skeletal muscles were compared with wild-type littermates. Four-month-old mice were assigned to be sedentary, or had access to free-running wheels, until 18 or 28 months of age. In wild-type mice, the mass of the quadriceps muscles was reduced at 28 months and exercise prevented such loss, without affecting the diameter of myofibers. Conversely, increased IGF-1 alone was ineffective, whereas the combination of exercise and IGF-1 was additive in maintaining the diameter of myofibers in the quadriceps muscles. For other muscles, the combination of IGF-1 and exercise was variable and either increased or decreased the mass at 18 months of age, but was ineffective thereafter. Despite an increase in the diameter of myofibers, grip strength was not improved. In conclusion, our data show that exercise and IGF-1 have a modest effect on reducing aged-related wasting of skeletal muscle, but that there is no improvement in muscle function when assessed by grip strength. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Nutritional assessment and perioperative nutritional support in gastric cancer patients].
Seo, Kyung Won; Yoon, Ki Young
2013-04-01
Weight loss and malnutrition are common in cancer patients. Although weight loss is predominantly due to loss of fat mass, the morbidity risk is given by the decrease in muscle mass. The assessment of nutritional status is essential for a diagnosis of nutritional compromise and required for the multidisciplinary approach. Subjective global assessment (SGA) is made by the patients nutritional symptoms and weight loss. The objective assessment, a significant weight loss (>10%) for 6 months is considered an indicator of nutritional deficiency. The mean body index, body fat mass and body protein mass are decreased as cancer stage increases. The biochemical data of albumin, cholesterol, triglyceride, Zn, transferrin, total lymphocyte count are decreased in advanced cancer stage. Daily energy intake, cabohyderate and Vit B1 intake is decreased according to cancer stage. The patients are divided into three groups according to SGA. The three groups showed a significant difference in body weight, 1 month weight loss%, 6 month weight loss%, body mass index, mid arm circumference, albumin, energy intake, as well as carbohyderate intake protein and energy malnutrition. Nutritional assessment is of great importance because undernutrition has been shown to be associated with increase in stomach cancer associated morbidity and mortality. The authors concluded that nutritional assessment should be done in cancer patients preoperatively, and with adequate nutritional support, the morbidity and mortality would be decreased.
Kubat, Eric; Giori, Nicholas J; Hwa, Kimberly; Eisenberg, Dan
2016-08-01
Obesity exacerbates pre-existing musculoskeletal disease and joint pain. This may limit physical activity in obese individuals. We sought to identify the disease burden and impact of osteoarthritis of the lumbar back, hip, knee, and ankle in veterans undergoing bariatric surgery. Veterans Affairs medical center. Retrospective review of a prospective bariatric database of operations performed at a single Veterans Affairs medical center. Patients with osteoarthritis of the lumbar spine, hip, knee, or ankle were identified and diagnosis confirmed by electronic health record review of prior radiographic reports. Analysis was performed using χ 2 test for continuous variables. Student's t test and one-way analysis of variance were used to compare qualitative variables. Of 254 bariatric surgical patients, 83.9% had preoperative musculoskeletal pain before bariatric surgery and 59.1% had a confirmed diagnosis of osteoarthritis of the lumbar spine, hips, knees, and/or ankles. Follow-up rate was 97.4%, 85.4%, and 82.6% at 1, 3, and 5 years respectively. Of patients with osteoarthritis, 58.6% had knee involvement and 46% had multiple sites involved. In the cohort without osteoarthritis, percent excess body mass index loss was 66.9% at 1 year versus 58.5% in the cohort with osteoarthritis (P = .009), 66.1% versus 51.9% (P = .001) at 3 years, and 64.3% versus 50.1% (P = .002) after 5 years. Percent total weight loss was 28.4% versus 25.2%, 28.0% versus 22.8%, and 27.1% versus 22.4%, respectively, at 1, 3, and 5 years. Osteoarthritis is common among veterans undergoing bariatric surgery. It is associated with significantly less weight loss compared to veterans who do not have osteoarthritis, up to 5 years after bariatric surgery. Published by Elsevier Inc.
Zwickert, Kristy; Rieger, Elizabeth; Swinbourne, Jessica; Manns, Clare; McAulay, Claire; Gibson, Alice A; Sainsbury, Amanda; Caterson, Ian D
Text-message and e-mail are emerging as potential methods for improving weight outcomes among obese individuals. The optimal volume, frequency, and timing of such interventions are unknown. This study investigated the effect of adjunct technological support on weight and psychological variables after a 3-month cognitive-behaviour therapy (CBT) group intervention. Sixty obese adults were randomised to a CBT programme plus intensive (text-message and e-mail; CBT+ITS) or minimal (text-message only; CBT+MTS) technological support. Assessments occurred at baseline, 3-, 6-, 9-, and 15-months. Outcome variables included weight (kg), body mass index (kg/m 2 ), waist circumference (cm), binge-eating tendencies, weight self-efficacy, and weight control cognitions and behaviours. CBT+ITS (n=31) and CBT+MTS (n=29) participants lost 5.2% (±1.1) and 4.7% (±1.1) of their baseline weight by 3-months, 8.4% (±1.2) and 6.4% (±1.1) by 6-months, 9.6% (±1.3) and 6.4% (±1.3) by 9-months, and sustained a 7.5% (±1.3) and 5.1% (±1.3) loss at 15-months, respectively. There were no significant differences between intensive and minimal support, however, the CBT+ITS group showed a marginal advantage across all anthropometric measures. A low intensity text-message support programme is just as effective as higher intensity technological support for maintaining weight loss in obese adults. This represents a low-cost means of aiding weight loss maintenance without reliance on extended face-to-face treatment. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Kim, Miji; Kim, Junghoon; Won, Chang Won
2018-06-01
To investigate the relationship between involuntary weight loss with low muscle mass and health-related quality of life in a large representative sample of older adults. A nationwide cross-sectional study based on data from the Korea National Health and Nutritional Examination Survey, 2008 to 2011. Study participants included 2249 individuals aged ≥70 years. The participants reported an unintentional weight loss >3 kg in the past year. Appendicular lean mass was measured using dual-energy X-ray absorptiometry and calculated with the appendicular lean mass index. Health-related quality of life was measured using the EuroQol-5 dimension (EQ-5D) instrument. Univariate and multivariate survey logistic regression models were used to calculate odds ratios (OR) with 95% confidence intervals (95% CI) for the lowest quintile of the EQ-5D index. In total, 39.1% of participants were male and 60.9% were female. The weighted mean age was 75.6 years (95% CI; 75.3-75.9). Clinically significant weight loss is typically 5% of one's body weight; average, 2.8 kg (3.1 kg for men; 2.7 kg, women) for our participants. Compared with the normal reference group and after adjusting for potential confounders, the ORs for the lowest quintile of the EQ-5D indices were 1.39 (95% CI, 0.92-2.10), 2.56 (95% CI, 1.56-4.18), and 3.40 (95% CI, 2.05 to 5.63) for the low muscle mass, involuntary weight loss, involuntary weight loss with low muscle mass groups, respectively. Involuntary weight loss combined with low muscle mass was more closely associated with poor quality of life than involuntary weight loss alone in community-dwelling older adults. Copyright © 2018 Elsevier Inc. All rights reserved.
Ting, Lena H.
2014-01-01
The simple act of standing up is an important and essential motor behavior that most humans and animals achieve with ease. Yet, maintaining standing balance involves complex sensorimotor transformations that must continually integrate a large array of sensory inputs and coordinate multiple motor outputs to muscles throughout the body. Multiple, redundant local sensory signals are integrated to form an estimate of a few global, task-level variables important to postural control, such as body center of mass position and body orientation with respect to Earth-vertical. Evidence suggests that a limited set of muscle synergies, reflecting preferential sets of muscle activation patterns, are used to move task variables such as center of mass position in a predictable direction following a postural perturbations. We propose a hierarchal feedback control system that allows the nervous system the simplicity of performing goal-directed computations in task-variable space, while maintaining the robustness afforded by redundant sensory and motor systems. We predict that modulation of postural actions occurs in task-variable space, and in the associated transformations between the low-dimensional task-space and high-dimensional sensor and muscle spaces. Development of neuromechanical models that reflect these neural transformations between low and high-dimensional representations will reveal the organizational principles and constraints underlying sensorimotor transformations for balance control, and perhaps motor tasks in general. This framework and accompanying computational models could be used to formulate specific hypotheses about how specific sensory inputs and motor outputs are generated and altered following neural injury, sensory loss, or rehabilitation. PMID:17925254
Resolving the Conflict Between Associative Overdominance and Background Selection
Zhao, Lei; Charlesworth, Brian
2016-01-01
In small populations, genetic linkage between a polymorphic neutral locus and loci subject to selection, either against partially recessive mutations or in favor of heterozygotes, may result in an apparent selective advantage to heterozygotes at the neutral locus (associative overdominance) and a retardation of the rate of loss of variability by genetic drift at this locus. In large populations, selection against deleterious mutations has previously been shown to reduce variability at linked neutral loci (background selection). We describe analytical, numerical, and simulation studies that shed light on the conditions under which retardation vs. acceleration of loss of variability occurs at a neutral locus linked to a locus under selection. We consider a finite, randomly mating population initiated from an infinite population in equilibrium at a locus under selection. With mutation and selection, retardation occurs only when S, the product of twice the effective population size and the selection coefficient, is of order 1. With S >> 1, background selection always causes an acceleration of loss of variability. Apparent heterozygote advantage at the neutral locus is, however, always observed when mutations are partially recessive, even if there is an accelerated rate of loss of variability. With heterozygote advantage at the selected locus, loss of variability is nearly always retarded. The results shed light on experiments on the loss of variability at marker loci in laboratory populations and on the results of computer simulations of the effects of multiple selected loci on neutral variability. PMID:27182952
Liu, Gang; Lu, Ling; Sun, Qi; Ye, Xingwang; Sun, Liang; Liu, Xin; Zong, Geng; Jin, Qianlu; Li, Huaixing; Lin, Xu
2014-10-01
Poor vitamin D status can increase age-related muscle mass loss. However, existing prospective evidence is limited and controversial. This study aimed to investigate the association of plasma 25-hydroxyvitamin D [25(OH)D] with muscle mass loss in middle-aged and elderly Chinese individuals over 6 years. We conducted a prospective cohort study. This community-based study included 568 men and women aged 50 to 70 years at baseline. Baseline plasma concentrations of 25(OH)D and biomarkers of liver and kidney functions and inflammation were measured. Body composition was assessed at baseline and 6-year follow-up by dual-energy x-ray absorptiometry. Appendicular skeletal muscle mass (ASMM) and trunk lean mass were calculated and total body lean mass was defined as an overall measure of total nonfat and nonbone tissues. Descriptive statistics and multiple linear regression were applied. The 6-year loss of ASMM was 1.14 kg (5.3%) in men and 0.47 kg (3.1%) in women (all P values <0.001). Compared with the highest 25(OH)D tertile, participants in the lowest tertile had significantly more absolute loss of ASMM (-1.21 vs -1.00 kg; P for trend=0.024) after multivariate adjustments for conventional confounders, as well as protein intake. The association persisted after additional adjustment of bone mineral density and inflammatory markers (P for trend=0.017). No significant associations were detected between 25(OH)D and absolute loss of trunk lean mass or total body lean mass. Lower 25(OH)D concentrations were prospectively associated with greater ASMM loss in middle-aged and elderly Chinese individuals independent of bone mineral density, inflammation, diet, and other risk factors. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Bittner, James A; Balfe, Susan; Pittendrigh, Barry R; Popovics, John S
2018-05-28
Cowpea provides a significant source of protein for over 200 million people in Sub-Saharan Africa. The cowpea bruchid, Callosobruchus maculatus (F) (Coleoptera: Bruchidae), is a major pest of cowpea as the larval stage attacks stored cowpea grains, causing postharvest loss. Cowpea bruchid larvae spend all their time feeding within the cowpea seed. Past research findings, published over 25 yr ago, have shown that feeding activity of several bruchids within a cowpea seed emit mechanical vibrations within the frequency range 5-75 kHz. This work led to the development of monitoring technologies that are both important for basic research and practical application. Here, we use newer and significantly improved technologies to re-explore the nature of the vibration signals produced by an individual C. maculatus, when it feeds in cowpea seeds. Utilizing broadband frequency sensing, individual fourth-instar bruchid larvae feeding activities (vibration events) were recorded to identify specific key emission frequencies. Verification of recorded events and association to actual feeding activities was achieved through mass measurements over 24 h for a series of replicates. The measurements identified variable peak event emission frequencies across the replicate sample set ranging in frequency from 16.4 to 26.5 kHz. A positive correlation between the number of events recorded and the measured mass loss of the cowpea seed was observed. The procedure and verification reported in this work provide an improved basis for laboratory-based monitoring of single larval feeding. From the rich dataset captured, additional analysis can be carried out to identify new key variables of hidden bruchid larval activity.
Self-esteem outcomes over a summer camp for obese youth.
McGregor, S; McKenna, J; Gately, P; Hill, A J
2016-12-01
Variation in the existing literature on the psychosocial benefits of weight loss in obese youth results, in part, from methodological limitations and modest weight loss. Accordingly, this research assessed perceived self-competence and low self-esteem during an intensive weight loss programme in a large sample of obese youth and related these to starting weight, gender and weight loss. Over 4 years, 303 obese male and female adolescents (body mass index [BMI] 34.3 kg m -2 , BMI standard deviation score 2.99; 14.7 years) attended a residential weight loss camp for a mean duration of 31 d. Outcome variables included dimensional self-esteem (Harter) and weight change over the camp. At the start of camp, obese youth scored highest on social acceptance and lowest on physical appearance and athletic competence. Global self-worth and most domains of self-competence improved significantly over the intervention. The proportion with low global self-worth reduced from 35% to 16%, but there was little change in the proportion reporting high self-competence (23%). Mean weight loss was -5.5 kg (BMI standard deviation scores -0.25) with boys and those heaviest at the start losing most. Weight loss was significantly correlated with improved physical appearance (r = 0.13) and athletic competence (r = 0.19), but not global self-worth. This intensive weight loss intervention yielded significant psychological benefit, especially in self-competence and among individuals achieving most weight loss. The weak association with weight loss suggests the influence of other contributing environmental or social features that should be the focus of further research. © 2016 World Obesity Federation.
Sensitization of Naturally Aged Aluminum 5083 Armor Plate
2015-07-29
susceptibility to intergranular corrosion of 5XXX series aluminum alloys by mass loss after exposure to nitric acid (NAMLT Test)”, ASTM G-67-04. [6...67 nitric acid mass-loss values were 19 to 25 mg/cm2. The transmission electron microscopy microstructure of the sample was found to be consistent...5XXX Series Aluminum Alloys by Mass Loss after Exposure to Nitric Acid “ was used as an assessment of the degree of sensitization (DOS) of the alloy.[5
Reinforced carbon-carbon oxidation behavior in convective and radiative environments
NASA Technical Reports Server (NTRS)
Curry, D. M.; Johansen, K. J.; Stephens, E. W.
1978-01-01
Reinforced carbon-carbon, which is used as thermal protection on the space shuttle orbiter wing leading edges and nose cap, was tested in both radiant and plasma arcjet heating test facilities. The test series was conducted at varying temperatures and pressures. Samples tested in the plasma arcjet facility had consistently higher mass loss than those samples tested in the radiant facility. A method using the mass loss data is suggested for predicting mission mass loss for specific locations on the Orbiter.
NASA Astrophysics Data System (ADS)
Schnitzer, S.; Seitz, F.; Eicker, A.; Güntner, A.; Wattenbach, M.; Menzel, A.
2013-06-01
For the estimation of soil loss by erosion in the strongly affected Chinese Loess Plateau we applied the Universal Soil Loss Equation (USLE) using a number of input data sets (monthly precipitation, soil types, digital elevation model, land cover and soil conservation measures). Calculations were performed in ArcGIS and SAGA. The large-scale soil erosion in the Loess Plateau results in a strong non-hydrological mass change. In order to investigate whether the resulting mass change from USLE may be validated by the gravity field satellite mission GRACE (Gravity Recovery and Climate Experiment), we processed different GRACE level-2 products (ITG, GFZ and CSR). The mass variations estimated in the GRACE trend were relatively close to the observed sediment yield data of the Yellow River. However, the soil losses resulting from two USLE parameterizations were comparatively high since USLE does not consider the sediment delivery ratio. Most eroded soil stays in the study area and only a fraction is exported by the Yellow River. Thus, the resultant mass loss appears to be too small to be resolved by GRACE.
Mass loss at Saturn: The contribution of plasmoids
NASA Astrophysics Data System (ADS)
Kivelson, M.; Jia, X.; Jackman, C. M.
2017-12-01
Jia and Kivelson (2012) showed that an MHD simulation of Saturn's magnetosphere including rotating field-aligned currents generates a plasmoid on each rotation period. For southern summer conditions, plasmoids form through reconnection in the tail near midnight at a rotation phase for which the core magnetic field perturbation points towards the planet in the LT sector of the release. After release, they move northward and outward in the post midnight sector. Mass loss is found to be dominated by plasmoid release, and to compare closely to the mass source rate; much of the outward mass flux is found in the 0300-0900 LT sector. However, studies of plasmoid signatures in Cassini magnetometer data conclude that releases do not occur each rotation period and infer mass loss rates far smaller than Saturn's mass source rate (Jackman et al., 2014). Studies based on plasma data also infer loss rates smaller than the source rate from Enceladus (Thomsen, 2013). The simulation suggests that plasmoid occurrence frequency depends strongly on local time and latitude. Indeed, in regions near the equator and near midnight, where plasmoids are present in the simulation, the occurrence frequency of plasmoid releases inferred from magnetometer data is higher than elsewhere (Jackman et al., 2016; Smith et al., 2016), with occurrence probability peaking at the phase predicted by the simulation. We consider how the observational limitations should be modified to establish mass loss rates and plasmoid occurrence frequency.
The association of middle ear effusion with trigeminal nerve mass lesions in dogs.
Wessmann, A; Hennessey, A; Goncalves, R; Benigni, L; Hammond, G; Volk, H A
2013-11-09
The trigeminal nerve is involved in the opening of the pharyngeal orifice of the Eustachian tube by operating the tensor veli palatini muscle. The hypothesis was investigated that middle ear effusion occurs in a more severe disease phenotype of canine trigeminal nerve mass lesions compared with dogs without middle ear effusion. Three observers reviewed canine MRIs with an MRI-diagnosis of trigeminal nerve mass lesion from three institutions. Various parameters describing the musculature innervated by the trigeminal nerve were scored and compared between dogs with and without middle ear effusion. Nineteen dogs met the inclusion criteria. Ipsilateral middle ear effusion was observed in 63 per cent (95% CI 48.4 per cent to 77.6 per cent) of the dogs. The size of the trigeminal nerve mass lesions was positively correlated with the severity of masticatory muscle mass loss (Spearman r=0.5, P=0.03). Dogs with middle ear effusion had a significantly increased generalised masticatory muscle mass loss (P=0.02) or tensor veli palatini muscle loss score (P=0.03) compared with those without. Larger trigeminal nerve mass lesions were associated with a greater degree of masticatory muscle mass loss. Masticatory muscle mass and, importantly, tensor veli palatini muscle mass was more severely affected in dogs with middle ear effusion suggesting an associated Eustachian tube dysfunction.
Mass Balance of the West Antarctic Ice-Sheet from ICESat Measurements
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Li, Jun; Robins, John; Saba, Jack L.; Yi, Donghui
2011-01-01
Mass balance estimates for 2003-2008 are derived from ICESat laser altimetry and compared with estimates for 1992-2002 derived from ERS radar altimetry. The net mass balance of 3 drainage systems (Pine Island, Thwaites/Smith, and the coast of Marie Bryd) for 2003-2008 is a loss of 100 Gt/yr, which increased from a loss of 70 Gt/yr for the earlier period. The DS including the Bindschadler and MacAyeal ice streams draining into the Ross Ice Shelf has a mass gain of 11 Gt/yr for 2003-2008, compared to an earlier loss of 70 Gt/yr. The DS including the Whillans and Kamb ice streams has a mass gain of 12 Gt/yr, including a significant thickening on the upper part of the Kamb DS, compared to a earlier gain of 6 Gt/yr (includes interpolation for a large portion of the DS). The other two DS discharging into the Ronne Ice Shelf and the northern Ellsworth Coast have a mass gain of 39 Gt/yr, compared to a gain of 4 Gt/yr for the earlier period. Overall, the increased losses of 30 Gt/yr in the Pine Island, Thwaites/Smith, and the coast of Marie Bryd DSs are exceeded by increased gains of 59 Gt/yr in the other 4 DS. Overall, the mass loss from the West Antarctic ice sheet has decreased to 38 Gt/yr from the earlier loss of 67 Gt/yr, reducing the contribution to sea level rise to 0.11 mm/yr from 0.19 mm/yr
Myths and methodologies: Making sense of exercise mass and water balance.
Cheuvront, Samuel N; Montain, Scott J
2017-09-01
What is the topic of this review? There is a need to revisit the basic principles of exercise mass and water balance, the use of common equations and the practice of interpreting outcomes. What advances does it highlight? We propose use of the following equation as a way of simplifying exercise mass and water balance calculations in conditions where food is not consumed and waste is not excreted: ∆body mass - 0.20 g/kcal -1 = ∆body water. The relative efficacy of exercise drinking behaviours can be judged using the following equation: percentage dehydration = [(∆body mass - 0.20 g kcal -1 )/starting body mass] × 100. Changes in body mass occur because of flux in liquids, solids and gases. This knowledge is crucial for understanding metabolism, health and human water needs. In exercise science, corrections to observed changes in body mass to estimate water balance are inconsistently applied and often misinterpreted, particularly after prolonged exercise. Although acute body mass losses in response to exercise can represent a close surrogate for body water losses, the discordance between mass and water balance equivalence becomes increasingly inaccurate as more and more energy is expended. The purpose of this paper is briefly to clarify the roles that respiratory water loss, gas exchange and metabolic water production play in the correction of body mass changes for fluid balance determinations during prolonged exercise. Computations do not include waters of association with glycogen because any movement of water among body water compartments contributes nothing to water or mass flux from the body. Estimates of sweat loss from changes in body mass should adjust for non-sweat losses when possible. We propose use of the following equation as a way of simplifying the study of exercise mass and water balance: ∆body mass - 0.20 g kcal -1 = ∆body water. This equation directly controls for the influence of energy expenditure on body mass balance and the approximate offsetting equivalence of respiratory water loss and metabolic water production on body water balance. The relative efficacy of exercise drinking behaviours can be judged using the following equation: percentage dehydration = [(∆body mass - 0.20 g kcal -1 )/starting body mass] × 100. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Detection and Analysis of Complex Patterns of Ice Dynamics in Antarctica from ICESat Laser Altimetry
NASA Astrophysics Data System (ADS)
Babonis, Gregory Scott
There remains much uncertainty in estimating the amount of Antarctic ice mass change, its dynamic component, and its spatial and temporal patterns. This work remedies the limitations of previous studies by generating the first detailed reconstruction of total and dynamic ice thickness and mass changes across Antarctica, from ICESat satellite altimetry observations in 2003-2009 using the Surface Elevation Reconstruction and Change Detection (SERAC) method. Ice sheet thickness changes are calculated with quantified error estimates for each time when ICESat flew over a ground-track crossover region, at approximately 110,000 locations across the Antarctic Ice Sheet. The time series are partitioned into changes due to surficial processes and ice dynamics. The new results markedly improve the spatial and temporal resolution of surface elevation, volume, and mass change rates for the AIS, and can be sampled at annual temporal resolutions. The results indicate a complex spatiotemporal pattern of dynamic mass loss in Antarctica, especially along individual outlet glaciers, and allow for the quantification of the annual contribution of Antarctic ice loss to sea level rise. Over 5000 individual locations exhibit either strong dynamic ice thickness change patterns, accounting for approximately 500 unique spatial clusters that identify regions likely influenced by subglacial hydrology. The spatial distribution and temporal behavior of these regions reveal the complexity and short-time scale variability in the subglacial hydrological system. From the 500 unique spatial clusters, over 370 represent newly identified, and not previously published, potential subglacial water bodies indicating an active subglacial hydrological system over a much larger region than previously observed. These numerous new observations of dynamic changes provide more than simply a larger set of data. Examination of both regional and local scale dynamic change patterns across Antarctica shows newly discovered connections between the geology and ice sheet dynamics of Antarctica, particularly along the boundary between East and West Antarctica in the Pagano Shear Zone. Additionally, increased dynamic activity is shown to concentrate in regions of Antarctica most likely to experience catastrophic failure and collapse in the future. Further quantification of mass and volume changes demonstrates that the methods described within allow for a true reconciliation between different satellite methods of measuring ice sheet mass and volume balance, and show that Antarctica is losing enough mass between 2003 and 2009 to raise global sea levels 0.1 mm/yr during that time. Additionally, analysis of local patterns of dynamic ice thickness changes shows that there is continued or increased ice loss, since before the ICESat mission period, in many of the coastal sectors of Antarctica.
Detection of Accretion X-Rays from QS Vir: Cataclysmic or a Lot of Hot Air?
NASA Astrophysics Data System (ADS)
Matranga, Marco; Drake, Jeremy J.; Kashyap, Vinay; Steeghs, Danny
2012-03-01
An XMM-Newton observation of the nearby "pre-cataclysmic" short-period (P orb = 3.62 hr) binary QS Vir (EC 13471-1258) revealed regular narrow X-ray eclipses when the white dwarf passed behind its M2-4 dwarf companion. The X-ray emission provides a clear signature of mass transfer and accretion onto the white dwarf. The low-resolution XMM-Newton EPIC spectra are consistent with a cooling flow model and indicate an accretion rate of \\dot{M} = 1.7 \\times 10^{-13} \\,M_\\odot yr-1. At 48 pc distant, QS Vir is then the second nearest accreting cataclysmic variable known, with one of the lowest accretion rates found to date for a non-magnetic system. To feed this accretion through a wind would require a wind mass-loss rate of \\dot{M}\\sim 2\\times 10^{-12}\\,M_\\odot yr-1 if the accretion efficiency is of the order of 10%. Consideration of likely mass-loss rates for M dwarfs suggests this is improbably high and pure wind accretion unlikely. A lack of accretion disk signatures also presents some difficulties for direct Roche lobe overflow. We speculate that QS Vir is on the verge of Roche lobe overflow, and that the observed mass transfer could be supplemented by upward chromospheric flows on the M dwarf, analogous to spicules and mottles on the Sun, that escape the Roche surface to be subsequently swept up into the white dwarf Roche lobe. If so, QS Vir would be in a rare evolutionary phase lasting only a million years. The X-ray luminosity of the M dwarf estimated during primary eclipse is LX = 3 × 1028 erg s-1, which is consistent with that of rapidly rotating "saturated" K and M dwarfs.
Assessment of Sample Preparation Bias in Mass Spectrometry-Based Proteomics.
Klont, Frank; Bras, Linda; Wolters, Justina C; Ongay, Sara; Bischoff, Rainer; Halmos, Gyorgy B; Horvatovich, Péter
2018-04-17
For mass spectrometry-based proteomics, the selected sample preparation strategy is a key determinant for information that will be obtained. However, the corresponding selection is often not based on a fit-for-purpose evaluation. Here we report a comparison of in-gel (IGD), in-solution (ISD), on-filter (OFD), and on-pellet digestion (OPD) workflows on the basis of targeted (QconCAT-multiple reaction monitoring (MRM) method for mitochondrial proteins) and discovery proteomics (data-dependent acquisition, DDA) analyses using three different human head and neck tissues (i.e., nasal polyps, parotid gland, and palatine tonsils). Our study reveals differences between the sample preparation methods, for example, with respect to protein and peptide losses, quantification variability, protocol-induced methionine oxidation, and asparagine/glutamine deamidation as well as identification of cysteine-containing peptides. However, none of the methods performed best for all types of tissues, which argues against the existence of a universal sample preparation method for proteome analysis.
Tropical cyclone-related socio-economic losses in the western North Pacific region
NASA Astrophysics Data System (ADS)
Welker, C.; Faust, E.
2013-01-01
The western North Pacific (WNP) is the area of the world most frequently affected by tropical cyclones (TCs). However, little is known about the socio-economic impacts of TCs in this region, probably because of the limited relevant loss data. Here, loss data from Munich RE's NatCatSERVICE database is used, a high-quality and widely consulted database of natural disasters. In the country-level loss normalisation technique we apply, the original loss data are normalised to present-day exposure levels by using the respective country's nominal gross domestic product at purchasing power parity as a proxy for wealth. The main focus of our study is on the question of whether the decadal-scale TC variability observed in the Northwest Pacific region in recent decades can be shown to manifest itself economically in an associated variability in losses. It is shown that since 1980 the frequency of TC-related loss events in the WNP exhibited, apart from seasonal and interannual variations, interdecadal variability with a period of about 22 yr - driven primarily by corresponding variations of Northwest Pacific TCs. Compared to the long-term mean, the number of loss events was found to be higher (lower) by 14% (9%) in the positive (negative) phase of the decadal-scale WNP TC frequency variability. This was identified for the period 1980-2008 by applying a wavelet analysis technique. It was also possible to demonstrate the same low-frequency variability in normalised direct economic losses from TCs in the WNP region. The identification of possible physical mechanisms responsible for the observed decadal-scale Northwest Pacific TC variability will be the subject of future research, even if suggestions have already been made in earlier studies.
Noise and hand-arm vibration exposure in relation to the risk of hearing loss.
Pettersson, Hans; Burström, Lage; Hagberg, Mats; Lundström, Ronnie; Nilsson, Tohr
2012-01-01
The aim of this study was to examine the possible association of combined exposure of noise and hand-arm vibration (HAV) and the risk of noise-induced hearing loss. Workers in a heavy engineering industry were part of a dynamic cohort. Of these workers, 189 had HAV exposure, and their age and hearing status were recorded in the same year and were, therefore, included in the analysis. Data on HAV duration and acceleration was gathered through questionnaires, observations, and measurements. All available audiograms were categorized into normal and hearing loss. The first exposure variable included the lifetime HAV exposure. The lifetime HAV exposure was multiplied by the acceleration of HAV for the second and third exposure variable. Logistic regression using the Generalized Estimation Equations method was chosen to analyze the data to account for the repeated measurements. The analysis was performed with both continuous exposure variables and with exposure variables grouped into exposure quartiles with hearing loss as an outcome and age as a covariate. With continuous exposure variables, the odds ratio (OR) with a 95% confidence interval (CI) for hearing loss was equal to or greater than one for all exposure variables. When the exposure variables were grouped into quartiles, the OR with a 95% CI was greater than one at the third and fourth quartile. The results show that working with vibrating machines in an environment with noise exposure increases the risk of hearing loss, supporting an association between exposure to noise and HAV, and the noise-induced hearing loss.
Biological control of appetite: A daunting complexity.
MacLean, Paul S; Blundell, John E; Mennella, Julie A; Batterham, Rachel L
2017-03-01
This review summarizes a portion of the discussions of an NIH Workshop (Bethesda, MD, 2015) titled "Self-Regulation of Appetite-It's Complicated," which focused on the biological aspects of appetite regulation. This review summarizes the key biological inputs of appetite regulation and their implications for body weight regulation. These discussions offer an update of the long-held, rigid perspective of an "adipocentric" biological control, taking a broader view that also includes important inputs from the digestive tract, from lean mass, and from the chemical sensory systems underlying taste and smell. It is only beginning to be understood how these biological systems are integrated and how this integrated input influences appetite and food eating behaviors. The relevance of these biological inputs was discussed primarily in the context of obesity and the problem of weight regain, touching on topics related to the biological predisposition for obesity and the impact that obesity treatments (dieting, exercise, bariatric surgery, etc.) might have on appetite and weight loss maintenance. Finally considered is a common theme that pervaded the workshop discussions, which was individual variability. It is this individual variability in the predisposition for obesity and in the biological response to weight loss that makes the biological component of appetite regulation so complicated. When this individual biological variability is placed in the context of the diverse environmental and behavioral pressures that also influence food eating behaviors, it is easy to appreciate the daunting complexities that arise with the self-regulation of appetite. © 2017 The Obesity Society.
Biological Control of Appetite: A Daunting Complexity
MacLean, Paul S.; Blundell, John E.; Mennella, Julie A.; Batterham, Rachel L.
2017-01-01
Objective This review summarizes a portion of the discussions of an NIH Workshop (Bethesda, MD, 2015) entitled, “Self-Regulation of Appetite, It's Complicated,” which focused on the biological aspects of appetite regulation. Methods Here we summarize the key biological inputs of appetite regulation and their implications for body weight regulation. Results These discussions offer an update of the long-held, rigid perspective of an “adipocentric” biological control, taking a broader view that also includes important inputs from the digestive tract, from lean mass, and from the chemical sensory systems underlying taste and smell. We are only beginning to understand how these biological systems are integrated and how this integrated input influences appetite and food eating behaviors. The relevance of these biological inputs was discussed primarily in the context of obesity and the problem of weight regain, touching on topics related to the biological predisposition for obesity and the impact that obesity treatments (dieting, exercise, bariatric surgery, etc.) might have on appetite and weight loss maintenance. Finally, we consider a common theme that pervaded the workshop discussions, which was individual variability. Conclusions It is this individual variability in the predisposition for obesity and in the biological response to weight loss that makes the biological component of appetite regulation so complicated. When this individual biological variability is placed in the context of the diverse environmental and behavioral pressures that also influence food eating behaviors, it is easy to appreciate the daunting complexities that arise with the self-regulation of appetite. PMID:28229538
Obese Employee Participation Patterns in a Wellness Program.
Fink, Jennifer T; Smith, David R; Singh, Maharaj; Ihrke, Doug M; Cisler, Ron A
2016-04-01
The purpose of this research was to retrospectively examine whether demographic differences exist between those who participated in an employee wellness program and those who did not, and to identify the selection of employees' choice in weight management activities. A nonequivalent, 2-group retrospective design was used. This study involved employees at a large, not-for-profit integrated health system. Of the total organization employee pool (29,194), 19,771 (68%) employees volunteered to be weighed (mean body mass index [BMI]=28.9) as part of an employee wellness program. Weight management activities available included: (1) Self-directed 5% total body weight loss; (2) Healthy Solutions at home; (3) Weight Watchers group meetings; (4) Weight Watchers online; and (5) Employee Assistance Program (EAP)-directed healthy weight coaching. Measures were participation rate and available weight management activity participation rate among obese employees across demographic variables, including sex, age, race, job type, and job location. The analysis included chi-square tests for all categorical variables; odds ratios were calculated to examine factors predictive of participation. Of the total 19,771 employees weighed, 6375 (32%) employees were obese (defined as BMI ≥30); of those, 3094 (49%) participated in available weight management activities. Participation was higher among females, whites, those ages >50 years, and non-nursing staff. In conclusion, participation rate varied significantly based on demographic variables. Self-directed 5% weight loss was the most popular weight management activity selected. (Population Health Management 2016;19:132-135).
Lipogenic regulators are elevated with age and chronic overload in rat skeletal muscle
USDA-ARS?s Scientific Manuscript database
Both muscle mass and strength decline with ageing, but the loss of strength far surpasses what is projected based on the decline in mass. Interestingly, the accumulation of fat mass has been shown to be a strong predictor of functional loss and disability. Furthermore, there is a known attenuated hy...
A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps.
Noël, B; van de Berg, W J; Lhermitte, S; Wouters, B; Machguth, H; Howat, I; Citterio, M; Moholdt, G; Lenaerts, J T M; van den Broeke, M R
2017-03-31
Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (±5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36±16 Gt -1 , or ∼14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming.
A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps
Noël, B.; van de Berg, W. J; Lhermitte, S.; Wouters, B.; Machguth, H.; Howat, I.; Citterio, M.; Moholdt, G.; Lenaerts, J. T. M.; van den Broeke, M. R.
2017-01-01
Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (±5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36±16 Gt−1, or ∼14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming. PMID:28361871
Mechanisms and Observations of Coronal Dimming for the 2010 August 7 Event
NASA Technical Reports Server (NTRS)
Mason, James P.; Woods, Thomas N.; Caspi, Amir; Thompson, Barbara J.; Hock, Rachel A.
2014-01-01
Coronal dimming of extreme ultraviolet (EUV) emission has the potential to be a useful forecaster of coronal mass ejections (CMEs). As emitting material leaves the corona, a temporary void is left behind which can be observed in spectral images and irradiance measurements. The velocity and mass of the CMEs should impact the character of those observations. However, other physical processes can confuse the observations. We describe these processes and the expected observational signature, with special emphasis placed on the differences. We then apply this understanding to a coronal dimming event with an associated CME that occurred on 2010 August 7. Data from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) and EUV Variability Experiment (EVE) are used for observations of the dimming, while the Solar and Heliospheric Observatory's (SoHO) Large Angle and Spectrometric Coronagraph (LASCO) and the Solar Terrestrial Relations Observatory's (STEREO) COR1 and COR2 are used to obtain velocity and mass estimates for the associated CME. We develop a technique for mitigating temperature effects in coronal dimming from full-disk irradiance measurements taken by EVE. We find that for this event, nearly 100% of the dimming is due to mass loss in the corona.
Utilizing adaptive wing technology in the control of a micro air vehicle
NASA Astrophysics Data System (ADS)
Null, William R.; Wagner, Matthew G.; Shkarayev, Sergey V.; Jouse, Wayne C.; Brock, Keith M.
2002-07-01
Evolution of the design of micro air vehicles (MAVs) towards miniaturization has been severely constrained by the size and mass of the electronic components needed to control the vehicles. Recent research, experimentation, and development in the area of smart materials have led to the possibility of embedding control actuators, fabricated from smart materials, in the wing of the vehicle, reducing both the size and mass of these components. Further advantages can be realized by developing adaptive wing structures. Small size and mass, and low airspeeds, can lead to considerable buffeting during flight, and may result in a loss of flight control. In order to counter these effects, we are developing a thin, variable-cambered airfoil design with actuators embedded within the wing. In addition to reducing the mass and size of the vehicle or, conversely, increasing its available payload, an important benefit from the adaptive wing concept is the possibility of in-flight modification of the flight envelope. Reduced airspeeds, which are crucial during loiter, can be realized by an in-flight increase in wing camber. Conversely, decreases in camber provide for an airframe best suited for rapid ingress/egress and extension of the mission range.
Mechanisms and observations of coronal dimming for the 201 August 7 event
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, James Paul; Woods, T. N.; Caspi, A.
2014-07-01
Coronal dimming of extreme ultraviolet (EUV) emission has the potential to be a useful forecaster of coronal mass ejections (CMEs). As emitting material leaves the corona, a temporary void is left behind which can be observed in spectral images and irradiance measurements. The velocity and mass of the CMEs should impact the character of those observations. However, other physical processes can confuse the observations. We describe these processes and the expected observational signature, with special emphasis placed on the differences. We then apply this understanding to a coronal dimming event with an associated CME that occurred on 2010 August 7.more » Data from the Solar Dynamics Observatory's Atmospheric Imaging Assembly and EUV Variability Experiment (EVE) are used for observations of the dimming, while the Solar and Heliospheric Observatory's Large Angle and Spectrometric Coronagraph and the Solar Terrestrial Relations Observatory's COR1 and COR2 are used to obtain velocity and mass estimates for the associated CME. We develop a technique for mitigating temperature effects in coronal dimming from full-disk irradiance measurements taken by EVE. We find that for this event, nearly 100% of the dimming is due to mass loss in the corona.« less
Body mass management of lightweight rowers: nutritional strategies and performance implications.
Slater, Gary; Rice, Anthony; Jenkins, David; Hahn, Allan
2014-11-01
The majority of lightweight rowers undertake acute weight loss prior to competition. Given the competitive advantage afforded to larger, more muscular rowers over their smaller counterparts, the use of moderate, acute weight loss may be justified, at least among larger, leaner athletes who struggle to achieve the specified body mass requirement and have limited potential for further body mass loss via reductions in body fat. The performance implications of moderate acute weight loss appear to be small on the ergometer and may be even less on water, at least when aggressive recovery strategies are adopted between weigh-in and racing. Furthermore, any performance implications of acute weight loss are not exacerbated when such weight loss is undertaken repeatedly throughout the course of a regatta, and may even be eliminated when aggressive recovery strategies are introduced before and after racing. The combination of adequate sodium, fluid and carbohydrate in line with current guidelines results in the best performances. While the performance implications of modest acute weight loss may still need to be considered in regard to competition outcome, chronic body mass strategies may not be without performance implications. This is especially the case for athletes who have very low levels of body fat and/or athletes who decrease their body mass too quickly. Further studies are needed to address the degree of weight loss that can be tolerated with minimal health and/or performance implications, and the optimal time frame over which this should occur. Possible adaptation to the physiological state that accompanies acute weight loss also warrants investigation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Amiodarone-induced hyperthyroidism during massive weight loss following gastric bypass.
Bourron, Olivier; Ciangura, Cécile; Bouillot, Jean-Luc; Massias, Laurent; Poitou, Christine; Oppert, Jean-Michel
2007-11-01
Gastric bypass is increasingly used in morbidly obese patients to achieve significant reduction of body weight and fat mass and concurrent improvement in co-morbidities. We report the case of a 53-year-old male patient (141 kg, BMI 50 kg/m2), successfully treated by amiodarone for supraventricular arrythmia, who underwent Roux-en-Y gastric bypass (RYGBP). 6 months after surgery, he had lost 45% of his preoperative weight (44.8% of weight loss was lean mass) and developed amiodarone-induced subclinical hyperthyroidism. We hypothesize the following sequence of events: weight loss after RYGBP, therefore fat loss, decrease in distribution volume of amiodarone inducing iodine overload and hyperthyroidism, reinforcing weight loss and particularly loss of lean mass. This report emphasizes the importance of careful monitoring of weight and body composition changes after RYGBP. In this situation, checking thyroid status is recommended, especially when there is a history of thyroid disease or potentially toxic thyroid medication.
Accurate Measurements of Aircraft Engine Soot Emissions Using a CAPS PMssa Monitor
NASA Astrophysics Data System (ADS)
Onasch, Timothy; Thompson, Kevin; Renbaum-Wolff, Lindsay; Smallwood, Greg; Make-Lye, Richard; Freedman, Andrew
2016-04-01
We present results of aircraft engine soot emissions measurements during the VARIAnT2 campaign using CAPS PMssa monitors. VARIAnT2, an aircraft engine non-volatile particulate matter (nvPM) emissions field campaign, was focused on understanding the variability in nvPM mass measurements using different measurement techniques and accounting for possible nvPM sampling system losses. The CAPS PMssa monitor accurately measures both the optical extinction and scattering (and thus single scattering albedo and absorption) of an extracted sample using the same sample volume for both measurements with a time resolution of 1 second and sensitivity of better than 1 Mm-1. Absorption is obtained by subtracting the scattering signal from the total extinction. Given that the single scattering albedo of the particulates emitted from the aircraft engine measured at both 630 and 660 nm was on the order of 0.1, any inaccuracy in the scattering measurement has little impact on the accuracy of the ddetermined absorption coefficient. The absorption is converted into nvPM mass using a documented Mass Absorption Coefficient (MAC). Results of soot emission indices (mass soot emitted per mass of fuel consumed) for a turbojet engine as a function of engine power will be presented and compared to results obtained using an EC/OC monitor.
Low-mass Stellar and Substellar Companions to sdB Stars
NASA Astrophysics Data System (ADS)
Geier, S.; Classen, L.; Brünner, P.; Nagel, K.; Schaffenroth, V.; Heuser, C.; Heber, U.; Drechsel, H.; Edelmann, H.; Koen, C.; O'Toole, S. J.; Morales-Rueda, L.
2012-03-01
It has been suggested that besides stellar companions, substellar objects in close orbits may be able to trigger mass loss in a common envelope phase and form hot subdwarfs. In an ongoing project we search for close substellar companions combining time resolved high resolution spectroscopy with photometry. We determine the fraction of as yet undetected radial velocity variable systems from a sample of 27 apparently single sdB stars to be ˜eq16%. We discovered low-mass stellar companions to the He-sdB CPD-20circ 1123 and the pulsator KPD 0629-0016. The brown dwarf reported to orbit the eclipsing binary SDSS J0820+0008 could be confirmed by an analysis of high resolution spectra taken with UVES. Reflection effects have been detected in the light curves of the known sdB binaries CPD -64circ 481 and BPS CS 22169-0001. The inclinations of these systems must be much higher than expected and the most likely companion masses are in the substellar regime. Finally, we determined the orbit of the sdB binary PHL 457, which has a very small radial velocity amplitude and may host the lowest mass substellar companion known. The implications of these new results for the open question of sdB formation are discussed.
Relationship of Muscle Mass Determined by DEXA with Spirometric Results in Healthy Individuals.
Martín Holguera, Rafael; Turrión Nieves, Ana Isabel; Rodríguez Torres, Rosa; Alonso, María Concepción
2017-07-01
Muscle mass maybe a determining factor in the variability of spirometry results in individuals of the same sex and age who have similar anthropometric characteristics. The aim of this study was to determine the association between spirometric results from healthy individuals and their muscle mass assessed by dual energy X-ray absorptiometry (DEXA). A sample of 161 women and 144 men, all healthy non-smokers, was studied. Ages ranged from18 to77years. For each subject, spirometry results and total and regional lean mass values obtained by full body DEXA were recorded. A descriptive analysis of the variables and a regression analysis were performed to study the relationship between spirometric variables and lean body mass, correcting for age and body mass index (BMI). In both sexes all muscle mass variables correlated positively and significantly with spirometric variables, and to a greater extent in men. After partial adjustment of correlations by age and BMI, the factor which best explains the spirometric variables is the total lean body mass in men, and trunk lean body mass in women. In men, muscle mass in the lower extremities is most closely associated with spirometric results. In women, it is the muscle mass of the trunk. In both sexes muscle mass mainly affects FEV 1 . Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems
NASA Astrophysics Data System (ADS)
de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.
2017-07-01
Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 10-6 M⊙ yr-1 and wind speeds of 20-50 km s-1, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates on to the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.
Integrated firn elevation change model for glaciers and ice caps
NASA Astrophysics Data System (ADS)
Saß, Björn; Sauter, Tobias; Braun, Matthias
2016-04-01
We present the development of a firn compaction model in order to improve the volume to mass conversion of geodetic glacier mass balance measurements. The model is applied on the Arctic ice cap Vestfonna. Vestfonna is located on the island Nordaustlandet in the north east of Svalbard. Vestfonna covers about 2400 km² and has a dome like shape with well-defined outlet glaciers. Elevation and volume changes measured by e.g. satellite techniques are becoming more and more popular. They are carried out over observation periods of variable length and often covering different meteorological and snow hydrological regimes. The elevation change measurements compose of various components including dynamic adjustments, firn compaction and mass loss by downwasting. Currently, geodetic glacier mass balances are frequently converted from elevation change measurements using a constant conversion factor of 850 kg m-³ or the density of ice (917 kg m-³) for entire glacier basins. However, the natural conditions are rarely that static. Other studies used constant densities for the ablation (900 kg m-³) and accumulation (600 kg m-³) areas, whereby density variations with varying meteorological and climate conditions are not considered. Hence, each approach bears additional uncertainties from the volume to mass conversion that are strongly affected by the type and timing of the repeat measurements. We link and adapt existing models of surface energy balance, accumulation and snow and firn processes in order to improve the volume to mass conversion by considering the firn compaction component. Energy exchange at the surface is computed by a surface energy balance approach and driven by meteorological variables like incoming short-wave radiation, air temperature, relative humidity, air pressure, wind speed, all-phase precipitation, and cloud cover fraction. Snow and firn processes are addressed by a coupled subsurface model, implemented with a non-equidistant layer discretisation. On our poster we present a general view on the model structure, the input data (model forcing) and finally, an exemplary test case with basic approaches of validation.
An outburst from a massive star 40 days before a supernova explosion.
Ofek, E O; Sullivan, M; Cenko, S B; Kasliwal, M M; Gal-Yam, A; Kulkarni, S R; Arcavi, I; Bildsten, L; Bloom, J S; Horesh, A; Howell, D A; Filippenko, A V; Laher, R; Murray, D; Nakar, E; Nugent, P E; Silverman, J M; Shaviv, N J; Surace, J; Yaron, O
2013-02-07
Some observations suggest that very massive stars experience extreme mass-loss episodes shortly before they explode as supernovae, as do several models. Establishing a causal connection between these mass-loss episodes and the final explosion would provide a novel way to study pre-supernova massive-star evolution. Here we report observations of a mass-loss event detected 40 days before the explosion of the type IIn supernova SN 2010mc (also known as PTF 10tel). Our photometric and spectroscopic data suggest that this event is a result of an energetic outburst, radiating at least 6 × 10(47) erg of energy and releasing about 10(-2) solar masses of material at typical velocities of 2,000 km s(-1). The temporal proximity of the mass-loss outburst and the supernova explosion implies a causal connection between them. Moreover, we find that the outburst luminosity and velocity are consistent with the predictions of the wave-driven pulsation model, and disfavour alternative suggestions.
The evolution of red supergiants to supernovae
NASA Astrophysics Data System (ADS)
Beasor, Emma R.; Davies, Ben
2017-11-01
With red supergiants (RSGs) predicted to end their lives as Type IIP core collapse supernova (CCSN), their behaviour before explosion needs to be fully understood. Mass loss rates govern RSG evolution towards SN and have strong implications on the appearance of the resulting explosion. To study how the mass-loss rates change with the evolution of the star, we have measured the amount of circumstellar material around 19 RSGs in a coeval cluster. Our study has shown that mass loss rates ramp up throughout the lifetime of an RSG, with more evolved stars having mass loss rates a factor of 40 higher than early stage RSGs. Interestingly, we have also found evidence for an increase in circumstellar extinction throughout the RSG lifetime, meaning the most evolved stars are most severely affected. We find that, were the most evolved RSGs in NGC2100 to go SN, this extra extinction would cause the progenitor's initial mass to be underestimated by up to 9M⊙.