Sample records for variable noise fields

  1. Noise reduction technologies implemented in head-worn preprocessors for improving cochlear implant performance in reverberant noise fields.

    PubMed

    Chung, King; Nelson, Lance; Teske, Melissa

    2012-09-01

    The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI + NR), and adaptive directional microphone plus noise reduction algorithm (ADM + NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Variability in the Propagation Phase of CFD-Based Noise Prediction: Summary of Results From Category 8 of the BANC-III Workshop

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard; Redonnet, Stephane; Imamura, Taro; Ikeda, Tomoaki; Zawodny, Nikolas; Cunha, Guilherme

    2015-01-01

    The usage of Computational Fluid Dynamics (CFD) in noise prediction typically has been a two part process: accurately predicting the flow conditions in the near-field and then propagating the noise from the near-field to the observer. Due to the increase in computing power and the cost benefit when weighed against wind tunnel testing, the usage of CFD to estimate the local flow field of complex geometrical structures has become more routine. Recently, the Benchmark problems in Airframe Noise Computation (BANC) workshops have provided a community focus on accurately simulating the local flow field near the body with various CFD approaches. However, to date, little effort has been given into assessing the impact of the propagation phase of noise prediction. This paper includes results from the BANC-III workshop which explores variability in the propagation phase of CFD-based noise prediction. This includes two test cases: an analytical solution of a quadrupole source near a sphere and a computational solution around a nose landing gear. Agreement between three codes was very good for the analytic test case, but CFD-based noise predictions indicate that the propagation phase can introduce 3dB or more of variability in noise predictions.

  3. Comprehensive analysis of low-frequency noise variability components in bulk and fully depleted silicon-on-insulator metal–oxide–semiconductor field-effect transistor

    NASA Astrophysics Data System (ADS)

    Maekawa, Keiichi; Makiyama, Hideki; Yamamoto, Yoshiki; Hasegawa, Takumi; Okanishi, Shinobu; Sonoda, Kenichiro; Shinkawata, Hiroki; Yamashita, Tomohiro; Kamohara, Shiro; Yamaguchi, Yasuo

    2018-04-01

    The low-frequency noise (LFN) variability in bulk and fully depleted silicon-on-insulator (FDSOI) metal–oxide–semiconductor field-effect transistor (MOSFET) with silicon on thin box (SOTB) technology was investigated. LFN typically shows a flicker noise component and a signal Lorentzian component by random telegraph noise (RTN). At a weak inversion state, the random dopant fluctuation (RDF) in a channel is strongly affected to not only RTN variability but also flicker noise variability in the bulk MOSFET compared with SOTB MOSFET because of local carrier number fluctuation in the channel. On the other hand, the typical level of LFN in SOTB MOSFET is slightly larger than that in the bulk MOSFET because of an additional interface on the buried oxide layer. However, considering the tailing characteristics of LFN variability, LFN in SOTB MOSFET can be assumed to be smaller than that in the bulk MOSFET, which enables the low-voltage operation of analog circuits.

  4. Robustness of quantum key distribution with discrete and continuous variables to channel noise

    NASA Astrophysics Data System (ADS)

    Lasota, Mikołaj; Filip, Radim; Usenko, Vladyslav C.

    2017-06-01

    We study the robustness of quantum key distribution protocols using discrete or continuous variables to the channel noise. We introduce the model of such noise based on coupling of the signal to a thermal reservoir, typical for continuous-variable quantum key distribution, to the discrete-variable case. Then we perform a comparison of the bounds on the tolerable channel noise between these two kinds of protocols using the same noise parametrization, in the case of implementation which is perfect otherwise. Obtained results show that continuous-variable protocols can exhibit similar robustness to the channel noise when the transmittance of the channel is relatively high. However, for strong loss discrete-variable protocols are superior and can overcome even the infinite-squeezing continuous-variable protocol while using limited nonclassical resources. The requirement on the probability of a single-photon production which would have to be fulfilled by a practical source of photons in order to demonstrate such superiority is feasible thanks to the recent rapid development in this field.

  5. Roadside barrier effectiveness : noise measurement program

    DOT National Transportation Integrated Search

    1978-04-01

    A field noise measurement program was conducted to assess the performance of a variable height highway noise barrier with and without an acoustic lining material. The barrier site on Interstate I-93 in Andover MA was located adjacent to an acoustical...

  6. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering

    NASA Astrophysics Data System (ADS)

    Li, Guang; Xiao, Xiao; Tang, Jing-Tian; Li, Jin; Zhu, Hui-Jie; Zhou, Cong; Yan, Fa-Bao

    2017-12-01

    In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical morphological filtering (MMF) proved effective in suppressing large-scale strong and variably shaped noise, typically low-frequency noise, but can not deal with pulse noise of AMT data. We combine compressive sensing and MMF. First, we use MMF to suppress the large-scale strong ambient noise; second, we use the improved orthogonal match pursuit (IOMP) algorithm to remove the residual pulse noise. To remove the noise and protect the useful AMT signal, a redundant dictionary that matches with spikes and is insensitive to the useful signal is designed. Synthetic and field data from the Luzong field suggest that the proposed method suppresses the near-source noise and preserves the signal well; thus, better results are obtained that improve the output of either MMF or IOMP.

  7. The effects of noise on binocular rivalry waves: a stochastic neural field model

    NASA Astrophysics Data System (ADS)

    Webber, Matthew A.; Bressloff, Paul C.

    2013-03-01

    We analyze the effects of extrinsic noise on traveling waves of visual perception in a competitive neural field model of binocular rivalry. The model consists of two one-dimensional excitatory neural fields, whose activity variables represent the responses to left-eye and right-eye stimuli, respectively. The two networks mutually inhibit each other, and slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression. We first show how, in the absence of any noise, the system supports a propagating composite wave consisting of an invading activity front in one network co-moving with a retreating front in the other network. Using a separation of time scales and perturbation methods previously developed for stochastic reaction-diffusion equations, we then show how extrinsic noise in the activity variables leads to a diffusive-like displacement (wandering) of the composite wave from its uniformly translating position at long time scales, and fluctuations in the wave profile around its instantaneous position at short time scales. We use our analysis to calculate the first-passage-time distribution for a stochastic rivalry wave to travel a fixed distance, which we find to be given by an inverse Gaussian. Finally, we investigate the effects of noise in the depression variables, which under an adiabatic approximation lead to quenched disorder in the neural fields during propagation of a wave.

  8. Combination of GRACE monthly gravity field solutions from different processing strategies

    NASA Astrophysics Data System (ADS)

    Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian

    2018-02-01

    We combine the publicly available GRACE monthly gravity field time series to produce gravity fields with reduced systematic errors. We first compare the monthly gravity fields in the spatial domain in terms of signal and noise. Then, we combine the individual gravity fields with comparable signal content, but diverse noise characteristics. We test five different weighting schemes: equal weights, non-iterative coefficient-wise, order-wise, or field-wise weights, and iterative field-wise weights applying variance component estimation (VCE). The combined solutions are evaluated in terms of signal and noise in the spectral and spatial domains. Compared to the individual contributions, they in general show lower noise. In case the noise characteristics of the individual solutions differ significantly, the weighted means are less noisy, compared to the arithmetic mean: The non-seasonal variability over the oceans is reduced by up to 7.7% and the root mean square (RMS) of the residuals of mass change estimates within Antarctic drainage basins is reduced by 18.1% on average. The field-wise weighting schemes in general show better performance, compared to the order- or coefficient-wise weighting schemes. The combination of the full set of considered time series results in lower noise levels, compared to the combination of a subset consisting of the official GRACE Science Data System gravity fields only: The RMS of coefficient-wise anomalies is smaller by up to 22.4% and the non-seasonal variability over the oceans by 25.4%. This study was performed in the frame of the European Gravity Service for Improved Emergency Management (EGSIEM; http://www.egsiem.eu) project. The gravity fields provided by the EGSIEM scientific combination service (ftp://ftp.aiub.unibe.ch/EGSIEM/) are combined, based on the weights derived by VCE as described in this article.

  9. Noise characteristics of upper surface blown configurations. Experimental program and results

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Searle, N.; Blakney, D. F.; Pennock, A. P.; Gibson, J. S.

    1977-01-01

    An experimental data base was developed from the model upper surface blowing (USB) propulsive lift system hardware. While the emphasis was on far field noise data, a considerable amount of relevant flow field data were also obtained. The data were derived from experiments in four different facilities resulting in: (1) small scale static flow field data; (2) small scale static noise data; (3) small scale simulated forward speed noise and load data; and (4) limited larger-scale static noise flow field and load data. All of the small scale tests used the same USB flap parts. Operational and geometrical variables covered in the test program included jet velocity, nozzle shape, nozzle area, nozzle impingement angle, nozzle vertical and horizontal location, flap length, flap deflection angle, and flap radius of curvature.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, David; Gourgouliatos, Konstantinos N., E-mail: dtsang@physics.mcgill.ca, E-mail: kostasg@physics.mcgill.ca

    We examine timing noise in both magnetars and regular pulsars, and find that there exists a component of the timing noise ({sigma}{sub TN}) with strong magnetic field dependence ({sigma}{sub TN}{approx}B{sub o}{sup 2}{Omega}T{sup 3/2}) above B{sub o} {approx} 10{sup 12.5} G. The dependence of the timing noise floor on the magnetic field is also reflected in the smallest observable glitch size. We find that magnetospheric torque variation cannot explain this component of timing noise. We calculate the moment of inertia of the magnetic field outside of a neutron star and show that this timing noise component may be due to variationmore » of this moment of inertia, and could be evidence of rapid global magnetospheric variability.« less

  11. A study of the variable impedance surface concept as a means for reducing noise from jet interaction with deployed lift-augmenting flaps

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Kadman, Y.; Chanaud, R. C.

    1972-01-01

    The feasibility of quieting the externally-blown-flap (EBF) noise sources which are due to interaction of jet exhaust flow with deployed flaps was demonstrated on a 1/15-scale 3-flap EBF model. Sound field characteristics were measured and noise reduction fundamentals were reviewed in terms of source models. Test of the 1/15-scale model showed broadband noise reductions of up to 20 dB resulting from combination of variable impedance flap treatment and mesh grids placed in the jet flow upstream of the flaps. Steady-state lift, drag, and pitching moment were measured with and without noise reduction treatment.

  12. An analytical parametric study of the broadband noise from axial-flow fans

    NASA Technical Reports Server (NTRS)

    Chou, Shau-Tak; George, Albert R.

    1987-01-01

    The rotating dipole analysis of Ffowcs Williams and Hawkings (1969) is used to predict the far field noise radiation due to various rotor broadband noise mechanisms. Consideration is given to inflow turbulence noise, attached boundary layer/trailing-edge interaction noise, tip-vortex formation noise, and trailing-edge thickness noise. The parametric dependence of broadband noise from unducted axial-flow fans on several critical variables is studied theoretically. The angle of attack of the rotor blades, which is related to the rotor performance, is shown to be important to the trailing-edge noise and to the tip-vortex formation noise.

  13. The influence of an uncertain force environment on reshaping trial-to-trial motor variability.

    PubMed

    Izawa, Jun; Yoshioka, Toshinori; Osu, Rieko

    2014-09-10

    Motor memory is updated to generate ideal movements in a novel environment. When the environment changes every trial randomly, how does the brain incorporate this uncertainty into motor memory? To investigate how the brain adapts to an uncertain environment, we considered a reach adaptation protocol where individuals practiced moving in a force field where a noise was injected. After they had adapted, we measured the trial-to-trial variability in the temporal profiles of the produced hand force. We found that the motor variability was significantly magnified by the adaptation to the random force field. Temporal profiles of the motor variance were significantly dissociable between two different types of random force fields experienced. A model-based analysis suggests that the variability is generated by noise in the gains of the internal model. It further suggests that the trial-to-trial motor variability magnified by the adaptation in a random force field is generated by the uncertainty of the internal model formed in the brain as a result of the adaptation.

  14. Field demonstration of a continuous-variable quantum key distribution network.

    PubMed

    Huang, Duan; Huang, Peng; Li, Huasheng; Wang, Tao; Zhou, Yingming; Zeng, Guihua

    2016-08-01

    We report on what we believe is the first field implementation of a continuous-variable quantum key distribution (CV-QKD) network with point-to-point configuration. Four QKD nodes are deployed on standard communication infrastructures connected with commercial telecom optical fiber. Reliable key exchange is achieved in the wavelength-division-multiplexing CV-QKD network. The impact of a complex and volatile field environment on the excess noise is investigated, since excess noise controlling and reduction is arguably the major issue pertaining to distance and the secure key rate. We confirm the applicability and verify the maturity of the CV-QKD network in a metropolitan area, thus paving the way for a next-generation global secure communication network.

  15. Helicopter far-field acoustic levels as a function of reduced main-rotor advancing blade-tip Mach number

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Smith, Charles D.; Lemasurier, Philip

    1990-01-01

    During the design of a helicopter, the weight, engine, rotor speed, and rotor geometry are given significant attention when considering the specific operations for which the helicopter will be used. However, the noise radiated from the helicopter and its relationship to the design variables is currently not well modeled with only a limited set of full-scale field test data to study. In general, limited field data have shown that reduced main-rotor advancing blade-tip Mach numbers result in reduced far-field noise levels. The status of a recent helicopter noise research project is reviewed. It is designed to provide flight experimental data which may be used to further understand helicopter main-rotor advancing blade-tip Mach number effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a Sikorsky S-76A helicopter operating with both the rotor speed and the flight speed as the control variable. The rotor speed was operated within the range of 107 to 90 percent NR at nominal forward speeds of 35, 100, and 155 knots.

  16. Prediction of the far field noise from wind energy farms

    NASA Technical Reports Server (NTRS)

    Shepherd, K. P.; Hubbard, H. H.

    1986-01-01

    The basic physical factors involved in making predictions of wind turbine noise and an approach which allows for differences in the machines, the wind energy farm configurations and propagation conditions are reviewed. Example calculations to illustrate the sensitivity of the radiated noise to such variables as machine size, spacing and numbers, and such atmosphere variables as absorption and wind direction are presented. It is found that calculated far field distances to particular sound level contours are greater for lower values of atmospheric absorption, for a larger total number of machines, for additional rows of machines and for more powerful machines. At short and intermediate distances, higher sound pressure levels are calculated for closer machine spacings, for more powerful machines, for longer row lengths and for closer row spacings.

  17. Remote sensing of phytoplankton chlorophyll-a concentration by use of ridge function fields.

    PubMed

    Pelletier, Bruno; Frouin, Robert

    2006-02-01

    A methodology is presented for retrieving phytoplankton chlorophyll-a concentration from space. The data to be inverted, namely, vectors of top-of-atmosphere reflectance in the solar spectrum, are treated as explanatory variables conditioned by angular geometry. This approach leads to a continuum of inverse problems, i.e., a collection of similar inverse problems continuously indexed by the angular variables. The resolution of the continuum of inverse problems is studied from the least-squares viewpoint and yields a solution expressed as a function field over the set of permitted values for the angular variables, i.e., a map defined on that set and valued in a subspace of a function space. The function fields of interest, for reasons of approximation theory, are those valued in nested sequences of subspaces, such as ridge function approximation spaces, the union of which is dense. Ridge function fields constructed on synthetic yet realistic data for case I waters handle well situations of both weakly and strongly absorbing aerosols, and they are robust to noise, showing improvement in accuracy compared with classic inversion techniques. The methodology is applied to actual imagery from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS); noise in the data are taken into account. The chlorophyll-a concentration obtained with the function field methodology differs from that obtained by use of the standard SeaWiFS algorithm by 15.7% on average. The results empirically validate the underlying hypothesis that the inversion is solved in a least-squares sense. They also show that large levels of noise can be managed if the noise distribution is known or estimated.

  18. Seabed mapping and characterization of sediment variability using the usSEABED data base

    USGS Publications Warehouse

    Goff, J.A.; Jenkins, C.J.; Jeffress, Williams S.

    2008-01-01

    We present a methodology for statistical analysis of randomly located marine sediment point data, and apply it to the US continental shelf portions of usSEABED mean grain size records. The usSEABED database, like many modern, large environmental datasets, is heterogeneous and interdisciplinary. We statistically test the database as a source of mean grain size data, and from it provide a first examination of regional seafloor sediment variability across the entire US continental shelf. Data derived from laboratory analyses ("extracted") and from word-based descriptions ("parsed") are treated separately, and they are compared statistically and deterministically. Data records are selected for spatial analysis by their location within sample regions: polygonal areas defined in ArcGIS chosen by geography, water depth, and data sufficiency. We derive isotropic, binned semivariograms from the data, and invert these for estimates of noise variance, field variance, and decorrelation distance. The highly erratic nature of the semivariograms is a result both of the random locations of the data and of the high level of data uncertainty (noise). This decorrelates the data covariance matrix for the inversion, and largely prevents robust estimation of the fractal dimension. Our comparison of the extracted and parsed mean grain size data demonstrates important differences between the two. In particular, extracted measurements generally produce finer mean grain sizes, lower noise variance, and lower field variance than parsed values. Such relationships can be used to derive a regionally dependent conversion factor between the two. Our analysis of sample regions on the US continental shelf revealed considerable geographic variability in the estimated statistical parameters of field variance and decorrelation distance. Some regional relationships are evident, and overall there is a tendency for field variance to be higher where the average mean grain size is finer grained. Surprisingly, parsed and extracted noise magnitudes correlate with each other, which may indicate that some portion of the data variability that we identify as "noise" is caused by real grain size variability at very short scales. Our analyses demonstrate that by applying a bias-correction proxy, usSEABED data can be used to generate reliable interpolated maps of regional mean grain size and sediment character. 

  19. Gate voltage dependent 1/f noise variance model based on physical noise generation mechanisms in n-channel metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Arai, Yukiko; Aoki, Hitoshi; Abe, Fumitaka; Todoroki, Shunichiro; Khatami, Ramin; Kazumi, Masaki; Totsuka, Takuya; Wang, Taifeng; Kobayashi, Haruo

    2015-04-01

    1/f noise is one of the most important characteristics for designing analog/RF circuits including operational amplifiers and oscillators. We have analyzed and developed a novel 1/f noise model in the strong inversion, saturation, and sub-threshold regions based on SPICE2 type model used in any public metal-oxide-semiconductor field-effect transistor (MOSFET) models developed by the University of California, Berkeley. Our model contains two noise generation mechanisms that are mobility and interface trap number fluctuations. Noise variability dependent on gate voltage is also newly implemented in our model. The proposed model has been implemented in BSIM4 model of a SPICE3 compatible circuit simulator. Parameters of the proposed model are extracted with 1/f noise measurements for simulation verifications. The simulation results show excellent agreements between measurement and simulations.

  20. A High-Linearity Low-Noise Amplifier with Variable Bandwidth for Neural Recoding Systems

    NASA Astrophysics Data System (ADS)

    Yoshida, Takeshi; Sueishi, Katsuya; Iwata, Atsushi; Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi

    2011-04-01

    This paper describes a low-noise amplifier with multiple adjustable parameters for neural recording applications. An adjustable pseudo-resistor implemented by cascade metal-oxide-silicon field-effect transistors (MOSFETs) is proposed to achieve low-signal distortion and wide variable bandwidth range. The amplifier has been implemented in 0.18 µm standard complementary metal-oxide-semiconductor (CMOS) process and occupies 0.09 mm2 on chip. The amplifier achieved a selectable voltage gain of 28 and 40 dB, variable bandwidth from 0.04 to 2.6 Hz, total harmonic distortion (THD) of 0.2% with 200 mV output swing, input referred noise of 2.5 µVrms over 0.1-100 Hz and 18.7 µW power consumption at a supply voltage of 1.8 V.

  1. Sound production due to large-scale coherent structures. [and identification of noise mechanisms in turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.

    1979-01-01

    The sound due to the large-scale (wavelike) structure in an infinite free turbulent shear flow is examined. Specifically, a computational study of a plane shear layer is presented, which accounts, by way of triple decomposition of the flow field variables, for three distinct component scales of motion (mean, wave, turbulent), and from which the sound - due to the large-scale wavelike structure - in the acoustic field can be isolated by a simple phase average. The computational approach has allowed for the identification of a specific noise production mechanism, viz the wave-induced stress, and has indicated the effect of coherent structure amplitude and growth and decay characteristics on noise levels produced in the acoustic far field.

  2. Effects of airplane characteristics and takeoff noise and field length constraints on engine cycle selection for a Mach 2.32 cruise application

    NASA Technical Reports Server (NTRS)

    Whitlow, J. B., Jr.

    1976-01-01

    Sideline noise and takeoff field length were varied for two types of Mach 2.32 cruise airplane to determine their effect on engine cycle selection. One of these airplanes was the NASA/Langley-LTV arrow wing while the other was a Boeing modified delta-plus-tail derived from the earlier 2707-300 concept. Advanced variable cycle engines were considered. A more conventional advanced low bypass turbofan engine was used as a baseline for comparison. Appropriate exhaust nozzle modifications were assumed, where needed, to allow all engines to receive either an inherent co-annular or annular jet noise suppression benefit. All the VCE's out-performed the baseline engine by substantial margins in a design range comparison, regardless of airplane choice or takeoff restrictions. The choice among the three VCE's considered, however, depends on the field length, noise level, and airplane selected.

  3. The Effects of Surfaces on the Aerodynamics and Acoustics of Jet Flows

    NASA Technical Reports Server (NTRS)

    Smith, Matthew J.; Miller, Steven A. E.

    2013-01-01

    Aircraft noise mitigation is an ongoing challenge for the aeronautics research community. In response to this challenge, low-noise aircraft concepts have been developed that exhibit situations where the jet exhaust interacts with an airframe surface. Jet flows interacting with nearby surfaces manifest a complex behavior in which acoustic and aerodynamic characteristics are altered. In this paper, the variation of the aerodynamics, acoustic source, and far-field acoustic intensity are examined as a large at plate is positioned relative to the nozzle exit. Steady Reynolds-Averaged Navier-Stokes solutions are examined to study the aerodynamic changes in the field-variables and turbulence statistics. The mixing noise model of Tam and Auriault is used to predict the noise produced by the jet. To validate both the aerodynamic and the noise prediction models, results are compared with Particle Image Velocimetry (PIV) and free-field acoustic data respectively. The variation of the aerodynamic quantities and noise source are examined by comparing predictions from various jet and at plate configurations with an isolated jet. To quantify the propulsion airframe aeroacoustic installation effects on the aerodynamic noise source, a non-dimensional number is formed that contains the flow-conditions and airframe installation parameters.

  4. Indoor noise exposure at home: a field study in the family of urban schoolchildren.

    PubMed

    Pujol, S; Berthillier, M; Defrance, J; Lardies, J; Levain, J-P; Petit, R; Houot, H; Mauny, F

    2014-10-01

    This article aims at evaluating indoor noise levels at home and investigating the factors that may influence their variability. An 8-day noise measurement campaign was conducted in the homes of 44 schoolchildren attending the public primary schools of Besançon (France). The presence of the inhabitants in the dwelling and the noisy events occurring indoors and outdoors was daily collected using a time-location-activity diary (TLAD); 902 time periods were analyzed. The indoor noise level increased significantly with the outdoor noise level, along with the duration of the presence or level of activity of the inhabitants at home. However, this effect may vary according to the period of day and the day of the week. Moreover, a significant part of the day and evening indoor noise level variability was explained when considering the TLAD variables: 46% and 45% in the bedroom, 54% and 39% in the main room, respectively. Our results highlight the complexity of the indoor environment in the dwellings of children living in an urban area. Combining the inhabitant presence and indoor noise source descriptors with outdoor noise levels and other dwelling or inhabitant characteristics could improve large-scale epidemiological studies. However, additional efforts are still needed, particularly during the night period. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Studies of the Vector Field in Shallow Water and in the Presence of 3-D Variability

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Studies of the Vector Field in Shallow Water and in the...including noise variability in shallow water and the influence of three-dimensional environmental variability on the propagation of acoustic energy...issue, known to be a problem in SSF algorithms in shallow water . Figure 1 displays results of TL traces at a depth of 100m for a 100Hz source

  6. Highly Variable Cycle Exhaust Model Test (HVC10)

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Wernet, Mark; Podboy, Gary; Bozak, Rick

    2010-01-01

    Results from acoustic and flow-field studies using the Highly Variable Cycle Exhaust (HVC) model were presented. The model consisted of a lobed mixer on the core stream, an elliptic nozzle on the fan stream, and an ejector. For baseline comparisons, the fan nozzle was replaced with a round nozzle and the ejector doors were removed from the model. Acoustic studies showed far-field noise levels were higher for the HVC model with the ejector than for the baseline configuration. Results from Particle Image Velocimetry (PIV) studies indicated that large flow separation regions occurred along the ejector doors, thus restricting flow through the ejector. Phased array measurements showed noise sources located near the ejector doors for operating conditions where tones were present in the acoustic spectra.

  7. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish

    PubMed Central

    Nichols, Tye A.; Anderson, Todd W.; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  8. A new field-laboratory methodology for assessing human response to noise

    NASA Technical Reports Server (NTRS)

    Borsky, P. N.

    1973-01-01

    Gross measures of community annoyance with intrusive noises have been made in a number of real environment surveys which indicate that aircraft noise may have to be reduced 30-40 EPNdb before it will generally be considered acceptable. Interview studies, however, cannot provide the precise information which is needed by noise abatement engineers of the variable human response to different types and degrees of noise exposure. A new methodological field-survey approach has been developed to provide such information. The integrated attitudes and experiences of a random sample of subjects in the real environment are obtained by a prior field survey. Then these subjects record their more precise responses to controlled noise exposures in a new realistic laboratory. The laboratory is a sound chamber furnished as a typical living room (18 ft x 14 ft) and subjects watch a color TV program while they judge simulated aircraft flyovers that occur at controlled levels and intervals. Methodological experiments indicate that subjects in the laboratory have the sensation that the airplanes are actually moving overhead across the ceiling of the chamber. It was also determined that annoyance judgments in the laboratory stabilize after three flyovers are heard prior to a judgment of annoyance.

  9. A Numerical Method of Calculating Propeller Noise Including Acoustic Nonlinear Effects

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.

    1985-01-01

    Using the transonic flow fields(s) generated by the NASPROP-E computer code for an eight blade SR3-series propeller, a theoretical method is investigated to calculate the total noise values and frequency content in the acoustic near and far field without using the Ffowcs Williams - Hawkings equation. The flow field is numerically generated using an implicit three dimensional Euler equation solver in weak conservation law form. Numerical damping is required by the differencing method for stability in three dimensions, and the influence of the damping on the calculated acoustic values is investigated. The acoustic near field is solved by integrating with respect to time the pressure oscillations induced at a stationary observer location. The acoustic far field is calculated from the near field primitive variables as generated by NASPROP-E computer code using a method involving a perturbation velocity potential as suggested by Hawkings in the calculation of the acoustic pressure time-history at a specified far field observed location. the methodologies described are valid for calculating total noise levels and are applicable to any propeller geometry for which a flow field solution is available.

  10. Propfan Test Assessment (PTA)

    NASA Technical Reports Server (NTRS)

    Little, B. H.; Poland, D. T.; Bartel, H. W.; Withers, C. C.; Brown, P. C.

    1989-01-01

    The objectives of the Propfan Test Assessment (PTA) Program were to validate in flight the structural integrity of large-scale propfan blades and to measure noise characteristics of the propfan in both near and far fields. All program objectives were met or exceeded, on schedule and under budget. A Gulfstream Aerospace Corporation GII aircraft was modified to provide a testbed for the 2.74m (9 ft) diameter Hamilton Standard SR-7 propfan which was driven by a 4475 kw (600 shp) turboshaft engine mounted on the left-hand wing of the aircraft. Flight research tests were performed for 20 combinations of speed and altitude within a flight envelope that extended to Mach numbers of 0.85 and altitudes of 12,192m (40,000 ft). Propfan blade stress, near-field noise on aircraft surfaces, and cabin noise were recorded. Primary variables were propfan power and tip speed, and the nacelle tilt angle. Extensive low altitude far-field noise tests were made to measure flyover and sideline noise and the lateral attenuation of noise. In coopertion with the FAA, tests were also made of flyover noise for the aircraft at 6100m (20,000 ft) and 10,668m (35,000 ft). A final series of tests were flown to evaluate an advanced cabin wall noise treatment that was produced under a separate program by NASA-Langley Research Center.

  11. Acoustic test and analyses of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Brooks, B. M.; Metzger, F. B.

    1980-01-01

    Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.

  12. The influence of acoustical and non-acoustical factors on short-term annoyance due to aircraft noise in the field - The COSMA study.

    PubMed

    Bartels, Susanne; Márki, Ferenc; Müller, Uwe

    2015-12-15

    Air traffic has increased for the past decades and is forecasted to continue to grow. Noise due to current airport operations can impair the physical and psychological well-being of airport residents. The field study investigated aircraft noise-induced short-term (i.e., within hourly intervals) annoyance in local residents near a busy airport. We aimed at examining the contribution of acoustical and non-acoustical factors to the annoyance rating. Across four days from getting up till going to bed, 55 residents near Cologne/Bonn Airport (M=46years, SD=14years, 34 female) rated their annoyance due to aircraft noise at hourly intervals. For each participant and each hour, 26 noise metrics from outdoor measurements and further 6 individualized metrics that took into account the sound attenuation due to each person's whereabouts in and around their homes were obtained. Non-acoustical variables were differentiated into situational factors (time of day, performed activity during past hour, day of the week) and personal factors (e.g., sensitivity to noise, attitudes, domestic noise insulation). Generalized Estimation Equations were applied for the development of a prediction model for annoyance. Acoustical factors explained only a small proportion (13.7%) of the variance in the annoyance ratings. The number of fly-overs predicted annoyance better than did equivalent and maximum sound pressure levels. The proportion of explained variance in annoyance rose considerably (to 27.6%) when individualized noise metrics as well as situational and personal variables were included in the prediction model. Consideration of noise metrics related to the number of fly-overs and individual adjustment of noise metrics can improve the prediction of short-term annoyance compared to models using equivalent outdoor levels only. Non-acoustical factors have remarkable impact not only on long-term annoyance as shown before but also on short-term annoyance judged in the home environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effect of CoFeB electrode compositions on low frequency magnetic noise in tunneling magnetoresistance sensors

    NASA Astrophysics Data System (ADS)

    Wisniowski, P.; Dabek, M.; Wrona, J.; Cardoso, S.; Freitas, P. P.

    2017-12-01

    We study the effect of CoFeB electrode compositions on frequency dependent magnetic noise in tunneling magnetoresistance sensors with variable field sensitivity. We use the relationship between the normalized 1/f noise parameter (αt) and the magnetoresistance sensitivity product (MSP) to compare the magnetic noise of sensors with Co40Fe40B20, Co60Fe20B20, and Co20Fe60B20 electrodes. We observed the lowest slope of the αt vs. MSP curve of 9.1 × 10-13 μm3 T and a 1/f noise corner as low as 300 Hz for the sensors with Co60Fe20B20 electrodes. Furthermore, all sensors at a specific value of the magnetoresistance sensitivity product showed a deviation from the linear relationship between αt and MSP. The results show that in the design of high sensitivity CoFeB-MgO-CoFeB based tunneling magnetoresistance sensors for low field detection, selection of CoFeB electrodes is important and can be used to significantly improve the low frequency field detection limit.

  14. How to design low-noise burners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sams, G.; Jordan, J.

    1996-12-01

    Frequently, natural draft burner designs used in indirect heaters fail to meet the low noise standard of 85 to 88 dBA three feet from the flame arrestor. Noise encountered with indirect burner designs has been shown to be related to nozzle and firetube gas velocities. Testing shows that when the nozzle velocity is sufficiently greater than the firetube velocity, the low-frequency rumble that accompanies current designs ceases. Data obtained from field testing was used to construct a relationship between burner noise level and gas volume expansion ratio, burner air-to-fuel ratio, mixture flowrate, orifice velocity, burner area, and the number ofmore » burners. The noise from a burner can be predicted if the above easily calculable variables are known.« less

  15. Differentially Variable Component Analysis (dVCA): Identifying Multiple Evoked Components using Trial-to-Trial Variability

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Shah, Ankoor S.; Truccolo, Wilson; Ding, Ming-Zhou; Bressler, Steven L.; Schroeder, Charles E.

    2003-01-01

    Electric potentials and magnetic fields generated by ensembles of synchronously active neurons in response to external stimuli provide information essential to understanding the processes underlying cognitive and sensorimotor activity. Interpreting recordings of these potentials and fields is difficult as each detector records signals simultaneously generated by various regions throughout the brain. We introduce the differentially Variable Component Analysis (dVCA) algorithm, which relies on trial-to-trial variability in response amplitude and latency to identify multiple components. Using simulations we evaluate the importance of response variability to component identification, the robustness of dVCA to noise, and its ability to characterize single-trial data. Finally, we evaluate the technique using visually evoked field potentials recorded at incremental depths across the layers of cortical area VI, in an awake, behaving macaque monkey.

  16. Sensory noise predicts divisive reshaping of receptive fields

    PubMed Central

    Deneve, Sophie; Gutkin, Boris

    2017-01-01

    In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics. PMID:28622330

  17. Sensory noise predicts divisive reshaping of receptive fields.

    PubMed

    Chalk, Matthew; Masset, Paul; Deneve, Sophie; Gutkin, Boris

    2017-06-01

    In order to respond reliably to specific features of their environment, sensory neurons need to integrate multiple incoming noisy signals. Crucially, they also need to compete for the interpretation of those signals with other neurons representing similar features. The form that this competition should take depends critically on the noise corrupting these signals. In this study we show that for the type of noise commonly observed in sensory systems, whose variance scales with the mean signal, sensory neurons should selectively divide their input signals by their predictions, suppressing ambiguous cues while amplifying others. Any change in the stimulus context alters which inputs are suppressed, leading to a deep dynamic reshaping of neural receptive fields going far beyond simple surround suppression. Paradoxically, these highly variable receptive fields go alongside and are in fact required for an invariant representation of external sensory features. In addition to offering a normative account of context-dependent changes in sensory responses, perceptual inference in the presence of signal-dependent noise accounts for ubiquitous features of sensory neurons such as divisive normalization, gain control and contrast dependent temporal dynamics.

  18. Rising relative fluctuation as a warning indicator of discontinuous transitions in symbiotic metapopulations

    NASA Astrophysics Data System (ADS)

    Lumi, Neeme; Laas, Katrin; Mankin, Romi

    2015-11-01

    The long-time limit behavior of the stochastic Lotka-Volterra model of a symbiotic metapopulation subjected to generalized Verhulst self-regulation is considered. The influence of a time-variable environment on the carrying capacities of subpopulations is modeled as a periodic deterministic part and a symmetric dichotomous noise. Relying on the mean-field approach it is established that at certain parameter regimes the mean field (average subpopulations size) exhibits hysteresis in respect to the noise correlation time, manifested in the appearance of colored-noise-induced discontinuous transitions. Especially, it is shown that the relative fluctuation of the subpopulation sizes exhibits accelerated increase prior to abrupt transitions of the metapopulation state. Moreover, in certain cases the autocorrelation function of the population sizes demonstrates anticorrelation at some values of the lag time.

  19. Persistence and failure of mean-field approximations adapted to a class of systems of delay-coupled excitable units

    NASA Astrophysics Data System (ADS)

    Franović, Igor; Todorović, Kristina; Vasović, Nebojša; Burić, Nikola

    2014-02-01

    We consider the approximations behind the typical mean-field model derived for a class of systems made up of type II excitable units influenced by noise and coupling delays. The formulation of the two approximations, referred to as the Gaussian and the quasi-independence approximation, as well as the fashion in which their validity is verified, are adapted to reflect the essential properties of the underlying system. It is demonstrated that the failure of the mean-field model associated with the breakdown of the quasi-independence approximation can be predicted by the noise-induced bistability in the dynamics of the mean-field system. As for the Gaussian approximation, its violation is related to the increase of noise intensity, but the actual condition for failure can be cast in qualitative, rather than quantitative terms. We also discuss how the fulfillment of the mean-field approximations affects the statistics of the first return times for the local and global variables, further exploring the link between the fulfillment of the quasi-independence approximation and certain forms of synchronization between the individual units.

  20. Non-auditory effects of noise in industry. VI. A final field study in industry.

    PubMed

    van Dijk, F J; Souman, A M; de Vries, F F

    1987-01-01

    Non-auditory effects of noise were studied among 539 male workers from seven industries. The LAeq, assessed by personal noise dosimetry, has been used to study acute effects. Various indices of total noise exposure, involving level and duration, were developed for long-term effect studies. In the analysis close attention was paid to prevent confounding, e.g. by other adverse working conditions. As expected, hearing loss increased with total noise exposure. Tinnitus was related particularly to hearing loss. Dizziness and hoarseness, however, were not related with noise exposure in this study. Also no correlation could be demonstrated between blood pressure and total noise exposure after correction for age, relative weight and various confounding variables. Use of hearing protection, selection processes and incomplete analysis of interactions between independent variables are suggested for possible explanation. About two-thirds of the workers reported noise annoyance. Various aspects were mentioned, such as irritation, surprise and impairment of communication and perception. Mentally stressful tasks appeared to be the most noise-sensitive. Particularly annoying noise sources, mental work load and time pressure had a relatively large impact on noise annoyance in comparison with the influence of noise level (LAeq) itself. Stress responses were not simply related to the noise exposure level, although consistent positive relations could be demonstrated between symptoms of stress and noise annoyance. Various findings led to the conclusion that noise exposure together with stressful mental activities may lead to disturbed concentration, irritation and annoyance. Experienced stress in turn may render workers more susceptible to noise. To overcome some limitations of this study, cohort studies and studies designed to assess interaction-effects are recommended.

  1. Equilibrium Noise in Ion Selective Field Effect Transistors.

    DTIC Science & Technology

    1982-07-21

    face. These parameters have been evaluated for several ion-selective membranes. DD I JAN ") 1473 EDITION or I Mov 09SIS OSSOLETE ONi 0102-LF-0146601...the "integrated circuit" noise on the processing parameters which were different for the two laboratories. This variability in the "integrated circuit...systems and is useful in the identification of the parameters limiting the performance of -11- these systems. In thermodynamic equilibrium, every

  2. The Variability and Interpretation of Earthquake Source Mechanisms in The Geysers Geothermal Field From a Bayesian Standpoint Based on the Choice of a Noise Model

    NASA Astrophysics Data System (ADS)

    Mustać, Marija; Tkalčić, Hrvoje; Burky, Alexander L.

    2018-01-01

    Moment tensor (MT) inversion studies of events in The Geysers geothermal field mostly focused on microseismicity and found a large number of earthquakes with significant non-double-couple (non-DC) seismic radiation. Here we concentrate on the largest events in the area in recent years using a hierarchical Bayesian MT inversion. Initially, we show that the non-DC components of the MT can be reliably retrieved using regional waveform data from a small number of stations. Subsequently, we present results for a number of events and show that accounting for noise correlations can lead to retrieval of a lower isotropic (ISO) component and significantly different focal mechanisms. We compute the Bayesian evidence to compare solutions obtained with different assumptions of the noise covariance matrix. Although a diagonal covariance matrix produces a better waveform fit, inversions that account for noise correlations via an empirically estimated noise covariance matrix account for interdependences of data errors and are preferred from a Bayesian point of view. This implies that improper treatment of data noise in waveform inversions can result in fitting the noise and misinterpreting the non-DC components. Finally, one of the analyzed events is characterized as predominantly DC, while the others still have significant non-DC components, probably as a result of crack opening, which is a reasonable hypothesis for The Geysers geothermal field geological setting.

  3. Outlier detection for particle image velocimetry data using a locally estimated noise variance

    NASA Astrophysics Data System (ADS)

    Lee, Yong; Yang, Hua; Yin, ZhouPing

    2017-03-01

    This work describes an adaptive spatial variable threshold outlier detection algorithm for raw gridded particle image velocimetry data using a locally estimated noise variance. This method is an iterative procedure, and each iteration is composed of a reference vector field reconstruction step and an outlier detection step. We construct the reference vector field using a weighted adaptive smoothing method (Garcia 2010 Comput. Stat. Data Anal. 54 1167-78), and the weights are determined in the outlier detection step using a modified outlier detector (Ma et al 2014 IEEE Trans. Image Process. 23 1706-21). A hard decision on the final weights of the iteration can produce outlier labels of the field. The technical contribution is that the spatial variable threshold motivation is embedded in the modified outlier detector with a locally estimated noise variance in an iterative framework for the first time. It turns out that a spatial variable threshold is preferable to a single spatial constant threshold in complicated flows such as vortex flows or turbulent flows. Synthetic cellular vortical flows with simulated scattered or clustered outliers are adopted to evaluate the performance of our proposed method in comparison with popular validation approaches. This method also turns out to be beneficial in a real PIV measurement of turbulent flow. The experimental results demonstrated that the proposed method yields the competitive performance in terms of outlier under-detection count and over-detection count. In addition, the outlier detection method is computational efficient and adaptive, requires no user-defined parameters, and corresponding implementations are also provided in supplementary materials.

  4. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  5. The state of the art of predicting noise-induced sleep disturbance in field settings.

    PubMed

    Fidell, Sanford; Tabachnick, Barbara; Pearsons, Karl S

    2010-01-01

    Several relationships between intruding noises (largely aircraft) and sleep disturbance have been inferred from the findings of a handful of field studies. Comparisons of sleep disturbance rates predicted by the various relationships are complicated by inconsistent data collection methods and definitions of predictor variables and predicted quantities. None of the relationships is grounded in theory-based understanding, and some depend on questionable statistical assumptions and analysis procedures. The credibility, generalizability, and utility of sleep disturbance predictions are also limited by small and nonrepresentative samples of test participants, and by restricted (airport-specific and relatively short duration) circumstances of exposure. Although expedient relationships may be the best available, their predictions are of only limited utility for policy analysis and regulatory purposes, because they account for very little variance in the association between environmental noise and sleep disturbance, have characteristically shallow slopes, have not been well validated in field settings, are highly context-dependent, and do not squarely address the roles and relative importance of nonacoustic factors in sleep disturbance. Such relationships offer the appearance more than the substance of precision and objectivity. Truly useful, population-level prediction and genuine understanding of noise-induced sleep disturbance will remain beyond reach for the foreseeable future, until the findings of field studies of broader scope and more sophisticated design become available.

  6. Single ion as a shot-noise-limited magnetic-field-gradient probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walther, A.; Poschinger, U.; Ziesel, F.

    2011-06-15

    It is expected that ion-trap quantum computing can be made scalable through protocols that make use of transport of ion qubits between subregions within the ion trap. In this scenario, any magnetic field inhomogeneity the ion experiences during the transport may lead to dephasing and loss of fidelity. Here we demonstrate how to measure, and compensate for, magnetic field gradients inside a segmented ion trap, by transporting a single ion over variable distances. We attain a relative magnetic field sensitivity of {Delta}B/B{sub 0{approx}}5x10{sup -7} over a test distance of 140 {mu}m, which can be extended to the mm range, stillmore » with sub-{mu}m resolution. A fast experimental sequence is presented, facilitating its use as a magnetic-field-gradient calibration routine, and it is demonstrated that the main limitation is the quantum shot noise.« less

  7. Plasmonic trace sensing below the photon shot noise limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooser, Raphael C.; Lawrie, Benjamin J.

    Plasmonic sensors are important detectors of biochemical trace compounds, but those that utilize optical readout are approaching their absolute limits of detection as defined by the Heisenberg uncertainty principle in both differential intensity and phase readout. However, the use of more general minimum uncertainty states in the form of squeezed light can push the noise floor in these sensors below the shot noise limit (SNL) in one analysis variable at the expense of another. Here, we demonstrate a quantum plasmonic sensor whose noise floor is reduced below the SNL in order to perform index of refraction measurements with sensitivities unobtainablemore » with classical plasmonic sensors. The increased signal-to-noise ratio can result in faster detection of analyte concentrations that were previously lost in the noise. As a result, these benefits are the hallmarks of a sensor exploiting quantum readout fields in order to manipulate the limits of the Heisenberg uncertainty principle.« less

  8. Plasmonic trace sensing below the photon shot noise limit

    DOE PAGES

    Pooser, Raphael C.; Lawrie, Benjamin J.

    2015-12-09

    Plasmonic sensors are important detectors of biochemical trace compounds, but those that utilize optical readout are approaching their absolute limits of detection as defined by the Heisenberg uncertainty principle in both differential intensity and phase readout. However, the use of more general minimum uncertainty states in the form of squeezed light can push the noise floor in these sensors below the shot noise limit (SNL) in one analysis variable at the expense of another. Here, we demonstrate a quantum plasmonic sensor whose noise floor is reduced below the SNL in order to perform index of refraction measurements with sensitivities unobtainablemore » with classical plasmonic sensors. The increased signal-to-noise ratio can result in faster detection of analyte concentrations that were previously lost in the noise. As a result, these benefits are the hallmarks of a sensor exploiting quantum readout fields in order to manipulate the limits of the Heisenberg uncertainty principle.« less

  9. Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise

    PubMed Central

    Burge, Johannes

    2017-01-01

    Accuracy Maximization Analysis (AMA) is a recently developed Bayesian ideal observer method for task-specific dimensionality reduction. Given a training set of proximal stimuli (e.g. retinal images), a response noise model, and a cost function, AMA returns the filters (i.e. receptive fields) that extract the most useful stimulus features for estimating a user-specified latent variable from those stimuli. Here, we first contribute two technical advances that significantly reduce AMA’s compute time: we derive gradients of cost functions for which two popular estimators are appropriate, and we implement a stochastic gradient descent (AMA-SGD) routine for filter learning. Next, we show how the method can be used to simultaneously probe the impact on neural encoding of natural stimulus variability, the prior over the latent variable, noise power, and the choice of cost function. Then, we examine the geometry of AMA’s unique combination of properties that distinguish it from better-known statistical methods. Using binocular disparity estimation as a concrete test case, we develop insights that have general implications for understanding neural encoding and decoding in a broad class of fundamental sensory-perceptual tasks connected to the energy model. Specifically, we find that non-orthogonal (partially redundant) filters with scaled additive noise tend to outperform orthogonal filters with constant additive noise; non-orthogonal filters and scaled additive noise can interact to sculpt noise-induced stimulus encoding uncertainty to match task-irrelevant stimulus variability. Thus, we show that some properties of neural response thought to be biophysical nuisances can confer coding advantages to neural systems. Finally, we speculate that, if repurposed for the problem of neural systems identification, AMA may be able to overcome a fundamental limitation of standard subunit model estimation. As natural stimuli become more widely used in the study of psychophysical and neurophysiological performance, we expect that task-specific methods for feature learning like AMA will become increasingly important. PMID:28178266

  10. Toward the silent helicopter

    NASA Astrophysics Data System (ADS)

    Lewy, Serge; Marze, Henri-James

    The development of a 'silent helicopter' program in Europe, whose aim would be noise reduction for both commercial and military helicopters over the next five years, is discussed. Attention is given to acoustic constraints for helicopters and to noise reduction techniques (with particular reference to the main rotor, the rear rotor, and the engines). For commercial helicopters, the noise reduction over the next five years is projected to be at least down to 6 dB below the OACI norms; for military helicopters, the aim is a variable-frequency signature in near-tactical-flight conditions, with a factor-of-two reduction in the maximum impulsivity in the far field.

  11. USB flow characteristics related to noise generation

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Reddy, N. N.

    1976-01-01

    The effects of nozzle and flap geometry on upper surface blown flow field characteristics related to noise generation were examined experimentally using static models. Flow attachment and spreading characteristics were observed using flow visualization techniques. Velocity and turbulence profiles in the trailing edge wake were measured using hot-wire anemometry, and the effects of the geometric variables on peak velocity and turbulence intensity were determined. It is shown that peak trailing edge velocity is a function of the ratio of flow length to modified hydraulic diameter.

  12. Acoustic and aerodynamic performance of a variable-pitch 1.83-meter-(6-ft) diameter 1.20-pressure-ratio fan stage (QF-9)

    NASA Technical Reports Server (NTRS)

    Glaser, F. W.; Woodward, R. P.; Lucas, J. G.

    1977-01-01

    Far field noise data and related aerodynamic performance are presented for a variable pitch fan stage having characteristics suitable for low noise, STOL engine application. However, no acoustic suppression material was used in the flow passages. The fan was externally driven by an electric motor. Tests were made at several forward thrust rotor blade pitch angles and one for reverse thrust. Fan speed was varied from 60 to 120 percent of takeoff (design) speed, and exhaust nozzles having areas 92 to 105 percent of design were tested. The fan noise level was at a minimum at the design rotor blade pitch angles of 64 deg for takeoff thrust and at 57 deg for approach (50 percent takeoff thrust). Perceived noise along a 152.4-m sideline reached 100.1 PNdb for the takeoff (design) configuration for a stage pressure ratio of 1.17 and thrust of 57,600 N. For reverse thrust the PNL values were 4 to 5 PNdb above the takeoff values at comparable fan speeds.

  13. Clustering promotes switching dynamics in networks of noisy neurons

    NASA Astrophysics Data System (ADS)

    Franović, Igor; Klinshov, Vladimir

    2018-02-01

    Macroscopic variability is an emergent property of neural networks, typically manifested in spontaneous switching between the episodes of elevated neuronal activity and the quiescent episodes. We investigate the conditions that facilitate switching dynamics, focusing on the interplay between the different sources of noise and heterogeneity of the network topology. We consider clustered networks of rate-based neurons subjected to external and intrinsic noise and derive an effective model where the network dynamics is described by a set of coupled second-order stochastic mean-field systems representing each of the clusters. The model provides an insight into the different contributions to effective macroscopic noise and qualitatively indicates the parameter domains where switching dynamics may occur. By analyzing the mean-field model in the thermodynamic limit, we demonstrate that clustering promotes multistability, which gives rise to switching dynamics in a considerably wider parameter region compared to the case of a non-clustered network with sparse random connection topology.

  14. KIC2569073, A second Cepheid in the Kepler FOV

    NASA Astrophysics Data System (ADS)

    Drury, Jason A.; Kuehn, Charles A.; Bellamy, Beau R.; Stello, Dennis; Bedding, Timothy R.

    2015-09-01

    One particularly interesting new variable discovered via Kepler's 200x200 pixel superstamp images is KIC2569073. With a period of 14.66 days and 0.04mag variability it is only the second Cepheid in the Kepler field, or a rotationally modulated variable. We discuss its classification as a Type II W Virginis Class Cepheid, and present the cycle-to-cycle period variations of this star, as well as the first direct observations of granulation noise within a Cepheid.

  15. Recovering the time-variable gravitational field using satellite gradiometry: requirements and gradiometer concept

    NASA Astrophysics Data System (ADS)

    Douch, Karim; Müller, Jürgen; Heinzel, Gerhard; Wu, Hu

    2017-04-01

    The successful GRACE mission and its far-reaching benefits have highlighted the interest to continue and extend the mapping of the Earth's time-variable gravitational field with follow-on missions and ideally a higher spatiotemporal resolution. Here, we would like to put forward satellite gravitational gradiometry as an alternative solution to satellite-to-satellite tracking for future missions. Besides the higher sensitivity to smaller scales compared to GRACE-like missions, a gradiometry mission would only require one satellite and would provide a direct estimation of a functional of the gravitational field. GOCE, the only gradiometry mission launched so far, was not sensitive enough to map the time-variable part of the gravity field. However, the unprecedented precision of the state-of-the-art optical metrology system on-board the LISA PATHFINDER satellite has opened the way to more performant space inertial sensors. We will therefore examine whether it is technically possible to go beyond GOCE performances and to quantify to what extent the time-variable gravitational field could be determined. First, we derive the requirements on the knowledge of the attitude and the position of the satellite and on the measured gradients in terms of sensitivity and calibration accuracy for a typical repeat low-orbit. We conclude in particular that a noise level smaller than 0.1 mE/√Hz- is required in the measurement bandwidth [5x10-4 ; 10-2]Hz so as to be sensitive to the time-variable gravity signal. We introduce then the design and characteristics of the new gradiometer concept and give an assessment of its noise budget. Contrary to the GOCE electrostatic gradiometer, the position of the test-mass in the accelerometer is measured here by laser interferometry rather than by a capacitive readout system, which improves the overall measurement chain. Finally, the first results of a performance analysis carried out thanks to an end-to-end simulator are discussed and compared to the previously defined requirements.

  16. A high precision, compact electromechanical ground rotation sensor

    NASA Astrophysics Data System (ADS)

    Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.; O'Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Shaner, M.; Sobacchi, E.

    2014-05-01

    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of {1}{ × 10^{-11}}textrm { m}/sqrt{textrm {Hz}}. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of {5.7}{ × 10^{-9}}textrm { rad}/sqrt{textrm {Hz}} at 10 mHz and {6.4}{ × 10^{-10}}textrm { rad}/sqrt{textrm {Hz}} at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality.

  17. Ocean eddies and climate predictability

    NASA Astrophysics Data System (ADS)

    Kirtman, Ben P.; Perlin, Natalie; Siqueira, Leo

    2017-12-01

    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  18. Ocean eddies and climate predictability.

    PubMed

    Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo

    2017-12-01

    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  19. Wind turbines and human health.

    PubMed

    Knopper, Loren D; Ollson, Christopher A; McCallum, Lindsay C; Whitfield Aslund, Melissa L; Berger, Robert G; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health.

  20. Wind Turbines and Human Health

    PubMed Central

    Knopper, Loren D.; Ollson, Christopher A.; McCallum, Lindsay C.; Whitfield Aslund, Melissa L.; Berger, Robert G.; Souweine, Kathleen; McDaniel, Mary

    2014-01-01

    The association between wind turbines and health effects is highly debated. Some argue that reported health effects are related to wind turbine operation [electromagnetic fields (EMF), shadow flicker, audible noise, low-frequency noise, infrasound]. Others suggest that when turbines are sited correctly, effects are more likely attributable to a number of subjective variables that result in an annoyed/stressed state. In this review, we provide a bibliographic-like summary and analysis of the science around this issue specifically in terms of noise (including audible, low-frequency noise, and infrasound), EMF, and shadow flicker. Now there are roughly 60 scientific peer-reviewed articles on this issue. The available scientific evidence suggests that EMF, shadow flicker, low-frequency noise, and infrasound from wind turbines are not likely to affect human health; some studies have found that audible noise from wind turbines can be annoying to some. Annoyance may be associated with some self-reported health effects (e.g., sleep disturbance) especially at sound pressure levels >40 dB(A). Because environmental noise above certain levels is a recognized factor in a number of health issues, siting restrictions have been implemented in many jurisdictions to limit noise exposure. These setbacks should help alleviate annoyance from noise. Subjective variables (attitudes and expectations) are also linked to annoyance and have the potential to facilitate other health complaints via the nocebo effect. Therefore, it is possible that a segment of the population may remain annoyed (or report other health impacts) even when noise limits are enforced. Based on the findings and scientific merit of the available studies, the weight of evidence suggests that when sited properly, wind turbines are not related to adverse health. Stemming from this review, we provide a number of recommended best practices for wind turbine development in the context of human health. PMID:24995266

  1. Numerical Prediction of Combustion-induced Noise using a hybrid LES/CAA approach

    NASA Astrophysics Data System (ADS)

    Ihme, Matthias; Pitsch, Heinz; Kaltenbacher, Manfred

    2006-11-01

    Noise generation in technical devices is an increasingly important problem. Jet engines in particular produce sound levels that not only are a nuisance but may also impair hearing. The noise emitted by such engines is generated by different sources such as jet exhaust, fans or turbines, and combustion. Whereas the former acoustic mechanisms are reasonably well understood, combustion-generated noise is not. A methodology for the prediction of combustion-generated noise is developed. In this hybrid approach unsteady acoustic source terms are obtained from an LES and the propagation of pressure perturbations are obtained using acoustic analogies. Lighthill's acoustic analogy and a non-linear wave equation, accounting for variable speed of sound, have been employed. Both models are applied to an open diffusion flame. The effects on the far field pressure and directivity due to the variation of speed of sound are analyzed. Results for the sound pressure level will be compared with experimental data.

  2. Statistics of optimal information flow in ensembles of regulatory motifs

    NASA Astrophysics Data System (ADS)

    Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan

    2018-02-01

    Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.

  3. Background noise exerts diverse effects on the cortical encoding of foreground sounds.

    PubMed

    Malone, B J; Heiser, Marc A; Beitel, Ralph E; Schreiner, Christoph E

    2017-08-01

    In natural listening conditions, many sounds must be detected and identified in the context of competing sound sources, which function as background noise. Traditionally, noise is thought to degrade the cortical representation of sounds by suppressing responses and increasing response variability. However, recent studies of neural network models and brain slices have shown that background synaptic noise can improve the detection of signals. Because acoustic noise affects the synaptic background activity of cortical networks, it may improve the cortical responses to signals. We used spike train decoding techniques to determine the functional effects of a continuous white noise background on the responses of clusters of neurons in auditory cortex to foreground signals, specifically frequency-modulated sweeps (FMs) of different velocities, directions, and amplitudes. Whereas the addition of noise progressively suppressed the FM responses of some cortical sites in the core fields with decreasing signal-to-noise ratios (SNRs), the stimulus representation remained robust or was even significantly enhanced at specific SNRs in many others. Even though the background noise level was typically not explicitly encoded in cortical responses, significant information about noise context could be decoded from cortical responses on the basis of how the neural representation of the foreground sweeps was affected. These findings demonstrate significant diversity in signal in noise processing even within the core auditory fields that could support noise-robust hearing across a wide range of listening conditions. NEW & NOTEWORTHY The ability to detect and discriminate sounds in background noise is critical for our ability to communicate. The neural basis of robust perceptual performance in noise is not well understood. We identified neuronal populations in core auditory cortex of squirrel monkeys that differ in how they process foreground signals in background noise and that may contribute to robust signal representation and discrimination in acoustic environments with prominent background noise. Copyright © 2017 the American Physiological Society.

  4. The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal.

    PubMed

    Rao, Ravella Sreenivas; Kumar, C Ganesh; Prakasham, R Shetty; Hobbs, Phil J

    2008-04-01

    Success in experiments and/or technology mainly depends on a properly designed process or product. The traditional method of process optimization involves the study of one variable at a time, which requires a number of combinations of experiments that are time, cost and labor intensive. The Taguchi method of design of experiments is a simple statistical tool involving a system of tabulated designs (arrays) that allows a maximum number of main effects to be estimated in an unbiased (orthogonal) fashion with a minimum number of experimental runs. It has been applied to predict the significant contribution of the design variable(s) and the optimum combination of each variable by conducting experiments on a real-time basis. The modeling that is performed essentially relates signal-to-noise ratio to the control variables in a 'main effect only' approach. This approach enables both multiple response and dynamic problems to be studied by handling noise factors. Taguchi principles and concepts have made extensive contributions to industry by bringing focused awareness to robustness, noise and quality. This methodology has been widely applied in many industrial sectors; however, its application in biological sciences has been limited. In the present review, the application and comparison of the Taguchi methodology has been emphasized with specific case studies in the field of biotechnology, particularly in diverse areas like fermentation, food processing, molecular biology, wastewater treatment and bioremediation.

  5. Helicopter far-field acoustic levels as a function of reduced rotor speeds

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Lemasurier, Philip; Smith, Charles D.

    1990-01-01

    This paper will present far-field measured noise levels relative to tests conducted with a model S-76A helicopter. The project was designed to provide supplemental experimental flight data which may be used to further study reduced helicopter rotor speeds (and thus, advancing blade-tip Mach number) effects on far-field acoustic levels. The aircraft was flown in straight and level flight while operating with both the rotor speed and flight speed as test variables. The rotor speed was varied over the range of 107 percent of the main-rotor speed (NR) to 90 percent NR and with the forward flight speed varied over the range of 155 to 35 knots indicated air speed. These conditions produced a wide range of advancing blade-tip Mach numbers to which the noise data are related.

  6. Helicopter main-rotor speed effects on far-field acoustic levels

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Childress, Otis S.; Hardesty, Mark

    1987-01-01

    The design of a helicopter is based on an understanding of many parameters and their interactions. For example, in the design stage of a helicopter, the weight, engine, and rotor speed must be considered along with the rotor geometry when considering helicopter operations. However, the relationship between the noise radiated from the helicopter and these parameters is not well understood, with only limited model and full-scale test data to study. In general, these data have shown that reduced rotor speeds result in reduced far-field noise levels. This paper reviews the status of a recent helicopter noise research project designed to provide experimental flight data to be used to better understand helicopter rotor-speed effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a McDonnell Douglas model 500E helicopter operating with the rotor speed as the control variable over the range of 103% of the main-rotor speed (NR) to 75% NR, and with the forward speed maintained at a constant value of 80 knots.

  7. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones.

    PubMed

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-23

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones.

  8. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    PubMed Central

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-01

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near the bottom in deep ocean direct-arrival zones. PMID:29360793

  9. A preliminary study of the performance and characteristics of a supersonic executive aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1977-01-01

    The impact of advanced supersonic technologies on the performance and characteristics of a supersonic executive aircraft was studied in four configurations with different engine locations and wing/body blending and an advanced nonafterburning turbojet or variable cycle engine. An M 2.2 design Douglas scaled arrow-wing was used with Learjet 35 accommodations. All four configurations with turbojet engines meet the performance goals of 5926 km (3200 n.mi.) range, 1981 meters (6500 feet) takeoff field length, and 77 meters per second (150 knots) approach speed. The noise levels of of turbojet configurations studied are excessive. However, a turbojet with mechanical suppressor was not studied. The variable cycle engine configuration is deficient in range by 555 km (300 n.mi) but nearly meets subsonic noise rules (FAR 36 1977 edition), if coannular noise relief is assumed. All configurations are in the 33566 to 36287 kg (74,000 to 80,000 lbm) takeoff gross weight class when incorporating current titanium manufacturing technology.

  10. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu

    2016-12-01

    Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.

  11. Noise data from tests of a 1.83 meter (6-ft-) diameter variable-pitch 1.2-pressure-ratio fan (QF-9)

    NASA Technical Reports Server (NTRS)

    Glaser, F. W.; Wazyniak, J. A.; Friedman, R.

    1975-01-01

    Acoustic and aerodynamic data for a 1.83-meter (6-ft.) diameter fan suitable for a quiet engine for short-takeoff-and-landing (STOL) aircraft are documented. The QF-9 rotor blades had an adjustable pitch feature which provided a means for testing at several rotor blade setting angles, including one for reverse thrust. The fan stage incorporated features for low noise. Far-field noise around the fan was measured without acoustic suppression over a range of operating conditions for six different rotor blade setting angles in the forward thrust configuration, and for one in the reverse configuration. Complete results of one-third-octave band analysis of the data are presented in tabular form. Also included are power spectra, data referred to the source, and sideline perceived noise levels.

  12. Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannular plug nozzle

    NASA Technical Reports Server (NTRS)

    Vdoviak, J. W.; Knott, P. R.; Ebacker, J. J.

    1981-01-01

    Results of a forward Variable Area Bypass Injector test and a Coannular Nozzle test performed on a YJ101 Double Bypass Variable Cycle Engine are reported. These components are intended for use on a Variable Cycle Engine. The forward Variable Area Bypass Injector test demonstrated the mode shifting capability between single and double bypass operation with less than predicted aerodynamic losses in the bypass duct. The acoustic nozzle test demonstrated that coannular noise suppression was between 4 and 6 PNdB in the aft quadrant. The YJ101 VCE equipped with the forward VABI and the coannular exhaust nozzle performed as predicted with exhaust system aerodynamic losses lower than predicted both in single and double bypass modes. Extensive acoustic data were collected including far field, near field, sound separation/ internal probe measurements as Laser Velocimeter traverses.

  13. Squeezing with a flux-driven Josephson parametric amplifier

    NASA Astrophysics Data System (ADS)

    Menzel, E. P.; Zhong, L.; Eder, P.; Baust, A.; Haeberlein, M.; Hoffmann, E.; Deppe, F.; Marx, A.; Gross, R.; di Candia, R.; Solano, E.; Ihmig, M.; Inomata, K.; Yamamoto, T.; Nakamura, Y.

    2014-03-01

    Josephson parametric amplifiers (JPA) are promising devices for the implementation of continuous-variable quantum communication protocols. Operated in the phase-sensitive mode, they allow for amplifying a single quadrature of the electromagnetic field without adding any noise. While in practice internal losses introduce a finite amount of noise, our device still adds less noise than an ideal phase-insensitive amplifier. This property is a prerequisite for the generation of squeezed states. In this work, we reconstruct the Wigner function of squeezed vacuum, squeezed thermal and squeezed coherent states with our dual-path method [L. Zhong et al. arXiv:1307.7285 (2013); E. P. Menzel et al. Phys. Rev. Lett. 105 100401 (2010)]. In addition, we illuminate the physics of squeezed coherent microwave fields. This work is supported by SFB 631, German Excellence Initiative via NIM, EU projects SOLID, CCQED, PROMISCE and SCALEQIT, MEXT Kakenhi ``Quantum Cybernetics,'' JSPS FIRST Program, the NICT Commissioned Research, Basque Government IT472-10, Spanish MINECO FIS2012-36673-C03-02, and UPV/EHU UFI 11/55.

  14. Characterizing local variability in long‐period horizontal tilt noise

    USGS Publications Warehouse

    Rohde, M.D.; Ringler, Adam; Hutt, Charles R.; Wilson, David; Holland, Austin; Sandoval, L.D; Storm, Tyler

    2017-01-01

    Horizontal seismic data are dominated by atmospherically induced tilt noise at long periods (i.e., 30 s and greater). Tilt noise limits our ability to use horizontal data for sensitive seismological studies such as observing free earth modes. To better understand the local spatial variability of long‐period horizontal noise, we observe horizontal noise during quiet time periods in the Albuquerque Seismological Laboratory (ASL) underground vault using four small‐aperture array configurations. Each array comprises eight Streckeisen STS‐2 broadband seismometers. We analyze the spectral content of the data using power spectral density and magnitude‐squared coherence (γ2‐coherence). Our results show a high degree of spatial variability and frequency dependence in the long‐period horizontal wavefield. The variable nature of long‐period horizontal noise in the ASL vault suggests that it might be highly local in nature and not easily characterized by simple physical models when overall noise levels are low, making it difficult to identify locations in the vault with lower horizontal noise. This variability could be limiting our ability to apply coherence analysis for estimating horizontal sensor self‐noise and could also complicate various indirect methods for removing long‐period horizontal noise (e.g., collocated rotational sensor or microbarograph).

  15. A Method for Simulation of Rotorcraft Fly-In Noise for Human Response Studies

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Christian, Andrew

    2015-01-01

    The low frequency content of rotorcraft noise allows it to be heard over great distances. This factor contributes to the disruption of natural quiet in national parks and wilderness areas, and can lead to annoyance in populated areas. Further, it can result in detection at greater distances compared to higher altitude fixed wing aircraft operations. Human response studies conducted in the field are made difficult since test conditions are difficult to control. Specifically, compared to fixed wing aircraft, the source noise itself may significantly vary over time even for nominally steady flight conditions, and the propagation of that noise is more variable due to low altitude meteorological conditions. However, it is possible to create the salient features of rotorcraft fly-in noise in a more controlled laboratory setting through recent advancements made in source noise synthesis, propagation modeling and reproduction. This paper concentrates on the first two of these. In particular, the rotorcraft source noise pressure time history is generated using single blade passage signatures from the main and tail rotors. These may be obtained from either acoustic source noise predictions or back-propagation of ground-based measurements. Propagation effects include atmospheric absorption, spreading loss, Doppler shift, and ground plane reflections.

  16. Efficiency turns the table on neural encoding, decoding and noise.

    PubMed

    Deneve, Sophie; Chalk, Matthew

    2016-04-01

    Sensory neurons are usually described with an encoding model, for example, a function that predicts their response from the sensory stimulus using a receptive field (RF) or a tuning curve. However, central to theories of sensory processing is the notion of 'efficient coding'. We argue here that efficient coding implies a completely different neural coding strategy. Instead of a fixed encoding model, neural populations would be described by a fixed decoding model (i.e. a model reconstructing the stimulus from the neural responses). Because the population solves a global optimization problem, individual neurons are variable, but not noisy, and have no truly invariant tuning curve or receptive field. We review recent experimental evidence and implications for neural noise correlations, robustness and adaptation. Copyright © 2016. Published by Elsevier Ltd.

  17. Reduction of parasitic interferences in digital holographic microscopy by numerically decreased coherence length

    NASA Astrophysics Data System (ADS)

    Kosmeier, S.; Langehanenberg, P.; von Bally, G.; Kemper, B.

    2012-01-01

    Due to the large coherence length of laser light, optical path length (OPL) resolution in laser based digital holographic microscopy suffers from parasitic interferences caused by multiple reflections within the experimental setup. Use of partially coherent light reduces this drawback but requires precise and stable matching of object and reference arm's OPLs and limits the spatial frequency of the interference pattern in off-axis holography. Here, we investigate if the noise properties of spectrally broadened light sources can be generated numerically. Therefore, holograms are coherently captured at different laser wavelengths and the corresponding reconstructed wave fields are numerically superimposed utilizing variable weightings. Gaussian and rectangular spectral shapes of the so synthesized field are analyzed with respect to the resulting noise level, which is quantified in OPL distributions of a reflective test target. Utilizing a Gaussian weighting, the noise level is found to be similar to the one obtained with the partially coherent light of a superluminescent diode. With a rectangular shaped synthesized spectrum, noise is reduced more efficient than with a Gaussian one. The applicability of the method in label-free cell analysis is demonstrated by quantitative phase contrast images obtained from living cancer cells.

  18. Assessment of noise in non-tectonic displacement derived from GRACE time-variable gravity filed

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Shen, Yunzhong

    2017-04-01

    Many studies have been focusing on estimating the noises in GNSS monitoring time series. While the noises of GNSS time series after the correction with non-tectonic displacement should be re-estimated. Knowing the noises in the non-tectonic can help to better identify the sources of re-estimated noises. However, there is a lack of knowledge of noises in the non-tectonic displacement. The objective of this work is to assess the noise in the non-tectonic displacement. GRACE time-variable gravity is used to reflect the global mass variation. The GRACE stokes coefficients of the gravity field are used to calculate the non-tectonic surface displacement at any point on the surface. The Atmosphere and Ocean AOD1B de-aliasing model to the GRACE solutions is added because the complete mass variation is requested. The monthly GRACE solutions from CSR, JPL, GFZ and Tongji span from January 2003 to September 2015 are compared. The degree-1 coefficients derived by Swenson et al (2008) are added and also the C20 terms are replaced with those obtained from Satellite Laser Ranging. The P4M6 decorrelation and Fan filter with a radius of 300 km are adopted to reduce the stripe errors. Optimal noise models for the 1054 stations in ITRF2014 are presented. It is found that white noise only take up a small proportion: less than 18% in horizontal and less than 13% in vertical. The dominant models in up and north components are ARMA and flicker, while in east the power law noise shows significance. The local distribution comparison of the optimal noise models among different products is quite similar, which shows that there is little dependence on the different strategies adopted. In addition, the reasons that caused to different distributions of the optimal noise models are also investigated. Meanwhile different filtering methods such as Gaussian filters, Han filters are applied to see whether the noise is related with filters. Keyword: optimal noise model; non-tectonic displacement;GRACE; local distribution; filters

  19. Effect of Personal and Situational Variables on Noise Annoyance: with Special Reference to Implications for En Route Noise

    NASA Technical Reports Server (NTRS)

    Fields, James M.

    1992-01-01

    Over 680 publications from 282 social surveys of residents' reactions to environmental noise have been examined to locate 495 published findings on 26 topics concerning non-noise explanations for residents' reactions to environmental noise. This report (1) tabulates the evidence on the 26 response topics, (2) identifies the 495 findings, and (3) discusses the implications for en route noise assessment. After controlling for noise level, over half of the social survey evidence indicates that noise annoyance is not strongly affected by any of the nine demographic variables examined (age, sex, social status, income, education, homeownership, type of dwelling, length of residence, or receipt of benefits from the noise source), but is positively associated with each of the five attitudinal variables examined (a fear of danger from the noise source, a sensitivity towards noise generally, the belief that the authorities can control the noise, the awareness of non-noise impacts of the source, and the belief that the noise source is not important).

  20. Comparison of the Performance of Noise Metrics as Predictions of the Annoyance of Stage 2 and Stage 3 Aircraft Overflights

    NASA Technical Reports Server (NTRS)

    Pearsons, Karl S.; Howe, Richard R.; Sneddon, Matthew D.; Fidell, Sanford

    1996-01-01

    Thirty audiometrically screened test participants judged the relative annoyance of two comparison (variable level) and thirty-four standard (fixed level) signals in an adaptive paired comparison psychoacoustic study. The signal ensemble included both FAR Part 36 Stage 2 and 3 aircraft overflights, as well as synthesized aircraft noise signatures and other non-aircraft signals. All test signals were presented for judgment as heard indoors, in the presence of continuous background noise, under free-field listening conditions in an anechoic chamber. Analyses of the performance of 30 noise metrics as predictors of these annoyance judgments confirmed that the more complex metrics were generally more accurate and precise predictors than the simpler methods. EPNL was somewhat less accurate and precise as a predictor of the annoyance judgments than a duration-adjusted variant of Zwicker's Loudness Level.

  1. New parameters in adaptive testing of ferromagnetic materials utilizing magnetic Barkhausen noise

    NASA Astrophysics Data System (ADS)

    Pal'a, Jozef; Ušák, Elemír

    2016-03-01

    A new method of magnetic Barkhausen noise (MBN) measurement and optimization of the measured data processing with respect to non-destructive evaluation of ferromagnetic materials was tested. Using this method we tried to found, if it is possible to enhance sensitivity and stability of measurement results by replacing the traditional MBN parameter (root mean square) with some new parameter. In the tested method, a complex set of the MBN from minor hysteresis loops is measured. Afterward, the MBN data are collected into suitably designed matrices and optimal parameters of MBN with respect to maximum sensitivity to the evaluated variable are searched. The method was verified on plastically deformed steel samples. It was shown that the proposed measuring method and measured data processing bring an improvement of the sensitivity to the evaluated variable when comparing with measuring traditional MBN parameter. Moreover, we found a parameter of MBN, which is highly resistant to the changes of applied field amplitude and at the same time it is noticeably more sensitive to the evaluated variable.

  2. Nonexponential Decoherence and Momentum Subdiffusion in a Quantum Lévy Kicked Rotator

    NASA Astrophysics Data System (ADS)

    Schomerus, Henning; Lutz, Eric

    2007-06-01

    We investigate decoherence in the quantum kicked rotator (modeling cold atoms in a pulsed optical field) subjected to noise with power-law tail waiting-time distributions of variable exponent (Lévy noise). We demonstrate the existence of a regime of nonexponential decoherence where the notion of a decoherence rate is ill defined. In this regime, dynamical localization is never fully destroyed, indicating that the dynamics of the quantum system never reaches the classical limit. We show that this leads to quantum subdiffusion of the momentum, which should be observable in an experiment.

  3. Empirical source noise prediction method with application to subsonic coaxial jet mixing noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.; Weir, D. S.

    1982-01-01

    A general empirical method, developed for source noise predictions, uses tensor splines to represent the dependence of the acoustic field on frequency and direction and Taylor's series to represent the dependence on source state parameters. The method is applied to prediction of mixing noise from subsonic circular and coaxial jets. A noise data base of 1/3-octave-band sound pressure levels (SPL's) from 540 tests was gathered from three countries: United States, United Kingdom, and France. The SPL's depend on seven variables: frequency, polar direction angle, and five source state parameters: inner and outer nozzle pressure ratios, inner and outer stream total temperatures, and nozzle area ratio. A least-squares seven-dimensional curve fit defines a table of constants which is used for the prediction method. The resulting prediction has a mean error of 0 dB and a standard deviation of 1.2 dB. The prediction method is used to search for a coaxial jet which has the greatest coaxial noise benefit as compared with an equivalent single jet. It is found that benefits of about 6 dB are possible.

  4. Response to noise from modern wind farms in The Netherlands.

    PubMed

    Pedersen, Eja; van den Berg, Frits; Bakker, Roel; Bouma, Jelte

    2009-08-01

    The increasing number and size of wind farms call for more data on human response to wind turbine noise, so that a generalized dose-response relationship can be modeled and possible adverse health effects avoided. This paper reports the results of a 2007 field study in The Netherlands with 725 respondents. A dose-response relationship between calculated A-weighted sound pressure levels and reported perception and annoyance was found. Wind turbine noise was more annoying than transportation noise or industrial noise at comparable levels, possibly due to specific sound properties such as a "swishing" quality, temporal variability, and lack of nighttime abatement. High turbine visibility enhances negative response, and having wind turbines visible from the dwelling significantly increased the risk of annoyance. Annoyance was strongly correlated with a negative attitude toward the visual impact of wind turbines on the landscape. The study further demonstrates that people who benefit economically from wind turbines have a significantly decreased risk of annoyance, despite exposure to similar sound levels. Response to wind turbine noise was similar to that found in Sweden so the dose-response relationship should be generalizable.

  5. Static and wind tunnel model tests for the development of externally blown flap noise reduction techniques

    NASA Technical Reports Server (NTRS)

    Pennock, A. P.; Swift, G.; Marbert, J. A.

    1975-01-01

    Externally blown flap models were tested for noise and performance at one-fifth scale in a static facility and at one-tenth scale in a large acoustically-treated wind tunnel. The static tests covered two flap designs, conical and ejector nozzles, third-flap noise-reduction treatments, internal blowing, and flap/nozzle geometry variations. The wind tunnel variables were triple-slotted or single-slotted flaps, sweep angle, and solid or perforated third flap. The static test program showed the following noise reductions at takeoff: 1.5 PNdB due to treating the third flap; 0.5 PNdB due to blowing from the third flap; 6 PNdB at flyover and 4.5 PNdB in the critical sideline plane (30 deg elevation) due to installation of the ejector nozzle. The wind tunnel program showed a reduction of 2 PNdB in the sideline plane due to a forward speed of 43.8 m/s (85 kn). The best combination of noise reduction concepts reduced the sideline noise of the reference aircraft at constant field length by 4 PNdB.

  6. AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G.

    2016-05-01

    The new release AIUB-RL02 of monthly gravity models from GRACE GPS and K-Band range-rate data is based on reprocessed satellite orbits referring to the reference frame IGb08. The release is consistent with the IERS2010 conventions. Improvements with respect to its predecessor AIUB-RL01 include the use of reprocessed (RL02) GRACE observations, new atmosphere and ocean dealiasing products (RL05), an upgraded ocean tide model (EOT11A), and the interpolation of shallow ocean tides (admittances). The stochastic parametrization of AIUB-RL02 was adapted to include daily accelerometer scale factors, which drastically reduces spurious signal at the 161 d period in C20 and at other low degree and order gravity field coefficients. Moreover, the correlation between the noise in the monthly gravity models and solar activity is considerably reduced in the new release. The signal and the noise content of the new AIUB-RL02 monthly gravity fields are studied and calibrated errors are derived from their non-secular and non-seasonal variability. The short-period time-variable signal over the oceans, mostly representing noise, is reduced by 50 per cent with respect to AIUB-RL01. Compared to the official GFZ-RL05a and CSR-RL05 monthly models, the AIUB-RL02 stands out by its low noise at high degrees, a fact emerging from the estimation of seasonal variations for selected river basins and of mass trends in polar regions. Two versions of the monthly AIUB-RL02 gravity models, with spherical harmonics resolution of degree and order 60 and 90, respectively, are available for the time period from March 2003 to March 2014 at the International Center for Global Earth Models or from ftp://ftp.unibe.ch/aiub/GRAVITY/GRACE (last accessed 22 March 2016).

  7. Variability of annoyance response due to aircraft noise

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Cawthorn, J. M.

    1979-01-01

    An investigation was conducted to study the variability in the response of subjects participating in noise experiments. This paper presents a description of a model developed to include this variability which incorporates an aircraft-noise adaptation level or an annoyance calibration for each individual. The results indicate that the use of an aircraft-noise adaption level improved prediction accuracy of annoyance responses (and simultaneously reduced response variation).

  8. Estimating the signal-to-noise ratio of AVIRIS data

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.

    1988-01-01

    To make the best use of narrowband airborne visible/infrared imaging spectrometer (AVIRIS) data, an investigator needs to know the ratio of signal to random variability or noise (signal-to-noise ratio or SNR). The signal is land cover dependent and varies with both wavelength and atmospheric absorption; random noise comprises sensor noise and intrapixel variability (i.e., variability within a pixel). The three existing methods for estimating the SNR are inadequate, since typical laboratory methods inflate while dark current and image methods deflate the SNR. A new procedure is proposed called the geostatistical method. It is based on the removal of periodic noise by notch filtering in the frequency domain and the isolation of sensor noise and intrapixel variability using the semi-variogram. This procedure was applied easily and successfully to five sets of AVIRIS data from the 1987 flying season and could be applied to remotely sensed data from broadband sensors.

  9. Analysis of the Precision of Variable Flip Angle T1 Mapping with Emphasis on the Noise Propagated from RF Transmit Field Maps.

    PubMed

    Lee, Yoojin; Callaghan, Martina F; Nagy, Zoltan

    2017-01-01

    In magnetic resonance imaging, precise measurements of longitudinal relaxation time ( T 1 ) is crucial to acquire useful information that is applicable to numerous clinical and neuroscience applications. In this work, we investigated the precision of T 1 relaxation time as measured using the variable flip angle method with emphasis on the noise propagated from radiofrequency transmit field ([Formula: see text]) measurements. The analytical solution for T 1 precision was derived by standard error propagation methods incorporating the noise from the three input sources: two spoiled gradient echo (SPGR) images and a [Formula: see text] map. Repeated in vivo experiments were performed to estimate the total variance in T 1 maps and we compared these experimentally obtained values with the theoretical predictions to validate the established theoretical framework. Both the analytical and experimental results showed that variance in the [Formula: see text] map propagated comparable noise levels into the T 1 maps as either of the two SPGR images. Improving precision of the [Formula: see text] measurements significantly reduced the variance in the estimated T 1 map. The variance estimated from the repeatedly measured in vivo T 1 maps agreed well with the theoretically-calculated variance in T 1 estimates, thus validating the analytical framework for realistic in vivo experiments. We concluded that for T 1 mapping experiments, the error propagated from the [Formula: see text] map must be considered. Optimizing the SPGR signals while neglecting to improve the precision of the [Formula: see text] map may result in grossly overestimating the precision of the estimated T 1 values.

  10. Computer program to predict noise of general aviation aircraft: User's guide

    NASA Technical Reports Server (NTRS)

    Mitchell, J. A.; Barton, C. K.; Kisner, L. S.; Lyon, C. A.

    1982-01-01

    Program NOISE predicts General Aviation Aircraft far-field noise levels at FAA FAR Part 36 certification conditions. It will also predict near-field and cabin noise levels for turboprop aircraft and static engine component far-field noise levels.

  11. Effects of noise levels and call types on the source levels of killer whale calls.

    PubMed

    Holt, Marla M; Noren, Dawn P; Emmons, Candice K

    2011-11-01

    Accurate parameter estimates relevant to the vocal behavior of marine mammals are needed to assess potential effects of anthropogenic sound exposure including how masking noise reduces the active space of sounds used for communication. Information about how these animals modify their vocal behavior in response to noise exposure is also needed for such assessment. Prior studies have reported variations in the source levels of killer whale sounds, and a more recent study reported that killer whales compensate for vessel masking noise by increasing their call amplitude. The objectives of the current study were to investigate the source levels of a variety of call types in southern resident killer whales while also considering background noise level as a likely factor related to call source level variability. The source levels of 763 discrete calls along with corresponding background noise were measured over three summer field seasons in the waters surrounding the San Juan Islands, WA. Both noise level and call type were significant factors on call source levels (1-40 kHz band, range of 135.0-175.7 dB(rms) re 1 [micro sign]Pa at 1 m). These factors should be considered in models that predict how anthropogenic masking noise reduces vocal communication space in marine mammals.

  12. Effective action for stochastic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochberg, David; Centro de Astrobiologia, INTA, Carratera Ajalvir, Km. 4, 28850 Torrejon, Madrid,; Molina-Paris, Carmen

    Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important tomore » realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of SPDEs. An important result is that the amplitude of the two-point function governing the noise acts as the loop-counting parameter and is the analog of Planck's constant ({Dirac_h}/2{pi}) in this SPDE context. We derive a general expression for the one-loop effective potential of an arbitrary SPDE subject to translation-invariant Gaussian noise, and compare this with the one-loop potential for QFT. (c) 1999 The American Physical Society.« less

  13. Hierarchical differences in population coding within auditory cortex.

    PubMed

    Downer, Joshua D; Niwa, Mamiko; Sutter, Mitchell L

    2017-08-01

    Most models of auditory cortical (AC) population coding have focused on primary auditory cortex (A1). Thus our understanding of how neural coding for sounds progresses along the cortical hierarchy remains obscure. To illuminate this, we recorded from two AC fields: A1 and middle lateral belt (ML) of rhesus macaques. We presented amplitude-modulated (AM) noise during both passive listening and while the animals performed an AM detection task ("active" condition). In both fields, neurons exhibit monotonic AM-depth tuning, with A1 neurons mostly exhibiting increasing rate-depth functions and ML neurons approximately evenly distributed between increasing and decreasing functions. We measured noise correlation ( r noise ) between simultaneously recorded neurons and found that whereas engagement decreased average r noise in A1, engagement increased average r noise in ML. This finding surprised us, because attentive states are commonly reported to decrease average r noise We analyzed the effect of r noise on AM coding in both A1 and ML and found that whereas engagement-related shifts in r noise in A1 enhance AM coding, r noise shifts in ML have little effect. These results imply that the effect of r noise differs between sensory areas, based on the distribution of tuning properties among the neurons within each population. A possible explanation of this is that higher areas need to encode nonsensory variables (e.g., attention, choice, and motor preparation), which impart common noise, thus increasing r noise Therefore, the hierarchical emergence of r noise -robust population coding (e.g., as we observed in ML) enhances the ability of sensory cortex to integrate cognitive and sensory information without a loss of sensory fidelity. NEW & NOTEWORTHY Prevailing models of population coding of sensory information are based on a limited subset of neural structures. An important and under-explored question in neuroscience is how distinct areas of sensory cortex differ in their population coding strategies. In this study, we compared population coding between primary and secondary auditory cortex. Our findings demonstrate striking differences between the two areas and highlight the importance of considering the diversity of neural structures as we develop models of population coding. Copyright © 2017 the American Physiological Society.

  14. Patient-specific estimation of spatially variant image noise for a pinhole cardiac SPECT camera.

    PubMed

    Cuddy-Walsh, Sarah G; Wells, R Glenn

    2018-05-01

    New single photon emission computed tomography (SPECT) cameras using fixed pinhole collimation are increasingly popular. Pinhole collimators are known to have variable sensitivity with distance and angle from the pinhole aperture. It follows that pinhole SPECT systems will also have spatially variant sensitivity and hence spatially variant image noise. The objective of this study was to develop and validate a rapid method for analytically estimating a map of the noise magnitude in a reconstructed image using data from a single clinical acquisition. The projected voxel (PV) noise estimation method uses a modified forward projector with attenuation effects to estimate the number of photons detected from each voxel in the field-of-view. We approximate the noise for each voxel as the standard deviation of a Poisson distribution with a mean equal to the number of detected photons. An empirical formula is used to address scaling discrepancies caused by image reconstruction. Calibration coefficients are determined for the PV method by comparing it with noise measured from a nonparametrically bootstrapped set of images of a spherical uniformly filled Tc-99m water phantom. Validation studies compare PV noise estimates with bootstrapped measured noise for 31 patient images (5 min, 340 MBq, 99m Tc-tetrofosmin rest study). Bland-Altman analysis shows R 2 correlations ≥70% between the PV-estimated and -measured image noise. For the 31 patient cardiac images, the PV noise estimate has an average bias of 0.1% compared to bootstrapped noise and have a coefficient of variation (CV) ≤ 17%. The bootstrap approach to noise measurement requires 5 h of computation for each image, whereas the PV noise estimate requires only 64 s. In cardiac images, image noise due to attenuation and camera sensitivity varies on average from 4% at the apex to 9% in the basal posterior region of the heart. The standard deviation between 15 healthy patient study images (including physiological variability in the population) ranges from 6% to 16.5% over the length of the heart. The PV method provides a rapid estimate for spatially variant patient-specific image noise magnitude in a pinhole-collimated dedicated cardiac SPECT camera with a bias of -0.3% and better than 83% precision. © 2018 American Association of Physicists in Medicine.

  15. A novel approach to piecewise analytic agricultural machinery path reconstruction

    NASA Astrophysics Data System (ADS)

    Wörz, Sascha; Mederle, Michael; Heizinger, Valentin; Bernhardt, Heinz

    2017-12-01

    Before analysing machinery operation in fields, it has to be coped with the problem that the GPS signals of GPS receivers located on the machines contain measurement noise, are time-discrete, and the underlying physical system describing the positions, axial and absolute velocities, angular rates and angular orientation of the operating machines during the whole working time are unknown. This research work presents a new three-dimensional mathematical approach using kinematic relations based on control variables as Euler angular velocities and angles and a discrete target control problem, such that the state control function is given by the sum of squared residuals involving the state and control variables to get such a physical system, which yields a noise-free and piecewise analytic representation of the positions, velocities, angular rates and angular orientation. It can be used for a further detailed study and analysis of the problem of why agricultural vehicles operate in practice as they do.

  16. VLSI implementation of a new LMS-based algorithm for noise removal in ECG signal

    NASA Astrophysics Data System (ADS)

    Satheeskumaran, S.; Sabrigiriraj, M.

    2016-06-01

    Least mean square (LMS)-based adaptive filters are widely deployed for removing artefacts in electrocardiogram (ECG) due to less number of computations. But they posses high mean square error (MSE) under noisy environment. The transform domain variable step-size LMS algorithm reduces the MSE at the cost of computational complexity. In this paper, a variable step-size delayed LMS adaptive filter is used to remove the artefacts from the ECG signal for improved feature extraction. The dedicated digital Signal processors provide fast processing, but they are not flexible. By using field programmable gate arrays, the pipelined architectures can be used to enhance the system performance. The pipelined architecture can enhance the operation efficiency of the adaptive filter and save the power consumption. This technique provides high signal-to-noise ratio and low MSE with reduced computational complexity; hence, it is a useful method for monitoring patients with heart-related problem.

  17. The null result of a search for pulsational variations of the surface magnetic field in the roAp star γ Equulei

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Ryabchikova, T.; Landstreet, J. D.; Weiss, W. W.

    2004-06-01

    We describe an analysis of the time-resolved measurements of the surface magnetic field in the roAp star γEqu. We have obtained a high-resolution and high signal-to-noise (S/N) spectroscopic time series, and the magnetic field was determined using Zeeman-resolved profiles of the FeII 6149.25 Åand FeI 6173.34 Ålines. Contrary to recent reports, we do not find any evidence of magnetic variability with pulsation phase, and derive an upper limit of 5-10 G for pulsational modulation of the surface magnetic field in γEqu.

  18. On the use of mobile phones and wearable microphones for noise exposure measurements: Calibration and measurement accuracy

    NASA Astrophysics Data System (ADS)

    Dumoulin, Romain

    Despite the fact that noise-induced hearing loss remains the number one occupational disease in developed countries, individual noise exposure levels are still rarely known and infrequently tracked. Indeed, efforts to standardize noise exposure levels present disadvantages such as costly instrumentation and difficulties associated with on site implementation. Given their advanced technical capabilities and widespread daily usage, mobile phones could be used to measure noise levels and make noise monitoring more accessible. However, the use of mobile phones for measuring noise exposure is currently limited due to the lack of formal procedures for their calibration and challenges regarding the measurement procedure. Our research investigated the calibration of mobile phone-based solutions for measuring noise exposure using a mobile phone's built-in microphones and wearable external microphones. The proposed calibration approach integrated corrections that took into account microphone placement error. The corrections were of two types: frequency-dependent, using a digital filter and noise level-dependent, based on the difference between the C-weighted noise level minus A-weighted noise level of the noise measured by the phone. The electro-acoustical limitations and measurement calibration procedure of the mobile phone were investigated. The study also sought to quantify the effect of noise exposure characteristics on the accuracy of calibrated mobile phone measurements. Measurements were carried out in reverberant and semi-anechoic chambers with several mobiles phone units of the same model, two types of external devices (an earpiece and a headset with an in-line microphone) and an acoustical test fixture (ATF). The proposed calibration approach significantly improved the accuracy of the noise level measurements in diffuse and free fields, with better results in the diffuse field and with ATF positions causing little or no acoustic shadowing. Several sources of errors and uncertainties were identified including the errors associated with the inter-unit-variability, the presence of signal saturation and the microphone placement relative to the source and the wearer. The results of the investigations and validation measurements led to recommendations regarding the measurement procedure including the use of external microphones having lower sensitivity and provided the basis for a standardized and unique factory default calibration method intended for implementation in any mobile phone. A user-defined adjustment was proposed to minimize the errors associated with calibration and the acoustical field. Mobile phones implementing the proposed laboratory calibration and used with external microphones showed great potential as noise exposure instruments. Combined with their potential as training and prevention tools, the expansion of their use could significantly help reduce the risks of noise-induced hearing loss.

  19. Structure-borne sound and vibration from building-mounted wind turbines

    NASA Astrophysics Data System (ADS)

    Moorhouse, Andy; Elliott, Andy; Eastwick, Graham; Evans, Tomos; Ryan, Andy; von Hunerbein, Sabine; le Bescond, Valentin; Waddington, David

    2011-07-01

    Noise continues to be a significant factor in the development of wind energy resources. In the case of building-mounted wind turbines (BMWTs), in addition to the usual airborne sound there is the potential for occupants to be affected by structure-borne sound and vibration transmitted through the building structure. Usual methods for prediction and evaluation of noise from large and small WTs are not applicable to noise of this type. This letter describes an investigation aiming to derive a methodology for prediction of structure-borne sound and vibration inside attached dwellings. Jointly funded by three UK government departments, the work was motivated by a desire to stimulate renewable energy generation by the removal of planning restrictions where possible. A method for characterizing BMWTs as sources of structure-borne sound was first developed during a field survey of two small wind turbines under variable wind conditions. The 'source strength' was established as a function of rotor speed although a general relationship to wind speed could not be established. The influence of turbulence was also investigated. The prediction methodology, which also accounts for the sound transmission properties of the mast and supporting building, was verified in a field survey of existing installations. Significant differences in behavior and subjective character were noted between the airborne and structure-borne noise from BMWTs.

  20. Evaluation of internal noise methods for Hotelling observers

    NASA Astrophysics Data System (ADS)

    Zhang, Yani; Pham, Binh T.; Eckstein, Miguel P.

    2005-04-01

    Including internal noise in computer model observers to degrade model observer performance to human levels is a common method to allow for quantitatively comparisons of human and model performance. In this paper, we studied two different types of methods for injecting internal noise to Hotelling model observers. The first method adds internal noise to the output of the individual channels: a) Independent non-uniform channel noise, b) Independent uniform channel noise. The second method adds internal noise to the decision variable arising from the combination of channel responses: a) internal noise standard deviation proportional to decision variable's standard deviation due to the external noise, b) internal noise standard deviation proportional to decision variable's variance caused by the external noise. We tested the square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO). The studied task was detection of a filling defect of varying size/shape in one of four simulated arterial segment locations with real x-ray angiography backgrounds. Results show that the internal noise method that leads to the best prediction of human performance differs across the studied models observers. The CHO model best predicts human observer performance with the channel internal noise. The HO and LGHO best predict human observer performance with the decision variable internal noise. These results might help explain why previous studies have found different results on the ability of each Hotelling model to predict human performance. Finally, the present results might guide researchers with the choice of method to include internal noise into their Hotelling models.

  1. Further Progress in Noise Source Identification in High Speed Jets via Causality Principle

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.; Elam, K. A.

    2004-01-01

    To locate noise sources in high-speed jets, the sound pressure fluctuations p/, measured at far field locations, were correlated with each of density p, axial velocity u, radial velocity v, puu and pvv fluctuations measured from various points in fully expanded, unheated plumes of Mach number 0.95, 1.4 and 1.8. The velocity and density fluctuations were measured simultaneously using a recently developed, non-intrusive, point measurement technique based on molecular Rayleigh scattering (Seasholtz, Panda, and Elam, AIAA Paper 2002-0827). The technique uses a continuous wave, narrow line-width laser, Fabry-Perot interferometer and photon counting electronics. The far field sound pressure fluctuations at 30 to the jet axis provided the highest correlation coefficients with all flow variables. The correlation coefficients decreased sharply with increased microphone polar angle, and beyond about 60 all correlation mostly fell below the experimental noise floor. Among all correlations < puu; p/> showed the highest values. Interestingly, , in all respects, were very similar to . The and correlations with 90deg microphone fell below the noise floor. By moving the laser probe at various locations in the jet it was found that the strongest noise source lies downstream of the end of the potential core and extends many diameters beyond. Correlation measurement from the lip shear layer showed a Mach number dependency. While significant correlations were measured in Mach 1.8 jet, values were mostly below the noise floor for subsonic Mach 0.95 jet. Various additional analyses showed that fluctuations from large organized structures mostly contributed to the measured correlation, while that from small scale structures fell below the noise floor.

  2. Indicators of hearing protection use: self-report and researcher observation.

    PubMed

    Griffin, Stephanie C; Neitzel, Richard; Daniell, William E; Seixas, Noah S

    2009-10-01

    Hearing protection devices (HPD) are commonly used to prevent occupational noise-induced hearing loss. There is a large body of research on hearing protection use in industry, and much of it relies on workers' self-reported use of hearing protection. Based on previous studies in fixed industry, worker self-report has been accepted as an adequate and reliable tool to measure this behavior among workers in many industrial sectors. However, recent research indicates self-reported hearing protection use may not accurately reflect subject behavior in industries with variable noise exposure. This study compares workers' self-reported use of hearing protection with their observed use in three workplaces with two types of noise environments: one construction site and one fixed industry facility with a variable noise environment, and one fixed industry facility with a steady noise environment. Subjects reported their use of hearing protection on self-administered surveys and activity cards, which were validated using researcher observations. The primary outcome of interest in the study was the difference between the self-reported use of hearing protection in high noise on the activity card and survey: (1) over one workday, and (2) over a 2-week period. The primary hypotheses for the study were that subjects in workplaces with variable noise environments would report their use of HPDs less accurately than subjects in the stable noise environment, and that reporting would be less accurate over 2 weeks than over 1 day. In addition to noise variability, other personal and workplace factors thought to affect the accuracy of self-reported hearing protection use were also analyzed. This study found good agreement between subjects' self-reported HPD use and researcher observations. Workers in the steady noise environment self-reported hearing protection use more accurately on the surveys than workers in variable noise environments. The findings demonstrate the potential importance of noise exposure variability as a factor influencing reporting accuracy.

  3. A silicon metal-oxide-semiconductor electron spin-orbit qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jock, Ryan Michael; Jacobson, Noah Tobias; Harvey-Collard, Patrick

    Here, the silicon metal-oxide-semiconductor (MOS) material system is a technologically important implementation of spin-based quantum information processing. However, the MOS interface is imperfect leading to concerns about 1/f trap noise and variability in the electron g-factor due to spin–orbit (SO) effects. Here we advantageously use interface–SO coupling for a critical control axis in a double-quantum-dot singlet–triplet qubit. The magnetic field-orientation dependence of the g-factors is consistent with Rashba and Dresselhaus interface–SO contributions. The resulting all-electrical, two-axis control is also used to probe the MOS interface noise. The measured inhomogeneous dephasing time, T* 2m, of 1.6 μs is consistent with 99.95%more » 28Si enrichment. Furthermore, when tuned to be sensitive to exchange fluctuations, a quasi-static charge noise detuning variance of 2 μeV is observed, competitive with low-noise reports in other semiconductor qubits. This work, therefore, demonstrates that the MOS interface inherently provides properties for two-axis qubit control, while not increasing noise relative to other material choices.« less

  4. A silicon metal-oxide-semiconductor electron spin-orbit qubit

    DOE PAGES

    Jock, Ryan Michael; Jacobson, Noah Tobias; Harvey-Collard, Patrick; ...

    2018-05-02

    Here, the silicon metal-oxide-semiconductor (MOS) material system is a technologically important implementation of spin-based quantum information processing. However, the MOS interface is imperfect leading to concerns about 1/f trap noise and variability in the electron g-factor due to spin–orbit (SO) effects. Here we advantageously use interface–SO coupling for a critical control axis in a double-quantum-dot singlet–triplet qubit. The magnetic field-orientation dependence of the g-factors is consistent with Rashba and Dresselhaus interface–SO contributions. The resulting all-electrical, two-axis control is also used to probe the MOS interface noise. The measured inhomogeneous dephasing time, T* 2m, of 1.6 μs is consistent with 99.95%more » 28Si enrichment. Furthermore, when tuned to be sensitive to exchange fluctuations, a quasi-static charge noise detuning variance of 2 μeV is observed, competitive with low-noise reports in other semiconductor qubits. This work, therefore, demonstrates that the MOS interface inherently provides properties for two-axis qubit control, while not increasing noise relative to other material choices.« less

  5. Introduction: Unsolved Problems on Noise

    NASA Astrophysics Data System (ADS)

    Oriols, X.; Ciliberto, S.

    2016-05-01

    This paper is an introduction to the special issue of the 7th Int. Conf. on Unsolved Problems on Noise (UPoN) that took place at Casa Convalescència in Barcelona (Spain) in July 2015. The aim of the UPoN conferences is to provide a forum for researchers working on different fields of noise, fluctuations and variability, where they present their scientific problems which resist solutions. The papers of this Special Issue reflect the interdisciplinary topics (physics, biology, circuits, financial markets, psychology, technology, etc) presented at the UPoN conference. Noise is not only a hindrance to signal detection, but it is indeed a valuable source of information (not present in the signal) that help us to get a deeper understanding on how Nature works. This special issue of the 7th International Conference on Unsolved Problems on Noise (UPoN) is dedicated to Laszlo Kish in the occasion of his 60th birthday. He organized the first edition of these UPoN conferences in Szeged (Hungary) in 1996. Many of us have greatly benefited from his ‘volcanic imagination in tackling new problems from unconventional points of views’.

  6. A silicon metal-oxide-semiconductor electron spin-orbit qubit.

    PubMed

    Jock, Ryan M; Jacobson, N Tobias; Harvey-Collard, Patrick; Mounce, Andrew M; Srinivasa, Vanita; Ward, Dan R; Anderson, John; Manginell, Ron; Wendt, Joel R; Rudolph, Martin; Pluym, Tammy; Gamble, John King; Baczewski, Andrew D; Witzel, Wayne M; Carroll, Malcolm S

    2018-05-02

    The silicon metal-oxide-semiconductor (MOS) material system is a technologically important implementation of spin-based quantum information processing. However, the MOS interface is imperfect leading to concerns about 1/f trap noise and variability in the electron g-factor due to spin-orbit (SO) effects. Here we advantageously use interface-SO coupling for a critical control axis in a double-quantum-dot singlet-triplet qubit. The magnetic field-orientation dependence of the g-factors is consistent with Rashba and Dresselhaus interface-SO contributions. The resulting all-electrical, two-axis control is also used to probe the MOS interface noise. The measured inhomogeneous dephasing time, [Formula: see text], of 1.6 μs is consistent with 99.95% 28 Si enrichment. Furthermore, when tuned to be sensitive to exchange fluctuations, a quasi-static charge noise detuning variance of 2 μeV is observed, competitive with low-noise reports in other semiconductor qubits. This work, therefore, demonstrates that the MOS interface inherently provides properties for two-axis qubit control, while not increasing noise relative to other material choices.

  7. Auditory white noise reduces age-related fluctuations in balance.

    PubMed

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Noise and sleep on board vessels in the Royal Norwegian Navy

    PubMed Central

    Sunde, Erlend; Bråtveit, Magne; Pallesen, Ståle; Moen, Bente Elisabeth

    2016-01-01

    Previous research indicates that exposure to noise during sleep can cause sleep disturbance. Seamen on board vessels are frequently exposed to noise also during sleep periods, and studies have reported sleep disturbance in this occupational group. However, studies of noise and sleep in maritime settings are few. This study's aim was to examine the associations between noise exposure during sleep, and sleep variables derived from actigraphy among seamen on board vessels in the Royal Norwegian Navy (RNoN). Data were collected on board 21 RNoN vessels, where navy seamen participated by wearing an actiwatch (actigraph), and by completing a questionnaire comprising information on gender, age, coffee drinking, nicotine use, use of medication, and workload. Noise dose meters were used to assess noise exposure inside the seamen's cabin during sleep. Eighty-three sleep periods from 68 seamen were included in the statistical analysis. Linear mixed-effects models were used to examine the association between noise exposure and the sleep variables percentage mobility during sleep and sleep efficiency, respectively. Noise exposure variables, coffee drinking status, nicotine use status, and sleeping hours explained 24.9% of the total variance in percentage mobility during sleep, and noise exposure variables explained 12.0% of the total variance in sleep efficiency. Equivalent noise level and number of noise events per hour were both associated with increased percentage mobility during sleep, and the number of noise events was associated with decreased sleep efficiency. PMID:26960785

  9. The impact of glacier meltwater on the underwater noise field in a glacial bay

    NASA Astrophysics Data System (ADS)

    Glowacki, Oskar; Moskalik, Mateusz; Deane, Grant B.

    2016-12-01

    Ambient noise oceanography is proving to be an efficient and effective tool for the study of ice-ocean interactions in the bays of marine-terminating glaciers. However, obtaining quantitative estimates of ice melting or calving processes from ambient noise requires an understanding of how sound propagation through the bay attenuates and filters the noise spectrum. Measurements of the vertical structure in sound speed in the vicinity of the Hans Glacier in Hornsund Fjord, Spitsbergen, made with O(130) CTD casts between May and November 2015, reveal high-gradient, upward-refracting sound speed profiles created by cold, fresh meltwater during summer months. Simultaneous recordings of underwater ambient noise made at depths of 1, 10, and 20 m in combination with propagation model calculations using the model Bellhop illustrate the dominant role these surface ducts play in shaping the underwater soundscape. The surface ducts lead to a higher intensity and greater variability of acoustic energy in the near-surface layer covered by glacially modified waters relative to deeper waters, indicating deeper zones as most appropriate for interseasonal acoustic monitoring of the glacial melt. Surface waveguides in Hornsund are relatively shallow and trap sound above O(1 kHz). Deeper waveguides observed elsewhere will also trap low-frequency sounds, such as those generated by calving events for example. Finally, the ambient noise field in Hornsund is shown to be strongly dependent on the distribution of ice throughout the bay, stressing the importance of performing complementary environmental measurements when interpreting the results of acoustic surveys.

  10. Automatic Assessment and Reduction of Noise using Edge Pattern Analysis in Non-Linear Image Enhancement

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.

    2004-01-01

    Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.

  11. The Chandra Source Catalog: Source Variability

    NASA Astrophysics Data System (ADS)

    Nowak, Michael; Rots, A. H.; McCollough, M. L.; Primini, F. A.; Glotfelty, K. J.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-01-01

    The Chandra Source Catalog (CSC) contains fields of view that have been studied with individual, uninterrupted observations that span integration times ranging from 1 ksec to 160 ksec, and a large number of which have received (multiple) repeat observations days to years later. The CSC thus offers an unprecedented look at the variability of the X-ray sky over a broad range of time scales, and across a wide diversity of variable X-ray sources: stars in the local galactic neighborhood, galactic and extragalactic X-ray binaries, Active Galactic Nuclei, etc. Here we describe the methods used to identify and quantify source variability within a single observation, and the methods used to assess the variability of a source when detected in multiple, individual observations. Three tests are used to detect source variability within a single observation: the Kolmogorov-Smirnov test and its variant, the Kuiper test, and a Bayesian approach originally suggested by Gregory and Loredo. The latter test not only provides an indicator of variability, but is also used to create a best estimate of the variable lightcurve shape. We assess the performance of these tests via simulation of statistically stationary, variable processes with arbitrary input power spectral densities (here we concentrate on results of red noise simulations) at variety of mean count rates and fractional root mean square variabilities relevant to CSC sources. We also assess the false positive rate via simulations of constant sources whose sole source of fluctuation is Poisson noise. We compare these simulations to a preliminary assessment of the variability found in real CSC sources, and estimate the variability sensitivities of the CSC.

  12. The Chandra Source Catalog: Source Variability

    NASA Astrophysics Data System (ADS)

    Nowak, Michael; Rots, A. H.; McCollough, M. L.; Primini, F. A.; Glotfelty, K. J.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Evans, I.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    The Chandra Source Catalog (CSC) contains fields of view that have been studied with individual, uninterrupted observations that span integration times ranging from 1 ksec to 160 ksec, and a large number of which have received (multiple) repeat observations days to years later. The CSC thus offers an unprecedented look at the variability of the X-ray sky over a broad range of time scales, and across a wide diversity of variable X-ray sources: stars in the local galactic neighborhood, galactic and extragalactic X-ray binaries, Active Galactic Nuclei, etc. Here we describe the methods used to identify and quantify source variability within a single observation, and the methods used to assess the variability of a source when detected in multiple, individual observations. Three tests are used to detect source variability within a single observation: the Kolmogorov-Smirnov test and its variant, the Kuiper test, and a Bayesian approach originally suggested by Gregory and Loredo. The latter test not only provides an indicator of variability, but is also used to create a best estimate of the variable lightcurve shape. We assess the performance of these tests via simulation of statistically stationary, variable processes with arbitrary input power spectral densities (here we concentrate on results of red noise simulations) at variety of mean count rates and fractional root mean square variabilities relevant to CSC sources. We also assess the false positive rate via simulations of constant sources whose sole source of fluctuation is Poisson noise. We compare these simulations to an assessment of the variability found in real CSC sources, and estimate the variability sensitivities of the CSC.

  13. Influence of Internal and External Noise on Spontaneous Visuomotor Synchronization.

    PubMed

    Varlet, Manuel; Schmidt, R C; Richardson, Michael J

    2016-01-01

    Historically, movement noise or variability is considered to be an undesirable property of biological motor systems. In particular, noise is typically assumed to degrade the emergence and stability of rhythmic motor synchronization. Recently, however, it has been suggested that small levels of noise might actually improve the functioning of motor systems and facilitate their adaptation to environmental events. Here, the authors investigated whether noise can facilitate spontaneous rhythmic visuomotor synchronization. They examined the influence of internal noise in the rhythmic limb movements of participants and external noise in the movement of an oscillating visual stimulus on the occurrence of spontaneous synchronization. By indexing the natural frequency variability of participants and manipulating the frequency variability of the visual stimulus, the authors demonstrated that both internal and external noise degrade synchronization when the participants' and stimulus movement frequencies are similar, but can actually facilitate synchronization when the frequencies are different. Furthermore, the two kinds of noise interact with each other. Internal noise facilitates synchronization only when external noise is minimal and vice versa. Too much internal and external noise together degrades synchronization. These findings open new perspectives for better understanding the role of noise in human rhythmic coordination.

  14. Theory and Design Tools For Studies of Reactions to Abrupt Changes in Noise Exposure

    NASA Technical Reports Server (NTRS)

    Fields, James M.; Ehrlich, Gary E.; Zador, Paul; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Study plans, a pre-tested questionnaire, a sample design evaluation tool, a community publicity monitoring plan, and a theoretical framework have been developed to support combined social/acoustical surveys of residents' reactions to an abrupt change in environmental noise, Secondary analyses of more than 20 previous surveys provide estimates of three parameters of a study simulation model; within individual variability, between study wave variability, and between neighborhood variability in response to community noise. The simulation model predicts the precision of the results from social surveys of reactions to noise, including changes in noise. When the study simulation model analyzed the population distribution, noise exposure environments and feasible noise measurement program at a proposed noise change survey site, it was concluded that the site could not yield sufficient precise estimates of human reaction model to justify conducting a survey. Additional secondary analyses determined that noise reactions are affected by the season of the social survey.

  15. SU-G-IeP4-13: PET Image Noise Variability and Its Consequences for Quantifying Tumor Hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueng, R; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Manser, P

    Purpose: The values in a PET image which represent activity concentrations of a radioactive tracer are influenced by a large number of parameters including patient conditions as well as image acquisition and reconstruction. This work investigates noise characteristics in PET images for various image acquisition and image reconstruction parameters. Methods: Different phantoms with homogeneous activity distributions were scanned using several acquisition parameters and reconstructed with numerous sets of reconstruction parameters. Images from six PET scanners from different vendors were analyzed and compared with respect to quantitative noise characteristics. Local noise metrics, which give rise to a threshold value defining themore » metric of hypoxic fraction, as well as global noise measures in terms of noise power spectra (NPS) were computed. In addition to variability due to different reconstruction parameters, spatial variability of activity distribution and its noise metrics were investigated. Patient data from clinical trials were mapped onto phantom scans to explore the impact of the scanner’s intrinsic noise variability on quantitative clinical analysis. Results: Local noise metrics showed substantial variability up to an order of magnitude for different reconstruction parameters. Investigations of corresponding NPS revealed reconstruction dependent structural noise characteristics. For the acquisition parameters, noise metrics were guided by Poisson statistics. Large spatial non-uniformity of the noise was observed in both axial and radial direction of a PET image. In addition, activity concentrations in PET images of homogeneous phantom scans showed intriguing spatial fluctuations for most scanners. The clinical metric of the hypoxic fraction was shown to be considerably influenced by the PET scanner’s spatial noise characteristics. Conclusion: We showed that a hypoxic fraction metric based on noise characteristics requires careful consideration of the various dependencies in order to justify its quantitative validity. This work may result in recommendations for harmonizing QA of PET imaging for multi-institutional clinical trials.« less

  16. Regression Models for Identifying Noise Sources in Magnetic Resonance Images

    PubMed Central

    Zhu, Hongtu; Li, Yimei; Ibrahim, Joseph G.; Shi, Xiaoyan; An, Hongyu; Chen, Yashen; Gao, Wei; Lin, Weili; Rowe, Daniel B.; Peterson, Bradley S.

    2009-01-01

    Stochastic noise, susceptibility artifacts, magnetic field and radiofrequency inhomogeneities, and other noise components in magnetic resonance images (MRIs) can introduce serious bias into any measurements made with those images. We formally introduce three regression models including a Rician regression model and two associated normal models to characterize stochastic noise in various magnetic resonance imaging modalities, including diffusion-weighted imaging (DWI) and functional MRI (fMRI). Estimation algorithms are introduced to maximize the likelihood function of the three regression models. We also develop a diagnostic procedure for systematically exploring MR images to identify noise components other than simple stochastic noise, and to detect discrepancies between the fitted regression models and MRI data. The diagnostic procedure includes goodness-of-fit statistics, measures of influence, and tools for graphical display. The goodness-of-fit statistics can assess the key assumptions of the three regression models, whereas measures of influence can isolate outliers caused by certain noise components, including motion artifacts. The tools for graphical display permit graphical visualization of the values for the goodness-of-fit statistic and influence measures. Finally, we conduct simulation studies to evaluate performance of these methods, and we analyze a real dataset to illustrate how our diagnostic procedure localizes subtle image artifacts by detecting intravoxel variability that is not captured by the regression models. PMID:19890478

  17. Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaogang; Meehan, Paul A.

    2016-06-01

    Field application of friction modifiers on the top of rail has been shown to effectively curb squeal and reduce lateral forces, but performance can be variable, according to other relevant research. Up to now, most investigations of friction modifiers were conducted in the field, where it is difficult to control or measure important parameters such as angle of attack, rolling speed, adhesion ratio etc. In the present investigation, the effect of different friction modifiers on the occurrence of squeal was investigated on a rolling contact two disk test rig. In particular, friction-creep curves and squeal sound pressure levels were measured under different rolling speeds and friction modifiers. The results show friction modifiers can eliminate or reduce the negative slope of friction-creep curves, but squeal noise still exists. Theoretical modelling of instantaneous creep behaviours reveals a possible reason why wheel squeal still exists after the application of friction modifiers.

  18. Information content of IRIS spectra. [from Nimbus 4 satellite

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1974-01-01

    Spectra from the satellite instrument IRIS (infra red interferometer spectrometer) were examined to find the number of independent variables needed to describe these broadband high spectral resolution data. The radiated power in the atmospheric window from 771 to 981/cm was the first parameter chosen for fitting observed spectra. At succeeding levels of analysis the residual variability (observed spectrum - best fit spectrum) in an ensemble of observations was partioned into spectral eigenvectors. The eigenvector describing the largest fraction of this variability was examined for a strong spectral signature; the power in the corresponding spectral band was then used as the next fitting parameter. The measured power in nine spectral intervals, when inserted in the spectral fitting functions, was adequate to describe most spectra to within the noise level of IRIS. Considerations of relative signal strength and scales of atmospheric variability suggest a combination sounder (multichannel-broad field of view) scanner (window channel-small field of view) as an efficient observing instrument.

  19. Information content in Iris spectra. [Infrared Interferometer Spectrometer of Nimbus 4 satellite

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1975-01-01

    Spectra from the satellite instrument Iris (infrared interferometer spectrometer) were examined to find the number of independent variables needed to describe the broad-band high-resolution spectral data. The radiated power in the atmospheric window from 771 to 981 per cm was the first parameter chosen for fitting observed spectra. At succeeding levels of analysis, the residual variability (observed spectrum minus best-fit spectrum) in an ensemble of observations was partitioned into spectral eigenvectors. The eigenvector describing the largest fraction of this variability was examined for a strong spectral signature; the power in the corresponding spectral band was then used as the next fitting parameter. The measured power in nine spectral intervals, when it was inserted in the spectral-fitting functions, was adequate to describe most spectra to within the noise level of Iris. Considerations of relative signal strength and scales of atmospheric variability suggest a combination sounder (multichannel, broad field of view) scanner (window channel, small field of view) as an efficient observing instrument.

  20. Low frequency North Atlantic SST variability: Weather noise forcing and coupled response

    NASA Astrophysics Data System (ADS)

    Fan, Meizhu

    A method to diagnose the causes of low frequency SST variability is developed, tested and applied in an ideal case and real climate. In the ideal case, a free simulation of the COLA CGCM is taken as synthetic observations. For real climate, we take NCEP reanalysis atmospheric data and Reynolds SST as observations. Both the synthetic and actual observation data show that weather noise is the main component of atmospheric variability at subtropics and high-latitude. Diagnoses of results from the ideal case suggest that most of the synthetic observed SST variability can be reproduced by the weather noise surface fluxes forcing. This includes the "observed" low frequency SST patterns in the North Atlantic and their corresponding time evolution. Among all the noise surface fluxes, heat flux plays a major role. The results from simulations using actual observations also suggest that the observed SST variability is mostly atmospheric weather noise forced. The regional atmospheric noise forcing, especially the heat flux noise forcing, is the major source of the low frequency SST variability in the North Atlantic. The observed SST tripole mode has about a 12 year period and it can be reasonably reproduced by the weather noise forcing in terms of its period, spatial pattern and variance. Based on our diagnosis, it is argued that the SST tripole is mainly forced by local atmospheric heat flux noise. The gyre circulation plays a secondary role: the anomalous gyre circulation advects mean thermal features across the inter-gyre boundary, and the mean gyre advection carries SST anomalies along the inter-gyre boundary. The diagnosis is compared with a delayed oscillator theory. We find that the delayed oscillator theory is not supported and that the SST tripole mode is forced by weather noise heat flux noise. However, the result may be model dependent.

  1. Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models

    PubMed Central

    Singh, Abhyudai; Soltani, Mohammad

    2013-01-01

    Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters. PMID:24391934

  2. Quantifying intrinsic and extrinsic variability in stochastic gene expression models.

    PubMed

    Singh, Abhyudai; Soltani, Mohammad

    2013-01-01

    Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters.

  3. Specific and combined subjective responses to noise and their association with cardiovascular diseases.

    PubMed

    Vandasova, Zdenka; Vencálek, Ondřej; Puklová, Vladimíra

    2016-01-01

    Noise is one of the most extensive environmental factors affecting the general population. The present study is focused on the association between discomfort caused by noise and the incidence of certain diseases (ischaemic heart disease, stroke and hypertension). This cross-sectional questionnaire study, conducted in 10 cities in the Czech Republic, comprises two stages with 3592 obtained questionnaires in the first phase and 762 in the second phase. Twelve variables describe subjective responses to noise from different sources at different times of day. The intensity of the associations between variables was measured by correlation coefficient. Logistic regression was used for fitting models of morbidity, and confounders such as age and socio-economic status were included. The hypotheses from the first phase were independently validated using data from the second phase. The general rates of noise annoyance/sleep disturbance had greater correlation with traffic noise variables than with neighbourhood noise variables. Factors significantly associated with diseases are: for hypertension - annoyance by traffic noise (the elderly, odds ratio (OR) 1.4) and sleep disturbance by traffic and neighbourhood noise (the elderly, OR 1.6); for ischaemic heart disease - the general rate of noise annoyance (all respondents, OR 1.5 and the adults 30-60 years, OR 1.8) and the general rate of annoyance and sleep disturbance (all respondents, OR 1.3); for stroke - annoyance and sleep disturbance by traffic and neighbourhood noise (all respondents, OR 1.8). Factors that include multiple sources of noise or non-specific noise are associated with the studied diseases more frequently than the source-specific factors.

  4. Noise Source Identification in a Reverberant Field Using Spherical Beamforming

    NASA Astrophysics Data System (ADS)

    Choi, Young-Chul; Park, Jin-Ho; Yoon, Doo-Byung; Kwon, Hyu-Sang

    Identification of noise sources, their locations and strengths, has been taken great attention. The method that can identify noise sources normally assumes that noise sources are located at a free field. However, the sound in a reverberant field consists of that coming directly from the source plus sound reflected or scattered by the walls or objects in the field. In contrast to the exterior sound field, reflections are added to sound field. Therefore, the source location estimated by the conventional methods may give unacceptable error. In this paper, we explain the effects of reverberant field on interior source identification process and propose the method that can identify noise sources in the reverberant field.

  5. Prewhitening of Colored Noise Fields for Detection of Threshold Sources

    DTIC Science & Technology

    1993-11-07

    determines the noise covariance matrix, prewhitening techniques allow detection of threshold sources. The multiple signal classification ( MUSIC ...SUBJECT TERMS 1S. NUMBER OF PAGES AR Model, Colored Noise Field, Mixed Spectra Model, MUSIC , Noise Field, 52 Prewhitening, SNR, Standardized Test...EXAMPLE 2: COMPLEX AR COEFFICIENT .............................................. 5 EXAMPLE 3: MUSIC IN A COLORED BACKGROUND NOISE ...................... 6

  6. Predicting word-recognition performance in noise by young listeners with normal hearing using acoustic, phonetic, and lexical variables.

    PubMed

    McArdle, Rachel; Wilson, Richard H

    2008-06-01

    To analyze the 50% correct recognition data that were from the Wilson et al (this issue) study and that were obtained from 24 listeners with normal hearing; also to examine whether acoustic, phonetic, or lexical variables can predict recognition performance for monosyllabic words presented in speech-spectrum noise. The specific variables are as follows: (a) acoustic variables (i.e., effective root-mean-square sound pressure level, duration), (b) phonetic variables (i.e., consonant features such as manner, place, and voicing for initial and final phonemes; vowel phonemes), and (c) lexical variables (i.e., word frequency, word familiarity, neighborhood density, neighborhood frequency). The descriptive, correlational study will examine the influence of acoustic, phonetic, and lexical variables on speech recognition in noise performance. Regression analysis demonstrated that 45% of the variance in the 50% point was accounted for by acoustic and phonetic variables whereas only 3% of the variance was accounted for by lexical variables. These findings suggest that monosyllabic word-recognition-in-noise is more dependent on bottom-up processing than on top-down processing. The results suggest that when speech-in-noise testing is used in a pre- and post-hearing-aid-fitting format, the use of monosyllabic words may be sensitive to changes in audibility resulting from amplification.

  7. Environmental noise exposure, early biological risk and mental health in nine to ten year old children: a cross-sectional field study.

    PubMed

    Crombie, Rosanna; Clark, Charlotte; Stansfeld, Stephen A

    2011-05-14

    Previous research suggests that children born prematurely or with a low birth weight are more vulnerable to the mental health effects of ambient neighbourhood noise; predominantly road and rail noise, at home. This study used data from the Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) study to see if this finding extends to aircraft and road traffic noise at school. Children and their parents from schools around three European airports were selected to represent a range of aircraft and road traffic noise exposure levels. Birth weight and gestation period were merged to create a dichotomous variable assessing 'early biological risk'. Mental health was assessed using the Strengths and Difficulties Questionnaire (SDQ). Complete data were available for 1900 primary school children. Children who were 'at risk' (i.e. low birth weight or premature birth) were rated as having more conduct problems and emotional symptoms and poorer overall mental health than children not at risk. However, there was no interaction between aircraft or road traffic noise exposure at school and early biological risk. Data from the RANCH study suggests that children with early biological risk are not more vulnerable to the effects of aircraft or road traffic noise at school on mental health than children without this risk; however they are more likely to have mental ill-health.

  8. Quantum frequency up-conversion of continuous variable entangled states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyuan; Wang, Ning; Li, Zongyang

    We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pumpmore » field, making it a practical building block for quantum information processing and communication networks.« less

  9. Acoustic analysis of aft noise reduction techniques measured on a subsonic tip speed 50.8 cm (twenty inch) diameter fan. [quiet engine program

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.; Clemons, A.

    1977-01-01

    Sound data which were obtained during tests of a 50.8 cm diameter, subsonic tip speed, low pressure ratio fan were analyzed. The test matrix was divided into two major investigations: (1) source noise reduction techniques; and (2) aft duct noise reduction with acoustic treatment. Source noise reduction techniques were investigated which include minimizing second harmonic noise by varying vane/blade ratio, variation in spacing, and lowering the Mach number through the vane row to lower fan broadband noise. Treatment in the aft duct which includes flow noise effects, faceplate porosity, rotor OGV treatment, slant cell treatment, and splitter simulation with variable depth on the outer wall and constant thickness treatment on the inner wall was investigated. Variable boundary conditions such as variation in treatment panel thickness and orientation, and mixed porosity combined with variable thickness were examined. Significant results are reported.

  10. Active Response Gravity Offload and Method

    NASA Technical Reports Server (NTRS)

    Dungan, Larry K. (Inventor); Lieberman, Asher P. (Inventor); Shy, Cecil (Inventor); Bankieris, Derek R. (Inventor); Valle, Paul S. (Inventor); Redden, Lee (Inventor)

    2015-01-01

    A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.

  11. Statistics of the quantized microwave electromagnetic field in mesoscopic elements at low temperature

    NASA Astrophysics Data System (ADS)

    Virally, Stéphane; Olivier Simoneau, Jean; Lupien, Christian; Reulet, Bertrand

    2018-03-01

    The quantum behavior of the electromagnetic field in mesoscopic elements is intimately linked to the quantization of the charge. In order to probe nonclassical aspects of the field in those elements, it is essential that thermal noise be reduced to the quantum level, i.e. to scales where kT ≲ hν. This is easily achieved in dilution refrigerators for frequencies of a few GHz, i.e. in the microwave domain. Several recent experiments have highlighted the link between discrete charge transport and discrete photon emission in simple mesoscopic elements such as a tunnel junction. Photocount statistics are inferred from the measurement of continuous variables such as the quadratures of the field.

  12. The nature of solar brightness variations

    NASA Astrophysics Data System (ADS)

    Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Cameron, R. H.; Yeo, K. L.; Schmutz, W. K.

    2017-09-01

    Determining the sources of solar brightness variations1,2, often referred to as solar noise3, is important because solar noise limits the detection of solar oscillations3, is one of the drivers of the Earth's climate system4,5 and is a prototype of stellar variability6,7—an important limiting factor for the detection of extrasolar planets. Here, we model the magnetic contribution to solar brightness variability using high-cadence8,9 observations from the Solar Dynamics Observatory (SDO) and the Spectral And Total Irradiance REconstruction (SATIRE)10,11 model. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface were computed with the Max Planck Institute for Solar System Research (MPS)/University of Chicago Radiative Magnetohydrodynamics (MURaM)12 code. We found that the surface magnetic field and granulation can together precisely explain solar noise (that is, solar variability excluding oscillations) on timescales from minutes to decades, accounting for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by the COnvection ROtation and planetary Transits (CoRoT)13 and Kepler14 missions uncovered brightness variations similar to that of the Sun, but with a much wider variety of patterns15. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated Transiting Exoplanet Survey Satellite16 and PLAnetary Transits and Oscillations of stars (PLATO)17 data.

  13. Testing a theory of aircraft noise annoyance: a structural equation analysis.

    PubMed

    Kroesen, Maarten; Molin, Eric J E; van Wee, Bert

    2008-06-01

    Previous research has stressed the relevance of nonacoustical factors in the perception of aircraft noise. However, it is largely empirically driven and lacks a sound theoretical basis. In this paper, a theoretical model which explains noise annoyance based on the psychological stress theory is empirically tested. The model is estimated by applying structural equation modeling based on data from residents living in the vicinity of Amsterdam Airport Schiphol in The Netherlands. The model provides a good model fit and indicates that concern about the negative health effects of noise and pollution, perceived disturbance, and perceived control and coping capacity are the most important variables that explain noise annoyance. Furthermore, the model provides evidence for the existence of two reciprocal relationships between (1) perceived disturbance and noise annoyance and (2) perceived control and coping capacity and noise annoyance. Lastly, the model yielded two unexpected results. Firstly, the variables noise sensitivity and fear related to the noise source were unable to explain additional variance in the endogenous variables of the model and were therefore excluded from the model. And secondly, the size of the total effect of noise exposure on noise annoyance was relatively small. The paper concludes with some recommended directions for further research.

  14. On the role of magnetic field intensity for better micro-structural characterization during Barkhausen Noise analysis

    NASA Astrophysics Data System (ADS)

    Yusufzai, Mohd Zaheer Khan; Vashista, M.

    2018-04-01

    Barkhausen Noise analysis is a popular and preferred technique for micro-structural characterization. The root mean square value and peak value of Barkhausen Noise burst are important parameters to assess the micro-hardness and residual stress. Barkhausen Noise burst can be enveloped using a curve known as Barkhausen Noise profile. Peak position of profile changes with change in micro-structure. In the present work, raw signal of Barkhausen Noise burst was obtained from Ni based sample at various magnetic field intensity to observe the effect of variation in field intensity on Barkhausen Noise burst. Raw signal was opened using MATLAB to further process for microstructure analysis. Barkhausen Noise analysis parameters such as magnetizing frequency, number of burst, high pass and low pass filter frequency were kept constant and magnetizing field was varied in wide range between 200 Oe to 1200 Oe. The processed profiles of Barkhausen Noise burst obtained at various magnetizing field intensity clearly reveals requirement of optimum magnetic field strength for better characterization of micro-structure.

  15. Physiologic correlates to background noise acceptance

    NASA Astrophysics Data System (ADS)

    Tampas, Joanna; Harkrider, Ashley; Nabelek, Anna

    2004-05-01

    Acceptance of background noise can be evaluated by having listeners indicate the highest background noise level (BNL) they are willing to accept while following the words of a story presented at their most comfortable listening level (MCL). The difference between the selected MCL and BNL is termed the acceptable noise level (ANL). One of the consistent findings in previous studies of ANL is large intersubject variability in acceptance of background noise. This variability is not related to age, gender, hearing sensitivity, personality, type of background noise, or speech perception in noise performance. The purpose of the current experiment was to determine if individual differences in physiological activity measured from the peripheral and central auditory systems of young female adults with normal hearing can account for the variability observed in ANL. Correlations between ANL and various physiological responses, including spontaneous, click-evoked, and distortion-product otoacoustic emissions, auditory brainstem and middle latency evoked potentials, and electroencephalography will be presented. Results may increase understanding of the regions of the auditory system that contribute to individual noise acceptance.

  16. Geostatistical Analysis of Mesoscale Spatial Variability and Error in SeaWiFS and MODIS/Aqua Global Ocean Color Data

    NASA Astrophysics Data System (ADS)

    Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.

    2018-01-01

    Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.

  17. Image discrimination models predict detection in fixed but not random noise

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J. Jr; Beard, B. L.; Watson, A. B. (Principal Investigator)

    1997-01-01

    By means of a two-interval forced-choice procedure, contrast detection thresholds for an aircraft positioned on a simulated airport runway scene were measured with fixed and random white-noise masks. The term fixed noise refers to a constant, or unchanging, noise pattern for each stimulus presentation. The random noise was either the same or different in the two intervals. Contrary to simple image discrimination model predictions, the same random noise condition produced greater masking than the fixed noise. This suggests that observers seem unable to hold a new noisy image for comparison. Also, performance appeared limited by internal process variability rather than by external noise variability, since similar masking was obtained for both random noise types.

  18. Automatic measurement of images on astrometric plates

    NASA Astrophysics Data System (ADS)

    Ortiz Gil, A.; Lopez Garcia, A.; Martinez Gonzalez, J. M.; Yershov, V.

    1994-04-01

    We present some results on the process of automatic detection and measurement of objects in overlapped fields of astrometric plates. The main steps of our algorithm are the following: determination of the Scale and Tilt between charge coupled devices (CCD) and microscope coordinate systems and estimation of signal-to-noise ratio in each field;--image identification and improvement of its position and size;--image final centering;--image selection and storage. Several parameters allow the use of variable criteria for image identification, characterization and selection. Problems related with faint images and crowded fields will be approached by special techniques (morphological filters, histogram properties and fitting models).

  19. Airfoil optimization for unsteady flows with application to high-lift noise reduction

    NASA Astrophysics Data System (ADS)

    Rumpfkeil, Markus Peer

    The use of steady-state aerodynamic optimization methods in the computational fluid dynamic (CFD) community is fairly well established. In particular, the use of adjoint methods has proven to be very beneficial because their cost is independent of the number of design variables. The application of numerical optimization to airframe-generated noise, however, has not received as much attention, but with the significant quieting of modern engines, airframe noise now competes with engine noise. Optimal control techniques for unsteady flows are needed in order to be able to reduce airframe-generated noise. In this thesis, a general framework is formulated to calculate the gradient of a cost function in a nonlinear unsteady flow environment via the discrete adjoint method. The unsteady optimization algorithm developed in this work utilizes a Newton-Krylov approach since the gradient-based optimizer uses the quasi-Newton method BFGS, Newton's method is applied to the nonlinear flow problem, GMRES is used to solve the resulting linear problem inexactly, and last but not least the linear adjoint problem is solved using Bi-CGSTAB. The flow is governed by the unsteady two-dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence model, which are discretized using structured grids and a finite difference approach. The effectiveness of the unsteady optimization algorithm is demonstrated by applying it to several problems of interest including shocktubes, pulses in converging-diverging nozzles, rotating cylinders, transonic buffeting, and an unsteady trailing-edge flow. In order to address radiated far-field noise, an acoustic wave propagation program based on the Ffowcs Williams and Hawkings (FW-H) formulation is implemented and validated. The general framework is then used to derive the adjoint equations for a novel hybrid URANS/FW-H optimization algorithm in order to be able to optimize the shape of airfoils based on their calculated far-field pressure fluctuations. Validation and application results for this novel hybrid URANS/FW-H optimization algorithm show that it is possible to optimize the shape of an airfoil in an unsteady flow environment to minimize its radiated far-field noise while maintaining good aerodynamic performance.

  20. Controlled decoherence in a quantum Lévy kicked rotator

    NASA Astrophysics Data System (ADS)

    Schomerus, Henning; Lutz, Eric

    2008-06-01

    We develop a theory describing the dynamics of quantum kicked rotators (modeling cold atoms in a pulsed optical field) which are subjected to combined amplitude and timing noise generated by a renewal process (acting as an engineered reservoir). For waiting-time distributions of variable exponent (Lévy noise), we demonstrate the existence of a regime of nonexponential loss of phase coherence. In this regime, the momentum dynamics is subdiffusive, which also manifests itself in a non-Gaussian limiting distribution and a fractional power-law decay of the inverse participation ratio. The purity initially decays with a stretched exponential which is followed by two regimes of power-law decay with different exponents. The averaged logarithm of the fidelity probes the sprinkling distribution of the renewal process. These analytical results are confirmed by numerical computations on quantum kicked rotators subjected to noise events generated by a Yule-Simon distribution.

  1. An assessment of propeller aircraft noise reduction technology

    NASA Technical Reports Server (NTRS)

    Metzger, F. Bruce

    1995-01-01

    This report is a review of the literature regarding propeller airplane far-field noise reduction. Near-field and cabin noise reduction are not specifically addressed. However, some of the approaches used to reduce far-field noise produce beneficial effects in the near-field and in the cabin. The emphasis is on propeller noise reduction but engine exhaust noise reduction by muffling is also addressed since the engine noise becomes a significant part of the aircraft noise signature when propeller noise is reduced. It is concluded that there is a substantial body of information available that can be used as the basis to reduce propeller airplane noise. The reason that this information is not often used in airplane design is the associated weight, cost, and performance penalties. It is recommended that the highest priority be given to research for reducing the penalties associated with lower operating RPM and propeller diameter while increasing the number of blades. Research to reduce engine noise and explore innovative propeller concepts is also recommended.

  2. A noise immunity controlled quantum teleportation protocol

    NASA Astrophysics Data System (ADS)

    Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li; Baagyere, Edward; Qin, Zhen; Xiong, Hu; Zhan, Huayi

    2016-11-01

    With the advent of the Internet and information and communication technology, quantum teleportation has become an important field in information security and its application areas. This is because quantum teleportation has the ability to attain a timely secret information delivery and offers unconditional security. And as such, the field of quantum teleportation has become a hot research topic in recent years. However, noise has serious effect on the safety of quantum teleportation within the aspects of information fidelity, channel capacity and information transfer. Therefore, the main purpose of this paper is to address these problems of quantum teleportation. Firstly, in order to resist collective noise, we construct a decoherence-free subspace under different noise scenarios to establish a two-dimensional fidelity quantum teleportation models. And also create quantum teleportation of multiple degree of freedom, and these models ensure the accuracy and availability of the exchange of information and in multiple degree of freedom. Secondly, for easy preparation, measurement and implementation, we use super dense coding features to build an entangled quantum secret exchange channel. To improve the channel utilization and capacity, an efficient super dense coding method based on ultra-entanglement exchange is used. Thirdly, continuous variables of the controlled quantum key distribution were designed for quantum teleportation; in addition, we perform Bell-basis measurement under the collective noise and also prepare the storage technology of quantum states to achieve one-bit key by three-photon encoding to improve its security and efficiency. We use these two methods because they conceal information, resist a third party attack and can detect eavesdropping. Our proposed methods, according to the security analysis, are able to solve the problems associated with the quantum teleportation under various noise environments.

  3. Arm and wrist surface potential mapping for wearable ECG rhythm recording devices: a pilot clinical study

    NASA Astrophysics Data System (ADS)

    Lynn, W. D.; Escalona, O. J.; McEneaney, D. J.

    2013-06-01

    This study addresses an important question in the development of a ECG device that enables long term monitoring of cardiac rhythm. This device would utilise edge sensor technologies for dry, non-irritant skin contact suitable for distal limb application and would be supported by embedded ECG denoising processes. Contemporary ECG databases including those provided by MIT-BIH and Physionet are focused on interpretation of cardiac disease and rhythm tracking. The data is recorded using chest leads as in standard clinical practise. For the development of a peripherally located heart rhythm monitor, such data would be of limited use. To provide a useful database adequate for the development of the above mentioned cardiac monitoring device a unipolar body surface potential map from the left arm and wrist was gathered in 37 volunteer patients and characterized in this study. For this, the reference electrode was placed at the wrist. Bipolar far-field electrogram leads were derived and analysed. Factors such as skin variability, 50Hz noise interference, electrode contact noise, motion artifacts and electromyographic noise, presented a challenge. The objective was quantify the signal-to-noise ratio (SNR) at the far-field locations. Preliminary results reveal that an electrogram indicative of the QRS complex can be recorded on the distal portion of the left arm when denoised using signal averaging techniques.

  4. Cognitions and 'placebos' in behavioral research on ambient noise

    NASA Technical Reports Server (NTRS)

    Harcum, E. R.; Monti, P. M.

    1973-01-01

    Investigation of the effects of noise on visual and psychomotor tasks, with special attention to influences of certain cognitive variables. The results include the finding that 100-dB ambient noise has no effects per se, though cognitive variables in the testing situation affect both performance and ratings of disturbance.

  5. Continuous-variable quantum key distribution with Gaussian source noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yujie; Peng Xiang; Yang Jian

    2011-05-15

    Source noise affects the security of continuous-variable quantum key distribution (CV QKD) and is difficult to analyze. We propose a model to characterize Gaussian source noise through introducing a neutral party (Fred) who induces the noise with a general unitary transformation. Without knowing Fred's exact state, we derive the security bounds for both reverse and direct reconciliations and show that the bound for reverse reconciliation is tight.

  6. Spatial patterns in community response to aircraft noise associated with non-noise factors

    NASA Astrophysics Data System (ADS)

    Hall, F. L.; Taylor, S. M.; Birnie, S. E.

    1980-08-01

    Non-noise aspects of airport operations may affect individuals' responses to aircraft noise. Fear of crashes, other forms of pollution, and proximity to the flight path are three such non-noise aspects which have spatial patterns that are closely related to the pattern of noise contours around an airport. If these variables affect response to aircraft noise, they may therefore confound attempts to understand relationships between noise level and community response. Analyses based on data from 673 individuals around Toronto International Airport suggest that these factors do affect annoyance responses, but do not affect reported activity interference. Hence it may prove fruitful, in aggregate analyses of community response data, to control for these variables in order to better understand the noise-annoyance relationships.

  7. A neural network based model for urban noise prediction.

    PubMed

    Genaro, N; Torija, A; Ramos-Ridao, A; Requena, I; Ruiz, D P; Zamorano, M

    2010-10-01

    Noise is a global problem. In 1972 the World Health Organization (WHO) classified noise as a pollutant. Since then, most industrialized countries have enacted laws and local regulations to prevent and reduce acoustic environmental pollution. A further aim is to alert people to the dangers of this type of pollution. In this context, urban planners need to have tools that allow them to evaluate the degree of acoustic pollution. Scientists in many countries have modeled urban noise, using a wide range of approaches, but their results have not been as good as expected. This paper describes a model developed for the prediction of environmental urban noise using Soft Computing techniques, namely Artificial Neural Networks (ANN). The model is based on the analysis of variables regarded as influential by experts in the field and was applied to data collected on different types of streets. The results were compared to those obtained with other models. The study found that the ANN system was able to predict urban noise with greater accuracy, and thus, was an improvement over those models. The principal component analysis (PCA) was also used to try to simplify the model. Although there was a slight decline in the accuracy of the results, the values obtained were also quite acceptable.

  8. High Sensitivity Magnetoresisitive Sensors for both DC and EMI Magnetic Field Mapping

    DTIC Science & Technology

    2012-05-01

    noise and sensitivity of the MTJ junction. We measured the noise of the MTJ bridge in the frequency range from 1 to... noise level at 1 Hz is 1 V/Hz1/2 giving a field noise of 1 V/Hz1/2/ 47030 V/T = 21 pT/Hz1/2. At 1 kHz, the field noise is about 2 pT/ Hz1/2. The... noise spectrum was fitted with the calculated thermal noise for the measured value of resistance. Hooge -like parameter is about 5 x 10-9 μm2,

  9. Exploration of joint redundancy but not task space variability facilitates supervised motor learning.

    PubMed

    Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya

    2016-12-13

    The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise.

  10. Exploration of joint redundancy but not task space variability facilitates supervised motor learning

    PubMed Central

    Singh, Puneet; Jana, Sumitash; Ghosal, Ashitava; Murthy, Aditya

    2016-01-01

    The number of joints and muscles in a human arm is more than what is required for reaching to a desired point in 3D space. Although previous studies have emphasized how such redundancy and the associated flexibility may play an important role in path planning, control of noise, and optimization of motion, whether and how redundancy might promote motor learning has not been investigated. In this work, we quantify redundancy space and investigate its significance and effect on motor learning. We propose that a larger redundancy space leads to faster learning across subjects. We observed this pattern in subjects learning novel kinematics (visuomotor adaptation) and dynamics (force-field adaptation). Interestingly, we also observed differences in the redundancy space between the dominant hand and nondominant hand that explained differences in the learning of dynamics. Taken together, these results provide support for the hypothesis that redundancy aids in motor learning and that the redundant component of motor variability is not noise. PMID:27911808

  11. Aircraft Noise Perception Study in Brazil: A Perspective on Airport Sustainable Growth and Environmental Awareness

    NASA Technical Reports Server (NTRS)

    deArantesGomesEller, Rogerio; Urbina, Ligia Maria Soto; Porto, Protogenes Pires

    2003-01-01

    Aircraft noise perception is related to several variables that are tangible and objective, such as the number of operations, flight schedules. Other variables, instead, are more subjective, such as preferences. However, although their elusiveness, they contribute to determine the individuals' perception of this type of externality. Despite the fact that the complaints related to aeronautical noise have been registered since the decade of 50, it has been observed that the perception of noise seems to have grown, especially since the 80's. It has been argued that this change in noise perception has its roots on the accelerated expansion of air traffic. But, it is necessary to point out the important role played on modeling preferences, by the growing environmental conscience and the higher welfare and quality of life standards and expectations. In that context, the main objective of this paper is to study the aeronautical noise perception in the neighborhoods of the Aeroporto Internacional de Sao Paulo - AISP (the biggest airport of South America). Specifically, it analyzes the relationship between aircraft noise perception and social class, which is expected to be positive. Since noise perception is an intangible variable, this study chose as a proxy the value losses of residential properties, caused by aeronautical noise. The variable social class has been measured utilizing average per capita income of the population who live nearby the airport. The comparison of both, the lowest and the highest social class suggests that the relationship between social class and noise perception is positive in the AISP region. Moreover, it was observed that all social classes are very susceptible to aircraft noise annoyance. In fact, the magnitude of the noise perception proxy for both social classes -the residential value losses- was found to be comparable to levels encountered in developed countries.

  12. Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Shuang, Feng; Rabitz, Herschel

    2004-11-01

    This paper investigates the impact of control field noise on the optimal manipulation of quantum dynamics. Simulations are performed on several multilevel quantum systems with the goal of population transfer in the presence of significant control noise. The noise enters as run-to-run variations in the control amplitude and phase with the observation being an ensemble average over many runs as is commonly done in the laboratory. A genetic algorithm with an improved elitism operator is used to find the optimal field that either fights against or cooperates with control field noise. When seeking a high control yield it is possible to find fields that successfully fight with the noise while attaining good quality stable results. When seeking modest control yields, fields can be found which are optimally shaped to cooperate with the noise and thereby drive the dynamics more efficiently. In general, noise reduces the coherence of the dynamics, but the results indicate that population transfer objectives can be met by appropriately either fighting or cooperating with noise, even when it is intense.

  13. Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics.

    PubMed

    Shuang, Feng; Rabitz, Herschel

    2004-11-15

    This paper investigates the impact of control field noise on the optimal manipulation of quantum dynamics. Simulations are performed on several multilevel quantum systems with the goal of population transfer in the presence of significant control noise. The noise enters as run-to-run variations in the control amplitude and phase with the observation being an ensemble average over many runs as is commonly done in the laboratory. A genetic algorithm with an improved elitism operator is used to find the optimal field that either fights against or cooperates with control field noise. When seeking a high control yield it is possible to find fields that successfully fight with the noise while attaining good quality stable results. When seeking modest control yields, fields can be found which are optimally shaped to cooperate with the noise and thereby drive the dynamics more efficiently. In general, noise reduces the coherence of the dynamics, but the results indicate that population transfer objectives can be met by appropriately either fighting or cooperating with noise, even when it is intense.

  14. Extending acoustic data measured with small-scale supersonic model jets to practical aircraft exhaust jets

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Wen

    2010-06-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions within the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center, in partnership with GE Aviation, is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to develop a scaling methodology for using data obtained from small- and moderate-scale experiments which exhibits the independence of the jet sizes to the measured noise levels. The experimental results presented in this thesis have shown reasonable agreement between small-scale and moderate-scale jet acoustic data, as well as between heated jets and heat-simulated ones. As the scaling methodology is validated, it will be extended to using acoustic data measured with small-scale supersonic model jets to the prediction of the most important components of full-scale engine noise. When comparing the measured acoustic spectra with a microphone array set at different radial locations, the characteristics of the jet noise source distribution may induce subtle inaccuracies, depending on the conditions of jet operation. A close look is taken at the details of the noise generation region in order to better understand the mismatch between spectra measured at various acoustic field radial locations. A processing methodology was developed to correct the effect of the noise source distribution and efficiently compare near-field and far-field spectra with unprecedented accuracy. This technique then demonstrates that the measured noise levels in the physically restricted space of an anechoic chamber can be appropriately extrapolated to represent the expected noise levels at different noise monitoring locations of practical interest. With the emergence of more powerful fighter aircraft, supersonic jet noise reduction devices are being intensely researched. Small-scale measurements are a crucial step in evaluating the potential of noise reduction concepts at an early stage in the design process. With this in mind, the present thesis provides an acoustic assessment methodology for small-scale military-style nozzles with chevrons. Comparisons are made between the present measurements and those made by NASA at moderate-scale. The effect of chevrons on supersonic jets was investigated, highlighting the crucial role of the jet operating conditions on the effects of chevrons on the jet flow and the subsequent acoustic benefits. A small-scale heat simulated jet is investigated in the over-expanded condition and shows no substantial noise reduction from the chevrons. This is contrary to moderate-scale measurements. The discrepancy is attributed to a Reynolds number low enough to sustain an annular laminar boundary layer in the nozzle that separates in the over-expanded flow condition. These results are important in assessing the limitations of small-scale measurements in this particular jet noise reduction method. Lastly, to successfully present the results from the acoustic measurements of small-scale jets with high quality, a newly developed PSU free-field response was empirically derived to match the specific orientation and grid cap geometry of the microphones. Application to measured data gives encouraging results validating the capability of the method to produce superior accuracy in measurements even at the highest response frequencies of the microphones.

  15. Effects of Hearing Loss on Heart-Rate Variability and Skin Conductance Measured During Sentence Recognition in Noise

    PubMed Central

    Mackersie, Carol L.; MacPhee, Imola X.; Heldt, Emily W.

    2014-01-01

    SHORT SUMMARY (précis) Sentence recognition by participants with and without hearing loss was measured in quiet and in babble noise while monitoring two autonomic nervous system measures: heart-rate variability and skin conductance. Heart-rate variability decreased under difficult listening conditions for participants with hearing loss, but not for participants with normal hearing. Skin conductance noise reactivity was greater for those with hearing loss, than for those with normal hearing, but did not vary with the signal-to-noise ratio. Subjective ratings of workload/stress obtained after each listening condition were similar for the two participant groups. PMID:25170782

  16. Visual recovery in cortical blindness is limited by high internal noise

    PubMed Central

    Cavanaugh, Matthew R.; Zhang, Ruyuan; Melnick, Michael D.; Das, Anasuya; Roberts, Mariel; Tadin, Duje; Carrasco, Marisa; Huxlin, Krystel R.

    2015-01-01

    Damage to the primary visual cortex typically causes cortical blindness (CB) in the hemifield contralateral to the damaged hemisphere. Recent evidence indicates that visual training can partially reverse CB at trained locations. Whereas training induces near-complete recovery of coarse direction and orientation discriminations, deficits in fine motion processing remain. Here, we systematically disentangle components of the perceptual inefficiencies present in CB fields before and after coarse direction discrimination training. In seven human CB subjects, we measured threshold versus noise functions before and after coarse direction discrimination training in the blind field and at corresponding intact field locations. Threshold versus noise functions were analyzed within the framework of the linear amplifier model and the perceptual template model. Linear amplifier model analysis identified internal noise as a key factor differentiating motion processing across the tested areas, with visual training reducing internal noise in the blind field. Differences in internal noise also explained residual perceptual deficits at retrained locations. These findings were confirmed with perceptual template model analysis, which further revealed that the major residual deficits between retrained and intact field locations could be explained by differences in internal additive noise. There were no significant differences in multiplicative noise or the ability to process external noise. Together, these results highlight the critical role of altered internal noise processing in mediating training-induced visual recovery in CB fields, and may explain residual perceptual deficits relative to intact regions of the visual field. PMID:26389544

  17. Estimating integrated variance in the presence of microstructure noise using linear regression

    NASA Astrophysics Data System (ADS)

    Holý, Vladimír

    2017-07-01

    Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.

  18. Robust shot-noise measurement for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kunz-Jacques, Sébastien; Jouguet, Paul

    2015-02-01

    We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.

  19. Environmental noise exposure, early biological risk and mental health in nine to ten year old children: a cross-sectional field study

    PubMed Central

    2011-01-01

    Background Previous research suggests that children born prematurely or with a low birth weight are more vulnerable to the mental health effects of ambient neighbourhood noise; predominantly road and rail noise, at home. This study used data from the Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) study to see if this finding extends to aircraft and road traffic noise at school. Methods Children and their parents from schools around three European airports were selected to represent a range of aircraft and road traffic noise exposure levels. Birth weight and gestation period were merged to create a dichotomous variable assessing 'early biological risk'. Mental health was assessed using the Strengths and Difficulties Questionnaire (SDQ). Complete data were available for 1900 primary school children. Results Children who were 'at risk' (i.e. low birth weight or premature birth) were rated as having more conduct problems and emotional symptoms and poorer overall mental health than children not at risk. However, there was no interaction between aircraft or road traffic noise exposure at school and early biological risk. Conclusions Data from the RANCH study suggests that children with early biological risk are not more vulnerable to the effects of aircraft or road traffic noise at school on mental health than children without this risk; however they are more likely to have mental ill-health. PMID:21569605

  20. Near-field acoustical holography of military jet aircraft noise

    NASA Astrophysics Data System (ADS)

    Wall, Alan T.; Gee, Kent L.; Neilsen, Tracianne; Krueger, David W.; Sommerfeldt, Scott D.; James, Michael M.

    2010-10-01

    Noise radiated from high-performance military jet aircraft poses a hearing-loss risk to personnel. Accurate characterization of jet noise can assist in noise prediction and noise reduction techniques. In this work, sound pressure measurements were made in the near field of an F-22 Raptor. With more than 6000 measurement points, this is the most extensive near-field measurement of a high-performance jet to date. A technique called near-field acoustical holography has been used to propagate the complex pressure from a two- dimensional plane to a three-dimensional region in the jet vicinity. Results will be shown and what they reveal about jet noise characteristics will be discussed.

  1. Does Noise From Shipping and Boat Traffic Affect Predator Vigilance in the European Common Hermit Crab?

    PubMed

    Nousek-McGregor, Anna E; Mei, Francesca Tee Liang

    2016-01-01

    The effect of noise on predator vigilance in Pagurus bernhardus was explored in this study. Latency of the first response, emergence time, and response type were measured from hermit crabs during continuous and variable vessel noise and two controls. The mean (±SE) response latency was longer for the noise treatments (continuous, 18.19 ± 2.78 s; variable, 11.39 ± 1.48 s) than for the controls (ambient, 7.21 ± 0.82 s; silent, 6.66 ± 0.95 s). Response type and emergence time were not significantly affected but were more variable during the noise treatments than during the controls. Noisy conditions may increase predation risk, suggesting potential fitness consequences for invertebrates.

  2. Research on strategy marine noise map based on i4ocean platform: Constructing flow and key approach

    NASA Astrophysics Data System (ADS)

    Huang, Baoxiang; Chen, Ge; Han, Yong

    2016-02-01

    Noise level in a marine environment has raised extensive concern in the scientific community. The research is carried out on i4Ocean platform following the process of ocean noise model integrating, noise data extracting, processing, visualizing, and interpreting, ocean noise map constructing and publishing. For the convenience of numerical computation, based on the characteristics of ocean noise field, a hybrid model related to spatial locations is suggested in the propagation model. The normal mode method K/I model is used for far field and ray method CANARY model is used for near field. Visualizing marine ambient noise data is critical to understanding and predicting marine noise for relevant decision making. Marine noise map can be constructed on virtual ocean scene. The systematic marine noise visualization framework includes preprocessing, coordinate transformation interpolation, and rendering. The simulation of ocean noise depends on realistic surface. Then the dynamic water simulation gird was improved with GPU fusion to achieve seamless combination with the visualization result of ocean noise. At the same time, the profile and spherical visualization include space, and time dimensionality were also provided for the vertical field characteristics of ocean ambient noise. Finally, marine noise map can be published with grid pre-processing and multistage cache technology to better serve the public.

  3. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2016-04-01

    In climate simulations, the impacts of the sub-grid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the sub-grid variability in a computationally inexpensive manner. This presentation shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition, by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a non-zero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference PD Williams, NJ Howe, JM Gregory, RS Smith, and MM Joshi (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, under revision.

  4. Spectral characterization of plastic scintillation detector response as a function of magnetic field strength

    NASA Astrophysics Data System (ADS)

    Simiele, E.; Kapsch, R.-P.; Ankerhold, U.; Culberson, W.; DeWerd, L.

    2018-04-01

    The purpose of this work was to characterize intensity and spectral response changes in a plastic scintillation detector (PSD) as a function of magnetic field strength. Spectra measurements as a function of magnetic field strength were performed using an optical spectrometer. The response of both a PSD and PMMA fiber were investigated to isolate the changes in response from the scintillator and the noise signal as a function of magnetic field strength. All irradiations were performed in water at a photon beam energy of 6 MV. Magnetic field strengths of (0, ±0.35, ±0.70, ±1.05, and  ±1.40) T were investigated. Four noise subtraction techniques were investigated to evaluate the impact on the resulting noise-subtracted scintillator response with magnetic field strength. The noise subtraction methods included direct spectral subtraction, the spectral method, and variants thereof. The PMMA fiber exhibited changes in response of up to 50% with magnetic field strength due to the directional light emission from \\breve{C} erenkov radiation. The PSD showed increases in response of up to 10% when not corrected for the noise signal, which agrees with previous investigations of scintillator response in magnetic fields. Decreases in the \\breve{C} erenkov light ratio with negative field strength were observed with a maximum change at  ‑1.40 T of 3.2% compared to 0 T. The change in the noise-subtracted PSD response as a function of magnetic field strength varied with the noise subtraction technique used. Even after noise subtraction, the PSD exhibited changes in response of up to 5.5% over the four noise subtraction methods investigated.

  5. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow baseline and suppressor nozzles. Volume 1: Noise source locations and extrapolation of static free-field jet noise data

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1976-01-01

    A test was conducted in the Boeing Large Anechoic Chamber to determine static jet noise source locations of six baseline and suppressor nozzle models, and establish a technique for extrapolating near field data into the far field. The test covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K.

  6. FINITE ELEMENT MODEL FOR TIDES AND CURRENTS WITH FIELD APPLICATIONS.

    USGS Publications Warehouse

    Walters, Roy A.

    1988-01-01

    A finite element model, based upon the shallow water equations, is used to calculate tidal amplitudes and currents for two field-scale test problems. Because tides are characterized by line spectra, the governing equations are subjected to harmonic decomposition. Thus the solution variables are the real and imaginary parts of the amplitude of sea level and velocity rather than a time series of these variables. The time series is recovered through synthesis. This scheme, coupled with a modified form of the governing equations, leads to high computational efficiency and freedom from excessive numerical noise. Two test-cases are presented. The first is a solution for eleven tidal constituents in the English Channel and southern North Sea, and three constituents are discussed. The second is an analysis of the frequency response and tidal harmonics for south San Francisco Bay.

  7. Sound levels in modern rodent housing rooms are an uncontrolled environmental variable with fluctuations mainly due to human activities

    PubMed Central

    Lauer, Amanda M.; May, Bradford J.; Hao, Ziwei Judy; Watson, Julie

    2009-01-01

    Noise in animal housing facilities is an environmental variable that can affect hearing, behavior and physiology in mice. The authors measured sound levels in two rodent housing rooms (room 1 and room 2) during several periods of 24 h. Room 1, which was subject to heavy personnel traffic, contained ventilated racks and static cages that housed large numbers of mice. Room 2 was accessed by only a few staff members and contained only static cages that housed fewer mice. In both rooms, background sound levels were about 80 dB, and transient noises caused sound levels to temporarily rise 30–40 dB above the baseline level; such peaks occurred frequently during work hours (8:30 AM to 4:30 PM) and infrequently during non-work hours. Noise peaks during work hours in room 1 occurred about two times as often as in room 2 (P = 0.01). Use of changing stations located in the rooms caused background noise to increase by about 10 dB. Loud noise and noise variability were attributed mainly to personnel activity. Attempts to reduce noise should concentrate on controlling sounds produced by in-room activities and experimenter traffic; this may reduce the variability of research outcomes and improve animal welfare. PMID:19384312

  8. Noise and hand-arm vibration exposure in relation to the risk of hearing loss.

    PubMed

    Pettersson, Hans; Burström, Lage; Hagberg, Mats; Lundström, Ronnie; Nilsson, Tohr

    2012-01-01

    The aim of this study was to examine the possible association of combined exposure of noise and hand-arm vibration (HAV) and the risk of noise-induced hearing loss. Workers in a heavy engineering industry were part of a dynamic cohort. Of these workers, 189 had HAV exposure, and their age and hearing status were recorded in the same year and were, therefore, included in the analysis. Data on HAV duration and acceleration was gathered through questionnaires, observations, and measurements. All available audiograms were categorized into normal and hearing loss. The first exposure variable included the lifetime HAV exposure. The lifetime HAV exposure was multiplied by the acceleration of HAV for the second and third exposure variable. Logistic regression using the Generalized Estimation Equations method was chosen to analyze the data to account for the repeated measurements. The analysis was performed with both continuous exposure variables and with exposure variables grouped into exposure quartiles with hearing loss as an outcome and age as a covariate. With continuous exposure variables, the odds ratio (OR) with a 95% confidence interval (CI) for hearing loss was equal to or greater than one for all exposure variables. When the exposure variables were grouped into quartiles, the OR with a 95% CI was greater than one at the third and fourth quartile. The results show that working with vibrating machines in an environment with noise exposure increases the risk of hearing loss, supporting an association between exposure to noise and HAV, and the noise-induced hearing loss.

  9. Noise analysis for near field 3-D FM-CW radar imaging systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of thesemore » noise sources on a fast-chirping FM-CW system.« less

  10. Partial and Total Annoyance Due to Road Traffic Noise Combined with Aircraft or Railway Noise: Structural Equation Analysis.

    PubMed

    Gille, Laure-Anne; Marquis-Favre, Catherine; Lam, Kin-Che

    2017-11-30

    Structural equation modeling was used to analyze partial and total in situ annoyance in combined transportation noise situations. A psychophysical total annoyance model and a perceptual total annoyance model were proposed. Results show a high contribution of Noise exposure and Noise sensitivity to Noise annoyance , as well as a causal relationship between noise annoyance and lower Dwelling satisfaction. Moreover, the Visibility of noise source may increase noise annoyance, even when the visible noise source is different from the annoying source under study. With regards to total annoyance due to road traffic noise combined with railway or aircraft noise, even though in both situations road traffic noise may be considered background noise and the other noise source event noise, the contribution of road traffic noise to the models is greater than railway noise and smaller than aircraft noise. This finding may be explained by the difference in sound pressure levels between these two types of combined exposures or by the aircraft noise level, which may also indicate the city in which the respondents live. Finally, the results highlight the importance of sample size and variable distribution in the database, as different results can be observed depending on the sample or variables considered.

  11. Partial and Total Annoyance Due to Road Traffic Noise Combined with Aircraft or Railway Noise: Structural Equation Analysis

    PubMed Central

    Gille, Laure-Anne; Marquis-Favre, Catherine; Lam, Kin-Che

    2017-01-01

    Structural equation modeling was used to analyze partial and total in situ annoyance in combined transportation noise situations. A psychophysical total annoyance model and a perceptual total annoyance model were proposed. Results show a high contribution of Noise exposure and Noise sensitivity to Noise annoyance, as well as a causal relationship between noise annoyance and lower Dwelling satisfaction. Moreover, the Visibility of noise source may increase noise annoyance, even when the visible noise source is different from the annoying source under study. With regards to total annoyance due to road traffic noise combined with railway or aircraft noise, even though in both situations road traffic noise may be considered background noise and the other noise source event noise, the contribution of road traffic noise to the models is greater than railway noise and smaller than aircraft noise. This finding may be explained by the difference in sound pressure levels between these two types of combined exposures or by the aircraft noise level, which may also indicate the city in which the respondents live. Finally, the results highlight the importance of sample size and variable distribution in the database, as different results can be observed depending on the sample or variables considered. PMID:29189751

  12. Model of aircraft noise adaptation

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  13. Cognitions and 'placebos' in behavioral research on ambient noise.

    NASA Technical Reports Server (NTRS)

    Harcum, E. R.; Monti, P. M.

    1973-01-01

    The study investigated effects of noise on visual and psychomotor tasks, with particular concern for influences of certain cognitive variables. A first experiment, using visual and card-sorting tasks, found no effects of 100 dB ambient noise per se, although cognitive variables in the testing situation affected both performance and ratings of disturbance. In two subsequent experiments some of the subjects were told that a noise was extraneous to their task of reproducing tachistoscopic patterns, and others were told that effects of the noise were being studied. It appears that in the absence of an adequate 'placebo' to control for cognitive factors, deceptive instructions may always be necessary in studies of ambient noise.

  14. The Characterization of Military Aircraft Jet Noise Using Near-Field Acoustical Holography Methods

    NASA Astrophysics Data System (ADS)

    Wall, Alan Thomas

    The noise emissions of jets from full-scale engines installed on military aircraft pose a significant hearing loss risk to military personnel. Noise reduction technologies and the development of operational procedures that minimize noise exposure to personnel are enhanced by the accurate characterization of noise sources within a jet. Hence, more than six decades of research have gone into jet noise measurement and prediction. In the past decade, the noise-source visualization tool near-field acoustical holography (NAH) has been applied to jets. NAH fits a weighted set of expansion wave functions, typically planar, cylindrical, or spherical, to measured sound pressures in the field. NAH measurements were made of a jet from an installed engine on a military aircraft. In the present study, the algorithm of statistically optimized NAH (SONAH) is modified to account for the presence of acoustic reflections from the concrete surface over which the jet was measured. The three dimensional field in the jet vicinity is reconstructed, and information about sources is inferred from reconstructions at the boundary of the turbulent jet flow. Then, a partial field decomposition (PFD) is performed, which represents the total field as the superposition of multiple, independent partial fields. This is the most direct attempt to equate partial fields with independent sources in a jet to date.

  15. Long term electromagnetic monitoring at Parkfield, CA

    NASA Astrophysics Data System (ADS)

    Kappler, Karl Neil

    Electric and magnetic fields in the (10-4-1.0) Hz band were monitored at two sites adjacent to the San Andreas Fault near Parkfield and Hollister, California. Observed fields typically comprise natural magnetotelluric fields, with cultural and instrument noise. A data window [2002-2005], enclosing the September 28, 2004 M6 Parkfield earthquake, was analyzed to determine if anomalous electric or magnetic fields, or changes in ground conductivity, occurred before the earthquake. The data were edited, removing intervals of instrument malfunction, leaving 875 days left in the four-year period. Frequent, local spike-like disturbances were removed. The distribution of these spikes was not biased around the time of the earthquake. Signal to noise ratios, estimated via magnetotelluric processing techniques, provided an index of data quality. Plots of signal and noise amplitude spectra, showed the behavior of the ULF fields to be remarkably constant over the period of analysis. From these first-order plots, it is clear that most of the recorded energy is coherent over the spatial extent of the array. Three main statistical techniques were employed to separate local anomalous electrical or magnetic fields from the dominant coherent natural fields: transfer function estimates between components at each site were employed to subtract the dominant field, and look deeper at the 'residual' fields; the data were decomposed into principal components to identify linear combinations of array channels, which are maximally uncorrelated; the technique of canonical coherences was employed to distinguish anomalous fields which are spatially broad from anomalies which occur at a single site only, and furthermore to distinguish anomalies which are present in both the electric and magnetic fields form those which are present in only one field type. Standard remote reference apparent resistivity estimates were generated daily at Parkfield. Most of the variation was observed to be seasonal, and frequency independent, suggesting a local seasonal distortion effect. Once corrected for distortion, nearly all of the variability in the apparent resistivity was removed. In all cases, high levels of sensitivity to subtle electromagnetic effects were demonstrated, but no effects which can be described as precursors to the Parkfield earthquake were found.

  16. Poor environmental tracking can make extinction risk insensitive to the colour of environmental noise

    PubMed Central

    van de Pol, Martijn; Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar; Ens, Bruno J.; Oosterbeek, Kees; Tinbergen, Joost M.

    2011-01-01

    The relative importance of environmental colour for extinction risk compared with other aspects of environmental noise (mean and interannual variability) is poorly understood. Such knowledge is currently relevant, as climate change can cause the mean, variability and temporal autocorrelation of environmental variables to change. Here, we predict that the extinction risk of a shorebird population increases with the colour of a key environmental variable: winter temperature. However, the effect is weak compared with the impact of changes in the mean and interannual variability of temperature. Extinction risk was largely insensitive to noise colour, because demographic rates are poor in tracking the colour of the environment. We show that three mechanisms—which probably act in many species—can cause poor environmental tracking: (i) demographic rates that depend nonlinearly on environmental variables filter the noise colour, (ii) demographic rates typically depend on several environmental signals that do not change colour synchronously, and (iii) demographic stochasticity whitens the colour of demographic rates at low population size. We argue that the common practice of assuming perfect environmental tracking may result in overemphasizing the importance of noise colour for extinction risk. Consequently, ignoring environmental autocorrelation in population viability analysis could be less problematic than generally thought. PMID:21561978

  17. A system for automated noise parameter measurements on MR preamplifiers and application to high B(0) fields.

    PubMed

    Lagore, Russell L; Roberts, Brodi Roduta; Possanzini, Cecilia; Saylor, Charles; Fallone, B Gino; De Zanche, Nicola

    2014-08-01

    A noise figure and noise parameter measurement system was developed that consists of a combination spectrum and network analyzer, preamplifier, programmable power supply, noise source, tuning board, and desktop computer. The system uses the Y-factor method for noise figure calculation and allows calibrations to correct for a decrease in excess noise ratio between the noise source and device under test, second stage (system) noise, ambient temperature variations, and available gain of the device under test. Noise parameters are extracted by performing noise figure measurements at several source impedance values obtained by adjusting an electronically controlled tuner. Results for several amplifiers at 128 MHz and 200 MHz agree with independent measurements and with the corresponding datasheets. With some modifications, the system was also used to characterize the noise figure of MRI preamplifiers in strong static magnetic fields up to 9.4 T. In most amplifiers tested the gain was found to be reduced by the magnetic field, while the noise figure increased. These changes are detrimental to signal quality (SNR) and are dependent on the electron mobility and design of the amplifier's semiconductor devices. Consequently, gallium arsenide (GaAs) field-effect transistors are most sensitive to magnetic fields due to their high electron mobility and long, narrow channel, while silicon-germanium (SiGe) bipolar transistor amplifiers are largely immune due to their very thin base. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Computational motor control: feedback and accuracy.

    PubMed

    Guigon, Emmanuel; Baraduc, Pierre; Desmurget, Michel

    2008-02-01

    Speed/accuracy trade-off is a ubiquitous phenomenon in motor behaviour, which has been ascribed to the presence of signal-dependent noise (SDN) in motor commands. Although this explanation can provide a quantitative account of many aspects of motor variability, including Fitts' law, the fact that this law is frequently violated, e.g. during the acquisition of new motor skills, remains unexplained. Here, we describe a principled approach to the influence of noise on motor behaviour, in which motor variability results from the interplay between sensory and motor execution noises in an optimal feedback-controlled system. In this framework, we first show that Fitts' law arises due to signal-dependent motor noise (SDN(m)) when sensory (proprioceptive) noise is low, e.g. under visual feedback. Then we show that the terminal variability of non-visually guided movement can be explained by the presence of signal-dependent proprioceptive noise. Finally, we show that movement accuracy can be controlled by opposite changes in signal-dependent sensory (SDN(s)) and SDN(m), a phenomenon that could be ascribed to muscular co-contraction. As the model also explains kinematics, kinetics, muscular and neural characteristics of reaching movements, it provides a unified framework to address motor variability.

  19. Visual cues and listening effort: individual variability.

    PubMed

    Picou, Erin M; Ricketts, Todd A; Hornsby, Benjamin W Y

    2011-10-01

    To investigate the effect of visual cues on listening effort as well as whether predictive variables such as working memory capacity (WMC) and lipreading ability affect the magnitude of listening effort. Twenty participants with normal hearing were tested using a paired-associates recall task in 2 conditions (quiet and noise) and 2 presentation modalities (audio only [AO] and auditory-visual [AV]). Signal-to-noise ratios were adjusted to provide matched speech recognition across audio-only and AV noise conditions. Also measured were subjective perceptions of listening effort and 2 predictive variables: (a) lipreading ability and (b) WMC. Objective and subjective results indicated that listening effort increased in the presence of noise, but on average the addition of visual cues did not significantly affect the magnitude of listening effort. Although there was substantial individual variability, on average participants who were better lipreaders or had larger WMCs demonstrated reduced listening effort in noise in AV conditions. Overall, the results support the hypothesis that integrating auditory and visual cues requires cognitive resources in some participants. The data indicate that low lipreading ability or low WMC is associated with relatively effortful integration of auditory and visual information in noise.

  20. A Requirements-Driven Optimization Method for Acoustic Treatment Design

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2016-01-01

    Acoustic treatment designers have long been able to target specific noise sources inside turbofan engines. Facesheet porosity and cavity depth are key design variables of perforate-over-honeycomb liners that determine levels of noise suppression as well as the frequencies at which suppression occurs. Layers of these structures can be combined to create a robust attenuation spectrum that covers a wide range of frequencies. Looking to the future, rapidly-emerging additive manufacturing technologies are enabling new liners with multiple degrees of freedom, and new adaptive liners with variable impedance are showing promise. More than ever, there is greater flexibility and freedom in liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. The subject of this paper is an analytical method that derives the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground.

  1. Sci—Thur PM: Imaging — 01: Position-sensitive noise characteristics in multi-pinhole cardiac SPECT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuddy-Walsh, SG; University of Ottawa Heart Institute; Wells, RG

    2014-08-15

    Myocardial perfusion imaging (MPI) with Single Photon Emission Computed Tomography (SPECT) is invaluable in the diagnosis and management of heart disease. It provides essential information on myocardial blood flow and ischemia. Multi-pinhole dedicated cardiac-SPECT cameras offer improved count sensitivity, and spatial and energy resolutions over parallel-hole camera designs however variable sensitivity across the field-of-view (FOV) can lead to position-dependent noise variations. Since MPI evaluates differences in the signal-to-noise ratio, noise variations in the camera could significantly impact the sensitivity of the test for ischemia. We evaluated the noise characteristics of GE Healthcare's Discovery NM530c camera with a goal of optimizingmore » the accuracy of our patient assessment and thereby improving outcomes. Theoretical sensitivity maps of the camera FOV, including attenuation effects, were estimated analytically based on the distance and angle between the spatial position of a given voxel and each pinhole. The standard deviation in counts, σ was inferred for each voxel position from the square root of the sensitivity mapped at that position. Noise was measured experimentally from repeated (N=16) acquisitions of a uniform spherical Tc-99m-water phantom. The mean (μ) and standard deviation (σ) were calculated for each voxel position in the reconstructed FOV. Noise increased ∼2.1× across a 12 cm sphere. A correlation of 0.53 is seen when experimental noise is compared with theory suggesting that ∼53% of the noise is attributed to the combined effects of attenuation and the multi-pinhole geometry. Further investigations are warranted to determine the clinical impact of the position-dependent noise variation.« less

  2. Variability-induced transition in a net of neural elements: From oscillatory to excitable behavior.

    PubMed

    Glatt, Erik; Gassel, Martin; Kaiser, Friedemann

    2006-06-01

    Starting with an oscillatory net of neural elements, increasing variability induces a phase transition to excitability. This transition is explained by a systematic effect of the variability, which stabilizes the formerly unstable, spatially uniform, temporally constant solution of the net. Multiplicative noise may also influence the net in a systematic way and may thus induce a similar transition. Adding noise into the model, the interplay of noise and variability with respect to the reported transition is investigated. Finally, pattern formation in a diffusively coupled net is studied, because excitability implies the ability of pattern formation and information transmission.

  3. Magnetic Field Noise Changes Effect of Combined Magnetic Field on Gravitropic Reaction of Cress Roots.

    NASA Astrophysics Data System (ADS)

    Bogatina, Nina; Kordyum, Elizabeth; Sheykina, Nadezhda

    The gravitropic reaction of cress roots in combined magnetic field was studied in details. It was shown that the negative roots gravitropism observed at the frequency of alternating component of combined magnetic field adjusted to the Ca ion cyclotron frequency could be observed only at Nayquist magnetic field noise level under 5 nT/Hz. While the magnetic noise level was increasing the negative gravitropism was disappearing. The inhibition of gravitropic reaction was observed in all cases. The effect was accompanied by the changes in the noise spectrum generated by cress roots.

  4. An ultra-sensitive and wideband magnetometer based on a superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Storm, Jan-Hendrik; Hömmen, Peter; Drung, Dietmar; Körber, Rainer

    2017-02-01

    The magnetic field noise in superconducting quantum interference devices (SQUIDs) used for biomagnetic research such as magnetoencephalography or ultra-low-field nuclear magnetic resonance is usually limited by instrumental dewar noise. We constructed a wideband, ultra-low noise system with a 45 mm diameter superconducting pick-up coil inductively coupled to a current sensor SQUID. Thermal noise in the liquid helium dewar is minimized by using aluminized polyester fabric as superinsulation and aluminum oxide strips as heat shields. With a magnetometer pick-up coil in the center of the Berlin magnetically shielded room 2 (BMSR2), a noise level of around 150 aT Hz-1/2 is achieved in the white noise regime between about 20 kHz and the system bandwidth of about 2.5 MHz. At lower frequencies, the resolution is limited by magnetic field noise arising from the walls of the shielded room. Modeling the BMSR2 as a closed cube with continuous μ-metal walls, we can quantitatively reproduce its measured field noise.

  5. High internal noise and poor external noise filtering characterize perception in autism spectrum disorder.

    PubMed

    Park, Woon Ju; Schauder, Kimberly B; Zhang, Ruyuan; Bennetto, Loisa; Tadin, Duje

    2017-12-14

    An emerging hypothesis postulates that internal noise is a key factor influencing perceptual abilities in autism spectrum disorder (ASD). Given fundamental and inescapable effects of noise on nearly all aspects of neural processing, this could be a critical abnormality with broad implications for perception, behavior, and cognition. However, this proposal has been challenged by both theoretical and empirical studies. A crucial question is whether and how internal noise limits perception in ASD, independently from other sources of perceptual inefficiency, such as the ability to filter out external noise. Here, we separately estimated internal noise and external noise filtering in ASD. In children and adolescents with and without ASD, we computationally modeled individuals' visual orientation discrimination in the presence of varying levels of external noise. The results revealed increased internal noise and worse external noise filtering in individuals with ASD. For both factors, we also observed high inter-individual variability in ASD, with only the internal noise estimates significantly correlating with severity of ASD symptoms. We provide evidence for reduced perceptual efficiency in ASD that is due to both increased internal noise and worse external noise filtering, while highlighting internal noise as a possible contributing factor to variability in ASD symptoms.

  6. Flow Structures and Noise Produced by a Heated Rectangular Nozzle with a Third Stream and Aft Deck

    NASA Astrophysics Data System (ADS)

    Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry

    2015-11-01

    Jet noise is a huge issue that affects both civilian and military aviation and is a two-fold problem. Near-field noise causes hearing damage and is of great concern to the Navy. Far-field noise is also a concern for military and civilian aircraft. For military jets, the trend has shown that newer and more advanced planes are louder than their predecessors. Most of these planes are designed keeping the performance as the main driver in mind while the jet noise becomes an afterthought. To remedy this and to aid the design process, we propose to create a joint noise and performance prediction tool. To create this tool, one must understand how the near-field flow structures generate noise and how they are related to far-field noise. In the current work, we considered rectangular, three-stream nozzle with an aft deck and investigated the flow structures such as corner vortices, shocks and their impact on the noise generation mechanism. We have also used state-of-the-art data analytical tools such as wavelets, POD, and stochastic estimations.

  7. Chronic effects of workplace noise on blood pressure and heart rate.

    PubMed

    Lusk, Sally L; Hagerty, Bonnie M; Gillespie, Brenda; Caruso, Claire C

    2002-01-01

    Environmental noise levels in the United States are increasing, yet there are few studies in which the nonauditory effects of workplace noise are assessed. In the current study, the authors examined chronic effects of noise on blood pressure and heart rate in 374 workers at an automobile plant. Data were collected from subjects prior to the start of their workshift. Participants completed questionnaires about diet, alcohol use, lifestyle, noise annoyance, use of hearing protection, noise exposure outside of the work environment, personal and family health histories, and demographic information. Resting blood pressure, heart rate, and body mass index were obtained. Noise exposure levels were extracted retrospectively from company records for each participant for the past 5 yr. Summary statistics were generated for each variable, and the authors performed bivariate correlations to identify any unadjusted associations. The authors then completed statistical modeling to investigate the effects of noise on blood pressure and heart rate, after they controlled for other variables (e.g., gender, race, age). The authors controlled for confounding variables, after which use of hearing protection in high-noise areas was a significant predictor of a decrease in both systolic and diastolic blood pressures. The results suggested that the reduction of noise exposure by means of engineering controls or by consistent use of hearing protection by workers may positively affect health outcomes.

  8. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  9. Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks.

    PubMed

    Bressloff, Paul C

    2015-01-01

    We consider applications of path-integral methods to the analysis of a stochastic hybrid model representing a network of synaptically coupled spiking neuronal populations. The state of each local population is described in terms of two stochastic variables, a continuous synaptic variable and a discrete activity variable. The synaptic variables evolve according to piecewise-deterministic dynamics describing, at the population level, synapses driven by spiking activity. The dynamical equations for the synaptic currents are only valid between jumps in spiking activity, and the latter are described by a jump Markov process whose transition rates depend on the synaptic variables. We assume a separation of time scales between fast spiking dynamics with time constant [Formula: see text] and slower synaptic dynamics with time constant τ. This naturally introduces a small positive parameter [Formula: see text], which can be used to develop various asymptotic expansions of the corresponding path-integral representation of the stochastic dynamics. First, we derive a variational principle for maximum-likelihood paths of escape from a metastable state (large deviations in the small noise limit [Formula: see text]). We then show how the path integral provides an efficient method for obtaining a diffusion approximation of the hybrid system for small ϵ. The resulting Langevin equation can be used to analyze the effects of fluctuations within the basin of attraction of a metastable state, that is, ignoring the effects of large deviations. We illustrate this by using the Langevin approximation to analyze the effects of intrinsic noise on pattern formation in a spatially structured hybrid network. In particular, we show how noise enlarges the parameter regime over which patterns occur, in an analogous fashion to PDEs. Finally, we carry out a [Formula: see text]-loop expansion of the path integral, and use this to derive corrections to voltage-based mean-field equations, analogous to the modified activity-based equations generated from a neural master equation.

  10. An approach to improving the signal-to-optical-noise ratio of pulsed magnetic field photonic sensors

    NASA Astrophysics Data System (ADS)

    Wang, Jiang-ping; Li, Yu-quan

    2008-12-01

    During last years, interest in pulsed magnetic field sensors has widely increased. In fact, magnetic field measurement has a critical part in various scientific and technical areas. In order to research on pulsed magnetic field characteristic and corresponding measuring and defending means, a sensor with high immunity to electrical noise, high sensitivity, high accuracy and wide dynamic range is needed. The conventional magnetic field measurement system currently use active metallic probes which can disturb the measuring magnetic field and make sensor very sensitive to electromagnetic noise. Photonic magnetic field sensor exhibit great advantages with respect to the electronic ones: a very good galvanic insulation, high sensitivity and very wide bandwidth. Photonic sensing technology is fit for demand of a measure pulsed magnetic field. A type of pulsed magnetic field photonic sensor has been designed, analyzed, and tested. The cross polarization angle in photonic sensor effect on the signal-to-optical-noise ratio is theoretically analyzed in this paper. A novel approach for improving the signal-to-optical-noise ratio of pulsed magnetic field sensors was proposed. The experiments have proved that this approach is practical. The theoretical analysis and simulation results show that the signal-to-optical-noise ratio can potentially be considerably improved by setup suitable for the cross polarization angle.

  11. Development of Ocean Noise "Budgets"

    NASA Astrophysics Data System (ADS)

    D'Spain, G. L.; Miller, J. H.; Frisk, G. V.; Bradley, D. L.

    2003-12-01

    The National Oceanographic Partnership Program recently sponsored the third U.S. National Academy of Sciences study on the potential impact of manmade sound on the marine environment. Several recommendations for future research are made by the 11-member committee in their report titled Ocean Noise and Marine Mammals (National Academies Press, 2003). This presentation will focus on the subset of recommendations related to a "noise budget", i.e., an accounting of the relative contributions of various sources to the ocean noise field. A noise budget is defined in terms of a specific metric of the sound field. The metric, or budget "currency", typically considered is the acoustic pressure spectrum integrated over space and time, which is proportional to the total mechanical energy in the acoustic field. However, this currency may not be the only one of relevance to marine animals. Each of the various ways in which sound can potentially impact these animals, e.g., temporary threshold shift, masking, behavior disruption, etc, probably depends upon a different property, or set of properties, of the sound field. Therefore, a family of noise budgets based on various currencies will be required for complete evaluation of the potential impact of manmade noise on the marine environment. Validation of noise budgets will require sustained, long term measurements of the underwater noise field.

  12. Human annoyance and reactions to hotel room specific noises

    NASA Astrophysics Data System (ADS)

    Everhard, Ian L.

    2004-05-01

    A new formula is presented where multiple annoyance sources and transmission loss values of any partition are combined to produce a new single number rating of annoyance. The explanation of the formula is based on theoretical psychoacoustics and survey testing used to create variables used to weight the results. An imaginary hotel room is processed through the new formula and is rated based on theoretical survey results that would be taken by guests of the hotel. The new single number rating compares the multiple sources of annoyance to a single imaginary unbiased source where absolute level is the only factor in stimulating a linear rise in annoyance [Fidell et al., J. Acoust. Soc. Am. 66, 1427 (1979); D. M. Jones and D. E. Broadbent, ``Human performance and noise,'' in Handbook of Noise Control, 3rd ed., edited by C. M. Harris (ASA, New York, 1998), Chap. 24; J. P. Conroy and J. S. Roland, ``STC Field Testing and Results,'' in Sound and Vibration Magazine, Acoustical Publications, pp. 10-15 (July 2003)].

  13. An Investigation Into the Effects of Frequency Response Function Estimators on Model Updating

    NASA Astrophysics Data System (ADS)

    Ratcliffe, M. J.; Lieven, N. A. J.

    1999-03-01

    Model updating is a very active research field, in which significant effort has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are—unavoidably—corrupted with uncorrelated noise content. In the development and validation of model-updating strategies, a random zero-mean Gaussian variable is added to simulated test data to tax the updating routines more fully. This paper proposes a more sophisticated model for experimental measurement noise, and this is used in conjunction with several different frequency response function estimators, from the classical H1and H2to more refined estimators that purport to be unbiased. Finite-element model case studies, in conjunction with a genuine experimental test, suggest that the proposed noise model is a more realistic representation of experimental noise phenomena. The choice of estimator is shown to have a significant influence on the viability of the FRF sensitivity method. These test cases find that the use of the H2estimator for model updating purposes is contraindicated, and that there is no advantage to be gained by using the sophisticated estimators over the classical H1estimator.

  14. Noise analysis for near-field 3D FM-CW radar imaging systems

    NASA Astrophysics Data System (ADS)

    Sheen, David M.

    2015-05-01

    Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  15. The nocturnal acoustical intensity of the intensive care environment: an observational study.

    PubMed

    Delaney, Lori J; Currie, Marian J; Huang, Hsin-Chia Carol; Lopez, Violeta; Litton, Edward; Van Haren, Frank

    2017-01-01

    The intensive care unit (ICU) environment exposes patients to noise levels that may result in substantial sleep disruption. There is a need to accurately describe the intensity pattern and source of noise in the ICU in order to develop effective sound abatement strategies. The objectives of this study were to determine nocturnal noise levels and their variability and the related sources of noise within an Australian tertiary ICU. An observational cross-sectional study was conducted in a 24-bed open-plan ICU. Sound levels were recorded overnight during three nights at 5-s epochs using Extech (SDL 600) sound monitors. Noise sources were concurrently logged by two research assistants. The mean recorded ambient noise level in the ICU was 52.85 decibels (dB) (standard deviation (SD) 5.89), with a maximum noise recording at 98.3 dB (A). All recorded measurements exceeded the WHO recommendations. Noise variability per minute ranged from 9.9 to 44 dB (A), with peak noise levels >70 dB (A) occurring 10 times/hour (SD 11.4). Staff were identified as the most common source accounting for 35% of all noise. Mean noise levels in single-patient rooms compared with open-bed areas were 53.5 vs 53 dB ( p  = 0.37), respectively. Mean noise levels exceeded those recommended by the WHO resulting in an acoustical intensity of 193 times greater than the recommended and demonstrated a high degree of unpredictable variability, with the primary noise sources coming from staff conversations. The lack of protective effects of single rooms and the contributing effects that staffs have on noise levels are important factors when considering sound abatement strategies.

  16. Generating partially correlated noise--a comparison of methods.

    PubMed

    Hartmann, William M; Cho, Yun Jin

    2011-07-01

    There are three standard methods for generating two channels of partially correlated noise: the two-generator method, the three-generator method, and the symmetric-generator method. These methods allow an experimenter to specify a target cross correlation between the two channels, but actual generated noises show statistical variability around the target value. Numerical experiments were done to compare the variability for those methods as a function of the number of degrees of freedom. The results of the experiments quantify the stimulus uncertainty in diverse binaural psychoacoustical experiments: incoherence detection, perceived auditory source width, envelopment, noise localization/lateralization, and the masking level difference. The numerical experiments found that when the elemental generators have unequal powers, the different methods all have similar variability. When the powers are constrained to be equal, the symmetric-generator method has much smaller variability than the other two. © 2011 Acoustical Society of America

  17. Continuous variable quantum key distribution with modulated entangled states.

    PubMed

    Madsen, Lars S; Usenko, Vladyslav C; Lassen, Mikael; Filip, Radim; Andersen, Ulrik L

    2012-01-01

    Quantum key distribution enables two remote parties to grow a shared key, which they can use for unconditionally secure communication over a certain distance. The maximal distance depends on the loss and the excess noise of the connecting quantum channel. Several quantum key distribution schemes based on coherent states and continuous variable measurements are resilient to high loss in the channel, but are strongly affected by small amounts of channel excess noise. Here we propose and experimentally address a continuous variable quantum key distribution protocol that uses modulated fragile entangled states of light to greatly enhance the robustness to channel noise. We experimentally demonstrate that the resulting quantum key distribution protocol can tolerate more noise than the benchmark set by the ideal continuous variable coherent state protocol. Our scheme represents a very promising avenue for extending the distance for which secure communication is possible.

  18. Interannual variability and climatic noise in satellite-observed outgoing longwave radiation

    NASA Technical Reports Server (NTRS)

    Short, D. A.; Cahalan, R. F.

    1983-01-01

    Upwelling-IR observations of the North Pacific by polar orbiters NOAA 3, 4, 5, and 6 and TIROS-N from 1974 to 1981 are analyzed statistically in terms of interannual variability (IAV) in monthly averages and climatic noise due to short-term weather fluctuations. It is found that although the daily variance in the observations is the same in summer and winter months, and although IAV in winter is smaller than that in summer, the climatic noise in winter is so much smaller that a greater fraction of winter anomalies are statistically significant. The smaller winter climatic noise level is shown to be due to shorter autocorrelation times. It is demonstrated that increasing averaging area does not reduce the climatic noise level, suggesting that continuing collection of high-resolution satellite IR data on a global basis is necessary if better models of short-term variability are to be constructed.

  19. A downscaling scheme for atmospheric variables to drive soil-vegetation-atmosphere transfer models

    NASA Astrophysics Data System (ADS)

    Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C.

    2010-09-01

    For driving soil-vegetation-transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called `deterministic' part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.

  20. Linear models for airborne-laser-scanning-based operational forest inventory with small field sample size and highly correlated LiDAR data

    USGS Publications Warehouse

    Junttila, Virpi; Kauranne, Tuomo; Finley, Andrew O.; Bradford, John B.

    2015-01-01

    Modern operational forest inventory often uses remotely sensed data that cover the whole inventory area to produce spatially explicit estimates of forest properties through statistical models. The data obtained by airborne light detection and ranging (LiDAR) correlate well with many forest inventory variables, such as the tree height, the timber volume, and the biomass. To construct an accurate model over thousands of hectares, LiDAR data must be supplemented with several hundred field sample measurements of forest inventory variables. This can be costly and time consuming. Different LiDAR-data-based and spatial-data-based sampling designs can reduce the number of field sample plots needed. However, problems arising from the features of the LiDAR data, such as a large number of predictors compared with the sample size (overfitting) or a strong correlation among predictors (multicollinearity), may decrease the accuracy and precision of the estimates and predictions. To overcome these problems, a Bayesian linear model with the singular value decomposition of predictors, combined with regularization, is proposed. The model performance in predicting different forest inventory variables is verified in ten inventory areas from two continents, where the number of field sample plots is reduced using different sampling designs. The results show that, with an appropriate field plot selection strategy and the proposed linear model, the total relative error of the predicted forest inventory variables is only 5%–15% larger using 50 field sample plots than the error of a linear model estimated with several hundred field sample plots when we sum up the error due to both the model noise variance and the model’s lack of fit.

  1. Light field reconstruction robust to signal dependent noise

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Bian, Liheng; Suo, Jinli; Dai, Qionghai

    2014-11-01

    Capturing four dimensional light field data sequentially using a coded aperture camera is an effective approach but suffers from low signal noise ratio. Although multiplexing can help raise the acquisition quality, noise is still a big issue especially for fast acquisition. To address this problem, this paper proposes a noise robust light field reconstruction method. Firstly, scene dependent noise model is studied and incorporated into the light field reconstruction framework. Then, we derive an optimization algorithm for the final reconstruction. We build a prototype by hacking an off-the-shelf camera for data capturing and prove the concept. The effectiveness of this method is validated with experiments on the real captured data.

  2. Effect of noise in principal component analysis with an application to ozone pollution

    NASA Astrophysics Data System (ADS)

    Tsakiri, Katerina G.

    This thesis analyzes the effect of independent noise in principal components of k normally distributed random variables defined by a covariance matrix. We prove that the principal components as well as the canonical variate pairs determined from joint distribution of original sample affected by noise can be essentially different in comparison with those determined from the original sample. However when the differences between the eigenvalues of the original covariance matrix are sufficiently large compared to the level of the noise, the effect of noise in principal components and canonical variate pairs proved to be negligible. The theoretical results are supported by simulation study and examples. Moreover, we compare our results about the eigenvalues and eigenvectors in the two dimensional case with other models examined before. This theory can be applied in any field for the decomposition of the components in multivariate analysis. One application is the detection and prediction of the main atmospheric factor of ozone concentrations on the example of Albany, New York. Using daily ozone, solar radiation, temperature, wind speed and precipitation data, we determine the main atmospheric factor for the explanation and prediction of ozone concentrations. A methodology is described for the decomposition of the time series of ozone and other atmospheric variables into the global term component which describes the long term trend and the seasonal variations, and the synoptic scale component which describes the short term variations. By using the Canonical Correlation Analysis, we show that solar radiation is the only main factor between the atmospheric variables considered here for the explanation and prediction of the global and synoptic scale component of ozone. The global term components are modeled by a linear regression model, while the synoptic scale components by a vector autoregressive model and the Kalman filter. The coefficient of determination, R2, for the prediction of the synoptic scale ozone component was found to be the highest when we consider the synoptic scale component of the time series for solar radiation and temperature. KEY WORDS: multivariate analysis; principal component; canonical variate pairs; eigenvalue; eigenvector; ozone; solar radiation; spectral decomposition; Kalman filter; time series prediction

  3. Noise canceling in-situ detection

    DOEpatents

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  4. CFD simulation of pulsation noise in a small centrifugal compressor with volute and resonance tube

    NASA Astrophysics Data System (ADS)

    Wakaki, Daich; Sakuka, Yuta; Inokuchi, Yuzo; Ueda, Kosuke; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2015-02-01

    The rotational frequency tone noise emitted from the automobile turbocharger is called the pulsation noise. The cause of the pulsation noise is not fully understood, but is considered to be due to some manufacturing errors, which is called the mistuning. The effects of the mistuning of the impeller blade on the noise field inside the flow passage of the compressor are numerically investigated. Here, the flow passage includes the volute and duct located downstream of the compressor impeller. Our numerical approach is found to successfully capture the wavelength of the pulsation noise at given rotational speeds by the comparison with the experiments. One of the significant findings is that the noise field of the pulsation noise in the duct is highly one-dimensional although the flow fields are highly three-dimensional.

  5. Nonlinear magnetoelectric effects in a composite ferromagnetic-piezoelectric structure under harmonic and noise magnetic pumping

    NASA Astrophysics Data System (ADS)

    Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, Y. K.; Stashkevich, A.

    2018-03-01

    Low-frequency nonlinear magnetoelectric effects in a composite structure comprised of a piezoelectric langatate slab sandwiched between two Metglas amorphous alloy magnetostrictive layers under simultaneous harmonic and noise magnetic pumping have been investigated. It is shown that the frequency fp of harmonic pumping is linearly reproduced in the piezoelectric voltage spectrum accompanied by its higher harmonics. Similarly, narrow-band magnetic noise with a central frequency fN is present in the output piezoelectric voltage along with two noise peaks in the vicinity of a double 2fN and zero frequency. Simultaneous application of harmonic and noise magnetic fields produces a noticeably more complex output voltage spectrum containing additional noise satellite lines at frequencies fp ±fN , 2fp ±fN etc. as well as a noise "pedestal". Amplitudes of voltage spectral components depend on the applied constant bias magnetic field, scaling as magnetostriction derivatives with respect to this field. The effects observed are well described by the theory of magnetic field mixing in magnetoelectric composites with nonlinear dependence of magnetostriction on applied fields.

  6. Advanced Noise Control Fan: A 20-Year Retrospective

    NASA Technical Reports Server (NTRS)

    Sutliff, Dan

    2016-01-01

    The ANCF test bed is used for evaluating fan noise reduction concepts, developing noise measurement technologies, and providing a database for Aero-acoustic code development. Rig Capabilities: 4 foot 16 bladed rotor @ 2500 rpm, Auxiliary air delivery system (3 lbm/sec @ 6/12 psi), Variable configuration (rotor pitch angle, stator count/position, duct length), synthetic acoustic noise generation (tone/broadband). Measurement Capabilities: 112 channels dynamic data system, Unique rotating rake mode measuremen, Farfield (variable radius), Duct wall microphones, Stator vane microphones, Two component CTA w/ traversing, ESP for static pressures.

  7. Effect of multiplicative noise on stationary stochastic process

    NASA Astrophysics Data System (ADS)

    Kargovsky, A. V.; Chikishev, A. Yu.; Chichigina, O. A.

    2018-03-01

    An open system that can be analyzed using the Langevin equation with multiplicative noise is considered. The stationary state of the system results from a balance of deterministic damping and random pumping simulated as noise with controlled periodicity. The dependence of statistical moments of the variable that characterizes the system on parameters of the problem is studied. A nontrivial decrease in the mean value of the main variable with an increase in noise stochasticity is revealed. Applications of the results in several physical, chemical, biological, and technical problems of natural and humanitarian sciences are discussed.

  8. Continuous-variable quantum key distribution protocols over noisy channels.

    PubMed

    García-Patrón, Raúl; Cerf, Nicolas J

    2009-04-03

    A continuous-variable quantum key distribution protocol based on squeezed states and heterodyne detection is introduced and shown to attain higher secret key rates over a noisy line than any other one-way Gaussian protocol. This increased resistance to channel noise can be understood as resulting from purposely adding noise to the signal that is converted into the secret key. This notion of noise-enhanced tolerance to noise also provides a better physical insight into the poorly understood discrepancies between the previously defined families of Gaussian protocols.

  9. Hearing in Noise Test Brazil: standardization for young adults with normal hearing.

    PubMed

    Sbompato, Andressa Forlevise; Corteletti, Lilian Cassia Bornia Jacob; Moret, Adriane de Lima Mortari; Jacob, Regina Tangerino de Souza

    2015-01-01

    Individuals with the same ability of speech recognition in quiet can have extremely different results in noisy environments. To standardize speech perception in adults with normal hearing in the free field using the Brazilian Hearing in Noise Test. Contemporary, cross-sectional cohort study. 79 adults with normal hearing and without cognitive impairment participated in the study. Lists of Hearing in Noise Test sentences were randomly in quiet, noise front, noise right, and noise left. There were no significant differences between right and left ears at all frequencies tested (paired t-1 test). Nor were significant differences observed when comparing gender and interaction between these conditions. A difference was observed among the free field positions tested, except in the situations of noise right and noise left. Results of speech perception in adults with normal hearing in the free field during different listening situations in noise indicated poorer performance during the condition with noise and speech in front, i.e., 0°/0°. The values found in the standardization of the Hearing in Noise Test free field can be used as a reference in the development of protocols for tests of speech perception in noise, and for monitoring individuals with hearing impairment. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Study of unconventional propulsion system concepts for use in a long range transport

    NASA Technical Reports Server (NTRS)

    Champagne, G. A.

    1973-01-01

    The noise level of an uncoventional propulsion system for the next generation of subsonic, long-range transport aircraft is discussed. The desired noise level may be achieved by: (1) a fixed geometry, high bypass ratio turbofan with a geared two-stage fan and advanced acoustic treatment or (2) a moderate bypass ratio turbofan with a variable pitch two-stage fan, variable primary and duct nozzles, and advanced acoustic treatment. The geared fan system meets the noise goal with minimum economic penalty. Comparison of the noise levels at takeoff and landing in combination with the economic penalties required to achieve the lower noise levels at specific noise measuring stations, indicate that both area reduction and current certification prodedures should be used to ascertain the point of diminishing returns in establishing future noise goals.

  11. An Experimental Determination of Static Magnetic Fields Induced Noise in Living Systems

    NASA Astrophysics Data System (ADS)

    Brady, Megan; Laramee, Craig

    2013-03-01

    Living systems are constantly exposed to static magnetic fields (SMFs) from both natural and man-made sources. Exposures vary in dose and duration ranging from geomagnetic (~50 μT) to residential and industrial (~10s of mT) fields. Efforts to characterize responses to SMFs have yielded conflicting results, showing a dependence on experimental variables used. Here we argue that low to moderate SMF exposure is a sub-threshold perturbation operating below thermal noise, and assays that evaluate statistical characteristics of a single cell may identify responses not consistently found by population averaging approaches. Recent studies of gene expression show that it is a stochastic process capable of producing bursting dynamics. Moreover, theoretical and experimental methods have also been developed to allow quantitative estimates of the associated biophysical parameters. These developments provide a new way to assess responses of living systems to SMFs. In this work, we report on our efforts to use single molecule fluorescence in situ hybridization to assess responses of NIH-3T3 cells to SMF exposure at flux densities ranging from 1 to 440 mT for 48 hours. Results will contribute to determining mechanisms by which SMF exposure influences gene expression.

  12. Instrument Noise Simulation for GRACE Follow-On

    NASA Astrophysics Data System (ADS)

    Darbeheshti, N.; Mueller, V.; Wegener, H.; Hewitson, M.; Heinzel, G.; Naeimi, M.; Flury, J.

    2016-12-01

    The quality of the temporal gravity field from GRACE Follow-On mission depends on its multi-sensor system consisting of inter-satellite ranging with microwave and laser ranging instrument, GNSS orbit tracking, accelerometry, and attitude sensing. In this presentation, the noise models for GRACE Follow-On major instruments are described and their effect on the estimation of Earth's gravity field accuracy are discussed. To do this the spectrum of the instruments noise models has been related to the spectrum of the disturbing potential of the Earth's gravity field. The instrument noise models are available to the geodesy community through GRACE Follow-On mock data challenges. The performance of gravity field recovery approaches can be tested by comparing observation residuals to the simulated instrument noises. The instrument noise models will also provide valuable insight for inter-satellite ranging configurations beyond GRACE Follow-On.

  13. Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures

    ERIC Educational Resources Information Center

    Steinley, Douglas; Brusco, Michael J.

    2008-01-01

    Eight different variable selection techniques for model-based and non-model-based clustering are evaluated across a wide range of cluster structures. It is shown that several methods have difficulties when non-informative variables (i.e., random noise) are included in the model. Furthermore, the distribution of the random noise greatly impacts the…

  14. Atlas based brain volumetry: How to distinguish regional volume changes due to biological or physiological effects from inherent noise of the methodology.

    PubMed

    Opfer, Roland; Suppa, Per; Kepp, Timo; Spies, Lothar; Schippling, Sven; Huppertz, Hans-Jürgen

    2016-05-01

    Fully-automated regional brain volumetry based on structural magnetic resonance imaging (MRI) plays an important role in quantitative neuroimaging. In clinical trials as well as in clinical routine multiple MRIs of individual patients at different time points need to be assessed longitudinally. Measures of inter- and intrascanner variability are crucial to understand the intrinsic variability of the method and to distinguish volume changes due to biological or physiological effects from inherent noise of the methodology. To measure regional brain volumes an atlas based volumetry (ABV) approach was deployed using a highly elastic registration framework and an anatomical atlas in a well-defined template space. We assessed inter- and intrascanner variability of the method in 51 cognitively normal subjects and 27 Alzheimer dementia (AD) patients from the Alzheimer's Disease Neuroimaging Initiative by studying volumetric results of repeated scans for 17 compartments and brain regions. Median percentage volume differences of scan-rescans from the same scanner ranged from 0.24% (whole brain parenchyma in healthy subjects) to 1.73% (occipital lobe white matter in AD), with generally higher differences in AD patients as compared to normal subjects (e.g., 1.01% vs. 0.78% for the hippocampus). Minimum percentage volume differences detectable with an error probability of 5% were in the one-digit percentage range for almost all structures investigated, with most of them being below 5%. Intrascanner variability was independent of magnetic field strength. The median interscanner variability was up to ten times higher than the intrascanner variability. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Continuous Variable Quantum Key Distribution Using Polarized Coherent States

    NASA Astrophysics Data System (ADS)

    Vidiella-Barranco, A.; Borelli, L. F. M.

    We discuss a continuous variables method of quantum key distribution employing strongly polarized coherent states of light. The key encoding is performed using the variables known as Stokes parameters, rather than the field quadratures. Their quantum counterpart, the Stokes operators Ŝi (i=1,2,3), constitute a set of non-commuting operators, being the precision of simultaneous measurements of a pair of them limited by an uncertainty-like relation. Alice transmits a conveniently modulated two-mode coherent state, and Bob randomly measures one of the Stokes parameters of the incoming beam. After performing reconciliation and privacy amplification procedures, it is possible to distill a secret common key. We also consider a non-ideal situation, in which coherent states with thermal noise, instead of pure coherent states, are used for encoding.

  16. Maximum-Entropy Inference with a Programmable Annealer

    PubMed Central

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-01-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition. PMID:26936311

  17. 78 FR 78469 - Receipt of Noise Compatibility Program and Request for Review; Martin County Airport/Witham Field...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Receipt of Noise Compatibility... reviewing a proposed Noise Compatibility Program that was submitted for Martin County Airport/Witham Field under the provisions of 49 U.S.C. 47504 et. seq (the Aviation Safety and Noise Abatement Act hereinafter...

  18. A Requirements-Driven Optimization Method for Acoustic Liners Using Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Lopes, Leonard V.

    2017-01-01

    More than ever, there is flexibility and freedom in acoustic liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. In a previous paper on this subject, a method deriving the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground was described. A simple code-wrapping approach was used to evaluate a community noise objective function for an external optimizer. Gradients were evaluated using a finite difference formula. The subject of this paper is an application of analytic derivatives that supply precise gradients to an optimization process. Analytic derivatives improve the efficiency and accuracy of gradient-based optimization methods and allow consideration of more design variables. In addition, the benefit of variable impedance liners is explored using a multi-objective optimization.

  19. Effects of ion channel noise on neural circuits: an application to the respiratory pattern generator to investigate breathing variability.

    PubMed

    Yu, Haitao; Dhingra, Rishi R; Dick, Thomas E; Galán, Roberto F

    2017-01-01

    Neural activity generally displays irregular firing patterns even in circuits with apparently regular outputs, such as motor pattern generators, in which the output frequency fluctuates randomly around a mean value. This "circuit noise" is inherited from the random firing of single neurons, which emerges from stochastic ion channel gating (channel noise), spontaneous neurotransmitter release, and its diffusion and binding to synaptic receptors. Here we demonstrate how to expand conductance-based network models that are originally deterministic to include realistic, physiological noise, focusing on stochastic ion channel gating. We illustrate this procedure with a well-established conductance-based model of the respiratory pattern generator, which allows us to investigate how channel noise affects neural dynamics at the circuit level and, in particular, to understand the relationship between the respiratory pattern and its breath-to-breath variability. We show that as the channel number increases, the duration of inspiration and expiration varies, and so does the coefficient of variation of the breath-to-breath interval, which attains a minimum when the mean duration of expiration slightly exceeds that of inspiration. For small channel numbers, the variability of the expiratory phase dominates over that of the inspiratory phase, and vice versa for large channel numbers. Among the four different cell types in the respiratory pattern generator, pacemaker cells exhibit the highest sensitivity to channel noise. The model shows that suppressing input from the pons leads to longer inspiratory phases, a reduction in breathing frequency, and larger breath-to-breath variability, whereas enhanced input from the raphe nucleus increases breathing frequency without changing its pattern. A major source of noise in neuronal circuits is the "flickering" of ion currents passing through the neurons' membranes (channel noise), which cannot be suppressed experimentally. Computational simulations are therefore the best way to investigate the effects of this physiological noise by manipulating its level at will. We investigate the role of noise in the respiratory pattern generator and show that endogenous, breath-to-breath variability is tightly linked to the respiratory pattern. Copyright © 2017 the American Physiological Society.

  20. Integral Model of Noise of an Engine-Propeller Power Plant

    NASA Astrophysics Data System (ADS)

    Moshkov, P. A.; Samokhin, V. F.

    2018-03-01

    A semiempirical model is proposed for estimation of the noise levels produced by aircraft piston power plants in the far acoustic field, which takes account of the main sources of noise. The acoustic field is considered as a superposition of fields formed by the radiations from a propeller and a piston engine. For calculation estimation of the levels of tonal noise of the propeller, it is proposed that a semiempirical method developed by the authors earlier be used. To determine the levels of vortex propeller noise which is presumably dominant in the broad-band noise of tractor propellers, it is proposed that one analytical model of trailing-edge noise be used. An empirical model of noise is proposed for calculation of the acoustic characteristics of a piston engine. Good agreement is shown between calculated and experimental data on the noise of power plants with tractor propellers. The data have been derived in acoustic testing of light aircraft of the An-2, Yak-18T, MAI-223M, and F30 type under static conditions at the aviabase of the Moscow Aviation Institute. Lines of further research are formulated for improvement of this procedure and expansion of the field of its application.

  1. Integral Model of Noise of an Engine-Propeller Power Plant

    NASA Astrophysics Data System (ADS)

    Moshkov, P. A.; Samokhin, V. F.

    2018-05-01

    A semiempirical model is proposed for estimation of the noise levels produced by aircraft piston power plants in the far acoustic field, which takes account of the main sources of noise. The acoustic field is considered as a superposition of fields formed by the radiations from a propeller and a piston engine. For calculation estimation of the levels of tonal noise of the propeller, it is proposed that a semiempirical method developed by the authors earlier be used. To determine the levels of vortex propeller noise which is presumably dominant in the broad-band noise of tractor propellers, it is proposed that one analytical model of trailing-edge noise be used. An empirical model of noise is proposed for calculation of the acoustic characteristics of a piston engine. Good agreement is shown between calculated and experimental data on the noise of power plants with tractor propellers. The data have been derived in acoustic testing of light aircraft of the An-2, Yak-18T, MAI-223M, and F30 type under static conditions at the aviabase of the Moscow Aviation Institute. Lines of further research are formulated for improvement of this procedure and expansion of the field of its application.

  2. Active noise control: a review of the field.

    PubMed

    Gordon, R T; Vining, W D

    1992-11-01

    Active noise control (ANC) is the application of the principle of the superposition of waves to noise attenuation problems. Much progress has been made toward applying ANC to narrow-band, low-frequency noise in confined spaces. During this same period, the application of ANC to broad-band noise or noise in three-dimensional spaces has seen little progress because of the recent quantification of serious physical limitations, most importantly, noncausality, stability, spatial mismatch, and the infinite gain controller requirement. ANC employs superposition to induce destructive interference to affect the attenuation of noise. ANC was believed to utilize the mechanism of phase cancellation to achieve the desired attenuation. However, current literature points to other mechanisms that may be operating in ANC. Categories of ANC are one-dimensional field and duct noise, enclosed spaces and interior noise, noise in three-dimensional spaces, and personal hearing protection. Development of active noise control stems from potential advantages in cost, size, and effectiveness. There are two approaches to ANC. In the first, the original sound is processed and injected back into the sound field in antiphase. The second approach is to synthesize a cancelling waveform. ANC of turbulent flow in pipes and ducts is the largest area in the field. Much work into the actual mechanism involved and the causal versus noncausal aspects of system controllers has been done. Fan and propeller noise can be divided into two categories: noise generated directly as the blade passing tones and noise generated as a result of blade tip turbulence inducing vibration in structures. Three-dimensional spaces present a noise environment where physical limitations are magnified and the infinite gain controller requirement is confronted. Personal hearing protection has been shown to be best suited to the control of periodic, low-frequency noise.

  3. Examining nocturnal railway noise and aircraft noise in the field: sleep, psychomotor performance, and annoyance.

    PubMed

    Elmenhorst, Eva-Maria; Pennig, Sibylle; Rolny, Vinzent; Quehl, Julia; Mueller, Uwe; Maaß, Hartmut; Basner, Mathias

    2012-05-01

    Traffic noise is interfering during day- and nighttime causing distress and adverse physiological reactions in large parts of the population. Railway noise proved less annoying than aircraft noise in surveys which were the bases for a so called 5 dB railway bonus regarding noise protection in many European countries. The present field study investigated railway noise-induced awakenings during sleep, nighttime annoyance and the impact on performance the following day. Comparing these results with those from a field study on aircraft noise allowed for a ranking of traffic modes concerning physiological and psychological reactions. 33 participants (mean age 36.2 years ± 10.3 (SD); 22 females) living alongside railway tracks around Cologne/Bonn (Germany) were polysomnographically investigated. These data were pooled with data from a field study on aircraft noise (61 subjects) directly comparing the effects of railway and aircraft noise in one random subject effects logistic regression model. Annoyance was rated in the morning evaluating the previous night. Probability of sleep stage changes to wake/S1 from railway noise increased significantly from 6.5% at 35 dB(A) to 20.5% at 80 dB(A) LAFmax. Rise time of noise events had a significant impact on awakening probability. Nocturnal railway noise led to significantly higher awakening probabilities than aircraft noise, partly explained by the different rise times, whereas the order was inversed for annoyance. Freight train noise compared to passenger train noise proved to have the most impact on awakening probability. Nocturnal railway noise had no effect on psychomotor vigilance. Nocturnal freight train noise exposure in Germany was associated with increased awakening probabilities exceeding those for aircraft noise and contrasting the findings of many annoyance surveys and annoyance ratings of our study. During nighttime a bonus for railway noise seems not appropriate. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Limits on the prediction of helicopter rotor noise using thickness and loading sources: Validation of helicopter noise prediction techniques

    NASA Technical Reports Server (NTRS)

    Succi, G. P.

    1983-01-01

    The techniques of helicopter rotor noise prediction attempt to describe precisely the details of the noise field and remove the empiricisms and restrictions inherent in previous methods. These techniques require detailed inputs of the rotor geometry, operating conditions, and blade surface pressure distribution. The Farassat noise prediction techniques was studied, and high speed helicopter noise prediction using more detailed representations of the thickness and loading noise sources was investigated. These predictions were based on the measured blade surface pressures on an AH-1G rotor and compared to the measured sound field. Although refinements in the representation of the thickness and loading noise sources improve the calculation, there are still discrepancies between the measured and predicted sound field. Analysis of the blade surface pressure data indicates shocks on the blades, which are probably responsible for these discrepancies.

  5. Dexmedetomidine oromucosal gel for noise-associated acute anxiety and fear in dogs-a randomised, double-blind, placebo-controlled clinical study.

    PubMed

    Korpivaara, M; Laapas, K; Huhtinen, M; Schöning, B; Overall, K

    2017-04-08

    The aim of this randomised, double-blind, placebo-controlled, clinical-field study was to evaluate the effect of dexmedetomidine oromucosal gel at subsedative doses in alleviation of noise-associated acute anxiety and fear in dogs. On New Year's Eve, 182 dogs with a history of acute anxiety and fear associated with fireworks received treatment as needed up to five times: 89 dogs received dexmedetomidine and 93 dogs received placebo. For the primary efficacy variables, dog owners assessed the overall treatment effect as well as signs and extent of anxiety and fear. The overall treatment effect was statistically significant (P<0.0001). An excellent or good treatment effect was reported for a higher proportion of dogs treated with dexmedetomidine (64/89, 72 per cent) than those receiving placebo (34/93, 37 per cent). Additionally, dexmedetomidine-treated dogs expressed significantly (P<0.0314) fewer signs of fear and anxiety despite the noise of fireworks. No local tolerance or clinical safety concerns occurred during the study. This study demonstrated that oromucosal dexmedetomidine at subsedative doses alleviates noise-associated acute anxiety and fear in dogs. British Veterinary Association.

  6. Fresnel-region fields and antenna noise-temperature calculations for advanced microwave sounding units

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1982-01-01

    A transition from the antenna noise temperature formulation for extended noise sources in the far-field or Fraunhofer-region of an antenna to one of the intermediate near field or Fresnel-region is discussed. The effort is directed toward microwave antenna simulations and high-speed digital computer analysis of radiometric sounding units used to obtain water vapor and temperature profiles of the atmosphere. Fresnel-region fields are compared at various distances from the aperture. The antenna noise temperature contribution of an annular noise source is computed in the Fresnel-region (D squared/16 lambda) for a 13.2 cm diameter offset-paraboloid aperture at 60 GHz. The time-average Poynting vector is used to effect the computation.

  7. Noise and current-voltage characterization of complementary heterojunction field-effect transistor (CHFET) structures below 8 K

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J.; Fossum, Eric R.; Baier, Steven M.

    1992-01-01

    Noise and current-voltage characterization of complementary heterojunction field-effect transistor (CHFET) structures below 8 K are presented. It is shown that the CHFET exhibits normal transistor operation down to 6 K. Some of the details of the transistor operation, such as the gate-voltage dependence of the channel potential, are analyzed. The gate current is examined and is shown to be due to several mechanisms acting in parallel. These include field-emission and thermionic-field-emission, conduction through a temperature-activated resistance, and thermionic emission. The input referred noise for n-channel CHFETs is presented and discussed. The noise has the spectral dependence of 1/f noise, but does not exhibit the usual area dependence.

  8. Prediction of internal and external noise fields for blowdown wind tunnels.

    NASA Technical Reports Server (NTRS)

    Hosier, R. N.; Mayes, W. H.

    1972-01-01

    Empirical methods have been developed to estimate the test section noise levels and the outside noise radiation patterns of blowdown wind tunnels. Included are considerations of noise generation by control valves, burners, turbulent boundary layers, and exhaust jets as appropriate. Sample test section and radiation field noise estimates are presented. The external estimates are noted to be in good agreement with the limited amount of available measurements.

  9. Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation

    NASA Astrophysics Data System (ADS)

    Tong, S.; Alessio, A. M.; Kinahan, P. E.

    2010-03-01

    The addition of accurate system modeling in PET image reconstruction results in images with distinct noise texture and characteristics. In particular, the incorporation of point spread functions (PSF) into the system model has been shown to visually reduce image noise, but the noise properties have not been thoroughly studied. This work offers a systematic evaluation of noise and signal properties in different combinations of reconstruction methods and parameters. We evaluate two fully 3D PET reconstruction algorithms: (1) OSEM with exact scanner line of response modeled (OSEM+LOR), (2) OSEM with line of response and a measured point spread function incorporated (OSEM+LOR+PSF), in combination with the effects of four post-reconstruction filtering parameters and 1-10 iterations, representing a range of clinically acceptable settings. We used a modified NEMA image quality (IQ) phantom, which was filled with 68Ge and consisted of six hot spheres of different sizes with a target/background ratio of 4:1. The phantom was scanned 50 times in 3D mode on a clinical system to provide independent noise realizations. Data were reconstructed with OSEM+LOR and OSEM+LOR+PSF using different reconstruction parameters, and our implementations of the algorithms match the vendor's product algorithms. With access to multiple realizations, background noise characteristics were quantified with four metrics. Image roughness and the standard deviation image measured the pixel-to-pixel variation; background variability and ensemble noise quantified the region-to-region variation. Image roughness is the image noise perceived when viewing an individual image. At matched iterations, the addition of PSF leads to images with less noise defined as image roughness (reduced by 35% for unfiltered data) and as the standard deviation image, while it has no effect on background variability or ensemble noise. In terms of signal to noise performance, PSF-based reconstruction has a 7% improvement in contrast recovery at matched ensemble noise levels and 20% improvement of quantitation SNR in unfiltered data. In addition, the relations between different metrics are studied. A linear correlation is observed between background variability and ensemble noise for all different combinations of reconstruction methods and parameters, suggesting that background variability is a reasonable surrogate for ensemble noise when multiple realizations of scans are not available.

  10. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2013-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper (Brown, C.A., "Jet-Surface Interaction Test: Far-Field Noise Results," ASME paper GT2012-69639, June 2012.) discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  11. Evaluation of a Variable-Impedance Ceramic Matrix Composite Acoustic Liner

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2014-01-01

    As a result of significant progress in the reduction of fan and jet noise, there is growing concern regarding core noise. One method for achieving core noise reduction is via the use of acoustic liners. However, these liners must be constructed with materials suitable for high temperature environments and should be designed for optimum absorption of the broadband core noise spectrum. This paper presents results of tests conducted in the NASA Langley Liner Technology Facility to evaluate a variable-impedance ceramic matrix composite acoustic liner that offers the potential to achieve each of these goals. One concern is the porosity of the ceramic matrix composite material, and whether this might affect the predictability of liners constructed with this material. Comparisons between two variable-depth liners, one constructed with ceramic matrix composite material and the other constructed via stereolithography, are used to demonstrate this material porosity is not a concern. Also, some interesting observations are noted regarding the orientation of variable-depth liners. Finally, two propagation codes are validated via comparisons of predicted and measured acoustic pressure profiles for a variable-depth liner.

  12. A review on equivalent magnetic noise of magnetoelectric laminate sensors

    PubMed Central

    Wang, Y. J.; Gao, J. Q.; Li, M. H.; Shen, Y.; Hasanyan, D.; Li, J. F.; Viehland, D.

    2014-01-01

    Since the turn of the millennium, multi-phase magnetoelectric (ME) composites have been subject to attention and development, and giant ME effects have been found in laminate composites of piezoelectric and magnetostrictive layers. From an application perspective, the practical usefulness of a magnetic sensor is determined not only by the output signal of the sensor in response to an incident magnetic field, but also by the equivalent magnetic noise generated in the absence of such an incident field. Here, a short review of developments in equivalent magnetic noise reduction for ME sensors is presented. This review focuses on internal noise, the analysis of the noise contributions and a summary of noise reduction strategies. Furthermore, external vibration noise is also discussed. The review concludes with an outlook on future possibilities and scientific challenges in the field of ME magnetic sensors. PMID:24421380

  13. A Novel Approach for Reducing Rotor Tip-Clearance Induced Noise in Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Li, Fei; Choudhari, Meelan

    2001-01-01

    Rotor tip-clearance induced noise, both in the form of rotor self noise and rotor-stator interaction noise , constitutes a significant component of total fan noise. Innovative yet cost effective techniques to suppress rotor-generated noise are, therefore, of foremost importance for improving the noise signature of turbofan engines. To that end, the feasibility of a passive porous treatment strategy to positively modify the tip-clearance flow field is addressed. The present study is focused on accurate viscous flow calculations of the baseline and the treated rotor flow fields. Detailed comparison between the computed baseline solution and experimental measurements shows excellent agreement. Tip-vortex structure, trajectory, strength, and other relevant aerodynamic quantities are extracted from the computed database. Extensive comparison between the untreated and treated tip-clearance flow fields is performed. The effectiveness of the porous treatment for altering the rotor-tip vortex flow field in general and reducing the intensity of the tip vortex, in particular, is demonstrated. In addition, the simulated flow field for the treated tip clearly shows that substantial reduction in the intensity of both the shear layer roll-up and boundary layer separation on the wall is achieved.

  14. Attitude Estimation for Large Field-of-View Sensors

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Crassidis, John L.; Markley, F. Landis

    2005-01-01

    The QUEST measurement noise model for unit vector observations has been widely used in spacecraft attitude estimation for more than twenty years. It was derived under the approximation that the noise lies in the tangent plane of the respective unit vector and is axially symmetrically distributed about the vector. For large field-of-view sensors, however, this approximation may be poor, especially when the measurement falls near the edge of the field of view. In this paper a new measurement noise model is derived based on a realistic noise distribution in the focal-plane of a large field-of-view sensor, which shows significant differences from the QUEST model for unit vector observations far away from the sensor boresight. An extended Kalman filter for attitude estimation is then designed with the new measurement noise model. Simulation results show that with the new measurement model the extended Kalman filter achieves better estimation performance using large field-of-view sensor observations.

  15. Biological sources of inflexibility in brain and behavior with aging and neurodegenerative diseases

    PubMed Central

    Hong, S. Lee; Rebec, George V.

    2012-01-01

    Almost unequivocally, aging and neurodegeneration lead to deficits in neural information processing. These declines are marked by increased neural noise that is associated with increased variability or inconsistency in behavioral patterns. While it is often viewed that these problems arise from dysregulation of dopamine (DA), a monoamine modulator, glutamate (GLU), an excitatory amino acid that interacts with DA, also plays a role in determining the level of neural noise. We review literature demonstrating that neural noise is highest at both high and low levels of DA and GLU, allowing their interaction to form a many-to-one solution map for neural noise modulation. With aging and neurodegeneration, the range over which DA and GLU can be modulated is decreased leading to inflexibility in brain activity and behavior. As the capacity to modulate neural noise is restricted, the ability to shift noise from one brain region to another is reduced, leading to greater uniformity in signal-to-noise ratios across the entire brain. A negative consequence at the level of behavior is inflexibility that reduces the ability to: (1) switch from one behavior to another; and (2) stabilize a behavioral pattern against external perturbations. In this paper, we develop a theoretical framework where inflexibility across brain and behavior, rather than inconsistency and variability is the more important problem in aging and neurodegeneration. This theoretical framework of inflexibility in aging and neurodegeneration leads to the hypotheses that: (1) dysfunction in either or both of the DA and GLU systems restricts the ability to modulate neural noise; and (2) levels of neural noise and variability in brain activation will be dedifferentiated and more evenly distributed across the brain; and (3) changes in neural noise and behavioral variability in response to different task demands and changes in the environment will be reduced. PMID:23226117

  16. Direct estimation and correction of bias from temporally variable non-stationary noise in a channelized Hotelling model observer.

    PubMed

    Fetterly, Kenneth A; Favazza, Christopher P

    2016-08-07

    Channelized Hotelling model observer (CHO) methods were developed to assess performance of an x-ray angiography system. The analytical methods included correction for known bias error due to finite sampling. Detectability indices ([Formula: see text]) corresponding to disk-shaped objects with diameters in the range 0.5-4 mm were calculated. Application of the CHO for variable detector target dose (DTD) in the range 6-240 nGy frame(-1) resulted in [Formula: see text] estimates which were as much as 2.9×  greater than expected of a quantum limited system. Over-estimation of [Formula: see text] was presumed to be a result of bias error due to temporally variable non-stationary noise. Statistical theory which allows for independent contributions of 'signal' from a test object (o) and temporally variable non-stationary noise (ns) was developed. The theory demonstrates that the biased [Formula: see text] is the sum of the detectability indices associated with the test object [Formula: see text] and non-stationary noise ([Formula: see text]). Given the nature of the imaging system and the experimental methods, [Formula: see text] cannot be directly determined independent of [Formula: see text]. However, methods to estimate [Formula: see text] independent of [Formula: see text] were developed. In accordance with the theory, [Formula: see text] was subtracted from experimental estimates of [Formula: see text], providing an unbiased estimate of [Formula: see text]. Estimates of [Formula: see text] exhibited trends consistent with expectations of an angiography system that is quantum limited for high DTD and compromised by detector electronic readout noise for low DTD conditions. Results suggest that these methods provide [Formula: see text] estimates which are accurate and precise for [Formula: see text]. Further, results demonstrated that the source of bias was detector electronic readout noise. In summary, this work presents theory and methods to test for the presence of bias in Hotelling model observers due to temporally variable non-stationary noise and correct this bias when the temporally variable non-stationary noise is independent and additive with respect to the test object signal.

  17. Canard and mixed mode oscillations in an excitable glow discharge plasma in the presence of inhomogeneous magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Pankaj Kumar, E-mail: pankaj.shaw@saha.ac.in; Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in; Nurujjaman, Md., E-mail: jaman-nonlinear@yahoo.co.in

    2015-12-15

    We report on the experimental observation of canard orbit and mixed mode oscillations (MMOs) in an excitable glow discharge plasma induced by an external magnetic field perturbation using a bar magnet. At a small value of magnetic field, small amplitude quasiperiodic oscillations were excited, and with the increase in the magnetic field, large amplitude oscillations were excited. Analyzing the experimental results, it seems that the magnetic field could be playing the role of noise for such nonlinear phenomena. It is observed that the noise level increases with the increase in magnetic field strength. The experimental results have also been corroboratedmore » by a numerical simulation using a FitzHugh-Nagumo like macroscopic model derived from the basic plasma equations and phenomenology, where the noise has been included to represent the internal plasma noise. This macroscopic model shows MMO in the vicinity of the canard point when an external noise is added.« less

  18. Near-field noise of a single-rotation propfan at an angle of attack

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Envia, E.; Clark, B. J.; Groeneweg, J. F.

    1990-01-01

    The near field noise characteristics of a propfan operating at an angle of attack are examined utilizing the unsteady pressure field obtained from a 3-D Euler simulation of the propfan flowfield. The near field noise is calculated employing three different procedures: a direct computation method in which the noise field is extracted directly from the Euler solution, and two acoustic-analogy-based frequency domain methods which utilize the computed unsteady pressure distribution on the propfan blades as the source term. The inflow angles considered are -0.4, 1.6, and 4.6 degrees. The results of the direct computation method and one of the frequency domain methods show qualitative agreement with measurements. They show that an increase in the inflow angle is accompanied by an increase in the sound pressure level at the outboard wing boom locations and a decrease in the sound pressure level at the (inboard) fuselage locations. The trends in the computed azimuthal directivities of the noise field also conform to the measured and expected results.

  19. Free Field Word recognition test in the presence of noise in normal hearing adults.

    PubMed

    Almeida, Gleide Viviani Maciel; Ribas, Angela; Calleros, Jorge

    In ideal listening situations, subjects with normal hearing can easily understand speech, as can many subjects who have a hearing loss. To present the validation of the Word Recognition Test in a Free Field in the Presence of Noise in normal-hearing adults. Sample consisted of 100 healthy adults over 18 years of age with normal hearing. After pure tone audiometry, a speech recognition test was applied in free field condition with monosyllables and disyllables, with standardized material in three listening situations: optimal listening condition (no noise), with a signal to noise ratio of 0dB and a signal to noise ratio of -10dB. For these tests, an environment in calibrated free field was arranged where speech was presented to the subject being tested from two speakers located at 45°, and noise from a third speaker, located at 180°. All participants had speech audiometry results in the free field between 88% and 100% in the three listening situations. Word Recognition Test in Free Field in the Presence of Noise proved to be easy to be organized and applied. The results of the test validation suggest that individuals with normal hearing should get between 88% and 100% of the stimuli correct. The test can be an important tool in measuring noise interference on the speech perception abilities. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, J.D.; Woan, G.

    Data from the Laser Interferometer Space Antenna (LISA) is expected to be dominated by frequency noise from its lasers. However, the noise from any one laser appears more than once in the data and there are combinations of the data that are insensitive to this noise. These combinations, called time delay interferometry (TDI) variables, have received careful study and point the way to how LISA data analysis may be performed. Here we approach the problem from the direction of statistical inference, and show that these variables are a direct consequence of a principal component analysis of the problem. We presentmore » a formal analysis for a simple LISA model and show that there are eigenvectors of the noise covariance matrix that do not depend on laser frequency noise. Importantly, these orthogonal basis vectors correspond to linear combinations of TDI variables. As a result we show that the likelihood function for source parameters using LISA data can be based on TDI combinations of the data without loss of information.« less

  1. Influence of Correspondence Noise and Spatial Scaling on the Upper Limit for Spatial Displacement in Fully-Coherent Random-Dot Kinematogram Stimuli

    PubMed Central

    Tripathy, Srimant P.; Shafiullah, Syed N.; Cox, Michael J.

    2012-01-01

    Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms [1]. In the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest displacement that can be detected. PMID:23056172

  2. Influence of correspondence noise and spatial scaling on the upper limit for spatial displacement in fully-coherent random-dot kinematogram stimuli.

    PubMed

    Tripathy, Srimant P; Shafiullah, Syed N; Cox, Michael J

    2012-01-01

    Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms. In the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest displacement that can be detected.

  3. On Theoretical Broadband Shock-Associated Noise Near-Field Cross-Spectra

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    The cross-spectral acoustic analogy is used to predict auto-spectra and cross-spectra of broadband shock-associated noise in the near-field and far-field from a range of heated and unheated supersonic off-design jets. A single equivalent source model is proposed for the near-field, mid-field, and far-field terms, that contains flow-field statistics of the shock wave shear layer interactions. Flow-field statistics are modeled based upon experimental observation and computational fluid dynamics solutions. An axisymmetric assumption is used to reduce the model to a closed-form equation involving a double summation over the equivalent source at each shock wave shear layer interaction. Predictions are compared with a wide variety of measurements at numerous jet Mach numbers and temperature ratios from multiple facilities. Auto-spectral predictions of broadband shock-associated noise in the near-field and far-field capture trends observed in measurement and other prediction theories. Predictions of spatial coherence of broadband shock-associated noise accurately capture the peak coherent intensity, frequency, and spectral width.

  4. Magnetic field induced random pulse trains of magnetic and acoustic noises in martensitic single-crystal Ni2MnGa

    NASA Astrophysics Data System (ADS)

    Daróczi, Lajos; Piros, Eszter; Tóth, László Z.; Beke, Dezső L.

    2017-07-01

    Jerky magnetic and acoustic noises were evoked in a single variant martensitic Ni2MnGa single crystal (produced by uniaxial compression) by application of an external magnetic field along the hard magnetization direction. It is shown that after reaching the detwinning threshold, spontaneous reorientation of martensite variants (twins) leads not only to acoustic emission but magnetic two-directional noises as well. At small magnetic fields, below the above threshold, unidirectional magnetic emission is also observed and attributed to a Barkhausen-type noise due to magnetic domain wall motions during magnetization along the hard direction. After the above first run, in cycles of decreasing and increasing magnetic field, at low-field values, weak, unidirectional Barkhausen noise is detected and attributed to the discontinuous motion of domain walls during magnetization along the easy magnetization direction. The magnetic noise is also measured by constraining the sample in the same initial variant state along the hard direction and, after the unidirectional noise (as obtained also in the first run), a two-directional noise package is developed and it is attributed to domain rotations. From the statistical analysis of the above noises, the critical exponents, characterizing the power-law behavior, are calculated and compared with each other and with the literature data. Time correlations within the magnetic as well as acoustic signals lead to a common scaled power function (with β =-1.25 exponent) for both types of signals.

  5. Mechanical Chevrons and Fluidics for Advanced Military Aircraft Noise Reduction

    DTIC Science & Technology

    2011-03-01

    at or near the nozzle lip. Therefore, for the problem at hand, the simulations will need to accurately capture shock waves , unsteady large-scale...simulations could accurately capture the flow field and near-field noise from representative jet engine nozzles and indeed this was a go/no-go...mixing noise. The first two types of noise are related to the shock waves that are present in the high-speed jet flow. While the mixing noise

  6. Noise in gene expression is coupled to growth rate.

    PubMed

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-12-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. © 2015 Keren et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Noise in gene expression is coupled to growth rate

    PubMed Central

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-01-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle–regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006

  8. Practical limitation for continuous-variable quantum cryptography using coherent States.

    PubMed

    Namiki, Ryo; Hirano, Takuya

    2004-03-19

    In this Letter, first, we investigate the security of a continuous-variable quantum cryptographic scheme with a postselection process against individual beam splitting attack. It is shown that the scheme can be secure in the presence of the transmission loss owing to the postselection. Second, we provide a loss limit for continuous-variable quantum cryptography using coherent states taking into account excess Gaussian noise on quadrature distribution. Since the excess noise is reduced by the loss mechanism, a realistic intercept-resend attack which makes a Gaussian mixture of coherent states gives a loss limit in the presence of any excess Gaussian noise.

  9. High-frequency noise characterization of graphene field effect transistors on SiC substrates

    NASA Astrophysics Data System (ADS)

    Yu, C.; He, Z. Z.; Song, X. B.; Liu, Q. B.; Dun, S. B.; Han, T. T.; Wang, J. J.; Zhou, C. J.; Guo, J. C.; Lv, Y. J.; Cai, S. J.; Feng, Z. H.

    2017-07-01

    Considering its high carrier mobility and high saturation velocity, a low-noise amplifier is thought of as being the most attractive analogue application of graphene field-effect transistors. The noise performance of graphene field-effect transistors at frequencies in the K-band remains unknown. In this work, the noise parameters of a graphene transistor are measured from 10 to 26 GHz and noise models are built with the data. The extrinsic minimum noise figure for a graphene transistor reached 1.5 dB, and the intrinsic minimum noise figure was as low as 0.8 dB at a frequency of 10 GHz, which were comparable with the results from tests on Si CMOS and started to approach those for GaAs and InP transistors. Considering the short development time, the current results are a significant step forward for graphene transistors and show their application potential in high-frequency electronics.

  10. New Computational Methods for the Prediction and Analysis of Helicopter Noise

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

    1996-01-01

    This paper describes several new methods to predict and analyze rotorcraft noise. These methods are: 1) a combined computational fluid dynamics and Kirchhoff scheme for far-field noise predictions, 2) parallel computer implementation of the Kirchhoff integrations, 3) audio and visual rendering of the computed acoustic predictions over large far-field regions, and 4) acoustic tracebacks to the Kirchhoff surface to pinpoint the sources of the rotor noise. The paper describes each method and presents sample results for three test cases. The first case consists of in-plane high-speed impulsive noise and the other two cases show idealized parallel and oblique blade-vortex interactions. The computed results show good agreement with available experimental data but convey much more information about the far-field noise propagation. When taken together, these new analysis methods exploit the power of new computer technologies and offer the potential to significantly improve our prediction and understanding of rotorcraft noise.

  11. Reducing flicker noise in chemical vapor deposition graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Arnold, Heather N.; Sangwan, Vinod K.; Schmucker, Scott W.; Cress, Cory D.; Luck, Kyle A.; Friedman, Adam L.; Robinson, Jeremy T.; Marks, Tobin J.; Hersam, Mark C.

    2016-02-01

    Single-layer graphene derived from chemical vapor deposition (CVD) holds promise for scalable radio frequency (RF) electronic applications. However, prevalent low-frequency flicker noise (1/f noise) in CVD graphene field-effect transistors is often up-converted to higher frequencies, thus limiting RF device performance. Here, we achieve an order of magnitude reduction in 1/f noise in field-effect transistors based on CVD graphene transferred onto silicon oxide substrates by utilizing a processing protocol that avoids aqueous chemistry after graphene transfer. Correspondingly, the normalized noise spectral density (10-7-10-8 μm2 Hz-1) and noise amplitude (4 × 10-8-10-7) in these devices are comparable to those of exfoliated and suspended graphene. We attribute the reduction in 1/f noise to a decrease in the contribution of fluctuations in the scattering cross-sections of carriers arising from dynamic redistribution of interfacial disorder.

  12. New supervised learning theory applied to cerebellar modeling for suppression of variability of saccade end points.

    PubMed

    Fujita, Masahiko

    2013-06-01

    A new supervised learning theory is proposed for a hierarchical neural network with a single hidden layer of threshold units, which can approximate any continuous transformation, and applied to a cerebellar function to suppress the end-point variability of saccades. In motor systems, feedback control can reduce noise effects if the noise is added in a pathway from a motor center to a peripheral effector; however, it cannot reduce noise effects if the noise is generated in the motor center itself: a new control scheme is necessary for such noise. The cerebellar cortex is well known as a supervised learning system, and a novel theory of cerebellar cortical function developed in this study can explain the capability of the cerebellum to feedforwardly reduce noise effects, such as end-point variability of saccades. This theory assumes that a Golgi-granule cell system can encode the strength of a mossy fiber input as the state of neuronal activity of parallel fibers. By combining these parallel fiber signals with appropriate connection weights to produce a Purkinje cell output, an arbitrary continuous input-output relationship can be obtained. By incorporating such flexible computation and learning ability in a process of saccadic gain adaptation, a new control scheme in which the cerebellar cortex feedforwardly suppresses the end-point variability when it detects a variation in saccadic commands can be devised. Computer simulation confirmed the efficiency of such learning and showed a reduction in the variability of saccadic end points, similar to results obtained from experimental data.

  13. A parametric study of transonic blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Lyrintzis, A. S.

    1991-01-01

    Several parameters of transonic blade-vortex interactions (BVI) are being studied and some ideas for noise reduction are introduced and tested using numerical simulation. The model used is the two-dimensional high frequency transonic small disturbance equation with regions of distributed vorticity (VTRAN2 code). The far-field noise signals are obtained by using the Kirchhoff method with extends the numerical 2-D near-field aerodynamic results to the linear acoustic 3-D far-field. The BVI noise mechanisms are explained and the effects of vortex type and strength, and angle of attack are studied. Particularly, airfoil shape modifications which lead to noise reduction are investigated. The results presented are expected to be helpful for better understanding of the nature of the BVI noise and better blade design.

  14. Probing Surface Electric Field Noise with a Single Ion

    DTIC Science & Technology

    2013-07-30

    potentials is housed inside a Faraday cage providing more than 40 dB of attenuation for electromagnetic fields in the range of frequencies between 200...and measuring the ion quantum state [16]. Thus, by measuring the effect of electric field noise on the motional quantum state of the ion, one can probe...understand these effects . In summary, we have probed the electric field noise near an aluminum-copper surface at room temperature using a single trapped ion

  15. Characterizing Variability in Long Period Horizontal Tilt Noise Through Coherence Analysis

    NASA Astrophysics Data System (ADS)

    Rohde, M. D.; Ringler, A. T.; Hutt, C. R.; Wilson, D.; Holland, A. A.

    2016-12-01

    Tilt induced horizontal noise fundamentally limits a wide variety of seismological studies. This noise source is not well characterized or understood and the spatial variability has yet to be well constrained. Long-period (i.e., greater than 100 seconds period) horizontal seismic noise is generally known to be of greater magnitude than long-period vertical seismic noise due to tilt noise. As a result, many studies only make use of the vertical seismic wavefield as opposed to all three axes. The main source of long-period horizontal seismic noise is hypothesized to be tilt due to atmospheric pressure variation. Reducing horizontal tilt noise could lead to improved resolution of torsional earth modes and other long-period horizontal seismic signals that are often dominated by tilt noise, as well as better construction of seismic isolation systems for sensitive scientific experiments. We looked at a number of small aperture array configurations. For each array we installed eight Streckeisen STS-2 broadband seismometers in the Albuquerque Seismological Laboratory (ASL) underground vault. The data from these array configurations was used to characterize the long period horizontal tilt noise over a spatially small scale. Sensors were installed approximately 1 to 10 meters apart depending on the array configuration. Coherence as a function of frequency was calculated between sensors, of which we examine the frequency band between 10 and 500 seconds. We observed complexity in the pair-wise coherence with respect to frequency, seismometer axis, and time, even for spatially close sensors. We present some possible explanations for the large variability in our coherence observations and demonstrate how these results can be applied to find potentially low horizontal noise locations over small spatial scales, such as in stations with multiple co-located sensors within the Global Seismographic Network.

  16. Magnetic field enhancement of generation-recombination and shot noise in organic light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djidjou, T. K.; Basel, Tek; Rogachev, A.

    We have studied the effect of magnetic field on noise in series of 2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene-based organic light emitting diodes with dominant hole injection, dominant electron injection, and balanced electron and hole injection. The noise spectra of the balanced devices revealed the generation-recombination (g-r) noise term, which we associated with bimolecular electron-hole recombination. The presence of the g-r noise term is correlated with the strong organic magnetoresistance (up to 25%) observed in the balanced devices. The noise spectra also have the shot noise contribution with the Fano factor 0.25–0.4. We found that time constant of the g-r term decreases and the magnitudemore » of shot noise increases when magnetic field is applied. This behavior can be consistently explained within the polaron-polaron model of organic magnetoresistance. We have not found any evidence that the magnetoresistance in studied devices is affected by traps.« less

  17. Spectral filtering of gradient for l2-norm frequency-domain elastic waveform inversion

    NASA Astrophysics Data System (ADS)

    Oh, Ju-Won; Min, Dong-Joo

    2013-05-01

    To enhance the robustness of the l2-norm elastic full-waveform inversion (FWI), we propose a denoise function that is incorporated into single-frequency gradients. Because field data are noisy and modelled data are noise-free, the denoise function is designed based on the ratio of modelled data to field data summed over shots and receivers. We first take the sums of the modelled data and field data over shots, then take the sums of the absolute values of the resultant modelled data and field data over the receivers. Due to the monochromatic property of wavefields at each frequency, signals in both modelled and field data tend to be cancelled out or maintained, whereas certain types of noise, particularly random noise, can be amplified in field data. As a result, the spectral distribution of the denoise function is inversely proportional to the ratio of noise to signal at each frequency, which helps prevent the noise-dominant gradients from contributing to model parameter updates. Numerical examples show that the spectral distribution of the denoise function resembles a frequency filter that is determined by the spectrum of the signal-to-noise (S/N) ratio during the inversion process, with little human intervention. The denoise function is applied to the elastic FWI of synthetic data, with three types of random noise generated by the modified version of the Marmousi-2 model: white, low-frequency and high-frequency random noises. Based on the spectrum of S/N ratios at each frequency, the denoise function mainly suppresses noise-dominant single-frequency gradients, which improves the inversion results at the cost of spatial resolution.

  18. Large-Eddy Simulations of Noise Generation in Supersonic Jets at Realistic Engine Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Junhui; Corrigan, Andrew; Kailasanath, K.; Taylor, Brian

    2015-11-01

    Large-eddy simulations (LES) have been carried out to investigate the noise generation in highly heated supersonic jets at temperatures similar to those observed in high-performance jet engine exhausts. It is found that the exhaust temperature of high-performance jet engines can range from 1000K at an intermediate power to above 2000K at a maximum afterburning power. In low-temperature jets, the effects of the variation of the specific heat ratio as well as the radial temperature profile near the nozzle exit are small and are ignored, but it is not clear whether those effects can be also ignored in highly heated jets. The impact of the variation of the specific heat ratio is assessed by comparing LES results using a variable specific heat ratio with those using a constant specific heat ratio. The impact on both the flow field and the noise distributions are investigated. Because the total temperature near the nozzle wall can be substantially lower than the nozzle total temperature either due to the heating loss through the nozzle wall or due to the cooling applied near the wall, this lower wall temperature may impact the temperature in the shear layer, and thus impact the noise generation. The impact of the radial temperature profile on the jet noise generation is investigated by comparing results of lower nozzle wall temperatures with those of the adiabatic wall condition.

  19. Quantum noise in the mirror-field system: A field theoretic approach

    NASA Astrophysics Data System (ADS)

    Hsiang, Jen-Tsung; Wu, Tai-Hung; Lee, Da-Shin; King, Sun-Kun; Wu, Chun-Hsien

    2013-02-01

    We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror.

  20. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2017-04-01

    In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference Williams PD, Howe NJ, Gregory JM, Smith RS, and Joshi MM (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, 29, 8763-8781. http://dx.doi.org/10.1175/JCLI-D-15-0746.1

  1. Vehicular traffic noise prediction using soft computing approach.

    PubMed

    Singh, Daljeet; Nigam, S P; Agrawal, V P; Kumar, Maneek

    2016-12-01

    A new approach for the development of vehicular traffic noise prediction models is presented. Four different soft computing methods, namely, Generalized Linear Model, Decision Trees, Random Forests and Neural Networks, have been used to develop models to predict the hourly equivalent continuous sound pressure level, Leq, at different locations in the Patiala city in India. The input variables include the traffic volume per hour, percentage of heavy vehicles and average speed of vehicles. The performance of the four models is compared on the basis of performance criteria of coefficient of determination, mean square error and accuracy. 10-fold cross validation is done to check the stability of the Random Forest model, which gave the best results. A t-test is performed to check the fit of the model with the field data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Passive bottom reflection-loss estimation using ship noise and a vertical line array.

    PubMed

    Muzi, Lanfranco; Siderius, Martin; Verlinden, Christopher M

    2017-06-01

    An existing technique for passive bottom-loss estimation from natural marine surface noise (generated by waves and wind) is adapted to use noise generated by ships. The original approach-based on beamforming of the noise field recorded by a vertical line array of hydrophones-is retained; however, additional processing is needed in order for the field generated by a passing ship to show features that are similar to those of the natural surface-noise field. A necessary requisite is that the ship position, relative to the array, varies over as wide a range of steering angles as possible, ideally passing directly over the array to ensure coverage of the steepest angles. The methodology is illustrated through simulation and applied to data from a field experiment conducted offshore of San Diego, CA in 2009.

  3. Measuring Variability in the Presence of Noise

    NASA Astrophysics Data System (ADS)

    Welsh, W. F.

    Quantitative measurements of a variable signal in the presence of noise requires very careful attention to subtle affects which can easily bias the measurements. This is not limited to the low-count rate regime, nor is the bias error necessarily small. In this talk I will mention some of the dangers in applying standard techniques which are appropriate for high signal to noise data but fail in the cases where the S/N is low. I will discuss methods for correcting the bias in the these cases, both for periodic and non-periodic variability, and will introduce the concept of the ``filtered de-biased RMS''. I will also illustrate some common abuses of power spectrum interpretation. All of these points will be illustrated with examples from recent work on CV and AGN variability.

  4. Current crowding mediated large contact noise in graphene field-effect transistors

    PubMed Central

    Karnatak, Paritosh; Sai, T. Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam

    2016-01-01

    The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene–metal interface or the contact noise, on the performance of graphene field-effect transistors, can be as adverse as the contact resistance itself, but remains largely unexplored. Here we have investigated the contact noise in graphene field-effect transistors of varying device geometry and contact configuration, with carrier mobility ranging from 5,000 to 80,000 cm2 V−1 s−1. Our phenomenological model for contact noise because of current crowding in purely two-dimensional conductors confirms that the contacts dominate the measured resistance noise in all graphene field-effect transistors in the two-probe or invasive four-probe configurations, and surprisingly, also in nearly noninvasive four-probe (Hall bar) configuration in the high-mobility devices. The microscopic origin of contact noise is directly linked to the fluctuating electrostatic environment of the metal–channel interface, which could be generic to two-dimensional material-based electronic devices. PMID:27929087

  5. Current crowding mediated large contact noise in graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Karnatak, Paritosh; Sai, T. Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam

    2016-12-01

    The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene-metal interface or the contact noise, on the performance of graphene field-effect transistors, can be as adverse as the contact resistance itself, but remains largely unexplored. Here we have investigated the contact noise in graphene field-effect transistors of varying device geometry and contact configuration, with carrier mobility ranging from 5,000 to 80,000 cm2 V-1 s-1. Our phenomenological model for contact noise because of current crowding in purely two-dimensional conductors confirms that the contacts dominate the measured resistance noise in all graphene field-effect transistors in the two-probe or invasive four-probe configurations, and surprisingly, also in nearly noninvasive four-probe (Hall bar) configuration in the high-mobility devices. The microscopic origin of contact noise is directly linked to the fluctuating electrostatic environment of the metal-channel interface, which could be generic to two-dimensional material-based electronic devices.

  6. Internal additive noise effects in stochastic resonance using organic field effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yoshiharu; Asakawa, Naoki; Matsubara, Kiyohiko

    Stochastic resonance phenomenon was observed in organic field effect transistor using poly(3-hexylthiophene), which enhances performance of signal transmission with application of noise. The enhancement of correlation coefficient between the input and output signals was low, and the variation of correlation coefficient was not remarkable with respect to the intensity of external noise, which was due to the existence of internal additive noise following the nonlinear threshold response. In other words, internal additive noise plays a positive role on the capability of approximately constant signal transmission regardless of noise intensity, which can be said “homeostatic” behavior or “noise robustness” against externalmore » noise. Furthermore, internal additive noise causes emergence of the stochastic resonance effect even on the threshold unit without internal additive noise on which the correlation coefficient usually decreases monotonically.« less

  7. The influence of liquid-gas velocity ratio on the noise of the cooling tower

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Liu, Xuanzuo; Chen, Chi; Zhao, Zhouli; Song, Jinchun

    2018-05-01

    The noise from the cooling tower has a great influence on psychological performance of human beings. The cooling tower noise mainly consists of fan noise, falling water noise and mechanical noise. This thesis used DES turbulence model with FH-W model to simulate the flow and sound pressure field in cooling tower based on CFD software FLUENT and analyzed the influence of different kinds noise, which affected by diverse factors, on the cooling tower noise. It can be concluded that the addition of cooling water can reduce the turbulence and vortex noise of the rotor fluid field in the cooling tower at some extent, but increase the impact noise of the liquid-gas two phase. In general, the cooling tower noise decreases with the velocity ratio of liquid to gas increasing, and reaches the lowest when the velocity ratio of liquid to gas is close to l.

  8. Eavesdropping on insects hidden in soil and interior structures of plants.

    PubMed

    Mankin, R W; Brandhorst-Hubbard, J; Flanders, K L; Zhang, M; Crocker, R L; Lapointe, S L; McCoy, C W; Fisher, J R; Weaver, D K

    2000-08-01

    Accelerometer, electret microphone, and piezoelectric disk acoustic systems were evaluated for their potential to detect hidden insect infestations in soil and interior structures of plants. Coleopteran grubs (the scarabaeids Phyllophaga spp. and Cyclocephala spp.) and the curculionids Diaprepes abbreviatus (L.) and Otiorhynchus sulcatus (F.) weighing 50-300 mg were detected easily in the laboratory and in the field except under extremely windy or noisy conditions. Cephus cinctus Norton (Hymenoptera: Cephidae) larvae weighing 1-12 mg could be detected in small pots of wheat in the laboratory by taking moderate precautions to eliminate background noise. Insect sounds could be distinguished from background noises by differences in frequency and temporal patterns, but insects of similarly sized species could not be distinguished easily from each other. Insect activity was highly variable among individuals and species, although D. abbreviatus grubs tended to be more active than those of O. sulcatus. Tests were done to compare acoustically predicted infestations with the contents of soil samples taken at recording sites. Under laboratory or ideal field conditions, active insects within approximately 30 cm were identified with nearly 100% reliability. In field tests under adverse conditions, the reliability decreased to approximately 75%. These results indicate that acoustic systems with vibration sensors have considerable potential as activity monitors in the laboratory and as field tools for rapid, nondestructive scouting and mapping of soil insect populations.

  9. NASA powered lift facility internally generated noise and its transmission to the acoustic far field

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1988-01-01

    Noise tests of NASA Lewis Research Center's Powered Lift Facility (PLF) were performed to determine the frequency content of the internally generated noise that reaches the far field. The sources of the internally generated noise are the burner, elbows, valves, and flow turbulence. Tests over a range of nozzle pressure ratios from 1.2 to 3.5 using coherence analysis revealed that low frequency noise below 1200 Hz is transmitted through the nozzle. Broad banded peaks at 240 and 640 Hz were found in the transmitted noise. Aeroacoustic excitation effects are possible in this frequency range. The internal noise creates a noise floor that limits the amount of jet noise suppression that can be measured on the PLF and similar facilities.

  10. The Inverse Problem in Jet Acoustics

    NASA Technical Reports Server (NTRS)

    Wooddruff, S. L.; Hussaini, M. Y.

    2001-01-01

    The inverse problem for jet acoustics, or the determination of noise sources from far-field pressure information, is proposed as a tool for understanding the generation of noise by turbulence and for the improved prediction of jet noise. An idealized version of the problem is investigated first to establish the extent to which information about the noise sources may be determined from far-field pressure data and to determine how a well-posed inverse problem may be set up. Then a version of the industry-standard MGB code is used to predict a jet noise source spectrum from experimental noise data.

  11. Anomalous Quantum Correlations of Squeezed Light

    NASA Astrophysics Data System (ADS)

    Kühn, B.; Vogel, W.; Mraz, M.; Köhnke, S.; Hage, B.

    2017-04-01

    Three different noise moments of field strength, intensity, and their correlations are simultaneously measured. For this purpose a homodyne cross-correlation measurement [1] is implemented by superimposing the signal field and a weak local oscillator on an unbalanced beam splitter. The relevant information is obtained via the intensity noise correlation of the output modes. Detection details like quantum efficiencies or uncorrelated dark noise are meaningless for our technique. Yet unknown insight in the quantumness of a squeezed signal field is retrieved from the anomalous moment, correlating field strength with intensity noise. A classical inequality including this moment is violated for almost all signal phases. Precognition on quantum theory is superfluous, as our analysis is solely based on classical physics.

  12. Origins of extrinsic variability in eukaryotic gene expression

    NASA Astrophysics Data System (ADS)

    Volfson, Dmitri; Marciniak, Jennifer; Blake, William J.; Ostroff, Natalie; Tsimring, Lev S.; Hasty, Jeff

    2006-03-01

    Variable gene expression within a clonal population of cells has been implicated in a number of important processes including mutation and evolution, determination of cell fates and the development of genetic disease. Recent studies have demonstrated that a significant component of expression variability arises from extrinsic factors thought to influence multiple genes in concert, yet the biological origins of this extrinsic variability have received little attention. Here we combine computational modeling with fluorescence data generated from multiple promoter-gene inserts in Saccharomyces cerevisiae to identify two major sources of extrinsic variability. One unavoidable source arising from the coupling of gene expression with population dynamics leads to a ubiquitous noise floor in expression variability. A second source which is modeled as originating from a common upstream transcription factor exemplifies how regulatory networks can convert noise in upstream regulator expression into extrinsic noise at the output of a target gene. Our results highlight the importance of the interplay of gene regulatory networks with population heterogeneity for understanding the origins of cellular diversity.

  13. Stochastic memory: getting memory out of noise

    NASA Astrophysics Data System (ADS)

    Stotland, Alexander; di Ventra, Massimiliano

    2011-03-01

    Memory circuit elements, namely memristors, memcapacitors and meminductors, can store information without the need of a power source. These systems are generally defined in terms of deterministic equations of motion for the state variables that are responsible for memory. However, in real systems noise sources can never be eliminated completely. One would then expect noise to be detrimental for memory. Here, we show that under specific conditions on the noise intensity memory can actually be enhanced. We illustrate this phenomenon using a physical model of a memristor in which the addition of white noise into the state variable equation improves the memory and helps the operation of the system. We discuss under which conditions this effect can be realized experimentally, discuss its implications on existing memory systems discussed in the literature, and also analyze the effects of colored noise. Work supported in part by NSF.

  14. Noise Characteristics of a Four-Jet Impingement Device Inside a Broadband Engine Noise Simulator

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Housman, Jeffrey A.; Kiris, Cetin C.; Hutcheson, Florence V.

    2015-01-01

    The noise generation mechanisms for four directly impinging supersonic jets are investigated employing implicit large eddy simulations with a higher-order accurate weighted essentially non-oscillatory shock-capturing scheme. Impinging jet devices are often used as an experimental apparatus to emulate a broadband noise source. Although such devices have been used in many experiments, a detailed investigation of the noise generation mechanisms has not been conducted before. Thus, the underlying physical mechanisms that are responsible for the generation of sound waves are not well understood. The flow field is highly complex and contains a wide range of temporal and spatial scales relevant for noise generation. Proper orthogonal decomposition of the flow field is utilized to characterize the unsteady nature of the flow field involving unsteady shock oscillations, large coherent turbulent flow structures, and the sporadic appearance of vortex tubes in the center of the impingement region. The causality method based on Lighthill's acoustic analogy is applied to link fluctuations of flow quantities inside the source region to the acoustic pressure in the far field. It will be demonstrated that the entropy fluctuation term in the Lighthill's stress tensor plays a vital role in the noise generation process. Consequently, the understanding of the noise generation mechanisms is employed to develop a reduced-order linear acoustic model of the four-jet impingement device. Finally, three linear acoustic FJID models are used as broadband noise sources inside an engine nacelle and the acoustic scattering results are validated against far-field acoustic experimental data.

  15. Nonlinear Time Series Analysis in the Absence of Strong Harmonics

    NASA Astrophysics Data System (ADS)

    Stine, Peter; Jevtic, N.

    2010-05-01

    Nonlinear time series analysis has successfully been used for noise reduction and for identifying long term periodicities in variable star light curves. It was thought that good noise reduction could be obtained when a strong fundamental and second harmonic are present. We show that, quite unexpectedly, this methodology for noise reduction can be efficient for data with very noisy power spectra without a strong fundamental and second harmonic. Not only can one obtain almost two orders of magnitude noise reduction of the white noise tail, insight can also be gained into the short time scale of organized behavior. Thus, we are able to obtain an estimate of this short time scale, which is on the order of 1.5 hours in the case of a variable white dwarf.

  16. Direct computation of turbulence and noise

    NASA Technical Reports Server (NTRS)

    Berman, C.; Gordon, G.; Karniadakis, G.; Batcho, P.; Jackson, E.; Orszag, S.

    1991-01-01

    Jet exhaust turbulence noise is computed using a time dependent solution of the three dimensional Navier-Stokes equations to supply the source terms for an acoustic computation based on the Phillips convected wave equation. An extrapolation procedure is then used to determine the far field noise spectrum in terms of the near field sound. This will lay the groundwork for studies of more complex flows typical of noise suppression nozzles.

  17. Towards a general framework for including noise impacts in LCA.

    PubMed

    Cucurachi, Stefano; Heijungs, Reinout; Ohlau, Katrin

    Several damages have been associated with the exposure of human beings to noise. These include auditory effects, i.e., hearing impairment, but also non-auditory physiological ones such as hypertension and ischemic heart disease, or psychological ones such as annoyance, depression, sleep disturbance, limited performance of cognitive tasks or inadequate cognitive development. Noise can also interfere with intended activities, both in daytime and nighttime. ISO 14'040 also indicated the necessity of introducing noise, together with other less developed impact categories, in a complete LCA study, possibly changing the results of many LCA studies already available. The attempts available in the literature focused on the integration of transportation noise in LCA. Although being considered the most frequent source of intrusive impact, transportation noise is not the only type of noise that can have a malign impact on public health. Several other sources of noise such as industrial or occupational need to be taken into account to have a complete consideration of noise into LCA. Major life cycle inventories (LCI) typically do not contain data on noise emissions yet and characterisation factors are not yet clearly defined. The aim of the present paper is to briefly review what is already available in the field and propose a new framework for the consideration of human health impacts of any type of noise that could be of interest in the LCA practice, providing indications for the introduction of noise in LCI and analysing what data is already available and, in the form of a research agenda, what other resources would be needed to reach a complete coverage of the problem. The literature production related to the impacts of noise on human health has been analysed, with considerations of impacts caused by transportation noise as well as occupational and industrial noise. The analysis of the specialist medical literature allowed for a better understanding of how to deal with the epidemiological findings from an LCA perspective and identify areas still missing dose-response relations. A short review of the state-of-science in the field of noise and LCA is presented with an expansion to other contributions in the field subsequent to the comprehensive work by Althaus et al. (2009a; 2009b). Focusing on the analogy between toxicological analysis of pollutants and noise impact evaluation, an alternative approach is suggested, which is oriented to the consideration of any type of noise in LCA and not solely of transportation noise. A multi-step framework is presented as a method for the inclusion of noise impacts on human health in LCA. A theoretical structural framework for the inclusion of noise impacts in LCA is provided as a basis for future modelling expansions in the field. Rather than evaluating traffic/transportation noise, the method focuses on the consideration of the noise level and its impact on human health, regardless of the source producing the noise in an analogous manner as considered in the fields of toxicology and common noise evaluation practices combined. The resulting framework will constitute the basis for the development of a more detailed mathematical model for the inclusion of noise in LCA. The toxicological background and the experience of the analysis of the release of chemicals in LCA seem to provide sufficient ground for the inclusion of noise in LCA: taken into account the physical differences and the uniqueness of noise as an impact, the procedure applied to the release of chemicals during a product life cycle is key for a valuable inclusion of noise in the LCA logic. It is fundamental for the development of research in the field of LCA and noise to consider any type of noise. Further studies are needed to contribute to the inclusion of noise sources and noise impacts in LCA. In this paper, a structure is proposed that will be expanded and adapted in the future and which forms the basic framework for the successive modelling phase.

  18. Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes

    PubMed Central

    Soltani, Mohammad; Vargas-Garcia, Cesar A.; Antunes, Duarte; Singh, Abhyudai

    2016-01-01

    Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable to the cell-cycle length, randomness in cell-division times generates additional intercellular variability in protein levels. Moreover, as many mRNA/protein species are expressed at low-copy numbers, errors incurred in partitioning of molecules between two daughter cells are significant. We derive analytical formulas for the total noise in protein levels when the cell-cycle duration follows a general class of probability distributions. Using a novel hybrid approach the total noise is decomposed into components arising from i) stochastic expression; ii) partitioning errors at the time of cell division and iii) random cell-division events. These formulas reveal that random cell-division times not only generate additional extrinsic noise, but also critically affect the mean protein copy numbers and intrinsic noise components. Counter intuitively, in some parameter regimes, noise in protein levels can decrease as cell-division times become more stochastic. Computations are extended to consider genome duplication, where transcription rate is increased at a random point in the cell cycle. We systematically investigate how the timing of genome duplication influences different protein noise components. Intriguingly, results show that noise contribution from stochastic expression is minimized at an optimal genome-duplication time. Our theoretical results motivate new experimental methods for decomposing protein noise levels from synchronized and asynchronized single-cell expression data. Characterizing the contributions of individual noise mechanisms will lead to precise estimates of gene expression parameters and techniques for altering stochasticity to change phenotype of individual cells. PMID:27536771

  19. Numeric Solutions of Dirac-Gursey Spinor Field Equation Under External Gaussian White Noise

    NASA Astrophysics Data System (ADS)

    Aydogmus, Fatma

    2016-06-01

    In this paper, we consider the Dirac-Gursey spinor field equation that has particle-like solutions derived classical field equations so-called instantons, formed by using Heisenberg ansatz, under the effect of an additional Gaussian white noise term. Our purpose is to understand how the behavior of spinor-type excited instantons in four dimensions can be affected by noise. Thus, we simulate the phase portraits and Poincaré sections of the obtained system numerically both with and without noise. Recurrence plots are also given for more detailed information regarding the system.

  20. Detecting and quantifying stellar magnetic fields. Sparse Stokes profile approximation using orthogonal matching pursuit

    NASA Astrophysics Data System (ADS)

    Carroll, T. A.; Strassmeier, K. G.

    2014-03-01

    Context. In recent years, we have seen a rapidly growing number of stellar magnetic field detections for various types of stars. Many of these magnetic fields are estimated from spectropolarimetric observations (Stokes V) by using the so-called center-of-gravity (COG) method. Unfortunately, the accuracy of this method rapidly deteriorates with increasing noise and thus calls for a more robust procedure that combines signal detection and field estimation. Aims: We introduce an estimation method that provides not only the effective or mean longitudinal magnetic field from an observed Stokes V profile but also uses the net absolute polarization of the profile to obtain an estimate of the apparent (i.e., velocity resolved) absolute longitudinal magnetic field. Methods: By combining the COG method with an orthogonal-matching-pursuit (OMP) approach, we were able to decompose observed Stokes profiles with an overcomplete dictionary of wavelet-basis functions to reliably reconstruct the observed Stokes profiles in the presence of noise. The elementary wave functions of the sparse reconstruction process were utilized to estimate the effective longitudinal magnetic field and the apparent absolute longitudinal magnetic field. A multiresolution analysis complements the OMP algorithm to provide a robust detection and estimation method. Results: An extensive Monte-Carlo simulation confirms the reliability and accuracy of the magnetic OMP approach where a mean error of under 2% is found. Its full potential is obtained for heavily noise-corrupted Stokes profiles with signal-to-noise variance ratios down to unity. In this case a conventional COG method yields a mean error for the effective longitudinal magnetic field of up to 50%, whereas the OMP method gives a maximum error of 18%. It is, moreover, shown that even in the case of very small residual noise on a level between 10-3 and 10-5, a regime reached by current multiline reconstruction techniques, the conventional COG method incorrectly interprets a large portion of the residual noise as a magnetic field, with values of up to 100 G. The magnetic OMP method, on the other hand, remains largely unaffected by the noise, regardless of the noise level the maximum error is no greater than 0.7 G.

  1. Benefits of curved serrations on broadband trailing-edge noise reduction

    NASA Astrophysics Data System (ADS)

    Avallone, F.; van der Velden, W. C. P.; Ragni, D.

    2017-07-01

    Far-field noise and flow field over a novel curved trailing-edge serration (named as iron-shaped serration) are investigated. Spectra of the far-field broadband noise, directivity plots and the flow-field over the iron-shaped serration are obtained from numerical computations performed using a compressible Lattice-Boltzmann solver. The new design is compared to a conventional trailing-edge serration with a triangular geometry. Both serration geometries were retrofitted to a NACA 0018 airfoil at zero degree angle of attack. The iron-shaped geometry is found to reduce far-field broadband noise of approximately 2 dB more than the conventional sawtooth serration for chord-based Strouhal numbers Stc<15. At higher frequencies, the far-field broadband noise for the two serration geometries has comparable intensity. Near-wall velocity distribution and surface pressure fluctuations show that their intensity and spectra are independent on the serration geometry, but a function of the streamwise location. It is found that the larger noise reduction achieved by the iron-shaped trailing-edge serration is due to the mitigation of the scattered noise at the root. This effect is obtained by mitigating the interaction between the two sides of the serration, by delaying toward the tip both the outward (i.e., the tendency of the flow to deviate from the centerline to the edge of the serration) and the downward (i.e., the tendency of the flow to merge between the upper and bottom side of the serration) flow motions present at the root of the sawtooth.

  2. NMR and MRI apparatus and method

    DOEpatents

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  3. A trade-off analysis design tool. Aircraft interior noise-motion/passenger satisfaction model

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.

    1977-01-01

    A design tool was developed to enhance aircraft passenger satisfaction. The effect of aircraft interior motion and noise on passenger comfort and satisfaction was modelled. Effects of individual aircraft noise sources were accounted for, and the impact of noise on passenger activities and noise levels to safeguard passenger hearing were investigated. The motion noise effect models provide a means for tradeoff analyses between noise and motion variables, and also provide a framework for optimizing noise reduction among noise sources. Data for the models were collected onboard commercial aircraft flights and specially scheduled tests.

  4. Noise transmission and reduction in turboprop aircraft

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Basso, Gordon L.; Leigh, Barry

    1994-09-01

    There is considerable interest in reducing the cabin noise environment in turboprop aircraft. Various approaches have been considered at deHaviland Inc., including passive tuned-vibration absorbers, speaker-based noise cancellation, and structural vibration control of the fuselage. These approaches will be discussed briefly. In addition to controlling the noise, a method of predicting the internal noise is required both to evaluate potential noise reduction approaches, and to validate analytical design models. Instead of costly flight tests, or carrying out a ground simulation of the propeller pressure field, a much simpler reciprocal technique can be used. A capacitive scanner is used to measure the fuselage vibration response on a deHaviland Dash-8 fuselage, due to an internal noise source. The approach is validated by comparing this reciprocal noise transmission measurement with the direct measurement. The fuselage noise transmission information is then combined with computer predictions of the propeller pressure field data to predict the internal noise at two points.

  5. Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics.

    PubMed

    Cheng, Sen; Sabes, Philip N

    2007-04-01

    The sensorimotor calibration of visually guided reaching changes on a trial-to-trial basis in response to random shifts in the visual feedback of the hand. We show that a simple linear dynamical system is sufficient to model the dynamics of this adaptive process. In this model, an internal variable represents the current state of sensorimotor calibration. Changes in this state are driven by error feedback signals, which consist of the visually perceived reach error, the artificial shift in visual feedback, or both. Subjects correct for > or =20% of the error observed on each movement, despite being unaware of the visual shift. The state of adaptation is also driven by internal dynamics, consisting of a decay back to a baseline state and a "state noise" process. State noise includes any source of variability that directly affects the state of adaptation, such as variability in sensory feedback processing, the computations that drive learning, or the maintenance of the state. This noise is accumulated in the state across trials, creating temporal correlations in the sequence of reach errors. These correlations allow us to distinguish state noise from sensorimotor performance noise, which arises independently on each trial from random fluctuations in the sensorimotor pathway. We show that these two noise sources contribute comparably to the overall magnitude of movement variability. Finally, the dynamics of adaptation measured with random feedback shifts generalizes to the case of constant feedback shifts, allowing for a direct comparison of our results with more traditional blocked-exposure experiments.

  6. Acute effects of visits to urban green environments on cardiovascular physiology in women: A field experiment.

    PubMed

    Lanki, Timo; Siponen, Taina; Ojala, Ann; Korpela, Kalevi; Pennanen, Arto; Tiittanen, Pekka; Tsunetsugu, Yuko; Kagawa, Takahide; Tyrväinen, Liisa

    2017-11-01

    Epidemiological studies have reported positive associations between the amount of green space in the living environment and mental and cardiovascular human health. In a search for effect mechanisms, field studies have found short-term visits to green environments to be associated with psychological stress relief. Less evidence is available on the effect of visits on cardiovascular physiology. To evaluate whether visits to urban green environments, in comparison to visits to a built-up environment, lead to beneficial short-term changes in indicators of cardiovascular health. Thirty-six adult female volunteers visited three different types of urban environments: an urban forest, an urban park, and a built-up city centre, in Helsinki, Finland. The visits consisted of 15min of sedentary viewing, and 30min of walking. During the visits, blood pressure and heart rate were measured, and electrocardiogram recorded for the determination of indicators of heart rate variability. In addition, levels of respirable ambient particles and environmental noise were monitored. Visits to the green environments were associated with lower blood pressure (viewing period only), lower heart rate, and higher indices of heart rate variability [standard deviation of normal-to-normal intervals (SDNN), high frequency power] than visits to the city centre. In the green environments, heart rate decreased and SDNN increased during the visit. Associations between environment and indicators of cardiovascular health weakened slightly after inclusion of particulate air pollution and noise in the models. Visits to urban green environments are associated with beneficial short-term changes in cardiovascular risk factors. This can be explained by psychological stress relief with contribution from reduced air pollution and noise exposure during the visits. Future research should evaluate the amount of exposure to green environments needed for longer-term benefits for cardiovascular health. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Stochastic population dynamics in spatially extended predator-prey systems

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex Ginzburg-Landau equation. Multiple-species extensions to general ‘food networks’ can be classified on the mean-field level, providing both fundamental understanding of ensuing cooperativity and profound insight into the rich spatio-temporal features and coarsening kinetics in the corresponding spatially extended systems. Novel space-time patterns emerge as a result of the formation of competing alliances; e.g. coarsening domains that each incorporate rock-paper-scissors competition games.

  8. Quantum error correction of continuous-variable states against Gaussian noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralph, T. C.

    2011-08-15

    We describe a continuous-variable error correction protocol that can correct the Gaussian noise induced by linear loss on Gaussian states. The protocol can be implemented using linear optics and photon counting. We explore the theoretical bounds of the protocol as well as the expected performance given current knowledge and technology.

  9. Wideband low-noise variable-gain BiCMOS transimpedance amplifier

    NASA Astrophysics Data System (ADS)

    Meyer, Robert G.; Mack, William D.

    1994-06-01

    A new monolithic variable gain transimpedance amplifier is described. The circuit is realized in BiCMOS technology and has measured gain of 98 kilo ohms, bandwidth of 128 MHz, input noise current spectral density of 1.17 pA/square root of Hz and input signal-current handling capability of 3 mA.

  10. Generating partially correlated noise—A comparison of methods

    PubMed Central

    Hartmann, William M.; Cho, Yun Jin

    2011-01-01

    There are three standard methods for generating two channels of partially correlated noise: the two-generator method, the three-generator method, and the symmetric-generator method. These methods allow an experimenter to specify a target cross correlation between the two channels, but actual generated noises show statistical variability around the target value. Numerical experiments were done to compare the variability for those methods as a function of the number of degrees of freedom. The results of the experiments quantify the stimulus uncertainty in diverse binaural psychoacoustical experiments: incoherence detection, perceived auditory source width, envelopment, noise localization∕lateralization, and the masking level difference. The numerical experiments found that when the elemental generators have unequal powers, the different methods all have similar variability. When the powers are constrained to be equal, the symmetric-generator method has much smaller variability than the other two. PMID:21786899

  11. Near Field Trailing Edge Tone Noise Computation

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2002-01-01

    Blunt trailing edges in a flow often generate tone noise due to wall-jet shear layer and vortex shedding. In this paper, the space-time conservation element (CE/SE) method is employed to numerically study the near-field noise of blunt trailing edges. Two typical cases, namely, flow past a circular cylinder (aeolian noise problem) and flow past a flat plate of finite thickness are considered. The computed frequencies compare well with experimental data. For the aeolian noise problem, comparisons with the results of other numerical approaches are also presented.

  12. Analytic model for low-frequency noise in nanorod devices.

    PubMed

    Lee, Jungil; Yu, Byung Yong; Han, Ilki; Choi, Kyoung Jin; Ghibaudo, Gerard

    2008-10-01

    In this work analytic model for generation of excess low-frequency noise in nanorod devices such as field-effect transistors are developed. In back-gate field-effect transistors where most of the surface area of the nanorod is exposed to the ambient, the surface states could be the major noise source via random walk of electrons for the low-frequency or 1/f noise. In dual gate transistors, the interface states and oxide traps can compete with each other as the main noise source via random walk and tunneling, respectively.

  13. Determination of Jet Noise Radiation Source Locations using a Dual Sideline Cross-Correlation/Spectrum Technique

    NASA Technical Reports Server (NTRS)

    Allen, C. S.; Jaeger, S. M.

    1999-01-01

    The goal of our efforts is to extrapolate nearfield jet noise measurements to the geometric far field where the jet noise sources appear to radiate from a single point. To accomplish this, information about the location of noise sources in the jet plume, the radiation patterns of the noise sources and the sound pressure level distribution of the radiated field must be obtained. Since source locations and radiation patterns can not be found with simple single microphone measurements, a more complicated method must be used.

  14. Low-frequency (1/f) noise in nanocrystal field-effect transistors.

    PubMed

    Lai, Yuming; Li, Haipeng; Kim, David K; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2014-09-23

    We investigate the origins and magnitude of low-frequency noise in high-mobility nanocrystal field-effect transistors and show the noise is of 1/f-type. Sub-band gap states, in particular, those introduced by nanocrystal surfaces, have a significant influence on the 1/f noise. By engineering the device geometry and passivating nanocrystal surfaces, we show that in the linear and saturation regimes the 1/f noise obeys Hooge's model of mobility fluctuations, consistent with transport of a high density of accumulated carriers in extended electronic states of the NC thin films. In the subthreshold regime, the Fermi energy moves deeper into the mobility gap and sub-band gap trap states give rise to a transition to noise dominated by carrier number fluctuations as described in McWhorter's model. CdSe nanocrystal field-effect transistors have a Hooge parameter of 3 × 10(-2), comparable to other solution-deposited, thin-film devices, promising high-performance, low-cost, low-noise integrated circuitry.

  15. Static and wind tunnel near-field/far-field jet noise measurements from model scale single-flow base line and suppressor nozzles. Summary report. [conducted in the Boeing large anechoic test chamber and the NASA-Ames 40by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1977-01-01

    A test program was conducted in the Boeing large anechoic test chamber and the NASA-Ames 40- by 80-foot wind tunnel to study the near- and far-field jet noise characteristics of six baseline and suppressor nozzles. Static and wind-on noise source locations were determined. A technique for extrapolating near field jet noise measurements into the far field was established. It was determined if flight effects measured in the near field are the same as those in the far field. The flight effects on the jet noise levels of the baseline and suppressor nozzles were determined. Test models included a 15.24-cm round convergent nozzle, an annular nozzle with and without ejector, a 20-lobe nozzle with and without ejector, and a 57-tube nozzle with lined ejector. The static free-field test in the anechoic chamber covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K. The wind tunnel flight effects test repeated these nozzle test conditions with ambient velocities of 0 to 92 m/s.

  16. Flicker sensitivity as a function of target area with and without temporal noise.

    PubMed

    Rovamo, J; Donner, K; Näsänen, R; Raninen, A

    2000-01-01

    Flicker sensitivities (1-30 Hz) in foveal, photopic vision were measured as functions of stimulus area with and without strong external white temporal noise. Stimuli were circular, sinusoidally flickering sharp-edged spots of variable diameters (0.25-4 degrees ) but constant duration (2 s), surrounded by a uniform equiluminant field. The data was described with a model comprising (i) low-pass filtering in the retina (R), with a modulation transfer function (MTF) of a form derived from responses of cones; (ii) normalisation of the temporal luminance distribution by the average luminance; (iii) high-pass filtering by postreceptoral neural pathways (P), with an MTF proportional to temporal frequency; (iv) addition of internal white neural noise (N(i)); (v) integration over a spatial window; and (vi) detection by a suboptimal temporal matched filter of efficiency eta. In strong external noise, flicker sensitivity was independent of spot area. Without external noise, sensitivity increased with the square root of stimulus area (Piper's law) up to a critical area (A(c)), where it reaches a maximum level (S(max)). Both A(c) and eta were monotonic functions of temporal frequency (f), such that log A(c) increased and log eta decreased linearly with log f. Remarkably, the increase in spatial integration area and the decrease in efficiency were just balanced, so A(c)(f)eta(f) was invariant against f. Thus the bandpass characteristics of S(max)(f) directly reflected the composite effect of the distal filters R(f) and P(f). The temporal equivalent (N(it)) of internal neural noise (N(i)) decreased in inverse proportion to spot area up to A(c) and then stayed constant indicating that spatially homogeneous signals and noise are integrated over the same area.

  17. Influence of solid noise barriers on near-road and on-road air quality

    NASA Astrophysics Data System (ADS)

    Baldauf, Richard W.; Isakov, Vlad; Deshmukh, Parikshit; Venkatram, Akula; Yang, Bo; Zhang, K. Max

    2016-03-01

    Public health concerns regarding adverse health effects for populations spending significant amounts of time near high traffic roadways has increased substantially in recent years. Roadside features, including solid noise barriers, have been investigated as potential methods that can be implemented in a relatively short time period to reduce air pollution exposures from nearby traffic. A field study was conducted to determine the influence of noise barriers on both on-road and downwind pollutant concentrations near a large highway in Phoenix, Arizona, USA. Concentrations of nitrogen dioxide, carbon monoxide, ultrafine particles, and black carbon were measured using a mobile platform and fixed sites along two limited-access stretches of highway that contained a section of noise barrier and a section with no noise barrier at-grade with the surrounding terrain. Results of the study showed that pollutant concentrations behind the roadside barriers were significantly lower relative to those measured in the absence of barriers. The reductions ranged from 50% within 50 m from the barrier to about 30% as far as 300 m from the barrier. Reductions in pollutant concentrations generally began within the first 50 m of the barrier edge; however, concentrations were highly variable due to vehicle activity behind the barrier and along nearby urban arterial roadways. The concentrations on the highway, upwind of the barrier, varied depending on wind direction. Overall, the on-road concentrations in front of the noise barrier were similar to those measured in the absence of the barrier, contradicting previous modeling results that suggested roadside barriers increase pollutant levels on the road. Thus, this study suggests that noise barriers do reduce potential pollutant exposures for populations downwind of the road, and do not likely increase exposures to traffic-related pollutants for vehicle passengers on the highway.

  18. Spatio-Temporal Field Estimation Using Kriged Kalman Filter (KKF) with Sparsity-Enforcing Sensor Placement.

    PubMed

    Roy, Venkat; Simonetto, Andrea; Leus, Geert

    2018-06-01

    We propose a sensor placement method for spatio-temporal field estimation based on a kriged Kalman filter (KKF) using a network of static or mobile sensors. The developed framework dynamically designs the optimal constellation to place the sensors. We combine the estimation error (for the stationary as well as non-stationary component of the field) minimization problem with a sparsity-enforcing penalty to design the optimal sensor constellation in an economic manner. The developed sensor placement method can be directly used for a general class of covariance matrices (ill-conditioned or well-conditioned) modelling the spatial variability of the stationary component of the field, which acts as a correlated observation noise, while estimating the non-stationary component of the field. Finally, a KKF estimator is used to estimate the field using the measurements from the selected sensing locations. Numerical results are provided to exhibit the feasibility of the proposed dynamic sensor placement followed by the KKF estimation method.

  19. Core noise measurements on a YF-102 turbofan engine

    NASA Technical Reports Server (NTRS)

    Reshotko, M.; Karchmer, A. M.; Penko, P. F.; Mcardle, J. G.

    1977-01-01

    Core noise from a YF-102 high bypass ratio turbofan engine was investigated through the use of simultaneous measurements of internal fluctuating pressures and far field noise. Acoustic waveguide probes, located in the engine at the compressor exit, in the combustor, at the turbine exit, and in the core nozzle, were employed to measure internal fluctuating pressures. Spectra showed that the internal signals were free of tones, except at high frequency where machinery noise was present. Data obtained over a wide range of engine conditions suggest that below 60% of maximum fan speed the low frequency core noise contributes significantly to the far field noise.

  20. WE-H-207A-09: Theoretical Limits to Molecular Biomarker Detection Using Magnetic Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, J; Geisel School of Medicine, Dartmouth College, Hanover, NH

    Purpose: Estimate the limits of molecular biomarker detection using magnetic nanoparticle methods like in vivo ELISA. Methods: Magnetic nanoparticles in an alternating magnetic field produce a magnetization that can be detected at exceedingly low levels because the signal at the harmonic frequencies is uniquely produced by the nanoparticles. Because the magnetization can also be used to characterize the nanoparticle rotational freedom, the bound state can be found. If the nanoparticles are coated with molecules that bind the desired biomarker, the rotational freedom reflects the biomarker concentration. The irreducible noise limit is the thermal noise or Johnson noise of the tissuemore » and the contrast that can be measured must be larger than that limit. The contrast produced is a function of the applied field and depends strongly on nanoparticle volume. We have estimated the contrast using a Langevin function of a single composite variable to approximate the full stochastic Langevin equation for nanoparticle dynamics. Results: The thermal noise for a bandwidth reasonable for spectroscopy suggests mid zeptomolar (10–21) to low attomolar (10–18) concentrations can be measured in a volume that is 10cm in scale. The suggested sensitivity is far below the physiologically concentrations of almost all critical biomarkers including cytokines (picomolar), hormones (nanomolar) and heat shock proteins. Conclusion: The sensitivity of in vivo ELISA concentration measurements should be sufficient to measure physiological concentrations of critical biomarkers like cytokines in vivo. Further the sensitivity should be sufficient to measure concentrations of other biomarkers that are six to eight orders of magnitude lower in concentration than immune signaling molecules like cytokines. NIH - 1U54CA151662-01 Department of Radiology.« less

  1. Reliability of Pressure Ulcer Rates: How Precisely Can We Differentiate Among Hospital Units, and Does the Standard Signal‐Noise Reliability Measure Reflect This Precision?

    PubMed Central

    Cramer, Emily

    2016-01-01

    Abstract Hospital performance reports often include rankings of unit pressure ulcer rates. Differentiating among units on the basis of quality requires reliable measurement. Our objectives were to describe and apply methods for assessing reliability of hospital‐acquired pressure ulcer rates and evaluate a standard signal‐noise reliability measure as an indicator of precision of differentiation among units. Quarterly pressure ulcer data from 8,199 critical care, step‐down, medical, surgical, and medical‐surgical nursing units from 1,299 US hospitals were analyzed. Using beta‐binomial models, we estimated between‐unit variability (signal) and within‐unit variability (noise) in annual unit pressure ulcer rates. Signal‐noise reliability was computed as the ratio of between‐unit variability to the total of between‐ and within‐unit variability. To assess precision of differentiation among units based on ranked pressure ulcer rates, we simulated data to estimate the probabilities of a unit's observed pressure ulcer rate rank in a given sample falling within five and ten percentiles of its true rank, and the probabilities of units with ulcer rates in the highest quartile and highest decile being identified as such. We assessed the signal‐noise measure as an indicator of differentiation precision by computing its correlations with these probabilities. Pressure ulcer rates based on a single year of quarterly or weekly prevalence surveys were too susceptible to noise to allow for precise differentiation among units, and signal‐noise reliability was a poor indicator of precision of differentiation. To ensure precise differentiation on the basis of true differences, alternative methods of assessing reliability should be applied to measures purported to differentiate among providers or units based on quality. © 2016 The Authors. Research in Nursing & Health published by Wiley Periodicals, Inc. PMID:27223598

  2. Volumetric Acoustic Vector Intensity Probe

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2006-01-01

    A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.

  3. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  4. The role of noise in the spatial public goods game

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto; Battiston, Federico

    2016-07-01

    In this work we aim to analyze the role of noise in the spatial public goods game, one of the most famous games in evolutionary game theory. The dynamics of this game is affected by a number of parameters and processes, namely the topology of interactions among the agents, the synergy factor, and the strategy revision phase. The latter is a process that allows agents to change their strategy. Notably, rational agents tend to imitate richer neighbors, in order to increase the probability to maximize their payoff. By implementing a stochastic revision process, it is possible to control the level of noise in the system, so that even irrational updates may occur. In particular, in this work we study the effect of noise on the macroscopic behavior of a finite structured population playing the public goods game. We consider both the case of a homogeneous population, where the noise in the system is controlled by tuning a parameter representing the level of stochasticity in the strategy revision phase, and a heterogeneous population composed of a variable proportion of rational and irrational agents. In both cases numerical investigations show that the public goods game has a very rich behavior which strongly depends on the amount of noise in the system and on the value of the synergy factor. To conclude, our study sheds a new light on the relations between the microscopic dynamics of the public goods game and its macroscopic behavior, strengthening the link between the field of evolutionary game theory and statistical physics.

  5. Aircraft noise source and computer programs - User's guide

    NASA Technical Reports Server (NTRS)

    Crowley, K. C.; Jaeger, M. A.; Meldrum, D. F.

    1973-01-01

    The application of computer programs for predicting the noise-time histories and noise contours for five types of aircraft is reported. The aircraft considered are: (1) turbojet, (2) turbofan, (3) turboprop, (4) V/STOL, and (5) helicopter. Three principle considerations incorporated in the design of the noise prediction program are core effectiveness, limited input, and variable output reporting.

  6. Attention Induced Gain Stabilization in Broad and Narrow-Spiking Cells in the Frontal Eye-Field of Macaque Monkeys

    PubMed Central

    Brandt, Christian; Dasilva, Miguel; Gotthardt, Sascha; Chicharro, Daniel; Panzeri, Stefano; Distler, Claudia

    2016-01-01

    Top-down attention increases coding abilities by altering firing rates and rate variability. In the frontal eye field (FEF), a key area enabling top-down attention, attention induced firing rate changes are profound, but its effect on different cell types is unknown. Moreover, FEF is the only cortical area investigated in which attention does not affect rate variability, as assessed by the Fano factor, suggesting that task engagement affects cortical state nonuniformly. We show that putative interneurons in FEF of Macaca mulatta show stronger attentional rate modulation than putative pyramidal cells. Partitioning rate variability reveals that both cell types reduce rate variability with attention, but more strongly so in narrow-spiking cells. The effects are captured by a model in which attention stabilizes neuronal excitability, thereby reducing the expansive nonlinearity that links firing rate and variance. These results show that the effect of attention on different cell classes and different coding properties are consistent across the cortical hierarchy, acting through increased and stabilized neuronal excitability. SIGNIFICANCE STATEMENT Cortical processing is critically modulated by attention. A key feature of this influence is a modulation of “cortical state,” resulting in increased neuronal excitability and resilience of the network against perturbations, lower rate variability, and an increased signal-to-noise ratio. In the frontal eye field (FEF), an area assumed to control spatial attention in human and nonhuman primates, firing rate changes with attention occur, but rate variability, quantified by the Fano factor, appears to be unaffected by attention. Using recently developed analysis tools and models to quantify attention effects on narrow- and broad-spiking cell activity, we show that attention alters cortical state strongly in the FEF, demonstrating that its effect on the neuronal network is consistent across the cortical hierarchy. PMID:27445139

  7. Towards a first design of a Newtonian-noise cancellation system for Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Coughlin, M.; Mukund, N.; Harms, J.; Driggers, J.; Adhikari, R.; Mitra, S.

    2016-12-01

    Newtonian gravitational noise from seismic fields is predicted to be a limiting noise source at low frequency for second generation gravitational-wave detectors. Mitigation of this noise will be achieved by Wiener filtering using arrays of seismometers deployed in the vicinity of all test masses. In this work, we present optimized configurations of seismometer arrays using a variety of simplified models of the seismic field based on seismic observations at LIGO Hanford. The model that best fits the seismic measurements leads to noise reduction limited predominantly by seismometer self-noise. A first simplified design of seismic arrays for Newtonian-noise cancellation at the LIGO sites is presented, which suggests that it will be sufficient to monitor surface displacement inside the buildings.

  8. The relationship between aircraft noise exposure and day-use visitor survey responses in backcountry areas of national parks.

    PubMed

    Rapoza, Amanda; Sudderth, Erika; Lewis, Kristin

    2015-10-01

    To evaluate the relationship between aircraft noise exposure and the quality of national park visitor experience, more than 4600 visitor surveys were collected at seven backcountry sites in four U.S. national parks simultaneously with calibrated sound level measurements. Multilevel logistic regression was used to estimate parameters describing the relationship among visitor responses, aircraft noise dose metrics, and mediator variables. For the regression models, survey responses were converted to three dichotomous variables, representing visitors who did or did not experience slightly or more, moderately or more, or very or more annoyance or interference with natural quiet from aircraft noise. Models with the most predictive power included noise dose metrics of sound exposure level, percent time aircraft were audible, and percentage energy due to helicopters and fixed-wing propeller aircraft. These models also included mediator variables: visitor ratings of the "importance of calmness, peace and tranquility," visitor group composition (adults or both adults and children), first visit to the site, previously taken an air tour, and participation in bird-watching or interpretive talks. The results complement and extend previous research conducted in frontcountry areas and will inform evaluations of air tour noise effects on visitors to national parks and remote wilderness sites.

  9. Rotating coherent flow structures as a source for narrowband tip clearance noise from axial fans

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Lallier-Daniels, Dominic; Sanjosé, Marlène; Moreau, Stéphane; Carolus, Thomas

    2018-03-01

    Noise from axial fans typically increases significantly as the tip clearance is increased. In addition to the broadband tip clearance noise at the design flow rate, narrowband humps also associated with the tip flow are observed in the far-field acoustic spectra at lower flow rate. In this study, both experimental and numerical methods are used to shed more light on the noise generation mechanism of this narrowband tip clearance noise and provide a unified description of this source. Unsteady aeroacoustic predictions with the Lattice-Boltzmann Method (LBM) are successfully compared with experiment. Such a validation allows using LBM data to conduct a detailed modal analysis of the pressure field for detecting rotating coherent flow structures which might be considered as noise sources. As previously found in ring fans the narrowband humps in the far-field noise spectra are found to be related to the tip clearance noise that is generated by an interaction of coherent flow structures present in the tip region with the leading edge of the impeller blades. The visualization of the coherent structures shows that they are indeed part of the unsteady tip clearance vortex structures. They are hidden in a complex, spatially and temporally inhomogeneous flow field, but can be recovered by means of appropriate filtering techniques. Their pressure trace corresponds to the so-called rotational instability identified in previous turbomachinery studies, which brings a unified picture of this tip-noise phenomenon for the first time.

  10. A temporal and spatial analysis of anthropogenic noise sources affecting SNMR

    NASA Astrophysics Data System (ADS)

    Dalgaard, E.; Christiansen, P.; Larsen, J. J.; Auken, E.

    2014-11-01

    One of the biggest challenges when using the surface nuclear magnetic resonance (SNMR) method in urban areas is a relatively low signal level compared to a high level of background noise. To understand the temporal and spatial behavior of anthropogenic noise sources like powerlines and electric fences, we have developed a multichannel instrument, noiseCollector (nC), which measures the full noise spectrum up to 10 kHz. Combined with advanced signal processing we can interpret the noise as seen by a SNMR instrument and also obtain insight into the more fundamental behavior of the noise. To obtain a specified acceptable noise level for a SNMR sounding the stack size can be determined by quantifying the different noise sources. Two common noise sources, electromagnetic fields stemming from powerlines and fences are analyzed and show a 1/r2 dependency in agreement with theoretical relations. A typical noise map, obtained with the nC instrument prior to a SNMR field campaign, clearly shows the location of noise sources, and thus we can efficiently determine the optimal location for the SNMR sounding from a noise perspective.

  11. The Effects of Different Noise Types on Heart Rate Variability in Men

    PubMed Central

    Sim, Chang Sun; Sung, Joo Hyun; Cheon, Sang Hyeon; Lee, Jang Myung; Lee, Jae Won

    2015-01-01

    Purpose To determine the impact of noise on heart rate variability (HRV) in men, with a focus on the noise type rather than on noise intensity. Materials and Methods Forty college-going male volunteers were enrolled in this study and were randomly divided into four groups according to the type of noise they were exposed to: background, traffic, speech, or mixed (traffic and speech) noise. All groups except the background group (35 dB) were exposed to 45 dB sound pressure levels. We collected data on age, smoking status, alcohol consumption, and disease status from responses to self-reported questionnaires and medical examinations. We also measured HRV parameters and blood pressure levels before and after exposure to noise. The HRV parameters were evaluated while patients remained seated for 5 minutes, and frequency and time domain analyses were then performed. Results After noise exposure, only the speech noise group showed a reduced low frequency (LF) value, reflecting the activity of both the sympathetic and parasympathetic nervous systems. The low-to-high frequency (LF/HF) ratio, which reflected the activity of the autonomic nervous system (ANS), became more stable, decreasing from 5.21 to 1.37; however, this change was not statistically significant. Conclusion These results indicate that 45 dB(A) of noise, 10 dB(A) higher than background noise, affects the ANS. Additionally, the impact on HRV activity might differ according to the noise quality. Further studies will be required to ascertain the role of noise type. PMID:25510770

  12. The effects of different noise types on heart rate variability in men.

    PubMed

    Sim, Chang Sun; Sung, Joo Hyun; Cheon, Sang Hyeon; Lee, Jang Myung; Lee, Jae Won; Lee, Jiho

    2015-01-01

    To determine the impact of noise on heart rate variability (HRV) in men, with a focus on the noise type rather than on noise intensity. Forty college-going male volunteers were enrolled in this study and were randomly divided into four groups according to the type of noise they were exposed to: background, traffic, speech, or mixed (traffic and speech) noise. All groups except the background group (35 dB) were exposed to 45 dB sound pressure levels. We collected data on age, smoking status, alcohol consumption, and disease status from responses to self-reported questionnaires and medical examinations. We also measured HRV parameters and blood pressure levels before and after exposure to noise. The HRV parameters were evaluated while patients remained seated for 5 minutes, and frequency and time domain analyses were then performed. After noise exposure, only the speech noise group showed a reduced low frequency (LF) value, reflecting the activity of both the sympathetic and parasympathetic nervous systems. The low-to-high frequency (LF/HF) ratio, which reflected the activity of the autonomic nervous system (ANS), became more stable, decreasing from 5.21 to 1.37; however, this change was not statistically significant. These results indicate that 45 dB(A) of noise, 10 dB(A) higher than background noise, affects the ANS. Additionally, the impact on HRV activity might differ according to the noise quality. Further studies will be required to ascertain the role of noise type.

  13. Subsonic Jet Noise from Non-Axisymmetric and Tabbed Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Tam, Christopher K. W.

    1999-01-01

    Subsonic jet noise from non-axisymmetric and tabbed nozzles are investigated experimentally and theoretically. It is shown that the noise spectra of these jets are in good agreement with the similarity spectra found empirically earlier by Tam, Golebiowski and Seiner through a detailed analysis of supersonic jet noise data. Further, the radiated noise fields of the jets under study, including elliptic and large aspect ratio rectangular jets, are found to be quite axisymmetric and are practically the same as that of a circular jet with the same exit area. These experimental results strongly suggest that nozzle geometry modification into elliptic or rectangular shapes is not an effective method for jet noise suppression. A lobed nozzle, on the other hand, is found to significantly impact the noise field. Noise from large scale turbulent structures, radiating principally in the downstream direction, is effectively suppressed. Tabs also impact the noise field, primarily by shifting the spectral peak to a higher frequency. A jetlets model is developed to provide a basic understanding of the noise from tabbed jets. The model predicts that the noise spectrum from a jet with N tabs (N > 2) can be obtained from that of the original jet (no tab) by a simple frequency shift. The shifted frequency is obtained by multiplying the original frequency by N(sup 1/2). This result is in fairly good agreement with experimental data.

  14. Subsonic Jet Noise from Non-Axisymmetric and Tabbed Nozzles

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Zaman, K. B. M. Q.

    1999-01-01

    Subsonic jet noise from non-axisymmetric and tabbed nozzles are investigated experimentally and theoretically. It is shown that the noise spectra of these jets are in good agreement with the similarity spectra found empirically earlier by Tam, Golebiowski and Seiner through a detailed analysis of supersonic jet noise data. Further, the radiated noise fields of the jets under study, including elliptic and large aspect ratio rectangular jets, are found to be quite axisymmetric and are practically the same as that of a circular jet with the same exit area. These experimental results strongly suggest that nozzle geometry modification into elliptic or rectangular shapes is not an effective method for jet noise suppression. A lobed nozzle, on the other hand, is found to significantly impact the noise field. Noise from large scale turbulent structures, radiating principally in the downstream direction, is effectively suppressed. Tabs also impact the noise field, primarily by shifting the spectral peak to a higher frequency. A jetlets model is developed to provide a basic understanding of the noise from tabbed jets. The model predicts that the noise spectrum from a jet with N tabs (N greater than or equal to 2) can be obtained from that of the original jet (no tab) by a simple frequency shift. The shifted frequency is obtained by multiplying the original frequency by N(exp 1/2). This result is in fairly good agreement with experimental data.

  15. Orbital Noise of the Earth Causes Intensity Fluctuation in the Geomagnetic Field

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Kolenkiewicz, R.; Wade, C., Jr.

    2003-01-01

    Orbital noise of Earth's obliquity can provide an insight into the core of the Earth that causes intensity fluctuations in the geomagnetic field. Here we show that noise spectrum of the obliquity frequency have revealed a series of frequency periods centered at 250-, 1OO-, 50-, 41-, 30-, and 26-kyr which are almost identical with the observed spectral peaks from the composite curve of 33 records of relative paleointensity spanning the past 800 kyr (Sint-800 data). A continuous record for the past two million years also reveals the presence of the major 100 kyr periodicity in obliquity noise and geomagnetic intensity fluctuations. These results of correlation suggest that obliquity noise may power the dynamo, located in the liquid outer core of the Earth, which generates the geomagnetic field.

  16. A computer program for the prediction of near field noise of aircraft in cruising flight: User's guide

    NASA Technical Reports Server (NTRS)

    Tibbetts, J. G.

    1980-01-01

    Detailed instructions for using the near field cruise noise prediction program, a program listing, and a sample case with output are presented. The total noise for free field lossless conditions at selected observer locations is obtained by summing the contributions from up to nine acoustic sources. These noise sources, selected at the user's option, include the fan/compressor, turbine, core (combustion), jet, shock, and airframe (trailing edge and turbulent boundary layers). The effects of acoustic suppression materials such as engine inlet treatment may also be included in the noise prediction. The program is available for use on the NASA/Langley Research Center CDC computer. Comparisons of the program predictions with measured data are also given, and some possible reasons for their lack of agreement presented.

  17. A hybrid active/passive exhaust noise control system for locomotives.

    PubMed

    Remington, Paul J; Knight, J Scott; Hanna, Doug; Rowley, Craig

    2005-01-01

    A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal.

  18. Combat aircraft noise

    NASA Astrophysics Data System (ADS)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  19. Noise-enhanced CVQKD with untrusted source

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqun; Huang, Chunhui

    2017-06-01

    The performance of one-way and two-way continuous variable quantum key distribution (CVQKD) protocols can be increased by adding some noise on the reconciliation side. In this paper, we propose to add noise at the reconciliation end to improve the performance of CVQKD with untrusted source. We derive the key rate of this case and analyze the impact of the additive noise. The simulation results show that the optimal additive noise can improve the performance of the system in terms of maximum transmission distance and tolerable excess noise.

  20. Topological properties of robust biological and computational networks

    PubMed Central

    Navlakha, Saket; He, Xin; Faloutsos, Christos; Bar-Joseph, Ziv

    2014-01-01

    Network robustness is an important principle in biology and engineering. Previous studies of global networks have identified both redundancy and sparseness as topological properties used by robust networks. By focusing on molecular subnetworks, or modules, we show that module topology is tightly linked to the level of environmental variability (noise) the module expects to encounter. Modules internal to the cell that are less exposed to environmental noise are more connected and less robust than external modules. A similar design principle is used by several other biological networks. We propose a simple change to the evolutionary gene duplication model which gives rise to the rich range of module topologies observed within real networks. We apply these observations to evaluate and design communication networks that are specifically optimized for noisy or malicious environments. Combined, joint analysis of biological and computational networks leads to novel algorithms and insights benefiting both fields. PMID:24789562

  1. Aeroacoustic diffraction and dissipation by a short propeller cowl in subsonic flight

    NASA Technical Reports Server (NTRS)

    Martinez, Rudolph

    1993-01-01

    This report develops and applies an aeroacoustic diffraction theory for a duct, or cowl, placed around modelled sources of propeller noise. The regime of flight speed is high subsonic. The modelled cowl's inner wall contains a liner with axially variable properties. Its exterior is rigid. The analysis replaces both sides with an unsteady lifting surface coupled to a dynamic thickness problem. The resulting pair of aeroacoustic governing equations for a lined 'ring wing' is valid both for a passive and for an active liner. Their numerical solution yields the effective dipole and monopole distributions of the shrouding system and thereby determines the cowl-diffracted component of the total radiated field. The sample calculations here include a preliminary parametric search for that liner layout which maximizes the cowl's shielding effectiveness. The main conclusion of the study is that a short cowl, passively lined, should provide moderate reductions in propeller noise.

  2. Sensitive response of a model of symbiotic ecosystem to seasonal periodic drive

    NASA Astrophysics Data System (ADS)

    Rekker, A.; Lumi, N.; Mankin, R.

    2014-11-01

    A symbiotic ecosysytem (metapopulation) is studied by means of the stochastic Lotka-Volterra model with generalized Verhulst self-regulation. The effect of variable environment on the carrying capacities of populations is taken into account as an asymmetric dichotomous noise and as a deterministic periodic stimulus. In the framework of the mean-field theory an explicit self-consistency equation for the system in the long-time limit is presented. Also, expressions for the probability distribution and for the moments of the population size are found. In certain cases the mean population size exhibits large oscillations in time, even if the amplitude of the seasonal environmental drive is small. Particularly, it is shown that the occurrence of large oscillations of the mean population size can be controlled by noise parameters (such as amplitude and correlation time) and by the coupling strength of the symbiotic interaction between species.

  3. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2012-01-01

    An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.

  4. Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface

    NASA Technical Reports Server (NTRS)

    Brown, Cliff

    2015-01-01

    Empirical models for the shielding and refection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and rejection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.

  5. Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    Empirical models for the shielding and reflection of jet mixing noise by a nearby surface are described and the resulting models evaluated. The flow variables are used to non-dimensionalize the surface position variables, reducing the variable space and producing models that are linear function of non-dimensional surface position and logarithmic in Strouhal frequency. A separate set of coefficients are determined at each observer angle in the dataset and linear interpolation is used to for the intermediate observer angles. The shielding and reflection models are then combined with existing empirical models for the jet mixing and jet-surface interaction noise sources to produce predicted spectra for a jet operating near a surface. These predictions are then evaluated against experimental data.

  6. Noise analysis in numerical modeling of crossed fields microwave tubes

    NASA Astrophysics Data System (ADS)

    BłaŻejewicz, Mariusz; Woźniak, Martyna; Szkop, Emil; RóŻycki, Andrzej; Rychlewski, Michał; Baczewski, Dariusz; Laskowski, Dariusz

    2018-04-01

    One of the most important parameters that characterize microwave tubes with crossed fields, both amplifiers (CFA), and generating tubes like magnetrons is the noise level. This type of tubes are characterized by relatively high noise levels, which is the main factor limiting their current use in radar transmitters. The main source of noise in microwave tubes of this type is the dispersion of the energy of electrons that are in phase with the spatial wave of the electromagnetic field propagating in the delay line (in case of an amplitron) or in the resonant structure (in case of a magnetron).The results of the research presented in the article concern the technique of determination of Signal to Noise Ratio (SNR) based on the analysis of results obtained during the numerical simulations of the effect of electric charge on a high frequency electromagnetic field. Signal to noise ratio was determined by analysing in-phase and quadrature data recorded in the high frequency simulation. In order to assess the accuracy of the method under investigation, the results from the noise analysis obtained from numerical calculations were compared with the results obtained from real tube measurements performed by a spectrum analyser. On the basis of the research, it appears that performing analysis of noise generated in the interaction area may be useful for preliminary evaluation of the tube at the design stage.

  7. Exposure-effect relations between aircraft and road traffic noise exposure at school and reading comprehension: the RANCH project.

    PubMed

    Clark, Charlotte; Martin, Rocio; van Kempen, Elise; Alfred, Tamuno; Head, Jenny; Davies, Hugh W; Haines, Mary M; Lopez Barrio, Isabel; Matheson, Mark; Stansfeld, Stephen A

    2006-01-01

    Transport noise is an increasingly prominent feature of the urban environment, making noise pollution an important environmental public health issue. This paper reports on the 2001-2003 RANCH project, the first cross-national epidemiologic study known to examine exposure-effect relations between aircraft and road traffic noise exposure and reading comprehension. Participants were 2,010 children aged 9-10 years from 89 schools around Amsterdam Schiphol, Madrid Barajas, and London Heathrow airports. Data from The Netherlands, Spain, and the United Kingdom were pooled and analyzed using multilevel modeling. Aircraft noise exposure at school was linearly associated with impaired reading comprehension; the association was maintained after adjustment for socioeconomic variables (beta = -0.008, p = 0.012), aircraft noise annoyance, and other cognitive abilities (episodic memory, working memory, and sustained attention). Aircraft noise exposure at home was highly correlated with aircraft noise exposure at school and demonstrated a similar linear association with impaired reading comprehension. Road traffic noise exposure at school was not associated with reading comprehension in either the absence or the presence of aircraft noise (beta = 0.003, p = 0.509; beta = 0.002, p = 0.540, respectively). Findings were consistent across the three countries, which varied with respect to a range of socioeconomic and environmental variables, thus offering robust evidence of a direct exposure-effect relation between aircraft noise and reading comprehension.

  8. Evaluation of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2015-01-01

    This paper explores the effects of variable-depth geometry on the amount of noise reduction that can be achieved with acoustic liners. Results for two variable-depth liners tested in the NASA Langley Grazing Flow Impedance Tube demonstrate significant broadband noise reduction. An impedance prediction model is combined with two propagation codes to predict corresponding sound pressure level profiles over the length of the Grazing Flow Impedance Tube. The comparison of measured and predicted sound pressure level profiles is sufficiently favorable to support use of these tools for investigation of a number of proposed variable-depth liner configurations. Predicted sound pressure level profiles for these proposed configurations reveal a number of interesting features. Liner orientation clearly affects the sound pressure level profile over the length of the liner, but the effect on the total attenuation is less pronounced. The axial extent of attenuation at an individual frequency continues well beyond the location where the liner depth is optimally tuned to the quarter-wavelength of that frequency. The sound pressure level profile is significantly affected by the way in which variable-depth segments are distributed over the length of the liner. Given the broadband noise reduction capability for these liner configurations, further development of impedance prediction models and propagation codes specifically tuned for this application is warranted.

  9. Multimodel methods for optimal control of aeroacoustics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guoquan; Collis, Samuel Scott

    2005-01-01

    A new multidomain/multiphysics computational framework for optimal control of aeroacoustic noise has been developed based on a near-field compressible Navier-Stokes solver coupled with a far-field linearized Euler solver both based on a discontinuous Galerkin formulation. In this approach, the coupling of near- and far-field domains is achieved by weakly enforcing continuity of normal fluxes across a coupling surface that encloses all nonlinearities and noise sources. For optimal control, gradient information is obtained by the solution of an appropriate adjoint problem that involves the propagation of adjoint information from the far-field to the near-field. This computational framework has been successfully appliedmore » to study optimal boundary-control of blade-vortex interaction, which is a significant noise source for helicopters on approach to landing. In the model-problem presented here, the noise propagated toward the ground is reduced by 12dB.« less

  10. Signal-Induced Noise Effects in a Photon Counting System for Stratospheric Ozone Measurement

    NASA Technical Reports Server (NTRS)

    Harper, David B.; DeYoung, Russell J.

    1998-01-01

    A significant source of error in making atmospheric differential absorption lidar ozone measurements is the saturation of the photomultiplier tube by the strong, near field light return. Some time after the near field light signal is gone, the photomultiplier tube gate is opened and a noise signal, called signal-induced noise, is observed. Research reported here gives experimental results from measurement of photomultiplier signal-induced noise. Results show that signal-induced noise has several decaying exponential signals, suggesting that electrons are slowly emitted from different surfaces internal to the photomultiplier tube.

  11. Flat-fielding of Solar Hα Observations Based on the Maximum Correntropy Criterion

    NASA Astrophysics Data System (ADS)

    Xu, Gao-Gui; Zheng, Sheng; Lin, Gang-Hua; Wang, Xiao-Fan

    2016-08-01

    The flat-field CCD calibration method of Kuhn et al. (KLL) is an efficient method for flat-fielding. However, since it depends on the minimum of the sum of squares error (SSE), its solution is sensitive to noise, especially non-Gaussian noise. In this paper, a new algorithm is proposed to determine the flat field. The idea is to change the criterion of gain estimate from SSE to the maximum correntropy. The result of a test on simulated data demonstrates that our method has a higher accuracy and a faster convergence than KLL’s and Chae’s. It has been found that the method effectively suppresses noise, especially in the case of typical non-Gaussian noise. And the computing time of our algorithm is the shortest.

  12. Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Zeng, Guihua

    2018-01-01

    We propose a pilot-multiplexed continuous-variable quantum key distribution (CVQKD) scheme based on a local local oscillator (LLO). Our scheme utilizes time-multiplexing and polarization-multiplexing techniques to dramatically isolate the quantum signal from the pilot, employs two heterodyne detectors to separately detect the signal and the pilot, and adopts a phase compensation method to almost eliminate the multifrequency phase jitter. In order to analyze the performance of our scheme, a general LLO noise model is constructed. Besides the phase noise and the modulation noise, the photon-leakage noise from the reference path and the quantization noise due to the analog-to-digital converter (ADC) are also considered, which are first analyzed in the LLO regime. Under such general noise model, our scheme has a higher key rate and longer secure distance compared with the preexisting LLO schemes. Moreover, we also conduct an experiment to verify our pilot-multiplexed scheme. Results show that it maintains a low level of the phase noise and is expected to obtain a 554-Kbps secure key rate within a 15-km distance under the finite-size effect.

  13. On INM's Use of Corrected Net Thrust for the Prediction of Jet Aircraft Noise

    NASA Technical Reports Server (NTRS)

    McAninch, Gerry L.; Shepherd, Kevin P.

    2011-01-01

    The Federal Aviation Administration s (FAA) Integrated Noise Model (INM) employs a prediction methodology that relies on corrected net thrust as the sole correlating parameter between aircraft and engine operating states and aircraft noise. Thus aircraft noise measured for one set of atmospheric and aircraft operating conditions is assumed to be applicable to all other conditions as long as the corrected net thrust remains constant. This hypothesis is investigated under two primary assumptions: (1) the sound field generated by the aircraft is dominated by jet noise, and (2) the sound field generated by the jet flow is adequately described by Lighthill s theory of noise generated by turbulence.

  14. New technique for the direct measurement of core noise from aircraft engines

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1981-01-01

    A new technique is presented for directly measuring the core noise levels from gas turbine aircraft engines. The technique requires that fluctuating pressures be measured in the far-field and at two locations within the engine core. The cross-spectra of these measurements are used to determine the levels of the far-field noise that propagated from the engine core. The technique makes it possible to measure core noise levels even when other noise sources dominate. The technique was applied to signals measured from an AVCO Lycoming YF102 turbofan engine. Core noise levels as a function of frequency and radiation angle were measured and are presented over a range of power settings.

  15. Road traffic noise-induced sleep disturbances: a comparison between laboratory and field settings

    NASA Astrophysics Data System (ADS)

    Skånberg, Annbritt

    2004-10-01

    Due to the ongoing discussion about the relevance of sleep studies performed in the laboratory, the aim of this study was to assess the effects of road traffic noise exposure on sleep in laboratory and in field settings. Eighteen healthy young subjects participated in the study. They were exposed to noise from road traffic in the laboratory and exposed to the same recorded traffic noise exposure in their own homes. Their sleep was evaluated with wrist actigraphs and questionnaires on sleep. No significant increase in effects of noise on sleep in the laboratory was found. The results indicate that laboratory experiments do not exaggerate effects of noise on sleep.

  16. Acoustic and aerodynamic testing of a scale model variable pitch fan

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Kazin, S. B.

    1974-01-01

    A fully reversible pitch scale model fan with variable pitch rotor blades was tested to determine its aerodynamic and acoustic characteristics. The single-stage fan has a design tip speed of 1160 ft/sec (353.568 m/sec) at a bypass pressure ratio of 1.5. Three operating lines were investigated. Test results show that the blade pitch for minimum noise also resulted in the highest efficiency for all three operating lines at all thrust levels. The minimum perceived noise on a 200-ft (60.96 m) sideline was obtained with the nominal nozzle. At 44% of takeoff thrust, the PNL reduction between blade pitch and minimum noise blade pitch is 1.8 PNdB for the nominal nozzle and decreases with increasing thrust. The small nozzle (6% undersized) has the highest efficiency at all part thrust conditions for the minimum noise blade pitch setting; although, the noise is about 1.0 PNdB higher for the small nozzle at the minimum noise blade pitch position.

  17. Phase-noise limitations in continuous-variable quantum key distribution with homodyne detection

    NASA Astrophysics Data System (ADS)

    Corvaja, Roberto

    2017-02-01

    In continuous-variables quantum key distribution with coherent states, the advantage of performing the detection by using standard telecoms components is counterbalanced by the lack of a stable phase reference in homodyne detection due to the complexity of optical phase-locking circuits and to the unavoidable phase noise of lasers, which introduces a degradation on the achievable secure key rate. Pilot-assisted phase-noise estimation and postdetection compensation techniques are used to implement a protocol with coherent states where a local laser is employed and it is not locked to the received signal, but a postdetection phase correction is applied. Here the reduction of the secure key rate determined by the laser phase noise, for both individual and collective attacks, is analytically evaluated and a scheme of pilot-assisted phase estimation proposed, outlining the tradeoff in the system design between phase noise and spectral efficiency. The optimal modulation variance as a function of the phase-noise amount is derived.

  18. Effects of cross correlation on the relaxation time of a bistable system driven by cross-correlated noise

    NASA Astrophysics Data System (ADS)

    Mei, Dongcheng; Xie, Chongwei; Zhang, Li

    2003-11-01

    We study the effects of correlations between additive and multiplicative noise on relaxation time in a bistable system driven by cross-correlated noise. Using the projection-operator method, we derived an analytic expression for the relaxation time Tc of the system, which is the function of additive (α) and multiplicative (D) noise intensities, correlation intensity λ of noise, and correlation time τ of noise. After introducing a noise intensity ratio and a dimensionless parameter R=D/α, and then performing numerical computations, we find the following: (i) For the case of R<1, the relaxation time Tc increases as R increases. (ii) For the cases of R⩾1, there is a one-peak structure on the Tc-R plot and the effects of cross-correlated noise on the relaxation time are very notable. (iii) For the case of R<1, Tc almost does not change with both λ and τ, and for the cases of R⩾1, Tc decreases as λ increases, however Tc increases as τ increases. λ and τ play opposite roles in Tc, i.e., λ enhances the fluctuation decay of dynamical variable and τ slows down the fluctuation decay of dynamical variable.

  19. Experimental study of noise reduction for an unstiffened cylindrical model of an airplane fuselage

    NASA Astrophysics Data System (ADS)

    Willis, C. M.; Daniels, E. F.

    1981-12-01

    Noise reduction measurements were made for a simplified model of an airplane fuselage consisting of an unstiffened aluminum cylinder 0.5 m in diameter by 1.2 m long with a 1.6-mm-thick wall. Noise reduction was first measured with a reverberant field pink-noise load on the cylinder exterior. Next, noise reduction was measured by using a propeller to provide a more realistic noise load on the cylinder. Structural resonance frequencies and acoustic reverberation times for the cylinder interior volume were also measured. Comparison of data from the relatively simple test using reverberant-field noise with data from the more complex propeller-noise tests indicates some similarity in both the overall noise reduction and the spectral distribution. However, all of the test parameters investigated (propeller speed, blade pitch, and tip clearance) had some effect on the noise-reduction spectra. Thus, the amount of noise reduction achieved appears to be somewhat dependent upon the spectral and spatial characteristics of the flight conditions. Information is also presented on cyclinder resonance frequencies, damping, and characteristics of propeller-noise loads.

  20. Measurement Sensitivity Improvement of All-Optical Atomic Spin Magnetometer by Suppressing Noises

    PubMed Central

    Chen, Xiyuan; Zhang, Hong; Zou, Sheng

    2016-01-01

    Quantum manipulation technology and photoelectric detection technology have jointly facilitated the rapid development of ultra-sensitive atomic spin magnetometers. To improve the output signal and sensitivity of the spin-exchange-relaxation-free (SERF) atomic spin magnetometer, the noises influencing on the output signal and the sensitivity were analyzed, and the corresponding noise suppression methods were presented. The magnetic field noises, including the residual magnetic field noise and the light shift noise, were reduced to approximately zero by employing the magnetic field compensation method and by adjusting the frequency of the pump beam, respectively. With respect to the operation temperature, the simulation results showed that the temperature of the potassium atomic spin magnetometer realizing the spin-exchange relaxation-free regime was 180 °C. Moreover, the fluctuation noises of the frequency and the power were suppressed by using the frequency and the power stable systems. The experimental power stability results showed that the light intensity stability was enhanced 10%. Contrast experiments on the sensitivity were carried out to demonstrate the validity of the suppression methods. Finally, a sensitivity of 13 fT/Hz1/2 was successfully achieved by suppressing noises and optimizing parameters. PMID:27322272

  1. Spatial Correlation in the Ambient Core Noise Field of a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2012-01-01

    An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0 400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NOx and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.

  2. Aeroacoustic Validation of Installed Low Noise Propulsion for NASA's N+2 Supersonic Airliner

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2018-01-01

    An aeroacoustic test was conducted at NASA Glenn Research Center on an integrated propulsion system designed to meet noise regulations of ICAO Chapter 4 with 10EPNdB cumulative margin. The test had two objectives: to demonstrate that the aircraft design did meet the noise goal, and to validate the acoustic design tools used in the design. Variations in the propulsion system design and its installation were tested and the results compared against predictions. Far-field arrays of microphones measured the acoustic spectral directivity, which was transformed to full scale as noise certification levels. Phased array measurements confirmed that the shielding of the installation model adequately simulated the full aircraft and provided data for validating RANS-based noise prediction tools. Particle image velocimetry confirmed that the flow field around the nozzle on the jet rig mimicked that of the full aircraft and produced flow data to validate the RANS solutions used in the noise predictions. The far-field acoustic measurements confirmed the empirical predictions for the noise. Results provided here detail the steps taken to ensure accuracy of the measurements and give insights into the physics of exhaust noise from installed propulsion systems in future supersonic vehicles.

  3. An implementation problem for boson fields and quantum Girsanov transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr; Obata, Nobuaki, E-mail: obata@math.is.tohoku.ac.jp

    2016-08-15

    We study an implementation problem for quadratic functions of annihilation and creation operators on a boson field in terms of quantum white noise calculus. The implementation problem is shown to be equivalent to a linear differential equation for white noise operators containing quantum white noise derivatives. The solution is explicitly obtained and turns out to form a class of white noise operators including generalized Fourier–Gauss and Fourier–Mehler transforms, Bogoliubov transform, and a quantum extension of the Girsanov transform.

  4. Dependence of Noise in Magnetic Tunnel Junctions Sensors on Annealing Field and Temperature

    DTIC Science & Technology

    2008-03-07

    and can be characterized by Hooge’s formula,11,12 Sf = HVs 2 NAf , where H is the material-specific Hooge parameter , A is the junction area, and...noise floor at low frequency in the future. Figure 5 shows the fitting of the noise spectra, which provides values for the Hooge parameter H for the...environment. © 2008 American Institute of Physics. DOI: 10.1063/1.2837659 I. INTRODUCTION Sensor noise is a crucial parameter in low-field applica- tions

  5. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1992-01-01

    To investigate the possibility of active control of jet noise, knowledge of the noise generation mechanisms in natural jets is essential. Once these mechanisms are determined, active control can be used to manipulate the noise production processes. We investigated the evolution of the flow fields and the acoustic fields of rectangular and circular jets. A predominant flapping mode was found in the supersonic rectangular jets. We hope to increase the spreading of supersonic jets by active control of the flapping mode found in rectangular supersonic jets.

  6. Propfan noise propagation

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Sim, Ben WEL-C.

    1993-01-01

    The unconventional supersonic tip speed of advanced propellers has led to uncertainties about Propfan's noise acceptability and compliance with Federal Aviation Noise Regulation (FAR 36). Overhead flight testing of the Propfan with an SR-7L blade during 1989's Propfan Test Assessment (PTA) Program have shown unexpectedly high far-field sound pressure levels. This study here attempts to provide insights into the acoustics of a single-rotating propeller (SRP) with supersonic tip speed. At the same time, the role of the atmosphere in shaping the far-field noise characteristics is investigated.

  7. Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise

    NASA Astrophysics Data System (ADS)

    Royston, Sam; Watson, Christopher S.; Legrésy, Benoît; King, Matt A.; Church, John A.; Bos, Machiel S.

    2018-03-01

    Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for long-duration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sea-level trend to emerge from the noise reduces by up to 2 decades.

  8. Prevalence and risk factors of noise-induced hearing loss among liquefied petroleum gas (LPG) cylinder infusion workers in Taiwan.

    PubMed

    Chang, Shu-Ju; Chang, Chin-Kuo

    2009-12-01

    We assessed the exposure levels of noise, estimated prevalence, and identify risk factors of noise-induced hearing loss (NIHL) among male workers with a cross-sectional study in a liquefied petroleum gas cylinder infusion factory in Taipei City. Male in-field workers exposed to noise and administrative controls were enrolled in 2006 and 2007. Face-to-face interviews were applied for demographics, employment history, and drinking/smoking habit. We then performed the measurements on noise levels in field and administration area, and hearing thresholds on study subjects with standard apparatus and protocols. Existence of hearing loss > 25 dBHL for the average of 500 Hz, 1 kHz, and 2 kHz was accordingly determined for NIHL. The effects from noise exposure, predisposing characteristics, employment-related factors, and personal habits to NIHL were estimated by univariate and multivariate logistic regressions. A total of 75 subjects were involved in research and 56.8% of in-field workers had NIHL. Between the in-field and administration groups, hearing thresholds on the worse ear showed significant differences at frequencies of 4 k, 6 k, and 8 kHz with aging considered. Adjusted odds ratio for field noise exposure (OR=99.57, 95% CI: 3.53, 2,808.74) and frequent tea or coffee consumption (OR=0.03, 95% CI: 0.01, 0.51) were found significant. Current study addressed NIHL in a specific industry in Taiwan. Further efforts in minimizing its impact are still in need.

  9. Neural variability, or lack thereof

    PubMed Central

    Masquelier, Timothée

    2013-01-01

    We do not claim that the brain is completely deterministic, and we agree that noise may be beneficial in some cases. But we suggest that neuronal variability may be often overestimated, due to uncontrolled internal variables, and/or the use of inappropriate reference times. These ideas are not new, but should be re-examined in the light of recent experimental findings: trial-to-trial variability is often correlated across neurons, across trials, greater for higher-order neurons, and reduced by attention, suggesting that “intrinsic” sources of noise can only account for a minimal part of it. While it is obviously difficult to control for all internal variables, the problem of reference time can be largely avoided by recording multiple neurons at the same time, and looking at statistical structures in relative latencies. These relative latencies have another major advantage: they are insensitive to the variability that is shared across neurons, which is often a significant part of the total variability. Thus, we suggest that signal-to-noise ratios in the brain may be much higher than usually thought, leading to reactive systems, economic in terms of number of neurons, and energy efficient. PMID:23444270

  10. Global examination of the wind-dependence of very low frequency underwater ambient noise.

    PubMed

    Nichols, Stephen M; Bradley, David L

    2016-03-01

    Ocean surface winds play a key role in underwater ambient noise generation. One particular frequency band of interest is the infrasonic or very low frequency (VLF) band from 1 to 20 Hz. In this spectral band, wind generated ocean surface waves interact non-linearly to produce acoustic waves, which couple into the seafloor to generate microseisms, as explained by the theory developed by Longuet-Higgins. This study examines long term data sets in the VLF portion of the ambient noise spectrum, collected by the hydroacoustic systems of the Comprehensive Nuclear-Test Ban Treaty Organization in the Atlantic, Pacific, and Indian Oceans. Three properties of the noise field were examined: (a) the behavior of the acoustic spectrum slope from 1 to 5 Hz, (b) correlation of noise levels and wind speeds, and (c) the autocorrelation behavior of both the noise field and the wind. Analysis results indicate the spectrum slope is site dependent, and for both correlation methods, a high correlation between wind and the noise field in the 1-5 Hz band.

  11. Direction dependent Love and Rayleigh wave noise characteristics using multiple arrays across Europe

    NASA Astrophysics Data System (ADS)

    Juretzek, Carina; Perleth, Magdalena; Hadziioannou, Celine

    2016-04-01

    Seismic noise has become an important signal source for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about common and different origins of Love and Rayleigh waves in the microseism band is still limited. This applies in particular for constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the different polarized wave types in the primary and secondary microseism noise field recorded at several arrays across Europe. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured and a dependence on direction is found, especially in the primary microseism band. Estimates of the kinetic energy density ratios propose a dominance of coherent Love waves in the primary, but not in the secondary microseism band. The seasonality of the noise field characteristics is examined by using a full year of data in 2013 and is found to be stable.

  12. Test Bench for Coupling and Shielding Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jordan, J.; Esteve, V.; Dede, E.; Sanchis, E.; Maset, E.; Ferreres, A.; Ejea, J. B.; Cases, C.

    2016-05-01

    This paper describes a test bench for training purposes, which uses a magnetic field generator to couple this magnetic field to a victim circuit. It can be very useful to test for magnetic susceptibility as well. The magnetic field generator consists of a board, which generates a variable current that flows into a printed circuit board with spiral tracks (noise generator). The victim circuit consists of a coaxial cable concentric with the spiral tracks and its generated magnetic field. The coaxial cable is part of a circuit which conducts a signal produced by a signal generator and a resistive load. In the paper three cases are studied. First, the transmitted signal from the signal generator uses the central conductor of the coaxial cable and the shield is floating. Second, the shield is short circuited at its ends (and thus forming a loop). Third, when connecting the shield in series with the inner conductor and therefore having the current flowing into the coax via the inner conductor and returning via the shield.

  13. Variability-selected active galactic nuclei in the VST-SUDARE/VOICE survey of the COSMOS field

    NASA Astrophysics Data System (ADS)

    De Cicco, D.; Paolillo, M.; Covone, G.; Falocco, S.; Longo, G.; Grado, A.; Limatola, L.; Botticella, M. T.; Pignata, G.; Cappellaro, E.; Vaccari, M.; Trevese, D.; Vagnetti, F.; Salvato, M.; Radovich, M.; Brandt, W. N.; Capaccioli, M.; Napolitano, N. R.; Schipani, P.

    2015-02-01

    Context. Active galaxies are characterized by variability at every wavelength, with timescales from hours to years depending on the observing window. Optical variability has proven to be an effective way of detecting AGNs in imaging surveys, lasting from weeks to years. Aims: In the present work we test the use of optical variability as a tool to identify active galactic nuclei in the VST multiepoch survey of the COSMOS field, originally tailored to detect supernova events. Methods: We make use of the multiwavelength data provided by other COSMOS surveys to discuss the reliability of the method and the nature of our AGN candidates. Results: The selection on the basis of optical variability returns a sample of 83 AGN candidates; based on a number of diagnostics, we conclude that 67 of them are confirmed AGNs (81% purity), 12 are classified as supernovae, while the nature of the remaining 4 is unknown. For the subsample of AGNs with some spectroscopic classification, we find that Type 1 are prevalent (89%) compared to Type 2 AGNs (11%). Overall, our approach is able to retrieve on average 15% of all AGNs in the field identified by means of spectroscopic or X-ray classification, with a strong dependence on the source apparent magnitude (completeness ranging from 26% to 5%). In particular, the completeness for Type 1 AGNs is 25%, while it drops to 6% for Type 2 AGNs. The rest of the X-ray selected AGN population presents on average a larger rms variability than the bulk of non-variable sources, indicating that variability detection for at least some of these objects is prevented only by the photometric accuracy of the data. The low completeness is in part due to the short observing span: we show that increasing the temporal baseline results in larger samples as expected for sources with a red-noise power spectrum. Our results allow us to assess the usefulness of this AGN selection technique in view of future wide-field surveys. Observations were provided by the ESO programs 088.D-0370 and 088.D-4013 (PI G. Pignata).Table 3 is available in electronic form at http://www.aanda.org

  14. Population-Based Questionnaire Survey on Health Effects of Aircraft Noise on Residents Living around U.S. Airfields in the RYUKYUS—PART i: AN Analysis of 12 Scale Scores

    NASA Astrophysics Data System (ADS)

    MIYAKITA, T.; MATSUI, T.; ITO, A.; TOKUYAMA, T.; HIRAMATSU, K.; OSADA, Y.; YAMAMOTO, T.

    2002-02-01

    A questionnaire survey was made of health effects of aircraft noise on residents living around Kadena and Futenma airfields using the Todai Health Index. Aircraft noise exposure expressed by Ldnranged from under 55 to over 70 in the surveyed area. The number of valid answers was 7095, including 848 among the control group. Twelve scale scores were converted to dichotomous variables based on scale scores of the 90 percentile value or the 10 percentile value in the control group. Multiple logistic regression analysis was done taking 12 scale scores converted into the dependent variable andLdn , age (six levels), sex, occupation (four categories) and the interaction of age and sex as the independent variables. Significant dose-response relationships were found in the scale scores for vague complaints, respiratory, digestive, mental instability, depression and nervousness. The results suggest that the residents living around Kadena and Futenma airfields may suffer both physical and mental effects as a result of exposure to military aircraft noise and that such responses increase with the level of noise exposure (Ldn).

  15. The Effect of Talker and Intonation Variability on Speech Perception in Noise in Children with Dyslexia

    ERIC Educational Resources Information Center

    Hazan, Valerie; Messaoud-Galusi, Souhila; Rosen, Stuart

    2013-01-01

    Purpose: In this study, the authors aimed to determine whether children with dyslexia (hereafter referred to as "DYS children") are more affected than children with average reading ability (hereafter referred to as "AR children") by talker and intonation variability when perceiving speech in noise. Method: Thirty-four DYS and 25 AR children were…

  16. Determination of near and far field acoustics for advanced propeller configurations

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Jaeger, S. M.; Kim, J. H.

    1989-01-01

    A method has been studied for predicting the acoustic field of the SR-3 transonic propfan using flow data generated by two versions of the NASPROP-E computer code. Since the flow fields calculated by the solvers include the shock-wave system of the propeller, the nonlinear quadrupole noise source term is included along with the monopole and dipole noise sources in the calculation of the acoustic near field. Acoustic time histories in the near field are determined by transforming the azimuthal coordinate in the rotating, blade-fixed coordinate system to the time coordinate in a nonrotating coordinate system. Fourier analysis of the pressure time histories is used to obtain the frequency spectra of the near-field noise.

  17. Noise removal in extended depth of field microscope images through nonlinear signal processing.

    PubMed

    Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J

    2013-04-01

    Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.

  18. Fundamental and applied research on core engine/combustion noise of aircraft engines

    NASA Technical Reports Server (NTRS)

    Plett, E. G.; Leshner, M. D.; Summerfield, M.

    1974-01-01

    Some results of a study of the importance of geometrical features of the combustor to combustion roughness and resulting noise are presented. Comparison is made among a perforated can flame holder, a plane slotted flame holder and a plane slotted flame holder which introduces two counter swirling streams. The latter is found to permit the most stable, quiet combustion. Crosscorrelations between the time derivative of chamber pressure fluctuations and far field noise are found to be stronger than between the far field noise and the direct chamber pressure signal. Temperature fluctuations in the combustor nozzle are also found to have a reasonably strong crosscorrelation with far field sound.

  19. Investigation of scrubbing and impingement noise

    NASA Technical Reports Server (NTRS)

    Fink, M. R.

    1975-01-01

    Tests were conducted in an acoustic wind tunnel to determine surface pressure spectra and far field noise caused by turbulence impinging on an airfoil and turbulence convected past a sharp trailing edge. Measured effects of flow velocity and turbulence intensity were compared with predictions from several theories. Also, tests were conducted in an anechoic chamber to determine surface pressure spectra and far field noise caused by a deflected airfoil scrubbed by a subsonic jet. This installation simulated both an under-the-wing and an upper-surface-blowing externally blown flap, depending on the deflection angle. Surface and far field spectra, and cross correlation coherence and delay time, were utilized to infer the major noise-producing mechanisms.

  20. Endogenous field feedback promotes the detectability for exogenous electric signal in the hybrid coupled population.

    PubMed

    Wei, Xile; Zhang, Danhong; Lu, Meili; Wang, Jiang; Yu, Haitao; Che, Yanqiu

    2015-01-01

    This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.

  1. Noise, gain, and capture probability of p-type InAs-GaAs quantum-dot and quantum dot-in-well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Wolde, Seyoum; Lao, Yan-Feng; Unil Perera, A. G.; Zhang, Y. H.; Wang, T. M.; Kim, J. O.; Schuler-Sandy, Ted; Tian, Zhao-Bing; Krishna, S.

    2017-06-01

    We report experimental results showing how the noise in a Quantum-Dot Infrared photodetector (QDIP) and Quantum Dot-in-a-well (DWELL) varies with the electric field and temperature. At lower temperatures (below ˜100 K), the noise current of both types of detectors is dominated by generation-recombination (G-R) noise which is consistent with a mechanism of fluctuations driven by the electric field and thermal noise. The noise gain, capture probability, and carrier life time for bound-to-continuum or quasi-bound transitions in DWELL and QDIP structures are discussed. The capture probability of DWELL is found to be more than two times higher than the corresponding QDIP. Based on the analysis, structural parameters such as the numbers of active layers, the surface density of QDs, and the carrier capture or relaxation rate, type of material, and electric field are some of the optimization parameters identified to improve the gain of devices.

  2. Spatiotemporal noise characterization for chirped-pulse amplification systems

    PubMed Central

    Ma, Jingui; Yuan, Peng; Wang, Jing; Wang, Yongzhi; Xie, Guoqiang; Zhu, Heyuan; Qian, Liejia

    2015-01-01

    Optical noise, the core of the pulse-contrast challenge for ultra-high peak power femtosecond lasers, exhibits spatiotemporal (ST) coupling induced by angular dispersion. Full characterization of such ST noise requires two-dimensional measurements in the ST domain. Thus far, all noise measurements have been made only in the temporal domain. Here we report the experimental characterization of the ST noise, which is made feasible by extending cross-correlation from the temporal domain to the ST domain. We experimentally demonstrate that the ST noise originates from the optical surface imperfections in the pulse stretcher/compressor and exhibits a linear ST coupling in the far-field plane. The contrast on the far-field axis, underestimated in the conventional measurements, is further improved by avoiding the far-field optics in the stretcher. These results enhance our understanding of the pulse contrast with respect to its ST-coupling nature and pave the way toward the design of high-contrast ultra-high peak power lasers. PMID:25648187

  3. Large contact noise in graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Karnatak, Paritosh; Sai, Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam

    Fluctuations in the electrical resistance at the interface of atomically thin materials and metals, or the contact noise, can adversely affect the device performance but remains largely unexplored. We have investigated contact noise in graphene field effect transistors of varying device geometry and contact configuration, with channel carrier mobility ranging from 5,000 to 80,000 cm2V-1s-1. A phenomenological model developed for contact noise due to current crowding for two dimensional conductors, shows a dominant contact contribution to the measured resistance noise in all graphene field effect transistors when measured in the two-probe or invasive four probe configurations, and surprisingly, also in nearly noninvasive four probe (Hall bar) configuration in the high mobility devices. We identify the fluctuating electrostatic environment of the metal-channel interface as the major source of contact noise, which could be generic to two dimensional material-based electronic devices. The work was financially supported by the Department of Science and Technology, India and Tokyo Electron Limited.

  4. Multichannel analysis of surface waves

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of redundancy with a single field configuration, and the ability to adjust the offset, effectively reducing random or nonlinear noise introduced during recording. A multichannel shot gather decomposed into a swept-frequency record allows the fast generation of an accurate dispersion curve. The accuracy of dispersion curves determined using this method is proven through field comparisons of the inverted shear-wave velocity (??(s)) profile with a downhole ??(s) profile.Multichannel recording is an efficient method of acquiring ground roll. By displaying the obtained information in a swept-frequency format, different frequency components of Rayleigh waves can be identified by distinctive and simple coherency. In turn, a seismic surface-wave method is derived that provides a useful noninvasive tool, where information about elastic properties of near-surface materials can be effectively obtained.

  5. Noise pollution mapping approach and accuracy on landscape scales.

    PubMed

    Iglesias Merchan, Carlos; Diaz-Balteiro, Luis

    2013-04-01

    Noise mapping allows the characterization of environmental variables, such as noise pollution or soundscape, depending on the task. Strategic noise mapping (as per Directive 2002/49/EC, 2002) is a tool intended for the assessment of noise pollution at the European level every five years. These maps are based on common methods and procedures intended for human exposure assessment in the European Union that could be also be adapted for assessing environmental noise pollution in natural parks. However, given the size of such areas, there could be an alternative approach to soundscape characterization rather than using human noise exposure procedures. It is possible to optimize the size of the mapping grid used for such work by taking into account the attributes of the area to be studied and the desired outcome. This would then optimize the mapping time and the cost. This type of optimization is important in noise assessment as well as in the study of other environmental variables. This study compares 15 models, using different grid sizes, to assess the accuracy of the noise mapping of the road traffic noise at a landscape scale, with respect to noise and landscape indicators. In a study area located in the Manzanares High River Basin Regional Park in Spain, different accuracy levels (Kappa index values from 0.725 to 0.987) were obtained depending on the terrain and noise source properties. The time taken for the calculations and the noise mapping accuracy results reveal the potential for setting the map resolution in line with decision-makers' criteria and budget considerations. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Truck Noise X : Noise Reduction Options for Diesel Powered International Harvester Trucks : Volume 2. Cost-Noise Analysis and Field Installation.

    DOT National Transportation Integrated Search

    1977-04-01

    Noise reduction option development work was carried out on two inservice diesel powered IH trucks, consisting of a Cab-over model and a Conventional model with a baseline exterior noise level of 87 dB(A) each. Since no specific noise goals were set, ...

  7. J-85 jet engine noise measured in the ONERA S1 wind tunnel and extrapolated to far field

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Julienne, Alain; Atencio, Adolph, Jr.

    1991-01-01

    Noise from a J-85 turbojet with a conical, convergent nozzle was measured in simulated flight in the ONERA S1 Wind Tunnel. Data are presented for several flight speeds up to 130 m/sec and for radiation angles of 40 to 160 degrees relative to the upstream direction. The jet was operated with subsonic and sonic exhaust speeds. A moving microphone on a 2 m sideline was used to survey the radiated sound field in the acoustically treated, closed test section. The data were extrapolated to a 122 m sideline by means of a multiple-sideline source-location method, which was used to identify the acoustic source regions, directivity patterns, and near field effects. The source-location method is described along with its advantages and disadvantages. Results indicate that the effects of simulated flight on J-85 noise are significant. At the maximum forward speed of 130 m/sec, the peak overall sound levels in the aft quadrant were attentuated approximately 10 dB relative to sound levels of the engine operated statically. As expected, the simulated flight and static data tended to merge in the forward quadrant as the radiation angle approached 40 degrees. There is evidence that internal engine or shock noise was important in the forward quadrant. The data are compared with published predictions for flight effects on pure jet noise and internal engine noise. A new empirical prediction is presented that relates the variation of internally generated engine noise or broadband shock noise to forward speed. Measured near field noise extrapolated to far field agrees reasonably well with data from similar engines tested statically outdoors, in flyover, in a wind tunnel, and on the Bertin Aerotrain. Anomalies in the results for the forward quadrant and for angles above 140 degrees are discussed. The multiple-sideline method proved to be cumbersome in this application, and it did not resolve all of the uncertainties associated with measurements of jet noise close to the jet. The simulation was complicated by wind-tunnel background noise and the propagation of low frequency sound around the circuit.

  8. Carrier trajectory tracking equations for Simple-band Monte Carlo simulation of avalanche multiplication processes

    NASA Astrophysics Data System (ADS)

    Ong, J. S. L.; Charin, C.; Leong, J. H.

    2017-12-01

    Avalanche photodiodes (APDs) with steep electric field gradients generally have low excess noise that arises from carrier multiplication within the internal gain of the devices, and the Monte Carlo (MC) method is among popular device simulation tools for such devices. However, there are few articles relating to carrier trajectory modeling in MC models for such devices. In this work, a set of electric-field-gradient-dependent carrier trajectory tracking equations are developed and used to update the positions of carriers along the path during Simple-band Monte Carlo (SMC) simulations of APDs with non-uniform electric fields. The mean gain and excess noise results obtained from the SMC model employing these equations show good agreement with the results reported for a series of silicon diodes, including a p+n diode with steep electric field gradients. These results confirm the validity and demonstrate the feasibility of the trajectory tracking equations applied in SMC models for simulating mean gain and excess noise in APDs with non-uniform electric fields. Also, the simulation results of mean gain, excess noise, and carrier ionization positions obtained from the SMC model of this work agree well with those of the conventional SMC model employing the concept of a uniform electric field within a carrier free-flight. These results demonstrate that the electric field variation within a carrier free-flight has an insignificant effect on the predicted mean gain and excess noise results. Therefore, both the SMC model of this work and the conventional SMC model can be used to predict the mean gain and excess noise in APDs with highly non-uniform electric fields.

  9. Distinct Correlation Structure Supporting a Rate-Code for Sound Localization in the Owl’s Auditory Forebrain

    PubMed Central

    2017-01-01

    Abstract While a topographic map of auditory space exists in the vertebrate midbrain, it is absent in the forebrain. Yet, both brain regions are implicated in sound localization. The heterogeneous spatial tuning of adjacent sites in the forebrain compared to the midbrain reflects different underlying circuitries, which is expected to affect the correlation structure, i.e., signal (similarity of tuning) and noise (trial-by-trial variability) correlations. Recent studies have drawn attention to the impact of response correlations on the information readout from a neural population. We thus analyzed the correlation structure in midbrain and forebrain regions of the barn owl’s auditory system. Tetrodes were used to record in the midbrain and two forebrain regions, Field L and the downstream auditory arcopallium (AAr), in anesthetized owls. Nearby neurons in the midbrain showed high signal and noise correlations (RNCs), consistent with shared inputs. As previously reported, Field L was arranged in random clusters of similarly tuned neurons. Interestingly, AAr neurons displayed homogeneous monotonic azimuth tuning, while response variability of nearby neurons was significantly less correlated than the midbrain. Using a decoding approach, we demonstrate that low RNC in AAr restricts the potentially detrimental effect it can have on information, assuming a rate code proposed for mammalian sound localization. This study harnesses the power of correlation structure analysis to investigate the coding of auditory space. Our findings demonstrate distinct correlation structures in the auditory midbrain and forebrain, which would be beneficial for a rate-code framework for sound localization in the nontopographic forebrain representation of auditory space. PMID:28674698

  10. Noise enhanced stability of a metastable state containing coupled Brownian particles

    NASA Astrophysics Data System (ADS)

    Singh, R. K.

    2017-05-01

    Dynamics of coupled Brownian particles with color correlated additive Gaussian colored noises in a metastable state is analyzed to study the phenomenon of noise enhanced stability. The lifetime of such a metastable state is found to depend on the noise correlations and initial conditions. Dynamics of the slow variable is analyzed using the method of adiabatic elimination in the weak color limit.

  11. Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temeperature

    NASA Technical Reports Server (NTRS)

    Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric

    2012-01-01

    Struts shaping of the NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing structure. Reduction in the RF near-field exposure will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas. Both reductions of RF near-field exposure and antenna noise temperature were verified through measurements and agree very well with calculated results.

  12. Modeling the stress dependence of Barkhausen phenomena for stress axis linear and noncollinear with applied magnetic field (abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sablik, M.J.; Augustyniak, B.; Chmielewski, M.

    1996-04-01

    The almost linear dependence of the maximum Barkhausen noise signal amplitude on stress has made it a tool for nondestructive evaluation of residual stress. Recently, a model has been developed to account for the stress dependence of the Barkhausen noise signal. The model uses the development of Alessandro {ital et} {ital al}. who use coupled Langevin equations to derive an expression for the Barkhausen noise power spectrum. The model joins this expression to the magnetomechanical hysteresis model of Sablik {ital et} {ital al}., obtaining both a hysteretic and stress-dependent result for the magnetic-field-dependent Barkhausen noise envelope and obtaining specifically themore » almost linear stress dependence of the Barkhausen noise maximum experimentally. In this paper, we extend the model to derive the angular dependence observed by Kwun of the Barkhausen noise amplitude when stress axis is taken at different angles relative to magnetic field. We also apply the model to the experimental observation that in XC10 French steel, there is an apparent almost linear correlation with stress of hysteresis loss and of the integral of the Barkhausen noise signal over applied field {ital H}. Further, the two quantities, Barkhausen noise integral and hysteresis loss, are linearly correlated with each other. The model shows how that behavior is to be expected for the measured steel because of its sharply rising hysteresis curve. {copyright} {ital 1996 American Institute of Physics.}« less

  13. Working with Noise in Bivariate Data

    ERIC Educational Resources Information Center

    Groth, Randall E.; Jones, Matthew; Knaub, Mary

    2017-01-01

    The authors asked a group of students during a classroom research study to analyze data sets containing different amounts of noise. The authors use the word "noise" to refer to statistical variability. The four students in the group were finishing seventh grade and participating in summer mathematics instruction. The authors carefully…

  14. Design of a cusped field thruster for drag-free flight

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chen, P. B.; Sun, Q. Q.; Hu, P.; Meng, Y. C.; Mao, W.; Yu, D. R.

    2016-09-01

    Drag-free flight has played a more and more important role in many space missions. The thrust control system is the key unit to achieve drag-free flight by providing a precise compensation for the disturbing force except gravity. The cusped field thruster has shown a significant potential to be capable of the function due to its long life, high efficiency, and simplicity. This paper demonstrates a cusped field thruster's feasibility in drag-free flight based on its instinctive characteristics and describes a detailed design of a cusped field thruster made by Harbin Institute of Technology (HIT). Furthermore, the performance test is conducted, which shows that the cusped field thruster can achieve a continuously variable thrust from 1 to 20 mN with a low noise and high resolution below 650 W, and the specific impulse can achieve 1800 s under a thrust of 18 mN and discharge voltage of 1000 V. The thruster's overall performance indicates that the cusped field thruster is quite capable of achieving drag-free flight. With the further optimization, the cusped field thruster will exhibit a more extensive application value.

  15. Heliport noise model : methodology - draft report

    DOT National Transportation Integrated Search

    1988-04-30

    The Heliport Noise Model (HNM) is the United States standard for predicting civil helicopter noise exposure in the vicinity of heliports and airports. HNM Version 1 is the culmination of several years of work in helicopter noise research, field measu...

  16. Long-distance continuous-variable quantum key distribution by controlling excess noise

    NASA Astrophysics Data System (ADS)

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-01

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network.

  17. Long-distance continuous-variable quantum key distribution by controlling excess noise.

    PubMed

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-13

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network.

  18. Long-distance continuous-variable quantum key distribution by controlling excess noise

    PubMed Central

    Huang, Duan; Huang, Peng; Lin, Dakai; Zeng, Guihua

    2016-01-01

    Quantum cryptography founded on the laws of physics could revolutionize the way in which communication information is protected. Significant progresses in long-distance quantum key distribution based on discrete variables have led to the secure quantum communication in real-world conditions being available. However, the alternative approach implemented with continuous variables has not yet reached the secure distance beyond 100 km. Here, we overcome the previous range limitation by controlling system excess noise and report such a long distance continuous-variable quantum key distribution experiment. Our result paves the road to the large-scale secure quantum communication with continuous variables and serves as a stepping stone in the quest for quantum network. PMID:26758727

  19. The Impact of ENSO on Extratropical Low Frequency Noise in Seasonal Forecasts

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, Max J.; Chang, Yehui; Branstator, Grant

    2000-01-01

    This study examines the uncertainty in forecasts of the January-February-March (JFM) mean extratropical circulation, and how that uncertainty is modulated by the El Nino/Southern Oscillation (ENSO). The analysis is based on ensembles of hindcasts made with an Atmospheric General Circulation Model (AGCM) forced with sea surface temperatures observed during; the 1983 El Nino and 1989 La Nina events. The AGCM produces pronounced interannual differences in the magnitude of the extratropical seasonal mean noise (intra-ensemble variability). The North Pacific, in particular, shows extensive regions where the 1989 seasonal mean noise kinetic energy (SKE), which is dominated by a "PNA-like" spatial structure, is more than twice that of the 1983 forecasts. The larger SKE in 1989 is associated with a larger than normal barotropic conversion of kinetic energy from the mean Pacific jet to the seasonal mean noise. The generation of SKE due to sub-monthly transients also shows substantial interannual differences, though these are much smaller than the differences in the mean flow conversions. An analysis of the Generation of monthly mean noise kinetic energy (NIKE) and its variability suggests that the seasonal mean noise is predominantly a statistical residue of variability resulting from dynamical processes operating on monthly and shorter times scales. A stochastically-forced barotropic model (linearized about the AGCM's 1983 and 1989 base states) is used to further assess the role of the basic state, submonthly transients, and tropical forcing, in modulating the uncertainties in the seasonal AGCM forecasts. When forced globally with spatially-white noise, the linear model generates much larger variance for the 1989 base state, consistent with the AGCM results. The extratropical variability for the 1989 base state is dominanted by a single eigenmode, and is strongly coupled with forcing over tropical western Pacific and the Indian Ocean, again consistent with the AGCM results. Linear calculations that include forcing from the AGCM variance of the tropical forcing and submonthly transients show a small impact on the variability over the Pacific/North American region compared with that of the base state differences.

  20. The effect of forward speed on J85 engine noise from suppressor nozzles as measured in the NASA-Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.

    1977-01-01

    An investigation to determine the effect of forward speed on the exhaust noise from a conical ejector nozzle and three suppressor nozzles mounted behind a J85 engine was performed in a 40- by 80-foot wind tunnel. The nozzles were tested at three engine power settings and at wind tunnel forward speeds up to 91 m/sec (300 ft/sec). In addition, outdoor static tests were conducted to determine (1) the differences between near field and far field measurements, (2) the effect of an airframe on the far field directivity of each nozzle, and (3) the relative suppression of each nozzle with respect to the baseline conical ejector nozzle. It was found that corrections to near field data are necessary to extrapolate to far field data and that the presence of the airframe changed the far field directivity as measured statically. The results show that the effect of forward speed was to reduce the noise from each nozzle more in the area of peak noise, but the change in forward quadrant noise was small or negligible. A comparison of wind tunnel data with available flight test data shows good agreement.

  1. Physical and subjective studies of aircraft interior noise and vibration

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Leatherwood, J. D.

    1979-01-01

    Measurements to define and quantify the interior noise and vibration stimuli of aircraft are reviewed as well as field and simulation studies to determine the subjective response to such stimuli, and theoretical and experimental studies to predict and control the interior environment. In addition, ride quality criteria/standards for noise, vibration, and combinations of these stimuli are discussed in relation to the helicopter cabin environment. Data on passenger response are presented to illustrate the effects of interior noise and vibration on speech intelligibility and comfort of crew and passengers. The interactive effects of noise with multifrequency and multiaxis vibration are illustrated by data from LaRC ride quality simulator. Constant comfort contours for various combinations of noise and vibration are presented and the incorporation of these results into a user-oriented model are discussed. With respect to aircraft interior noise and vibration control, ongoing studies to define the near-field noise, the transmission of noise through the structure, and the effectiveness of control treatments are described.

  2. The superiority of L3-CCDs in the high-flux and wide dynamic range regimes

    NASA Astrophysics Data System (ADS)

    Butler, Raymond F.; Sheehan, Brendan J.

    2008-02-01

    Low Light Level CCD (L3-CCD) cameras have received much attention for high cadence astronomical imaging applications. Efforts to date have concentrated on exploiting them for two scenarios: post-exposure image sharpening and ``lucky imaging'', and rapid variability in astrophysically interesting sources. We demonstrate their marked superiority in a third distinct scenario: observing in the high-flux and wide dynamic range regimes. We realized that the unique features of L3-CCDs would make them ideal for maximizing signal-to-noise in observations of bright objects (whether variable or not), and for high dynamic range scenarios such as faint targets embedded in a crowded field of bright objects. Conventional CCDs have drawbacks in such regimes, due to a poor duty cycle-the combination of short exposure times (for time-series sampling or to avoid saturation) and extended readout times (for minimizing readout noise). For different telescope sizes, we use detailed models to show that a range of conventional imaging systems are photometrically out-performed across a wide range of object brightness, once the operational parameters of the L3-CCD are carefully set. The cross-over fluxes, above which the L3-CCD is operationally superior, are surprisingly faint-even for modest telescope apertures. We also show that the use of L3-CCDs is the optimum strategy for minimizing atmospheric scintillation noise in photometric observations employing a given telescope aperture. This is particularly significant, since scintillation can be the largest source of error in timeseries photometry. These results should prompt a new direction in developing imaging instrumentation solutions for observatories.

  3. Individual Fit Testing of Hearing Protection Devices Based on Microphone in Real Ear.

    PubMed

    Biabani, Azam; Aliabadi, Mohsen; Golmohammadi, Rostam; Farhadian, Maryam

    2017-12-01

    Labeled noise reduction (NR) data presented by manufacturers are considered one of the main challenging issues for occupational experts in employing hearing protection devices (HPDs). This study aimed to determine the actual NR data of typical HPDs using the objective fit testing method with a microphone in real ear (MIRE) method. Five available commercially earmuff protectors were investigated in 30 workers exposed to reference noise source according to the standard method, ISO 11904-1. Personal attenuation rating (PAR) of the earmuffs was measured based on the MIRE method using a noise dosimeter (SVANTEK, model SV 102). The results showed that means of PAR of the earmuffs are from 49% to 86% of the nominal NR rating. The PAR values of earmuffs when a typical eyewear was worn differed statistically ( p < 0.05). It is revealed that a typical safety eyewear can reduce the mean of the PAR value by approximately 2.5 dB. The results also showed that measurements based on the MIRE method resulted in low variability. The variability in NR values between individuals, within individuals, and within earmuffs was not the statistically significant ( p > 0.05). This study could provide local individual fit data. Ergonomic aspects of the earmuffs and different levels of users experience and awareness can be considered the main factors affecting individual fitting compared with the laboratory condition for acquiring the labeled NR data. Based on the obtained fit testing results, the field application of MIRE can be employed for complementary studies in real workstations while workers perform their regular work duties.

  4. Sonic Boom Pressure Signature Uncertainty Calculation and Propagation to Ground Noise

    NASA Technical Reports Server (NTRS)

    West, Thomas K., IV; Bretl, Katherine N.; Walker, Eric L.; Pinier, Jeremy T.

    2015-01-01

    The objective of this study was to outline an approach for the quantification of uncertainty in sonic boom measurements and to investigate the effect of various near-field uncertainty representation approaches on ground noise predictions. These approaches included a symmetric versus asymmetric uncertainty band representation and a dispersion technique based on a partial sum Fourier series that allows for the inclusion of random error sources in the uncertainty. The near-field uncertainty was propagated to the ground level, along with additional uncertainty in the propagation modeling. Estimates of perceived loudness were obtained for the various types of uncertainty representation in the near-field. Analyses were performed on three configurations of interest to the sonic boom community: the SEEB-ALR, the 69o DeltaWing, and the LM 1021-01. Results showed that representation of the near-field uncertainty plays a key role in ground noise predictions. Using a Fourier series based dispersion approach can double the amount of uncertainty in the ground noise compared to a pure bias representation. Compared to previous computational fluid dynamics results, uncertainty in ground noise predictions were greater when considering the near-field experimental uncertainty.

  5. Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field.

    PubMed

    Rader, Tobias; Fastl, Hugo; Baumann, Uwe

    2013-01-01

    The aim of the study was to measure and compare speech perception in users of electric-acoustic stimulation (EAS) supported by a hearing aid in the unimplanted ear and in bilateral cochlear implant (CI) users under different noise and sound field conditions. Gap listening was assessed by comparing performance in unmodulated and modulated Comité Consultatif International Téléphonique et Télégraphique (CCITT) noise conditions, and binaural interaction was investigated by comparing single source and multisource sound fields. Speech perception in noise was measured using a closed-set sentence test (Oldenburg Sentence Test, OLSA) in a multisource noise field (MSNF) consisting of a four-loudspeaker array with independent noise sources and a single source in frontal position (S0N0). Speech simulating noise (Fastl-noise), CCITT-noise (continuous), and OLSA-noise (pseudo continuous) served as noise sources with different temporal patterns. Speech tests were performed in two groups of subjects who were using either EAS (n = 12) or bilateral CIs (n = 10). All subjects in the EAS group were fitted with a high-power hearing aid in the opposite ear (bimodal EAS). The average group score on monosyllable in quiet was 68.8% (EAS) and 80.5% (bilateral CI). A group of 22 listeners with normal hearing served as controls to compare and evaluate potential gap listening effects in implanted patients. Average speech reception thresholds in the EAS group were significantly lower than those for the bilateral CI group in all test conditions (CCITT 6.1 dB, p = 0.001; Fastl-noise 5.4 dB, p < 0.01; Oldenburg-(OL)-noise 1.6 dB, p < 0.05). Bilateral CI and EAS user groups showed a significant improvement of 4.3 dB (p = 0.004) and 5.4 dB (p = 0.002) between S0N0 and MSNF sound field conditions respectively, which signifies advantages caused by bilateral interaction in both groups. Performance in the control group showed a significant gap listening effect with a difference of 6.5 dB between modulated and unmodulated noise in S0N0, and a difference of 3.0 dB in MSNF. The ability to "glimpse" into short temporal masker gaps was absent in both groups of implanted subjects. Combined EAS in one ear supported by a hearing aid on the contralateral ear provided significantly improved speech perception compared with bilateral cochlear implantation. Although the scores for monosyllable words in quiet were higher in the bilateral CI group, the EAS group performed better in different noise and sound field conditions. Furthermore, the results indicated that binaural interaction between EAS in one ear and residual acoustic hearing in the opposite ear enhances speech perception in complex noise situations. Both bilateral CI and bimodal EAS users did not benefit from short temporal masker gaps, therefore the better performance of the EAS group in modulated noise conditions could be explained by the improved transmission of fundamental frequency cues in the lower-frequency region of acoustic hearing, which might foster the grouping of auditory objects.

  6. The Reduction of Ducted Fan Engine Noise Via A Boundary Integral Equation Method

    NASA Technical Reports Server (NTRS)

    Tweed, J.; Dunn, M.

    1997-01-01

    The development of a Boundary Integral Equation Method (BIEM) for the prediction of ducted fan engine noise is discussed. The method is motivated by the need for an efficient and versatile computational tool to assist in parametric noise reduction studies. In this research, the work in reference 1 was extended to include passive noise control treatment on the duct interior. The BEM considers the scattering of incident sound generated by spinning point thrust dipoles in a uniform flow field by a thin cylindrical duct. The acoustic field is written as a superposition of spinning modes. Modal coefficients of acoustic pressure are calculated term by term. The BEM theoretical framework is based on Helmholtz potential theory. A boundary value problem is converted to a boundary integral equation formulation with unknown single and double layer densities on the duct wall. After solving for the unknown densities, the acoustic field is easily calculated. The main feature of the BIEM is the ability to compute any portion of the sound field without the need to compute the entire field. Other noise prediction methods such as CFD and Finite Element methods lack this property. Additional BIEM attributes include versatility, ease of use, rapid noise predictions, coupling of propagation and radiation both forward and aft, implementable on midrange personal computers, and valid over a wide range of frequencies.

  7. Aircraft noise measurement instrumentation and techniques

    DOT National Transportation Integrated Search

    1996-08-01

    This letter report describes aircraft noise measurement instrumentation to : be used in the field. It includes guidance on good field-measurement : practice, general rules-of-thumb, as well as references to appropriate : national and international st...

  8. Static Noise Margin Enhancement by Flex-Pass-Gate SRAM

    NASA Astrophysics Data System (ADS)

    O'Uchi, Shin-Ichi; Masahara, Meishoku; Sakamoto, Kunihiro; Endo, Kazuhiko; Liu, Yungxun; Matsukawa, Takashi; Sekigawa, Toshihiro; Koike, Hanpei; Suzuki, Eiichi

    A Flex-Pass-Gate SRAM, i.e. a fin-type-field-effect-transistor- (FinFET-) based SRAM, is proposed to enhance noise margin during both read and write operations. In its cell, the flip-flop is composed of usual three-terminal- (3T-) FinFETs while pass gates are composed of four-terminal- (4T-) FinFETs. The 4T-FinFETs enable to adopt a dynamic threshold-voltage control in the pass gates. During a write operation, the threshold voltage of the pass gates is lowered to enhance the writing speed and stability. During the read operation, on the other hand, the threshold voltage is raised to enhance the static noise margin. An asymmetric-oxide 4T-FinFET is helpful to manage the leakage current through the pass gate. In this paper, a design strategy of the pass gate with an asymmetric gate oxide is considered, and a TCAD-based Monte Carlo simulation reveals that the Flex-Pass-Gate SRAM based on that design strategy is expected to be effective in half-pitch 32-nm technology for low-standby-power (LSTP) applications, even taking into account the variability in the device performance.

  9. VCE early acoustic test results of General Electric's high-radius ratio coannular plug nozzle

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Brausch, J. F.; Bhutiani, P. K.; Majjigi, R. K.; Doyle, V. L.

    1980-01-01

    Results of variable cycle engine (VCE) early acoustic engine and model scale tests are presented. A summary of an extensive series of far field acoustic, advanced acoustic, and exhaust plume velocity measurements with a laser velocimeter of inverted velocity and temperature profile, high radius ratio coannular plug nozzles on a YJ101 VCE static engine test vehicle are reviewed. Select model scale simulated flight acoustic measurements for an unsuppressed and a mechanical suppressed coannular plug nozzle are also discussed. The engine acoustic nozzle tests verify previous model scale noise reduction measurements. The engine measurements show 4 to 6 PNdB aft quadrant jet noise reduction and up to 7 PNdB forward quadrant shock noise reduction relative to a fully mixed conical nozzle at the same specific thrust and mixed pressure ratio. The influences of outer nozzle radius ratio, inner stream velocity ratio, and area ratio are discussed. Also, laser velocimeter measurements of mean velocity and turbulent velocity of the YJ101 engine are illustrated. Select model scale static and simulated flight acoustic measurements are shown which corroborate that coannular suppression is maintained in forward speed.

  10. On the Scaling of Small, Heat Simulated Jet Noise Measurements to Moderate Size Exhaust Jets

    NASA Technical Reports Server (NTRS)

    McLaughlin, Dennis K.; Bridges, James; Kuo, Ching-Wen

    2010-01-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions, depending on the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center- in partnership with GE Aviation is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to validate methodology for using data obtained from small and moderate scale experiments to reliably predict the most important components of full scale engine noise. The experimental results presented show reasonable agreement between small scale and moderate scale jet acoustic data, as well as between heated jets and heat-simulated ones. Unresolved issues however are identified that are currently receiving our attention, in particular the effect of the small bypass ratio airflow. Future activities will identify and test promising noise reduction techniques in an effort to predict how well such concepts will work with full scale engines in flight conditions.

  11. Jet Surface Interaction-Scrubbing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2013-01-01

    Generation of sound due to scrubbing of a jet flow past a nearby solid surface is investigated within the framework of the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far-field sound as governed by the variable density Pridmore- Brown equation. The propagation Green's function should be solved numerically starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. The equivalent sources of aerodynamic sound are associated with non-linear momentum flux and enthalpy flux terms that appear in the linearized Navier-Stokes equations. These multi-pole sources should be modeled and evaluated with input from a Reynolds-Averaged Navier-Stokes (RANS) solver with an appropriate turbulence model.

  12. A seafloor electromagnetic receiver for marine magnetotellurics and marine controlled-source electromagnetic sounding

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Wei, Wen-Bo; Deng, Ming; Wu, Zhong-Liang; Yu, Gang

    2015-09-01

    In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver's characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCl electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.

  13. Effect of signal jitter on the spectrum of rotor impulsive noise

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    1987-01-01

    The effect of randomness or jitter of the acoustic waveform on the spectrum of rotor impulsive noise is studied because of its importance for data interpretation. An acoustic waveform train is modelled representing rotor impulsive noise. The amplitude, shape, and period between occurrences of individual pulses are allowed to be randomized assuming normal probability distributions. Results, in terms of the standard deviations of the variable quantities, are given for the autospectrum as well as special processed spectra designed to separate harmonic and broadband rotor noise components. Consideration is given to the effect of accuracy in triggering or keying to a rotor one per revolution signal. An example is given showing the resultant spectral smearing at the high frequencies due to the pulse signal period variability.

  14. Effect of signal jitter on the spectrum of rotor impulsive noise

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    1988-01-01

    The effect of randomness or jitter of the acoustic waveform on the spectrum of rotor impulsive noise is studied because of its importance for data interpretation. An acoustic waveform train is modeled representing rotor impulsive noise. The amplitude, shape, and period between occurrences of individual pulses are allowed to be randomized assuming normal probability distributions. Results, in terms of the standard deviations of the variable quantities, are given for the autospectrum as well as special processed spectra designed to separate harmonic and broadband rotor noise components. Consideration is given to the effect of accuracy in triggering or keying to a rotor one per revolution signal. An example is given showing the resultant spectral smearing at the high frequencies due to the pulse signal period variability.

  15. Worst case encoder-decoder policies for a communication system in the presence of an unknown probabilistic jammer

    NASA Astrophysics Data System (ADS)

    Cascio, David M.

    1988-05-01

    States of nature or observed data are often stochastically modelled as Gaussian random variables. At times it is desirable to transmit this information from a source to a destination with minimal distortion. Complicating this objective is the possible presence of an adversary attempting to disrupt this communication. In this report, solutions are provided to a class of minimax and maximin decision problems, which involve the transmission of a Gaussian random variable over a communications channel corrupted by both additive Gaussian noise and probabilistic jamming noise. The jamming noise is termed probabilistic in the sense that with nonzero probability 1-P, the jamming noise is prevented from corrupting the channel. We shall seek to obtain optimal linear encoder-decoder policies which minimize given quadratic distortion measures.

  16. A Matched Filter Technique for Slow Radio Transient Detection and First Demonstration with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Feng, L.; Vaulin, R.; Hewitt, J. N.; Remillard, R.; Kaplan, D. L.; Murphy, Tara; Kudryavtseva, N.; Hancock, P.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Gaensler, B. M.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.

    2017-03-01

    Many astronomical sources produce transient phenomena at radio frequencies, but the transient sky at low frequencies (<300 MHz) remains relatively unexplored. Blind surveys with new wide-field radio instruments are setting increasingly stringent limits on the transient surface density on various timescales. Although many of these instruments are limited by classical confusion noise from an ensemble of faint, unresolved sources, one can in principle detect transients below the classical confusion limit to the extent that the classical confusion noise is independent of time. We develop a technique for detecting radio transients that is based on temporal matched filters applied directly to time series of images, rather than relying on source-finding algorithms applied to individual images. This technique has well-defined statistical properties and is applicable to variable and transient searches for both confusion-limited and non-confusion-limited instruments. Using the Murchison Widefield Array as an example, we demonstrate that the technique works well on real data despite the presence of classical confusion noise, sidelobe confusion noise, and other systematic errors. We searched for transients lasting between 2 minutes and 3 months. We found no transients and set improved upper limits on the transient surface density at 182 MHz for flux densities between ˜20 and 200 mJy, providing the best limits to date for hour- and month-long transients.

  17. High noise immunity one shot

    NASA Technical Reports Server (NTRS)

    Schaffer, G. L.

    1972-01-01

    Multivibrator circuit, which includes constant current source, isolates line noise from timing circuitry and field effect transistor controls circuit's operational modes. Circuit has high immunity to supply line noise.

  18. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    NASA Astrophysics Data System (ADS)

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the laboratory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  19. Neuronal variability in orbitofrontal cortex during economic decisions.

    PubMed

    Conen, Katherine E; Padoa-Schioppa, Camillo

    2015-09-01

    Neuroeconomic models assume that economic decisions are based on the activity of offer value cells in the orbitofrontal cortex (OFC), but testing this assertion has proven difficult. In principle, the decision made on a given trial should correlate with the stochastic fluctuations of these cells. However, this correlation, measured as a choice probability (CP), is small. Importantly, a neuron's CP reflects not only its individual contribution to the decision (termed readout weight), but also the intensity and the structure of correlated variability across the neuronal population (termed noise correlation). A precise mathematical relation between CPs, noise correlations, and readout weights was recently derived by Haefner and colleagues (Haefner RM, Gerwinn S, Macke JH, Bethge M. Nat Neurosci 16: 235-242, 2013) for a linear decision model. In this framework, concurrent measurements of noise correlations and CPs can provide quantitative information on how a population of cells contributes to a decision. Here we examined neuronal variability in the OFC of rhesus monkeys during economic decisions. Noise correlations had similar structure but considerably lower strength compared with those typically measured in sensory areas during perceptual decisions. In contrast, variability in the activity of individual cells was high and comparable to that recorded in other cortical regions. Simulation analyses based on Haefner's equation showed that noise correlations measured in the OFC combined with a plausible readout of offer value cells reproduced the experimental measures of CPs. In other words, the results obtained for noise correlations and those obtained for CPs taken together support the hypothesis that economic decisions are primarily based on the activity of offer value cells. Copyright © 2015 the American Physiological Society.

  20. Characterization of Noise Signatures of Involuntary Head Motion in the Autism Brain Imaging Data Exchange Repository

    PubMed Central

    Caballero, Carla; Mistry, Sejal; Vero, Joe; Torres, Elizabeth B

    2018-01-01

    The variability inherently present in biophysical data is partly contributed by disparate sampling resolutions across instrumentations. This poses a potential problem for statistical inference using pooled data in open access repositories. Such repositories combine data collected from multiple research sites using variable sampling resolutions. One example is the Autism Brain Imaging Data Exchange repository containing thousands of imaging and demographic records from participants in the spectrum of autism and age-matched neurotypical controls. Further, statistical analyses of groups from different diagnoses and demographics may be challenging, owing to the disparate number of participants across different clinical subgroups. In this paper, we examine the noise signatures of head motion data extracted from resting state fMRI data harnessed under different sampling resolutions. We characterize the quality of the noise in the variability of the raw linear and angular speeds for different clinical phenotypes in relation to age-matched controls. Further, we use bootstrapping methods to ensure compatible group sizes for statistical comparison and report the ranges of physical involuntary head excursions of these groups. We conclude that different sampling rates do affect the quality of noise in the variability of head motion data and, consequently, the type of random process appropriate to characterize the time series data. Further, given a qualitative range of noise, from pink to brown noise, it is possible to characterize different clinical subtypes and distinguish them in relation to ranges of neurotypical controls. These results may be of relevance to the pre-processing stages of the pipeline of analyses of resting state fMRI data, whereby head motion enters the criteria to clean imaging data from motion artifacts. PMID:29556179

  1. Prediction of noise field of a propfan at angle of attack

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1991-01-01

    A method for predicting the noise field of a propfan operating at an angle of attack to the oncoming flow is presented. The method takes advantage of the high-blade-count of the advanced propeller designs to provide an accurate and efficient formula for predicting their noise field. The formula, which is written in terms of the Airy function and its derivative, provides a very attractive alternative to the use of numerical integration. A preliminary comparison shows rather favorable agreement between the predictions from the present method and the experimental data.

  2. Composite multi-qubit gates dynamically corrected against charge noise and magnetic field noise for singlet-triplet qubits

    NASA Astrophysics Data System (ADS)

    Kestner, Jason; Barnes, Edwin; Wang, Xin; Bishop, Lev; Das Sarma, Sankar

    2013-03-01

    We use previously described single-qubit SUPCODE pulses on both intra-qubit and inter-qubit exchange couplings, integrated with existing strategies such as BB1, to theoretically construct a CNOT gate that is robust against both charge noise and magnetic field gradient fluctuations. We show how this allows scalable, high-fidelity implementation of arbitrary multi-qubit operations using singlet-triplet spin qubits in the presence of experimentally realistic noise. This work is supported by LPS-NSA-CMTC, IARPA-MQCO and CNAM.

  3. Probabilistic solutions of nonlinear oscillators excited by combined colored and white noise excitations

    NASA Astrophysics Data System (ADS)

    Siu-Siu, Guo; Qingxuan, Shi

    2017-03-01

    In this paper, single-degree-of-freedom (SDOF) systems combined to Gaussian white noise and Gaussian/non-Gaussian colored noise excitations are investigated. By expressing colored noise excitation as a second-order filtered white noise process and introducing colored noise as an additional state variable, the equation of motion for SDOF system under colored noise is then transferred artificially to multi-degree-of-freedom (MDOF) system under white noise excitations with four-coupled first-order differential equations. As a consequence, corresponding Fokker-Planck-Kolmogorov (FPK) equation governing the joint probabilistic density function (PDF) of state variables increases to 4-dimension (4-D). Solution procedure and computer programme become much more sophisticated. The exponential-polynomial closure (EPC) method, widely applied for cases of SDOF systems under white noise excitations, is developed and improved for cases of systems under colored noise excitations and for solving the complex 4-D FPK equation. On the other hand, Monte Carlo simulation (MCS) method is performed to test the approximate EPC solutions. Two examples associated with Gaussian and non-Gaussian colored noise excitations are considered. Corresponding band-limited power spectral densities (PSDs) for colored noise excitations are separately given. Numerical studies show that the developed EPC method provides relatively accurate estimates of the stationary probabilistic solutions, especially the ones in the tail regions of the PDFs. Moreover, statistical parameter of mean-up crossing rate (MCR) is taken into account, which is important for reliability and failure analysis. Hopefully, our present work could provide insights into the investigation of structures under random loadings.

  4. Comparison of classical statistical methods and artificial neural network in traffic noise prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedic, Vladimir, E-mail: vnedic@kg.ac.rs; Despotovic, Danijela, E-mail: ddespotovic@kg.ac.rs; Cvetanovic, Slobodan, E-mail: slobodan.cvetanovic@eknfak.ni.ac.rs

    2014-11-15

    Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. Themore » output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.« less

  5. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

    PubMed

    Verveer, P. J; Gemkow, M. J; Jovin, T. M

    1999-01-01

    We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.

  6. Comparison of aircraft noise measured in flight test and in the NASA Ames 40- by 80-foot wind tunnel.

    NASA Technical Reports Server (NTRS)

    Atencio, A., Jr.; Soderman, P. T.

    1973-01-01

    A method to determine free-field aircraft noise spectra from wind-tunnel measurements has been developed. The crux of the method is the correction for reverberations. Calibrated loud speakers are used to simulate model sound sources in the wind tunnel. Corrections based on the difference between the direct and reverberant field levels are applied to wind-tunnel data for a wide range of aircraft noise sources. To establish the validity of the correction method, two research aircraft - one propeller-driven (YOV-10A) and one turbojet-powered (XV-5B) - were flown in free field and then tested in the wind tunnel. Corrected noise spectra from the two environments agree closely.

  7. Spatial correlation in the ambient core noise field of a turbofan engine.

    PubMed

    Miles, Jeffrey Hilton

    2012-06-01

    An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0-400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NO(x) and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.

  8. Reliability of Pressure Ulcer Rates: How Precisely Can We Differentiate Among Hospital Units, and Does the Standard Signal-Noise Reliability Measure Reflect This Precision?

    PubMed

    Staggs, Vincent S; Cramer, Emily

    2016-08-01

    Hospital performance reports often include rankings of unit pressure ulcer rates. Differentiating among units on the basis of quality requires reliable measurement. Our objectives were to describe and apply methods for assessing reliability of hospital-acquired pressure ulcer rates and evaluate a standard signal-noise reliability measure as an indicator of precision of differentiation among units. Quarterly pressure ulcer data from 8,199 critical care, step-down, medical, surgical, and medical-surgical nursing units from 1,299 US hospitals were analyzed. Using beta-binomial models, we estimated between-unit variability (signal) and within-unit variability (noise) in annual unit pressure ulcer rates. Signal-noise reliability was computed as the ratio of between-unit variability to the total of between- and within-unit variability. To assess precision of differentiation among units based on ranked pressure ulcer rates, we simulated data to estimate the probabilities of a unit's observed pressure ulcer rate rank in a given sample falling within five and ten percentiles of its true rank, and the probabilities of units with ulcer rates in the highest quartile and highest decile being identified as such. We assessed the signal-noise measure as an indicator of differentiation precision by computing its correlations with these probabilities. Pressure ulcer rates based on a single year of quarterly or weekly prevalence surveys were too susceptible to noise to allow for precise differentiation among units, and signal-noise reliability was a poor indicator of precision of differentiation. To ensure precise differentiation on the basis of true differences, alternative methods of assessing reliability should be applied to measures purported to differentiate among providers or units based on quality. © 2016 The Authors. Research in Nursing & Health published by Wiley Periodicals, Inc. © 2016 The Authors. Research in Nursing & Health published by Wiley Periodicals, Inc.

  9. Prediction of aerodynamic tonal noise from open rotors

    NASA Astrophysics Data System (ADS)

    Sharma, Anupam; Chen, Hsuan-nien

    2013-08-01

    A numerical approach for predicting tonal aerodynamic noise from "open rotors" is presented. "Open rotor" refers to an engine architecture with a pair of counter-rotating propellers. Typical noise spectra from an open rotor consist of dominant tones, which arise due to both the steady loading/thickness and the aerodynamic interaction between the two bladerows. The proposed prediction approach utilizes Reynolds Averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) simulations to obtain near-field description of the noise sources. The near-to-far-field propagation is then carried out by solving the Ffowcs Williams-Hawkings equation. Since the interest of this paper is limited to tone noise, a linearized, frequency domain approach is adopted to solve the wake/vortex-blade interaction problem.This paper focuses primarily on the speed scaling of the aerodynamic tonal noise from open rotors. Even though there is no theoretical mode cut-off due to the absence of nacelle in open rotors, the far-field noise is a strong function of the azimuthal mode order. While the steady loading/thickness noise has circumferential modes of high order, due to the relatively large number of blades (≈10-12), the interaction noise typically has modes of small orders. The high mode orders have very low radiation efficiency and exhibit very strong scaling with Mach number, while the low mode orders show a relatively weaker scaling. The prediction approach is able to capture the speed scaling (observed in experiment) of the overall aerodynamic noise very well.

  10. Speech Perception in Noise by Children With Cochlear Implants

    PubMed Central

    Caldwell, Amanda; Nittrouer, Susan

    2013-01-01

    Purpose Common wisdom suggests that listening in noise poses disproportionately greater difficulty for listeners with cochlear implants (CIs) than for peers with normal hearing (NH). The purpose of this study was to examine phonological, language, and cognitive skills that might help explain speech-in-noise abilities for children with CIs. Method Three groups of kindergartners (NH, hearing aid wearers, and CI users) were tested on speech recognition in quiet and noise and on tasks thought to underlie the abilities that fit into the domains of phonological awareness, general language, and cognitive skills. These last measures were used as predictor variables in regression analyses with speech-in-noise scores as dependent variables. Results Compared to children with NH, children with CIs did not perform as well on speech recognition in noise or on most other measures, including recognition in quiet. Two surprising results were that (a) noise effects were consistent across groups and (b) scores on other measures did not explain any group differences in speech recognition. Conclusions Limitations of implant processing take their primary toll on recognition in quiet and account for poor speech recognition and language/phonological deficits in children with CIs. Implications are that teachers/clinicians need to teach language/phonology directly and maximize signal-to-noise levels in the classroom. PMID:22744138

  11. Does the central limit theorem always apply to phase noise? Some implications for radar problems

    NASA Astrophysics Data System (ADS)

    Gray, John E.; Addison, Stephen R.

    2017-05-01

    The phase noise problem or Rayleigh problem occurs in all aspects of radar. It is an effect that a radar engineer or physicist always has to take into account as part of a design or in attempt to characterize the physics of a problem such as reverberation. Normally, the mathematical difficulties of phase noise characterization are avoided by assuming the phase noise probability distribution function (PDF) is uniformly distributed, and the Central Limit Theorem (CLT) is invoked to argue that the superposition of relatively few random components obey the CLT and hence the superposition can be treated as a normal distribution. By formalizing the characterization of phase noise (see Gray and Alouani) for an individual random variable, the summation of identically distributed random variables is the product of multiple characteristic functions (CF). The product of the CFs for phase noise has a CF that can be analyzed to understand the limitations CLT when applied to phase noise. We mirror Kolmogorov's original proof as discussed in Papoulis to show the CLT can break down for receivers that gather limited amounts of data as well as the circumstances under which it can fail for certain phase noise distributions. We then discuss the consequences of this for matched filter design as well the implications for some physics problems.

  12. Prevalence of tinnitus in elderly individuals with and without history of occupational noise exposure.

    PubMed

    Melo, Juliana Jandre; Meneses, Caroline Luiz; Marchiori, Luciana Lozza de Moraes

    2012-04-01

     The various metabolic and circulatory alterations that are related to noise exposure may cause the onset of several symptoms, including tinnitus.  The purpose of the study was to assess the prevalence of tinnitus complaints in elderly individuals with and without history of occupational noise exposure.  This prospective study was conducted in a sample population consisting of 502 individuals aged over 60 years, by anamnesis and audiological evaluation. The variables that were studied were the frequency of tinnitus and the history of occupational noise. Logistic regression was used to control for potential confusion or modifications caused by the effects of the other variables on the associations of interest.  Tinnitus was reported in 50% of the cases, with tinnitus reported in 40% of the elderly individuals with history of occupational noise exposure, and in 43% of controls (elderly individuals without history of occupational noise exposure). A high frequency of tinnitus was detected in the population under investigation, but there were no statistically significant associations between the presence of tinnitus and history of occupational noise exposure.  The results of this study may have occurred due to other factors such as the age of the individuals without history of occupational noise exposure.

  13. Audiometric profile of civilian pilots according to noise exposure

    PubMed Central

    Falcão, Taiana Pacheco; Luiz, Ronir Raggio; Schütz, Gabriel Eduardo; Mello, Márcia Gomide da Silva; Câmara, Volney de Magalhães

    2014-01-01

    OBJECTIVE To evaluate the audiometric profile of civilian pilots according to the noise exposure level. METHODS This observational cross-sectional study evaluated 3,130 male civilian pilots aged between 17 and 59 years. These pilots were subjected to audiometric examinations for obtaining or revalidating the functional capacity certificate in 2011. The degree of hearing loss was classified as normal, suspected noise-induced hearing loss, and no suspected hearing loss with other associated complications. Pure-tone air-conduction audiometry was performed using supra-aural headphones and acoustic stimulus of the pure-tone type, containing tone thresholds of frequencies between 250 Hz and 6,000 Hz. The independent variables were professional categories, length of service, hours of flight, and right or left ear. The dependent variable was pilots with suspected noise-induced hearing loss. The noise exposure level was considered low/medium or high, and the latter involved periods > 5,000 flight hours and > 10 years of flight service. RESULTS A total of 29.3% pilots had suspected noise-induced hearing loss, which was bilateral in 12.8% and predominant in the left ear (23.7%). The number of pilots with suspected hearing loss increased as the noise exposure level increased. CONCLUSIONS Hearing loss in civilian pilots may be associated with noise exposure during the period of service and hours of flight. PMID:25372170

  14. How to deal with the high condition number of the noise covariance matrix of gravity field functionals synthesised from a satellite-only global gravity field model?

    NASA Astrophysics Data System (ADS)

    Klees, R.; Slobbe, D. C.; Farahani, H. H.

    2018-03-01

    The posed question arises for instance in regional gravity field modelling using weighted least-squares techniques if the gravity field functionals are synthesised from the spherical harmonic coefficients of a satellite-only global gravity model (GGM), and are used as one of the noisy datasets. The associated noise covariance matrix, appeared to be extremely ill-conditioned with a singular value spectrum that decayed gradually to zero without any noticeable gap. We analysed three methods to deal with the ill-conditioned noise covariance matrix: Tihonov regularisation of the noise covariance matrix in combination with the standard formula for the weighted least-squares estimator, a formula of the weighted least-squares estimator, which does not involve the inverse noise covariance matrix, and an estimator based on Rao's unified theory of least-squares. Our analysis was based on a numerical experiment involving a set of height anomalies synthesised from the GGM GOCO05s, which is provided with a full noise covariance matrix. We showed that the three estimators perform similar, provided that the two regularisation parameters each method knows were chosen properly. As standard regularisation parameter choice rules do not apply here, we suggested a new parameter choice rule, and demonstrated its performance. Using this rule, we found that the differences between the three least-squares estimates were within noise. For the standard formulation of the weighted least-squares estimator with regularised noise covariance matrix, this required an exceptionally strong regularisation, much larger than one expected from the condition number of the noise covariance matrix. The preferred method is the inversion-free formulation of the weighted least-squares estimator, because of its simplicity with respect to the choice of the two regularisation parameters.

  15. Low Temperature Noise and Electrical Characterization of the Company Heterojunction Field-Effect Transistor

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J.; Gee, Russell C.; Fossum, Eric R.; Baier, Steven M.

    1993-01-01

    This paper discusses the electrical properties of the complementary heterojunction field-effect transistor (CHFET) at 4K, including the gate leakage current, the subthreshold transconductance, and the input-referred noise voltage.

  16. Critical phenomena in active matter

    NASA Astrophysics Data System (ADS)

    Paoluzzi, M.; Maggi, C.; Marini Bettolo Marconi, U.; Gnan, N.

    2016-11-01

    We investigate the effect of self-propulsion on a mean-field order-disorder transition. Starting from a φ4 scalar field theory subject to an exponentially correlated noise, we exploit the unified colored-noise approximation to map the nonequilibrium active dynamics onto an effective equilibrium one. This allows us to follow the evolution of the second-order critical point as a function of the noise parameters: the correlation time τ and the noise strength D . Our results suggest that the universality class of the model remains unchanged. We also estimate the effect of Gaussian fluctuations on the mean-field approximation finding an Ornstein-Zernike-like expression for the static structure factor at long wavelengths. Finally, to assess the validity of our predictions, we compare the mean-field theoretical results with numerical simulations of active Lennard-Jones particles in two and three dimensions, finding good qualitative agreement at small τ values.

  17. 3-component beamforming analysis of ambient seismic noise field for Love and Rayleigh wave source directions

    NASA Astrophysics Data System (ADS)

    Juretzek, Carina; Hadziioannou, Céline

    2014-05-01

    Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.

  18. Cryogenic measurements of aerojet GaAs n-JFETs

    NASA Technical Reports Server (NTRS)

    Goebel, John H.; Weber, Theodore T.

    1993-01-01

    The spectral noise characteristics of Aerojet gallium arsenide (GaAs) junction field effect transistors (JFET's) have been investigated down to liquid-helium temperatures. Noise characterization was performed with the field effect transistor (FET) in the floating-gate mode, in the grounded-gate mode to determine the lowest noise readings possible, and with an extrinsic silicon photodetector at various detector bias voltages to determine optimum operating conditions. The measurements indicate that the Aerojet GaAs JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to silicon (Si) metal oxide semiconductor field effect transistor (MOSFET's) operating at liquid helium temperatures, and is equal to the best Si n channel junction field effect transistor (n-JFET's) operating at 300 K.

  19. Fluid dynamic aspects of jet noise generation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The location of the noise sources within jet flows, their relative importance to the overall radiated field, and the mechanisms by which noise generation occurs, are studied by detailed measurements of the level and spectral composition of the radiated sound in the far field. Directional microphones are used to isolate the contribution to the radiated sound of small regions of the flow, and for cross-correlation between the radiated acoustic field and either the velocity fluctuations or the pressure fluctuations in the source field. Acquired data demonstrate the supersonic convection of the acoustic field and the resulting limited upstream influence of the signal source, as well as a possible increase of signal strength as it propagates toward the centerline of the flow.

  20. A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.

    PubMed

    Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome

    2013-10-01

    The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.

  1. Coding of time-dependent stimuli in homogeneous and heterogeneous neural populations.

    PubMed

    Beiran, Manuel; Kruscha, Alexandra; Benda, Jan; Lindner, Benjamin

    2018-04-01

    We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a deterministic heterogeneous population, where each unit exhibits a different baseline firing rate ('disorder'). Our criterion for making both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both systems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of suprathreshold stochastic resonance. Our findings thus illustrate that heterogeneity can render similarly profitable effects for neuronal populations as dynamic noise. The optimal noise/disorder depends on the system size and the properties of the stimulus such as its intensity or cutoff frequency. We find that weak stimuli are better encoded by a noiseless heterogeneous population, whereas for strong stimuli a homogeneous population outperforms an equivalent heterogeneous system up to a moderate noise level. Furthermore, we derive analytical expressions of the coherence function for the cases of very strong noise and of vanishing intrinsic noise or heterogeneity, which predict the existence of an optimal noise intensity. Our results show that, depending on the type of signal, noise as well as heterogeneity can enhance the encoding performance of neuronal populations.

  2. Aircraft noise effects: An inter-disciplinary study of the effect of aircraft noise on man. Part 3: Supplementary analyses of the social-scientific portion of the study on aircraft noise conducted by the DFG

    NASA Technical Reports Server (NTRS)

    Schumer, R.

    1980-01-01

    Variables in a study of noise perception near the Munich-Reims airport are explained. The interactive effect of the stimulus (aircraft noise) and moderator (noise sensitivity) on the aircraft noise reaction (disturbance or annoyance) is considered. Methods employed to demonstrate that the moderator has a differencing effect on various stimulus levels are described. Results of the social-scientific portion of the aircraft noise project are compared with those of other survey studies on the problem of aircraft noise. Procedures for contrast group analysis and multiple classification analysis are examined with focus on some difficulties in their application.

  3. Long-term noise statistics from the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Eller, Anthony I.; Ioup, George E.; Ioup, Juliette W.; Larue, James P.

    2003-04-01

    Long-term, omnidirectional acoustic noise measurements were conducted in the northeastern Gulf of Mexico during the summer of 2001. These efforts were a part of the Littoral Acoustic Demonstration Center project, Phase I. Initial looks at the noise time series, processed in standard one-third-octave bands from 10 to 5000 Hz, show noise levels that differ substantially from customary deep-water noise spectra. Contributing factors to this highly dynamic noise environment are an abundance of marine mammal emissions and various industrial noises. Results presented here address long-term temporal variability, temporal coherence times, the fluctuation spectrum, and coherence of fluctuations across the frequency spectrum. [Research supported by ONR.

  4. Temporal Variability in Seismic Velocity at the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Taira, T.; Nayak, A.; Brenguier, F.

    2015-12-01

    We characterize the temporal variability of ambient noise wavefield and search for velocity changes associated with activities of the geothermal energy development at the Salton Sea Geothermal Field. The noise cross-correlations (NCFs) are computed for ~6 years of continuous three-component seismic data (December 2007 through January 2014) collected at 8 sites from the CalEnergy Subnetwork (EN network) with MSNoise software (Lecocq et al., 2014, SRL). All seismic data are downloaded from the Southern California Earthquake Data Center. Velocity changes (dv/v) are obtained by measuring time delay between 5-day stacks of NCFs and the reference NCF (average over the entire 6 year period). The time history of dv/v is determined by averaging dv/v measurements over all station/channel pairs (252 combinations). Our preliminary dv/v measurement suggests a gradual increase in dv/v over the 6-year period in a frequency range of 0.5-8.0 Hz. The resultant increase rate of velocity is about 0.01%/year. We also explore the frequency-dependent velocity change at the 5 different frequency bands (0.5-2.0 Hz, 0.75-3.0 Hz, 1.0-4.0 Hz, 1.5-6.0 Hz, and 2.0-8.0 Hz) and find that the level of this long-term dv/v variability is increased with increase of frequency (i.e., the highest increase rate of ~0.15%/year at the 0.5-2.0 Hz band). This result suggests that the velocity changes were mostly occurred in a depth of ~500 m assuming that the coda parts of NCFs (~10-40 s depending on station distances) are predominantly composed of scattered surface waves, with the SoCal velocity model (Dreger and Helmberger, 1993, JGR). No clear seasonal variation of dv/v is observed in the frequency band of 0.5-8.0 Hz.

  5. Large eddy simulation of trailing edge noise

    NASA Astrophysics Data System (ADS)

    Keller, Jacob; Nitzkorski, Zane; Mahesh, Krishnan

    2015-11-01

    Noise generation is an important engineering constraint to many marine vehicles. A significant portion of the noise comes from propellers and rotors, specifically due to flow interactions at the trailing edge. Large eddy simulation is used to investigate the noise produced by a turbulent 45 degree beveled trailing edge and a NACA 0012 airfoil. A porous surface Ffowcs-Williams and Hawkings acoustic analogy is combined with a dynamic endcapping method to compute the sound. This methodology allows for the impact of incident flow noise versus the total noise to be assessed. LES results for the 45 degree beveled trailing edge are compared to experiment at M = 0 . 1 and Rec = 1 . 9 e 6 . The effect of boundary layer thickness on sound production is investigated by computing using both the experimental boundary layer thickness and a thinner boundary layer. Direct numerical simulation results of the NACA 0012 are compared to available data at M = 0 . 4 and Rec = 5 . 0 e 4 for both the hydrodynamic field and the acoustic field. Sound intensities and directivities are investigated and compared. Finally, some of the physical mechanisms of far-field noise generation, common to the two configurations, are discussed. Supported by Office of Naval research.

  6. Microwave cryogenic thermal-noise standards

    NASA Technical Reports Server (NTRS)

    Stelzried, C. T.

    1971-01-01

    Field operational waveguide noise standard with nominal noise temperature of 78.09 plus/minus 0.12 deg K is calibrated more precisely than before. Calibration technique applies to various disciplines such as microwave radiometry, antenna temperature and loss measurement, and low-noise amplifier performance evaluation.

  7. Comparison of user volume control settings for portable music players with three earphone configurations in quiet and noisy environments.

    PubMed

    Henry, Paula; Foots, Ashley

    2012-03-01

    Listening to music is one of the most common forms of recreational noise exposure. Previous investigators have demonstrated that maximum output levels from headphones can exceed safe levels. Although preferred listening levels (PLL) in quiet environments may be at acceptable levels, the addition of background noise will add to the overall noise exposure of a listener. Use of listening devices that block out some of the background noise would potentially allow listeners to select lower PLLs for their music. Although one solution is in-the-ear earphones, an alternative solution is the use of earmuffs in conjunction with earbuds. There were two objectives to this experiment. The first was to determine if an alternative to in-the-ear earphones for noise attenuation (the addition of earmuffs to earbuds) would allow for lower PLLs through a portable media player (PMP) than earbuds. The second was to determine if a surrounding background noise would yield different PLLs than a directional noise source. This was an experimental study. Twenty-four adults with normal hearing. PLLs were measured for three earphone configurations in three listening conditions. The earphone configurations included earbuds, canal earphones, and earbuds in combination with hearing protection devices (HPDs). The listening conditions included quiet, noise from one loudspeaker, and noise from four surrounding loudspeakers. Participants listened in each noise and earphone combination for as long as they needed to determine their PLL for that condition. Once the participant determined their PLL, investigators made a 5 sec recording of the music through a probe tube microphone. The average PLLs in each noise and earphone combination were used as the dependent variable. Ear canal level PLLs were converted to free-field equivalents to compare to noise exposure standards and previously published data. The average PLL as measured in the ear canal was 74 dBA in the quiet conditions and 84 dBA in the noise conditions. Paired comparisons of the PLL in the presence of background noise for each pair of earphone configurations indicated significant differences for each comparison. An inverse relationship was observed between attenuation and PLL whereby the greater the attenuation, the lower the PLL. A comparison of the single noise source condition versus the surrounding noise condition did not result in a significant effect. The present work suggests that earphones that take advantage of noise attenuation can reduce the level at which listeners set music in the presence of background noise. An alternative to in-the-ear earphones for noise attenuation is the addition of earmuffs to earbuds. American Academy of Audiology.

  8. Low-frequency electronic noise in single-layer MoS2 transistors.

    PubMed

    Sangwan, Vinod K; Arnold, Heather N; Jariwala, Deep; Marks, Tobin J; Lauhon, Lincoln J; Hersam, Mark C

    2013-09-11

    Ubiquitous low-frequency 1/f noise can be a limiting factor in the performance and application of nanoscale devices. Here, we quantitatively investigate low-frequency electronic noise in single-layer transition metal dichalcogenide MoS2 field-effect transistors. The measured 1/f noise can be explained by an empirical formulation of mobility fluctuations with the Hooge parameter ranging between 0.005 and 2.0 in vacuum (<10(-5) Torr). The field-effect mobility decreased, and the noise amplitude increased by an order of magnitude in ambient conditions, revealing the significant influence of atmospheric adsorbates on charge transport. In addition, single Lorentzian generation-recombination noise was observed to increase by an order of magnitude as the devices were cooled from 300 to 6.5 K.

  9. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with "sound visualization," acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-reverberation methods, both essentialfor visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, "Can we see two birds singing or one bird with two beaks?"

  10. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?

  11. Noise suppression and crosstalk analysis of on-chip magnetic film-type noise suppressor

    NASA Astrophysics Data System (ADS)

    Ma, Jingyan; Muroga, Sho; Endo, Yasushi; Hashi, Shuichiro; Naoe, Masayuki; Yokoyama, Hiroo; Hayashi, Yoshiaki; Ishiyama, Kazushi

    2018-05-01

    This paper discusses near field, conduction and crosstalk noise suppression of magnetic films with uniaxial anisotropy on transmission lines for a film-type noise suppressor in the GHz frequency range. The electromagnetic noise suppressions of magnetic films with different permeability and resistivity were measured and simulated with simple microstrip lines. The experimental and simulated results of Co-Zr-Nb and CoPd-CaF2 films agreed with each other. The results indicate that the higher permeability leads to a better near field shielding, and in the frequency range of 2-7 GHz, a higher conduction noise suppression. It also suggests that the higher resistivity results in a better crosstalk suppression in the frequency range below 2 GHz. These results can support the design guidelines of the magnetic film-type noise suppressor used in the next generation IC chip.

  12. A theoretical and experimental study of wood planer noise and its control

    NASA Technical Reports Server (NTRS)

    Stewart, J. S.

    1972-01-01

    A combined analytical and experimental study of wood planer noise is made and the results applied to the development of practical noise control techniques. The dominant mechanisms of sound generation are identified and an analysis is presented which accurately predicts the governing levels of noise emission. Planing operations in which the length of the board is much greater than the width are considered. The dominant source of planer noise is identified as the board being surfaced, which is set into vibration by the impact of cutterhead knives. This is determined from studies made both in the laboratory and in the field concerning the effect of board width on the resulting noise, which indicate a six decibel increase in noise level for each doubling of board width. The theoretical development of a model for board vibration defines the vibrational field set up in the board and serves as a guide for cutterhead redesign.

  13. Analysis of noise produced by an orderly structure of turbulent jets

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1973-01-01

    The orderly structure which has been observed recently by numerous researchers within the transition region of subsonic turbulent jets is analyzed to reveal its noise-producing potential. For a circular jet, this structure is molded as a train of toroidal vortex rings which are formed near the jet exit and propagate downstream. The noise produced by the model is evaluated from a reformulation of Lighthill's expression for the far-field acoustic density, which emphasizes the importance of the vorticity within the turbulent flow field. It is shown that the noise production occurs mainly close to the jet exit and depends primarily upon temporal changes in the toroidal radii. The analysis suggests that the process of formation of this regular structure may also be an important contribution of the high-frequency jet noise. These results may be helpful in the understanding of jet-noise generation and in new approaches to jet-noise suppression.

  14. Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E. (Editor); Weir, D. S. (Editor)

    1986-01-01

    The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.

  15. The impacts of short-term exposure to noise and traffic-related air pollution on heart rate variability in young healthy adults.

    PubMed

    Huang, Jing; Deng, Furong; Wu, Shaowei; Lu, Henry; Hao, Yu; Guo, Xinbiao

    2013-01-01

    Traffic-related air pollution and noise are associated with cardiovascular diseases, and alternation of heart rate variability (HRV), which reflects cardiac autonomic function, is one of the mechanisms. However, few studies considered the impacts of noise when exploring associations between air pollution and HRV. We explored whether noise modifies associations between short-term exposure to traffic-related air pollution and HRV in young healthy adults. In this randomized, crossover study, 40 young healthy adults stayed for 2 h in a traffic center and, on a separate occasion, in a park. Personal exposure to traffic-related air pollutants and noise were measured and ambulatory electrocardiogram was performed. Effects were estimated using mixed-effects regression models. Traffic-related air pollution and noise were both associated with HRV, and effects of air pollutants were amplified at high noise level (>65.6 A-weighted decibels (dB[A])) compared with low noise level (≤ 65.6 dB[A]). High frequency (HF) decreased by -4.61% (95% confidence interval, -6.75% to-2.42%) per 10 μg/m(3) increment in fine particle (PM2.5) at 5-min moving average, but effects became insignificant at low noise level (P>0.05). Similar effects modification was observed for black carbon (BC) and carbon monoxide (CO). We conclude that noise is an important factor influencing the effects of air pollution on HRV.

  16. Image reduction pipeline for the detection of variable sources in highly crowded fields

    NASA Astrophysics Data System (ADS)

    Gössl, C. A.; Riffeser, A.

    2002-01-01

    We present a reduction pipeline for CCD (charge-coupled device) images which was built to search for variable sources in highly crowded fields like the M 31 bulge and to handle extensive databases due to large time series. We describe all steps of the standard reduction in detail with emphasis on the realisation of per pixel error propagation: Bias correction, treatment of bad pixels, flatfielding, and filtering of cosmic rays. The problems of conservation of PSF (point spread function) and error propagation in our image alignment procedure as well as the detection algorithm for variable sources are discussed: we build difference images via image convolution with a technique called OIS (optimal image subtraction, Alard & Lupton \\cite{1998ApJ...503..325A}), proceed with an automatic detection of variable sources in noise dominated images and finally apply a PSF-fitting, relative photometry to the sources found. For the WeCAPP project (Riffeser et al. \\cite{2001A&A...0000..00R}) we achieve 3sigma detections for variable sources with an apparent brightness of e.g. m = 24.9;mag at their minimum and a variation of Delta m = 2.4;mag (or m = 21.9;mag brightness minimum and a variation of Delta m = 0.6;mag) on a background signal of 18.1;mag/arcsec2 based on a 500;s exposure with 1.5;arcsec seeing at a 1.2;m telescope. The complete per pixel error propagation allows us to give accurate errors for each measurement.

  17. Development and Validation of a Multidisciplinary Tool for Accurate and Efficient Rotorcraft Noise Prediction (MUTE)

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Anusonti-Inthra, Phuriwat; Diskin, Boris

    2011-01-01

    A physics-based, systematically coupled, multidisciplinary prediction tool (MUTE) for rotorcraft noise was developed and validated with a wide range of flight configurations and conditions. MUTE is an aggregation of multidisciplinary computational tools that accurately and efficiently model the physics of the source of rotorcraft noise, and predict the noise at far-field observer locations. It uses systematic coupling approaches among multiple disciplines including Computational Fluid Dynamics (CFD), Computational Structural Dynamics (CSD), and high fidelity acoustics. Within MUTE, advanced high-order CFD tools are used around the rotor blade to predict the transonic flow (shock wave) effects, which generate the high-speed impulsive noise. Predictions of the blade-vortex interaction noise in low speed flight are also improved by using the Particle Vortex Transport Method (PVTM), which preserves the wake flow details required for blade/wake and fuselage/wake interactions. The accuracy of the source noise prediction is further improved by utilizing a coupling approach between CFD and CSD, so that the effects of key structural dynamics, elastic blade deformations, and trim solutions are correctly represented in the analysis. The blade loading information and/or the flow field parameters around the rotor blade predicted by the CFD/CSD coupling approach are used to predict the acoustic signatures at far-field observer locations with a high-fidelity noise propagation code (WOPWOP3). The predicted results from the MUTE tool for rotor blade aerodynamic loading and far-field acoustic signatures are compared and validated with a variation of experimental data sets, such as UH60-A data, DNW test data and HART II test data.

  18. Anatomical background noise power spectrum in differential phase contrast breast images

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.

  19. High speed turboprop aeroacoustic study (single rotation). Volume 1: Model development

    NASA Technical Reports Server (NTRS)

    Whitfield, C. E.; Gliebe, P. R.; Mani, R.; Mungur, P.

    1989-01-01

    A frequency-domain noncompact-source theory for the steady loading and volume-displacement (thickness) noise of high speed propellers has been developed and programmed. Both near field and far field effects have been considered. The code utilizes blade surface pressure distributions obtained from three-dimensional nonlinear aerodynamic flow field analysis programs as input for evaluating the steady loading noise. Simplified mathematical models of the velocity fields induced at the propeller disk by nearby wing and fuselage surfaces and by angle-of-attack operation have been developed to provide estimates of the unsteady loading imposed on the propeller by these potential field type interactions. These unsteady blade loadings have been coupled to a chordwise compact propeller unsteady loading noise model to provide predictions of unsteady loading noise caused by these installation effects. Finally, an analysis to estimate the corrections to be applied to the free-field noise predictions in order to arrive at the measurable fuselage sound pressure levels has been formulated and programmed. This analysis considers the effects of fuselage surface reflection and diffraction together with surface boundary layer refraction. The steady loading and thickness model and the unsteady loading model have been verified using NASA-supplied data for the SR-2 and SR-3 model propfans. In addition, the steady loading and thickness model has been compared with data from the SR-6 model propfan. These theoretical models have been employed in the evaluation of the SR-7 powered Gulfstream aircraft in terms of noise characteristics at representative takeoff, cruise, and approach operating conditions. In all cases, agreement between theory and experiment is encouraging.

  20. How Far Is Quasar UV/Optical Variability from a Damped Random Walk at Low Frequency?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Hengxiao; Wang Junxian; Cai Zhenyi

    Studies have shown that UV/optical light curves of quasars can be described using the prevalent damped random walk (DRW) model, also known as the Ornstein–Uhlenbeck process. A white noise power spectral density (PSD) is expected at low frequency in this model; however, a direct observational constraint to the low-frequency PSD slope is difficult due to the limited lengths of the light curves available. Meanwhile, quasars show scatter in their DRW parameters that is too large to be attributed to uncertainties in the measurements and dependence on the variation of known physical factors. In this work we present simulations showing that,more » if the low-frequency PSD deviates from the DRW, the red noise leakage can naturally produce large scatter in the variation parameters measured from simulated light curves. The steeper the low-frequency PSD slope, the larger scatter we expect. Based on observations of SDSS Stripe 82 quasars, we find that the low-frequency PSD slope should be no steeper than −1.3. The actual slope could be flatter, which consequently requires that the quasar variabilities should be influenced by other unknown factors. We speculate that the magnetic field and/or metallicity could be such additional factors.« less

  1. Quantum teleportation of nonclassical wave packets: An effective multimode theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki

    2011-07-15

    We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.

  2. Near-field acoustic characteristics of a single-rotor propfan

    NASA Technical Reports Server (NTRS)

    Bartel, H. W.; Swift, G.

    1989-01-01

    The near-field noise characteristics of the SR-7L, an eight-blade, single-rotor, wing-mounted, tractor propfan have been determined. It is found that the noise is dominated by discrete tones, usually at the first order (and occasionally at the second or third order) of the blade-passage frequency. The highest noise levels were noted at conditions of high tip helical speeds and high dynamic pressures.

  3. Variables selection methods in near-infrared spectroscopy.

    PubMed

    Xiaobo, Zou; Jiewen, Zhao; Povey, Malcolm J W; Holmes, Mel; Hanpin, Mao

    2010-05-14

    Near-infrared (NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields, such as the petrochemical, pharmaceutical, environmental, clinical, agricultural, food and biomedical sectors during the past 15 years. A NIR spectrum of a sample is typically measured by modern scanning instruments at hundreds of equally spaced wavelengths. The large number of spectral variables in most data sets encountered in NIR spectral chemometrics often renders the prediction of a dependent variable unreliable. Recently, considerable effort has been directed towards developing and evaluating different procedures that objectively identify variables which contribute useful information and/or eliminate variables containing mostly noise. This review focuses on the variable selection methods in NIR spectroscopy. Selection methods include some classical approaches, such as manual approach (knowledge based selection), "Univariate" and "Sequential" selection methods; sophisticated methods such as successive projections algorithm (SPA) and uninformative variable elimination (UVE), elaborate search-based strategies such as simulated annealing (SA), artificial neural networks (ANN) and genetic algorithms (GAs) and interval base algorithms such as interval partial least squares (iPLS), windows PLS and iterative PLS. Wavelength selection with B-spline, Kalman filtering, Fisher's weights and Bayesian are also mentioned. Finally, the websites of some variable selection software and toolboxes for non-commercial use are given. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Modeling and Prediction of Krueger Device Noise

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Burley, Casey L.; Thomas, Russell H.

    2016-01-01

    This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.

  5. Potential applications of microtesla magnetic resonance imaging detected using a superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Myers, Whittier Ryan

    This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 muT. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz 1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm3 images of bell peppers and 3 x 3 x 26 mm3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T1 ) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The measured T1 of ex vivo normal and cancerous prostate tissue differ significantly at 132 muT. A single-sided MRI system designed for prostate imaging could achieve 3 x 3 x 5 mm3 resolution in 8 minutes. Existing SQUID-based magnetoencephalography (MEG) systems could be used as microtesla MRI detectors. A commercial 275-channel MEG system could acquire 6-minute brain images with (4 mm)3 resolution and SNR 16.

  6. Development of hybrid method for the prediction of underwater propeller noise

    NASA Astrophysics Data System (ADS)

    Seol, Hanshin; Suh, Jung-Chun; Lee, Soogab

    2005-11-01

    Noise reduction and control is an important problem in the performance of underwater acoustic systems and in the habitability of the passenger ship for crew and passenger. Furthermore, sound generated by a propeller is critical in underwater detection and it is often related to the survivability of the vessel especially for military purpose. This paper presents a numerical study on the non-cavitating and blade sheet cavitation noises of the underwater propeller. A brief summary of numerical method with verification and results are presented. The noise is predicted using time-domain acoustic analogy. The flow field is analyzed with potential-based panel method, and then the time-dependent pressure and sheet cavity volume data are used as the input for Ffowcs Williams-Hawkings formulation to predict the far-field acoustics. Noise characteristics are presented according to noise sources and conditions. Through this study, the dominant noise source of the underwater propeller is analyzed, which will provide a basis for proper noise control strategies.

  7. Modeling Inter-trial Variability of Saccade Trajectories: Effects of Lesions of the Oculomotor Part of the Fastigial Nucleus

    PubMed Central

    Eggert, Thomas; Straube, Andreas

    2016-01-01

    This study investigates the inter-trial variability of saccade trajectories observed in five rhesus macaques (Macaca mulatta). For each time point during a saccade, the inter-trial variance of eye position and its covariance with eye end position were evaluated. Data were modeled by a superposition of three noise components due to 1) planning noise, 2) signal-dependent motor noise, and 3) signal-dependent premotor noise entering within an internal feedback loop. Both planning noise and signal-dependent motor noise (together called accumulating noise) predict a simple S-shaped variance increase during saccades, which was not sufficient to explain the data. Adding noise within an internal feedback loop enabled the model to mimic variance/covariance structure in each monkey, and to estimate the noise amplitudes and the feedback gain. Feedback noise had little effect on end point noise, which was dominated by accumulating noise. This analysis was further extended to saccades executed during inactivation of the caudal fastigial nucleus (cFN) on one side of the cerebellum. Saccades ipsiversive to an inactivated cFN showed more end point variance than did normal saccades. During cFN inactivation, eye position during saccades was statistically more strongly coupled to eye position at saccade end. The proposed model could fit the variance/covariance structure of ipsiversive and contraversive saccades. Inactivation effects on saccade noise are explained by a decrease of the feedback gain and an increase of planning and/or signal-dependent motor noise. The decrease of the fitted feedback gain is consistent with previous studies suggesting a role for the cerebellum in an internal feedback mechanism. Increased end point variance did not result from impaired feedback but from the increase of accumulating noise. The effects of cFN inactivation on saccade noise indicate that the effects of cFN inactivation cannot be explained entirely with the cFN’s direct connections to the saccade-related premotor centers in the brainstem. PMID:27351741

  8. The Role of Design-of-Experiments in Managing Flow in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Gridley, Marvin C.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design-of-Experiments methodologies to arrive at microscale secondary flow control array designs that maintain optimal inlet performance over a wide range of the mission variables and to explore how these statistical methods provide a better understanding of the management of flow in compact air vehicle inlets. These statistical design concepts were used to investigate the robustness properties of low unit strength micro-effector arrays. Low unit strength micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. The term robustness is used in this paper in the same sense as it is used in the industrial problem solving community. It refers to minimizing the effects of the hard-to-control factors that influence the development of a product or process. In Robustness Engineering, the effects of the hard-to-control factors are often called noise , and the hard-to-control factors themselves are referred to as the environmental variables or sometimes as the Taguchi noise variables. Hence Robust Optimization refers to minimizing the effects of the environmental or noise variables on the development (design) of a product or process. In the management of flow in compact inlets, the environmental or noise variables can be identified with the mission variables. Therefore this paper formulates a statistical design methodology that minimizes the impact of variations in the mission variables on inlet performance and demonstrates that these statistical design concepts can lead to simpler inlet flow management systems.

  9. Imaging non-Gaussian output fields produced by Josephson parametric amplifiers: experiments

    NASA Astrophysics Data System (ADS)

    Toyli, D. M.; Venkatramani, A. V.; Boutin, S.; Eddins, A.; Didier, N.; Clerk, A. A.; Blais, A.; Siddiqi, I.

    2015-03-01

    In recent years, squeezed microwave states have become the focus of intense research motivated by applications in continuous-variables quantum computation and precision qubit measurement. Despite numerous demonstrations of vacuum squeezing with superconducting parametric amplifiers such as the Josephson parametric amplifier (JPA), most experiments have also suggested that the squeezed output field becomes non-ideal at the large (> 10dB) signal gains required for low-noise qubit measurement. Here we describe a systematic experimental study of JPA squeezing performance in this regime for varying lumped-element device designs and pumping methods. We reconstruct the JPA output fields through homodyne detection of the field moments and quantify the deviations from an ideal squeezed state using maximal entropy techniques. These methods provide a powerful diagnostic tool to understand how effects such as gain compression impact JPA squeezing. Our results highlight the importance of weak device nonlinearity for generating highly squeezed states. This work is supported by ARO and ONR.

  10. AiResearch QCGAT engine: Acoustic test results

    NASA Technical Reports Server (NTRS)

    Kisner, L. S.

    1980-01-01

    The noise levels of the quiet, general aviation turbofan (QCGAT) engine were measured in ground static noise tests. The static noise levels were found to be markedly lower than the demonstrably quiet AiResearch model TFE731 engine. The measured QCGAT noise levels were correlated with analytical noise source predictions to derive free-field component noise predictions. These component noise sources were used to predict the QCGAT flyover noise levels at FAR Part 36 conditions. The predicted flyover noise levels are about 10 decibels lower than the current quietest business jets.

  11. Direct Relationship Between Perceptual and Motor Variability

    NASA Technical Reports Server (NTRS)

    Liston, Dorion B.; Stone, Leland S.

    2010-01-01

    The time that elapses between stimulus onset and the onset of a saccadic eye movement is longer and more variable than can be explained by neural transmission times and synaptic delays (Carpenter, 1981, in: Eye Movements: Cognition & Visual Perception, Earlbaum). In theory, noise underlying response-time (RT) variability could arise at any point along the sensorimotor cascade, from sensory noise arising Vvithin the early visual processing shared Vvith perception to noise in the motor criterion or commands necessary to trigger movements. These two loci for internal noise can be distinguished empirically; sensory internal noise predicts that response time Vvill correlate Vvith perceived stimulus magnitude whereas motor internal noise predicts no such correlation. Methods. We used the data described by Liston and Stone (2008, JNS 28:13866-13875), in which subjects performed a 2AFC saccadic brightness discrimination task and the perceived brightness of the chosen stimulus was then quantified in a second 21FC perceptual task. Results. We binned each subject's data into quartiles for both signal strength (from dimmest to brightest) and RT (from slowest to fastest) and analyzed the trends in perceived brightness. We found significant effects of both signal strength (as expected) and RT on normalized perceived brightness (both p less than 0.0001, 2-way ANOVA), without significant interaction (p = 0.95, 2-way ANOVA). A plot of normalized perceived brightness versus normalized RT show's that more than half of the variance was shared (r2 = 0.56, P less than 0.0001). To rule out any possibility that some signal-strength related artifact was generating this effect, we ran a control analysis on pairs of trials with repeated presentations of identical stimuli and found that stimuli are perceived to be brighter on trials with faster saccades (p less than 0.001, paired t-test across subjects). Conclusion. These data show that shared early visual internal noise jitters perceived brightness and the saccadic motor output in parallel. While the present correlation could theoretically result, either directly or indirectly, from some low-level brainstem or retinal mechanism (e.g., arousal, pupil size, photoreceptor noise) that influences both visual and oculomotor circuits, this is unlikely given the earlier fin ding that the variability in perceived motion direction and smooth-pursuit motor output is highly correlated (Stone and Krauzlis, 2003, JOV 3:725-736), suggesting that cortical circuits contribute to the shared internal noise.

  12. Networks for image acquisition, processing and display

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1990-01-01

    The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.

  13. Computer analysis of environmental temperature, light and noise in intensive care: chaos or chronome nurseries?

    PubMed

    Ardura, J; Andrés, J; Aldana, J; Revilla, M A; Cornélissen, G; Halberg, F

    1997-09-01

    Lighting, noise and temperature were monitored in two perinatal nurseries. Rhythms of several frequencies were found, including prominent 24-hour rhythms with acrophases around 13:00 (light intensity) and 16:00 (noise). For light and noise, the ratio formed by dividing the amplitude of a 1-week (circaseptan) or half-week (circasemiseptan) fitted cosine curve by the amplitude of a 24-hour fitted cosine curve is smaller than unity, since 24-hour rhythms are prominent for these variables. The amplitude ratios are larger than unity for temperature in the newborns' unit but not in the infants' unit. Earlier, the origin of the about-7-day rhythms of neonatal physiologic variables was demonstrated to have, in addition to a major endogenous, also a minor exogenous component. Hence, the possibility of optimizing maturation by manipulating environmental changes can be considered, using, as gauges of development, previously mapped chronomes (time structures of biologic multifrequency rhythms, trends and noise).

  14. Motion compensation and noise tolerance in phase-shifting digital in-line holography.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2006-05-15

    We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.

  15. Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng

    2018-05-01

    In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.

  16. RF-subcarrier-assisted four-state continuous-variable QKD based on coherent detection.

    PubMed

    Qu, Zhen; Djordjevic, Ivan B; Neifeld, Mark A

    2016-12-01

    We theoretically investigate and experimentally demonstrate a RF-assisted four-state continuous-variable quantum key distribution (CV-QKD) system. Classical coherent detection is implemented with a simple digital phase noise cancelation scheme. In the proposed system, there is no need for frequency and phase locking between the quantum signals and the local oscillator laser. Moreover, in principle, there is no residual phase noise, and a mean excess noise of 0.0115 (in shot-noise units) can be acquired experimentally. In addition, the minimum transmittance of 0.45 is reached experimentally for secure transmission with commercial photodetectors, and the maximum secret key rate (SKR) of >12  Mbit/s can be obtained. The proposed RF-assisted CV-QKD system opens the door of incorporating microwave photonics into a CV-QKD system and improving the SKR significantly.

  17. The Contribution of Cognitive Factors to Individual Differences in Understanding Noise-Vocoded Speech in Young and Older Adults

    PubMed Central

    Rosemann, Stephanie; Gießing, Carsten; Özyurt, Jale; Carroll, Rebecca; Puschmann, Sebastian; Thiel, Christiane M.

    2017-01-01

    Noise-vocoded speech is commonly used to simulate the sensation after cochlear implantation as it consists of spectrally degraded speech. High individual variability exists in learning to understand both noise-vocoded speech and speech perceived through a cochlear implant (CI). This variability is partly ascribed to differing cognitive abilities like working memory, verbal skills or attention. Although clinically highly relevant, up to now, no consensus has been achieved about which cognitive factors exactly predict the intelligibility of speech in noise-vocoded situations in healthy subjects or in patients after cochlear implantation. We aimed to establish a test battery that can be used to predict speech understanding in patients prior to receiving a CI. Young and old healthy listeners completed a noise-vocoded speech test in addition to cognitive tests tapping on verbal memory, working memory, lexicon and retrieval skills as well as cognitive flexibility and attention. Partial-least-squares analysis revealed that six variables were important to significantly predict vocoded-speech performance. These were the ability to perceive visually degraded speech tested by the Text Reception Threshold, vocabulary size assessed with the Multiple Choice Word Test, working memory gauged with the Operation Span Test, verbal learning and recall of the Verbal Learning and Retention Test and task switching abilities tested by the Comprehensive Trail-Making Test. Thus, these cognitive abilities explain individual differences in noise-vocoded speech understanding and should be considered when aiming to predict hearing-aid outcome. PMID:28638329

  18. Noise, stress, and annoyance in a pediatric intensive care unit.

    PubMed

    Morrison, Wynne E; Haas, Ellen C; Shaffner, Donald H; Garrett, Elizabeth S; Fackler, James C

    2003-01-01

    To measure and describe hospital noise and determine whether noise can be correlated with nursing stress measured by questionnaire, salivary amylase, and heart rate. Cohort observational study. Tertiary care center pediatric intensive care unit. Registered nurses working in the unit. None. Eleven nurse volunteers were recruited. An audiogram, questionnaire data, salivary amylase, and heart rate were collected in a quiet room. Each nurse was observed for a 3-hr period during patient care. Heart rate and sound level were recorded continuously; saliva samples and stress/annoyance ratings were collected every 30 mins. Variables assessed as potential confounders were years of nursing experience, caffeine intake, patients' Pediatric Risk of Mortality Score, shift assignment, and room assignment. Data were analyzed by random effects multiple linear regression using Stata 6.0. The average daytime sound level was 61 dB(A), nighttime 59 dB(A). Higher average sound levels significantly predicted higher heart rates (p =.014). Other significant predictors of tachycardia were higher caffeine intake, less nursing experience, and daytime shift. Ninety percent of the variability in heart rate was explained by the regression equation. Amylase measurements showed a large variability and were not significantly affected by noise levels. Higher average sound levels were also predictive of greater subjective stress (p =.021) and annoyance (p =.016). In this small study, noise was shown to correlate with several measures of stress including tachycardia and annoyance ratings. Further studies of interventions to reduce noise are essential.

  19. An Application of the Acoustic Similarity Law to the Numerical Analysis of Centrifugal Fan Noise

    NASA Astrophysics Data System (ADS)

    Jeon, Wan-Ho; Lee, Duck-Joo; Rhee, Huinam

    Centrifugal fans, which are frequently used in our daily lives and various industries, usually make severe noise problems. Generally, the centrifugal fan noise consists of tones at the blade passing frequency and its higher harmonics. These tonal sounds come from the interaction between the flow discharged from the impeller and the cutoff in the casing. Prediction of the noise from a centrifugal fan becomes more necessary to optimize the design to meet both the performance and noise criteria. However, only some limited studies on noise prediction method exist because there are difficulties in obtaining detailed information about the flow field and casing effect on noise radiation. This paper aims to investigate the noise generation mechanism of a centrifugal fan and to develop a prediction method for the unsteady flow and acoustic pressure fields. In order to do this, a numerical analysis method using acoustic similarity law is proposed, and it is verified that the method can predict the noise generation mechanism very well by comparing the predicted results with available experimental results.

  20. Stochastic detecting images from strong noise field in visual communications

    NASA Astrophysics Data System (ADS)

    Cai, Defu

    1991-11-01

    Random noise interference in image pick-up and image transmission is an important restriction for vision systems. In this paper, interframe shift sampling (IFSS) transform has been used for diminishing noise interference and detecting weak image signal submerged by strong noise in communication systems.

  1. VizieR Online Data Catalog: BVRI photometry of S5 0716+714 (Liao+, 2014)

    NASA Astrophysics Data System (ADS)

    Liao, N. H.; Bai, J. M.; Liu, H. T.; Weng, S. S.; Chen, L.; Li, F.

    2016-04-01

    The variability of S5 0716+714 was photometrically monitored in the optical bands at Yunnan Observatories, making use of the 2.4m telescope (http://www.gmg.org.cn/) and the 1.02m telescope (http://www1.ynao.ac.cn/~omt/). The 2.4m telescope, which began working in 2008 May, is located at the Lijiang Observatory of Yunnan Observatories, where the longitude is 100°01'51''E and the latitude is 26°42'32''N, with an altitude of 3193m. There are two photometric terminals. The PI VersArry 1300B CCD camera with 1340*1300 pixels covers a field of view 4'48''*4'40'' at the Cassegrain focus. The readout noise and gain are 6.05 electrons and 1.1 electrons ADU-1, respectively. The Yunnan Faint Object Spectrograph and Camera (YFOSC) has a field of view of about 10'*10' and 2000*2000 pixels for photometric observation. Each pixel corresponds to 0.283'' of the sky. The readout noise and gain of the YFOSC CCD are 7.5 electrons and 0.33 electrons ADU-1, respectively. The 1.02m telescope is located at the headquarters of Yunnan Observatories and is mainly used for photometry with standard Johnson UBV and Cousins RI filters. An Andor CCD camera with 2048*2048 pixels has been installed at its Cassegrain focus since 2008 May. The readout noise and gain are 7.8 electrons and 1.1 electrons ADU-1, respectively. (1 data file).

  2. Spatial correlation analysis of seismic noise for STAR X-ray infrastructure design

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Agostino, Raffaele; Festa, Lorenzo; Gervasi, Anna; Guerra, Ignazio; Palmer, Dennis T.; Serafini, Luca

    2014-05-01

    The Italian PON MaTeRiA project is focused on the creation of a research infrastructure open to users based on an innovative and evolutionary X-ray source. This source, named STAR (Southern Europe TBS for Applied Research), exploits the Thomson backscattering process of a laser radiation by fast-electron beams (Thomson Back Scattering - TBS). Its main performances are: X-ray photon flux 109-1010 ph/s, Angular divergence variable between 2 and 10 mrad, X-ray energy continuously variable between 8 keV and 150 keV, Bandwidth ΔE/E variable between 1 and 10%, ps time resolved structure. In order to achieve this performances, bunches of electrons produced by a photo-injector are accelerated to relativistic velocities by a linear accelerator section. The electron beam, few hundreds of micrometer wide, is driven by magnetic fields to the interaction point along a 15 m transport line where it is focused in a 10 micrometer-wide area. In the same area, the laser beam is focused after being transported along a 12 m structure. Ground vibrations could greatly affect the collision probability and thus the emittance by deviating the paths of the beams during their travel in the STAR source. Therefore, the study program to measure ground vibrations in the STAR site can be used for site characterization in relation to accelerator design. The environmental and facility noise may affect the X-ray operation especially if the predominant wavelengths in the microtremor wavefield are much smaller than the size of the linear accelerator. For wavelength much greater, all the accelerator parts move in phase, and therefore also large displacements cannot generate any significant effect. On the other hand, for wavelengths equal or less than half the accelerator size several parts could move in phase opposition and therefore small displacements could affect its proper functioning. Thereafter, it is important to characterize the microtremor wavefield in both frequencies and wavelengths domains. For this reason, we performed some measurements of seismic noise in order to characterize the environmental noise in the site in which the X-ray accelerator arise. For the characterization of the site, we carried out several passive seismic monitoring experiments at different times of the day and in different weather conditions. We recorded microtremor using an array of broadband 3C seismic sensors arranged along the linear accelerator. For each measurement point, we determined the displacement, velocity and acceleration spectrogram and power spectral density of both horizontal and vertical components. We determined also the microtremor horizontal to vertical spectral ratio as function of azimuth to individuate the main ground vibration direction and detect the existence of site or building resonance frequencies. We applied a rotation matrix to transform the North-South and East-West signal components in transversal and radial components, respect to the direction of the linear accelerator. Subsequently, for each couple of seismic stations we determined the coherence function to analyze the seismic noise spatial correlation. These analyses have allowed us to exhaustively characterize the seismic noise of the study area, from the point of view of the power and space-time variability, both in frequency and wavelength.

  3. The prediction of rotor rotational noise using measured fluctuating blade loads

    NASA Technical Reports Server (NTRS)

    Hosier, R. N.; Pegg, R. J.; Ramakrishnan, R.

    1974-01-01

    In tests conducted at the NASA Langley Research Center Helicopter Rotor Test Facility, simultaneous measurements of the high-frequency fluctuating aerodynamic blade loads and far-field radiated noise were made on a full-scale, nontranslating rotor system. After their characteristics were determined, the measured blade loads were used in an existing theory to predict the far-field rotational noise. A comparison of the calculated and measured rotational noise is presented with specific attention given to the effect of blade loading coefficients, chordwise loading distributions, blade loading phases, and observer azimuthal position on the predictions.

  4. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  5. Low-noise cold-field emission current obtained between two opposed carbon cone nanotips during in situ transmission electron microscope biasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoop, L. de; Gatel, C.; Houdellier, F.

    2015-06-29

    A dedicated transmission electron microscope sample holder has been used to study in situ the cold-field emission process of carbon cone nanotips (CCnTs). We show that when using a CCnT instead of a Au plate-anode, the standard deviation of the emission current noise can be decreased from the 10 nA range to the 1 nA range under vacuum conditions of 10{sup −5 }Pa. This shows the strong influence of the anode on the cold-field emission current noise.

  6. Shot Noise in Superconducting Wires Applied with a Periodic Electric Field.

    PubMed

    Chen, Qiao; Xu, Ning

    2018-05-01

    We have investigated the differential conductance and shot noise for the system of superconducting nanowires irradiated with a periodic electric field by nonequilibrium Green's functions. The numerical results show that the coupling between the Majorana bound states (MBSs) can be tuned by the periodic electric field. The width of barriers has huge influence on the coupling of MBSs, however, the separation between barriers affect the coupling faintly. The coupling increases with the width of barriers, the number of barriers and the strength of barriers. In addition, super-Poissonian shot noise emerges as the coupling increases.

  7. Perceptual assessment of quality of urban soundscapes with combined noise sources and water sounds.

    PubMed

    Jeon, Jin Yong; Lee, Pyoung Jik; You, Jin; Kang, Jian

    2010-03-01

    In this study, urban soundscapes containing combined noise sources were evaluated through field surveys and laboratory experiments. The effect of water sounds on masking urban noises was then examined in order to enhance the soundscape perception. Field surveys in 16 urban spaces were conducted through soundwalking to evaluate the annoyance of combined noise sources. Synthesis curves were derived for the relationships between noise levels and the percentage of highly annoyed (%HA) and the percentage of annoyed (%A) for the combined noise sources. Qualitative analysis was also made using semantic scales for evaluating the quality of the soundscape, and it was shown that the perception of acoustic comfort and loudness was strongly related to the annoyance. A laboratory auditory experiment was then conducted in order to quantify the total annoyance caused by road traffic noise and four types of construction noise. It was shown that the annoyance ratings were related to the types of construction noise in combination with road traffic noise and the level of the road traffic noise. Finally, water sounds were determined to be the best sounds to use for enhancing the urban soundscape. The level of the water sounds should be similar to or not less than 3 dB below the level of the urban noises.

  8. Tunnelling magnetoresistance and 1/f noise in phase-separated manganites

    NASA Astrophysics Data System (ADS)

    Sboychakov, A. O.; Rakhmanov, A. L.; Kugel, K. I.; Kagan, M. Yu; Brodsky, I. V.

    2003-03-01

    The magnetoresistance and the noise power of non-metallic phase-separated manganites are studied. The material is modelled by a system of small ferromagnetic metallic droplets (magnetic polarons or ferrons) in an insulating matrix. The concentration of metallic phase is assumed to be far from the percolation threshold. The electron tunnelling between ferrons causes the charge transfer in such a system. The magnetoresistance is determined both by the increase in the volume of the metallic phase and by the change in the electron hopping probability. In the framework of such a model, the low-field magnetoresistance is proportional to H2 and decreases with temperature as T-n, where n can vary from 1 to 5, depending on the parameters of the system. In the high-field limit, the tunnelling magnetoresistance grows exponentially. Different mechanisms of the voltage fluctuations in the system are analysed. The noise spectrum generated by the fluctuations of the number of droplets with extra electrons has a 1/f form over a wide frequency range. In the case of strong magnetic anisotropy, the 1/f noise can also arise due to fluctuations of the magnetic moments of ferrons. The 1/f noise power depends only slightly on the magnetic field in the low field range whereas it can increase as H6 in the high-field limit.

  9. Methodology to estimate the relative pressure field from noisy experimental velocity data

    NASA Astrophysics Data System (ADS)

    Bolin, C. D.; Raguin, L. G.

    2008-11-01

    The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).

  10. Construction and application of a questionnaire for the social scientific investigation of environmental noise effects

    NASA Technical Reports Server (NTRS)

    Guski, R.; Wichmann, U.; Rohrmann, B.; Finke, H. O.

    1980-01-01

    A social psychological questionnair has been developed to study the effects of environmental noise and was applied to 636 people living in 19 different areas of Hamburg. The theoretical foundations and the statistical means employed in its development are described. Four main reactions to noise are isolated statistically, and it is determined that these are moderated by several intervening variables, chief of which are coping capacity for noise, the perceived dangerousness of the noise souce, other daily loads and the individual's liability.

  11. Noise, Variability, and the Development of Children's Perceptual-Motor Skills

    ERIC Educational Resources Information Center

    Deutsch, K.M.; Newell, K.M.

    2005-01-01

    In this paper we examine two long-standing assumptions of the information processing perspective of perceptual-motor development, namely that: (1) the amount of noise in children's sensori-motor system decreases with increases in age up to adulthood; and (2) this age-related reduction in noise level leads to associated improvements in the accuracy…

  12. Noise emission of civil and military aero-engines. Sources of generation and measures for attenuation

    NASA Astrophysics Data System (ADS)

    Grieb, H.; Heinig, K.

    1986-09-01

    It is shown that noise reduction on high bypass ratio turbofans for civil airliners is well established. The noise levels achieved meet the internationally agreed regulations (FAR 36). The same holds true for large military transport aircraft. Helicopter noise is caused essentially by the main and tail rotors. Noise reduction on afterburner and dry engines for combat and strike aircraft, which represent the major noise annoyance to the public, is very difficult because: high specific thrust is mandatory for aircraft performance and effectiveness; jet noise with and without afterburning is predominant; and the design of the reheat section and final (variable) nozzle in practice precludes the application of known concepts for jet noise attenuation in dry and reheated operation.

  13. Should helicopter noise be measured differently from other aircraft noise? A review of the psychoacoustic literature

    NASA Technical Reports Server (NTRS)

    Molino, J. A.

    1982-01-01

    A review of 34 studies indicates that several factors or variables might be important in providing a psychoacoustic foundation for measurements of the noise from helicopters. These factors are phase relations, tail rotor noise, repetition rate, crest level, and generic differences between conventional aircraft and helicopters. Particular attention was given to the impulsive noise known as blade slap. Analysis of the evidence for and against each factor reveals that, for the present state of scientific knowledge, none of these factors should be regarded as the basis for a significant noise measurement correction due to impulsive blade slap. The current method of measuring effective perceived noise level for conventional aircraft appears to be adequate for measuring helicopter noise as well.

  14. Improving the Response of a Wheel Speed Sensor by Using a RLS Lattice Algorithm

    PubMed Central

    Hernandez, Wilmar

    2006-01-01

    Among the complete family of sensors for automotive safety, consumer and industrial application, speed sensors stand out as one of the most important. Actually, speed sensors have the diversity to be used in a broad range of applications. In today's automotive industry, such sensors are used in the antilock braking system, the traction control system and the electronic stability program. Also, typical applications are cam and crank shaft position/speed and wheel and turbo shaft speed measurement. In addition, they are used to control a variety of functions, including fuel injection, ignition timing in engines, and so on. However, some types of speed sensors cannot respond to very low speeds for different reasons. What is more, the main reason why such sensors are not good at detecting very low speeds is that they are more susceptible to noise when the speed of the target is low. In short, they suffer from noise and generally only work at medium to high speeds. This is one of the drawbacks of the inductive (magnetic reluctance) speed sensors and is the case under study. Furthermore, there are other speed sensors like the differential Hall Effect sensors that are relatively immune to interference and noise, but they cannot detect static fields. This limits their operations to speeds which give a switching frequency greater than a minimum operating frequency. In short, this research is focused on improving the performance of a variable reluctance speed sensor placed in a car under performance tests by using a recursive least-squares (RLS) lattice algorithm. Such an algorithm is situated in an adaptive noise canceller and carries out an optimal estimation of the relevant signal coming from the sensor, which is buried in a broad-band noise background where we have little knowledge of the noise characteristics. The experimental results are satisfactory and show a significant improvement in the signal-to-noise ratio at the system output.

  15. Using Perturbation Theory to Reduce Noise in Diffusion Tensor Fields

    PubMed Central

    Bansal, Ravi; Staib, Lawrence H.; Xu, Dongrong; Laine, Andrew F.; Liu, Jun; Peterson, Bradley S.

    2009-01-01

    We propose the use of Perturbation theory to reduce noise in Diffusion Tensor (DT) fields. Diffusion Tensor Imaging (DTI) encodes the diffusion of water molecules along different spatial directions in a positive-definite, 3 × 3 symmetric tensor. Eigenvectors and eigenvalues of DTs allow the in vivo visualization and quantitative analysis of white matter fiber bundles across the brain. The validity and reliability of these analyses are limited, however, by the low spatial resolution and low Signal-to-Noise Ratio (SNR) in DTI datasets. Our procedures can be applied to improve the validity and reliability of these quantitative analyses by reducing noise in the tensor fields. We model a tensor field as a three-dimensional Markov Random Field and then compute the likelihood and the prior terms of this model using Perturbation theory. The prior term constrains the tensor field to be smooth, whereas the likelihood term constrains the smoothed tensor field to be similar to the original field. Thus, the proposed method generates a smoothed field that is close in structure to the original tensor field. We evaluate the performance of our method both visually and quantitatively using synthetic and real-world datasets. We quantitatively assess the performance of our method by computing the SNR for eigenvalues and the coherence measures for eigenvectors of DTs across tensor fields. In addition, we quantitatively compare the performance of our procedures with the performance of one method that uses a Riemannian distance to compute the similarity between two tensors, and with another method that reduces noise in tensor fields by anisotropically filtering the diffusion weighted images that are used to estimate diffusion tensors. These experiments demonstrate that our method significantly increases the coherence of the eigenvectors and the SNR of the eigenvalues, while simultaneously preserving the fine structure and boundaries between homogeneous regions, in the smoothed tensor field. PMID:19540791

  16. Separating Direct and Indirect Turbofan Engine Combustion Noise While Estimating Post-Combustion (Post-Flame) Residence Time Using the Correlation Function

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2011-01-01

    A previous investigation on the presence of direct and indirect combustion noise for a full-scale turbofan engine using a far-field microphone at 130 is extended by also examining signals obtained at two additional downstream directions using far-field microphones at 110 deg and 160 deg. A generalized cross-correlation function technique is used to study the change in propagation time to the far field of the combined direct and indirect combustion noise signal as a sequence of low-pass filters are applied. The filtering procedure used produces no phase distortion. As the low-pass filter frequency is decreased, the travel time increases because the relative amount of direct combustion noise is reduced. The indirect combustion noise signal travels more slowly because in the combustor entropy fluctuations move with the flow velocity, which is slow compared to the local speed of sound. The indirect combustion noise signal travels at acoustic velocities after reaching the turbine and being converted into an acoustic signal. The direct combustion noise is always propagating at acoustic velocities. The results show that the estimated indirect combustion noise time delay values (post-combustion residence times) measured at each angle are fairly consistent with one another for a relevant range of operating conditions and demonstrate source separation of a mixture of direct and indirect combustion noise. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting turbofan engine core noise.

  17. A study of the real-world noise attenuation of the current hearing protection devices in typical workplaces using Field Microphone in Real Ear method.

    PubMed

    Aliabadi, Mohsen; Biabani, Azam; Golmohammadi, Rostam; Farhadian, Maryam

    2018-05-28

    Actual noise reduction of the earmuffs is considered as one of the main challenges for the evaluation of the effectiveness of a hearing conservation program. The current study aimed to determine the real world noise attenuation of current hearing protection devices in typical workplaces using a field microphone in real ear (FMIRE) method. In this cross-sectional study, five common earmuffs were investigated among 50 workers in two industrial factories with different noise characteristics. Noise reduction data was measured with the use of earmuffs based on the ISO 11904 standard, field microphone in real ear method, using noise dosimeter (SVANTEK, model SV 102) equipped with a microphone SV 25 model. The actual insertion losses (IL) of the tested earmuffs in octave band were lower than the labeled insertion loss data (p <  0.05). The frequency nature of noise to which workers are exposed has noticeable effects on the actual noise reduction of earmuffs (p <  0.05). The results suggest that the proportion of time using earmuffs has a considerable impact on the effective noise reduction during the workday. Data about the ambient noise characteristics is a key criterion when evaluating the acoustic performance of hearing protectors in any workplaces. Comfort aspects should be considered as one of the most important criteria for long-term use and effective wearing of hearing protection devices. FMIRE could facilitate rapid and simple measurement of the actual performance of the current earmuffs employed by workers during different work activities.

  18. An investigation of in-flight near-field propeller noise generation and transmission

    NASA Astrophysics Data System (ADS)

    Bonneau, H.; Wilford, D. F.; Wood, L. K.

    1985-02-01

    In flight near field propeller noise measurements, made on a General Aviation turboprop aircraft, are reported for a range of propeller operating conditions, and are shown to be well defined and reproducible. Measurements have been made at 8 exterior microphones, 2 located on a wing mounted boom, and 6 embedded in, and flush with the aircraft fuselage. Interior noise levels are also presented. Measured propeller harmonic levels are compared to first principle calculations of near field noise, using a modified version of the Farassat computer program, in which the blade surface pressure is described using the known aerodynamic properties of the blade (NACA 16) airfoil sections. The first few; i.e., the dominant harmonic levels of propeller noise are shown to be well predicted, while higher harmonic levels are underpredicted. The transmission loss between exterior and interior noise levels is shown to be relatively constant for varying propeller operating conditions and at two different locations along the length of the fuselage. Interior noise levels are also shown for the aircraft in gliding flight at various forward velocities, with both engines at idle and propellers feathered. A method of interpolating these measurements is discussed, which allows the interior noise due only to the forward velocity of the aircraft, to be determined. The transmission loss for this component is also discussed. Finally, interior noise levels are presented for a series of ground static tests with engine mounts of various different stiffnessses.

  19. Noise cancellation in magnetoencephalography and electroencephalography with isolated reference sensors

    DOEpatents

    Kraus, Jr., Robert H.; Espy, Michelle A.; Matlachov, Andrei; Volegov, Petr

    2010-06-01

    An apparatus measures electromagnetic signals from a weak signal source. A plurality of primary sensors is placed in functional proximity to the weak signal source with an electromagnetic field isolation surface arranged adjacent the primary sensors and between the weak signal source and sources of ambient noise. A plurality of reference sensors is placed adjacent the electromagnetic field isolation surface and arranged between the electromagnetic isolation surface and sources of ambient noise.

  20. Effects of night time road traffic noise—an overview of laboratory and field studies on noise dose and subjective noise sensitivity

    NASA Astrophysics Data System (ADS)

    Öhrström, E.; Rylander, R.; Björkman, M.

    1988-12-01

    This paper presents an overview of research on sleep and noise at the Department of Environmental Hygiene, University of Gothenburg. Different methods were developed to study primary and after effects of night time road traffic noise on sleep. Three one-week laboratory experiments were undertaken to study the relevance of different noise descriptors— Leq, maximum peak noise level and number of events with high peak noise levels—for sleep disturbance effects. The noise exposure was either single noise evenys or a continuous, even road traffic noise. It was concluded that Leq was not related to sleep disturbance effects. Peak noise levels were significantly related to subjective sleep quality and body movements. Results from a third continuing study showed that there is a threshold for effects of the number of single noise events on sleep quality. Habituation to noise among subjects with differing noise sensitivity was studied in a two-week experiment. A significant noise effect on subjective sleep quality was found among sensitive subjects only. No habituation was seen for the negative influence of noise on sleep quality, mood and performance. Long-term effects of road traffic noise were also investigated in a field survey among 106 individuals. This study revealed the presence of a decrease in sleep quality as well as psycho-social effects on tiredness and mood, together with increased reports of headaches and nervous stomach. As in the laboratory study, sensitive individuals were more affected by noise than less sensitive individuals.

  1. Testing various modes of installation for permanent broadband stations in open field environment

    NASA Astrophysics Data System (ADS)

    Vergne, Jérôme; Charade, Olivier; Arnold, Benoît; Louis-Xavier, Thierry

    2014-05-01

    In the framework of the RESIF (Réseau Sismologique et géodésique Français) project, we plan to install more than one hundred new permanent broadband stations in metropolitan France within the next 6 years. Whenever possible, the sensors will be installed in natural or artificial underground cavities that provide a stable thermal environment. However such places do not exist everywhere and we expect that about half the future stations will have to be set up in open fields. For such sites, we are thus looking for a standard model of hosting infrastructure for the sensors that would be easily replicated and would provide good noise level performances at long periods. Since early 2013, we have been operating a prototype station at Clévilliers, a small location in the sedimentary Beauce plain, where we test three kinds of buried seismic vaults and a down-hole installation. The cylindrical seismic vaults are 3m deep and 1m wide and only differ by the type of coupling between the casing and the concrete slab where we installed insulated Trillium T120PA seismometers. The down-hole installation consists in a 3m deep well hosting a Trillium Posthole seismometer. For reference, another sensor has been installed in a ~50cm deep hole, similarly to the way we test every new potential site. Here we compare the noise level in each infrastructure at different frequencies. We observe quite similar performances for the vertical component recorded in the different wells. Conversely, the noise levels on the horizontal components at periods greater than 10s vary by more than 20dB depending on the installation condition. The best results are obtained in the completely decoupled vault and for the down-hole setting, both showing performances comparable to some of our permanent stations installed in tunnels. The amplitude of the horizontal noise also appears to be highly correlated to wind speed recorded on site, even at long periods. The variable response of each vault to such external forcing can partly explain the variations of the seismic noise levels.

  2. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model

    NASA Astrophysics Data System (ADS)

    Rodgers, K. B.; Lin, J.; Frölicher, T. L.

    2015-06-01

    Marine ecosystems are increasingly stressed by human-induced changes. Marine ecosystem drivers that contribute to stressing ecosystems - including warming, acidification, deoxygenation and perturbations to biological productivity - can co-occur in space and time, but detecting their trends is complicated by the presence of noise associated with natural variability in the climate system. Here we use large initial-condition ensemble simulations with an Earth system model under a historical/RCP8.5 (representative concentration pathway 8.5) scenario over 1950-2100 to consider emergence characteristics for the four individual and combined drivers. Using a 1-standard-deviation (67% confidence) threshold of signal to noise to define emergence with a 30-year trend window, we show that ocean acidification emerges much earlier than other drivers, namely during the 20th century over most of the global ocean. For biological productivity, the anthropogenic signal does not emerge from the noise over most of the global ocean before the end of the 21st century. The early emergence pattern for sea surface temperature in low latitudes is reversed from that of subsurface oxygen inventories, where emergence occurs earlier in the Southern Ocean. For the combined multiple-driver field, 41% of the global ocean exhibits emergence for the 2005-2014 period, and 63% for the 2075-2084 period. The combined multiple-driver field reveals emergence patterns by the end of this century that are relatively high over much of the Southern Ocean, North Pacific, and Atlantic, but relatively low over the tropics and the South Pacific. For the case of two drivers, the tropics including habitats of coral reefs emerges earliest, with this driven by the joint effects of acidification and warming. It is precisely in the regions with pronounced emergence characteristics where marine ecosystems may be expected to be pushed outside of their comfort zone determined by the degree of natural background variability to which they are adapted. The results underscore the importance of sustained multi-decadal observing systems for monitoring multiple ecosystems drivers.

  3. Effects of Classroom Acoustics and Self-Reported Noise Exposure on Teachers' Well-Being

    ERIC Educational Resources Information Center

    Kristiansen, Jesper; Persson, Roger; Lund, Soren Peter; Shibuya, Hitomi; Nielsen, Per Moberg

    2013-01-01

    Beyond noise annoyance and voice problems, little is known about the effects that noise and poor classroom acoustics have on teachers' health and well-being. The aim of this field study was therefore to investigate the effects of perceived noise exposure and classroom reverberation on measures of well-being. Data on self-reported noise exposure,…

  4. Design of quantum efficiency measurement system for variable doping GaAs photocathode

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Yang, Kai; Liu, HongLin; Chang, Benkang

    2008-03-01

    To achieve high quantum efficiency and good stability has been a main direction to develop GaAs photocathode recently. Through early research, we proved that variable doping structure is executable and practical, and has great potential. In order to optimize variable doping GaAs photocathode preparation techniques and study the variable doping theory deeply, a real-time quantum efficiency measurement system for GaAs Photocathode has been designed. The system uses FPGA (Field-programmable gate array) device, and high speed A/D converter to design a high signal noise ratio and high speed data acquisition card. ARM (Advanced RISC Machines) core processor s3c2410 and real-time embedded system are used to obtain and show measurement results. The measurement precision of photocurrent could reach 1nA, and measurement range of spectral response curve is within 400~1000nm. GaAs photocathode preparation process can be real-time monitored by using this system. This system could easily be added other functions to show the physic variation of photocathode during the preparation process more roundly in the future.

  5. Control of Jet Noise Through Mixing Enhancement

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark; Brown, Cliff

    2003-01-01

    The idea of using mixing enhancement to reduce jet noise is not new. Lobed mixers have been around since shortly after jet noise became a problem. However, these designs were often a post-design fix that rarely was worth its weight and thrust loss from a system perspective. Recent advances in CFD and some inspired concepts involving chevrons have shown how mixing enhancement can be successfully employed in noise reduction by subtle manipulation of the nozzle geometry. At NASA Glenn Research Center, this recent success has provided an opportunity to explore our paradigms of jet noise understanding, prediction, and reduction. Recent advances in turbulence measurement technology for hot jets have also greatly aided our ability to explore the cause and effect relationships of nozzle geometry, plume turbulence, and acoustic far field. By studying the flow and sound fields of jets with various degrees of mixing enhancement and subsequent noise manipulation, we are able to explore our intuition regarding how jets make noise, test our prediction codes, and pursue advanced noise reduction concepts. The paper will cover some of the existing paradigms of jet noise as they relate to mixing enhancement for jet noise reduction, and present experimental and analytical observations that support these paradigms.

  6. Review of field studies of aircraft noise-induced sleep disturbance.

    PubMed

    Michaud, David S; Fidell, Sanford; Pearsons, Karl; Campbell, Kenneth C; Keith, Stephen E

    2007-01-01

    Aircraft noise-induced sleep disturbance (AN-ISD) is potentially among the more serious effects of aircraft noise on people. This literature review of recent field studies of AN-ISD finds that reliable generalization of findings to population-level effects is complicated by individual differences among subjects, methodological and analytic differences among studies, and predictive relationships that account for only a small fraction of the variance in the relationship between noise exposure and sleep disturbance. It is nonetheless apparent in the studied circumstances of residential exposure that sleep disturbance effects of nighttime aircraft noise intrusions are not dramatic on a per-event basis, and that linkages between outdoor aircraft noise exposure and sleep disturbance are tenuous. It is also apparent that AN-ISD occurs more often during later than earlier parts of the night; that indoor sound levels are more closely associated with sleep disturbance than outdoor measures; and that spontaneous awakenings, or awakenings attributable to nonaircraft indoor noises, occur more often than awakenings attributed to aircraft noise. Predictions of sleep disturbance due to aircraft noise should not be based on over-simplifications of the findings of the reviewed studies, and these reports should be treated with caution in developing regulatory policy for aircraft noise.

  7. Dynamic Alignment Models for Neural Coding

    PubMed Central

    Kollmorgen, Sepp; Hahnloser, Richard H. R.

    2014-01-01

    Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes. PMID:24625448

  8. Factors Affecting Outcomes in Cochlear Implant Recipients Implanted With a Perimodiolar Electrode Array Located in Scala Tympani.

    PubMed

    Holden, Laura K; Firszt, Jill B; Reeder, Ruth M; Uchanski, Rosalie M; Dwyer, Noël Y; Holden, Timothy A

    2016-12-01

    To identify primary biographic and audiologic factors contributing to cochlear implant (CI) performance variability in quiet and noise by controlling electrode array type and electrode position within the cochlea. Although CI outcomes have improved over time, considerable outcome variability still exists. Biographic, audiologic, and device-related factors have been shown to influence performance. Examining CI recipients with consistent array type and electrode position may allow focused investigation into outcome variability resulting from biographic and audiologic factors. Thirty-nine adults (40 ears) implanted for at least 6 months with a perimodiolar electrode array known (via computed tomography [CT] imaging) to be in scala tympani participated. Test materials, administered CI only, included monosyllabic words, sentences in quiet and noise, and spectral ripple discrimination. In quiet, scores were high with mean word and sentence scores of 76 and 87%, respectively; however, sentence scores decreased by an average of 35 percentage points when noise was added. A principal components (PC) analysis of biographic and audiologic factors found three distinct factors, PC1 Age, PC2 Duration, and PC3 Pre-op Hearing. PC1 Age was the only factor that correlated, albeit modestly, with speech recognition in quiet and noise. Spectral ripple discrimination strongly correlated with speech measures. For these recipients with consistent electrode position, PC1 Age was related to speech recognition performance. Consistent electrode position may have contributed to high speech understanding in quiet. Inter-subject variability in noise may have been influenced by auditory/cognitive processing, known to decline with age, and mechanisms that underlie spectral resolution ability.

  9. Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness

    PubMed Central

    Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.

    2012-01-01

    Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (<10% of maximal force) for typical values of these parameters. Results indicate that motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000

  10. Phase transitions in distributed control systems with multiplicative noise

    NASA Astrophysics Data System (ADS)

    Allegra, Nicolas; Bamieh, Bassam; Mitra, Partha; Sire, Clément

    2018-01-01

    Contemporary technological challenges often involve many degrees of freedom in a distributed or networked setting. Three aspects are notable: the variables are usually associated with the nodes of a graph with limited communication resources, hindering centralized control; the communication is subject to noise; and the number of variables can be very large. These three aspects make tools and techniques from statistical physics particularly suitable for the performance analysis of such networked systems in the limit of many variables (analogous to the thermodynamic limit in statistical physics). Perhaps not surprisingly, phase-transition like phenomena appear in these systems, where a sharp change in performance can be observed with a smooth parameter variation, with the change becoming discontinuous or singular in the limit of infinite system size. In this paper, we analyze the so called network consensus problem, prototypical of the above considerations, that has previously been analyzed mostly in the context of additive noise. We show that qualitatively new phase-transition like phenomena appear for this problem in the presence of multiplicative noise. Depending on dimensions, and on the presence or absence of a conservation law, the system performance shows a discontinuous change at a threshold value of the multiplicative noise strength. In the absence of the conservation law, and for graph spectral dimension less than two, the multiplicative noise threshold (the stability margin of the control problem) is zero. This is reminiscent of the absence of robust controllers for certain classes of centralized control problems. Although our study involves a ‘toy’ model, we believe that the qualitative features are generic, with implications for the robust stability of distributed control systems, as well as the effect of roundoff errors and communication noise on distributed algorithms.

  11. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2014-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  12. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2011-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  13. Colored-noise-induced discontinuous transitions in symbiotic ecosystems

    NASA Astrophysics Data System (ADS)

    Mankin, Romi; Sauga, Ako; Ainsaar, Ain; Haljas, Astrid; Paunel, Kristiina

    2004-06-01

    A symbiotic ecosystem is studied by means of the Lotka-Volterra stochastic model, using the generalized Verhulst self-regulation. The effect of fluctuating environment on the carrying capacity of a population is taken into account as dichotomous noise. The study is a follow-up of our investigation of symbiotic ecosystems subjected to three-level (trichotomous) noise [

    R. Mankin, A. Ainsaar, A. Haljas, and E. Reiter, Phys. Rev. E 65, 051108 (2002)
    ]. Relying on the mean-field theory, an exact self-consistency equation for stationary states is derived. In some cases the mean field exhibits hysteresis as a function of noise parameters. It is established that random interactions with the environment can cause discontinuous transitions. The dependence of the critical coupling strengths on the noise parameters is found and illustrated by phase diagrams. Predictions from the mean-field theory are compared with the results of numerical simulations. Our results provide a possible scenario for catastrophic shifts of population sizes observed in nature.

  14. Phase-noise influence on coherent transients and hole burning

    NASA Astrophysics Data System (ADS)

    Shakhmuratov, R. N.; Szabo, Alex

    1998-10-01

    Resonant excitation of an inhomogeneously broadened ensemble of two-level atoms (TLA) by a stochastic field with phase noise is theoretically investigated. Free-induction decay (FID), hole burning (HB), and transient nutation (TN) are studied. We consider two kinds of driving fields, one with a free walking phase and another with the phase locked in a limited domain. It is shown that the resonant excitation behavior depends strongly on the noise property. Noise induced by a walking phase gives a simple contribution to the dephasing time, T2, of two-level atoms whereas phase locking qualitatively changes the laser-atom interaction. In the latter case, it is shown that even when the central part of the driving field spectrum is narrower than homogeneous absorption line of the TLA, the wide, low intensity wings of the spectrum (sidebands produced by the locked phase noise), have a strong effect on the FID, TN, and HB induced by the central, narrow part of the spectrum. The influence of sidebands on photon echoes is also discussed.

  15. Effects of pedagogical ideology on the perceived loudness and noise levels in preschools.

    PubMed

    Jonsdottir, Valdis; Rantala, Leena M; Oskarsson, Gudmundur Kr; Sala, Eeva

    2015-01-01

    High activity noise levels that result in detrimental effects on speech communication have been measured in preschools. To find out if different pedagogical ideologies affect the perceived loudness and levels of noise, a questionnaire study inquiring about the experience of loudness and voice symptoms was carried out in Iceland in eight private preschools, called "Hjalli model", and in six public preschools. Noise levels were also measured in the preschools. Background variables (stress level, age, length of working career, education, smoking, and number of children per teacher) were also analyzed in order to determine how much they contributed toward voice symptoms and the experience of noisiness. Results indicate that pedagogical ideology is a significant factor for predicting noise and its consequences. Teachers in the preschool with tighter pedagogical control of discipline (the "Hjalli model") experienced lower activity noise loudness than teachers in the preschool with a more relaxed control of behavior (public preschool). Lower noise levels were also measured in the "Hjalli model" preschool and fewer "Hjalli model" teachers reported voice symptoms. Public preschool teachers experienced more stress than "Hjalli model" teachers and the stress level was, indeed, the background variable that best explained the voice symptoms and the teacher's perception of a noisy environment. Discipline, structure, and organization in the type of activity predicted the activity noise level better than the number of children in the group. Results indicate that pedagogical ideology is a significant factor for predicting self-reported noise and its consequences.

  16. SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization

    PubMed Central

    Tiete, Jelmer; Domínguez, Federico; da Silva, Bruno; Segers, Laurent; Steenhaut, Kris; Touhafi, Abdellah

    2014-01-01

    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass’s hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field. PMID:24463431

  17. Low frequency noise study.

    DOT National Transportation Integrated Search

    2007-04-01

    This report documents a study to investigate human response to the low-frequency : content of aviation noise, or low-frequency noise (LFN). The study comprised field : measurements and laboratory studies. The major findings were: : 1. Start-of-takeof...

  18. Static and wind tunnel near-field/far field jet noise measurements from model scale single-flow baseline and suppressor nozzles. Volume 2: Forward speed effects

    NASA Technical Reports Server (NTRS)

    Jaeck, C. L.

    1976-01-01

    A model scale flight effects test was conducted in the 40 by 80 foot wind tunnel to investigate the effect of aircraft forward speed on single flow jet noise characteristics. The models tested included a 15.24 cm baseline round convergent nozzle, a 20-lobe and annular nozzle with and without lined ejector shroud, and a 57-tube nozzle with a lined ejector shroud. Nozzle operating conditions covered jet velocities from 412 to 640 m/s at a total temperature of 844 K. Wind tunnel speeds were varied from near zero to 91.5 m/s. Measurements were analyzed to (1) determine apparent jet noise source location including effects of ambient velocity; (2) verify a technique for extrapolating near field jet noise measurements into the far field; (3) determine flight effects in the near and far field for baseline and suppressor nozzles; and (4) establish the wind tunnel as a means of accurately defining flight effects for model nozzles and full scale engines.

  19. Transfer of nonclassical features in quantum teleportation via a mixed quantum channel

    NASA Astrophysics Data System (ADS)

    Lee, Jinhyoung; Kim, M. S.; Jeong, Hyunseok

    2000-09-01

    Quantum teleportation of a continuous-variable state is studied for the quantum channel of a two-mode squeezed vacuum influenced by a thermal environment. Each mode of the squeezed vacuum is assumed to undergo the same thermal influence. It is found that when the mixed two-mode squeezed vacuum for the quantum channel is separable, any nonclassical features, which may be imposed in an original unknown state, cannot be transferred to a receiving station. A two-mode Gaussian state, one of which is a mixed two-mode squeezed vacuum, is separable if and only if a positive well-defined P function can be assigned to it. The fidelity of teleportation is considered in terms of the noise factor given by the imperfect channel. It is found that quantum teleportation may give more noise than direct transmission of a field under the thermal environment, which is due to the fragile nature of quantum entanglement of the quantum channel.

  20. Jet Noise Reduction Potential from Emerging Variable Cycle Technologies

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bridges, James; Wernet, Mark

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.

Top