Sample records for variable nucleotide sites

  1. [Positioning of mRNA 3' of the a site bound codon on the human 80S ribosome].

    PubMed

    Molotkov, M V; Graĭfer, D M; Demeshkina, N A; Repkova, M N; Ven'iaminova, A G; Karpova, G G

    2005-01-01

    Short mRNA analogues carrying a UUU triplet at the 5'-termini and a perfluorophenylazide group at either the N7 atom of the guanosine or the C5 atom of the uridine 3' of the triplet were applied to study positioning of mRNA 3' of the A site codon. Complexes of 80S ribosomes with the mRNA analogues were obtained in the presence of tRNAPhe that directed UUU codon to the P site and consequently provided placement of the nucleotide with cross-linker in positions +9 or +12 with respect to the first nucleotide of the P site bound codon. Both types mRNA analogues cross-linked to the 18S rRNA and 40S proteins under mild UV-irradiation. Cross-linking patterns in the complexes where modified nucleotides of the mRNA analogues were in position +7 were analyzed for comparison (cross-linking to the 18S rRNA in such complexes has been studied previously). The efficiency of cross-linking to the ribosomal components depended on the nature of the modified nucleotide in the mRNA analogue and its position on the ribosome, extent of cross-linking to the 18S rRNA being decreased drastically when the modified nucleotide was moved from position +7 to position +12. The nucleotides of 18S rRNA cross-linked to mRNA analogues were determined. Modified nucleotides in positions +9 and +12 cross-linked to the invariant dinucleotide A1824/A1825 and to variable A1823 in the 3'-minidomain of 18S rRNA as well as to protein S15. The same ribosomal components have been found earlier to cross-link to modified mRNA nucleotides in positions from +4 to +7. Besides, all mRNA analogues cross-linked to the invariant nucleotide c1698 in the 3'-minidomain and to and the conserved region 605-620 closing helix 18 in the 5'-domain.

  2. Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications.

    PubMed

    Krishnan, Neeraja M; Seligmann, Hervé; Rao, Basuthkar J

    2008-01-28

    Synonymous sites are freer to vary because of redundancy in genetic code. Messenger RNA secondary structure restricts this freedom, as revealed by previous findings in mitochondrial genes that mutations at third codon position nucleotides in helices are more selected against than those in loops. This motivated us to explore the constraints imposed by mRNA secondary structure on evolutionary variability at all codon positions in general, in chloroplast systems. We found that the evolutionary variability and intrinsic secondary structure stability of these sequences share an inverse relationship. Simulations of most likely single nucleotide evolution in Psilotum nudum and Nephroselmis olivacea mRNAs, indicate that helix-forming propensities of mutated mRNAs are greater than those of the natural mRNAs for short sequences and vice-versa for long sequences. Moreover, helix-forming propensity estimated by the percentage of total mRNA in helices increases gradually with mRNA length, saturating beyond 1000 nucleotides. Protection levels of functionally important sites vary across plants and proteins: r-strategists minimize mutation costs in large genes; K-strategists do the opposite. Mrna length presumably predisposes shorter mRNAs to evolve under different constraints than longer mRNAs. The positive correlation between secondary structure protection and functional importance of sites suggests that some sites might be conserved due to packing-protection constraints at the nucleic acid level in addition to protein level constraints. Consequently, nucleic acid secondary structure a priori biases mutations. The converse (exposure of conserved sites) apparently occurs in a smaller number of cases, indicating a different evolutionary adaptive strategy in these plants. The differences between the protection levels of functionally important sites for r- and K-strategists reflect their respective molecular adaptive strategies. These converge with increasing domestication levels of K-strategists, perhaps because domestication increases reproductive output.

  3. DNA Barcodes of Asian Houbara Bustard (Chlamydotis undulata macqueenii)

    PubMed Central

    Arif, Ibrahim A.; Khan, Haseeb A.; Williams, Joseph B.; Shobrak, Mohammad; Arif, Waad I.

    2012-01-01

    Populations of Houbara Bustards have dramatically declined in recent years. Captive breeding and reintroduction programs have had limited success in reviving population numbers and thus new technological solutions involving molecular methods are essential for the long term survival of this species. In this study, we sequenced the 694 bp segment of COI gene of the four specimens of Asian Houbara Bustard (Chlamydotis undulata macqueenii). We also compared these sequences with earlier published barcodes of 11 individuals comprising different families of the orders Gruiformes, Ciconiiformes, Podicipediformes and Crocodylia (out group). The pair-wise sequence comparison showed a total of 254 variable sites across all the 15 sequences from different taxa. Three of the four specimens of Houbara Bustard had an identical sequence of COI gene and one individual showed a single nucleotide difference (G > A transition at position 83). Within the bustard family (Otididae), comparison among the three species (Asian Houbara Bustard, Great Bustard (Otis tarda) and the Little Bustard (Tetrax tetrax)), representing three different genera, showed 116 variable sites. For another family (Rallidae), the intra-family variable sites among the individuals of four different genera were found to be 146. The COI genetic distances among the 15 individuals varied from 0.000 to 0.431. Phylogenetic analysis using 619 bp nucleotide segment of COI clearly discriminated all the species representing different genera, families and orders. All the four specimens of Houbara Bustard formed a single clade and are clearly separated from other two individuals of the same family (Otis tarda and Tetrax tetrax). The nucleotide sequence of partial segment of COI gene effectively discriminated the closely related species. This is the first study reporting the barcodes of Houbara Bustard and would be helpful in future molecular studies, particularly for the conservation of this threatened bird in Saudi Arabia. PMID:22408462

  4. Tomato (Solanum lycopersicum) variety discrimination and hybridization analysis based on the 5S rRNA region.

    PubMed

    Sun, Yan-Lin; Kang, Ho-Min; Kim, Young-Sik; Baek, Jun-Pill; Zheng, Shi-Lin; Xiang, Jin-Jun; Hong, Soon-Kwan

    2014-05-04

    The tomato ( Solanum lycopersicum ) is a major vegetable crop worldwide. To satisfy popular demand, more than 500 tomato varieties have been bred. However, a clear variety identification has not been found. Thorough understanding of the phylogenetic relationship and hybridization information of tomato varieties is very important for further variety breeding. Thus, in this study, we collected 26 tomato varieties and attempted to distinguish them based on the 5S rRNA region, which is widely used in the determination of phylogenetic relations. Sequence analysis of the 5S rRNA region suggested that a large number of nucleotide variations exist among tomato varieties. These variable nucleotide sites were also informative regarding hybridization. Chromas sequencing of Yellow Mountain View and Seuwiteuking varieties indicated three and one variable nucleotide sites in the non-transcribed spacer (NTS) of the 5S rRNA region showing hybridization, respectively. Based on a phylogenetic tree constructed using the 5S rRNA sequences, we observed that 16 tomato varieties were divided into three groups at 95% similarity. Rubiking and Sseommeoking, Lang Selection Procedure and Seuwiteuking, and Acorn Gold and Yellow Mountain View exhibited very high identity with their partners. This work will aid variety authentication and provides a basis for further tomato variety breeding.

  5. Statistical analysis of nucleotide sequences of the hemagglutinin gene of human influenza A viruses.

    PubMed Central

    Ina, Y; Gojobori, T

    1994-01-01

    To examine whether positive selection operates on the hemagglutinin 1 (HA1) gene of human influenza A viruses (H1 subtype), 21 nucleotide sequences of the HA1 gene were statistically analyzed. The nucleotide sequences were divided into antigenic and nonantigenic sites. The nucleotide diversities for antigenic and nonantigenic sites of the HA1 gene were computed at synonymous and nonsynonymous sites separately. For nonantigenic sites, the nucleotide diversities were larger at synonymous sites than at nonsynonymous sites. This is consistent with the neutral theory of molecular evolution. For antigenic sites, however, the nucleotide diversities at nonsynonymous sites were larger than those at synonymous sites. These results suggest that positive selection operates on antigenic sites of the HA1 gene of human influenza A viruses (H1 subtype). PMID:8078892

  6. Conservation/Mutation in the Splice Sites of Mitochondrial Solute Carrier Genes of Vertebrates.

    PubMed

    Calvello, Rosa; Panaro, Maria A; Salvatore, Rosaria; Mitolo, Vincenzo; Cianciulli, Antonia

    2016-10-01

    The "canonical" introns begin by the dinucleotide GT and end by the dinucleotide AG. GT, together with a few downstream nucleotides, and AG, with a few of the immediately preceding nucleotides, are thought to be the strongest splicing signals (5'ss and 3'ss, respectively). We examined the composition of the intronic initial and terminal hexanucleotides of the mitochondrial solute carrier genes (SLC25A's) of zebrafish, chicken, mouse, and human. These genes are orthologous and we selected the transcripts in which the arrangement of exons and introns was superimposable in the species considered. Both 5'ss and 3'ss were highly polymorphic, with 104 and 126 different configurations, respectively, in our sample. In the line of evolution from zebrafish to chicken, as well as in that from zebrafish to mammals, the average nucleotide conservation in the four variable nucleotides was about 50 % at 5' and 40 % at 3'. In the divergent evolution of mouse and human, the conservation was about 80 % at 5' and 70 % at 3'. Despite these changes, the splicing signals remain strong enough to operate at the same site. At both 5' and 3', the frequency of a nucleotide at a given position in the zebrafish sequence is positively correlated with its conservation in chicken and mammals, suggesting that selection continued to operate in birds and mammals along similar lines.

  7. Differential sequence diversity at merozoite surface protein-1 locus of Plasmodium knowlesi from humans and macaques in Thailand.

    PubMed

    Putaporntip, Chaturong; Thongaree, Siriporn; Jongwutiwes, Somchai

    2013-08-01

    To determine the genetic diversity and potential transmission routes of Plasmodium knowlesi, we analyzed the complete nucleotide sequence of the gene encoding the merozoite surface protein-1 of this simian malaria (Pkmsp-1), an asexual blood-stage vaccine candidate, from naturally infected humans and macaques in Thailand. Analysis of Pkmsp-1 sequences from humans (n=12) and monkeys (n=12) reveals five conserved and four variable domains. Most nucleotide substitutions in conserved domains were dimorphic whereas three of four variable domains contained complex repeats with extensive sequence and size variation. Besides purifying selection in conserved domains, evidence of intragenic recombination scattering across Pkmsp-1 was detected. The number of haplotypes, haplotype diversity, nucleotide diversity and recombination sites of human-derived sequences exceeded that of monkey-derived sequences. Phylogenetic networks based on concatenated conserved sequences of Pkmsp-1 displayed a character pattern that could have arisen from sampling process or the presence of two independent routes of P. knowlesi transmission, i.e. from macaques to human and from human to humans in Thailand. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Structural analysis of Arabidopsis thaliana nucleoside diphosphate kinase-2 for phytochrome-mediated light signaling.

    PubMed

    Im, Young Jun; Kim, Jeong-Il; Shen, Yu; Na, Young; Han, Yun-Jeong; Kim, Seong-Hee; Song, Pill-Soon; Eom, Soo Hyun

    2004-10-22

    In plants, nucleoside diphosphate kinases (NDPKs) play a key role in the signaling of both stress and light. However, little is known about the structural elements involved in their function. Of the three NDPKs (NDPK1-NDPK3) expressed in Arabidopsis thaliana, NDPK2 is involved in phytochrome-mediated signal transduction. In this study, we found that the binding of dNDP or NTP to NDPK2 strengthens the interaction significantly between activated phytochrome and NDPK2. To better understand the structural basis of the phytochrome-NDPK2 interaction, we determined the X-ray structures of NDPK1, NDPK2, and dGTP-bound NDPK2 from A.thaliana at 1.8A, 2.6A, and 2.4A, respectively. The structures showed that nucleotide binding caused a slight conformational change in NDPK2 that was confined to helices alphaA and alpha2. This suggests that the presence of nucleotide in the active site and/or the evoked conformational change contributes to the recognition of NDPK2 by activated phytochrome. In vitro binding assays showed that only NDPK2 interacted specifically with the phytochrome and the C-terminal regulatory domain of phytochrome is involved in the interaction. A domain swap experiment between NDPK1 and NDPK2 showed that the variable C-terminal region of NDPK2 is important for the activation by phytochrome. The structure of Arabidopsis NDPK1 and NDPK2 showed that the isoforms share common electrostatic surfaces at the nucleotide-binding site, but the variable C-terminal regions have distinct electrostatic charge distributions. These findings suggest that the binding of nucleotide to NDPK2 plays a regulatory role in phytochrome signaling and that the C-terminal extension of NDPK2 provides a potential binding surface for the specific interaction with phytochromes.

  9. Population structure and genetic variability within isolates of Grapevine fanleaf virus from a naturally infected vineyard in France: evidence for mixed infection and recombination.

    PubMed

    Vigne, Emmanuelle; Bergdoll, Marc; Guyader, Sébastien; Fuchs, Marc

    2004-08-01

    The nematode-borne Grapevine fanleaf virus, from the genus Nepovirus in the family Comoviridae, causes severe degeneration of grapevines in most vineyards worldwide. We characterized 347 isolates from transgenic and conventional grapevines from two vineyard sites in the Champagne region of France for their molecular variant composition. The population structure and genetic diversity were examined in the coat protein gene by IC-RT-PCR-RFLP analysis with EcoRI and StyI, and nucleotide sequencing, respectively. RFLP data suggested that 55 % (191 of 347) of the isolates had a population structure consisting of one predominant variant. Sequencing data of 51 isolates representing the different restrictotypes confirmed the existence of mixed infection with a frequency of 33 % (17 of 51) and showed two major predominant haplotypes representing 71 % (60 of 85) of the sequence variants. Comparative nucleotide diversity among population subsets implied a lack of genetic differentiation according to host (transgenic vs conventional) or field site for most restrictotypes (17 of 18 and 13 of 18) and for haplotypes in most phylogenetic groups (seven of eight and six of eight), respectively. Interestingly, five of the 85 haplotypes sequenced had an intermediate divergence (0.036-0.066) between the lower (0.005-0.028) and upper range (0.083-0.138) of nucleotide variability, suggesting the occurrence of homologous RNA recombination. Sequence alignments clearly indicated a mosaic structure for four of these five variants, for which recombination sites were identified and parental lineages proposed. This is the first in-depth characterization of the population structure and genetic diversity in a nepovirus.

  10. Phylogenetic Network for European mtDNA

    PubMed Central

    Finnilä, Saara; Lehtonen, Mervi S.; Majamaa, Kari

    2001-01-01

    The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms. PMID:11349229

  11. Intercalation of XR5944 with the estrogen response element is modulated by the tri-nucleotide spacer sequence between half-sites

    PubMed Central

    Sidell, Neil; Mathad, Raveendra I.; Shu, Feng-jue; Zhang, Zhenjiang; Kallen, Caleb B.; Yang, Danzhou

    2011-01-01

    DNA-intercalating molecules can impair DNA replication, DNA repair, and gene transcription. We previously demonstrated that XR5944, a DNA bis-intercalator, specifically blocks binding of estrogen receptor-α (ERα) to the consensus estrogen response element (ERE). The consensus ERE sequence is AGGTCAnnnTGACCT, where nnn is known as the tri-nucleotide spacer. Recent work has shown that the tri-nucleotide spacer can modulate ERα-ERE binding affinity and ligand-mediated transcriptional responses. To further understand the mechanism by which XR5944 inhibits ERα-ERE binding, we tested its ability to interact with consensus EREs with variable tri-nucleotide spacer sequences and with natural but non-consensus ERE sequences using one dimensional nuclear magnetic resonance (1D 1H NMR) titration studies. We found that the tri-nucleotide spacer sequence significantly modulates the binding of XR5944 to EREs. Of the sequences that were tested, EREs with CGG and AGG spacers showed the best binding specificity with XR5944, while those spaced with TTT demonstrated the least specific binding. The binding stoichiometry of XR5944 with EREs was 2:1, which can explain why the spacer influences the drug-DNA interaction; each XR5944 spans four nucleotides (including portions of the spacer) when intercalating with DNA. To validate our NMR results, we conducted functional studies using reporter constructs containing consensus EREs with tri-nucleotide spacers CGG, CTG, and TTT. Results of reporter assays in MCF-7 cells indicated that XR5944 was significantly more potent in inhibiting the activity of CGG- than TTT-spaced EREs, consistent with our NMR results. Taken together, these findings predict that the anti-estrogenic effects of XR5944 will depend not only on ERE half-site composition but also on the tri-nucleotide spacer sequence of EREs located in the promoters of estrogen-responsive genes. PMID:21333738

  12. Binding of nucleotides by T4 DNA ligase and T4 RNA ligase: optical absorbance and fluorescence studies.

    PubMed Central

    Cherepanov, A V; de Vries, S

    2001-01-01

    The interaction of nucleotides with T4 DNA and RNA ligases has been characterized using ultraviolet visible (UV-VIS) absorbance and fluorescence spectroscopy. Both enzymes bind nucleotides with the K(d) between 0.1 and 20 microM. Nucleotide binding results in a decrease of absorbance at 260 nm due to pi-stacking with an aromatic residue, possibly phenylalanine, and causes red-shifting of the absorbance maximum due to hydrogen bonding with the exocyclic amino group. T4 DNA ligase is shown to have, besides the catalytic ATP binding site, another noncovalent nucleotide binding site. ATP bound there alters the pi-stacking of the nucleotide in the catalytic site, increasing its optical extinction. The K(d) for the noncovalent site is approximately 1000-fold higher than for the catalytic site. Nucleotides quench the protein fluorescence showing that a tryptophan residue is located in the active site of the ligase. The decrease of absorbance around 298 nm suggests that the hydrogen bonding interactions of this tryptophan residue are weakened in the ligase-nucleotide complex. The excitation/emission properties of T4 RNA ligase indicate that its ATP binding pocket is in contact with solvent, which is excluded upon binding of the nucleotide. Overall, the spectroscopic analysis reveals important similarities between T4 ligases and related nucleotidyltransferases, despite the low sequence similarity. PMID:11721015

  13. Mutations in the nucleotide binding pocket of MreB can alter cell curvature and polar morphology in Caulobacter.

    PubMed

    Dye, Natalie A; Pincus, Zachary; Fisher, Isabelle C; Shapiro, Lucy; Theriot, Julie A

    2011-07-01

    The maintenance of cell shape in Caulobacter crescentus requires the essential gene mreB, which encodes a member of the actin superfamily and the target of the antibiotic, A22. We isolated 35 unique A22-resistant Caulobacter strains with single amino acid substitutions near the nucleotide binding site of MreB. Mutations that alter cell curvature and mislocalize the intermediate filament crescentin cluster on the back surface of MreB's structure. Another subset have variable cell widths, with wide cell bodies and actively growing thin extensions of the cell poles that concentrate fluorescent MreB. We found that the extent to which MreB localization is perturbed is linearly correlated with the development of pointed cell poles and variable cell widths. Further, we find that a mutation to glycine of two conserved aspartic acid residues that are important for nucleotide hydrolysis in other members of the actin superfamily abolishes robust midcell recruitment of MreB but supports a normal rate of growth. These mutant strains provide novel insight into how MreB's protein structure, subcellular localization, and activity contribute to its function in bacterial cell shape. © 2011 Blackwell Publishing Ltd.

  14. Mutations in the nucleotide binding pocket of MreB can alter cell curvature and polar morphology in Caulobacter

    PubMed Central

    Dye, Natalie A; Pincus, Zachary; Fisher, Isabelle C; Shapiro, Lucy; Theriot, Julie A

    2011-01-01

    Summary The maintenance of cell shape in Caulobacter crescentus requires the essential gene mreB, which encodes a member of the actin superfamily and the target of the antibiotic, A22. We isolated 35 unique A22-resistant Caulobacter strains with single amino acid substitutions near the nucleotide binding site of MreB. Mutations that alter cell curvature and mislocalize the intermediate filament crescentin cluster on the back surface of MreB's structure. Another subset have variable cell widths, with wide cell bodies and actively growing thin extensions of the cell poles that concentrate fluorescent MreB. We found that the extent to which MreB localization is perturbed is linearly correlated with the development of pointed cell poles and variable cell widths. Further, we find that a mutation to glycine of two conserved aspartic acid residues that are important for nucleotide hydrolysis in other members of the actin superfamily abolishes robust midcell recruitment of MreB but supports a normal rate of growth. These mutant strains provide novel insight into how MreB's protein structure, subcellular localization, and activity contribute to its function in bacterial cell shape. PMID:21564339

  15. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-05-01

    Forskolin labelled with (/sup 3/H) bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg/sup 2 +/ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no furthermore » increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins.« less

  16. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoghbi, M. E.; Altenberg, G. A.

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we usedmore » luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation.« less

  17. Deconvoluting AMP-activated protein kinase (AMPK) adenine nucleotide binding and sensing

    PubMed Central

    Gu, Xin; Yan, Yan; Novick, Scott J.; Kovach, Amanda; Goswami, Devrishi; Ke, Jiyuan; Tan, M. H. Eileen; Wang, Lili; Li, Xiaodan; de Waal, Parker W.; Webb, Martin R.; Griffin, Patrick R.; Xu, H. Eric

    2017-01-01

    AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism. PMID:28615457

  18. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    PubMed

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  19. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome

    PubMed Central

    Dresch, Jacqueline M.; Zellers, Rowan G.; Bork, Daniel K.; Drewell, Robert A.

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development. PMID:27330274

  20. Effects of transcriptional start site sequence and position on nucleotide-sensitive selection of alternative start sites at the pyrC promoter in Escherichia coli.

    PubMed Central

    Liu, J; Turnbough, C L

    1994-01-01

    In Escherichia coli, expression of the pyrC gene is regulated primarily by a translational control mechanism based on nucleotide-sensitive selection of transcriptional start sites at the pyrC promoter. When intracellular levels of CTP are high, pyrC transcripts are initiated predominantly with CTP at a site 7 bases downstream of the Pribnow box. These transcripts form a stable hairpin at their 5' ends that blocks ribosome binding. When the CTP level is low and the GTP level is high, conditions found in pyrimidine-limited cells, transcripts are initiated primarily with GTP at a site 9 bases downstream of the Pribnow box. These shorter transcripts are unable to form a hairpin at their 5' ends and are readily translated. In this study, we examined the effects of nucleotide sequence and position on the selection of transcriptional start sites at the pyrC promoter. We characterized promoter mutations that systematically alter the sequence at position 7 or 9 downstream of the Pribnow box or vary the spacing between the Pribnow box and wild-type transcriptional initiation region. The results reveal preferences for particular initiating nucleotides (ATP > or = GTP > UTP >> CTP) and for starting positions downstream of the Pribnow box (7 >> 6 and 8 > 9 > 10). The results indicate that optimal nucleotide-sensitive start site switching at the wild-type pyrC promoter is the result of competition between the preferred start site (position 7) that uses the poorest initiating nucleotide (CTP) and a weak start site (position 9) that uses a good initiating nucleotide (GTP). The sequence of the pyrC promoter also minimizes the synthesis of untranslatable transcripts and provides for maximum stability of the regulatory transcript hairpin. In addition, the results show that the effects of the mutations on pyrC expression and regulation are consistent with the current model for translational control. Possible effects of preferences for initiating nucleotides and start sites on the expression and regulation of other genes are discussed. Images PMID:7910603

  1. DNA binding site characterization by means of Rényi entropy measures on nucleotide transitions.

    PubMed

    Perera, A; Vallverdu, M; Claria, F; Soria, J M; Caminal, P

    2008-06-01

    In this work, parametric information-theory measures for the characterization of binding sites in DNA are extended with the use of transitional probabilities on the sequence. We propose the use of parametric uncertainty measures such as Rényi entropies obtained from the transition probabilities for the study of the binding sites, in addition to nucleotide frequency-based Rényi measures. Results are reported in this work comparing transition frequencies (i.e., dinucleotides) and base frequencies for Shannon and parametric Rényi entropies for a number of binding sites found in E. Coli, lambda and T7 organisms. We observe that the information provided by both approaches is not redundant. Furthermore, under the presence of noise in the binding site matrix we observe overall improved robustness of nucleotide transition-based algorithms when compared with nucleotide frequency-based method.

  2. Labeled nucleotide phosphate (NP) probes

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2009-02-03

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  3. Optimized Next-Generation Sequencing Genotype-Haplotype Calling for Genome Variability Analysis

    PubMed Central

    Navarro, Javier; Nevado, Bruno; Hernández, Porfidio; Vera, Gonzalo; Ramos-Onsins, Sebastián E

    2017-01-01

    The accurate estimation of nucleotide variability using next-generation sequencing data is challenged by the high number of sequencing errors produced by new sequencing technologies, especially for nonmodel species, where reference sequences may not be available and the read depth may be low due to limited budgets. The most popular single-nucleotide polymorphism (SNP) callers are designed to obtain a high SNP recovery and low false discovery rate but are not designed to account appropriately the frequency of the variants. Instead, algorithms designed to account for the frequency of SNPs give precise results for estimating the levels and the patterns of variability. These algorithms are focused on the unbiased estimation of the variability and not on the high recovery of SNPs. Here, we implemented a fast and optimized parallel algorithm that includes the method developed by Roesti et al and Lynch, which estimates the genotype of each individual at each site, considering the possibility to call both bases from the genotype, a single one or none. This algorithm does not consider the reference and therefore is independent of biases related to the reference nucleotide specified. The pipeline starts from a BAM file converted to pileup or mpileup format and the software outputs a FASTA file. The new program not only reduces the running times but also, given the improved use of resources, it allows its usage with smaller computers and large parallel computers, expanding its benefits to a wider range of researchers. The output file can be analyzed using software for population genetics analysis, such as the R library PopGenome, the software VariScan, and the program mstatspop for analysis considering positions with missing data. PMID:28894353

  4. Molecular Population Genetics of Sex Determination Genes: The Transformer Gene of Drosophila Melanogaster

    PubMed Central

    Walthour, C. S.; Schaeffer, S. W.

    1994-01-01

    The transformer locus (tra) produces an RNA processing protein that alternatively splices the doublesex pre-mRNA in the sex determination hierarchy of Drosophila melanogaster. Comparisons of the tra coding region among Drosophila species have revealed an unusually high degree of divergence in synonymous and nonsynonymous sites. In this study, we tested the hypothesis that the tra gene will be polymorphic in synonymous and nonsynonymous sites within species by investigating nucleotide sequence variation in eleven tra alleles within D. melanogaster. Of the 1063 nucleotides examined, two synonymous sites were polymorphic and no amino acid variation was detected. Three statistical tests were used to detect departures from an equilibrium neutral model. Two tests failed to reject a neutral model of molecular evolution because of low statisitical power associated with low levels of genetic variation (Tajima/Fu and Li). The Hudson, Kreitman, and Aguade test rejected a neutral model when the tra region was compared to the 5'-flanking region of alcohol dehydrogenase (Adh). The lack of variability in the tra gene is consistent with a recent selective sweep of a beneficial allele in or near the tra locus. PMID:8013913

  5. Defining the mRNA recognition signature of a bacterial toxin protein

    DOE PAGES

    Schureck, Marc A.; Dunkle, Jack A.; Maehigashi, Tatsuya; ...

    2015-10-27

    Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. In this paper, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop tomore » recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Finally, our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide.« less

  6. Defining the mRNA recognition signature of a bacterial toxin protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schureck, Marc A.; Dunkle, Jack A.; Maehigashi, Tatsuya

    Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. In this paper, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop tomore » recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Finally, our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide.« less

  7. Zampanolide Binding to Tubulin Indicates Cross-Talk of Taxane Site with Colchicine and Nucleotide Sites.

    PubMed

    Field, Jessica J; Pera, Benet; Gallego, Juan Estévez; Calvo, Enrique; Rodríguez-Salarichs, Javier; Sáez-Calvo, Gonzalo; Zuwerra, Didier; Jordi, Michel; Andreu, José M; Prota, Andrea E; Ménchon, Grégory; Miller, John H; Altmann, Karl-Heinz; Díaz, J Fernando

    2018-03-23

    The marine natural product zampanolide and analogues thereof constitute a new chemotype of taxoid site microtubule-stabilizing agents with a covalent mechanism of action. Zampanolide-ligated tubulin has the switch-activation loop (M-loop) in the assembly prone form and, thus, represents an assembly activated state of the protein. In this study, we have characterized the biochemical properties of the covalently modified, activated tubulin dimer, and we have determined the effect of zampanolide on tubulin association and the binding of tubulin ligands at other binding sites. Tubulin activation by zampanolide does not affect its longitudinal oligomerization but does alter its lateral association properties. The covalent binding of zampanolide to β-tubulin affects both the colchicine site, causing a change of the quantum yield of the bound ligand, and the exchangeable nucleotide binding site, reducing the affinity for the nucleotide. While these global effects do not change the binding affinity of 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC) (a reversible binder of the colchicine site), the binding affinity of a fluorescent analogue of GTP (Mant-GTP) at the nucleotide E-site is reduced from 12 ± 2 × 10 5 M -1 in the case of unmodified tubulin to 1.4 ± 0.3 × 10 5 M -1 in the case of the zampanolide tubulin adduct, indicating signal transmission between the taxane site and the colchicine and nucleotide sites of β-tubulin.

  8. Nucleic acid analysis using terminal-phosphate-labeled nucleotides

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2008-04-22

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  9. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas [Ithaca, NY; Webb, Watt W [Ithaca, NY; Levene, Michael [Ithaca, NY; Turner, Stephen [Ithaca, NY; Craighead, Harold G [Ithaca, NY; Foquet, Mathieu [Ithaca, NY

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  10. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-06-06

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  11. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-05-30

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  12. Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter.

    PubMed

    Hohl, Michael; Hürlimann, Lea M; Böhm, Simon; Schöppe, Jendrik; Grütter, Markus G; Bordignon, Enrica; Seeger, Markus A

    2014-07-29

    ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind tightly, and a consensus site, at which ATP is hydrolyzed in every transport cycle. Whereas the functional phenomenon of cooperativity is well described, its structural basis remains poorly understood. Here, we present the apo structure of the heterodimeric ABC exporter TM287/288 and compare it to the previously solved structure with adenosine 5'-(β,γ-imido)triphosphate (AMP-PNP) bound at the degenerate site. In contrast to other ABC exporter structures, the nucleotide binding domains (NBDs) of TM287/288 remain in molecular contact even in the absence of nucleotides, and the arrangement of the transmembrane domains (TMDs) is not influenced by AMP-PNP binding, a notion confirmed by double electron-electron resonance (DEER) measurements. Nucleotide binding at the degenerate site results in structural rearrangements, which are transmitted to the consensus site via two D-loops located at the NBD interface. These loops owe their name from a highly conserved aspartate and are directly connected to the catalytically important Walker B motif. The D-loop at the degenerate site ties the NBDs together even in the absence of nucleotides and substitution of its aspartate by alanine is well-tolerated. By contrast, the D-loop of the consensus site is flexible and the aspartate to alanine mutation and conformational restriction by cross-linking strongly reduces ATP hydrolysis and substrate transport.

  13. The influence of specific neighboring bases on substitution bias in noncoding regions of the plant chloroplast genome.

    PubMed

    Morton, B R; Oberholzer, V M; Clegg, M T

    1997-09-01

    Substitutions occurring in noncoding sequences of the plant chloroplast genome violate the independence of sites that is assumed by substitution models in molecular evolution. The probability that a substitution at a site is a transversion, as opposed to a transition, increases significantly with increasing A + T content of the two adjacent nucleotides. In the present study, this dependency of substitutions on local context is examined further in a number of noncoding regions from the chloroplast genome of members of the grass family (Poaceae). Two features were examined; the influence of specific neighboring bases, as opposed to the general A + T content, on transversion proportion and an influence on substitutions by nucleotides other than the two immediately adjacent to the site of substitution. In both cases, a significant effect was found. In the case of specific nucleotides, transversion proportion is significantly higher at sites with a pyrimidine immediately 5' on either strand. Substitutions at sites of the type YNR, where N is the site of substitution, have the highest rate of transversion. This specific effect is secondary to the A + T content effect such that, in terms of proportion of substitutions that are transversions, the nucleotides are ranked T > A > C > G as to their effect when they are immediately 5' to the site of substitution. In the case of nucleotides other than the immediate neighbors, a significant influence on substitution dynamics is observed in the case where the two neighboring bases are both A and/or T. Thus, substitutions are primarily, but not exclusively, influenced by the composition of the two nucleotides that are immediately adjacent. These results indicate that the pattern of molecular evolution of the plant chloroplast genome is extremely complex as a result of a variety of inter-site dependencies.

  14. Energy efficiency trade-offs drive nucleotide usage in transcribed regions

    PubMed Central

    Chen, Wei-Hua; Lu, Guanting; Bork, Peer; Hu, Songnian; Lercher, Martin J.

    2016-01-01

    Efficient nutrient usage is a trait under universal selection. A substantial part of cellular resources is spent on making nucleotides. We thus expect preferential use of cheaper nucleotides especially in transcribed sequences, which are often amplified thousand-fold compared with genomic sequences. To test this hypothesis, we derive a mutation-selection-drift equilibrium model for nucleotide skews (strand-specific usage of ‘A' versus ‘T' and ‘G' versus ‘C'), which explains nucleotide skews across 1,550 prokaryotic genomes as a consequence of selection on efficient resource usage. Transcription-related selection generally favours the cheaper nucleotides ‘U' and ‘C' at synonymous sites. However, the information encoded in mRNA is further amplified through translation. Due to unexpected trade-offs in the codon table, cheaper nucleotides encode on average energetically more expensive amino acids. These trade-offs apply to both strand-specific nucleotide usage and GC content, causing a universal bias towards the more expensive nucleotides ‘A' and ‘G' at non-synonymous coding sites. PMID:27098217

  15. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria.

    PubMed

    Yang, Yunpeng; Zhang, Lu; Huang, He; Yang, Chen; Yang, Sheng; Gu, Yang; Jiang, Weihong

    2017-01-24

    Catabolite control protein A (CcpA) is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR) and carbon catabolite activation (CCA), two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt) consensus site that is called a catabolite response element (cre) within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named cre var , has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA). It was found that the length of the intervening spacer of cre var can affect CcpA binding affinity, and moreover, the core palindromic sequence of cre var is the key structure for regulation. Such a variable architecture of cre var shows potential importance for CcpA's diverse and fine regulation. A total of 103 potential cre var sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs), and 30 sites were confirmed to be bound by CcpA. These 30 cre var sites are associated with 27 genes involved in many important pathways. Also of significance, the cre var sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria. In Gram-positive bacteria, the global regulator CcpA controls a large number of important physiological and metabolic processes. Although a typical consensus CcpA-binding site, cre, has been identified, it remains poorly explored for the diversity of CcpA-mediated catabolite regulation. Here, we discovered a novel flexible CcpA-binding site architecture (cre var ) that is highly variable in both length and base composition but follows certain principles, providing new insights into how CcpA can differentially recognize a variety of target genes to form a complicated regulatory network. A comprehensive search further revealed the wide distribution of cre var sites in Gram-positive bacteria, indicating it may have a universal function. This finding is the first to characterize such a highly flexible transcription factor-binding site architecture, which would be valuable for deeper understanding of CcpA-mediated global catabolite regulation in bacteria. Copyright © 2017 Yang et al.

  16. Detection of possible restriction sites for type II restriction enzymes in DNA sequences.

    PubMed

    Gagniuc, P; Cimponeriu, D; Ionescu-Tîrgovişte, C; Mihai, Andrada; Stavarachi, Monica; Mihai, T; Gavrilă, L

    2011-01-01

    In order to make a step forward in the knowledge of the mechanism operating in complex polygenic disorders such as diabetes and obesity, this paper proposes a new algorithm (PRSD -possible restriction site detection) and its implementation in Applied Genetics software. This software can be used for in silico detection of potential (hidden) recognition sites for endonucleases and for nucleotide repeats identification. The recognition sites for endonucleases may result from hidden sequences through deletion or insertion of a specific number of nucleotides. Tests were conducted on DNA sequences downloaded from NCBI servers using specific recognition sites for common type II restriction enzymes introduced in the software database (n = 126). Each possible recognition site indicated by the PRSD algorithm implemented in Applied Genetics was checked and confirmed by NEBcutter V2.0 and Webcutter 2.0 software. In the sequence NG_008724.1 (which includes 63632 nucleotides) we found a high number of potential restriction sites for ECO R1 that may be produced by deletion (n = 43 sites) or insertion (n = 591 sites) of one nucleotide. The second module of Applied Genetics has been designed to find simple repeats sizes with a real future in understanding the role of SNPs (Single Nucleotide Polymorphisms) in the pathogenesis of the complex metabolic disorders. We have tested the presence of simple repetitive sequences in five DNA sequence. The software indicated exact position of each repeats detected in the tested sequences. Future development of Applied Genetics can provide an alternative for powerful tools used to search for restriction sites or repetitive sequences or to improve genotyping methods.

  17. Engineering Nucleotide Specificity of Succinyl-CoA Synthetase in Blastocystis: The Emerging Role of Gatekeeper Residues.

    PubMed

    Vashisht, Kapil; Verma, Sonia; Gupta, Sunita; Lynn, Andrew M; Dixit, Rajnikant; Mishra, Neelima; Valecha, Neena; Hamblin, Karleigh A; Maytum, Robin; Pandey, Kailash C; van der Giezen, Mark

    2017-01-24

    Charged, solvent-exposed residues at the entrance to the substrate binding site (gatekeeper residues) produce electrostatic dipole interactions with approaching substrates, and control their access by a novel mechanism called "electrostatic gatekeeper effect". This proof-of-concept study demonstrates that the nucleotide specificity can be engineered by altering the electrostatic properties of the gatekeeper residues outside the binding site. Using Blastocystis succinyl-CoA synthetase (SCS, EC 6.2.1.5), we demonstrated that the gatekeeper mutant (ED) resulted in ATP-specific SCS to show high GTP specificity. Moreover, nucleotide binding site mutant (LF) had no effect on GTP specificity and remained ATP-specific. However, via combination of the gatekeeper mutant with the nucleotide binding site mutant (ED+LF), a complete reversal of nucleotide specificity was obtained with GTP, but no detectable activity was obtained with ATP. This striking result of the combined mutant (ED+LF) was due to two changes; negatively charged gatekeeper residues (ED) favored GTP access, and nucleotide binding site residues (LF) altered ATP binding, which was consistent with the hypothesis of the "electrostatic gatekeeper effect". These results were further supported by molecular modeling and simulation studies. Hence, it is imperative to extend the strategy of the gatekeeper effect in a different range of crucial enzymes (synthetases, kinases, and transferases) to engineer substrate specificity for various industrial applications and substrate-based drug design.

  18. The interaction of the Eco R1 restriction enzyme E.coli with nucleotides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollis, Donald F.

    1979-11-01

    The Eco R1 restriction enzyme can be shown to be inhibited by nucleotides which correspond to any part of its known site of phosphodiesterase activity. A series of di-, tetra-, and hexa-nucleotide fragments were synthesized and their effect on the activity of the enzyme upon superhelical Co1 E1 DNA studied. The inhibition caused by the individual mononucleotides were also studied. In general all the nucleotide fragments showed some form of interaction with the enzyme system. Tetranucleotides were stronger inhibitors than dinucleotides, which in turn were stronger inhibitors than the mononucleotides. Within each category of inhibitors, those containing the phosphodiester bondmore » which is acted upon by the enzyme were the strongest inhibitors. Only those fragments which were consistent with the enzymes site of activity showed competitive inhibition kinetics. Nucleotides which do not fit within the site of phosphodiesterase activity show non-competitive inhibition kinetics.« less

  19. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    PubMed

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides. © 2015 Wiley Periodicals, Inc.

  20. The polymorphisms of LCR, E6, and E7 of HPV-58 isolates in Yunnan, Southwest China.

    PubMed

    Xi, Juemin; Chen, Junying; Xu, Miaoling; Yang, Hongying; Wen, Songjiao; Pan, Yue; Wang, Xiaodan; Ye, Chao; Qiu, Lijuan; Sun, Qiangming

    2018-04-25

    Variations in HPV LCR/E6/E7 have been shown to be associated with the viral persistence and cervical cancer development. So far, there are few reports about the polymorphisms of the HPV-58 LCR/E6/E7 sequences in Southwest China. This study aims to characterize the gene polymorphisms of the HPV-58 LCR/E6/E7 sequences in women of Southwest China, and assess the effects of variations on the immune recognition of viral E6 and E7 antigens. Twelve LCR/E6/E7 of the HPV-58 isolates were amplified and sequenced. A neighbor-joining phylogenetic tree was constructed by MEGA 7.0, followed by the secondary structure prediction of the related proteins using PSIPRED v3.3. The selection pressure acting on the HPV-58 E6 and E7 coding regions was estimated by Bayes empirical Bayes analysis of PAML 4.8. Meanwhile, the MHC class-I and II binding peptides were predicted by the ProPred-I server and ProPred server. The transcription factor binding sites in the HPV-58 LCR were analyzed using the JASPAR database. Twenty nine SNPs (20 in the LCR, 3 in the E6, 6 in the E7) were identified at 27 nucleotide sites across the HPV-58 LCR/E6/E7. From the most variable to the least variable, the nucleotide variations were LCR > E7 > E6. The combinations of all the SNPs resulted in 11 unique sequences, which were clustered into the A lineage (7 belong to A1, 2 belong to A2, and 2 belong to A3). An insertion (TGTCAGTTTCCT) was found between the nucleotide sites 7280 and 7281 in 2 variants, and a deletion (TTTAT) was found between 7429 and 7433 in 1 variant. The most common non-synonymous substitution V77A in the E7 was observed in the sequences encoding the α-helix. 63G in the E7 was determined to be the only one positively selected site in the HPV-58 E6/E7 sequences. Six non-synonymous amino acid substitutions (including S71F and K93 N in the E6, and T20I, G41R, G63S/D, and V77A in the E7) were affecting multiple putative epitopes for both CD4 + and CD8 + T-cells. In the LCR, C7265G and C7266T were the most variable sites and were the potential binding sites for the transcription factor SOX10. These results provide an insight into the intrinsic geographical relatedness and biological differences of the HPV-58 variants, and contribute to further research on the HPV-58 epidemiology, carcinogenesis, and therapeutic vaccine development.

  1. Evidence of paired M2 muscarinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, L.T.; Ballesteros, L.A.; Bichajian, L.H.

    Binding assays involving various antagonists, including N-(3H) methylscopolamine, (3H)quinuclidinyl benzilate, AFDX-116, pirenzepine, and propylbenzilylcholine mustard, disclosed only a single population of M2 muscarinic receptors in membranes from the rat brainstem (medulla, pons, and colliculi). However, competition curves between N-(3H)methylscopolamine and various agonists, including oxotremorine, cis-dioxolane, and acetylethylcholine mustard, showed approximately equal numbers of guanine nucleotide-sensitive high affinity (H) sites and guanine nucleotide-insensitive low affinity (L) sites. This 50% H phenomenon persisted in different buffers, at different temperatures, after the number of receptors was halved (and, thus, the remaining receptor to guanine nucleotide-binding protein ratio was doubled), after membrane solubilization withmore » digitonin, and when rabbit cardiac membranes were used instead of rat brainstem membranes. Preferential occupation of H sites with acetylethylcholine mustard, and of L sites with quinuclidinyl benzilate or either mustard, yielded residual free receptor populations showing predominantly L and H sites, respectively. Low concentrations of (3H)-oxotremorine-M labeled only H sites, and the Bmax for these sites was 49% of the Bmax found with (3H)quinuclidinyl benzilate plus guanine nucleotide. These and other results are most consistent with the idea that H and L receptor sites exist on separate but dimeric receptor molecules and with the hypothesis that only the H receptors cycle between high and low affinity, depending upon interactions between this receptor molecule and a guanine nucleotide-binding protein.« less

  2. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference.

    PubMed

    Krishnan, Neeraja M; Seligmann, Hervé; Stewart, Caro-Beth; De Koning, A P Jason; Pollock, David D

    2004-10-01

    Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and flexibility. To determine whether biased reconstructions using optimization methods might affect inferences of functional properties, ancestral primate mitochondrial tRNA sequences were inferred and helix-forming propensities for conserved pairs were evaluated in silico. For ambiguously reconstructed nucleotides at sites with high base composition variability, ancestral tRNA sequences from Bayesian analyses were more compatible with canonical base pairing than were those inferred by other methods. Thus, nucleotide bias in reconstructed sequences apparently can lead to serious bias and inaccuracies in functional predictions.

  3. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function

    PubMed Central

    Liu, Zhi; Ding, Shuang; Kropachev, Konstantin; Lei, Jia; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2015-01-01

    The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms. PMID:26340000

  4. Pharmacokinetics of antiretroviral drugs in anatomical sanctuary sites: the male and female genital tract.

    PubMed

    Else, Laura J; Taylor, Stephen; Back, David J; Khoo, Saye H

    2011-01-01

    HIV resides within anatomical 'sanctuary sites', where local drug exposure and viral dynamics may differ significantly from the systemic compartment. Suboptimal antiretroviral concentrations in the genital tract may result in compartmentalized viral replication, selection of resistant mutations and possible re-entry of wild-type/resistant virus into the systemic circulation. Therefore, achieving adequate antiretroviral exposure in the genital tract has implications for the prevention of sexual and vertical transmission of HIV. Penetration of antiretrovirals in the genital tract is expressed by accumulation ratios derived from the measurement of drug concentrations in time-matched seminal plasma/cervicovaginal fluid and plasma samples. Penetration varies by gender and may be drug (as opposed to class) specific with high interindividual variability. Concentrations in seminal plasma are highest for nucleoside analogues and lowest for protease inhibitors and efavirenz. Seminal accumulation of newer agents, raltegravir and maraviroc, is moderate (rank order of accumulation is nucleoside/nucleotide reverse transcriptase inhibitors [lamivudine/zidovudine/tenofovir/didanosine > stavudine/abacavir] > raltegravir > indinavir/maraviroc/nevirapine > efavirenz/protease inhibitors [amprenavir/atazanavir/darunavir > lopinavir/ritonavir > saquinavir] > enfuvirtide). In the female genital tract, the nucleoside analogues exhibit high accumulation ratios, whereas protease inhibitors have limited penetration; however, substantial variability exists between individuals and study centres. Second generation non-nucleoside reverse transcriptase inhibitor etravirine, and maraviroc and raltegravir, demonstrate effective accumulation in cervicovaginal secretions (rank order of accumulation is nucleoside/nucleotide reverse transcriptase inhibitor [zidovudine/lamivudine/didanosine > emtricitabine/tenofovir] > indinavir > maraviroc/raltegravir/darunavir/etravirine > nevirapine/abacavir > protease inhibitors [amprenavir/atazanavir/ritonavir] > lopinavir/stavudine/efavirenz > saquinavir).

  5. Measles virus genetic evolution throughout an imported epidemic outbreak in a highly vaccinated population.

    PubMed

    Muñoz-Alía, Miguel Ángel; Fernández-Muñoz, Rafael; Casasnovas, José María; Porras-Mansilla, Rebeca; Serrano-Pardo, Ángela; Pagán, Israel; Ordobás, María; Ramírez, Rosa; Celma, María Luisa

    2015-01-22

    Measles virus circulates endemically in African and Asian large urban populations, causing outbreaks worldwide in populations with up-to-95% immune protection. We studied the natural genetic variability of genotype B3.1 in a population with 95% vaccine coverage throughout an imported six month measles outbreak. From first pass viral isolates of 47 patients we performed direct sequencing of genomic cDNA. Whilst no variation from index case sequence occurred in the Nucleocapsid gene hyper-variable carboxy end, in the Hemagglutinin gene, main target for neutralizing antibodies, we observed gradual nucleotide divergence from index case along the outbreak (0% to 0.380%, average 0.138%) with the emergence of transient and persistent non-synonymous and synonymous mutations. Little or no variation was observed between the index and last outbreak cases in Phosphoprotein, Nucleocapsid, Matrix and Fusion genes. Most of the H non-synonymous mutations were mapped on the protein surface near antigenic and receptors binding sites. We estimated a MV-Hemagglutinin nucleotide substitution rate of 7.28 × 10-6 substitutions/site/day by a Bayesian phylogenetic analysis. The dN/dS analysis did not suggest significant immune or other selective pressures on the H gene during the outbreak. These results emphasize the usefulness of MV-H sequence analysis in measles epidemiological surveillance and elimination programs, and in detection of potentially emergence of measles virus neutralization-resistant mutants. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Genetic Diversity among Bacillus anthracis Soil Isolates at Fine Geographic Scales

    PubMed Central

    Bader, Douglas E.

    2012-01-01

    Environmental samples were collected from carcass sites during and after anthrax outbreaks in 2000 and 2001 in the bison (Bison bison) population within Wood Buffalo National Park and the Hook Lake Region north of Wood Buffalo National Park. Bacillus anthracis spores were isolated from these samples and confirmed using phenotypic characterization and real-time PCR. Confirmed B. anthracis isolates were typed using multiple-locus variable-number tandem repeat analysis (MLVA15) and single-nucleotide-repeat analysis (SNRA). B. anthracis isolates split into two clades based on MLVA15, while SNRA allowed some isolates between carcass sites to be distinguished from each other. SNRA polymorphisms were also present within a single carcass site. Some isolates from different carcass sites having the same SNRA type had divergent MLVA types; this finding leads to questions about hierarchical typing methods and the robustness of the fine-scale typing of Bacillus anthracis. PMID:22773624

  7. Rates of Chemical Cleavage of DNA and RNA Oligomers Containing Guanine Oxidation Products

    PubMed Central

    2016-01-01

    The nucleobase guanine in DNA (dG) and RNA (rG) has the lowest standard reduction potential of the bases, rendering it a major site of oxidative damage in these polymers. Mapping the sites at which oxidation occurs in an oligomer via chemical reagents utilizes hot piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving oxidized RNA. In the present studies, a series of time-dependent cleavages of DNA and RNA strands containing various guanine lesions were examined to determine the strand scission rate constants. The guanine base lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) were evaluated in piperidine-treated DNA and aniline-treated RNA. These data identified wide variability in the chemical lability of the lesions studied in both DNA and RNA. Further, the rate constants for cleaving lesions in RNA were generally found to be significantly smaller than for lesions in DNA. The OG nucleotides were poorly cleaved in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did not cleave significantly in RNA; Gh and Z nucleotides cleaved in both DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved relatively quickly in both DNA and RNA. The data are compared and contrasted with respect to future experimental design. PMID:25853314

  8. Human ribosomal RNA gene: nucleotide sequence of the transcription initiation region and comparison of three mammalian genes.

    PubMed Central

    Financsek, I; Mizumoto, K; Mishima, Y; Muramatsu, M

    1982-01-01

    The transcription initiation site of the human ribosomal RNA gene (rDNA) was located by using the single-strand specific nuclease protection method and by determining the first nucleotide of the in vitro capped 45S preribosomal RNA. The sequence of 1,211 nucleotides surrounding the initiation site was determined. The sequenced region was found to consist of 75% G and C and to contain a number of short direct and inverted repeats and palindromes. By comparison of the corresponding initiation regions of three mammalian species, several conserved sequences were found upstream and downstream from the transcription starting point. Two short A + T-rich sequences are present on human, mouse, and rat ribosomal RNA genes between the initiation site and 40 nucleotides upstream, and a C + T cluster is located at a position around -60. At and downstream from the initiation site, a common sequence, T-AG-C-T-G-A-C-A-C-G-C-T-G-T-C-C-T-CT-T, was found in the three genes from position -1 through +18. The strong conservation of these sequences suggests their functional significance in rDNA. The S1 nuclease protection experiments with cloned rDNA fragments indicated the presence in human 45S RNA of molecules several hundred nucleotides shorter than the supposed primary transcript. The first 19 nucleotides of these molecules appear identical--except for one mismatch--to the nucleotide sequence of the 5' end of a supposed early processing product of the mouse 45S RNA. Images PMID:6954460

  9. Mechanism of conformational coupling in SecA: Key role of hydrogen-bonding networks and water interactions.

    PubMed

    Milenkovic, Stefan; Bondar, Ana-Nicoleta

    2016-02-01

    SecA uses the energy yielded by the binding and hydrolysis of adenosine triphosphate (ATP) to push secretory pre-proteins across the plasma membrane in bacteria. Hydrolysis of ATP occurs at the nucleotide-binding site, which contains the conserved carboxylate groups of the DEAD-box helicases. Although crystal structures provide valuable snapshots of SecA along its reaction cycle, the mechanism that ensures conformational coupling between the nucleotide-binding site and the other domains of SecA remains unclear. The observation that SecA contains numerous hydrogen-bonding groups raises important questions about the role of hydrogen-bonding networks and hydrogen-bond dynamics in long-distance conformational couplings. To address these questions, we explored the molecular dynamics of SecA from three different organisms, with and without bound nucleotide, in water. By computing two-dimensional hydrogen-bonding maps we identify networks of hydrogen bonds that connect the nucleotide-binding site to remote regions of the protein, and sites in the protein that respond to specific perturbations. We find that the nucleotide-binding site of ADP-bound SecA has a preferred geometry whereby the first two carboxylates of the DEAD motif bridge via hydrogen-bonding water. Simulations of a mutant with perturbed ATP hydrolysis highlight the water-bridged geometry as a key structural element of the reaction path. Copyright © 2015. Published by Elsevier B.V.

  10. Weak Negative and Positive Selection and the Drift Load at Splice Sites

    PubMed Central

    Denisov, Stepan V.; Bazykin, Georgii A.; Sutormin, Roman; Favorov, Alexander V.; Mironov, Andrey A.; Gelfand, Mikhail S.; Kondrashov, Alexey S.

    2014-01-01

    Splice sites (SSs) are short sequences that are crucial for proper mRNA splicing in eukaryotic cells, and therefore can be expected to be shaped by strong selection. Nevertheless, in mammals and in other intron-rich organisms, many of the SSs often involve nonconsensus (Nc), rather than consensus (Cn), nucleotides, and beyond the two critical nucleotides, the SSs are not perfectly conserved between species. Here, we compare the SS sequences between primates, and between Drosophila fruit flies, to reveal the pattern of selection acting at SSs. Cn-to-Nc substitutions are less frequent, and Nc-to-Cn substitutions are more frequent, than neutrally expected, indicating, respectively, negative and positive selection. This selection is relatively weak (1 < |4Nes| < 4), and has a similar efficiency in primates and in Drosophila. Within some nucleotide positions, the positive selection in favor of Nc-to-Cn substitutions is weaker than the negative selection maintaining already established Cn nucleotides; this difference is due to site-specific negative selection favoring current Nc nucleotides. In general, however, the strength of negative selection protecting the Cn alleles is similar in magnitude to the strength of positive selection favoring replacement of Nc alleles, as expected under the simple nearly neutral turnover. In summary, although a fraction of the Nc nucleotides within SSs is maintained by selection, the abundance of deleterious nucleotides in this class suggests a substantial genome-wide drift load. PMID:24966225

  11. Genetic diversity and classification of Tibetan yak populations based on the mtDNA COIII gene.

    PubMed

    Song, Q Q; Chai, Z X; Xin, J W; Zhao, S J; Ji, Q M; Zhang, C F; Ma, Z J; Zhong, J C

    2015-03-13

    To determine the level of genetic diversity and phylogenetic relationships among Tibetan yak populations, the mitochondrial DNA cytochrome c oxidase subunit 3 (COIII) genes of 378 yak individuals from 16 populations were analyzed in this study. The results showed that the length of cytochrome c oxidase subunit 3 gene sequences was 781 bp, with nucleotide frequencies of 29.2, 29.4, 26.1, and 15.2% for T, C, A, and G, respectively. A total of 26 haplotypes were identified, with 69 polymorphic sites, including 11 parsimony-informative sites and 58 single-nucleotide polymorphism sites. No deletions/insertions were found in sequence comparison, indicating that nucleotide mutation types were transitions and transversions. Haplotype and nucleotide diversities were 0.562 and 0.00138, respectively, indicating a high level of genetic diversity in Tibetan yak populations. Phylogenetic relationship analysis indicated that Tibetan yak populations are divided into 2 groups.

  12. Cloning and determination of the transcription termination site of ribosomal RNA gene of the mouse.

    PubMed Central

    Kominami, R; Mishima, Y; Urano, Y; Sakai, M; Muramatsu, M

    1982-01-01

    A Eco RI 6.6 kb DNA fragment containing the 3'-end of 28S ribosomal RNA gene of the mouse was detected by Southern blot hybridization, and cloned in a lambda-phage vector. The site of transcription termination and the processed 3'-end of 28S RNA were determined on the cloned fragment and the surrounding nucleotide sequence determined. The 3'-terminal nucleotides of mouse 28S RNA are similar to those of yeast, Drosophila and Xenopus although the homology was lost drastically beyond the 3'-end of 28S RNA. 45S precursor RNA terminated at 30 nucleotides downstream from the 3'-end of 28S RNA gene. A structure of a dyad symmetry with a loop was found immediately prior to the termination site of 45S RNA. The rDNA termination site thus shares some common features with termination sites recognized by other RNA polymerases. Images PMID:6281727

  13. Glutamine 89 is a key residue in the allosteric modulation of human serine racemase activity by ATP.

    PubMed

    Canosa, Andrea V; Faggiano, Serena; Marchetti, Marialaura; Armao, Stefano; Bettati, Stefano; Bruno, Stefano; Percudani, Riccardo; Campanini, Barbara; Mozzarelli, Andrea

    2018-06-13

    Serine racemase (SR) catalyses two reactions: the reversible racemisation of L-serine and the irreversible dehydration of L- and D-serine to pyruvate and ammonia. SRs are evolutionarily related to serine dehydratases (SDH) and degradative threonine deaminases (TdcB). Most SRs and TdcBs - but not SDHs - are regulated by nucleotides. SR binds ATP cooperatively and the nucleotide allosterically stimulates the serine dehydratase activity of the enzyme. A H-bond network comprising five residues (T52, N86, Q89, E283 and N316) and water molecules connects the active site with the ATP-binding site. Conservation analysis points to Q89 as a key residue for the allosteric communication, since its mutation to either Met or Ala is linked to the loss of control of activity by nucleotides. We verified this hypothesis by introducing the Q89M and Q89A point mutations in the human SR sequence. The allosteric communication between the active site and the allosteric site in both mutants is almost completely abolished. Indeed, the stimulation of the dehydratase activity by ATP is severely diminished and the binding of the nucleotide is no more cooperative. Ancestral state reconstruction suggests that the allosteric control by nucleotides established early in SR evolution and has been maintained in most eukaryotic lineages.

  14. The Complete Nucleotide Sequence of the Mitochondrial Genome of Bactrocera minax (Diptera: Tephritidae)

    PubMed Central

    Zhang, Bin; Nardi, Francesco; Hull-Sanders, Helen; Wan, Xuanwu; Liu, Yinghong

    2014-01-01

    The complete 16,043 bp mitochondrial genome (mitogenome) of Bactrocera minax (Diptera: Tephritidae) has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%). Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs). Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD), the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites) and amino acid sequence distance (ASD) were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD) and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T) stretch at the 5′ end of the CR followed by a [TA(A)]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front of the poly(T) stretch among the ten tephritid species and two tandem repeats were present in the CR. PMID:24964138

  15. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site

    PubMed Central

    Sage, Jay M.; Cura, Anthony J.; Lloyd, Kenneth P.

    2015-01-01

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites—the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis. PMID:25715702

  16. Microevolutionary dynamics in Methanothermococcus populations from deep-sea hydrothermal vents in the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Hoffert, M.; Anderson, R. E.; Stepanauskas, R.; Huber, J. A.

    2017-12-01

    Deep-sea hydrothermal vents sustain diverse communities of microorganisms. The effects of geochemical and biological interactions on the process of evolution in these ecosystems remains poorly understood because the majority of subsurface microorganisms remain uncultivated. By examining metagenomic samples from hydrothermal fluids and mapping the samples to closely-related genomes found in vent sites, we can better understand how the process of evolution is affected by the geochemical and environmental context in deep-sea vents. The Mid-Cayman Rise is a spreading ridge that hosts both mafic-influenced and ultramafic-influenced vent fields. Previous research on metagenomic samples from sites in the Mid-Cayman Rise has shown that these vents contain metabolically and taxonomically diverse microbial communities. Here, we investigate five single cell amplified Methanothermococcus genomes (SAGs) to investigate patterns in pangenomic variation and molecular evolution in these methanogens. Mappings of metagenomic reads from 15 sample sites to the SAGs reveal substantial variation in Methanothermococcus population abundance, nucleotide variability and selection pressure among the 15 geochemically distinct sample sites. Within each sample site, we observed distinct patterns of single nucleotide variant (SNV) accumulation and selection pressure within the SAG populations. Closely related genomes showed similar patterns of SNV accumulation. Analysis of open reading frames (ORFs) from the SAGs indicated that homologous genes accumulated variation at the same rate. For example, a genomic island for Nif genes was identified in three of the five genomes with significantly elevated SNV counts. dN/dS analyses revealed evidence for frequency-dependent selection, in which genes unique to individual SAGs displayed elevated diversifying selection relative to other genes. These results indicate that different strains of Methanothermococcus outcompete others in specific environmental settings, and that these fitness advantages may result from variation in the pangenome, as revealed by dN/dS and SNV analyses. By examining variation and the scale of nucleotide and genes, we aim to gain insight into the roles of genetic diversity and environmental selection on microbial evolution in these ecosystems.

  17. Molecular Mechanism of Processive 3' to 5' RNA Translocation in the Active Subunit of the RNA Exosome Complex.

    PubMed

    Vuković, Lela; Chipot, Christophe; Makino, Debora L; Conti, Elena; Schulten, Klaus

    2016-03-30

    Recent experimental studies revealed structural details of 3' to 5' degradation of RNA molecules, performed by the exosome complex. ssRNA is channeled through its multisubunit ring-like core into the active site tunnel of its key exonuclease subunit Rrp44, which acts both as an enzyme and a motor. Even in isolation, Rrp44 can pull and sequentially cleave RNA nucleotides, one at a time, without any external energy input and release a final 3-5 nucleotide long product. Using molecular dynamics simulations, we identify the main factors that control these processes. Our free energy calculations reveal that RNA transfer from solution into the active site of Rrp44 is highly favorable, but dependent on the length of the RNA strand. While RNA strands formed by 5 nucleotides or more correspond to a decreasing free energy along the translocation coordinate toward the cleavage site, a 4-nucleotide RNA experiences a free energy barrier along the same direction, potentially leading to incomplete cleavage of ssRNA and the release of short (3-5) nucleotide products. We provide new insight into how Rrp44 catalyzes a localized enzymatic reaction and performs an action distributed over several RNA nucleotides, leading eventually to the translocation of whole RNA segments into the position suitable for cleavage.

  18. The Structure of a High Fidelity DNA Polymerase Bound to a Mismatched Nucleotide Reveals an “Ajar” Intermediate Conformation in the Nucleotide Selection Mechanism*

    PubMed Central

    Wu, Eugene Y.; Beese, Lorena S.

    2011-01-01

    To achieve accurate DNA synthesis, DNA polymerases must rapidly sample and discriminate against incorrect nucleotides. Here we report the crystal structure of a high fidelity DNA polymerase I bound to DNA primer-template caught in the act of binding a mismatched (dG:dTTP) nucleoside triphosphate. The polymerase adopts a conformation in between the previously established “open” and “closed” states. In this “ajar” conformation, the template base has moved into the insertion site but misaligns an incorrect nucleotide relative to the primer terminus. The displacement of a conserved active site tyrosine in the insertion site by the template base is accommodated by a distinctive kink in the polymerase O helix, resulting in a partially open ternary complex. We suggest that the ajar conformation allows the template to probe incoming nucleotides for complementarity before closure of the enzyme around the substrate. Based on solution fluorescence, kinetics, and crystallographic analyses of wild-type and mutant polymerases reported here, we present a three-state reaction pathway in which nucleotides either pass through this intermediate conformation to the closed conformation and catalysis or are misaligned within the intermediate, leading to destabilization of the closed conformation. PMID:21454515

  19. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase.

    PubMed

    Appleby, Todd C; Perry, Jason K; Murakami, Eisuke; Barauskas, Ona; Feng, Joy; Cho, Aesop; Fox, David; Wetmore, Diana R; McGrath, Mary E; Ray, Adrian S; Sofia, Michael J; Swaminathan, S; Edwards, Thomas E

    2015-02-13

    Nucleotide analog inhibitors have shown clinical success in the treatment of hepatitis C virus (HCV) infection, despite an incomplete mechanistic understanding of NS5B, the viral RNA-dependent RNA polymerase. Here we study the details of HCV RNA replication by determining crystal structures of stalled polymerase ternary complexes with enzymes, RNA templates, RNA primers, incoming nucleotides, and catalytic metal ions during both primed initiation and elongation of RNA synthesis. Our analysis revealed that highly conserved active-site residues in NS5B position the primer for in-line attack on the incoming nucleotide. A β loop and a C-terminal membrane-anchoring linker occlude the active-site cavity in the apo state, retract in the primed initiation assembly to enforce replication of the HCV genome from the 3' terminus, and vacate the active-site cavity during elongation. We investigated the incorporation of nucleotide analog inhibitors, including the clinically active metabolite formed by sofosbuvir, to elucidate key molecular interactions in the active site. Copyright © 2015, American Association for the Advancement of Science.

  20. Structural Dynamics as a Contributor to Error-prone Replication by an RNA-dependent RNA Polymerase*

    PubMed Central

    Moustafa, Ibrahim M.; Korboukh, Victoria K.; Arnold, Jamie J.; Smidansky, Eric D.; Marcotte, Laura L.; Gohara, David W.; Yang, Xiaorong; Sánchez-Farrán, María Antonieta; Filman, David; Maranas, Janna K.; Boehr, David D.; Hogle, James M.; Colina, Coray M.; Cameron, Craig E.

    2014-01-01

    RNA viruses encoding high- or low-fidelity RNA-dependent RNA polymerases (RdRp) are attenuated. The ability to predict residues of the RdRp required for faithful incorporation of nucleotides represents an essential step in any pipeline intended to exploit perturbed fidelity as the basis for rational design of vaccine candidates. We used x-ray crystallography, molecular dynamics simulations, NMR spectroscopy, and pre-steady-state kinetics to compare a mutator (H273R) RdRp from poliovirus to the wild-type (WT) enzyme. We show that the nucleotide-binding site toggles between the nucleotide binding-occluded and nucleotide binding-competent states. The conformational dynamics between these states were enhanced by binding to primed template RNA. For the WT, the occluded conformation was favored; for H273R, the competent conformation was favored. The resonance for Met-187 in our NMR spectra reported on the ability of the enzyme to check the correctness of the bound nucleotide. Kinetic experiments were consistent with the conformational dynamics contributing to the established pre-incorporation conformational change and fidelity checkpoint. For H273R, residues comprising the active site spent more time in the catalytically competent conformation and were more positively correlated than the WT. We propose that by linking the equilibrium between the binding-occluded and binding-competent conformations of the nucleotide-binding pocket and other active-site dynamics to the correctness of the bound nucleotide, faithful nucleotide incorporation is achieved. These studies underscore the need to apply multiple biophysical and biochemical approaches to the elucidation of the physical basis for polymerase fidelity. PMID:25378410

  1. Nucleotide sequence analysis of the L gene of Newcastle disease virus: homologies with Sendai and vesicular stomatitis viruses.

    PubMed Central

    Yusoff, K; Millar, N S; Chambers, P; Emmerson, P T

    1987-01-01

    The nucleotide sequence of the L gene of the Beaudette C strain of Newcastle disease virus (NDV) has been determined. The L gene is 6704 nucleotides long and encodes a protein of 2204 amino acids with a calculated molecular weight of 248822. Mung bean nuclease mapping of the 5' terminus of the L gene mRNA indicates that the transcription of the L gene is initiated 11 nucleotides upstream of the translational start site. Comparison with the amino acid sequences of the L genes of Sendai virus and vesicular stomatitis virus (VSV) suggests that there are several regions of homology between the sequences. These data provide further evidence for an evolutionary relationship between the Paramyxoviridae and the Rhabdoviridae. A non-coding sequence of 46 nucleotides downstream of the presumed polyadenylation site of the L gene may be part of a negative strand leader RNA. Images PMID:3035486

  2. Structural insights into translational recoding by frameshift suppressor tRNASufJ

    PubMed Central

    Fagan, Crystal E.; Maehigashi, Tatsuya; Dunkle, Jack A.; Miles, Stacey J.

    2014-01-01

    The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5′ or 3′ direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNASufJ, a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNASufJ contains an insertion 5′ to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASLSufJ or tRNASufJ does not affect its affinity for the A site of the ribosome. Structural analyses of both ASLSufJ and ASLThr bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34–37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASLSufJ imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNASufJ during tRNA selection and possibly impede gripping of the anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting. PMID:25352689

  3. Temporal Stability of the Human Skin Microbiome.

    PubMed

    Oh, Julia; Byrd, Allyson L; Park, Morgan; Kong, Heidi H; Segre, Julia A

    2016-05-05

    Biogeography and individuality shape the structural and functional composition of the human skin microbiome. To explore these factors' contribution to skin microbial community stability, we generated metagenomic sequence data from longitudinal samples collected over months and years. Analyzing these samples using a multi-kingdom, reference-based approach, we found that despite the skin's exposure to the external environment, its bacterial, fungal, and viral communities were largely stable over time. Site, individuality, and phylogeny were all determinants of stability. Foot sites exhibited the most variability; individuals differed in stability; and transience was a particular characteristic of eukaryotic viruses, which showed little site-specificity in colonization. Strain and single-nucleotide variant-level analysis showed that individuals maintain, rather than reacquire, prevalent microbes from the environment. Longitudinal stability of skin microbial communities generates hypotheses about colonization resistance and empowers clinical studies exploring alterations observed in disease states. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms.

    PubMed

    Zhang, Wei; Qi, Weihong; Albert, Thomas J; Motiwala, Alifiya S; Alland, David; Hyytia-Trees, Eija K; Ribot, Efrain M; Fields, Patricia I; Whittam, Thomas S; Swaminathan, Bala

    2006-06-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7x10(-9) per site per year), we estimate that the most recent common ancestor of the contemporary beta-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens.

  5. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms

    PubMed Central

    Zhang, Wei; Qi, Weihong; Albert, Thomas J.; Motiwala, Alifiya S.; Alland, David; Hyytia-Trees, Eija K.; Ribot, Efrain M.; Fields, Patricia I.; Whittam, Thomas S.; Swaminathan, Bala

    2006-01-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7 × 10−9 per site per year), we estimate that the most recent common ancestor of the contemporary β-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens. PMID:16606700

  6. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    PubMed Central

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  7. Nucleotide binding properties of bovine brain uncoating ATPase.

    PubMed

    Gao, B; Emoto, Y; Greene, L; Eisenberg, E

    1993-04-25

    Many functions of the 70-kDa heat-shock proteins (hsp70s) appear to be regulated by bound nucleotide. In this study we examined the nucleotide binding properties of purified bovine brain uncoating ATPase, one of the constitutively expressed members of the hsp70 family. We found that uncoating ATPase purified by ATP-agarose column chromatography retained one ADP molecule bound per enzyme molecule which could not be removed by extensive dialysis. Since this bound ADP exchanged rapidly with free ADP or ATP, the inability to remove the bound nucleotide was not due to slow dissociation but rather to strong binding of the nucleotide to the uncoating ATPase. In confirmation of this view, equilibrium dialysis experiments suggested that the dissociation constants for both ADP and ATP were less than 0.1 microM. Schmid et al. (Schmid, S. L., Braell, W. A., and Rothman, J. E. (1985) J. Biol. Chem 260, 10057-10062) suggested that the uncoating ATPase had two sites for bound nucleotide, one specific for ATP and one binding both ATP and ATP analogues but not ADP. In contrast, we found that enzyme with bound ADP did not bind further adenosine 5'-(beta,gamma-imino)triphosphate or dATP, nor did more than one ATP molecule bind per enzyme even in 200 microM free ATP. These results strongly suggest that the enzyme has only one binding site for nucleotide. During steady-state ATP hydrolysis, 85% of the bound nucleotide at this site was determined to be ATP and 15% ADP; this is consistent with the rate of ADP release determined in the exchange experiments noted above, where ADP release was found to be six times faster than the overall rate of ATP hydrolysis.

  8. Structure and genetic variability of envelope glycoproteins of two antigenic variants of caprine arthritis-encephalitis lentivirus.

    PubMed

    Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A

    1991-11-01

    To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM.

  9. Structure and genetic variability of envelope glycoproteins of two antigenic variants of caprine arthritis-encephalitis lentivirus.

    PubMed Central

    Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A

    1991-01-01

    To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM. Images PMID:1656067

  10. Mutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients.

    PubMed Central

    Beltrán-Valero de Bernabé, D; Granadino, B; Chiarelli, I; Porfirio, B; Mayatepek, E; Aquaron, R; Moore, M M; Festen, J J; Sanmartí, R; Peñalva, M A; de Córdoba, S R

    1998-01-01

    Alkaptonuria (AKU), a rare hereditary disorder of phenylalanine and tyrosine catabolism, was the first disease to be interpreted as an inborn error of metabolism. AKU patients are deficient for homogentisate 1,2 dioxygenase (HGO); this deficiency causes homogentisic aciduria, ochronosis, and arthritis. We cloned the human HGO gene and characterized two loss-of-function mutations, P230S and V300G, in the HGO gene in AKU patients. Here we report haplotype and mutational analysis of the HGO gene in 29 novel AKU chromosomes. We identified 12 novel mutations: 8 (E42A, W97G, D153G, S189I, I216T, R225H, F227S, and M368V) missense mutations that result in amino acid substitutions at positions conserved in HGO in different species, 1 (F10fs) frameshift mutation, 2 intronic mutations (IVS9-56G-->A, IVS9-17G-->A), and 1 splice-site mutation (IVS5+1G-->T). We also report characterization of five polymorphic sites in HGO and describe the haplotypic associations of alleles at these sites in normal and AKU chromosomes. One of these sites, HGO-3, is a variable dinucleotide repeat; IVS2+35T/A, IVS5+25T/C, and IVS6+46C/A are intronic sites at which single nucleotide substitutions (dimorphisms) have been detected; and c407T/A is a relatively frequent nucleotide substitution in the coding sequence, exon 4, resulting in an amino acid change (H80Q). These data provide insight into the origin and evolution of the various AKU alleles. PMID:9529363

  11. Nucleotide variability and linkage disequilibrium patterns in the porcine MUC4 gene.

    PubMed

    Yang, Ming; Yang, Bin; Yan, Xueming; Ouyang, Jing; Zeng, Weihong; Ai, Huashui; Ren, Jun; Huang, Lusheng

    2012-07-13

    MUC4 is a type of membrane anchored glycoprotein and serves as the major constituent of mucus that covers epithelial surfaces of many tissues such as trachea, colon and cervix. MUC4 plays important roles in the lubrication and protection of the surface epithelium, cell proliferation and differentiation, immune response, cell adhesion and cancer development. To gain insights into the evolution of the porcine MUC4 gene, we surveyed the nucleotide variability and linkage disequilibrium (LD) within this gene in Chinese indigenous breeds and Western commercial breeds. A total of 53 SNPs covering the MUC4 gene were genotyped on 5 wild boars and 307 domestic pigs representing 11 Chinese breeds and 3 Western breeds. The nucleotide variability, haplotype phylogeny and LD extent of MUC4 were analyzed in these breeds. Both Chinese and Western breeds had considerable nucleotide diversity at the MUC4 locus. Western pig breeds like Duroc and Large White have comparable nucleotide diversity as many of Chinese breeds, thus artificial selection for lean pork production have not reduced the genetic variability of MUC4 in Western commercial breeds. Haplotype phylogeny analyses indicated that MUC4 had evolved divergently in Chinese and Western pigs. The dendrogram of genetic differentiation between breeds generally reflected demographic history and geographical distribution of these breeds. LD patterns were unexpectedly similar between Chinese and Western breeds, in which LD usually extended less than 20 kb. This is different from the presumed high LD extent (more than 100 kb) in Western commercial breeds. The significant positive Tajima'D, and Fu and Li's D statistics in a few Chinese and Western breeds implied that MUC4 might undergo balancing selection in domestic breeds. Nevertheless, we cautioned that the significant statistics could be upward biased by SNP ascertainment process. Chinese and Western breeds have similar nucleotide diversity but evolve divergently in the MUC4 region. Western breeds exhibited unusual low LD extent at the MUC4 locus, reflecting the complexity of nucleotide variability of pig genome. The finding suggests that high density (e.g. 1SNP/10 kb) markers are required to capture the underlying causal variants at such regions.

  12. Mutation Rate Variation is a Primary Determinant of the Distribution of Allele Frequencies in Humans

    PubMed Central

    Pritchard, Jonathan K.

    2016-01-01

    The site frequency spectrum (SFS) has long been used to study demographic history and natural selection. Here, we extend this summary by examining the SFS conditional on the alleles found at the same site in other species. We refer to this extension as the “phylogenetically-conditioned SFS” or cSFS. Using recent large-sample data from the Exome Aggregation Consortium (ExAC), combined with primate genome sequences, we find that human variants that occurred independently in closely related primate lineages are at higher frequencies in humans than variants with parallel substitutions in more distant primates. We show that this effect is largely due to sites with elevated mutation rates causing significant departures from the widely-used infinite sites mutation model. Our analysis also suggests substantial variation in mutation rates even among mutations involving the same nucleotide changes. In summary, we show that variable mutation rates are key determinants of the SFS in humans. PMID:27977673

  13. Extraordinary Genetic Diversity in a Wood Decay Mushroom.

    PubMed

    Baranova, Maria A; Logacheva, Maria D; Penin, Aleksey A; Seplyarskiy, Vladimir B; Safonova, Yana Y; Naumenko, Sergey A; Klepikova, Anna V; Gerasimov, Evgeny S; Bazykin, Georgii A; James, Timothy Y; Kondrashov, Alexey S

    2015-10-01

    Populations of different species vary in the amounts of genetic diversity they possess. Nucleotide diversity π, the fraction of nucleotides that are different between two randomly chosen genotypes, has been known to range in eukaryotes between 0.0001 in Lynx lynx and 0.16 in Caenorhabditis brenneri. Here, we report the results of a comparative analysis of 24 haploid genotypes (12 from the United States and 12 from European Russia) of a split-gill fungus Schizophyllum commune. The diversity at synonymous sites is 0.20 in the American population of S. commune and 0.13 in the Russian population. This exceptionally high level of nucleotide diversity also leads to extreme amino acid diversity of protein-coding genes. Using whole-genome resequencing of 2 parental and 17 offspring haploid genotypes, we estimate that the mutation rate in S. commune is high, at 2.0 × 10(-8) (95% CI: 1.1 × 10(-8) to 4.1 × 10(-8)) per nucleotide per generation. Therefore, the high diversity of S. commune is primarily determined by its elevated mutation rate, although high effective population size likely also plays a role. Small genome size, ease of cultivation and completion of the life cycle in the laboratory, free-living haploid life stages and exceptionally high variability of S. commune make it a promising model organism for population, quantitative, and evolutionary genetics. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. How Oxytocin Receptor (OXTR) Single Nucleotide Polymorphisms Act on Prosociality: The Mediation Role of Moral Evaluation.

    PubMed

    Shang, Siyuan; Wu, Nan; Su, Yanjie

    2017-01-01

    Prosociality is related to numerous positive outcomes, and mechanisms underlying individual differences in prosociality have been widely discussed. Recently, research has found converging evidence on the influence of the oxytocin receptor ( OXTR ) gene on prosociality. Meanwhile, moral reasoning, a key precursor for social behavior, has also been associated with variability in OXTR gene, thus the relationship between OXTR and prosociality is assumed to be mediated by moral evaluation. The current study examines the relationship in question, and includes gender as a potential moderator. Self-reported prosociality on Prosocial Tendencies Measure and evaluation on the moral acceptability of behaviors in stories from 790 Chinese adolescents (32.4% boys) were analyzed for the influence of their OXTR single nucleotide polymorphisms (SNPs). Results showed that SNP at site rs2254298 was indirectly associated with prosocial behaviors via moral evaluation of behaviors, and this effect was moderated by gender. Our findings suggest an indirect association between genetic variations in OXTR and prosociality through moral evaluation, indicating the potential pathway from genetic variability to prosociality through level of moral development. We also provide some evidence that the role of oxytocin system may to some extent depend on gender. These findings may promote our understanding of the genetic and biological roots of prosociality and morality.

  15. Characterization and Epidemiology of Pigeon Paramyxovirus Type-1 Viruses (PPMV-1) Isolated in Macedonia.

    PubMed

    Dodovski, A; Cvetkovikj, I; Krstevski, K; Naletoski, I; Savić, Vladimir

    2017-06-01

    We have characterized in this study 10 PPMV-1 isolated from domestic pigeons and one PPMV-1 isolated from a feral pigeon in the period 2007-2012, using both classical methods (HI test and ICPI test) and molecular methods (RT-qPCR, RT-PCR, and nucleotide sequencing). Using phylogenetic analysis of partial fusion gene sequences, these viruses clustered with recent European PPMV-1 isolates (EU/re) within the genotype VIb/1. All isolates possessed virulent cleavage site motifs with variable morbidity and mortality in pigeons. The intracerebral pathogenecity indices of the five isolates ranged from 0.59 to 1.53. The repetitive isolation of PPMV-1 viruses for several consecutive years led toward establishing enzootic presence of the disease in pigeons. A high nucleotide sequence homology between the Macedonian isolates and EU/re isolates was shown. Co-circulation of different isolates in the same holdings was detected. This is the first study to extensively describe the molecular epidemiology of PPMV-1 isolated in Macedonia.

  16. Structural insights into translational recoding by frameshift suppressor tRNA SufJ

    DOE PAGES

    Fagan, Crystal E.; Maehigashi, Tatsuya; Dunkle, Jack A.; ...

    2014-10-28

    The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5' or 3' direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNA SufJ, a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNA SufJ contains an insertion 5' to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASL SufJ ormore » tRNA SufJ does not affect its affinity for the A site of the ribosome. Structural analyses of both ASL SufJ and ASL Thr bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34–37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASL SufJ imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNA SufJ during tRNA selection and possibly impede gripping of the anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting.« less

  17. “Gate-keeper” Residues and Active-Site Rearrangements in DNA Polymerase μ Help Discriminate Non-cognate Nucleotides

    PubMed Central

    Li, Yunlang; Schlick, Tamar

    2013-01-01

    Incorporating the cognate instead of non-cognate substrates is crucial for DNA polymerase function. Here we analyze molecular dynamics simulations of DNA polymerase μ (pol μ) bound to different non-cognate incoming nucleotides including A:dCTP, A:dGTP, A(syn):dGTP, A:dATP, A(syn):dATP, T:dCTP, and T:dGTP to study the structure-function relationships involved with aberrant base pairs in the conformational pathway; while a pol μ complex with the A:dTTP base pair is available, no solved non-cognate structures are available. We observe distinct differences of the non-cognate systems compared to the cognate system. Specifically, the motions of active-site residue His329 and Asp330 distort the active site, and Trp436, Gln440, Glu443 and Arg444 tend to tighten the nucleotide-binding pocket when non-cognate nucleotides are bound; the latter effect may further lead to an altered electrostatic potential within the active site. That most of these “gate-keeper” residues are located farther apart from the upstream primer in pol μ, compared to other X family members, also suggests an interesting relation to pol μ's ability to incorporate nucleotides when the upstream primer is not paired. By examining the correlated motions within pol μ complexes, we also observe different patterns of correlations between non-cognate systems and the cognate system, especially decreased interactions between the incoming nucleotides and the nucleotide-binding pocket. Altered correlated motions in non-cognate systems agree with our recently proposed hybrid conformational selection/induced-fit models. Taken together, our studies propose the following order for difficulty of non-cognate system insertions by pol μ: T:dGTP

  18. Positive selection in the SLC11A1 gene in the family Equidae.

    PubMed

    Bayerova, Zuzana; Janova, Eva; Matiasovic, Jan; Orlando, Ludovic; Horin, Petr

    2016-05-01

    Immunity-related genes are a suitable model for studying effects of selection at the genomic level. Some of them are highly conserved due to functional constraints and purifying selection, while others are variable and change quickly to cope with the variation of pathogens. The SLC11A1 gene encodes a transporter protein mediating antimicrobial activity of macrophages. Little is known about the patterns of selection shaping this gene during evolution. Although it is a typical evolutionarily conserved gene, functionally important polymorphisms associated with various diseases were identified in humans and other species. We analyzed the genomic organization, genetic variation, and evolution of the SLC11A1 gene in the family Equidae to identify patterns of selection within this important gene. Nucleotide SLC11A1 sequences were shown to be highly conserved in ten equid species, with more than 97 % sequence identity across the family. Single nucleotide polymorphisms (SNPs) were found in the coding and noncoding regions of the gene. Seven codon sites were identified to be under strong purifying selection. Codons located in three regions, including the glycosylated extracellular loop, were shown to be under diversifying selection. A 3-bp indel resulting in a deletion of the amino acid 321 in the predicted protein was observed in all horses, while it has been maintained in all other equid species. This codon comprised in an N-glycosylation site was found to be under positive selection. Interspecific variation in the presence of predicted N-glycosylation sites was observed.

  19. Error correction and diversity analysis of population mixtures determined by NGS

    PubMed Central

    Burroughs, Nigel J.; Evans, David J.; Ryabov, Eugene V.

    2014-01-01

    The impetus for this work was the need to analyse nucleotide diversity in a viral mix taken from honeybees. The paper has two findings. First, a method for correction of next generation sequencing error in the distribution of nucleotides at a site is developed. Second, a package of methods for assessment of nucleotide diversity is assembled. The error correction method is statistically based and works at the level of the nucleotide distribution rather than the level of individual nucleotides. The method relies on an error model and a sample of known viral genotypes that is used for model calibration. A compendium of existing and new diversity analysis tools is also presented, allowing hypotheses about diversity and mean diversity to be tested and associated confidence intervals to be calculated. The methods are illustrated using honeybee viral samples. Software in both Excel and Matlab and a guide are available at http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/, the Warwick University Systems Biology Centre software download site. PMID:25405074

  20. Two nucleotide binding sites modulate ( sup 3 H) glyburide binding to rat cortex membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.E.; Gopalakrishnan, M.; Triggle, D.J.

    1991-03-11

    The effects of nucleotides on the binding of the ATP-dependent K{sup +}-channel antagonist ({sup 3}H)glyburide (GLB) to rat cortex membranes were examined. Nucleotide triphosphates (NTPs) and nucleotide diphosphate (NDPs) inhibited the binding of GLB. This effect was dependent on the presence of dithiothreitol (DTT). Inhibition of binding by NTPs, with the exception of ATP{gamma}S, was dependent on the presence of Mg{sup 2+}. GLB binding showed a biphasic response to ADP: up to 3 mM, ADP inhibited binding, and above this concentration GLB binding increased rapidly, and was restored to normal levels by 10 mM ADP. In the presence of Mg{supmore » 2+}, ADP did not stimulate binding. Saturation analysis in the presence of Mg{sup 2+} and increasing concentrations of ADP showed that ADP results primarily in a change of the B{sub max} for GLB binding. The differential effects of NTPS and NDPs indicate that two nucleotide binding sites regulate GLB binding.« less

  1. Shallow Population Genetic Structures of Thread-sail Filefish (Stephanolepis cirrhifer) Populations from Korean Coastal Waters.

    PubMed

    Yoon, M; Park, W; Nam, Y K; Kim, D S

    2012-02-01

    Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA) control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076) and nucleotide diversities (0.014 to 0.019), and low levels of genetic differentiation among populations inferred from pairwise population F ST values (-0.007 to 0.107), support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA) revealed weak but significant genetic structures among three groups (F CT = 0.028, p<0.05), and no genetic variation within groups (0.53%; F SC = 0.005, p = 0.23). These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species.

  2. Shallow Population Genetic Structures of Thread-sail Filefish (Stephanolepis cirrhifer) Populations from Korean Coastal Waters

    PubMed Central

    Yoon, M.; Park, W.; Nam, Y. K.; Kim, D. S.

    2012-01-01

    Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA) control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076) and nucleotide diversities (0.014 to 0.019), and low levels of genetic differentiation among populations inferred from pairwise population FST values (−0.007 to 0.107), support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA) revealed weak but significant genetic structures among three groups (FCT = 0.028, p<0.05), and no genetic variation within groups (0.53%; FSC = 0.005, p = 0.23). These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species. PMID:25049547

  3. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    PubMed

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. DNA sequence analysis of simian virus 40 mutants with deletions mapping in the leader region of the late viral mRNA's: mutants with deletions similar in size and position exhibit varied phenotypes.

    PubMed

    Barkan, A; Mertz, J E

    1981-02-01

    The nucleotide sequences of 10 viable yet partially defective deletion mutants of simian virus 40 were determined. The deletions mapped within, and, in many cases, 5' to, the predominant leader sequence of the late viral mRNA's. They ranged from 74 to 187 nucleotide pairs in length. Six of the mutants had lost the sequence that corresponds to the "cap" site (5' terminus) of the most abundant class of 16S mRNA's. One of these mutants had a deletion that extended 103 nucleotide pairs into the region preceding this primary cap site and, therefore, was missing many secondary cap sites as well. A seventh mutant lacked the entire major 16S leader sequence except for the first six nucleotides at its 5' end and the last nine at its 3' end. Although these mutants differed in the size and position of their deletions, we were unable to discover any simple correlations between their growth characteristics and their DNA sequences. This finding indicates that the secondary structures of the RNA transcripts may play a more important role than the exact nucleotide sequence of the RNAs in determining how they function within the cell.

  5. Formation of cis-diamminedichloroplatinum(II) 1,2-intrastrand cross-links on DNA is flanking-sequence independent.

    PubMed

    Burstyn, J N; Heiger-Bernays, W J; Cohen, S M; Lippard, S J

    2000-11-01

    Mapping of cis-diamminedichloroplatinum(II) (cis-DDP, cisplatin) DNA adducts over >3000 nucleotides was carried out using a replication blockage assay. The sites of inhibition of modified T4 DNA polymerase, also referred to as stop sites, were analyzed to determine the effects of local sequence context on the distribution of intrastrand cisplatin cross-links. In a 3120 base fragment from replicative form M13mp18 DNA containing 24.6% guanine, 25.5% thymine, 26.9% adenine and 23.0% cytosine, 166 individual stop sites were observed at a bound platinum/nucleotide ratio of 1-2 per thousand. The majority of stop sites (90%) occurred at G(n>2) sequences and the remainder were located at sites containing an AG dinucleotide. For all of the GG sites present in the mapped sequences, including those with Gn(>)2, 89% blocked replication, whereas for the AG sites only 17% blocked replication. These blockage sites were independent of flanking nucleotides in a sequence of N(1)G*G*N(2) where N(1), N(2) = A, C, G, T and G*G* indicates a 1,2-intrastrand platinum cross-link. The absence of long-range sequence dependence was confirmed by monitoring the reaction of cisplatin with a plasmid containing an 800 bp insert of the human telomere repeat sequence (TTAGGG)(n). Platination reactions monitored at several formal platinum/nucleotide ratios or as a function of time reveal that the telomere insert was not preferentially damaged by cisplatin. Both replication blockage and telomere-insert plasmid platination experiments indicate that cisplatin 1,2-intrastrand adducts do not form preferentially at G-rich sequences in vitro.

  6. Improved prediction of biochemical recurrence after radical prostatectomy by genetic polymorphisms.

    PubMed

    Morote, Juan; Del Amo, Jokin; Borque, Angel; Ars, Elisabet; Hernández, Carlos; Herranz, Felipe; Arruza, Antonio; Llarena, Roberto; Planas, Jacques; Viso, María J; Palou, Joan; Raventós, Carles X; Tejedor, Diego; Artieda, Marta; Simón, Laureano; Martínez, Antonio; Rioja, Luis A

    2010-08-01

    Single nucleotide polymorphisms are inherited genetic variations that can predispose or protect individuals against clinical events. We hypothesized that single nucleotide polymorphism profiling may improve the prediction of biochemical recurrence after radical prostatectomy. We performed a retrospective, multi-institutional study of 703 patients treated with radical prostatectomy for clinically localized prostate cancer who had at least 5 years of followup after surgery. All patients were genotyped for 83 prostate cancer related single nucleotide polymorphisms using a low density oligonucleotide microarray. Baseline clinicopathological variables and single nucleotide polymorphisms were analyzed to predict biochemical recurrence within 5 years using stepwise logistic regression. Discrimination was measured by ROC curve AUC, specificity, sensitivity, predictive values, net reclassification improvement and integrated discrimination index. The overall biochemical recurrence rate was 35%. The model with the best fit combined 8 covariates, including the 5 clinicopathological variables prostate specific antigen, Gleason score, pathological stage, lymph node involvement and margin status, and 3 single nucleotide polymorphisms at the KLK2, SULT1A1 and TLR4 genes. Model predictive power was defined by 80% positive predictive value, 74% negative predictive value and an AUC of 0.78. The model based on clinicopathological variables plus single nucleotide polymorphisms showed significant improvement over the model without single nucleotide polymorphisms, as indicated by 23.3% net reclassification improvement (p = 0.003), integrated discrimination index (p <0.001) and likelihood ratio test (p <0.001). Internal validation proved model robustness (bootstrap corrected AUC 0.78, range 0.74 to 0.82). The calibration plot showed close agreement between biochemical recurrence observed and predicted probabilities. Predicting biochemical recurrence after radical prostatectomy based on clinicopathological data can be significantly improved by including patient genetic information. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Direct photoaffinity labeling of an allosteric site on subunit protein M1 of mouse ribonucleotide reductase by dTTP.

    PubMed Central

    Eriksson, S; Caras, I W; Martin, D W

    1982-01-01

    The protein M1 subunit of ribonucleotide reductase contains at least two allosteric nucleotide binding sites that control the capacity of the enzyme to reduce ribonucleotides to the deoxyribonucleotides required for DNA synthesis. Direct photoaffinity labeling of partially purified protein M1 from mouse T-lymphoma (S49) cells was observed after UV irradiation in the presence of dTTP at 0 degrees C. The relative molar incorporation of nucleotide per subunit was 4-8%. Competition experiments showed that the dTTP was bound to an allosteric domain genetically and kinetically defined as the substrate specificity site of the enzyme. An altered protein M1 isolated from a thymidine-resistant mutant cell line showed significantly decreased photoincorporation of dTTP, consistent with the fact that its CDP reductase activity is resistant to feedback inhibition by dTTP. Specific photolabeling of several other proteins with pyrimidine and purine nucleotides was also found, indicating the general usefulness of direct photoaffinity labeling in the study of enzymes involved in nucleotide and nucleic acid metabolism. Images PMID:7033963

  8. Forensically informative nucleotide sequencing (FINS) for the first time authentication of Indian Varanus species: implication in wildlife forensics and conservation.

    PubMed

    Rajpoot, Ankita; Kumar, Ved Prakash; Bahuguna, Archana; Kumar, Dhyanendra

    2017-11-01

    Monitor lizards are Varanus species widely distributed, endangered reptile in the IUCN red data list. In India, based on the morphological and ecological characteristic, it is divided into four species viz. Bengal monitor lizard, Yellow monitor lizard, Desert monitor lizard and Water monitor lizard. These four species listed as Schedule I species in Indian Wildlife (Protection) Act 1972. This paper first attempt to present Forensically Informative Nucleotide Sequencing (FINS) for the Indian Varanus based on three mitochondrial genes. The molecular framework will be useful for the identification of Indian Varanus species and trade products derived from monitors and as such, have important applications for wildlife management and conservation. Here, we used known 14 individual skin pieces of four species of monitor lizards; the partial fragment of three mitochondrial genes (Cyt b, 12S rRNA, and 16S rRNA) were amplified for genetic study. In Cyt b, 12S rRNA and 16s rRNA, we observed, 5, 5 and 4 Haplotypes; 71, 69, and 43 Variables sites; 90, 89, and 50 Parsimony Informative sites within four species of Indian monitor lizards, respectively. Despite it, the nucleotide composition was T 26.4, C 32.8, A 29.2 and G11.6; T 18.8, C 29.7, A 34.0 and G 17.5; T 21.7, C 27.3, A 32.5 and G 18.5 in Cyt b, 12S rRNA and 16S rRNA, respectively. The neighbor joining phylogenetic tree and maximum parsimony tree of three mitochondrial genes, showed similar results and reveal that, there are two major clades are present in Indian monitor lizards.

  9. Genetic polymorphisms of LPL and HL and their association with the performance of Chinese sturgeons fed a formulated diet.

    PubMed

    He, Y; Shen, D; Liang, X F; Lu, R H; Xiao, H

    2013-10-15

    It is very important to investigate the reasons for the large individual differences in individual performance of food acceptance when using formulated diets for the successful culture of larvae and juveniles of the Chinese sturgeon Acipenser sinensis. Genetic differences of the mitochondrial control region were investigated by direct sequencing in two groups of Chinese sturgeon, which were apt to accept or refuse formulated diets. Among 968-bp sequences, 111 variable sites were identified. One variable site showed close association with the individual performance of specimens fed with formulated diets. The commercial diet for Chinese sturgeons usually contains high levels of lipids. Lipoprotein lipase (LPL) and hepatic lipase (HL) are two members of the lipase gene family, which are essential for the utilization of dietary lipid. Single nucleotide polymorphisms (SNPs) in intron 7 were detected in the two experimental groups of Chinese sturgeons. We were able to demonstrate that one SNP in the LPL gene and one SNP in the HL gene showed close association with the performance of sturgeons on the formulated diet.

  10. Molecular structure of human KATP in complex with ATP and ADP

    PubMed Central

    Lee, Kenneth Pak Kin

    2017-01-01

    In many excitable cells, KATP channels respond to intracellular adenosine nucleotides: ATP inhibits while ADP activates. We present two structures of the human pancreatic KATP channel, containing the ABC transporter SUR1 and the inward-rectifier K+ channel Kir6.2, in the presence of Mg2+ and nucleotides. These structures, referred to as quatrefoil and propeller forms, were determined by single-particle cryo-EM at 3.9 Å and 5.6 Å, respectively. In both forms, ATP occupies the inhibitory site in Kir6.2. The nucleotide-binding domains of SUR1 are dimerized with Mg2+-ATP in the degenerate site and Mg2+-ADP in the consensus site. A lasso extension forms an interface between SUR1 and Kir6.2 adjacent to the ATP site in the propeller form and is disrupted in the quatrefoil form. These structures support the role of SUR1 as an ADP sensor and highlight the lasso extension as a key regulatory element in ADP’s ability to override ATP inhibition. PMID:29286281

  11. Nucleotide variability and linkage disequilibrium patterns in the porcine MUC4 gene

    PubMed Central

    2012-01-01

    Background MUC4 is a type of membrane anchored glycoprotein and serves as the major constituent of mucus that covers epithelial surfaces of many tissues such as trachea, colon and cervix. MUC4 plays important roles in the lubrication and protection of the surface epithelium, cell proliferation and differentiation, immune response, cell adhesion and cancer development. To gain insights into the evolution of the porcine MUC4 gene, we surveyed the nucleotide variability and linkage disequilibrium (LD) within this gene in Chinese indigenous breeds and Western commercial breeds. Results A total of 53 SNPs covering the MUC4 gene were genotyped on 5 wild boars and 307 domestic pigs representing 11 Chinese breeds and 3 Western breeds. The nucleotide variability, haplotype phylogeny and LD extent of MUC4 were analyzed in these breeds. Both Chinese and Western breeds had considerable nucleotide diversity at the MUC4 locus. Western pig breeds like Duroc and Large White have comparable nucleotide diversity as many of Chinese breeds, thus artificial selection for lean pork production have not reduced the genetic variability of MUC4 in Western commercial breeds. Haplotype phylogeny analyses indicated that MUC4 had evolved divergently in Chinese and Western pigs. The dendrogram of genetic differentiation between breeds generally reflected demographic history and geographical distribution of these breeds. LD patterns were unexpectedly similar between Chinese and Western breeds, in which LD usually extended less than 20 kb. This is different from the presumed high LD extent (more than 100 kb) in Western commercial breeds. The significant positive Tajima’D, and Fu and Li’s D statistics in a few Chinese and Western breeds implied that MUC4 might undergo balancing selection in domestic breeds. Nevertheless, we cautioned that the significant statistics could be upward biased by SNP ascertainment process. Conclusions Chinese and Western breeds have similar nucleotide diversity but evolve divergently in the MUC4 region. Western breeds exhibited unusual low LD extent at the MUC4 locus, reflecting the complexity of nucleotide variability of pig genome. The finding suggests that high density (e.g. 1SNP/10 kb) markers are required to capture the underlying causal variants at such regions. PMID:22793500

  12. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    NASA Astrophysics Data System (ADS)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  13. Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds.

    PubMed

    Broillet, M C; Firestein, S

    1996-02-01

    The activation of a cyclic nucleotide-gated channel is the final step in sensory transduction in olfaction. Normally, this channel is opened by the intracellular cyclic nucleotide second messenger cAMP or cGMP. However, in single channel recordings we found that donors of nitric oxide, a putative intercellular messenger, could directly activate the native olfactory neuron channel. Its action was independent of the presence of the normal ligand and did not involve the cyclic nucleotide binding site, suggesting an alternate site on the molecule that is critical in channel gating. The biochemical pathway appears to utilize nitric oxide in one of its alternate redox states, the nitrosonium ion, transnitrosylating a free sulfhydryl group belonging to a cysteine residue tentatively identified as being in the region linking the S6 transmembrane domain to the ligand binding domain.

  14. Cytoplasmic delivery of ribozymes leads to efficient reduction in alpha-lactalbumin mRNA levels in C127I mouse cells.

    PubMed Central

    L'Huillier, P J; Davis, S R; Bellamy, A R

    1992-01-01

    Ribozymes targeted to five sites along the alpha-lactalbumin (alpha-lac) mRNA were delivered to the cytoplasm of mouse C127I mammary cells using the T7-vaccinia virus delivery system and the amount of alpha-lac mRNA was monitored 24-48 h post-transfection. Three target sites were selected in the alpha-lac coding region (nucleotides 15, 145 and 361) and two were located in the 3' non-coding region (nucleotides 442 and 694). Acting in trans and at a target:ribozyme ratio of 1:1000, ribozymes targeting sites 361 and 694 reduced alpha-lac mRNA by > 80%; another two ribozymes (targeting nucleotides 442 and 145) reduced mRNA levels by 80 and 60% respectively; the fifth ribozyme (targeting nucleotide 15, near the AUG) was largely ineffective. The kinetic activity (kcat) of each ribozyme in vitro was somewhat predictive of the activity of the two ribozymes that targeted nucleotides 361 and 694, but was not predictive of the in vivo activity of the other three ribozymes. Down-regulation of the intracellular levels of alpha-lac paralleled the ribozyme-dependent reduction achieved for mRNA. For site 442, the reduction in both mRNA and protein was attributed to the catalytic activity of the ribozyme rather than to the antisense effects of the flanking arms, because delivery of an engineered (catalytically-inactive) variant had no effect on mRNA levels and a minimal effect on the level of alpha-lac present in the cell. Images PMID:1425576

  15. Non-thiolate ligation of nickel by nucleotide-free UreG of Klebsiella aerogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Diaconescu, Vlad; Joseph, Crisjoe A.; Boer, Jodi L.

    Nickel-dependent ureases are activated by a multiprotein complex that includes the GTPase UreG. Prior studies showed that nucleotide-free UreG from Klebsiella aerogenes is monomeric and binds one nickel or zinc ion with near-equivalent affinity using an undefined binding site, whereas nucleotide-free UreG from Helicobacter pylori selectively binds one zinc ion per dimer via a universally conserved Cys-Pro-His motif in each protomer. Iodoacetamide-treated K. aerogenes UreG was nearly unaffected in nickel binding compared to non-treated sample, suggesting the absence of thiolate ligands to the metal. X-ray absorption spectroscopy of nickel-bound UreG showed the metal possessed four-coordinate geometry with all O/N donormore » ligands including one imidazole, thus confirming the absence of thiolate ligation. The nickel site in Strep-tag II-modified protein possessed six-coordinate geometry, again with all O/N donor ligands, but now including two or three imidazoles. An identical site was noted for the Strep-tag II-modified H74A variant, substituted in the Cys-Pro-His motif, ruling out coordination by this His residue. These results are consistent with metal binding to both His6 and a His residue of the fusion peptide in Strep-tagged K. aerogenes UreG. We conclude that the nickel- and zinc-binding site in nucleotide-free K. aerogenes UreG is distinct from that of nucleotide-free H. pylori UreG and does not involve the Cys-Pro-His motif. Further, we show the Strep-tag II can perturb metal coordination of this protein.« less

  16. Avian influenza virus and Newcastle disease virus (NDV) surveillance in commercial breeding farm in China and the characterization of Class I NDV isolates.

    PubMed

    Hu, Beixia; Huang, Yanyan; He, Yefeng; Xu, Chuantian; Lu, Xishan; Zhang, Wei; Meng, Bin; Yan, Shigan; Zhang, Xiumei

    2010-07-29

    In order to determine the actual prevalence of avian influenza virus (AIV) and Newcastle disease virus (NDV) in ducks in Shandong province of China, extensive surveillance studies were carried out in the breeding ducks of an intensive farm from July 2007 to September 2008. Each month cloacal and tracheal swabs were taken from 30 randomly selected birds that appeared healthy. All of the swabs were negative for influenza A virus recovery, whereas 87.5% of tracheal swabs and 100% cloacal swabs collected in September 2007, were positive for Newcastle disease virus isolation. Several NDV isolates were recovered from tracheal and cloacal swabs of apparently healthy ducks. All of the isolates were apathogenic as determined by the MDT and ICPI. The HN gene and the variable region of F gene (nt 47-420) of four isolates selected at random were sequenced. A 374 bp region of F gene and the full length of HN gene were used for phylogenetic analysis. Four isolates were identified as the same isolate based on nucleotide sequences identities of 99.2-100%, displaying a closer phylogenetic relationship to lentogenic Class I viruses. There were 1.9-9.9% nucleotide differences between the isolates and other Class I virus in the variable region of F gene (nt 47-420), whereas there were 38.5-41.2% nucleotide difference between the isolates and Class II viruses. The amino acid sequences of the F protein cleavage sites in these isolates were 112-ERQERL-117. The full length of HN gene of these isolates was 1851 bp, coding 585 amino acids. The homology analysis of the nucleotide sequence of HN gene indicated that there were 2.0-4.2% nucleotide differences between the isolates and other Class I viruses, whereas there were 29.5-40.9% differences between the isolates and Class II viruses. The results shows that these isolates are not phylogenetically related to the vaccine strain (LaSota). This study adds to the understanding of the ecology of influenza viruses and Newcastle disease viruses in ducks and emphasizes the need for constant surveillance in times of an ongoing and expanding epidemic of AIV and NDV. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Properties of an intergenic terminator and start site switch that regulate IMD2 transcription in yeast.

    PubMed

    Jenks, M Harley; O'Rourke, Thomas W; Reines, Daniel

    2008-06-01

    The IMD2 gene in Saccharomyces cerevisiae is regulated by intracellular guanine nucleotides. Regulation is exerted through the choice of alternative transcription start sites that results in synthesis of either an unstable short transcript terminating upstream of the start codon or a full-length productive IMD2 mRNA. Start site selection is dictated by the intracellular guanine nucleotide levels. Here we have mapped the polyadenylation sites of the upstream, unstable short transcripts that form a heterogeneous family of RNAs of approximately 200 nucleotides. The switch from the upstream to downstream start sites required the Rpb9 subunit of RNA polymerase II. The enzyme's ability to locate the downstream initiation site decreased exponentially as the start was moved downstream from the TATA box. This suggests that RNA polymerase II's pincer grip is important as it slides on DNA in search of a start site. Exosome degradation of the upstream transcripts was highly dependent upon the distance between the terminator and promoter. Similarly, termination was dependent upon the Sen1 helicase when close to the promoter. These findings extend the emerging concept that distinct modes of termination by RNA polymerase II exist and that the distance of the terminator from the promoter, as well as its sequence, is important for the pathway chosen.

  18. Mitochondrial control-region sequence variation in aboriginal Australians.

    PubMed Central

    van Holst Pellekaan, S; Frommer, M; Sved, J; Boettcher, B

    1998-01-01

    The mitochondrial D-loop hypervariable segment 1 (mt HVS1) between nucleotides 15997 and 16377 has been examined in aboriginal Australian people from the Darling River region of New South Wales (riverine) and from Yuendumu in central Australia (desert). Forty-seven unique HVS1 types were identified, varying at 49 nucleotide positions. Pairwise analysis by calculation of BEPPI (between population proportion index) reveals statistically significant structure in the populations, although some identical HVS1 types are seen in the two contrasting regions. mt HVS1 types may reflect more-ancient distributions than do linguistic diversity and other culturally distinguishing attributes. Comparison with sequences from five published global studies reveals that these Australians demonstrate greatest divergence from some Africans, least from Papua New Guinea highlanders, and only slightly more from some Pacific groups (Indonesian, Asian, Samoan, and coastal Papua New Guinea), although the HVS1 types vary at different nucleotide sites. Construction of a median network, displaying three main groups, suggests that several hypervariable nucleotide sites within the HVS1 are likely to have undergone mutation independently, making phylogenetic comparison with global samples by conventional methods difficult. Specific nucleotide-site variants are major separators in median networks constructed from Australian HVS1 types alone and for one global selection. The distribution of these, requiring extended study, suggests that they may be signatures of different groups of prehistoric colonizers into Australia, for which the time of colonization remains elusive. PMID:9463317

  19. Mumps Hoshino and Torii vaccine strains were distinguished from circulating wild strains.

    PubMed

    Sawada, Akihito; Yamaji, Yoshiaki; Nakayama, Tetsuo

    2013-06-01

    Aseptic meningitis and acute parotitis have been observed after mumps vaccination. Mumps outbreaks have been reported in Japan because of low vaccine coverage, and molecular differentiation is required to determine whether these cases are vaccine associated. RT-nested PCR was performed in the small hydrophobic gene region, and viruses were differentiated by restriction fragment length polymorphism assay. A total of 584 nucleotides were amplified. The PCR product of the Hoshino strain was cut into two fragments (313 and 271 nucleotides) by MfeI; that of the Torii strain was digested with EcoT22I, resulting in 332- and 252-nucleotide fragments. Both strains were genotype B and had an XbaI site, resulting in two fragments: 299 and 285 nucleotides. Current circulating wild types were cut only by XbaI or MfeI. However, the MfeI site of the wild types was different from that of the Hoshino strain, resulting in 451- and 133-nucleotide fragments. Using three restriction enzymes, two mumps vaccine strains were distinguished from wild types, and this separation was applied to the identification of vaccine-related adverse events.

  20. Identification of Critical Residues for the Tight Binding of Both Correct and Incorrect Nucleotides to Human DNA Polymerase λ

    PubMed Central

    Brown, Jessica A.; Pack, Lindsey R.; Sherrer, Shanen M.; Kshetry, Ajay K.; Newmister, Sean A.; Fowler, Jason D.; Taylor, John-Stephen; Suo, Zucai

    2010-01-01

    DNA polymerase λ (Pol λ) is a novel X-family DNA polymerase that shares 34% sequence identity with DNA polymerase β (Pol β). Pre-steady state kinetic studies have shown that the Pol λ•DNA complex binds both correct and incorrect nucleotides 130-fold tighter on average than the Pol β•DNA complex, although, the base substitution fidelity of both polymerases is 10−4 to 10−5. To better understand Pol λ’s tight nucleotide binding affinity, we created single- and double-substitution mutants of Pol λ to disrupt interactions between active site residues and an incoming nucleotide or a template base. Single-turnover kinetic assays showed that Pol λ binds to an incoming nucleotide via cooperative interactions with active site residues (R386, R420, K422, Y505, F506, A510, and R514). Disrupting protein interactions with an incoming correct or incorrect nucleotide impacted binding with each of the common structural moieties in the following order: triphosphate ≫ base > ribose. In addition, the loss of Watson-Crick hydrogen bonding between the nucleotide and template base led to a moderate increase in the Kd. The fidelity of Pol λ was maintained predominantly by a single residue, R517, which has minor groove interactions with the DNA template. PMID:20851705

  1. Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment

    PubMed Central

    Hughes, Samantha J; Tanner, Julian A; Hindley, Alison D; Miller, Andrew D; Gould, Ian R

    2003-01-01

    Background Charging of transfer-RNA with cognate amino acid is accomplished by the aminoacyl-tRNA synthetases, and proceeds through an aminoacyl adenylate intermediate. The lysyl-tRNA synthetase has evolved an active site that specifically binds lysine and ATP. Previous molecular dynamics simulations of the heat-inducible Escherichia coli lysyl-tRNA synthetase, LysU, have revealed differences in the binding of ATP and aspects of asymmetry between the nominally equivalent active sites of this dimeric enzyme. The possibility that this asymmetry results in different binding affinities for the ligands is addressed here by a parallel computational and biochemical study. Results Biochemical experiments employing isothermal calorimetry, steady-state fluorescence and circular dichroism are used to determine the order and stoichiometries of the lysine and nucleotide binding events, and the associated thermodynamic parameters. An ordered mechanism of substrate addition is found, with lysine having to bind prior to the nucleotide in a magnesium dependent process. Two lysines are found to bind per dimer, and trigger a large conformational change. Subsequent nucleotide binding causes little structural rearrangement and crucially only occurs at a single catalytic site, in accord with the simulations. Molecular dynamics based free energy calculations of the ATP binding process are used to determine the binding affinities of each site. Significant differences in ATP binding affinities are observed, with only one active site capable of realizing the experimental binding free energy. Half-of-the-sites models in which the nucleotide is only present at one active site achieve their full binding potential irrespective of the subunit choice. This strongly suggests the involvement of an anti-cooperative mechanism. Pathways for relaying information between the two active sites are proposed. Conclusions The asymmetry uncovered here appears to be a common feature of oligomeric aminoacyl-tRNA synthetases, and may play an important functional role. We suggest a manner in which catalytic efficiency could be improved by LysU operating in an alternating sites mechanism. PMID:12787471

  2. Single nucleotide polymorphism analysis reveals heterogeneity within a seedling tree population of a polyembryonic mango cultivar.

    PubMed

    Winterhagen, Patrick; Wünsche, Jens-Norbert

    2016-05-01

    Within a polyembryonic mango seedling tree population, the genetic background of individuals should be identical because vigorous plants for cultivation are expected to develop from nucellar embryos representing maternal clones. Due to the fact that the mango cultivar 'Hôi' is assigned to the polyembryonic ecotype, an intra-cultivar variability of ethylene receptor genes was unexpected. Ethylene receptors in plants are conserved, but the number of receptors or receptor isoforms is variable regarding different plant species. However, it is shown here that the ethylene receptor MiETR1 is present in various isoforms within the mango cultivar 'Hôi'. The investigation of single nucleotide polymorphisms revealed that different MiETR1 isoforms can not be discriminated simply by individual single nucleotide exchanges but by the specific arrangement of single nucleotide polymorphisms at certain positions in the exons of MiETR1. Furthermore, an MiETR1 isoform devoid of introns in the genomic sequence was identified. The investigation demonstrates some limitations of high resolution melting and ScreenClust analysis and points out the necessity of sequencing to identify individual isoforms and to determine the variability within the tree population.

  3. Mechanistic Investigation of the Bypass of a Bulky Aromatic DNA Adduct Catalyzed by a Y-family DNA Polymerase

    PubMed Central

    Gadkari, Varun V.; Tokarsky, E. John; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2014-01-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2’-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4. PMID:25048879

  4. Mechanistic investigation of the bypass of a bulky aromatic DNA adduct catalyzed by a Y-family DNA polymerase.

    PubMed

    Gadkari, Varun V; Tokarsky, E John; Malik, Chanchal K; Basu, Ashis K; Suo, Zucai

    2014-09-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG(C8-N-ABA)). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dG(C8-N-ABA) is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dG(C8-N-ABA) on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dG(C8-N-ABA) lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dG(C8-N-ABA) lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dG(C8-N-ABA) bypass catalyzed by Dpo4. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Predicting protein-binding regions in RNA using nucleotide profiles and compositions.

    PubMed

    Choi, Daesik; Park, Byungkyu; Chae, Hanju; Lee, Wook; Han, Kyungsook

    2017-03-14

    Motivated by the increased amount of data on protein-RNA interactions and the availability of complete genome sequences of several organisms, many computational methods have been proposed to predict binding sites in protein-RNA interactions. However, most computational methods are limited to finding RNA-binding sites in proteins instead of protein-binding sites in RNAs. Predicting protein-binding sites in RNA is more challenging than predicting RNA-binding sites in proteins. Recent computational methods for finding protein-binding sites in RNAs have several drawbacks for practical use. We developed a new support vector machine (SVM) model for predicting protein-binding regions in mRNA sequences. The model uses sequence profiles constructed from log-odds scores of mono- and di-nucleotides and nucleotide compositions. The model was evaluated by standard 10-fold cross validation, leave-one-protein-out (LOPO) cross validation and independent testing. Since actual mRNA sequences have more non-binding regions than protein-binding regions, we tested the model on several datasets with different ratios of protein-binding regions to non-binding regions. The best performance of the model was obtained in a balanced dataset of positive and negative instances. 10-fold cross validation with a balanced dataset achieved a sensitivity of 91.6%, a specificity of 92.4%, an accuracy of 92.0%, a positive predictive value (PPV) of 91.7%, a negative predictive value (NPV) of 92.3% and a Matthews correlation coefficient (MCC) of 0.840. LOPO cross validation showed a lower performance than the 10-fold cross validation, but the performance remains high (87.6% accuracy and 0.752 MCC). In testing the model on independent datasets, it achieved an accuracy of 82.2% and an MCC of 0.656. Testing of our model and other state-of-the-art methods on a same dataset showed that our model is better than the others. Sequence profiles of log-odds scores of mono- and di-nucleotides were much more powerful features than nucleotide compositions in finding protein-binding regions in RNA sequences. But, a slight performance gain was obtained when using the sequence profiles along with nucleotide compositions. These are preliminary results of ongoing research, but demonstrate the potential of our approach as a powerful predictor of protein-binding regions in RNA. The program and supporting data are available at http://bclab.inha.ac.kr/RBPbinding .

  6. Sequence diversity and molecular evolutionary rates between buffalo and cattle.

    PubMed

    Moaeen-ud-Din, M; Bilal, G

    2015-02-01

    Identification of genes of importance regarding production traits in buffalo is impaired by a paucity of genomic resources. Choice to fill this gap is to exploit data available for cow. The cross-species application of comparative genomics tools is potential gear to investigate the buffalo genome. However, this is dependent on nucleotide sequences similarity. In this study, gene diversity between buffalo and cattle was determined using 86 gene orthologues. There was approximately 3% difference in all genes in terms of nucleotide diversity and 0.267 ± 0.134 in amino acids, indicating the possibility for successfully using cross-species strategies for genomic studies. There were significantly higher non-synonymous substitutions both in cattle and buffalo; however, there was similar difference in terms of dN- dS (4.414 versus 4.745) in buffalo and cattle, respectively. Higher rate of non-synonymous substitutions at similar level in buffalo and cattle indicated a similar positive selection pressure. Results for relative rate test were assessed with the chi-squared test. There was no significance difference on unique mutations between cattle and buffalo lineages at synonymous sites. However, there was a significance difference on unique mutations for non-synonymous sites, indicating ongoing mutagenic process that generates substitutional mutation at approximately the same rate at silent sites. Moreover, despite of common ancestry, our results indicate a different divergent time among genes of cattle and buffalo. This is the first demonstration that variable rates of molecular evolution may be present within the family Bovidae. © 2014 Blackwell Verlag GmbH.

  7. The human myelin oligodendrocyte glycoprotein (MOG) gene: Complete nucleotide sequence and structural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paule Roth, M.; Malfroy, L.; Offer, C.

    1995-07-20

    Human myelin oligodendrocyte glycoprotein (MOG), a myelin component of the central nervous system, is a candidate target antigen for autoimmune-mediated demyelination. We have isolated and sequenced part of a cosmid clone that contains the entire human MOG gene. The primary nuclear transcript, extending from the putative start of transcription to the site of poly(A) addition, is 15,561 nucleotides in length. The human MOG gene contains 8 exons, separated by 7 introns; canonical intron/exon boundary sites are observed at each junction. The introns vary in size from 242 to 6484 bp and contain numerous repetitive DNA elements, including 14 Alu sequencesmore » within 3 introns. Another Alu element is located in the 3{prime}-untranslated region of the gene. Alu sequences were classified with respect to subfamily assignment. Seven hundred sixty-three nucleotides 5{prime} of the transcription start and 1214 nucleotides 3{prime} of the poly(A) addition sites were also sequenced. The 5{prime}-flanking region revealed the presence of several consensus sequences that could be relevant in the transcription of the MOG gene, in particular binding sites in common with other myelin gene promoters. Two polymorphic intragenic dinucleotide (CA){sub n} and tetranucleotide (TAAA){sub n} repeats were identified and may provide genetic marker tools for association and linkage studies. 50 refs., 3 figs., 3 tabs.« less

  8. A Hidden Active Site in the Potential Drug Target Mycobacterium tuberculosis dUTPase Is Accessible through Small Amplitude Protein Conformational Changes*

    PubMed Central

    Lopata, Anna; Leveles, Ibolya; Bendes, Ábris Ádám; Viskolcz, Béla; Vértessy, Beáta G.; Jójárt, Balázs; Tóth, Judit

    2016-01-01

    dUTPases catalyze the hydrolysis of dUTP into dUMP and pyrophosphate to maintain the proper nucleotide pool for DNA metabolism. Recent evidence suggests that dUTPases may also represent a selective drug target in mycobacteria because of the crucial role of these enzymes in maintaining DNA integrity. Nucleotide-hydrolyzing enzymes typically harbor a buried ligand-binding pocket at interdomain or intersubunit clefts, facilitating proper solvent shielding for the catalyzed reaction. The mechanism by which substrate binds this hidden pocket and product is released in dUTPases is unresolved because of conflicting crystallographic and spectroscopic data. We sought to resolve this conflict by using a combination of random acceleration molecular dynamics (RAMD) methodology and structural and biochemical methods to study the dUTPase from Mycobacterium tuberculosis. In particular, the RAMD approach used in this study provided invaluable insights into the nucleotide dissociation process that reconciles all previous experimental observations. Specifically, our data suggest that nucleotide binding takes place as a small stretch of amino acids transiently slides away and partially uncovers the active site. The in silico data further revealed a new dUTPase conformation on the pathway to a relatively open active site. To probe this model, we developed the Trp21 reporter and collected crystallographic, spectroscopic, and kinetic data that confirmed the interaction of Trp21 with the active site shielding C-terminal arm, suggesting that the RAMD method is effective. In summary, our computational simulations and spectroscopic results support the idea that small loop movements in dUTPase allow the shuttlingof the nucleotides between the binding pocket and the solvent. PMID:27815500

  9. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A

    PubMed Central

    Ndhlovu, Andrew; Durand, Pierre M.; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. Database URL: http://www.bioinf.wits.ac.za/software/fire/evodb PMID:26140928

  10. EvoDB: a database of evolutionary rate profiles, associated protein domains and phylogenetic trees for PFAM-A.

    PubMed

    Ndhlovu, Andrew; Durand, Pierre M; Hazelhurst, Scott

    2015-01-01

    The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. © The Author(s) 2015. Published by Oxford University Press.

  11. Hydration sites of unpaired RNA bases: a statistical analysis of the PDB structures.

    PubMed

    Kirillova, Svetlana; Carugo, Oliviero

    2011-10-19

    Hydration is crucial for RNA structure and function. X-ray crystallography is the most commonly used method to determine RNA structures and hydration and, therefore, statistical surveys are based on crystallographic results, the number of which is quickly increasing. A statistical analysis of the water molecule distribution in high-resolution X-ray structures of unpaired RNA nucleotides showed that: different bases have the same penchant to be surrounded by water molecules; clusters of water molecules indicate possible hydration sites, which, in some cases, match those of the major and minor grooves of RNA and DNA double helices; complex hydrogen bond networks characterize the solvation of the nucleotides, resulting in a significant rigidity of the base and its surrounding water molecules. Interestingly, the hydration sites around unpaired RNA bases do not match, in general, the positions that are occupied by the second nucleotide when the base-pair is formed. The hydration sites around unpaired RNA bases were found. They do not replicate the atom positions of complementary bases in the Watson-Crick pairs.

  12. Hydration sites of unpaired RNA bases: a statistical analysis of the PDB structures

    PubMed Central

    2011-01-01

    Background Hydration is crucial for RNA structure and function. X-ray crystallography is the most commonly used method to determine RNA structures and hydration and, therefore, statistical surveys are based on crystallographic results, the number of which is quickly increasing. Results A statistical analysis of the water molecule distribution in high-resolution X-ray structures of unpaired RNA nucleotides showed that: different bases have the same penchant to be surrounded by water molecules; clusters of water molecules indicate possible hydration sites, which, in some cases, match those of the major and minor grooves of RNA and DNA double helices; complex hydrogen bond networks characterize the solvation of the nucleotides, resulting in a significant rigidity of the base and its surrounding water molecules. Interestingly, the hydration sites around unpaired RNA bases do not match, in general, the positions that are occupied by the second nucleotide when the base-pair is formed. Conclusions The hydration sites around unpaired RNA bases were found. They do not replicate the atom positions of complementary bases in the Watson-Crick pairs. PMID:22011380

  13. mRNA 3' of the A site bound codon is located close to protein S3 on the human 80S ribosome.

    PubMed

    Molotkov, Maxim V; Graifer, Dmitri M; Popugaeva, Elena A; Bulygin, Konstantin N; Meschaninova, Maria I; Ven'yaminova, Aliya G; Karpova, Galina G

    2006-07-01

    Ribosomal proteins neighboring the mRNA downstream of the codon bound at the decoding site of human 80S ribosomes were identified using three sets of mRNA analogues that contained a UUU triplet at the 5' terminus and a perfluorophenylazide cross-linker at guanosine, adenosine or uridine residues placed at various locations 3' of this triplet. The positions of modified mRNA nucleotides on the ribosome were governed by tRNA(Phe) cognate to the UUU triplet targeted to the P site. Upon mild UV-irradiation, the mRNA analogues cross-linked preferentially to the 40S subunit, to the proteins and to a lesser extent to the 18S rRNA. Cross-linked nucleotides of 18S rRNA were identified previously. In the present study, it is shown that among the proteins the main target for cross-linking with all the mRNA analogues tested was protein S3 (homologous to prokaryotic S3, S3p); minor cross-linking to protein S2 (S5p) was also detected. Both proteins cross-linked to mRNA analogues in the ternary complexes as well as in the binary complexes (without tRNA). In the ternary complexes protein S15 (S19p) also cross-linked, the yield of the cross-link decreased significantly when the modified nucleotide moved from position +5 to position +12 with respect to the first nucleotide of the P site bound codon. In several ternary complexes minor cross-linking to protein S30 was likewise detected. The results of this study indicate that S3 is a key protein at the mRNA binding site neighboring mRNA downstream of the codon at the decoding site in the human ribosome.

  14. The nucleotide sequence of the putative transcription initiation site of a cloned ribosomal RNA gene of the mouse.

    PubMed Central

    Urano, Y; Kominami, R; Mishima, Y; Muramatsu, M

    1980-01-01

    Approximately one kilobase pairs surrounding and upstream the transcription initiation site of a cloned ribosomal DNA (rDNA) of the mouse were sequenced. The putative transcription initiation site was determined by two independent methods: one nuclease S1 protection and the other reverse transcriptase elongation mapping using isolated 45S ribosomal RNA precursor (45S RNA) and appropriate restriction fragments of rDNA. Both methods gave an identical result; 45S RNA had a structure starting from ACTCTTAG---. Characteristically, mouse rDNA had many T clusters (greater than or equal to 5) upstream the initiation site, the longest being 21 consecutive T's. A pentadecanucleotide, TGCCTCCCGAGTGCA, appeared twice within 260 nucleotides upstream the putative initiation site. No such characteristic sequences were found downstream this site. Little similarity was found in the upstream of the transcription initiation site between the mouse, Xenopus laevis and Saccharomyces cerevisiae rDNA. Images PMID:6162156

  15. MetaPlotR: a Perl/R pipeline for plotting metagenes of nucleotide modifications and other transcriptomic sites.

    PubMed

    Olarerin-George, Anthony O; Jaffrey, Samie R

    2017-05-15

    An increasing number of studies are mapping protein binding and nucleotide modifications sites throughout the transcriptome. Often, these sites cluster in certain regions of the transcript, giving clues to their function. Hence, it is informative to summarize where in the transcript these sites occur. A metagene is a simple and effective tool for visualizing the distribution of sites along a simplified transcript model. In this work, we introduce MetaPlotR, a Perl/R pipeline for creating metagene plots. The code and associated tutorial are available at https://github.com/olarerin/metaPlotR . srj2003@med.cornell.edu. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  16. Effect of the nucleotides surrounding the start codon on the translation of foot-and-mouth disease virus RNA.

    PubMed

    Ma, X X; Feng, Y P; Gu, Y X; Zhou, J H; Ma, Z R

    2016-06-01

    As for the alternative AUGs in foot-and-mouth disease virus (FMDV), nucleotide bias of the context flanking the AUG(2nd) could be used as a strong signal to initiate translation. To determine the role of the specific nucleotide context, dicistronic reporter constructs were engineered to contain different versions of nucleotide context linking between internal ribosome entry site (IRES) and downstream gene. The results indicate that under FMDV IRES-dependent mechanism, the nucleotide contexts flanking start codon can influence the translation initiation efficiencies. The most optimal sequences for both start codons have proved to be UUU AUG(1st) AAC and AAG AUG(2nd) GAA.

  17. Cloning and sequence analysis of complementary DNA encoding an aberrantly rearranged human T-cell gamma chain.

    PubMed Central

    Dialynas, D P; Murre, C; Quertermous, T; Boss, J M; Leiden, J M; Seidman, J G; Strominger, J L

    1986-01-01

    Complementary DNA (cDNA) encoding a human T-cell gamma chain has been cloned and sequenced. At the junction of the variable and joining regions, there is an apparent deletion of two nucleotides in the human cDNA sequence relative to the murine gamma-chain cDNA sequence, resulting simultaneously in the generation of an in-frame stop codon and in a translational frameshift. For this reason, the sequence presented here encodes an aberrantly rearranged human T-cell gamma chain. There are several surprising differences between the deduced human and murine gamma-chain amino acid sequences. These include poor homology in the variable region, poor homology in a discrete segment of the constant region precisely bounded by the expected junctions of exon CII, and the presence in the human sequence of five potential sites for N-linked glycosylation. Images PMID:3458221

  18. Genetic Architectures of Quantitative Variation in RNA Editing Pathways

    PubMed Central

    Gu, Tongjun; Gatti, Daniel M.; Srivastava, Anuj; Snyder, Elizabeth M.; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L.; Dotu, Ivan; Chuang, Jeffrey H.; Keller, Mark P.; Attie, Alan D.; Braun, Robert E.; Churchill, Gary A.

    2016-01-01

    RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing. PMID:26614740

  19. The sequence specificity of UV-induced DNA damage in a systematically altered DNA sequence.

    PubMed

    Khoe, Clairine V; Chung, Long H; Murray, Vincent

    2018-06-01

    The sequence specificity of UV-induced DNA damage was investigated in a specifically designed DNA plasmid using two procedures: end-labelling and linear amplification. Absorption of UV photons by DNA leads to dimerisation of pyrimidine bases and produces two major photoproducts, cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (6-4PPs). A previous study had determined that two hexanucleotide sequences, 5'-GCTC*AC and 5'-TATT*AA, were high intensity UV-induced DNA damage sites. The UV clone plasmid was constructed by systematically altering each nucleotide of these two hexanucleotide sequences. One of the main goals of this study was to determine the influence of single nucleotide alterations on the intensity of UV-induced DNA damage. The sequence 5'-GCTC*AC was designed to examine the sequence specificity of 6-4PPs and the highest intensity 6-4PP damage sites were found at 5'-GTTC*CC nucleotides. The sequence 5'-TATT*AA was devised to investigate the sequence specificity of CPDs and the highest intensity CPD damage sites were found at 5'-TTTT*CG nucleotides. It was proposed that the tetranucleotide DNA sequence, 5'-YTC*Y (where Y is T or C), was the consensus sequence for the highest intensity UV-induced 6-4PP adduct sites; while it was 5'-YTT*C for the highest intensity UV-induced CPD damage sites. These consensus tetranucleotides are composed entirely of consecutive pyrimidines and must have a DNA conformation that is highly productive for the absorption of UV photons. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  20. Information theory-based analysis of CYP2C19, CYP2D6 and CYP3A5 splicing mutations.

    PubMed

    Rogan, Peter K; Svojanovsky, Stan; Leeder, J Steven

    2003-04-01

    Several mutations are known or suspected to affect mRNA splicing of CYP2C19, CYP2D6 and CYP3A5 genes; however, little experimental evidence exists to support these conclusions. The present study applies mathematical models that measure changes in information content of splice sites in these genes to demonstrate the relationship between the predicted phenotypes of these variants to the corresponding genotypes. Based on information analysis, the CYP2C19*2 variant activates a new cryptic site 40 nucleotides downstream of the natural splice site. CYP2C19*7 abolishes splicing at the exon 5 donor site. The CYP2D6*4 allele similarly inactivates splicing at the acceptor site of exon 4 and activates a new cryptic site one nucleotide downstream of the natural acceptor. CYP2D6*11 inactivates the acceptor site of exon 2. The CYP3A5*3 allele activates a new cryptic site 236 nucleotides upstream of the exon 4 natural acceptor site. CYP3A5*5 inactivates the exon 5 donor site and CYP3A5*6 strengthens a site upstream of the natural donor site, resulting in skipping of exon 7. Other previously described missense and nonsense mutations at terminal codons of exons in these genes affected splicing. CYP2D6*8 and CYP2D6*14 both decrease the strength of the exon 3 donor site, producing transcripts lacking this exon. The results of information analysis are consistent with the poor metabolizer phenotypes observed in patients with these mutations, and illustrate the potential value of these mathematical models to quantitatively evaluate the functional consequences of new mutations suspected of altering mRNA splicing.

  1. DNA binding sites characterization by means of Rényi entropy measures on nucleotide transitions.

    PubMed

    Perera, Alexandre; Vallverdu, Montserrat; Claria, Francesc; Soria, José Manuel; Caminal, Pere

    2006-01-01

    In this work, parametric information-theory measures for the characterization of binding sites in DNA are extended with the use of transitional probabilities on the sequence. We propose the use of parametric uncertainty measure such as Renyi entropies obtained from the transition probabilities for the study of the binding sites, in addition to nucleotide frequency based Renyi measures. Results are reported in this manuscript comparing transition frequencies (i.e. dinucelotides) and base frequencies for Shannon and parametric Renyi for a number of binding sites found in E. Coli, lambda and T7 organisms. We observe that, for the evaluated datasets, the information provided by both approaches is not redundant, as they evolve differently under increasing Renyi orders.

  2. Identification of the initiation site of poliovirus polyprotein synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorner, A.J.; Dorner, L.F.; Larsen, G.R.

    1982-06-01

    The complete nucleotide sequence of poliovirus RNA has a long open reading frame capable of encoding the precursor polyprotein NCVPOO. The first AUG codon in this reading frame is located 743 nucleotides from the 5' end of the RNA and is preceded by eight AUG codons in all three reading frames. Because all proteins that map at the amino terminus of the polyprotein (P1-1a, VPO, and VP4) are blocked at their amino termini and previous studies of ribosome binding have been inconclusive, direct identification of the initiation site of protein synthesis was difficult. We separated and identified all of themore » tryptic peptides of capsid protein VP4 and correlated these peptides with the amino acid sequence predicted to follow the AUG codon at nucleotide 743. Our data indicate that VP4 begins with a blocked glycine that is encoded immediately after the AUG codon at nucleotide 743. An S1 nuclease analysis of poliovirus mRNA failed to reveal a splice in the 5' region. We concluded that synthesis of poliovirus polyprotein is initiated at nucleotide 743, the first AUG codon in the long open reading frame.« less

  3. Genetic diversity and genetic structure of farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major basins by mitochondrial DNA COI and Cyt b gene sequences.

    PubMed

    Zhang, Cheng; Li, Qingqing; Wu, Xugan; Liu, Qing; Cheng, Yongxu

    2017-11-20

    The Chinese mitten crab, Eriocheir sinensis, is one of the important native crab species in East Asian region, which has been widely cultured throughout China, particularly in river basins of Yangtze, Huanghe and Liaohe. This study was designed to evaluate the genetic diversity and genetic structure of cultured and wild E. sinensis populations from the three river basins based on mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b). The results showed that there were 62 variable sites and 30 parsimony informative sites in the 647 bp of sequenced mtDNA COI from 335 samples. Similarly, a 637 bp segment of Cyt b provided 59 variable sites and 26 parsimony informative sites. AMOVA showed that the levels of genetic differentiation were low among six populations. Although the haplotype diversity and nucleotide diversity of Huanghe wild population had slightly higher than the other populations, there were no significant differences. There was no significant differentiation between the genetic and geographic distance of the six populations, and haplotype network diagram indicated that there may exist genetic hybrids of E. sinensis from different river basins. The results of clustering and neutrality tests revealed that the distance of geographical locations were not completely related to their genetic distance values for the six populations. In conclusion, these results have great significance for the evaluation and exploitation of germplasm resources of E. sinensis.

  4. A new single-nucleotide polymorphism database for rainbow trout generated through whole genome re-sequencing

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  5. Theory of single-molecule controlled rotation experiments, predictions, tests, and comparison with stalling experiments in F1-ATPase.

    PubMed

    Volkán-Kacsó, Sándor; Marcus, Rudolph A

    2016-10-25

    A recently proposed chemomechanical group transfer theory of rotary biomolecular motors is applied to treat single-molecule controlled rotation experiments. In these experiments, single-molecule fluorescence is used to measure the binding and release rate constants of nucleotides by monitoring the occupancy of binding sites. It is shown how missed events of nucleotide binding and release in these experiments can be corrected using theory, with F 1 -ATP synthase as an example. The missed events are significant when the reverse rate is very fast. Using the theory the actual rate constants in the controlled rotation experiments and the corrections are predicted from independent data, including other single-molecule rotation and ensemble biochemical experiments. The effective torsional elastic constant is found to depend on the binding/releasing nucleotide, and it is smaller for ADP than for ATP. There is a good agreement, with no adjustable parameters, between the theoretical and experimental results of controlled rotation experiments and stalling experiments, for the range of angles where the data overlap. This agreement is perhaps all the more surprising because it occurs even though the binding and release of fluorescent nucleotides is monitored at single-site occupancy concentrations, whereas the stalling and free rotation experiments have multiple-site occupancy.

  6. MicroRNA Targeting Specificity in Mammals: Determinants Beyond Seed Pairing

    PubMed Central

    Grimson, Andrew; Farh, Kyle Kai-How; Johnston, Wendy K.; Garrett-Engele, Philip; Lim, Lee P.; Bartel, David P.

    2013-01-01

    Summary Mammalian microRNAs (miRNAs) pair to 3'UTRs of mRNAs to direct their posttranscriptional repression. Important for target recognition are ~7-nt sites that match the seed region of the miRNA. However, these seed matches are not always sufficient for repression, indicating that other characteristics help specify targeting. By combining computational and experimental approaches, we uncovered five general features of site context that boost site efficacy: AU-rich nucleotide composition near the site, proximity to sites for co-expressed miRNAs (which leads to cooperative action), proximity to residues pairing to miRNA nucleotides 13–16, and positioning within the 3'UTR at least 15 nt from the stop codon and away from the center of long UTRs. A model combining these context determinants quantitatively predicts site performance both for exogenously added miRNAs and for endogenous miRNA-message interactions. Because it predicts site efficacy without recourse to evolutionary conservation, the model also identifies effective nonconserved sites and siRNA off-targets. PMID:17612493

  7. Identifying N6-methyladenosine sites using multi-interval nucleotide pair position specificity and support vector machine

    NASA Astrophysics Data System (ADS)

    Xing, Pengwei; Su, Ran; Guo, Fei; Wei, Leyi

    2017-04-01

    N6-methyladenosine (m6A) refers to methylation of the adenosine nucleotide acid at the nitrogen-6 position. It plays an important role in a series of biological processes, such as splicing events, mRNA exporting, nascent mRNA synthesis, nuclear translocation and translation process. Numerous experiments have been done to successfully characterize m6A sites within sequences since high-resolution mapping of m6A sites was established. However, as the explosive growth of genomic sequences, using experimental methods to identify m6A sites are time-consuming and expensive. Thus, it is highly desirable to develop fast and accurate computational identification methods. In this study, we propose a sequence-based predictor called RAM-NPPS for identifying m6A sites within RNA sequences, in which we present a novel feature representation algorithm based on multi-interval nucleotide pair position specificity, and use support vector machine classifier to construct the prediction model. Comparison results show that our proposed method outperforms the state-of-the-art predictors on three benchmark datasets across the three species, indicating the effectiveness and robustness of our method. Moreover, an online webserver implementing the proposed predictor has been established at http://server.malab.cn/RAM-NPPS/. It is anticipated to be a useful prediction tool to assist biologists to reveal the mechanisms of m6A site functions.

  8. Creatine kinase: Essential arginine residues at the nucleotide binding site identified by chemical modification and high-resolution tandem mass spectrometry

    PubMed Central

    Wood, Troy D.; Guan, Ziqiang; Borders, Charles L.; Chen, Lorenzo H.; Kenyon, George L.; McLafferty, Fred W.

    1998-01-01

    Phenylglyoxal is an arginine-specific reagent that inactivates creatine kinase (CK). Previous results suggest that modification of the dimeric enzyme at a single arginine residue per subunit causes complete inactivation accompanied by the loss of nucleotide binding; the actual site of modification was not identified. Here, high-resolution tandem mass spectrometry (MS/MS) was used to identify three phenylglyoxal-modified Arg residues in monomeric rabbit muscle CK. Electrospray ionizaton Fourier-transform MS of the phenylglyoxal-modified CK that had lost ≈80% activity identified three species: unmodified, once-modified (+116 Da), and twice-modified (+232 Da) enzyme in a ratio of approximately 1:4:1. MS/MS restricts the derivatized sites to P122-P212 and P283-V332, whereas MS of Lys-C digestions revealed two modified peptides, A266-K297 and G116-K137. The only Arg in A266-K297 is Arg-291 (invariant), whereas MS/MS of modified G116-K137 shows that two of the three sites Arg-129, Arg-131, or Arg-134 (all invariant) can contain the modification. The recently reported x-ray crystal structure for the octameric chicken mitochondrial CK indicates that its nucleotide triphosphate-binding site indeed contains the equivalent of R291, R129, and R131 reported here to be at the active site of rabbit muscle CK. PMID:9520370

  9. A new single-nucleotide polymorphisms database for rainbow trout generated through whole genome resequencing of selected samples

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  10. Mutational analysis of the antigenomic trans-acting delta ribozyme: the alterations of the middle nucleotides located on the P1 stem.

    PubMed Central

    Ananvoranich, S; Lafontaine, D A; Perreault, J P

    1999-01-01

    Our previous report on delta ribozyme cleavage using a trans -acting antigenomic delta ribozyme and a collection of short substrates showed that the middle nucleotides of the P1 stem, the substrate binding site, are essential for the cleavage activity. Here we have further investigated the effect of alterations in the P1 stem on the kinetic and thermodynamic parameters of delta ribozyme cleavage using various ribozyme variants carrying single base mutations at putative positions reported. The kinetic and thermodynamic values obtained in mutational studies of the two middle nucleotides of the P1 stem suggest that the binding and active sites of the delta ribozyme are uniquely formed. Firstly, the substrate and the ribozyme are engaged in the formation of a helix, known as the P1 stem, which may contain a weak hydrogen bond(s) or a bulge. Secondly, a tertiary interaction involving the base moieties in the middle of the P1 stem likely plays a role in defining the chemical environment. As a con-sequence, the active site might form simultaneously or subsequently to the binding site during later steps of the pathway. PMID:10037808

  11. AMAS: a fast tool for alignment manipulation and computing of summary statistics.

    PubMed

    Borowiec, Marek L

    2016-01-01

    The amount of data used in phylogenetics has grown explosively in the recent years and many phylogenies are inferred with hundreds or even thousands of loci and many taxa. These modern phylogenomic studies often entail separate analyses of each of the loci in addition to multiple analyses of subsets of genes or concatenated sequences. Computationally efficient tools for handling and computing properties of thousands of single-locus or large concatenated alignments are needed. Here I present AMAS (Alignment Manipulation And Summary), a tool that can be used either as a stand-alone command-line utility or as a Python package. AMAS works on amino acid and nucleotide alignments and combines capabilities of sequence manipulation with a function that calculates basic statistics. The manipulation functions include conversions among popular formats, concatenation, extracting sites and splitting according to a pre-defined partitioning scheme, creation of replicate data sets, and removal of taxa. The statistics calculated include the number of taxa, alignment length, total count of matrix cells, overall number of undetermined characters, percent of missing data, AT and GC contents (for DNA alignments), count and proportion of variable sites, count and proportion of parsimony informative sites, and counts of all characters relevant for a nucleotide or amino acid alphabet. AMAS is particularly suitable for very large alignments with hundreds of taxa and thousands of loci. It is computationally efficient, utilizes parallel processing, and performs better at concatenation than other popular tools. AMAS is a Python 3 program that relies solely on Python's core modules and needs no additional dependencies. AMAS source code and manual can be downloaded from http://github.com/marekborowiec/AMAS/ under GNU General Public License.

  12. Antiretroviral Drug Use in a Cross-Sectional Population Survey in Africa: NIMH Project Accept (HPTN 043).

    PubMed

    Fogel, Jessica M; Clarke, William; Kulich, Michal; Piwowar-Manning, Estelle; Breaud, Autumn; Olson, Matthew T; Marzinke, Mark A; Laeyendecker, Oliver; Fiamma, Agnès; Donnell, Deborah; Mbwambo, Jessie K K; Richter, Linda; Gray, Glenda; Sweat, Michael; Coates, Thomas J; Eshleman, Susan H

    2017-02-01

    Antiretroviral (ARV) drug treatment benefits the treated individual and can prevent HIV transmission. We assessed ARV drug use in a community-randomized trial that evaluated the impact of behavioral interventions on HIV incidence. Samples were collected in a cross-sectional survey after a 3-year intervention period. ARV drug testing was performed using samples from HIV-infected adults at 4 study sites (Zimbabwe; Tanzania; KwaZulu-Natal and Soweto, South Africa; survey period 2009-2011) using an assay that detects 20 ARV drugs (6 nucleoside/nucleotide reverse transcriptase inhibitors, 3 nonnucleoside reverse transcriptase inhibitors, and 9 protease inhibitors; maraviroc; raltegravir). ARV drugs were detected in 2011 (27.4%) of 7347 samples; 88.1% had 1 nonnucleoside reverse transcriptase inhibitors ± 1-2 nucleoside/nucleotide reverse transcriptase inhibitors. ARV drug detection was associated with sex (women>men), pregnancy, older age (>24 years), and study site (P < 0.0001 for all 4 variables). ARV drugs were also more frequently detected in adults who were widowed (P = 0.006) or unemployed (P = 0.02). ARV drug use was more frequent in intervention versus control communities early in the survey (P = 0.01), with a significant increase in control (P = 0.004) but not in intervention communities during the survey period. In KwaZulu-Natal, a 1% increase in ARV drug use was associated with a 0.14% absolute decrease in HIV incidence (P = 0.018). This study used an objective, biomedical approach to assess ARV drug use on a population level. This analysis identified factors associated with ARV drug use and provided information on ARV drug use over time. ARV drug use was associated with lower HIV incidence at 1 study site.

  13. Unconventional plasticity of HIV-1 reverse transcriptase: how inhibitors could open a connection "gate" between allosteric and catalytic sites.

    PubMed

    Bellucci, Luca; Angeli, Lucilla; Tafi, Andrea; Radi, Marco; Botta, Maurizio

    2013-12-23

    Targeted molecular dynamics (TMD) simulations allowed for identifying the chemical/structural features of the nucleotide-competitive HIV-1 inhibitor DAVP-1, which is responsible for the disruption of the T-shape motif between Try183 and Trp229 of the reverse transcriptase (RT). DAVP-1 promoted the opening of a connection "gate" between allosteric and catalytic sites of HIV-1 RT, thus explaining its peculiar mechanism of action and providing useful insights to develop novel nucleotide-competitive RT inhibitors.

  14. Nucleic acid constructs containing orthogonal site selective recombinases (OSSRs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Joshua M.; Anderson, J. Christopher; Dueber, John E.

    The present invention provides for a recombinant nucleic acid comprising a nucleotide sequence comprising a plurality of constructs, wherein each construct independently comprises a nucleotide sequence of interest flanked by a pair of recombinase recognition sequences. Each pair of recombinase recognition sequences is recognized by a distinct recombinase. Optionally, each construct can, independently, further comprise one or more genes encoding a recombinase capable of recognizing the pair of recombinase recognition sequences of the construct. The recombinase can be an orthogonal (non-cross reacting), site-selective recombinase (OSSR).

  15. iCLIP: Protein–RNA interactions at nucleotide resolution

    PubMed Central

    Huppertz, Ina; Attig, Jan; D’Ambrogio, Andrea; Easton, Laura E.; Sibley, Christopher R.; Sugimoto, Yoichiro; Tajnik, Mojca; König, Julian; Ule, Jernej

    2014-01-01

    RNA-binding proteins (RBPs) are key players in the post-transcriptional regulation of gene expression. Precise knowledge about their binding sites is therefore critical to unravel their molecular function and to understand their role in development and disease. Individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) identifies protein–RNA crosslink sites on a genome-wide scale. The high resolution and specificity of this method are achieved by an intramolecular cDNA circularization step that enables analysis of cDNAs that truncated at the protein–RNA crosslink sites. Here, we describe the improved iCLIP protocol and discuss critical optimization and control experiments that are required when applying the method to new RBPs. PMID:24184352

  16. Nucleotide Salvage Deficiencies, DNA Damage and Neurodegeneration

    PubMed Central

    Fasullo, Michael; Endres, Lauren

    2015-01-01

    Nucleotide balance is critically important not only in replicating cells but also in quiescent cells. This is especially true in the nervous system, where there is a high demand for adenosine triphosphate (ATP) produced from mitochondria. Mitochondria are particularly prone to oxidative stress-associated DNA damage because nucleotide imbalance can lead to mitochondrial depletion due to low replication fidelity. Failure to maintain nucleotide balance due to genetic defects can result in infantile death; however there is great variability in clinical presentation for particular diseases. This review compares genetic diseases that result from defects in specific nucleotide salvage enzymes and a signaling kinase that activates nucleotide salvage after DNA damage exposure. These diseases include Lesch-Nyhan syndrome, mitochondrial depletion syndromes, and ataxia telangiectasia. Although treatment options are available to palliate symptoms of these diseases, there is no cure. The conclusions drawn from this review include the critical role of guanine nucleotides in preventing neurodegeneration, the limitations of animals as disease models, and the need to further understand nucleotide imbalances in treatment regimens. Such knowledge will hopefully guide future studies into clinical therapies for genetic diseases. PMID:25923076

  17. Regulation of pathogenicity in hop stunt viroid-related group II citrus viroids.

    PubMed

    Reanwarakorn, K; Semancik, J S

    1998-12-01

    Nucleotide sequences were determined for two hop stunt viroid-related Group II citrus viroids characterized as either a cachexia disease non-pathogenic variant (CVd-IIa) or a pathogenic variant (CVd-IIb). Sequence identity between the two variants of 95.6% indicated a conserved genome with the principal region of nucleotide difference clustered in the variable (V) domain. Full-length viroid RT-PCR cDNA products were cloned into plasmid SP72. Viroid cDNA clones as well as derived RNA transcripts were transmissible to citron (Citrus medica L.) and Luffa aegyptiaca Mill. To determine the locus of cachexia pathogenicity as well as symptom expression in Luffa, chimeric viroid cDNA clones were constructed from segments of either the left terminal, pathogenic and conserved (T1-P-C) domains or the conserved, variable and right terminal (C-V-T2) domains of CVd-IIa or CVd-IIb in reciprocal exchanges. Symptoms induced by the various chimeric constructs on the two bioassay hosts reflected the differential response observed with CVd-IIa and -IIb. Constructs with the C-V-T2 domains region from clone-IIa induced severe symptoms on Luffa typical of CVd-IIa, but were non-symptomatic on mandarin as a bioassay host for the cachexia disease. Constructs with the same region (C-V-T2) from the clone-IIb genome induced only mild symptoms on Luffa, but produced a severe reaction on mandarin, as observed for CVd-IIb. Specific site-directed mutations were introduced into the V domain of the CVd-IIa clone to construct viroid cDNA clones with either partial or complete conversions to the CVd-IIb sequence. With the introduction of six site-specific changes into the V domain of the clone-IIa genome, cachexia pathogenicity was acquired as well as a moderation of severe symptoms on Luffa.

  18. Highly conserved intragenic HSV-2 sequences: Results from next-generation sequencing of HSV-2 UL and US regions from genital swabs collected from 3 continents.

    PubMed

    Johnston, Christine; Magaret, Amalia; Roychoudhury, Pavitra; Greninger, Alexander L; Cheng, Anqi; Diem, Kurt; Fitzgibbon, Matthew P; Huang, Meei-Li; Selke, Stacy; Lingappa, Jairam R; Celum, Connie; Jerome, Keith R; Wald, Anna; Koelle, David M

    2017-10-01

    Understanding the variability in circulating herpes simplex virus type 2 (HSV-2) genomic sequences is critical to the development of HSV-2 vaccines. Genital lesion swabs containing ≥ 10 7 log 10 copies HSV DNA collected from Africa, the USA, and South America underwent next-generation sequencing, followed by K-mer based filtering and de novo genomic assembly. Sites of heterogeneity within coding regions in unique long and unique short (U L _U S ) regions were identified. Phylogenetic trees were created using maximum likelihood reconstruction. Among 46 samples from 38 persons, 1468 intragenic base-pair substitutions were identified. The maximum nucleotide distance between strains for concatenated U L_ U S segments was 0.4%. Phylogeny did not reveal geographic clustering. The most variable proteins had non-synonymous mutations in < 3% of amino acids. Unenriched HSV-2 DNA can undergo next-generation sequencing to identify intragenic variability. The use of clinical swabs for sequencing expands the information that can be gathered directly from these specimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Selection of the simplest RNA that binds isoleucine

    PubMed Central

    LOZUPONE, CATHERINE; CHANGAYIL, SHANKAR; MAJERFELD, IRENE; YARUS, MICHAEL

    2003-01-01

    We have identified the simplest RNA binding site for isoleucine using selection-amplification (SELEX), by shrinking the size of the randomized region until affinity selection is extinguished. Such a protocol can be useful because selection does not necessarily make the simplest active motif most prominent, as is often assumed. We find an isoleucine binding site that behaves exactly as predicted for the site that requires fewest nucleotides. This UAUU motif (16 highly conserved positions; 27 total), is also the most abundant site in successful selections on short random tracts. The UAUU site, now isolated independently at least 63 times, is a small asymmetric internal loop. Conserved loop sequences include isoleucine codon and anticodon triplets, whose nucleotides are required for amino acid binding. This reproducible association between isoleucine and its coding sequences supports the idea that the genetic code is, at least in part, a stereochemical residue of the most easily isolated RNA–amino acid binding structures. PMID:14561881

  20. Population genetic structure and genetic diversity of Chinese pomfret at the coast of the East China Sea and the South China Sea.

    PubMed

    Sun, Peng; Tang, Baojun; Yin, Fei

    2018-05-01

    The Chinese pomfret Pampus chinensis is one of the most economic and ecological important marine fish species in China. In the present study, the population genetic structure and genetic diversity of P. chinensis were evaluated from a total sample size of 180 individuals representing six populations from the East China Sea and the South China Sea using mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 24 variable sites (including 3 singleton sites and 21 parsimony information sites) were observed, and 18 haplotypes were defined. The haplotype diversity (Hd) of the populations ranged from 0.559 to 0.775, and the nucleotide diversity (π) ranged from 0.330 to 1.090%. Analysis of molecular variance (AMOVA) reveals that the main variation (66.02%) was among individuals within populations. The average pairwise differences and ϕ ST values indicated significant genetic differentiation between Dongxing population and the other populations. The results of the present study are helpful for the sustainable management and utilization of this species.

  1. Substrate-specifying determinants of the nucleotide pyrophosphatases/phosphodiesterases NPP1 and NPP2

    PubMed Central

    2004-01-01

    The nucleotide pyrophosphatases/phosphodiesterases NPP1 and NPP2/autotaxin are structurally related eukaryotic ecto-enzymes, but display a very different substrate specificity. NPP1 releases nucleoside 5′-monophosphates from various nucleotides, whereas NPP2 mainly functions as a lysophospholipase D. We have used a domain-swapping approach to map substrate-specifying determinants of NPP1 and NPP2. The catalytic domain of NPP1 fused to the N- and C-terminal domains of NPP2 was hyperactive as a nucleotide phosphodiesterase, but did not show any lysophospholipase D activity. In contrast, chimaeras of the catalytic domain of NPP2 and the N- and/or C-terminal domains of NPP1 were completely inactive. These data indicate that the catalytic domain as well as both extremities of NPP2 contain lysophospholipid-specifying sequences. Within the catalytic domain of NPP1 and NPP2, we have mapped residues close to the catalytic site that determine the activities towards nucleotides and lysophospholipids. We also show that the conserved Gly/Phe-Xaa-Gly-Xaa-Xaa-Gly (G/FXGXXG) motif near the catalytic site is required for metal binding, but is not involved in substrate-specification. Our data suggest that the distinct activities of NPP1 and NPP2 stem from multiple differences throughout the polypeptide chain. PMID:15096095

  2. Sequence polymorphisms at the growth hormone GH1/GH2-N and GH2-Z gene copies and their relationship with dairy traits in domestic sheep (Ovis aries).

    PubMed

    Vacca, G M; Dettori, M L; Balia, F; Luridiana, S; Mura, M C; Carcangiu, V; Pazzola, M

    2013-09-01

    The purpose was to analyze the growth hormone GH1/GH2-N and GH2-Z gene copies and to assess their possible association with milk traits in Sarda sheep. Two hundred multiparous lactating ewes were monitored. The two gene copies were amplified separately and each was used as template for a nested PCR, to investigate single strand conformation polymorphism (SSCP) of the 5'UTR, exon-1, exon-5 and 3'UTR DNA regions. SSCP analysis revealed marked differences in the number of polymorphic patterns between the two genes. Sequencing revealed five nucleotide changes at the GH1/GH2-N gene. Five nucleotide changes occurred at the GH2-Z gene: one was located in exon-5 (c.556G > A) and resulted in a putative amino acid substitution G186S. All the nucleotide changes were copy-specific, except c.*30delT, which was common to both GH1/GH2-N and GH2-Z. Variability in the promoter regions of each gene might have consequences on the expression level, due to the involvement in potential transcription factor binding sites. Both gene copies influenced milk yield. A correlation with milk protein and casein content was also evidenced. These results may have implications that make them useful for future breeding strategies in dairy sheep breeding.

  3. A resource of single-nucleotide polymorphisms for rainbow trout generated by restriction-site associated DNA sequencing of doubled haploids

    USDA-ARS?s Scientific Manuscript database

    Salmonid genomes are considered to be in a pseudo-tetraploid state as a result of an evolutionarily recent genome duplication event. This situation complicates single nucleotide polymorphism (SNP) discovery in rainbow trout as many putative SNPs are actually paralogous sequence variants (PSVs) and ...

  4. Two-dimensional cross correlation analysis of protein unfolding: Portrayal of the thermal denaturation of CMP kinases in the absence and presence of substrates

    NASA Astrophysics Data System (ADS)

    Schultz, Christian P.; Bârzu, Octavian; Mantsch, Henry H.

    2000-03-01

    The functional role of CMP kinases is to regenerate mono-phosphate nucleotides in cells by transferring phosphate residues from tri-phosphorylated nucleotides to monophosphorylated nucleotides. These enzymes possess two binding sites and maintain a highly conserved secondary structure. They are essential for cell survival. Herein we compare the infrared spectra of two similar, but not identical enzymes, the CMP kinases from Escherichia coli and Bacillus subtilis. A two-dimensional cross correlation analysis of the infrared spectra reveals differences in the denaturation behavior of the two proteins. Different secondary structure elements show different time-delayed or advanced unfolding events in the two enzymes. When bound to the active sites, the two nucleotide-substrates CMP and ATP exert a stabilizing effect on the structure of both proteins. The changes observed upon thermal denaturation are different for the two enzymes. Model 2D correlations are used to simulate the different denaturation of the two enzymes. Thermal denaturation and aggregation can be distinguished as two processes separated in time.

  5. Sequence variation and phylogenetic analysis of envelope glycoprotein of hepatitis G virus.

    PubMed

    Lim, M Y; Fry, K; Yun, A; Chong, S; Linnen, J; Fung, K; Kim, J P

    1997-11-01

    A transfusion-transmissible agent provisionally designated hepatitis G virus (HGV) was recently identified. In this study, we examined the variability of the HGV genome by analysing sequences in the putative envelope region from 72 isolates obtained from diverse geographical sources. The 1561 nucleotide sequence of the E1/E2/NS2a region of HGV was determined from 12 isolates, and compared with three published sequences. The most variability was observed in 400 nucleotides at the N terminus of E2. We next analysed this 400 nucleotide envelope variable region (EV) from an additional 60 HGV isolates. This sequence varied considerably among the 75 isolates, with overall identity ranging from 79.3% to 99.5% at the nucleotide level, and from 83.5% to 100% at the amino acid level. However, hypervariable regions were not identified. Phylogenetic analyses indicated that the 75 HGV isolates belong to a single genotype. A single-tier distribution of evolutionary distances was observed among the 15 E1/E2/NS2a sequences and the 75 EV sequences. In contrast, 11 isolates of HCV were analysed and showed a three-tiered distribution, representing genotypes, subtypes, and isolates. The 75 isolates of HGV fell into four clusters on the phylogenetic tree. Tight geographical clustering was observed among the HGV isolates from Japan and Korea.

  6. Origins and Domestication of Cultivated Banana Inferred from Chloroplast and Nuclear Genes

    PubMed Central

    Zhang, Cui; Wang, Xin-Feng; Shi, Feng-Xue; Chen, Wen-Na; Ge, Xue-Jun

    2013-01-01

    Background Cultivated bananas are large, vegetatively-propagated members of the genus Musa. More than 1,000 cultivars are grown worldwide and they are major economic and food resources in numerous developing countries. It has been suggested that cultivated bananas originated from the islands of Southeast Asia (ISEA) and have been developed through complex geodomestication pathways. However, the maternal and parental donors of most cultivars are unknown, and the pattern of nucleotide diversity in domesticated banana has not been fully resolved. Methodology/Principal Findings We studied the genetics of 16 cultivated and 18 wild Musa accessions using two single-copy nuclear (granule-bound starch synthase I, GBSS I, also known as Waxy, and alcohol dehydrogenase 1, Adh1) and two chloroplast (maturase K, matK, and the trnL-F gene cluster) genes. The results of phylogenetic analyses showed that all A-genome haplotypes of cultivated bananas were grouped together with those of ISEA subspecies of M. acuminata (A-genome). Similarly, the B- and S-genome haplotypes of cultivated bananas clustered with the wild species M. balbisiana (B-genome) and M. schizocarpa (S-genome), respectively. Notably, it has been shown that distinct haplotypes of each cultivar (A-genome group) were nested together to different ISEA subspecies M. acuminata. Analyses of nucleotide polymorphism in the Waxy and Adh1 genes revealed that, in comparison to the wild relatives, cultivated banana exhibited slightly lower nucleotide diversity both across all sites and specifically at silent sites. However, dramatically reduced nucleotide diversity was found at nonsynonymous sites for cultivated bananas. Conclusions/Significance Our study not only confirmed the origin of cultivated banana as arising from multiple intra- and inter-specific hybridization events, but also showed that cultivated banana may have not suffered a severe genetic bottleneck during the domestication process. Importantly, our findings suggested that multiple maternal origins and a reduction in nucleotide diversity at nonsynonymous sites are general attributes of cultivated bananas. PMID:24260405

  7. A mutational analysis of U12-dependent splice site dinucleotides

    PubMed Central

    DIETRICH, ROSEMARY C.; FULLER, JOHN D.; PADGETT, RICHARD A.

    2005-01-01

    Introns spliced by the U12-dependent minor spliceosome are divided into two classes based on their splice site dinucleotides. The /AU-AC/ class accounts for about one-third of U12-dependent introns in humans, while the /GU-AG/ class accounts for the other two-thirds. We have investigated the in vivo and in vitro splicing phenotypes of mutations in these dinucleotide sequences. A 5′ A residue can splice to any 3′ residue, although C is preferred. A 5′ G residue can splice to 3′ G or U residues with a preference for G. Little or no splicing was observed to 3′ A or C residues. A 5′ U or C residue is highly deleterious for U12-dependent splicing, although some combinations, notably 5′ U to 3′ U produced detectable spliced products. The dependence of 3′ splice site activity on the identity of the 5′ residue provides evidence for communication between the first and last nucleotides of the intron. Most mutants in the second position of the 5′ splice site and the next to last position of the 3′ splice site were defective for splicing. Double mutants of these residues showed no evidence of communication between these nucleotides. Varying the distance between the branch site and the 3′ splice site dinucleotide in the /GU-AG/ class showed that a somewhat larger range of distances was functional than for the /AU-AC/ class. The optimum branch site to 3′ splice site distance of 11–12 nucleotides appears to be the same for both classes. PMID:16043500

  8. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.

    PubMed

    Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook

    2014-11-01

    As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of our knowledge, this is the first attempt to predict protein-binding nucleotides in a given DNA sequence from the sequence data alone. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Roles of the active site residues and metal cofactors in noncanonical base-pairing during catalysis by human DNA polymerase iota.

    PubMed

    Makarova, Alena V; Ignatov, Artem; Miropolskaya, Nataliya; Kulbachinskiy, Andrey

    2014-10-01

    Human DNA polymerase iota (Pol ι) is a Y-family polymerase that can bypass various DNA lesions but possesses very low fidelity of DNA synthesis in vitro. Structural analysis of Pol ι revealed a narrow active site that promotes noncanonical base-pairing during catalysis. To better understand the structure-function relationships in the active site of Pol ι we investigated substitutions of individual amino acid residues in its fingers domain that contact either the templating or the incoming nucleotide. Two of the substitutions, Y39A and Q59A, significantly decreased the catalytic activity but improved the fidelity of Pol ι. Surprisingly, in the presence of Mn(2+) ions, the wild-type and mutant Pol ι variants efficiently incorporated nucleotides opposite template purines containing modifications that disrupted either Hoogsteen or Watson-Crick base-pairing, suggesting that Pol ι may use various types of interactions during nucleotide addition. In contrast, in Mg(2+) reactions, wild-type Pol ι was dependent on Hoogsteen base-pairing, the Y39A mutant was essentially inactive, and the Q59A mutant promoted Watson-Crick interactions with template purines. The results suggest that Pol ι utilizes distinct mechanisms of nucleotide incorporation depending on the metal cofactor and reveal important roles of specific residues from the fingers domain in base-pairing and catalysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Relative evolutionary rate inference in HyPhy with LEISR.

    PubMed

    Spielman, Stephanie J; Kosakovsky Pond, Sergei L

    2018-01-01

    We introduce LEISR (Likehood Estimation of Individual Site Rates, pronounced "laser"), a tool to infer relative evolutionary rates from protein and nucleotide data, implemented in HyPhy. LEISR is based on the popular Rate4Site (Pupko et al., 2002) approach for inferring relative site-wise evolutionary rates, primarily from protein data. We extend the original method for more general use in several key ways: (i) we increase the support for nucleotide data with additional models, (ii) we allow for datasets of arbitrary size, (iii) we support analysis of site-partitioned datasets to correct for the presence of recombination breakpoints, (iv) we produce rate estimates at all sites rather than at just a subset of sites, and (v) we implemented LEISR as MPI-enabled to support rapid, high-throughput analysis. LEISR is available in HyPhy starting with version 2.3.8, and it is accessible as an option in the HyPhy analysis menu ("Relative evolutionary rate inference"), which calls the HyPhy batchfile LEISR.bf.

  11. Interstitial telomeric sequences in human chromosomes cluster with common fragile sites, mutagen sensitive sites, viral integration sites, cancer breakpoints, proto-oncogenes and breakpoints involved in primate evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adekunle, S.S.A.; Wyandt, H.; Mark, H.F.L.

    1994-09-01

    Recently we mapped the telomeric repeat sequences to 111 interstitial sites in the human genome and to sites of gaps and breaks induced by aphidicolin and sister chromatid exchange sites detected by BrdU. Many of these sites correspond to conserved fragile sites in man, gorilla and chimpazee, to sites of conserved sister chromatid exchange in the mammalian X chromosome, to mutagenic sensitive sites, mapped locations of proto-oncogenes, breakpoints implicated in primate evolution and to breakpoints indicated as the sole anomaly in neoplasia. This observation prompted us to investigate if the interstitial telomeric sites cluster with these sites. An extensive literaturemore » search was carried out to find all the available published sites mentioned above. For comparison, we also carried out a statistical analysis of the clustering of the sites of the telomeric repeats with the gene locations where only nucleotide mutations have been observed as the only chromosomal abnormality. Our results indicate that the telomeric repeats cluster most with fragile sites, mutagenic sensitive sites and breakpoints implicated in primate evolution and least with cancer breakpoints, mapped locations of proto-oncogenes and other genes with nucleotide mutations.« less

  12. Polyoma virus small tumor antigen pre-mRNA splicing requires cooperation between two 3' splice sites.

    PubMed Central

    Ge, H; Noble, J; Colgan, J; Manley, J L

    1990-01-01

    We have studied splicing of the polyoma virus early region pre-mRNA in vitro. This RNA is alternatively spliced in vivo to produce mRNA encoding the large, middle-sized (MTAg), and small (StAg) tumor antigens. Our primary interest was to learn how the 48-nucleotide StAg intron is excised, because the length of this intron is significantly less than the apparent minimum established for mammalian introns. Although the products of all three splices are detected in vitro, characterization of the pathway and sequence requirements of StAg splicing suggests that splicing factors interact with the precursor RNA in an unexpected way to catalyze removal of this intron. Specifically, StAg splicing uses either of two lariat branch points, one of which is located only 4 nucleotides from the 3' splice site. Furthermore, the StAg splice absolutely requires that the alternative MTAg 3' splice site, located 14 nucleotides downstream of the StAg 3' splice site, be intact. Insertion mutations that increase or decrease the quality of the MTAg pyrimidine stretch enhance or repress StAg as well as MTAg splicing, and a single-base change in the MTAg AG splice acceptor totally blocks both splices. These results demonstrate the ability of two 3' splice sites to cooperate with each other to bring about removal of a single intron. Images PMID:2159146

  13. A movie of the RNA polymerase nucleotide addition cycle.

    PubMed

    Brueckner, Florian; Ortiz, Julio; Cramer, Patrick

    2009-06-01

    During gene transcription, RNA polymerase (Pol) passes through repetitive cycles of adding a nucleotide to the growing mRNA chain. Here we obtained a movie of the nucleotide addition cycle by combining structural information on different functional states of the Pol II elongation complex (EC). The movie illustrates the two-step loading of the nucleoside triphosphate (NTP) substrate, closure of the active site for catalytic nucleotide incorporation, and the presumed two-step translocation of DNA and RNA, which is accompanied by coordinated conformational changes in the polymerase bridge helix and trigger loop. The movie facilitates teaching and a mechanistic analysis of transcription and can be downloaded from http://www.lmb.uni-muenchen.de/cramer/pr-materials.

  14. Mechanism for verification of mismatched and homoduplex DNAs by nucleotides-bound MutS analyzed by molecular dynamics simulations.

    PubMed

    Ishida, Hisashi; Matsumoto, Atsushi

    2016-09-01

    In order to understand how MutS recognizes mismatched DNA and induces the reaction of DNA repair using ATP, the dynamics of the complexes of MutS (bound to the ADP and ATP nucleotides, or not) and DNA (with mismatched and matched base-pairs) were investigated using molecular dynamics simulations. As for DNA, the structure of the base-pairs of the homoduplex DNA which interacted with the DNA recognition site of MutS was intermittently disturbed, indicating that the homoduplex DNA was unstable. As for MutS, the disordered loops in the ATPase domains, which are considered to be necessary for the induction of DNA repair, were close to (away from) the nucleotide-binding sites in the ATPase domains when the nucleotides were (not) bound to MutS. This indicates that the ATPase domains changed their structural stability upon ATP binding using the disordered loop. Conformational analysis by principal component analysis showed that the nucleotide binding changed modes which have structurally solid ATPase domains and the large bending motion of the DNA from higher to lower frequencies. In the MutS-mismatched DNA complex bound to two nucleotides, the bending motion of the DNA at low frequency modes may play a role in triggering the formation of the sliding clamp for the following DNA-repair reaction step. Moreover, MM-PBSA/GBSA showed that the MutS-homoduplex DNA complex bound to two nucleotides was unstable because of the unfavorable interactions between MutS and DNA. This would trigger the ATP hydrolysis or separation of MutS and DNA to continue searching for mismatch base-pairs. Proteins 2016; 84:1287-1303. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Covalent Chemical Ligation Strategy for Mono- and Polyclonal Immunoglobulins at Their Nucleotide Binding Sites.

    PubMed

    Lac, Diana; Feng, Chun; Bhardwaj, Gaurav; Le, Huong; Tran, Jimmy; Xing, Li; Fung, Gabriel; Liu, Ruiwu; Cheng, Holland; Lam, Kit S

    2016-01-20

    Nonspecific ligation methods have been traditionally used to chemically modify immunoglobulins. Site-specific ligation of compounds (toxins or ligands) to antibodies has become increasingly important in the fields of therapeutic antibody-drug conjugates and bispecific antibodies. In this present study, we took advantage of the reported nucleotide-binding pocket (NBP) in the Fab arms of immunoglobulins by developing indole-based, 5-fluoro-2,4-dinitrobenzene-derivatized OBOC peptide libraries for the identification of affinity elements that can be used as site-specific derivatization agents against both mono- and polyclonal antibodies. Ligation can occur at any one of the few lysine residues located at the NBP. Immunoconjugates resulting from such affinity elements can be used as therapeutics against cancer or infectious agents.

  16. iCLIP: protein-RNA interactions at nucleotide resolution.

    PubMed

    Huppertz, Ina; Attig, Jan; D'Ambrogio, Andrea; Easton, Laura E; Sibley, Christopher R; Sugimoto, Yoichiro; Tajnik, Mojca; König, Julian; Ule, Jernej

    2014-02-01

    RNA-binding proteins (RBPs) are key players in the post-transcriptional regulation of gene expression. Precise knowledge about their binding sites is therefore critical to unravel their molecular function and to understand their role in development and disease. Individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) identifies protein-RNA crosslink sites on a genome-wide scale. The high resolution and specificity of this method are achieved by an intramolecular cDNA circularization step that enables analysis of cDNAs that truncated at the protein-RNA crosslink sites. Here, we describe the improved iCLIP protocol and discuss critical optimization and control experiments that are required when applying the method to new RBPs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Characterization of sarcoplasmic reticulum Ca{sup 2+} ATPase nucleotide binding domain mutants using NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myint, Wazo; Gong, Qingguo; Ahn, Jinwoo

    2011-02-04

    Research highlights: {yields} Structural consequence by substitution mutations on the isolated SERCA-nucleotide binding (SERCA-N) domain was studied. {yields} The study fills a gap between the previous clinical, physiological, and biochemical data and the molecular basis of SERCA-N. {yields} The E412G mutation, known to be seen in patients with Darier's disease, was found to maintain the active conformation but exhibit reduced protein stability. -- Abstract: Sarcoplasmic reticulum Ca{sup 2+} ATPase (SERCA) is essential for muscle function by transporting Ca{sup 2+} from the cytosol into the sarcoplasmic reticulum through ATP hydrolysis. In this report, the effects of substitution mutations on the isolatedmore » SERCA-nucleotide binding domain (SERCA-N) were studied using NMR. {sup 15}N-{sup 1}H HSQC spectra of substitution mutants at the nucleotide binding site, T441A, R560V, and C561A, showed chemical shift changes, primarily in residues adjacent to the mutation sites, indicating only local effects. Further, the patterns of chemical shift changes upon AMP-PNP binding to these mutants were similar to that of the wild type SERCA-N (WT). In contrast to these nucleotide binding site mutants, a mutant found in patients with Darier's disease, E412G, showed small but significant chemical shift changes throughout the protein and rapid precipitation. However, the AMP-PNP dissociation constant ({approx}2.5 mM) was similar to that of WT ({approx}3.8 mM). These results indicate that the E412G mutant retains its catalytic activity but most likely reduces its stability. Our findings provide molecular insight into previous clinical, physiological, and biochemical observations.« less

  18. DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA

    PubMed Central

    Naorem, Santa S.; Han, Jin; Wang, Shufang; Lee, William R.; Heng, Xiao; Miller, Jeff F.

    2017-01-01

    Diversity-generating retroelements (DGRs) are molecular evolution machines that facilitate microbial adaptation to environmental changes. Hypervariation occurs via a mutagenic retrotransposition process from a template repeat (TR) to a variable repeat (VR) that results in adenine-to-random nucleotide conversions. Here we show that reverse transcription of the Bordetella phage DGR is primed by an adenine residue in TR RNA and is dependent on the DGR-encoded reverse transcriptase (bRT) and accessory variability determinant (Avd ), but is VR-independent. We also find that the catalytic center of bRT plays an essential role in site-specific cleavage of TR RNA for cDNA priming. Adenine-specific mutagenesis occurs during reverse transcription and does not involve dUTP incorporation, indicating it results from bRT-catalyzed misincorporation of standard deoxyribonucleotides. In vivo assays show that this hybrid RNA-cDNA molecule is required for mutagenic transposition, revealing a unique mechanism of DNA hypervariation for microbial adaptation. PMID:29109248

  19. Haplotype block structure study of the CFTR gene. Most variants are associated with the M470 allele in several European populations.

    PubMed

    Pompei, Fiorenza; Ciminelli, Bianca Maria; Bombieri, Cristina; Ciccacci, Cinzia; Koudova, Monika; Giorgi, Silvia; Belpinati, Francesca; Begnini, Angela; Cerny, Milos; Des Georges, Marie; Claustres, Mireille; Ferec, Claude; Macek, Milan; Modiano, Guido; Pignatti, Pier Franco

    2006-01-01

    An average of about 1700 CFTR (cystic fibrosis transmembrane conductance regulator) alleles from normal individuals from different European populations were extensively screened for DNA sequence variation. A total of 80 variants were observed: 61 coding SNSs (results already published), 13 noncoding SNSs, three STRs, two short deletions, and one nucleotide insertion. Eight DNA variants were classified as non-CF causing due to their high frequency of occurrence. Through this survey the CFTR has become the most exhaustively studied gene for its coding sequence variability and, though to a lesser extent, for its noncoding sequence variability as well. Interestingly, most variation was associated with the M470 allele, while the V470 allele showed an 'extended haplotype homozygosity' (EHH). These findings make us suggest a role for selection acting either on the M470V itself or through an hitchhiking mechanism involving a second site. The possible ancient origin of the V allele in an 'out of Africa' time frame is discussed.

  20. Evidence of codon usage in the nearest neighbor spacing distribution of bases in bacterial genomes

    NASA Astrophysics Data System (ADS)

    Higareda, M. F.; Geiger, O.; Mendoza, L.; Méndez-Sánchez, R. A.

    2012-02-01

    Statistical analysis of whole genomic sequences usually assumes a homogeneous nucleotide density throughout the genome, an assumption that has been proved incorrect for several organisms since the nucleotide density is only locally homogeneous. To avoid giving a single numerical value to this variable property, we propose the use of spectral statistics, which characterizes the density of nucleotides as a function of its position in the genome. We show that the cumulative density of bases in bacterial genomes can be separated into an average (or secular) plus a fluctuating part. Bacterial genomes can be divided into two groups according to the qualitative description of their secular part: linear and piecewise linear. These two groups of genomes show different properties when their nucleotide spacing distribution is studied. In order to analyze genomes having a variable nucleotide density, statistically, the use of unfolding is necessary, i.e., to get a separation between the secular part and the fluctuations. The unfolding allows an adequate comparison with the statistical properties of other genomes. With this methodology, four genomes were analyzed Burkholderia, Bacillus, Clostridium and Corynebacterium. Interestingly, the nearest neighbor spacing distributions or detrended distance distributions are very similar for species within the same genus but they are very different for species from different genera. This difference can be attributed to the difference in the codon usage.

  1. A new mathematical modeling for pure parsimony haplotyping problem.

    PubMed

    Feizabadi, R; Bagherian, M; Vaziri, H R; Salahi, M

    2016-11-01

    Pure parsimony haplotyping (PPH) problem is important in bioinformatics because rational haplotyping inference plays important roles in analysis of genetic data, mapping complex genetic diseases such as Alzheimer's disease, heart disorders and etc. Haplotypes and genotypes are m-length sequences. Although several integer programing models have already been presented for PPH problem, its NP-hardness characteristic resulted in ineffectiveness of those models facing the real instances especially instances with many heterozygous sites. In this paper, we assign a corresponding number to each haplotype and genotype and based on those numbers, we set a mixed integer programing model. Using numbers, instead of sequences, would lead to less complexity of the new model in comparison with previous models in a way that there are neither constraints nor variables corresponding to heterozygous nucleotide sites in it. Experimental results approve the efficiency of the new model in producing better solution in comparison to two state-of-the art haplotyping approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Genetic diversity of the captive Asian tapir population in Thailand, based on mitochondrial control region sequence data and the comparison of its nucleotide structure with Brazilian tapir.

    PubMed

    Muangkram, Yuttamol; Amano, Akira; Wajjwalku, Worawidh; Pinyopummintr, Tanu; Thongtip, Nikorn; Kaolim, Nongnid; Sukmak, Manakorn; Kamolnorranath, Sumate; Siriaroonrat, Boripat; Tipkantha, Wanlaya; Maikaew, Umaporn; Thomas, Warisara; Polsrila, Kanda; Dongsaard, Kwanreaun; Sanannu, Saowaphang; Wattananorrasate, Anuwat

    2017-07-01

    The Asian tapir (Tapirus indicus) has been classified as Endangered on the IUCN Red List of Threatened Species (2008). Genetic diversity data provide important information for the management of captive breeding and conservation of this species. We analyzed mitochondrial control region (CR) sequences from 37 captive Asian tapirs in Thailand. Multiple alignments of the full-length CR sequences sized 1268 bp comprised three domains as described in other mammal species. Analysis of 16 parsimony-informative variable sites revealed 11 haplotypes. Furthermore, the phylogenetic analysis using median-joining network clearly showed three clades correlated with our earlier cytochrome b gene study in this endangered species. The repetitive motif is located between first and second conserved sequence blocks, similar to the Brazilian tapir. The highest polymorphic site was located in the extended termination associated sequences domain. The results could be applied for future genetic management based in captivity and wild that shows stable populations.

  3. Molecular population genetics of inversion breakpoint regions in Drosophila pseudoobscura.

    PubMed

    Wallace, Andre G; Detweiler, Don; Schaeffer, Stephen W

    2013-07-08

    Paracentric inversions in populations can have a profound effect on the pattern and organization of nucleotide variability along a chromosome. Regions near inversion breakpoints are expected to have greater levels of differentiation because of reduced genetic exchange between different gene arrangements whereas central regions in the inverted segments are predicted to have lower levels of nucleotide differentiation due to greater levels of genetic flux among different karyotypes. We used the inversion polymorphism on the third chromosome of Drosophila pseudoobscura to test these predictions with an analysis of nucleotide diversity of 18 genetic markers near and away from inversion breakpoints. We tested hypotheses about how the presence of different chromosomal arrangements affects the pattern and organization of nucleotide variation. Overall, markers in the distal segment of the chromosome had greater levels of nucleotide heterozygosity than markers within the proximal segment of the chromosome. In addition, our results rejected the hypothesis that the breakpoints of derived inversions will have lower levels of nucleotide variability than breakpoints of ancestral inversions, even when strains with gene conversion events were removed. High levels of linkage disequilibrium were observed within all 11 breakpoint regions as well as between the ends of most proximal and distal breakpoints. The central region of the chromosome had the greatest levels of linkage disequilibrium compared with the proximal and distal regions because this is the region that experiences the highest level of recombination suppression. These data do not fully support the idea that genetic exchange is the sole force that influences genetic variation on inverted chromosomes.

  4. A novel MALDI–TOF based methodology for genotyping single nucleotide polymorphisms

    PubMed Central

    Blondal, Thorarinn; Waage, Benedikt G.; Smarason, Sigurdur V.; Jonsson, Frosti; Fjalldal, Sigridur B.; Stefansson, Kari; Gulcher, Jeffery; Smith, Albert V.

    2003-01-01

    A new MALDI–TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3′-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis. PMID:14654708

  5. Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria.

    PubMed Central

    Schuster, W; Wissinger, B; Unseld, M; Brennicke, A

    1990-01-01

    A number of cytosines are altered to be recognized as uridines in transcripts of the nad3 locus in mitochondria of the higher plant Oenothera. Such nucleotide modifications can be found at 16 different sites within the nad3 coding region. Most of these alterations in the mRNA sequence change codon identities to specify amino acids better conserved in evolution. Individual cDNA clones differ in their degree of editing at five nucleotide positions, three of which are silent, while two lead to codon alterations specifying different amino acids. None of the cDNA clones analysed is maximally edited at all possible sites, suggesting slow processing or lowered stringency of editing at these nucleotides. Differentially edited transcripts could be editing intermediates or could code for differing polypeptides. Two edited nucleotides in an open reading frame located upstream of nad3 change two amino acids in the deduced polypeptide. Part of the well-conserved ribosomal protein gene rps12 also encoded downstream of nad3 in other plants, is lost in Oenothera mitochondria by recombination events. The functional rps12 protein must be imported from the cytoplasm since the deleted sequences of this gene are not found in the Oenothera mitochondrial genome. The pseudogene sequence is not edited at any nucleotide position. Images Fig. 3. Fig. 4. Fig. 7. PMID:1688531

  6. Switch II Mutants Reveal Coupling between the Nucleotide- and Actin-Binding Regions in Myosin V

    PubMed Central

    Trivedi, Darshan V.; David, Charles; Jacobs, Donald J.; Yengo, Christopher M.

    2012-01-01

    Conserved active-site elements in myosins and other P-loop NTPases play critical roles in nucleotide binding and hydrolysis; however, the mechanisms of allosteric communication among these mechanoenzymes remain unresolved. In this work we introduced the E442A mutation, which abrogates a salt-bridge between switch I and switch II, and the G440A mutation, which abolishes a main-chain hydrogen bond associated with the interaction of switch II with the γ phosphate of ATP, into myosin V. We used fluorescence resonance energy transfer between mant-labeled nucleotides or IAEDANS-labeled actin and FlAsH-labeled myosin V to examine the conformation of the nucleotide- and actin-binding regions, respectively. We demonstrate that in the absence of actin, both the G440A and E442A mutants bind ATP with similar affinity and result in only minor alterations in the conformation of the nucleotide-binding pocket (NBP). In the presence of ADP and actin, both switch II mutants disrupt the formation of a closed NBP actomyosin.ADP state. The G440A mutant also prevents ATP-induced opening of the actin-binding cleft. Our results indicate that the switch II region is critical for stabilizing the closed NBP conformation in the presence of actin, and is essential for communication between the active site and actin-binding region. PMID:22713570

  7. Regulation of Pyrimidine Biosynthesis in Intact Cells of Cucurbita pepo.

    PubMed

    Lovatt, C J; Albert, L S

    1979-10-01

    The occurrence of the complete orotic acid pathway for the biosynthesis de novo of pyrimidine nucleotides was demonstrated in the intact cells of roots excised from summer squash (Cucurbita pepo L. cv. Early Prolific Straightneck). Evidence that the biosynthesis of pyrimidine nucleotides proceeds via the orotate pathway in C. pepo included: (a) demonstration of the incorporation of [(14)C]NaHCO(3), [(14)C]carbamylaspartate, and [(14)C]orotic acid into uridine nucleotides; (b) the isolation of [(14)C]orotic acid when [(14)C]NaHCO(3) and [(14)C]carbamylaspartate were used as precursors; (c) the observation that 6-azauridine, a known inhibitor of the pathway, blocked the incorporation of early precursors into uridine nucleotides while causing a concomitant accumulation of orotic acid; and (d) demonstration of the activities of the component enzymes of the orotate pathway in assays employing cell-free extracts.Regulation of the activity of the orotate pathway by end product inhibition was demonstrated in the intact cells of excised roots by measuring the influence of added pyrimidine nucleosides on the incorporation of [(14)C]NaHCO(3) into uridine nucleotides. The addition of either uridine or cytidine inhibited the incorporation of [(14)C]NaHCO(3) into uridine nucleotides by about 80%. The observed inhibition was demonstrated to be readily reversible upon transfer of the roots to a nucleoside-free medium. Experiments employing various radiolabeled precursors indicated that one or both of the first two enzymes in the orotate pathway are the only site(s) of regulation of physiological importance.

  8. Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work.

    PubMed

    Büttner, Lea; Javadi-Zarnaghi, Fatemeh; Höbartner, Claudia

    2014-06-04

    A general and efficient single-step method was established for site-specific post-transcriptional labeling of RNA. Using Tb(3+) as accelerating cofactor for deoxyribozymes, various labeled guanosines were site-specifically attached to 2'-OH groups of internal adenosines in in vitro transcribed RNA. The DNA-catalyzed 2',5'-phosphodiester bond formation proceeded efficiently with fluorescent, spin-labeled, biotinylated, or cross-linker-modified guanosine triphosphates. The sequence context of the labeling site was systematically analyzed by mutating the nucleotides flanking the targeted adenosine. Labeling of adenosines in a purine-rich environment showed the fastest reactions and highest yields. Overall, practically useful yields >70% were obtained for 13 out of 16 possible nucleotide (nt) combinations. Using this approach, we demonstrate preparative labeling under mild conditions for up to ~160-nt-long RNAs, including spliceosomal U6 small nuclear RNA and a cyclic-di-AMP binding riboswitch RNA.

  9. Two Drosophila chorion genes terminate transcription in discrete regions near their poly(A) sites.

    PubMed Central

    Osheim, Y N; Miller, O L; Beyer, A L

    1986-01-01

    We have examined transcription termination of two closely linked Drosophila melanogaster chorion genes, s36-1 and s38-1, using the electron microscope. Our method is unusual and is independent of in vitro nuclear run-on transcription. By measuring transcription unit lengths in chromatin spreads, we can localize efficient termination sites to a region of approximately 210 bp for s36-1 and approximately 365 bp for s38-1. The center of this region is approximately 105 nucleotides downstream of the poly(A) site for the s36-1 gene, and approximately 400 nucleotides downstream for the s38-1 gene. Thus, these two Drosophila chorion genes terminate more closely to their poly(A) addition sites and in a shorter region than many other polyadenylated genes examined to date. Images Fig. 1. Fig. 2. PMID:3104029

  10. Biological data warehousing system for identifying transcriptional regulatory sites from gene expressions of microarray data.

    PubMed

    Tsou, Ann-Ping; Sun, Yi-Ming; Liu, Chia-Lin; Huang, Hsien-Da; Horng, Jorng-Tzong; Tsai, Meng-Feng; Liu, Baw-Juine

    2006-07-01

    Identification of transcriptional regulatory sites plays an important role in the investigation of gene regulation. For this propose, we designed and implemented a data warehouse to integrate multiple heterogeneous biological data sources with data types such as text-file, XML, image, MySQL database model, and Oracle database model. The utility of the biological data warehouse in predicting transcriptional regulatory sites of coregulated genes was explored using a synexpression group derived from a microarray study. Both of the binding sites of known transcription factors and predicted over-represented (OR) oligonucleotides were demonstrated for the gene group. The potential biological roles of both known nucleotides and one OR nucleotide were demonstrated using bioassays. Therefore, the results from the wet-lab experiments reinforce the power and utility of the data warehouse as an approach to the genome-wide search for important transcription regulatory elements that are the key to many complex biological systems.

  11. Nucleotide diversity and linkage disequilibrium in wild avocado (Persea americana Mill.).

    PubMed

    Chen, Haofeng; Morrell, Peter L; de la Cruz, Marlene; Clegg, Michael T

    2008-01-01

    Resequencing studies provide the ultimate resolution of genetic diversity because they identify all mutations in a gene that are present within the sampled individuals. We report a resequencing study of Persea americana, a subtropical tree species native to Meso- and Central America and the progenitor of cultivated avocado. The sample includes 21 wild accessions from Mexico, Costa Rica, Ecuador, and the Dominican Republic. Estimated levels of nucleotide polymorphism and linkage disequilibrium (LD) are obtained from fully resolved haplotype data from 4 nuclear loci that span 5960 nucleotide sites. Results show that, although avocado is a subtropical tree crop and a predominantly outcrossing plant, the overall level of genetic variation is not exceptionally high (nucleotide diversity at silent sites, pi(sil) = 0.0102) compared with available estimates from temperate plant species. Intralocus LD decays rapidly to half the initial value within about 1 kb. Estimates of recombination rate (based on the sequence data) show that the rate is not exceptionally high when compared with annual plants such as wild barley or maize. Interlocus LD is significant owing to substantial population structure induced by mixing of the 3 botanical races of avocado.

  12. The structural changes of T7 RNA polymerase from transcription initiation to elongation

    PubMed Central

    Steitz, Thomas A

    2010-01-01

    Summary The structures of T7 RNA polymerase (T7 RNAP) captured in the initiation and elongation phases of transcription, as well as an intermediate stage provide insights into how this RNA polymerase protein can initiate RNA synthesis and synthesize 7 to 10 nucleotides of RNA while remaining bound to the DNA promoter site. Recently, the structures of T7 RNAP bound to it promoter DNA along with either a 7 nucleotide or 8 nucleotide transcript show an elongated product site resulting from a 40° or 45° rotation of the promoter and domain that binds it. The different functional properties of the initiation and elongation phases of transcription are illuminated from structures of the initiation and elongation complexes. Structural insights into the translocation of the product transcript of RNAP, its separation of the downstream duplex DNA and its removal of the transcript from the heteroduplex are provided by the structures of several states of nucleotide incorporation. A conformational change in the “fingers” domain that results from the binding or dissociation of incoming NTP or PPi appears to be associated with the state of translocation of T7 RNAP. PMID:19811903

  13. Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria.

    PubMed

    Hansen, M A; Kirpekar, F; Ritterbusch, W; Vester, B

    2002-02-01

    Posttranscriptional modifications were mapped in helices 90-92 of 23S rRNA from the following phylogenetically diverse organisms: Haloarcula marismortui, Sulfolobus acidocaldarius, Bacillus subtilis, and Bacillus stearothermophilus. Helix 92 is a component of the ribosomal A-site, which contacts the aminoacyl-tRNA during protein synthesis, implying that posttranscriptional modifications in helices 90-92 may be important for ribosome function. RNA fragments were isolated from 23S rRNA by site-directed RNase H digestion. A novel method of mapping modifications by analysis of short, nucleotide-specific, RNase digestion fragments with Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) was utilized. The MALDI-MS data were complemented by two primer extension techniques using reverse transcriptase. One technique utilizes decreasing concentrations of deoxynucleotide triphosphates to map 2'-O-ribose methylations. In the other, the rRNA is chemically modified, followed by mild alkaline hydrolysis to map pseudouridines (psis). A total of 10 posttranscriptionally methylated nucleotides and 6 psis were detected in the five organisms. Eight of the methylated nucleotides and one psi have not been reported previously. The distribution of modified nucleotides and their locations on the surface of the ribosomal peptidyl transferase cleft suggests functional importance.

  14. Sequence of rat alpha- and gamma-casein mRNAs: evolutionary comparison of the calcium-dependent rat casein multigene family.

    PubMed Central

    Hobbs, A A; Rosen, J M

    1982-01-01

    The complete sequences of rat alpha- and gamma-casein mRNAs have been determined. The 1402-nucleotide alpha- and 864-nucleotide gamma-casein mRNAs both encode 15 amino acid signal peptides and mature proteins of 269 and 164 residues, respectively. Considerable homology between the 5' non-coding regions, and the regions encoding the signal peptides and the phosphorylation sites, in these mRNAs as compared to several other rodent casein mRNAs, was observed. Significant homology was also detected between rat alpha- and bovine alpha s1-casein. Comparison of the rodent and bovine sequences suggests that the caseins evolved at about the time of the appearance of the primitive mammals. This may have occurred by intragenic duplication of a nucleotide sequence encoding a primitive phosphorylation site, -(Ser)n-Glu-Glu-, and intergenic duplication resulting in the small casein multigene family. A unique feature of the rat alpha-casein sequence is an insertion in the coding region containing 10 repeated elements of 18 nucleotides each. This insertion appears to have occurred 7-12 million years ago, just prior to the divergence of rat and mouse. Images PMID:6298707

  15. Role of a GAG Hinge in the Nucleotide-induced Conformational Change Governing Nucleotide Specificity by T7 DNA Polymerase*

    PubMed Central

    Jin, Zhinan; Johnson, Kenneth A.

    2011-01-01

    A nucleotide-induced change in DNA polymerase structure governs the kinetics of polymerization by high fidelity DNA polymerases. Mutation of a GAG hinge (G542A/G544A) in T7 DNA polymerase resulted in a 1000-fold slower rate of conformational change, which then limited the rate of correct nucleotide incorporation. Rates of misincorporation were comparable to that seen for wild-type enzyme so that the net effect of the mutation was a large decrease in fidelity. We demonstrate that a presumably modest change from glycine to alanine 20 Å from the active site can severely restrict the flexibility of the enzyme structure needed to recognize and incorporate correct substrates with high specificity. These results emphasize the importance of the substrate-induced conformational change in governing nucleotide selectivity by accelerating the incorporation of correct base pairs but not mismatches. PMID:20978284

  16. Binding and Translocation of Termination Factor Rho Studied at the Single-Molecule Level

    PubMed Central

    Koslover, Daniel J.; Fazal, Furqan M.; Mooney, Rachel A.; Landick, Robert; Block, Steven M.

    2012-01-01

    Rho termination factor is an essential hexameric helicase responsible for terminating 20–50% of all mRNA synthesis in E. coli. We used single- molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho- utilization (rut) site of the ? tR1 terminator. Our results are consistent with Rho complexes adopting two states, one that binds 57 ±2 nucleotides of RNA across all six of the Rho primary binding sites, and another that binds 85 ±2 nucleotides at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′-to-3′ towards RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the rut site and RNAP. These findings lead to a general model for Rho binding and translocation, and establish a novel experimental approach that should facilitate additional single- molecule studies of RNA-binding proteins. PMID:22885804

  17. Changes in mumps virus neurovirulence phenotype associated with quasispecies heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sauder, Christian J.; Vandenburgh, Kari M.; Iskow, Rebecca C.

    2006-06-20

    Mumps virus is a highly neurotropic virus with evidence of central nervous system invasion (CNS) in approximately half of all cases of infection. In countries where live attenuated mumps virus vaccines were introduced, the number of mumps cases declined dramatically; however, recently, the safety of some vaccine strains has been questioned. For example, one of the most widely used vaccines, the Urabe AM9 strain, was causally associated with meningitis, leading to the withdrawal of this product from the market in several countries. This highlights the need for a better understanding of the attenuation process and the identification of markers ofmore » attenuation. To this end, we further attenuated the Urabe AM9 strain by serial passage in cell culture and compared the complete nucleotide sequences of the parental and passaged viruses. Interestingly, despite a dramatic decrease in virus virulence (as assayed in rats), the only genomic changes were in the form of changes in the level of genetic heterogeneity at specific genome sites, i.e., either selection of one nucleotide variant at positions where the starting material exhibited nucleotide heterogeneity or the evolution of an additional nucleotide to create a heterogenic site. This finding suggests that changes in the level of genetic heterogeneity at specific genome sites can have profound neurovirulence phenotypic consequences and, therefore, caution should be exercised when evaluating genetic markers of virulence or attenuation based only on a consensus sequence.« less

  18. [Nucleotidic variations of two captive groups of tepezcuintle, Agouti paca (Rodentia: Agoutidae), from two sites in Yucatan, Mexico].

    PubMed

    Montes-Pérez, Rubén C; García, Adán W Echeverría; Castro, Jorge Zavala; Gamboa, Militza G Alfaro

    2006-09-01

    The objective of this work was to estimate the nucleotidic variation between two groups of tepezcuintles (Agouti paca) from the states of Campeche and Quintana Roo, Mexico and within members of each group. Blood samples were collected from eleven A. paca kept in captivity. DNA from leukocytic cells was used for Ramdom Amplification of DNA Polimorphism (RAPD). The primers three 5'-d(GTAGACCCGT)- 3' and six 5'-d(CCCGTCAGCA)- 3' were selected from de Amersham kit (Ready.To.Go. RAPD Analysis Beads, Amersham Pharmacia Biotech), because they produced an adequate number of bands. The electrophoretic pattern of bands obtained was analyzed using software for phylogenetic analysis based on the UPGMA method, to estimate the units of nucleotidic variation. The phylogenetic tree obtained with primer three reveals a dicotomic grouping between the animals from both states in the Yucatan Peninsula showing a divergent value of 1.983 nucleotides per hundred. Animals from Quintana Roo show a grouping with primer six; an additional grouping was observed with animals from Campeche. Nucleotidic variation between both groups was 2.118 nucleotides per hundred. The nucleotidic variation for the two primers within the groups from both states, showed fluctuating values from 0.46 to 1.68 nucleotides per hundred, which indicates that nucleotidic variation between the two groups of animals is around two nucleotides per hundred and, within the groups, less than 1.7 nucleotides per hundred.

  19. [Natural nucleotide polymorphism of the Srlk gene that determines salt stress tolerance in alfalfa (Medicago sativa L)].

    PubMed

    Vishnevskaia, M S; Pavlov, A V; Dziubenko, E A; Dziubenko, N I; Potokina, E K

    2014-04-01

    Based on legume genome syntheny, the nucleotide sequence of Srlk gene, key role of which in response to salt stress was demonstrated for the model species Medicago truncatula, was identified in the major forage and siderate crop alfalfa (Medicago sativa). In twelve alfalfa samples originating from regions with contrasting growing conditions, 19 SNPs were revealed in the Srlk gene. For two nonsynonymous SNPs, molecular markers were designed that could be further used to analyze the association between Srlk gene nucleotide polymorphism and the variability in salt stress tolerance among alfalfa cultivars.

  20. Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse

    PubMed Central

    Perera, Lalith; Freudenthal, Bret D.; Beard, William A.; Shock, David D.; Pedersen, Lee G.; Wilson, Samuel H.

    2015-01-01

    DNA polymerases facilitate faithful insertion of nucleotides, a central reaction occurring during DNA replication and repair. DNA synthesis (forward reaction) is “balanced,” as dictated by the chemical equilibrium by the reverse reaction of pyrophosphorolysis. Two closely spaced divalent metal ions (catalytic and nucleotide-binding metals) provide the scaffold for these reactions. The catalytic metal lowers the pKa of O3′ of the growing primer terminus, and the nucleotide-binding metal facilitates substrate binding. Recent time-lapse crystallographic studies of DNA polymerases have identified an additional metal ion (product metal) associated with pyrophosphate formation, leading to the suggestion of its possible involvement in the reverse reaction. Here, we establish a rationale for a role of the product metal using quantum mechanical/molecular mechanical calculations of the reverse reaction in the confines of the DNA polymerase β active site. Additionally, site-directed mutagenesis identifies essential residues and metal-binding sites necessary for pyrophosphorolysis. The results indicate that the catalytic metal site must be occupied by a magnesium ion for pyrophosphorolysis to occur. Critically, the product metal site is occupied by a magnesium ion early in the pyrophosphorolysis reaction path but must be removed later. The proposed dynamic nature of the active site metal ions is consistent with crystallographic structures. The transition barrier for pyrophosphorolysis was estimated to be significantly higher than that for the forward reaction, consistent with kinetic activity measurements of the respective reactions. These observations provide a framework to understand how ions and active site changes could modulate the internal chemical equilibrium of a reaction that is central to genome stability. PMID:26351676

  1. [Protein S3 in the human 80S ribosome adjoins mRNA from 3'-side of the A-site codon].

    PubMed

    Molotkov, M V; Graĭfer, D M; Popugaeva, E A; Bulygin, K N; Meshchaninova, M I; Ven'iaminova, A G; Karpova, G G

    2007-01-01

    The protein environment of mRNA 3' of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5'-end and a perfluoroarylazide group at one of the nucleotide residues at the 3'-end of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in triple complexes and in the absence of tRNA. Within triple complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed, it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3' of the codon in the decoding site.

  2. Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation.

    PubMed

    Schüle, Birgitt; Oviedo, Angelica; Johnston, Kathreen; Pai, Shashidhar; Francke, Uta

    2005-12-01

    The rare, autosomal recessive Roberts syndrome (RBS) is characterized by tetraphocomelia, profound growth deficiency of prenatal onset, craniofacial anomalies, microcephaly, and mental deficiency. SC phocomelia (SC) has a milder phenotype, with a lesser degree of limb reduction and with survival to adulthood. Since heterochromatin repulsion (HR) is characteristic for both disorders and is not complemented in somatic-cell hybrids, it has been hypothesized that the disorders are allelic. Recently, mutations in ESCO2 (establishment of cohesion 1 homolog 2) on 8p21.1 have been reported in RBS. To determine whether ESCO2 mutations are also responsible for SC, we studied three families with SC and two families in which variable degrees of limb and craniofacial abnormalities, detected by fetal ultrasound, led to pregnancy terminations. All cases were positive for HR. We identified seven novel mutations in exons 3-8 of ESCO2. In two families, affected individuals were homozygous--for a 5-nucleotide deletion in one family and a splice-site mutation in the other. In three nonconsanguineous families, probands were compound heterozygous for a single-nucleotide insertion or deletion, a nonsense mutation, or a splice-site mutation. Abnormal splice products were characterized at the RNA level. Since only protein-truncating mutations were identified, regardless of clinical severity, we conclude that genotype does not predict phenotype. Having established that RBS and SC are caused by mutations in the same gene, we delineated the clinical phenotype of the tetraphocomelia spectrum that is associated with HR and ESCO2 mutations and differentiated it from other types of phocomelia that are negative for HR.

  3. Quantitative Analysis of Focused A-To-I RNA Editing Sites by Ultra-High-Throughput Sequencing in Psychiatric Disorders

    PubMed Central

    Zhu, Hu; Urban, Daniel J.; Blashka, Jared; McPheeters, Matthew T.; Kroeze, Wesley K.; Mieczkowski, Piotr; Overholser, James C.; Jurjus, George J.; Dieter, Lesa; Mahajan, Gouri J.; Rajkowska, Grazyna; Wang, Zefeng; Sullivan, Patrick F.; Stockmeier, Craig A.; Roth, Bryan L.

    2012-01-01

    A-to-I RNA editing is a post-transcriptional modification of single nucleotides in RNA by adenosine deamination, which thereby diversifies the gene products encoded in the genome. Thousands of potential RNA editing sites have been identified by recent studies (e.g. see Li et al, Science 2009); however, only a handful of these sites have been independently confirmed. Here, we systematically and quantitatively examined 109 putative coding region A-to-I RNA editing sites in three sets of normal human brain samples by ultra-high-throughput sequencing (uHTS). Forty of 109 putative sites, including 25 previously confirmed sites, were validated as truly edited in our brain samples, suggesting an overestimation of A-to-I RNA editing in these putative sites by Li et al (2009). To evaluate RNA editing in human disease, we analyzed 29 of the confirmed sites in subjects with major depressive disorder and schizophrenia using uHTS. In striking contrast to many prior studies, we did not find significant alterations in the frequency of RNA editing at any of the editing sites in samples from these patients, including within the 5HT2C serotonin receptor (HTR2C). Our results indicate that uHTS is a fast, quantitative and high-throughput method to assess RNA editing in human physiology and disease and that many prior studies of RNA editing may overestimate both the extent and disease-related variability of RNA editing at the sites we examined in the human brain. PMID:22912834

  4. Multiple introductions of serotype O foot-and-mouth disease viruses into East Asia in 2010–2011

    PubMed Central

    2013-01-01

    Foot-and-mouth disease virus (FMDV) is a highly contagious and genetically variable virus. Sporadic introductions of this virus into FMD-free countries may cause outbreaks with devastating consequences. In 2010 and 2011, incursions of the FMDV O/SEA/Mya-98 strain, normally restricted to countries in mainland Southeast Asia, caused extensive outbreaks across East Asia. In this study, 12 full genome FMDV sequences for representative samples collected from the People’s Republic of China (PR China) including the Hong Kong Special Administrative Region (SAR), the Republic of Korea, the Democratic People’s Republic of Korea, Japan, Mongolia and The Russian Federation were generated and compared with additional contemporary sequences from viruses within this lineage. These complete genomes were 8119 to 8193 nucleotides in length and differed at 1181 sites, sharing a nucleotide identity ≥ 91.0% and an amino acid identity ≥ 96.6%. An unexpected deletion of 70 nucleotides within the 5′-untranslated region which resulted in a shorter predicted RNA stem-loop for the S-fragment was revealed in two sequences from PR China and Hong Kong SAR and five additional related samples from the region. Statistical parsimony and Bayesian phylogenetic analysis provide evidence that these outbreaks in East Asia were generated by two independent introductions of the O/SEA/Mya-98 lineage sometime between August 2008 and March 2010. The rapid emergence of these viruses from Southeast Asia highlights the importance of adopting approaches to closely monitor the spread of this lineage that now poses a threat to livestock industries in other regions. PMID:24007643

  5. Multiple introductions of serotype O foot-and-mouth disease viruses into East Asia in 2010-2011.

    PubMed

    Valdazo-González, Begoña; Timina, Anna; Scherbakov, Alexey; Abdul-Hamid, Nor Faizah; Knowles, Nick J; King, Donald P

    2013-09-05

    Foot-and-mouth disease virus (FMDV) is a highly contagious and genetically variable virus. Sporadic introductions of this virus into FMD-free countries may cause outbreaks with devastating consequences. In 2010 and 2011, incursions of the FMDV O/SEA/Mya-98 strain, normally restricted to countries in mainland Southeast Asia, caused extensive outbreaks across East Asia. In this study, 12 full genome FMDV sequences for representative samples collected from the People's Republic of China (PR China) including the Hong Kong Special Administrative Region (SAR), the Republic of Korea, the Democratic People's Republic of Korea, Japan, Mongolia and The Russian Federation were generated and compared with additional contemporary sequences from viruses within this lineage. These complete genomes were 8119 to 8193 nucleotides in length and differed at 1181 sites, sharing a nucleotide identity ≥ 91.0% and an amino acid identity ≥ 96.6%. An unexpected deletion of 70 nucleotides within the 5'-untranslated region which resulted in a shorter predicted RNA stem-loop for the S-fragment was revealed in two sequences from PR China and Hong Kong SAR and five additional related samples from the region. Statistical parsimony and Bayesian phylogenetic analysis provide evidence that these outbreaks in East Asia were generated by two independent introductions of the O/SEA/Mya-98 lineage sometime between August 2008 and March 2010. The rapid emergence of these viruses from Southeast Asia highlights the importance of adopting approaches to closely monitor the spread of this lineage that now poses a threat to livestock industries in other regions.

  6. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study.

    PubMed

    Perera, Minoli A; Cavallari, Larisa H; Limdi, Nita A; Gamazon, Eric R; Konkashbaev, Anuar; Daneshjou, Roxana; Pluzhnikov, Anna; Crawford, Dana C; Wang, Jelai; Liu, Nianjun; Tatonetti, Nicholas; Bourgeois, Stephane; Takahashi, Harumi; Bradford, Yukiko; Burkley, Benjamin M; Desnick, Robert J; Halperin, Jonathan L; Khalifa, Sherief I; Langaee, Taimour Y; Lubitz, Steven A; Nutescu, Edith A; Oetjens, Matthew; Shahin, Mohamed H; Patel, Shitalben R; Sagreiya, Hersh; Tector, Matthew; Weck, Karen E; Rieder, Mark J; Scott, Stuart A; Wu, Alan H B; Burmester, James K; Wadelius, Mia; Deloukas, Panos; Wagner, Michael J; Mushiroda, Taisei; Kubo, Michiaki; Roden, Dan M; Cox, Nancy J; Altman, Russ B; Klein, Teri E; Nakamura, Yusuke; Johnson, Julie A

    2013-08-31

    VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans. We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged ≥18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 -1639G→A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5×10(-8) in the discovery cohort and p<0·0038 in the replication cohort. The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1·51×10(-8)). This association was confirmed in the replication cohort (p=5·04×10(-5)); analysis of the two cohorts together produced a p value of 4·5×10(-12). Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6·92 mg/week and those homozygous 9·34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement). A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population. National Institutes of Health, American Heart Association, Howard Hughes Medical Institute, Wisconsin Network for Health Research, and the Wellcome Trust. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Structures of rat cytosolic PEPCK: insight into the mechanism of phosphorylation and decarboxylation of oxaloacetic acid.

    PubMed

    Sullivan, Sarah M; Holyoak, Todd

    2007-09-04

    The structures of the rat cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK) reported in the PEPCK-Mn2+, -Mn2+-oxaloacetic acid (OAA), -Mn2+-OAA-Mn2+-guanosine-5'-diphosphate (GDP), and -Mn2+-Mn2+-guanosine-5'-tri-phosphate (GTP) complexes provide insight into the mechanism of phosphoryl transfer and decarboxylation mediated by this enzyme. OAA is observed to bind in a number of different orientations coordinating directly to the active site metal. The Mn2+-OAA and Mn2+-OAA-Mn2+GDP structures illustrate inner-sphere coordination of OAA to the manganese ion through the displacement of two of the three water molecules coordinated to the metal in the holo-enzyme by the C3 and C4 carbonyl oxygens. In the PEPCK-Mn2+-OAA complex, an alternate bound conformation of OAA is present. In this conformation, in addition to the previous interactions, the C1 carboxylate is directly coordinated to the active site Mn2+, displacing all of the waters coordinated to the metal in the holo-enzyme. In the PEPCK-Mn2+-GTP structure, the same water molecule displaced by the C1 carboxylate of OAA is displaced by one of the gamma-phosphate oxygens of the triphosphate nucleotide. The structures are consistent with a mechanism of direct in-line phosphoryl transfer, supported by the observed stereochemistry of the reaction. In the catalytically competent binding mode, the C1 carboxylate of OAA is sandwiched between R87 and R405 in an environment that would serve to facilitate decarboxylation. In the reverse reaction, these two arginines would form the CO2 binding site. Comparison of the Mn2+-OAA-Mn2+GDP and Mn2+-Mn2+GTP structures illustrates a marked difference in the bound conformations of the nucleotide substrates in which the GTP nucleotide is bound in a high-energy state resulting from the eclipsing of all three of the phosphoryl groups along the triphosphate chain. This contrasts a previously determined structure of PEPCK in complex with a triphosphate nucleotide analogue in which the analogue mirrors the conformation of GDP as opposed to GTP. Last, the structures illustrate a correlation between conformational changes in the P-loop, the nucleotide binding site, and the active site lid that are important for catalysis.

  8. [Correlation analysis between single nucleotide polymorphism of FGF5 gene and wool yield in rabbits].

    PubMed

    Li, Chun-Xiao; Jiang, Mei-Shan; Chen, Shi-Yi; Lai, Song-Jia

    2008-07-01

    Single nucleotide polymorphism (SNP) in exon 1 and 3 of fibroblast growth factor (FGF5) gene was studied by DNA sequencing in Yingjing angora rabbit, Tianfu black rabbit and California rabbit. A frameshift mutation (TCT insert) at base position 217 (site A) of exon 1 and a T/C missense mutation at base position 59 (site B) of exon 3 were found in Yingjing angora rabbit with a high frequency; a T/C same-sense mutation at base position 3 (site C) of exon 3 was found with similar frequency in three rabbit breeds. Least square analysis showed that different genotypes had no significant association with wool yield in site A, and had high significant association with wool yield in site B (P<0.01) and significant association with wool yield in site C (P<0.05). It was concluded from the results that FGF5 gene could be the potential major gene affecting wool yield or link with the major gene, and polymorphic loci B and C may be used as molecular markers for im-proving wool yield in angora rabbits.

  9. CNG site-specific and methyl-sensitive endonuclease WEN1 from wheat seedlings.

    PubMed

    Fedoreyeva, L I; Vanyushin, B F

    2011-06-01

    Endonuclease WEN1 with apparent molecular mass about 27 kDa isolated from cytoplasmic vesicular fraction of aging coleoptiles of wheat seedlings has expressed site specificity action. This is a first detection and isolation of a site-specific endonuclease from higher eukaryotes, in general, and higher plants, in particular. The enzyme hydrolyzes deoxyribooligonucleotides of different composition on CNG (N is G, A, C, or T) sites by splitting the phosphodiester bond between C and N nucleotide residues in CNG sequence independent from neighbor nucleotide context except for CCCG. WEN1 prefers to hydrolyze methylated λ phage DNA and double-stranded deoxyribooligonucleotides containing 5-methylcytosine sites (m(5)CAG, m(5)CTG) compared with unmethylated substrates. The enzyme is also able to hydrolyze single-stranded substrates, but in this case it splits unmethylated substrates predominantly. Detection in wheat seedlings of WEN1 endonuclease that is site specific, sensitive to the substrate methylation status, and modulated with S-adenosyl-L-methionine indicates that in higher plants restriction--modification systems or some of their elements, at least, may exist.

  10. Gender and single nucleotide polymorphisms in MTHFR, BHMT, SPTLC1, CRBP2R, and SCARB1 are significant predictors of plasma homocysteine normalized by RBC folate in healthy adults.

    USDA-ARS?s Scientific Manuscript database

    Using linear regression models, we studied the main and two-way interaction effects of the predictor variables gender, age, BMI, and 64 folate/vitamin B-12/homocysteine/lipid/cholesterol-related single nucleotide polymorphisms (SNP) on log-transformed plasma homocysteine normalized by red blood cell...

  11. Looking for variable molecular markers in the chestnut gall wasp Dryocosmus kuriphilus: first comparison across genes.

    PubMed

    Bonal, Raúl; Vargas-Osuna, Enrique; Mena, Juan Diego; Aparicio, José Miguel; Santoro, María; Martín, Angela

    2018-04-04

    The quick spread of the chestnut gall wasp Dryocosmus kuriphilus in Europe constitutes an outstanding example of recent human-aided biological invasion with dramatic economic losses. We screened for the first time a set of five nuclear and mitochondrial genes from D. kuriphilus collected in the Iberian Peninsula, and compared the sequences with those available from the native and invasive range of the species. We found no genetic variability in Iberia in none of the five genes, moreover, the three genes compared with other European samples showed no variability either. We recorded four cytochrome b haplotypes in Europe; one was genuine mitochondrial DNA and the rest nuclear copies of mitDNA (numts), what stresses the need of careful in silico analyses. The numts formed a separate cluster in the gene tree and at least two of them might be orthologous, what suggests that the invasion might have started with more than one individual. Our results point at a low initial population size in Europe followed by a quick population growth. Future studies assessing the expansion of this pest should include a large number of sampling sites and use powerful nuclear markers (e. g. Single Nucleotide Polymorphisms) to detect genetic variability.

  12. Insights into factorless translational initiation by the tRNA-like pseudoknot domain of a viral IRES.

    PubMed

    Au, Hilda H T; Jan, Eric

    2012-01-01

    The intergenic region internal ribosome entry site (IGR IRES) of the Dicistroviridae family adopts an overlapping triple pseudoknot structure to directly recruit the 80S ribosome in the absence of initiation factors. The pseudoknot I (PKI) domain of the IRES mimics a tRNA-like codon:anticodon interaction in the ribosomal P site to direct translation initiation from a non-AUG initiation codon in the A site. In this study, we have performed a comprehensive mutational analysis of this region to delineate the molecular parameters that drive IRES translation. We demonstrate that IRES-mediated translation can initiate at an alternate adjacent and overlapping start site, provided that basepairing interactions within PKI remain intact. Consistent with this, IGR IRES translation tolerates increases in the variable loop region that connects the anticodon- and codon-like elements within the PKI domain, as IRES activity remains relatively robust up to a 4-nucleotide insertion in this region. Finally, elements from an authentic tRNA anticodon stem-loop can functionally supplant corresponding regions within PKI. These results verify the importance of the codon:anticodon interaction of the PKI domain and further define the specific elements within the tRNA-like domain that contribute to optimal initiator Met-tRNA(i)-independent IRES translation.

  13. Insights into Factorless Translational Initiation by the tRNA-Like Pseudoknot Domain of a Viral IRES

    PubMed Central

    Au, Hilda H. T.; Jan, Eric

    2012-01-01

    The intergenic region internal ribosome entry site (IGR IRES) of the Dicistroviridae family adopts an overlapping triple pseudoknot structure to directly recruit the 80S ribosome in the absence of initiation factors. The pseudoknot I (PKI) domain of the IRES mimics a tRNA-like codon:anticodon interaction in the ribosomal P site to direct translation initiation from a non-AUG initiation codon in the A site. In this study, we have performed a comprehensive mutational analysis of this region to delineate the molecular parameters that drive IRES translation. We demonstrate that IRES-mediated translation can initiate at an alternate adjacent and overlapping start site, provided that basepairing interactions within PKI remain intact. Consistent with this, IGR IRES translation tolerates increases in the variable loop region that connects the anticodon- and codon-like elements within the PKI domain, as IRES activity remains relatively robust up to a 4-nucleotide insertion in this region. Finally, elements from an authentic tRNA anticodon stem-loop can functionally supplant corresponding regions within PKI. These results verify the importance of the codon:anticodon interaction of the PKI domain and further define the specific elements within the tRNA-like domain that contribute to optimal initiator Met-tRNAi-independent IRES translation. PMID:23236506

  14. [Protein S3 fragments neighboring mRNA during elongation and translation termination on the human ribosome].

    PubMed

    Khaĭrulina, Iu S; Molotkov, M V; Bulygin, K N; Graĭfer, D M; Ven'yaminova, A G; Frolova, L Iu; Stahl, J; Karpova, G G

    2008-01-01

    Protein S3 fragments were determined that crosslink to modified mRNA analogues in positions +5 to +12 relative to the first nucleotide in the P-site binding codon in model complexes mimicking states of ribosomes at the elongation and translation termination steps. The mRNA analogues contained a Phe codon UUU/UUC at the 5'-termini that could predetermine the position of the tRNA(Phe) on the ribosome by the location of P-site binding and perfluorophenylazidobenzoyl group at a nucleotide in various positions 3' of the UUU/UUC codon. The crosslinked S3 protein was isolated from 80S ribosomal complexes irradiated with mild UV light and subjected to cyanogen bromide-induced cleavage at methionine residues with subsequent identification of the crosslinked oligopeptides. An analysis of the positions of modified oligopeptides resulting from the cleavage showed that, in dependence on the positions of modified nucleotides in the mRNA analogue, the crosslinking sites were found in the N-terminal half of the protein (fragment 2-127) and/or in the C-terminal fragment 190-236; the latter reflects a new peculiarity in the structure of the mRNA binding center in the ribosome, unknown to date. The results of crosslinking did not depend on the type of A-site codon or on the presence of translation termination factor eRF1.

  15. Simian immunodeficiency viruses from African green monkeys display unusual genetic diversity.

    PubMed Central

    Johnson, P R; Fomsgaard, A; Allan, J; Gravell, M; London, W T; Olmsted, R A; Hirsch, V M

    1990-01-01

    African green monkeys are asymptomatic carriers of simian immunodeficiency viruses (SIV), commonly called SIVagm. As many as 50% of African green monkeys in the wild may be SIV seropositive. This high seroprevalence rate and the potential for genetic variation of lentiviruses suggested to us that African green monkeys may harbor widely differing genotypes of SIVagm. To investigate this hypothesis, we determined the entire nucleotide sequence of an infectious proviral molecular clone of SIVagm (155-4) and partial sequences (long terminal repeat and Gag) of three other distinct SIVagm isolates (90, gri-1, and ver-1). Comparisons among the SIVagm isolates revealed extreme diversity at the nucleotide and amino acid levels. Long terminal repeat nucleotide sequences varied up to 35% and Gag protein sequences varied up to 30%. The variability among SIVagm isolates exceeded the variability among any other group of primate lentiviruses. Our data suggest that SIVagm has been in the African green monkey population for a long time and may be the oldest primate lentivirus group in existence. PMID:2304139

  16. Lack of nucleotide variability in a beetle pest with extreme inbreeding.

    PubMed

    Andreev, D; Breilid, H; Kirkendall, L; Brun, L O; ffrench-Constant, R H

    1998-05-01

    The coffee berry borer beetle Hypothenemus hampei (Ferrari) (Curculionidae: Scolytinae) is the major insect pest of coffee and has spread to most of the coffee-growing countries of the world. This beetle also displays an unusual life cycle, with regular sibling mating. This regular inbreeding and the population bottlenecks occurring on colonization of new regions should lead to low levels of genetic diversity. We were therefore interested in determining the level of nucleotide variation in nuclear and mitochondrial genomes of this beetle worldwide. Here we show that two nuclear loci (Resistance to dieldrin and ITS2) are completely invariant, whereas some variability is maintained at a mitochondrial locus (COI), probably corresponding to a higher mutation rate in the mitochondrial genome. Phylogenetic analysis of the mitochondrial data shows only two clades of beetle haplotypes outside of Kenya, the proposed origin of the species. These data confirm that inbreeding greatly reduces nucleotide variation and suggest the recent global spread of only two inbreeding lines of this bark beetle.

  17. Very low mitochondrial variability in a stingless bee endemic to cerrado.

    PubMed

    Brito, Rute Magalhães; de Oliveira Francisco, Flávio; Françoso, Elaine; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-03-01

    Partamona mulata is a stingless bee species endemic to cerrado, a severely threatened phytogeographical domain. Clearing for pasture without proper soil treatment in the cerrado facilitates the proliferation of termite ground nests, which are the nesting sites for P. mulata. The genetic consequences of these changes in the cerrado environment for bee populations are still understudied. In this work, we analyzed the genetic diversity of 48 colonies of P. mulata collected throughout the species' distribution range by sequencing two mitochondrial genes, cytochrome oxidase I and cytochrome B. A very low polymorphism rate was observed when compared to another Partamona species from the Atlantic forest. Exclusive haplotypes were observed in two of the five areas sampled. The sharing of two haplotypes between collection sites separated by a distance greater than the flight range of queens indicates an ancient distribution for these haplotypes. The low haplotype and nucleotide diversity observed here suggests that P. mulata is either a young species or one that has been through population bottlenecks. Locally predominant and exclusive haplotypes (H2 and H4) may have been derived from local remnants through cerrado deforestation and the expansion of a few colonies with abundant nesting sites.

  18. Receptor binding of somatostatin-14 and somatostatin-28 in rat brain: differential modulation by nucleotides and ions.

    PubMed

    Srikant, C B; Dahan, A; Craig, C

    1990-02-04

    The tissue-selective binding of the two principal bioactive forms of somatostatin, somatostatin-14 (SS-14) and somatostatin-28 (SS-28), their ability to modulate cAMP-dependent and -independent regulation of post-receptor events to different degrees and the documentation of specific labelling of SS receptor subtypes with SS-28 but not SS-14 in discrete regions of rat brain suggest the existence of distinct SS-14 and SS-28 binding sites. Receptor binding of SS-14 ligands has been shown to be modulated by nucleotides and ions, but the effect of these agents on SS-28 binding has not been studied. In the present study we investigated the effects of adenine and guanine nucleotides as well as monovalent and divalent cations on rat brain SS receptors quantitated with radioiodinated analogs of SS-14 ([125I-Tyr11]SS14, referred to in this paper as SS-14) and SS-28 ([Leu8, D-Trp22, 125I-Tyr25] SS-28, referred to as LTT* SS-28) in order to determine if distinct receptor sites for SS-14 and SS-28 could be distinguished on the basis of their modulation by nucleotides and ions. GTP as well as ATP exerted a dose-dependent inhibition (over a concentration range of 10(-7)-10(-3) M) of the binding of the two radioligands. The nucleotide inhibition of binding resulted in a decrease the Bmax of the SS receptors, the binding affinity remaining unaltered. GTP (10(-4) M) decreased the Bmax of LTT* SS-28 binding sites to a greater extent than ATP (145 +/- 10 and 228 +/- 16 respectively, compared to control value of 320 +/- 20 pmol mg-1). Under identical conditions GTP was less effective than ATP in reducing the number of T* SS-14 binding sites (Bmax = 227 +/- 8 and 182 +/- 15, respectively, compared to 340 +/- 15 pmol mg-1 in the absence of nucleotides). Monovalent cations inhibited the binding of both radioligands, Li+ and Na+ inhibited the binding of T* SS-14 to a greater extent than K+. The effect of divalent cations on the other hand was varied. At low concentration (2 mM) Mg2+, Ba2+, Mn2+, Ca2+ and Co2+ augmented the binding of both T* SS-14 and LTT* SS-28, while higher than 4 mM Co2+ inhibited binding of both ligands. LTT* SS-28 binding was reduced in the presence of high concentrations of Ba2+ and Mn2+ also. Interestingly Ca2+ at higher than 10 mM preferentially inhibited LTT* SS-28 binding and increased the affinity of SS-14 but not SS-28 for LTT* SS-28 binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. The accessibility of etheno-nucleotides to collisional quenchers and the nucleotide cleft in G- and F-actin.

    PubMed Central

    Root, D. D.; Reisler, E.

    1992-01-01

    Recent publication of the atomic structure of G-actin (Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., & Holmes, K. C., 1990, Nature 347, 37-44) raises questions about how the conformation of actin changes upon its polymerization. In this work, the effects of various quenchers of etheno-nucleotides bound to G- and F-actin were examined in order to assess polymerization-related changes in the nucleotide phosphate site. The Mg(2+)-induced polymerization of actin quenched the fluorescence of the etheno-nucleotides by approximately 20% simultaneously with the increase in light scattering by actin. A conformational change at the nucleotide binding site was also indicated by greater accessibility of F-actin than G-actin to positively, negatively, and neutrally charged collisional quenchers. The difference in accessibility between G- and F-actin was greatest for I-, indicating that the environment of the etheno group is more positively charged in the polymerized form of actin. Based on calculations of the change in electric potential of the environment of the etheno group, specific polymerization-related movements of charged residues in the atomic structure of G-actin are suggested. The binding of S-1 to epsilon-ATP-G-actin increased the accessibility of the etheno group to I- even over that in Mg(2+)-polymerized actin. The quenching of the etheno group by nitromethane was, however, unaffected by the binding of S-1 to actin. Thus, the binding of S-1 induces conformational changes in the cleft region of actin that are different from those caused by Mg2+ polymerization of actin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1304380

  20. Modular Organization of Residue-Level Contacts Shapes the Selection Pressure on Individual Amino Acid Sites of Ribosomal Proteins.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2017-04-01

    Understanding the molecular evolution of macromolecular complexes in the light of their structure, assembly, and stability is of central importance. Here, we address how the modular organization of native molecular contacts shapes the selection pressure on individual residue sites of ribosomal complexes. The bacterial ribosomal complex is represented as a residue contact network where nodes represent amino acid/nucleotide residues and edges represent their van der Waals interactions. We find statistically overrepresented native amino acid-nucleotide contacts (OaantC, one amino acid contacts one or multiple nucleotides, internucleotide contacts are disregarded). Contact number is defined as the number of nucleotides contacted. Involvement of individual amino acids in OaantCs with smaller contact numbers is more random, whereas only a few amino acids significantly contribute to OaantCs with higher contact numbers. An investigation of structure, stability, and assembly of bacterial ribosome depicts the involvement of these OaantCs in diverse biophysical interactions stabilizing the complex, including high-affinity protein-RNA contacts, interprotein cooperativity, intersubunit bridge, packing of multiple ribosomal RNA domains, etc. Amino acid-nucleotide constituents of OaantCs with higher contact numbers are generally associated with significantly slower substitution rates compared with that of OaantCs with smaller contact numbers. This evolutionary rate heterogeneity emerges from the strong purifying selection pressure that conserves the respective amino acid physicochemical properties relevant to the stabilizing interaction with OaantC nucleotides. An analysis of relative molecular orientations of OaantC residues and their interaction energetics provides the biophysical ground of purifying selection conserving OaantC amino acid physicochemical properties. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification

    PubMed Central

    Florio, Marta; Namba, Takashi; Pääbo, Svante; Hiller, Michael; Huttner, Wieland B.

    2016-01-01

    The gene ARHGAP11B promotes basal progenitor amplification and is implicated in neocortex expansion. It arose on the human evolutionary lineage by partial duplication of ARHGAP11A, which encodes a Rho guanosine triphosphatase–activating protein (RhoGAP). However, a lack of 55 nucleotides in ARHGAP11B mRNA leads to loss of RhoGAP activity by GAP domain truncation and addition of a human-specific carboxy-terminal amino acid sequence. We show that these 55 nucleotides are deleted by mRNA splicing due to a single C→G substitution that creates a novel splice donor site. We reconstructed an ancestral ARHGAP11B complementary DNA without this substitution. Ancestral ARHGAP11B exhibits RhoGAP activity but has no ability to increase basal progenitors during neocortex development. Hence, a single nucleotide substitution underlies the specific properties of ARHGAP11B that likely contributed to the evolutionary expansion of the human neocortex. PMID:27957544

  2. Internucleotide correlations and nucleotide periodicity in Drosophila mtDNA: new evidence for panselective evolution.

    PubMed

    Valenzuela, Carlos Y

    2010-01-01

    Analysis for the homogeneity of the distribution of the second base of dinucleotides in relation to the first, whose bases are separated by 0, 1, 2,... 21 nucleotide sites, was performed with the VIH-1 genome (cDNA), the Drosophila mtDNA, the Drosophila Torso gene and the human p-globin gene. These four DNA segments showed highly significant heterogeneities of base distributions that cannot be accounted for by neutral or nearly neutral evolution or by the "neighbor influence" of nucleotides on mutation rates. High correlations are found in the bases of dinucleotides separated by 0, 1 and more number of sites. A periodicity of three consecutive significance values (measured by the x²9) was found only in Drosophila mtDNA. This periodicity may be due to an unknown structure or organization of mtDNA. This non-random distribution of the two bases of dinucleotides widespread throughout these DNA segments is rather compatible with panselective evolution and generalized internucleotide co-adaptation.

  3. Structural basis for profilin-mediated actin nucleotide exchange

    PubMed Central

    Porta, Jason C.; Borgstahl, Gloria E.O.

    2015-01-01

    Actin is a ubiquitous eukaryotic protein that is responsible for cellular scaffolding, motility and division. The ability of actin to form a helical filament is the driving force behind these cellular activities. Formation of a filament is dependent the successful exchange of actin’s ADP for ATP. Mammalian profilin is a small actin binding protein that catalyzes the exchange of nucleotide and facilitates the addition of an actin monomer to a growing filament. Here, crystal structures of profilin:actin have been determined showing an actively exchanging ATP. The structural analysis shows how the binding of profilin to the barbed end of actin causes a rotation of the small domain relative to the large domain. This conformational change is propagated to the ATP site and causes a shift in the nucleotide loops which in turn causes a repositioning of Ca2+ to its canonical position as the cleft closes around ATP. Reversing the solvent exposure of Trp-356 is also involved in cleft closure. In addition, secondary calcium binding sites were identified. PMID:22366544

  4. Mapping RNA Structure In Vitro with SHAPE Chemistry and Next-Generation Sequencing (SHAPE-Seq).

    PubMed

    Watters, Kyle E; Lucks, Julius B

    2016-01-01

    Mapping RNA structure with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry has proven to be a versatile method for characterizing RNA structure in a variety of contexts. SHAPE reagents covalently modify RNAs in a structure-dependent manner to create adducts at the 2'-OH group of the ribose backbone at nucleotides that are structurally flexible. The positions of these adducts are detected using reverse transcriptase (RT) primer extension, which stops one nucleotide before the modification, to create a pool of cDNAs whose lengths reflect the location of SHAPE modification. Quantification of the cDNA pools is used to estimate the "reactivity" of each nucleotide in an RNA molecule to the SHAPE reagent. High reactivities indicate nucleotides that are structurally flexible, while low reactivities indicate nucleotides that are inflexible. These SHAPE reactivities can then be used to infer RNA structures by restraining RNA structure prediction algorithms. Here, we provide a state-of-the-art protocol describing how to perform in vitro RNA structure probing with SHAPE chemistry using next-generation sequencing to quantify cDNA pools and estimate reactivities (SHAPE-Seq). The use of next-generation sequencing allows for higher throughput, more consistent data analysis, and multiplexing capabilities. The technique described herein, SHAPE-Seq v2.0, uses a universal reverse transcription priming site that is ligated to the RNA after SHAPE modification. The introduced priming site allows for the structural analysis of an RNA independent of its sequence.

  5. Computed Energetics of Nucleotides in Spatial Ribozyme Structures: An Accurate Identification of Functional Regions from Structure

    PubMed Central

    Torshin, Ivan Y.

    2004-01-01

    Ribozymes are functionally diverse RNA molecules with intrinsic catalytic activity. Multiple structural and biochemical studies are required to establish which nucleotide bases are involved in the catalysis. The relative energetic properties of the nucleotide bases have been analyzed in a set of the known ribozyme structures. It was found that many of the known catalytic nucleotides can be identified using only the structure without any additional biochemical data. The results of the calculations compare well with the available biochemical data on RNA stability. Extensive in silico mutagenesis suggests that most of the nucleotides in ribozymes stabilize the RNA. The calculations show that relative contribution of the catalytic bases to RNA stability observably differs from contributions of the noncatalytic bases. Distinction between the concepts of “relative stability” and “mutational stability” is suggested. As results of prediction for several models of ribozymes appear to be in agreement with the published data on the potential active site regions, the method can potentially be used for prediction of functional nucleotides from nucleic sequence. PMID:15105962

  6. Photoinitiator Nucleotide for Quantifying Nucleic Acid Hybridization

    PubMed Central

    Johnson, Leah M.; Hansen, Ryan R.; Urban, Milan; Kuchta, Robert D.; Bowman, Christopher N.

    2010-01-01

    This first report of a photoinitiator-nucleotide conjugate demonstrates a novel approach for sensitive, rapid and visual detection of DNA hybridization events. This approach holds potential for various DNA labeling schemes and for applications benefiting from selective DNA-based polymerization initiators. Here, we demonstrate covalent, enzymatic incorporation of an eosin-photoinitiator 2′-deoxyuridine-5′-triphosphate (EITC-dUTP) conjugate into surface-immobilized DNA hybrids. Subsequent radical chain photoinitiation from these sites using an acrylamide/bis-acrylamide formulation yields a dynamic detection range between 500pM and 50nM of DNA target. Increasing EITC-nucleotide surface densities leads to an increase in surface-based polymer film heights until achieving a film height plateau of 280nm ±20nm at 610 ±70 EITC-nucleotides/μm2. Film heights of 10–20 nm were obtained from eosin surface densities of approximately 20 EITC-nucleotides/μm2 while below the detection limit of ~10 EITC-nucleotides/μm2, no detectable films were formed. This unique threshold behavior is utilized for instrument-free, visual quantification of target DNA concentration ranges. PMID:20337438

  7. Structural basis of reverse nucleotide polymerization

    PubMed Central

    Nakamura, Akiyoshi; Nemoto, Taiki; Heinemann, Ilka U.; Yamashita, Keitaro; Sonoda, Tomoyo; Komoda, Keisuke; Tanaka, Isao; Söll, Dieter; Yao, Min

    2013-01-01

    Nucleotide polymerization proceeds in the forward (5′-3′) direction. This tenet of the central dogma of molecular biology is found in diverse processes including transcription, reverse transcription, DNA replication, and even in lagging strand synthesis where reverse polymerization (3′-5′) would present a “simpler” solution. Interestingly, reverse (3′-5′) nucleotide addition is catalyzed by the tRNA maturation enzyme tRNAHis guanylyltransferase, a structural homolog of canonical forward polymerases. We present a Candida albicans tRNAHis guanylyltransferase-tRNAHis complex structure that reveals the structural basis of reverse polymerization. The directionality of nucleotide polymerization is determined by the orientation of approach of the nucleotide substrate. The tRNA substrate enters the enzyme’s active site from the opposite direction (180° flip) compared with similar nucleotide substrates of canonical 5′-3′ polymerases, and the finger domains are on opposing sides of the core palm domain. Structural, biochemical, and phylogenetic data indicate that reverse polymerization appeared early in evolution and resembles a mirror image of the forward process. PMID:24324136

  8. [Single nucleotide polymorphism and its application in allogeneic hematopoietic stem cell transplantation--review].

    PubMed

    Li, Su-Xia

    2004-12-01

    Single nucleotide polymorphism (SNP) is the third genetic marker after restriction fragment length polymorphism (RFLP) and short tandem repeat. It represents the most density genetic variability in the human genome and has been widely used in gene location, cloning, and research of heredity variation, as well as parenthood identification in forensic medicine. As steady heredity polymorphism, single nucleotide polymorphism is becoming the focus of attention in monitoring chimerism and minimal residual disease in the patients after allogeneic hematopoietic stem cell transplantation. The article reviews SNP heredity characterization, analysis techniques and its applications in allogeneic stem cell transplantation and other fields.

  9. Selective intra-dinucleotide interactions and periodicities of bases separated by K sites: a new vision and tool for phylogeny analyses.

    PubMed

    Valenzuela, Carlos Y

    2017-02-13

    Direct tests of the random or non-random distribution of nucleotides on genomes have been devised to test the hypothesis of neutral, nearly-neutral or selective evolution. These tests are based on the direct base distribution and are independent of the functional (coding or non-coding) or structural (repeated or unique sequences) properties of the DNA. The first approach described the longitudinal distribution of bases in tandem repeats under the Bose-Einstein statistics. A huge deviation from randomness was found. A second approach was the study of the base distribution within dinucleotides whose bases were separated by 0, 1, 2… K nucleotides. Again an enormous difference from the random distribution was found with significances out of tables and programs. These test values were periodical and included the 16 dinucleotides. For example a high "positive" (more observed than expected dinucleotides) value, found in dinucleotides whose bases were separated by (3K + 2) sites, was preceded by two smaller "negative" (less observed than expected dinucleotides) values, whose bases were separated by (3K) or (3K + 1) sites. We examined mtDNAs, prokaryote genomes and some eukaryote chromosomes and found that the significant non-random interactions and periodicities were present up to 1000 or more sites of base separation and in human chromosome 21 until separations of more than 10 millions sites. Each nucleotide has its own significant value of its distance to neutrality; this yields 16 hierarchical significances. A three dimensional table with the number of sites of separation between the bases and the 16 significances (the third dimension is the dinucleotide, individual or taxon involved) gives directly an evolutionary state of the analyzed genome that can be used to obtain phylogenies. An example is provided.

  10. The E. coli 16S rRNA binding site of ribosomal protein S15: higher-order structure in the absence and in the presence of the protein.

    PubMed Central

    Mougel, M; Philippe, C; Ebel, J P; Ehresmann, B; Ehresmann, C

    1988-01-01

    We have investigated in detail the secondary and tertiary structures of E. coli 16S rRNA binding site of protein S15 using a variety of enzymatic and chemical probes. RNase T1 and nuclease S1 were used to probe unpaired nucleotides and RNase V1 to monitor base-paired or stacked nucleotides. Bases were probed with dimethylsulfate (at A(N-1), C(N-3) and G(N-7)), with 1-cyclohexyl-3 (2-(1-methylmorpholino)-ethyl)-carboiimide-p- toluenesulfonate (at U(N-3) and G(N-1)) and with diethylpyrocarbonate (at A(N-7)). The RNA region corresponding to nucleotides 652 to 753 was tested within: (1) the complete 16S rRNA molecule; (2) a 16S rRNA fragment corresponding to nucleotides 578 to 756 obtained by transcription in vitro; (3) the S15-16S rRNA complex; (4) the S15-fragment complex. Cleavage and modification sites were detected by primer extension with reverse transcriptase. Our results show that: (1) The synthetized fragment folds into the same overall secondary structure as in the complete 16S rRNA, with the exception of the large asymmetrical internal loop (nucleotides 673-676/714-733) which is fully accessible in the fragment while it appears conformationally heterogeneous in the 16S rRNA; (2) the reactivity patterns of the S15-16S rRNA and S15-fragment complexes are identical; (3) the protein protects defined RNA regions, located in the large interior loop and in the 3'-end strand of helix [655-672]-[734-751]; (4) the protein also causes enhanced chemical reactivity and enzyme accessibility interpreted as resulting from a local conformational rearrangement, induced by S15 binding. Images PMID:2453025

  11. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.

    PubMed

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.

  12. TFBSshape: a motif database for DNA shape features of transcription factor binding sites

    PubMed Central

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955

  13. Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria.

    PubMed Central

    Hansen, M A; Kirpekar, F; Ritterbusch, W; Vester, B

    2002-01-01

    Posttranscriptional modifications were mapped in helices 90-92 of 23S rRNA from the following phylogenetically diverse organisms: Haloarcula marismortui, Sulfolobus acidocaldarius, Bacillus subtilis, and Bacillus stearothermophilus. Helix 92 is a component of the ribosomal A-site, which contacts the aminoacyl-tRNA during protein synthesis, implying that posttranscriptional modifications in helices 90-92 may be important for ribosome function. RNA fragments were isolated from 23S rRNA by site-directed RNase H digestion. A novel method of mapping modifications by analysis of short, nucleotide-specific, RNase digestion fragments with Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) was utilized. The MALDI-MS data were complemented by two primer extension techniques using reverse transcriptase. One technique utilizes decreasing concentrations of deoxynucleotide triphosphates to map 2'-O-ribose methylations. In the other, the rRNA is chemically modified, followed by mild alkaline hydrolysis to map pseudouridines (psis). A total of 10 posttranscriptionally methylated nucleotides and 6 psis were detected in the five organisms. Eight of the methylated nucleotides and one psi have not been reported previously. The distribution of modified nucleotides and their locations on the surface of the ribosomal peptidyl transferase cleft suggests functional importance. PMID:11911366

  14. Does the choice of nucleotide substitution models matter topologically?

    PubMed

    Hoff, Michael; Orf, Stefan; Riehm, Benedikt; Darriba, Diego; Stamatakis, Alexandros

    2016-03-24

    In the context of a master level programming practical at the computer science department of the Karlsruhe Institute of Technology, we developed and make available an open-source code for testing all 203 possible nucleotide substitution models in the Maximum Likelihood (ML) setting under the common Akaike, corrected Akaike, and Bayesian information criteria. We address the question if model selection matters topologically, that is, if conducting ML inferences under the optimal, instead of a standard General Time Reversible model, yields different tree topologies. We also assess, to which degree models selected and trees inferred under the three standard criteria (AIC, AICc, BIC) differ. Finally, we assess if the definition of the sample size (#sites versus #sites × #taxa) yields different models and, as a consequence, different tree topologies. We find that, all three factors (by order of impact: nucleotide model selection, information criterion used, sample size definition) can yield topologically substantially different final tree topologies (topological difference exceeding 10 %) for approximately 5 % of the tree inferences conducted on the 39 empirical datasets used in our study. We find that, using the best-fit nucleotide substitution model may change the final ML tree topology compared to an inference under a default GTR model. The effect is less pronounced when comparing distinct information criteria. Nonetheless, in some cases we did obtain substantial topological differences.

  15. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis.

    PubMed

    Chekeni, Faraaz B; Elliott, Michael R; Sandilos, Joanna K; Walk, Scott F; Kinchen, Jason M; Lazarowski, Eduardo R; Armstrong, Allison J; Penuela, Silvia; Laird, Dale W; Salvesen, Guy S; Isakson, Brant E; Bayliss, Douglas A; Ravichandran, Kodi S

    2010-10-14

    Apoptotic cells release 'find-me' signals at the earliest stages of death to recruit phagocytes. The nucleotides ATP and UTP represent one class of find-me signals, but their mechanism of release is not known. Here, we identify the plasma membrane channel pannexin 1 (PANX1) as a mediator of find-me signal/nucleotide release from apoptotic cells. Pharmacological inhibition and siRNA-mediated knockdown of PANX1 led to decreased nucleotide release and monocyte recruitment by apoptotic cells. Conversely, PANX1 overexpression enhanced nucleotide release from apoptotic cells and phagocyte recruitment. Patch-clamp recordings showed that PANX1 was basally inactive, and that induction of PANX1 currents occurred only during apoptosis. Mechanistically, PANX1 itself was a target of effector caspases (caspases 3 and 7), and a specific caspase-cleavage site within PANX1 was essential for PANX1 function during apoptosis. Expression of truncated PANX1 (at the putative caspase cleavage site) resulted in a constitutively open channel. PANX1 was also important for the 'selective' plasma membrane permeability of early apoptotic cells to specific dyes. Collectively, these data identify PANX1 as a plasma membrane channel mediating the regulated release of find-me signals and selective plasma membrane permeability during apoptosis, and a new mechanism of PANX1 activation by caspases.

  16. Interactive computer programs for the graphic analysis of nucleotide sequence data.

    PubMed Central

    Luckow, V A; Littlewood, R K; Rownd, R H

    1984-01-01

    A group of interactive computer programs have been developed which aid in the collection and graphical analysis of nucleotide and protein sequence data. The programs perform the following basic functions: a) enter, edit, list, and rearrange sequence data; b) permit automatic entry of nucleotide sequence data directly from an autoradiograph into the computer; c) search for restriction sites or other specified patterns and plot a linear or circular restriction map, or print their locations; d) plot base composition; e) analyze homology between sequences by plotting a two-dimensional graphic matrix; and f) aid in plotting predicted secondary structures of RNA molecules. PMID:6546437

  17. Molecular Characterization of a Novel Bovine Viral Diarrhea Virus Isolate SD-15

    PubMed Central

    Zhu, Lisai; Lu, Haibing; Cao, Yufeng; Gai, Xiaochun; Guo, Changming; Liu, Yajing; Liu, Jiaxu; Wang, Xinping

    2016-01-01

    As one of the major pathogens, bovine viral diarrhea virus caused a significant economic loss to the livestock industry worldwide. Although BVDV infections have increasingly been reported in China in recent years, the molecular aspects of those BVDV strains were barely characterized. In this study, we reported the identification and characterization of a novel BVDV isolate designated as SD-15 from cattle, which is associated with an outbreak characterized by severe hemorrhagic and mucous diarrhea with high morbidity and mortality in Shandong, China. SD-15 was revealed to be a noncytopathic BVDV, and has a complete genomic sequence of 12,285 nucleotides that contains a large open reading frame encoding 3900 amino acids. Alignment analysis showed that SD-15 has 93.8% nucleotide sequence identity with BVDV ZM-95 isolate, a previous BVDV strain isolated from pigs manifesting clinical signs and lesions resembling to classical swine fever. Phylogenetic analysis clustered SD-15 to a BVDV-1m subgenotype. Analysis of the deduced amino acid sequence of glycoproteins revealed that E2 has several highly conserved and variable regions within BVDV-1 genotypes. An additional N-glycosylation site (240NTT) was revealed exclusively in SD-15-encoded E2 in addition to four potential glycosylation sites (Asn-X-Ser/Thr) shared by all BVDV-1 genotypes. Furthermore, unique amino acid and linear epitope mutations were revealed in SD-15-encoded Erns glycoprotein compared with known BVDV-1 genotype. In conclusion, we have isolated a noncytopathic BVDV-1m strain that is associated with a disease characterized by high morbidity and mortality, revealed the complete genome sequence of the first BVDV-1m virus originated from cattle, and found a unique glycosylation site in E2 and a linear epitope mutation in Erns encoded by SD-15 strain. Those results will broaden the current understanding of BVDV infection and lay a basis for future investigation on SD-15-related pathogenesis. PMID:27764206

  18. TargetM6A: Identifying N6-Methyladenosine Sites From RNA Sequences via Position-Specific Nucleotide Propensities and a Support Vector Machine.

    PubMed

    Li, Guang-Qing; Liu, Zi; Shen, Hong-Bin; Yu, Dong-Jun

    2016-10-01

    As one of the most ubiquitous post-transcriptional modifications of RNA, N 6 -methyladenosine ( [Formula: see text]) plays an essential role in many vital biological processes. The identification of [Formula: see text] sites in RNAs is significantly important for both basic biomedical research and practical drug development. In this study, we designed a computational-based method, called TargetM6A, to rapidly and accurately target [Formula: see text] sites solely from the primary RNA sequences. Two new features, i.e., position-specific nucleotide/dinucleotide propensities (PSNP/PSDP), are introduced and combined with the traditional nucleotide composition (NC) feature to formulate RNA sequences. The extracted features are further optimized to obtain a much more compact and discriminative feature subset by applying an incremental feature selection (IFS) procedure. Based on the optimized feature subset, we trained TargetM6A on the training dataset with a support vector machine (SVM) as the prediction engine. We compared the proposed TargetM6A method with existing methods for predicting [Formula: see text] sites by performing stringent jackknife tests and independent validation tests on benchmark datasets. The experimental results show that the proposed TargetM6A method outperformed the existing methods for predicting [Formula: see text] sites and remarkably improved the prediction performances, with MCC = 0.526 and AUC = 0.818. We also provided a user-friendly web server for TargetM6A, which is publicly accessible for academic use at http://csbio.njust.edu.cn/bioinf/TargetM6A.

  19. Kinetic gating mechanism of DNA damage recognition by Rad4/XPC

    NASA Astrophysics Data System (ADS)

    Chen, Xuejing; Velmurugu, Yogambigai; Zheng, Guanqun; Park, Beomseok; Shim, Yoonjung; Kim, Youngchang; Liu, Lili; van Houten, Bennett; He, Chuan; Ansari, Anjum; Min, Jung-Hyun

    2015-01-01

    The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivity arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites.

  20. Kinetic gating mechanism of DNA damage recognition by Rad4/XPC

    DOE PAGES

    Chen, Xuejing; Velmurugu, Yogambigai; Zheng, Guanqun; ...

    2015-01-06

    The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivitymore » arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Lastly, kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites.« less

  1. Evidence for Watson-Crick and not Hoogsteen or wobble base pairing in the selection of nucleotides for insertion opposite pyrimidines and a thymine dimer by yeast DNA pol eta.

    PubMed

    Hwang, Hanshin; Taylor, John-Stephen

    2005-03-29

    We have recently reported that pyrene nucleotide is preferentially inserted opposite an abasic site, the 3'-T of a thymine dimer, and most undamaged bases by yeast DNA polymerase eta (pol eta). Because pyrene is a nonpolar molecule with no H-bonding ability, the unusually high efficiencies of dPMP insertion are ascribed to its superior base stacking ability, and underscore the importance of base stacking in the selection of nucleotides by pol eta. To investigate the role of H-bonding and base pair geometry in the selection of nucleotides by pol eta, we determined the insertion efficiencies of the base-modified nucleotides 2,6-diaminopurine, 2-aminopurine, 6-chloropurine, and inosine which would make a different number of H-bonds with the template base depending on base pair geometry. Watson-Crick base pairing appears to play an important role in the selection of nucleotide analogues for insertion opposite C and T as evidenced by the decrease in the relative insertion efficiencies with a decrease in the number of Watson-Crick H-bonds and an increase in the number of donor-donor and acceptor-acceptor interactions. The selectivity of nucleotide insertion is greater opposite the 5'-T than the 3'-T of the thymine dimer, in accord with previous work suggesting that the 5'-T is held more rigidly than the 3'-T. Furthermore, insertion of A opposite both Ts of the dimer appears to be mediated by Watson-Crick base pairing and not by Hoogsteen base pairing based on the almost identical insertion efficiencies of A and 7-deaza-A, the latter of which lacks H-bonding capability at N7. The relative efficiencies for insertion of nucleotides that can form Watson-Crick base pairs parallel those for the Klenow fragment, whereas the Klenow fragment more strongly discriminates against mismatches, in accord with its greater shape selectivity. These results underscore the importance of H-bonding and Watson-Crick base pair geometry in the selection of nucleotides by both pol eta and the Klenow fragment, and the lesser role of shape selection in insertion by pol eta due to its more open and less constrained active site.

  2. CryoEM structure of the spliceosome immediately after branching

    PubMed Central

    Galej, Wojciech P.; Wilkinson, Max E.; Fica, Sebastian M.; Oubridge, Chris; Newman, Andrew J.; Nagai, Kiyoshi

    2016-01-01

    Pre-mRNA splicing proceeds by two consecutive trans-esterification reactions via a lariat-intron intermediate. We present the 3.8Å cryoEM structure of the spliceosome immediately after lariat formation. The 5’-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 snRNA triplex, and the 5’-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2’OH. The 5’-exon is held between the Prp8 N-terminal and Linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5’-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step one factors Yju2 and Cwc25 stabilise docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 RT and Linker domains and extends towards Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation. PMID:27459055

  3. High mutation rates explain low population genetic divergence at copy-number-variable loci in Homo sapiens.

    PubMed

    Hu, Xin-Sheng; Yeh, Francis C; Hu, Yang; Deng, Li-Ting; Ennos, Richard A; Chen, Xiaoyang

    2017-02-22

    Copy-number-variable (CNV) loci differ from single nucleotide polymorphic (SNP) sites in size, mutation rate, and mechanisms of maintenance in natural populations. It is therefore hypothesized that population genetic divergence at CNV loci will differ from that found at SNP sites. Here, we test this hypothesis by analysing 856 CNV loci from the genomes of 1184 healthy individuals from 11 HapMap populations with a wide range of ancestry. The results show that population genetic divergence at the CNV loci is generally more than three times lower than at genome-wide SNP sites. Populations generally exhibit very small genetic divergence (G st  = 0.05 ± 0.049). The smallest divergence is among African populations (G st  = 0.0081 ± 0.0025), with increased divergence among non-African populations (G st  = 0.0217 ± 0.0109) and then among African and non-African populations (G st  = 0.0324 ± 0.0064). Genetic diversity is high in African populations (~0.13), low in Asian populations (~0.11), and intermediate in the remaining 11 populations. Few significant linkage disequilibria (LDs) occur between the genome-wide CNV loci. Patterns of gametic and zygotic LDs indicate the absence of epistasis among CNV loci. Mutation rate is about twice as large as the migration rate in the non-African populations, suggesting that the high mutation rates play dominant roles in producing the low population genetic divergence at CNV loci.

  4. NanoESI mass spectrometry of Rubisco and Rubisco activase structures and their interactions with nucleotides and sugar phosphates.

    PubMed

    Blayney, Michelle J; Whitney, Spencer M; Beck, Jennifer L

    2011-09-01

    Ribulose bisphosphate carboxylase/oxygenase (Rubisco) is the protein that is responsible for the fixation of carbon dioxide in photosynthesis. Inhibitory sugar phosphate molecules, which can include its substrate ribulose-1,5-bisphosphate (RuBP), can bind to Rubisco catalytic sites and inhibit catalysis. These are removed by interaction with Rubisco activase (RA) via an ATP hydrolytic reaction. Here we show the first nanoESI mass spectra of the hexadecameric Rubisco and of RA from a higher plant (tobacco). The spectra of recombinant, purified RA revealed polydispersity in its oligomeric forms (up to hexamer) and that ADP was bound. ADP was removed by dialysis against a high ionic strength solution and nucleotide binding experiments showed that ADP bound more tightly to RA than AMP-PNP (a non-hydrolysable ATP analog). There was evidence that there may be two nucleotide binding sites per RA monomer. The oligomerization capacity of mutant and wild-type tobacco RA up to hexamers is analogous to the subunit stoichiometry for other AAA+ enzymes. This suggests assembly of RA into hexamers is likely the most active conformation for removing inhibitory sugar phosphate molecules from Rubisco to enable its catalytic competency. Stoichiometric binding of RuBP or carboxyarabinitol bisphosphate (CABP) to each of the eight catalytic sites of Rubisco was observed.

  5. Study of the location and function of N/sup 6/-methyladenosine in Rous sarcoma virus genomic RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, S.E.

    1986-01-01

    N/sup 6/-methyladenosine (m/sup 6/A) residues are present as internal base modifications in most higher eukaryotic mRNAs; however, the biological function of this modification is not known. A method is described for localizing and quantitating m/sup 6/A within a large RNA molecule, the genomic RNA of Rous sarcoma virus (RSV). Specific fragments of /sup 32/P-labeled RSV RNA were isolated by hybridizations with complementary DNA restriction fragments spanning nucleotides 6185 and 8050. RNA was digested with RNAse and fingerprinted, and individual oligonucleotides were analyzed for the presence of m/sup 6/A by thin layer chromatography. With this technique, seven sites of methylation inmore » this region of the RSV genome were localized at nucleotides 6394, 6447, 6507, 6718, 7414, 7424, and 8014. Further, m/sup 6/A was observed at two additional sites whose nucleotide assignments remain ambiguous. A clustering of two or more m/sup 6/A residues was seen at three positions within the RNA analyzed. Modification at certain sites was found to be heterogeneous, in that different molecules of RNA appeared to be methylated differently. An approach for directly studying the function of m/sup 6/A in RNA is presented.« less

  6. Single nucleotide primer extension to detect genetic diseases: Experimental application to hemophilia B (factor IX) and cystic fibrosis genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuppuswamy, M.N.; Hoffmann, J.W.; Spitzer, S.G.

    1991-02-15

    In this report, the authors describe an approach to detect the presence of abnormal alleles in those genetic diseases in which frequency of occurrence of the same mutation is high (e.g., hemophilia B). Initially, from each subject, the DNA fragment containing the putative mutation site is amplified by the polymerase chain reaction. For each fragment two reaction mixtures are then prepared. Each contains the amplified fragment, a primer (18-mer or longer) whose sequence is identical to the coding sequence of the normal gene immediately flanking the 5{prime} end of the mutation site, and either an {alpha}-{sup 32}P-labeled nucleotide corresponding tomore » the normal coding sequence at the mutation site or an {alpha}-{sup 32}P-labeled nucleotide corresponding to the mutant sequence. An essential feature of the present methodology is that the base immediately 3{prime} to the template-bound primer is one of those altered in the mutant, since in this way an extension of the primer by a single base will give an extended molecule characteristic of either the mutant or the wild type. The method is rapid and should be useful in carrier detection and prenatal diagnosis of every genetic disease with a known sequence variation.« less

  7. Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID.

    PubMed

    Wang, Meng; Rada, Cristina; Neuberger, Michael S

    2010-01-18

    High-affinity antibodies are generated by somatic hypermutation with nucleotide substitutions introduced into the IgV in a semirandom fashion, but with intrinsic mutational hotspots strategically located to optimize antibody affinity maturation. The process is dependent on activation-induced deaminase (AID), an enzyme that can deaminate deoxycytidine in DNA in vitro, where its activity is sensitive to the identity of the 5'-flanking nucleotide. As a critical test of whether such DNA deamination activity underpins antibody diversification and to gain insight into the extent to which the antibody mutation spectrum is dependent on the intrinsic substrate specificity of AID, we investigated whether it is possible to change the IgV mutation spectrum by altering AID's active site such that it prefers a pyrimidine (rather than a purine) flanking the targeted deoxycytidine. Consistent with the DNA deamination mechanism, B cells expressing the modified AID proteins yield altered IgV mutation spectra (exhibiting a purine-->pyrimidine shift in flanking nucleotide preference) and altered hotspots. However, AID-catalyzed deamination of IgV targets in vitro does not yield the same degree of hotspot dominance to that observed in vivo, indicating the importance of features beyond AID's active site and DNA local sequence environment in determining in vivo hotspot dominance.

  8. Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation

    PubMed Central

    Shen, Yingjia; Ji, Guoli; Haas, Brian J.; Wu, Xiaohui; Zheng, Jianti; Reese, Greg J.; Li, Qingshun Quinn

    2008-01-01

    The position of a poly(A) site of eukaryotic mRNA is determined by sequence signals in pre-mRNA and a group of polyadenylation factors. To reveal rice poly(A) signals at a genome level, we constructed a dataset of 55 742 authenticated poly(A) sites and characterized the poly(A) signals. This resulted in identifying the typical tripartite cis-elements, including FUE, NUE and CE, as previously observed in Arabidopsis. The average size of the 3′-UTR was 289 nucleotides. When mapped to the genome, however, 15% of these poly(A) sites were found to be located in the currently annotated intergenic regions. Moreover, an extensive alternative polyadenylation profile was evident where 50% of the genes analyzed had more than one unique poly(A) site (excluding microheterogeneity sites), and 13% had four or more poly(A) sites. About 4% of the analyzed genes possessed alternative poly(A) sites at their introns, 5′-UTRs, or protein coding regions. The authenticity of these alternative poly(A) sites was partially confirmed using MPSS data. Analysis of nucleotide profile and signal patterns indicated that there may be a different set of poly(A) signals for those poly(A) sites found in the coding regions. Based on the features of rice poly(A) signals, an updated algorithm termed PASS-Rice was designed to predict poly(A) sites. PMID:18411206

  9. U2504 Determines the Species Specificity of the A-site Cleft Antibiotics: The sStructures of Tiamulin, Homoharringtonine and Bruceantin Bound to the Ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurel, G.; Blaha, G; Moore, P

    2009-01-01

    Structures have been obtained for the complexes that tiamulin, homoharringtonine, and bruceantin form with the large ribosomal subunit of Haloarcula marismortui at resolutions ranging from 2.65 to 3.2 {angstrom}. They show that all these inhibitors block protein synthesis by competing with the amino acid side chains of incoming aminoacyl-tRNAs for binding in the A-site cleft in the peptidyl-transferase center, which is universally conserved. In addition, these structures support the hypothesis that the species specificity exhibited by the A-site cleft inhibitors is determined by the interactions they make, or fail to make, with a single nucleotide, U2504 (Escherichia coli). In themore » ribosome, the position of U2504 is controlled by its interactions with neighboring nucleotides, whose identities vary among kingdoms.« less

  10. Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor

    PubMed Central

    Suzuki, Kano; Mizutani, Kenji; Maruyama, Shintaro; Shimono, Kazumi; Imai, Fabiana L.; Muneyuki, Eiro; Kakinuma, Yoshimi; Ishizuka-Katsura, Yoshiko; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamato, Ichiro; Murata, Takeshi

    2016-01-01

    V1-ATPases are highly conserved ATP-driven rotary molecular motors found in various membrane systems. We recently reported the crystal structures for the Enterococcus hirae A3B3DF (V1) complex, corresponding to the catalytic dwell state waiting for ATP hydrolysis. Here we present the crystal structures for two other dwell states obtained by soaking nucleotide-free V1 crystals in ADP. In the presence of 20 μM ADP, two ADP molecules bind to two of three binding sites and cooperatively induce conformational changes of the third site to an ATP-binding mode, corresponding to the ATP-binding dwell. In the presence of 2 mM ADP, all nucleotide-binding sites are occupied by ADP to induce conformational changes corresponding to the ADP-release dwell. Based on these and previous findings, we propose a V1-ATPase rotational mechanism model. PMID:27807367

  11. Photoaffinity labeling of the TF1-ATPase from the thermophilic bacterium PS3 with 3'-O-(4-benzoyl)benzoyl ADP.

    PubMed

    Bar-Zvi, D; Yoshida, M; Shavit, N

    1985-05-31

    3'-O-(4-Benzoyl)benzoyl ADP (BzADP) was used as a photoaffinity label for covalent binding of adenine nucleotide analogs to the nucleotide binding site(s) of the thermophilic bacterium PS3 ATPase (TF1). As with the CF1-ATPase (Bar-Zvi, D. and Shavit, N. (1984) Biochim. Biophys. Acta 765, 340-356) noncovalently bound BzADP is a reversible inhibitor of the TF1-ATPase. BzADP changes the kinetics of ATP hydrolysis from noncooperative to cooperative in the same way as ADP does, but, in contrast to the effect on the CF1-ATPase, it has no effect on the Vmax. In the absence of Mg2+ 1 mol BzADP binds noncovalently to TF1, while with Mg2+ 3 mol are bound. Photoactivation of BzADP results in the covalent binding of the analog to the nucleotide binding site(s) on TF1 and correlates with the inactivation of the ATPase. Complete inactivation of the TF1-ATPase occurs after covalent binding of 2 mol BzADP/mol TF1. Photoinactivation of TF1 by BzADP is prevented if excess of either ADP or ATP is present during irradiation. Analysis by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the Bz[3H]ADP-labeled TF1-ATPase shows that all the radioactivity is incorporated into the beta subunit.

  12. Isolation of a full-length CC-NBS-LRR resistance gene analog candidate from sugar pine showing low nucleotide diversity.

    Treesearch

    K.D. Jermstad; L.A. Sheppard; B.B. Kinloch; A. Delfino-Mix; E.S. Ersoz; K.V. Krutovsky; D.B Neale

    2006-01-01

    The nucleotide-binding-site and leucine-rich-repeat (NBS–LRR) class of R proteins is abundant and widely distributed in plants. By using degenerate primers designed on the NBS domain in lettuce, we amplified sequences in sugar pine that shared sequence identity with many of the NBS–LRR class resistance genes catalogued in GenBank. The polymerase chain reaction products...

  13. Methylation levels of the "long interspersed nucleotide element-1" repetitive sequences predict survival of melanoma patients.

    PubMed

    Sigalotti, Luca; Fratta, Elisabetta; Bidoli, Ettore; Covre, Alessia; Parisi, Giulia; Colizzi, Francesca; Coral, Sandra; Massarut, Samuele; Kirkwood, John M; Maio, Michele

    2011-05-26

    The prognosis of cutaneous melanoma (CM) differs for patients with identical clinico-pathological stage, and no molecular markers discriminating the prognosis of stage III individuals have been established. Genome-wide alterations in DNA methylation are a common event in cancer. This study aimed to define the prognostic value of genomic DNA methylation levels in stage III CM patients. Overall level of genomic DNA methylation was measured using bisulfite pyrosequencing at three CpG sites (CpG1, CpG2, CpG3) of the Long Interspersed Nucleotide Element-1 (LINE-1) sequences in short-term CM cultures from 42 stage IIIC patients. The impact of LINE-1 methylation on overall survival (OS) was assessed using Cox regression and Kaplan-Meier analysis. Hypomethylation (i.e., methylation below median) at CpG2 and CpG3 sites significantly associated with improved prognosis of CM, CpG3 showing the strongest association. Patients with hypomethylated CpG3 had increased OS (P = 0.01, log-rank = 6.39) by Kaplan-Meyer analysis. Median OS of patients with hypomethylated or hypermethylated CpG3 were 31.9 and 11.5 months, respectively. The 5 year OS for patients with hypomethylated CpG3 was 48% compared to 7% for patients with hypermethylated sequences. Among the variables examined by Cox regression analysis, LINE-1 methylation at CpG2 and CpG3 was the only predictor of OS (Hazard Ratio = 2.63, for hypermethylated CpG3; 95% Confidence Interval: 1.21-5.69; P = 0.01). LINE-1 methylation is identified as a molecular marker of prognosis for CM patients in stage IIIC. Evaluation of LINE-1 promises to represent a key tool for driving the most appropriate clinical management of stage III CM patients.

  14. Inactivating Mutations in ESCO2 Cause SC Phocomelia and Roberts Syndrome: No Phenotype-Genotype Correlation

    PubMed Central

    Schüle, Birgitt; Oviedo, Angelica; Johnston, Kathreen; Pai, Shashidhar; Francke, Uta

    2005-01-01

    The rare, autosomal recessive Roberts syndrome (RBS) is characterized by tetraphocomelia, profound growth deficiency of prenatal onset, craniofacial anomalies, microcephaly, and mental deficiency. SC phocomelia (SC) has a milder phenotype, with a lesser degree of limb reduction and with survival to adulthood. Since heterochromatin repulsion (HR) is characteristic for both disorders and is not complemented in somatic-cell hybrids, it has been hypothesized that the disorders are allelic. Recently, mutations in ESCO2 (establishment of cohesion 1 homolog 2) on 8p21.1 have been reported in RBS. To determine whether ESCO2 mutations are also responsible for SC, we studied three families with SC and two families in which variable degrees of limb and craniofacial abnormalities, detected by fetal ultrasound, led to pregnancy terminations. All cases were positive for HR. We identified seven novel mutations in exons 3–8 of ESCO2. In two families, affected individuals were homozygous—for a 5-nucleotide deletion in one family and a splice-site mutation in the other. In three nonconsanguineous families, probands were compound heterozygous for a single-nucleotide insertion or deletion, a nonsense mutation, or a splice-site mutation. Abnormal splice products were characterized at the RNA level. Since only protein-truncating mutations were identified, regardless of clinical severity, we conclude that genotype does not predict phenotype. Having established that RBS and SC are caused by mutations in the same gene, we delineated the clinical phenotype of the tetraphocomelia spectrum that is associated with HR and ESCO2 mutations and differentiated it from other types of phocomelia that are negative for HR. PMID:16380922

  15. Multilocus sequence analysis of Thermoanaerobacter isolates reveals recombining, but differentiated, populations from geothermal springs of the Uzon Caldera, Kamchatka, Russia

    PubMed Central

    Wagner, Isaac D.; Varghese, Litty B.; Hemme, Christopher L.; Wiegel, Juergen

    2013-01-01

    Thermal environments have island-like characteristics and provide a unique opportunity to study population structure and diversity patterns of microbial taxa inhabiting these sites. Strains having ≥98% 16S rRNA gene sequence similarity to the obligately anaerobic Firmicutes Thermoanaerobacter uzonensis were isolated from seven geothermal springs, separated by up to 1600 m, within the Uzon Caldera (Kamchatka, Russian Far East). The intraspecies variation and spatial patterns of diversity for this taxon were assessed by multilocus sequence analysis (MLSA) of 106 strains. Analysis of eight protein-coding loci (gyrB, lepA, leuS, pyrG, recA, recG, rplB, and rpoB) revealed that all loci were polymorphic and that nucleotide substitutions were mostly synonymous. There were 148 variable nucleotide sites across 8003 bp concatenates of the protein-coding loci. While pairwise FST values indicated a small but significant level of genetic differentiation between most subpopulations, there was a negligible relationship between genetic divergence and spatial separation. Strains with the same allelic profile were only isolated from the same hot spring, occasionally from consecutive years, and single locus variant (SLV) sequence types were usually derived from the same spring. While recombination occurred, there was an “epidemic” population structure in which a particular T. uzonensis sequence type rose in frequency relative to the rest of the population. These results demonstrate spatial diversity patterns for an anaerobic bacterial species in a relative small geographic location and reinforce the view that terrestrial geothermal springs are excellent places to look for biogeographic diversity patterns regardless of the involved distances. PMID:23801987

  16. Chloroplast DNA Diversity among Trees, Populations and Species in the California Closed-Cone Pines (Pinus Radiata, Pinus Muricata and Pinus Attenuata)

    PubMed Central

    Hong, Y. P.; Hipkins, V. D.; Strauss, S. H.

    1993-01-01

    The amount, distribution and mutational nature of chloroplast DNA polymorphisms were studied via analysis of restriction fragment length polymorphisms in three closely related species of conifers, the California closed-cone pines-knobcone pine: Pinus attenuata Lemm.; bishop pine: Pinus muricata D. Don; and Monterey pine: Pinus radiata D. Don. Genomic DNA from 384 trees representing 19 populations were digested with 9-20 restriction enzymes and probed with cloned cpDNA fragments from Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] that comprise 82% of the chloroplast genome. Up to 313 restriction sites were surveyed, and 25 of these were observed to be polymorphic among or within species. Differences among species accounted for the majority of genetic (haplotypic) diversity observed [G(st) = 84(+/-13)%]; nucleotide diversity among species was estimated to be 0.3(+/-0.1)%. Knobcone pine and Monterey pine displayed almost no genetic variation within or among populations. Bishop pine also showed little variability within populations, but did display strong population differences [G(st) = 87(+/-8)%] that were a result of three distinct geographic groups. Mean nucleotide diversity within populations was 0.003(+/-0.002)%; intrapopulation polymorphisms were found in only five populations. This pattern of genetic variation contrasts strongly with findings from study of nuclear genes (allozymes) in the group, where most genetic diversity resides within populations rather than among populations or species. Regions of the genome subject to frequent length mutations were identified; estimates of subdivision based on length variant frequencies in one region differed strikingly from those based on site mutations or allozymes. Two trees were identified with a major chloroplast DNA inversion that closely resembled one documented between Pinus and Pseudotsuga. PMID:7905846

  17. Dimeric PROP1 binding to diverse palindromic TAAT sequences promotes its transcriptional activity.

    PubMed

    Nakayama, Michie; Kato, Takako; Susa, Takao; Sano, Akiko; Kitahara, Kousuke; Kato, Yukio

    2009-08-13

    Mutations in the Prop1 gene are responsible for murine Ames dwarfism and human combined pituitary hormone deficiency with hypogonadism. Recently, we reported that PROP1 is a possible transcription factor for gonadotropin subunit genes through plural cis-acting sites composed of AT-rich sequences containing a TAAT motif which differs from its consensus binding sequence known as PRDQ9 (TAATTGAATTA). This study aimed to verify the binding specificity and sequence of PROP1 by applying the method of SELEX (Systematic Evolution of Ligands by EXponential enrichment), EMSA (electrophoretic mobility shift assay) and transient transfection assay. SELEX, after 5, 7 and 9 generations of selection using a random sequence library, showed that nucleotides containing one or two TAAT motifs were accumulated and accounted for 98.5% at the 9th generation. Aligned sequences and EMSA demonstrated that PROP1 binds preferentially to 11 nucleotides composed of an inverted TAAT motif separated by 3 nucleotides with variation in the half site of palindromic TAAT motifs and with preferential requirement of T at the nucleotide number 5 immediately 3' to a TAAT motif. Transient transfection assay demonstrated first that dimeric binding of PROP1 to an inverted TAAT motif and its cognates resulted in transcriptional activation, whereas monomeric binding of PROP1 to a single TAAT motif and an inverted ATTA motif did not mediate activation. Thus, this study demonstrated that dimeric binding of PROP1 is able to recognize diverse palindromic TAAT sequences separated by 3 nucleotides and to exhibit its transcriptional activity.

  18. Immunoglobulin kappa light chain gene promoter and enhancer are not responsible for B-cell restricted gene rearrangement.

    PubMed Central

    Goodhardt, M; Babinet, C; Lutfalla, G; Kallenbach, S; Cavelier, P; Rougeon, F

    1989-01-01

    We have produced transgenic mice which synthesize chimeric mouse-rabbit immunoglobulin (Ig) kappa light chains following in vivo recombination of an injected unrearranged kappa gene. The exogenous gene construct contained a mouse germ-line kappa variable (V kappa) gene segment, the mouse germ-line joining (J kappa) locus including the enhancer, and the rabbit b9 constant (C kappa) region. A high level of V-J recombination of the kappa transgene was observed in spleen of the transgenic mice. Surprisingly, a particularly high degree of variability in the exact site of recombination and the presence of non germ-line encoded nucleotides (N-regions) were found at the V-J junction of the rearranged kappa transgene. Furthermore, unlike endogenous kappa genes, rearrangement of the exogenous gene occurred in T-cells of the transgenic mice. These results show that additional sequences, other than the heptamer-nonamer signal sequences and the promoter and enhancer elements, are required to obtain stage- and lineage- specific regulation of Ig kappa light chain gene rearrangement in vivo. Images PMID:2508061

  19. Genome-Independent Identification of RNA Editing by Mutual Information (GIREMI) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    Identification of single-nucleotide variants in RNA-seq data. Current version focuses on detection of RNA editing sites without requiring genome sequence data. New version is under development to separately identify RNA editing sites and genetic variants using RNA-seq data alone.

  20. Nucleotide sequence determination of guinea-pig casein B mRNA reveals homology with bovine and rat alpha s1 caseins and conservation of the non-coding regions of the mRNA.

    PubMed Central

    Hall, L; Laird, J E; Craig, R K

    1984-01-01

    Nucleotide sequence analysis of cloned guinea-pig casein B cDNA sequences has identified two casein B variants related to the bovine and rat alpha s1 caseins. Amino acid homology was largely confined to the known bovine or predicted rat phosphorylation sites and within the 'signal' precursor sequence. Comparison of the deduced nucleotide sequence of the guinea-pig and rat alpha s1 casein mRNA species showed greater sequence conservation in the non-coding than in the coding regions, suggesting a functional and possibly regulatory role for the non-coding regions of casein mRNA. The results provide insight into the evolution of the casein genes, and raise questions as to the role of conserved nucleotide sequences within the non-coding regions of mRNA species. Images Fig. 1. PMID:6548375

  1. Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny

    PubMed Central

    Messmer, Marie; Pütz, Joern; Suzuki, Takeo; Suzuki, Tsutomu; Sauter, Claude; Sissler, Marie; Catherine, Florentz

    2009-01-01

    Primary and secondary structures of mammalian mitochondrial (mt) tRNAs are divergent from canonical tRNA structures due to highly skewed nucleotide content and large size variability of D- and T-loops. The nonconservation of nucleotides involved in the expected network of tertiary interactions calls into question the rules governing a functional L-shaped three-dimensional (3D) structure. Here, we report the solution structure of human mt-tRNAAsp in its native post-transcriptionally modified form and as an in vitro transcript. Probing performed with nuclease S1, ribonuclease V1, dimethylsulfate, diethylpyrocarbonate and lead, revealed several secondary structures for the in vitro transcribed mt-tRNAAsp including predominantly the cloverleaf. On the contrary, the native tRNAAsp folds into a single cloverleaf structure, highlighting the contribution of the four newly identified post-transcriptional modifications to correct folding. Reactivities of nucleotides and phosphodiester bonds in the native tRNA favor existence of a full set of six classical tertiary interactions between the D-domain and the variable region, forming the core of the 3D structure. Reactivities of D- and T-loop nucleotides support an absence of interactions between these domains. According to multiple sequence alignments and search for conservation of Leontis–Westhof interactions, the tertiary network core building rules apply to all tRNAAsp from mammalian mitochondria. PMID:19767615

  2. Analysis of the Highly Diverse Gene Borders in Ebola Virus Reveals a Distinct Mechanism of Transcriptional Regulation

    PubMed Central

    Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki

    2014-01-01

    ABSTRACT Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. IMPORTANCE Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3′ end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined the regulatory role of the structurally unique EBOV gene borders during viral transcription. Our data suggest that transcriptional regulation in EBOV is highly complex and differs from that in prototype viruses and further the understanding of this most fundamental process in the filovirus replication cycle. Moreover, our results with recombinant EBOVs suggest a novel role of the long IR found in all filovirus genomes during the viral replication cycle. PMID:25142600

  3. Analysis of the highly diverse gene borders in Ebola virus reveals a distinct mechanism of transcriptional regulation.

    PubMed

    Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki; Mühlberger, Elke

    2014-11-01

    Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3' end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined the regulatory role of the structurally unique EBOV gene borders during viral transcription. Our data suggest that transcriptional regulation in EBOV is highly complex and differs from that in prototype viruses and further the understanding of this most fundamental process in the filovirus replication cycle. Moreover, our results with recombinant EBOVs suggest a novel role of the long IR found in all filovirus genomes during the viral replication cycle. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Reference genotype and exome data from an Australian Aboriginal population for health-based research

    PubMed Central

    Tang, Dave; Anderson, Denise; Francis, Richard W.; Syn, Genevieve; Jamieson, Sarra E.; Lassmann, Timo; Blackwell, Jenefer M.

    2016-01-01

    Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians. PMID:27070114

  5. Reference genotype and exome data from an Australian Aboriginal population for health-based research.

    PubMed

    Tang, Dave; Anderson, Denise; Francis, Richard W; Syn, Genevieve; Jamieson, Sarra E; Lassmann, Timo; Blackwell, Jenefer M

    2016-04-12

    Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians.

  6. Unique active site promotes error-free replication opposite an 8-oxo-guanine lesion by human DNA polymerase iota

    PubMed Central

    Kirouac, Kevin N.; Ling, Hong

    2011-01-01

    The 8-oxo-guanine (8-oxo-G) lesion is the most abundant and mutagenic oxidative DNA damage existing in the genome. Due to its dual coding nature, 8-oxo-G causes most DNA polymerases to misincorporate adenine. Human Y-family DNA polymerase iota (polι) preferentially incorporates the correct cytosine nucleotide opposite 8-oxo-G. This unique specificity may contribute to polι’s biological role in cellular protection against oxidative stress. However, the structural basis of this preferential cytosine incorporation is currently unknown. Here we present four crystal structures of polι in complex with DNA containing an 8-oxo-G lesion, paired with correct dCTP or incorrect dATP, dGTP, and dTTP nucleotides. An exceptionally narrow polι active site restricts the purine bases in a syn conformation, which prevents the dual coding properties of 8-oxo-G by inhibiting syn/anti conformational equilibrium. More importantly, the 8-oxo-G base in a syn conformation is not mutagenic in polι because its Hoogsteen edge does not form a stable base pair with dATP in the narrow active site. Instead, the syn 8-oxo-G template base forms the most stable replicating base pair with correct dCTP due to its small pyrimidine base size and enhanced hydrogen bonding with the Hoogsteen edge of 8-oxo-G. In combination with site directed mutagenesis, we show that Gln59 in the finger domain specifically interacts with the additional O8 atom of the lesion base, which influences nucleotide selection, enzymatic efficiency, and replication stalling at the lesion site. Our work provides the structural mechanism of high-fidelity 8-oxo-G replication by a human DNA polymerase. PMID:21300901

  7. A novel 'splice site' HCN4 Gene mutation, c.1737+1 G>T, causes familial bradycardia, reduced heart rate response, impaired chronotropic competence and increased short-term heart rate variability.

    PubMed

    Hategan, Lidia; Csányi, Beáta; Ördög, Balázs; Kákonyi, Kornél; Tringer, Annamária; Kiss, Orsolya; Orosz, Andrea; Sághy, László; Nagy, István; Hegedűs, Zoltán; Rudas, László; Széll, Márta; Varró, András; Forster, Tamás; Sepp, Róbert

    2017-08-15

    The most important molecular determinant of heart rate regulation in sino-atrial pacemaker cells includes hyperpolarization-activated, cyclic nucleotide-gated ion channels, the major isoform of which is encoded by the HCN4 gene. Mutations affecting the HCN4 gene are associated primarily with sick sinus syndrome. A novel c.1737+1 G>T 'splice-site' HCN4 mutation was identified in a large family with familial bradycardia which co-segregated with the disease providing a two-point LOD score of 4.87. Twelve out of the 22 investigated family members [4 males, 8 females average age 36 (SD 6) years] were considered as clinically affected (heart rate<60/min on resting ECG). Minimum [36 (SD 7) vs. 47 (SD 5) bpm, p=0.0087) and average heart rates [62 (SD 8) vs. 73 (SD 8) bpm, p=0.0168) were significantly lower in carriers on 24-hour Holter recordings. Under maximum exercise test carriers achieved significantly lower heart rates than non-carrier family members, and percent heart rate reserve and percent corrected heart rate reserve were significantly lower in carriers. Applying rigorous criteria for chronotropic incompetence a higher number of carriers exhibited chronotropic incompetence. Parameters, characterizing short-term variability of heart rate (i.e. rMSSD and pNN50%) were increased in carrier family members, even after normalization for heart rate, in the 24-hour ECG recordings with the same relative increase in 5-minute recordings. The identified novel 'splice site' HCN4 gene mutation, c.1737+1 G>T, causes familial bradycardia and leads to reduced heart rate response, impaired chronotropic competence and increased short-term heart rate variability in the mutation carriers. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Distinctive mitochondrial genome of Calanoid copepod Calanus sinicus with multiple large non-coding regions and reshuffled gene order: Useful molecular markers for phylogenetic and population studies

    PubMed Central

    2011-01-01

    Background Copepods are highly diverse and abundant, resulting in extensive ecological radiation in marine ecosystems. Calanus sinicus dominates continental shelf waters in the northwest Pacific Ocean and plays an important role in the local ecosystem by linking primary production to higher trophic levels. A lack of effective molecular markers has hindered phylogenetic and population genetic studies concerning copepods. As they are genome-level informative, mitochondrial DNA sequences can be used as markers for population genetic studies and phylogenetic studies. Results The mitochondrial genome of C. sinicus is distinct from other arthropods owing to the concurrence of multiple non-coding regions and a reshuffled gene arrangement. Further particularities in the mitogenome of C. sinicus include low A + T-content, symmetrical nucleotide composition between strands, abbreviated stop codons for several PCGs and extended lengths of the genes atp6 and atp8 relative to other copepods. The monophyletic Copepoda should be placed within the Vericrustacea. The close affinity between Cyclopoida and Poecilostomatoida suggests reassigning the latter as subordinate to the former. Monophyly of Maxillopoda is rejected. Within the alignment of 11 C. sinicus mitogenomes, there are 397 variable sites harbouring three 'hotspot' variable sites and three microsatellite loci. Conclusion The occurrence of the circular subgenomic fragment during laboratory assays suggests that special caution should be taken when sequencing mitogenomes using long PCR. Such a phenomenon may provide additional evidence of mitochondrial DNA recombination, which appears to have been a prerequisite for shaping the present mitochondrial profile of C. sinicus during its evolution. The lack of synapomorphic gene arrangements among copepods has cast doubt on the utility of gene order as a useful molecular marker for deep phylogenetic analysis. However, mitochondrial genomic sequences have been valuable markers for resolving phylogenetic issues concerning copepods. The variable site maps of C. sinicus mitogenomes provide a solid foundation for population genetic studies. PMID:21269523

  9. Evolution of the Bovine TLR Gene Family and Member Associations with Mycobacterium avium Subspecies paratuberculosis Infection

    PubMed Central

    Fisher, Colleen A.; Bhattarai, Eric K.; Osterstock, Jason B.; Dowd, Scot E.; Seabury, Paul M.; Vikram, Meenu; Whitlock, Robert H.; Schukken, Ynte H.; Schnabel, Robert D.; Taylor, Jeremy F.; Womack, James E.; Seabury, Christopher M.

    2011-01-01

    Members of the Toll-like receptor (TLR) gene family occupy key roles in the mammalian innate immune system by functioning as sentries for the detection of invading pathogens, thereafter provoking host innate immune responses. We utilized a custom next-generation sequencing approach and allele-specific genotyping assays to detect and validate 280 biallelic variants across all 10 bovine TLR genes, including 71 nonsynonymous single nucleotide polymorphisms (SNPs) and one putative nonsense SNP. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and specialized beef and dairy breeds could not be differentiated despite an average polymorphism density of 1 marker/158 bp. Collectively, 160 tagSNPs and two tag insertion-deletion mutations (indels) were sufficient to predict 100% of the variation at 280 variable sites for both Bos subspecies and their hybrids, whereas 118 tagSNPs and 1 tagIndel predictively captured 100% of the variation at 235 variable sites for B. t. taurus. Polyphen and SIFT analyses of amino acid (AA) replacements encoded by bovine TLR SNPs indicated that up to 32% of the AA substitutions were expected to impact protein function. Classical and newly developed tests of diversity provide strong support for balancing selection operating on TLR3 and TLR8, and purifying selection acting on TLR10. An investigation of the persistence and continuity of linkage disequilibrium (r2≥0.50) between adjacent variable sites also supported the presence of selection acting on TLR3 and TLR8. A case-control study employing validated variants from bovine TLR genes recognizing bacterial ligands revealed six SNPs potentially eliciting small effects on susceptibility to Mycobacterium avium spp paratuberculosis infection in dairy cattle. The results of this study will broadly impact domestic cattle research by providing the necessary foundation to explore several avenues of bovine translational genomics, and the potential for marker-assisted vaccination. PMID:22164200

  10. Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription.

    PubMed

    Levis, R; Schlesinger, S; Huang, H V

    1990-04-01

    Sindbis virus is a positive-strand RNA enveloped virus, a member of the Alphavirus genus of the Togaviridae family. Two species of mRNA are synthesized in cells infected with Sindbis virus; one, the 49S RNA, is the genomic RNA; the other, the 26S RNA, is a subgenomic RNA that is identical in sequence to the 3' one-third of the genomic RNA. Ou et al. (J.-H. Ou, C. M. Rice, L. Dalgarno, E. G. Strauss, and J. H. Strauss, Proc. Natl. Acad. Sci. USA 79:5235-5239, 1982) identified a highly conserved region 19 nucleotides upstream and 2 nucleotides downstream from the start of the 26S RNA and proposed that in the negative-strand template, these nucleotides compose the promoter for directing the synthesis of the subgenomic RNA. Defective interfering (DI) RNAs of Sindbis virus were used to test this proposal. A 227-nucleotide sequence encompassing 98 nucleotides upstream and 117 nucleotides downstream from the start site of the Sindbis virus subgenomic RNA was inserted into a DI genome. The DI RNA containing the insert was replicated and packaged in the presence of helper virus, and cells infected with these DI particles produced a subgenomic RNA of the size and sequence expected if the promoter was functional. The initiating nucleotide was identical to that used for Sindbis virus subgenomic mRNA synthesis. Deletion analysis showed that the minimal region required to detect transcription of a subgenomic RNA from the negative-strand template of a DI RNA was 18 or 19 nucleotides upstream and 5 nucleotides downstream from the start of the subgenomic RNA.

  11. Structural basis for the D-stereoselectivity of human DNA polymerase β

    PubMed Central

    Vyas, Rajan; Reed, Andrew J.; Raper, Austin T.; Zahurancik, Walter J.; Wallenmeyer, Petra C.

    2017-01-01

    Abstract Nucleoside reverse transcriptase inhibitors (NRTIs) with L-stereochemistry have long been an effective treatment for viral infections because of the strong D-stereoselectivity exhibited by human DNA polymerases relative to viral reverse transcriptases. The D-stereoselectivity of DNA polymerases has only recently been explored structurally and all three DNA polymerases studied to date have demonstrated unique stereochemical selection mechanisms. Here, we have solved structures of human DNA polymerase β (hPolβ), in complex with single-nucleotide gapped DNA and L-nucleotides and performed pre-steady-state kinetic analysis to determine the D-stereoselectivity mechanism of hPolβ. Beyond a similar 180° rotation of the L-nucleotide ribose ring seen in other studies, the pre-catalytic ternary crystal structures of hPolβ, DNA and L-dCTP or the triphosphate forms of antiviral drugs lamivudine ((-)3TC-TP) and emtricitabine ((-)FTC-TP) provide little structural evidence to suggest that hPolβ follows the previously characterized mechanisms of D-stereoselectivity. Instead, hPolβ discriminates against L-stereochemistry through accumulation of several active site rearrangements that lead to a decreased nucleotide binding affinity and incorporation rate. The two NRTIs escape some of the active site selection through the base and sugar modifications but are selected against through the inability of hPolβ to complete thumb domain closure. PMID:28402499

  12. Electron microscopic visualization of sites of nascent DNA synthesis by streptavidin-gold binding to biotinylated nucleotides incorporated in vivo

    PubMed Central

    1988-01-01

    Biotinylated nucleotides (bio-11-dCTP, bio-11-dUTP, and bio-7-dATP) were microinjected into unfertilized and fertilized Xenopus laevis eggs. The amounts introduced were comparable to in vivo deoxy- nucleoside triphosphate pools. At various times after microinjection, DNA was extracted from eggs or embryos and subjected to electrophoresis on agarose gels. Newly synthesized biotinylated DNA was analyzed by Southern transfer and visualized using either the BluGENE or Detek-hrp streptavidin-based nucleic acid detection systems. Quantitation of the amount of biotinylated DNA observed at various times showed that the microinjected biotinylated nucleotides were efficiently incorporated in vivo, both into replicating endogenous chromosomal DNA and into replicating microinjected exogenous plasmid DNA. At least one biotinylated nucleotide could be incorporated in vivo for every eight nucleotides of DNA synthesized. Control experiments also showed that heavily biotinylated DNA was not subjected to detectable DNA repair during early embryogenesis (for at least 5 h after activation of the eggs). The incorporated biotinylated nucleotides were visualized by electron microscopy by using streptavidin-colloidal gold or streptavidin-ferritin conjugates to bind specifically to the biotin groups projecting from the newly replicated DNA. The incorporated biotinylated nucleotides were thus made visible as electron-dense spots on the underlying DNA molecules. Biotinylated nucleotides separated by 20-50 bases could be resolved. We conclude that nascent DNA synthesized in vivo in Xenopus laevis eggs can be visualized efficiently and specifically using the techniques described. PMID:3392102

  13. BEND3 is involved in the human-specific repression of calreticulin: Implication for the evolution of higher brain functions in human.

    PubMed

    Aghajanirefah, A; Nguyen, L N; Ohadi, M

    2016-01-15

    Recent emerging evidence indicates that changes in gene expression levels are linked to human evolution. We have previously reported a human-specific nucleotide in the promoter sequence of the calreticulin (CALR) gene at position -220C, which is the site of action of valproic acid. Reversion of this nucleotide to the ancestral A-allele has been detected in patients with degrees of deficit in higher brain cognitive functions. This mutation has since been reported in the 1000 genomes database at an approximate frequency of <0.0004 in humans (rs138452745). In the study reported here, we present update on the status of rs138452745 across evolution, based on the Ensembl and NCBI databases. The DNA pulldown assay was also used to identify the proteins binding to the C- and A-alleles, using two cell lines, SK-N-BE and HeLa. Consistent with our previous findings, the C-allele is human-specific, and the A-allele is the rule across all other species (N=38). This nucleotide resides in a block of 12-nucleotides that is strictly conserved across evolution. The DNA pulldown experiments revealed that in both SK-N-BE and HeLa cells, the transcription repressor BEN domain containing 3 (BEND3) binds to the human-specific C-allele, whereas the nuclear factor I (NFI) family members, NF1A, B, C, and X, specifically bind to the ancestral A-allele. This binding pattern is consistent with a previously reported decreased promoter activity of the C-allele vs. the A-allele. We propose that there is a link between binding of BEND3 to the CALR rs138452745 C-allele and removal of NFI binding site from this nucleotide, and the evolution of human-specific higher brain functions. To our knowledge, CALR rs138452745 is the first instance of enormous nucleotide conservation across evolution, except in the human species. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Species composition of the genus Saprolegnia in fin fish aquaculture environments, as determined by nucleotide sequence analysis of the nuclear rDNA ITS regions.

    PubMed

    de la Bastide, Paul Y; Leung, Wai Lam; Hintz, William E

    2015-01-01

    The ITS region of the rDNA gene was compared for Saprolegnia spp. in order to improve our understanding of nucleotide sequence variability within and between species of this genus, determine species composition in Canadian fin fish aquaculture facilities, and to assess the utility of ITS sequence variability in genetic marker development. From a collection of more than 400 field isolates, ITS region nucleotide sequences were studied and it was determined that there was sufficient consistent inter-specific variation to support the designation of species identity based on ITS sequence data. This non-subjective approach to species identification does not rely upon transient morphological features. Phylogenetic analyses comparing our ITS sequences and species designations with data from previous studies generally supported the clade scheme of Diéguez-Uribeondo et al. (2007) and found agreement with the molecular taxonomic cluster system of Sandoval-Sierra et al. (2014). Our Canadian ITS sequence collection will thus contribute to the public database and assist the clarification of Saprolegnia spp. taxonomy. The analysis of ITS region sequence variability facilitated genus- and species-level identification of unknown samples from aquaculture facilities and provided useful information on species composition. A unique ITS-RFLP for the identification of S. parasitica was also described. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Site-specific cleavage of the transactivation response site of human immunodeficiency virus RNA with a tat-based chemical nuclease.

    PubMed Central

    Jayasena, S D; Johnston, B H

    1992-01-01

    tat, an essential transactivator of gene transcription in the human immunodeficiency virus (HIV), is believed to activate viral gene expression by binding to the transactivation response (TAR) site located at the 5' end of all viral mRNAs. The TAR element forms a stem-loop structure containing a 3-nucleotide bulge that is the site for tat binding and is required for transactivation. Here we report the synthesis of a site-specific chemical ribonuclease based on the TAR binding domain of the HIV type 1 (HIV-1) tat. A peptide consisting of this 24-amino acid domain plus an additional C-terminal cysteine residue was chemically synthesized and covalently linked to 1,10-phenanthroline at the cysteine residue. The modified peptide binds to TAR sequences of both HIV-1 and HIV-2 and, in the presence of cupric ions and a reducing agent, cleaves these RNAs at specific sites. Cleavage sites on TAR sequences are consistent with peptide binding to the 3-nucleotide bulge, and the relative displacement of cleavage sites on the two strands suggests peptide binding to the major groove of the RNA. These results and existing evidence of the rapid cellular uptake of tat-derived peptides suggest that chemical nucleases based on tat may be useful for inactivating HIV mRNA in vivo. Images PMID:1565648

  16. AthMethPre: a web server for the prediction and query of mRNA m6A sites in Arabidopsis thaliana.

    PubMed

    Xiang, Shunian; Yan, Zhangming; Liu, Ke; Zhang, Yaou; Sun, Zhirong

    2016-10-18

    N 6 -Methyladenosine (m 6 A) is the most prevalent and abundant modification in mRNA that has been linked to many key biological processes. High-throughput experiments have generated m 6 A-peaks across the transcriptome of A. thaliana, but the specific methylated sites were not assigned, which impedes the understanding of m 6 A functions in plants. Therefore, computational prediction of mRNA m 6 A sites becomes emergently important. Here, we present a method to predict the m 6 A sites for A. thaliana mRNA sequence(s). To predict the m 6 A sites of an mRNA sequence, we employed the support vector machine to build a classifier using the features of the positional flanking nucleotide sequence and position-independent k-mer nucleotide spectrum. Our method achieved good performance and was applied to a web server to provide service for the prediction of A. thaliana m 6 A sites. The server also provides a comprehensive database of predicted transcriptome-wide m 6 A sites and curated m 6 A-seq peaks from the literature for query and visualization. The AthMethPre web server is the first web server that provides a user-friendly tool for the prediction and query of A. thaliana mRNA m 6 A sites, which is freely accessible for public use at .

  17. Nucleotide-dependent bisANS binding to tubulin.

    PubMed

    Chakraborty, S; Sarkar, N; Bhattacharyya, B

    1999-07-13

    Non-covalent hydrophobic probes such as 5, 5'-bis(8-anilino-1-naphthalenesulfonate) (bisANS) have become increasingly popular to gain information about protein structure and conformation. However, there are limitations as bisANS binds non-specifically at multiple sites of many proteins. Successful use of this probe depends upon the development of binding conditions where only specific dye-protein interaction will occur. In this report, we have shown that the binding of bisANS to tubulin occurs instantaneously, specifically at one high affinity site when 1 mM guanosine 5'-triphosphate (GTP) is included in the reaction medium. Substantial portions of protein secondary structure and colchicine binding activity of tubulin are lost upon bisANS binding in absence of GTP. BisANS binding increases with time and occurs at multiple sites in the absence of GTP. Like GTP, other analogs, guanosine 5'-diphosphate, guanosine 5'-monophosphate and adenosine 5'-triphosphate, also displace bisANS from the lower affinity sites of tubulin. We believe that these multiple binding sites are generated due to the bisANS-induced structural changes on tubulin and the presence of GTP and other nucleotides protect those structural changes.

  18. Site-directed DNA crosslinking of large multisubunit protein-DNA complexes.

    PubMed

    Persinger, Jim; Bartholomew, Blaine

    2009-01-01

    Several methods have been developed to site-specifically incorporate photoreactive nucleotide analogs into DNA for the purpose of identifying the proteins and their domains that are in contact with particular regions of DNA. The synthesis of several deoxynucleotide analogs that have a photoreactive group tethered to the nucleotide base and the incorporation of these analogs into DNA are described. In a second approach, oligonucleotide with a photoreactive group attached to the phosphate backbone is chemically synthesized. The photoreactive oligonucleotide is then enzymatically incorporated into DNA by annealing it to a complementary DNA template and extending with DNA polymerase. Both approaches have been effectively used to map protein-DNA interactions in large multisubunit complexes such as the eukaryotic transcription or ATP-dependent chromatin remodeling complexes. Not only do these techniques map the binding sites of the various subunits in these complexes, but when coupled with peptide mapping also determine the protein domain that is in close proximity to the different DNA sites. The strength of these techniques is the ability to scan a large number of potential sites by making combinations of different DNA probes and is facilitated by using an immobilized DNA template for synthesis.

  19. Detection of the Single Nucleotide Polymorphism at Position rs2735940 in the Human Telomerase Reverse Transcriptase Gene by the Introduction of a New Restriction Enzyme Site for the PCR-RFLP Assay.

    PubMed

    Wang, Sihua; Ding, Mingcui; Duan, Xiaoran; Wang, Tuanwei; Feng, Xiaolei; Wang, Pengpeng; Yao, Wu; Wu, Yongjun; Yan, Zhen; Feng, Feifei; Yu, Songcheng; Wang, Wei

    2017-09-01

    It has been shown that the single nucleotide polymorphism (SNP) of the rs2735940 site in the human telomerase reverse transcriptase ( hTERT ) gene is associated with increased cancer risk. The traditional method to detect SNP genotypes is polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). However, there is a limitation to utilizing PCR-RFLP due to a lack of proper restriction enzyme sites at many polymorphic loci. This study used an improved PCR-RFLP method with a mismatched base for detection of the SNP rs2735940. A new restriction enzyme cutting site was created by created restriction site PCR (CRS-PCR), and in addition, the restriction enzyme Msp I for CRS-PCR was cheaper than other enzymes. We used this novel assay to determine the allele frequencies in 552 healthy Chinese Han individuals, and found the allele frequencies to be 63% for allele C and 37% for allele T In summary, the modified PCR-RFLP can be used to detect the SNP of rs2735940 with low cost and high efficiency. © 2017 by the Association of Clinical Scientists, Inc.

  20. Water molecules in the nucleotide binding cleft of actin: effects on subunit conformation and implications for ATP hydrolysis.

    PubMed

    Saunders, Marissa G; Voth, Gregory A

    2011-10-14

    In the monomeric actin crystal structure, the positions of a highly organized network of waters are clearly visible within the active site. However, the recently proposed models of filamentous actin (F-actin) did not extend to including these waters. Since the water network is important for ATP hydrolysis, information about water position is critical to understanding the increased rate of catalysis upon filament formation. Here, we show that waters in the active site are essential for intersubdomain rotational flexibility and that they organize the active-site structure. Including the crystal structure waters during simulation setup allows us to observe distinct changes in the active-site structure upon the flattening of the actin subunit, as proposed in the Oda model for F-actin. We identify changes in both protein position and water position relative to the phosphate tail that suggest a mechanism for accelerating the rate of nucleotide hydrolysis in F-actin by stabilizing charge on the β-phosphate and by facilitating deprotonation of catalytic water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The UDP-glucose dehydrogenase of Escherichia coli K-12 displays substrate inhibition by NAD that is relieved by nucleotide triphosphates.

    PubMed

    Mainprize, Iain L; Bean, Jordan D; Bouwman, Catrien; Kimber, Matthew S; Whitfield, Chris

    2013-08-09

    UDP-glucose dehydrogenase (Ugd) generates UDP-glucuronic acid, an important precursor for the production of many hexuronic acid-containing bacterial surface glycostructures. In Escherichia coli K-12, Ugd is important for biosynthesis of the environmentally regulated exopolysaccharide known as colanic acid, whereas in other E. coli isolates, the same enzyme is required for production of the constitutive group 1 capsular polysaccharides, which act as virulence determinants. Recent studies have implicated tyrosine phosphorylation in the activation of Ugd from E. coli K-12, although it is not known if this is a feature shared by bacterial Ugd proteins. The activities of Ugd from E. coli K-12 and from the group 1 capsule prototype (serotype K30) were compared. Surprisingly, for both enzymes, site-directed Tyr → Phe mutants affecting the previously proposed phosphorylation site retained similar kinetic properties to the wild-type protein. Purified Ugd from E. coli K-12 had significant levels of NAD substrate inhibition, which could be alleviated by the addition of ATP and several other nucleotide triphosphates. Mutations in a previously identified UDP-glucuronic acid allosteric binding site decreased the binding affinity of the nucleotide triphosphate. Ugd from E. coli serotype K30 was not inhibited by NAD, but its activity still increased in the presence of ATP.

  2. Identification of a common single nucleotide polymorphism at the primer binding site of D2S1360 that causes heterozygote peak imbalance when using the Investigator HDplex Kit.

    PubMed

    Inokuchi, Shota; Yamashita, Yasuhiro; Nishimura, Kazuma; Nakanishi, Hiroaki; Saito, Kazuyuki

    2017-11-01

    Phenomena known as null alleles and peak imbalance can occur because of mutations in the primer binding sites used for DNA typing. In these cases, an accurate statistical evaluation of DNA typing is difficult. The estimated likelihood ratio is incorrectly calculated because of the null allele and allele dropout caused by mutation-induced peak imbalance. Although a number of studies have attempted to uncover examples of these phenomena, few reports are available on the human identification kit manufactured by Qiagen. In this study, 196 Japanese individuals who were heterozygous at D2S1360 were genotyped using an Investigator HDplex Kit with optimal amounts of DNA. A peak imbalance was frequently observed at the D2S1360 locus. We performed a sequencing analysis of the area surrounding the D2S1360 repeat motif to identify the cause for peak imbalance. A point mutation (G>A transition) 136 nucleotides upstream from the D2S1360 repeat motif was discovered in a number of samples. The allele frequency of the mutation was 0.0566 in the Japanese population. Therefore, human identification or kinship testing using the Investigator HDplex Kit requires caution because of the higher frequency of single nucleotide polymorphisms at the primer binding site of D2S1360 locus in the Japanese population.

  3. Nucleotide sequence of the 3' terminal region of lettuce mosaic potyvirus RNA shows a Gln/Val dipeptide at the cleavage site between the polymerase and the coat protein.

    PubMed

    Dinant, S; Lot, H; Albouy, J; Kuziak, C; Meyer, M; Astier-Manifacier, S

    1991-01-01

    DNA complementary to the 3' terminal 1651 nucleotides of the genome of the common strain of lettuce mosaic virus (LMV-O) has been cloned and sequenced. Microsequencing of the N-terminus enabled localization of the coat protein gene in this sequence. It showed also that the LMV coat protein coding region is at the 3' end of the genome, and that the coat protein is processed from a larger protein by cleavage at an unusual Q/V dipeptide between the polymerase and the coat protein. This is the first report of such a site for cleavage of a potyvirus polyprotein, where only Q/A, Q/S, and Q/G cleavage sites have been reported. The LMV coat protein gene encodes a 278 amino acid polypeptide with a calculated Mr of 31,171 and is flanked by a region which has a high degree of homology with the putative polymerase and a 3' untranslated region of 211 nucleotides in length. Percentage of homology with the coat protein of other potyviruses confirms that LMV is a distinct member of this group. Moreover, amino acid homologies noticed with the coat protein of potexvirus, bymovirus, and carlavirus elongated plant viruses suggest a functional significance for the conserved domains.

  4. Genome-Wide Profiling of RNA–Protein Interactions Using CLIP-Seq

    PubMed Central

    Stork, Cheryl; Zheng, Sika

    2017-01-01

    UV crosslinking immunoprecipitation (CLIP) is an increasingly popular technique to study protein–RNA interactions in tissues and cells. Whole cells or tissues are ultraviolet irradiated to generate a covalent bond between RNA and proteins that are in close contact. After partial RNase digestion, antibodies specific to an RNA binding protein (RBP) or a protein–epitope tag is then used to immunoprecipitate the protein–RNA complexes. After stringent washing and gel separation the RBP–RNA complex is excised. The RBP is protease digested to allow purification of the bound RNA. Reverse transcription of the RNA followed by high-throughput sequencing of the cDNA library is now often used to identify protein bound RNA on a genome-wide scale. UV irradiation can result in cDNA truncations and/or mutations at the crosslink sites, which complicates the alignment of the sequencing library to the reference genome and the identification of the crosslinking sites. Meanwhile, one or more amino acids of a crosslinked RBP can remain attached to its bound RNA due to incomplete digestion of the protein. As a result, reverse transcriptase may not read through the crosslink sites, and produce cDNA ending at the crosslinked nucleotide. This is harnessed by one variant of CLIP methods to identify crosslinking sites at a nucleotide resolution. This method, individual nucleotide resolution CLIP (iCLIP) circularizes cDNA to capture the truncated cDNA and also increases the efficiency of ligating sequencing adapters to the library. Here, we describe the detailed procedure of iCLIP. PMID:26965263

  5. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.

    PubMed

    Lavoie, Mathieu; Abou Elela, Sherif

    2008-08-19

    Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.

  6. Phylogeny of mitochondrial DNA clones in tassel-eared squirrels Sciurus aberti.

    PubMed

    Wettstein, P J; Lager, P; Jin, L; States, J; Lamb, T; Chakraborty, R

    1994-12-01

    The tassel-eared squirrel, Sciurus aberti, includes six subspecies which occupy restrictive and apparently identical habitats in Ponderosa pine forests in the south-western United States and Mexico; the strict habitat requirement of this species is based on dietary requirements which are only fulfilled in these forests. To examine evolutionary relationships among certain subspecies of S. aberti, we obtained estimates of nucleotide diversity within subspecies as well as nucleotide divergence between subspecies using mitochondrial DNA (mtDNA) analysis. Restriction site polymorphisms were identified in samples of the four US subspecies: S. a. aberti (Abert), S. a. kaibabensis (Kaibab), S. a. ferreus (Ferreus), and S. a. chuscensis (Chuska) Fourteen mtDNA clones were resolved that were, with one exception, uniquely subspecific. Dendrograms constructed by neighbour-joining and maximum parsimony methods revealed two major assemblages: (1) an Abert/Kaibab group; and (2) a Ferreus/Chuska group. The Abert vs. Ferreus clones exhibited the greatest net nucleotide divergence, with a lineage separation estimate approximating 572,000 years ago assuming a nucleotide substitution rate of 7.15 x 10(-9)/year/site. Five out of ten Chuska squirrels shared a clone with one Abert sample; the relative sizes of these two populations and their respective ranges as well as their close proximity support the proposal for relatively recent intermixing of Abert and Chuska populations resulting in what appears to be Abert-->Chuska migration. Nucleotide diversity within subspecies ranked as Kaibab < Ferreus < Abert < Chuska; the relatively high diversity for the Chuska sample is based on the apparent introgression of Abert mtDNA. The relative diversity exhibited by Kaibab, Ferreus and Aberti samples corresponds to the range size of the respective subspecies.

  7. Comparative nucleotide diversity across North American and European populus species.

    PubMed

    Ismail, Mohamed; Soolanayakanahally, Raju Y; Ingvarsson, Pär K; Guy, Robert D; Jansson, Stefan; Silim, Salim N; El-Kassaby, Yousry A

    2012-06-01

    Nucleotide polymorphisms in two North American balsam poplars (Populus trichocarpa Torr. & Gray and P. balsamifera L.; section Tacamahaca), and one Eurasian aspen (P. tremula L.; section Populus) were compared using nine loci involved in defense, stress response, photoperiodism, freezing tolerance, and housekeeping. Nucleotide diversity varied among species and was highest for P. tremula (θ(w) = 0.005, π(T) = 0.007) as compared to P. balsamifera (θ(w) = 0.004, π(T) = 0.005) or P. trichocarpa (θ(w) = 0.002, π(T) = 0.003). Across species, the defense and the stress response loci accounted for the majority of the observed level of nucleotide diversity. In general, the studied loci did not deviate from neutral expectation either at the individual locus (non-significant normalized Fay and Wu's H) or at the multi-locus level (non-significant HKA test). Using molecular clock analysis, section Tacamahaca probably shared a common ancestor with section Populus approximately 4.5 million year ago. Divergence between the two closely related balsam poplars was about 0.8 million years ago, a pattern consistent with an isolation-with-migration (IM) model. As expected, P. tremula showed a five-fold higher substitution rate (2 × 10(-8) substitution/site/year) compared to the North American species (0.4 × 10(-8) substitution/site/year), probably reflecting its complex demographic history. Linkage disequilibrium (LD) varied among species with a more rapid decay in the North American species (<400 bp) in comparison to P. tremula (≫400 bp). The similarities in nucleotide diversity pattern and LD decay of the two balsam poplar species likely reflects the recent time of their divergence.

  8. Detection of Strand Cleavage And Oxidation Damage Using Model DNA Molecules Captured in a Nanoscale Pore

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Solbrig, A.; DeGuzman, V.; Deamer, D.; Akeson, M.

    2003-01-01

    We use a biological nano-scale pore to distinguish among individual DNA hairpins that differ by a single site of oxidation or a nick in the sugar-phosphate backbone. In earlier work we showed that the protein ion channel alpha-hemolysin can be used as a detector to distinguish single-stranded from double-stranded DNA, single base pair and single nucleotide differences. This resolution is in part a result of sensitivity to structural changes that influence the molecular dynamics of nucleotides within DNA. The strand cleavage products we examined here included a 5-base-pair (5-bp) hairpin with a 5-prime five-nucleotide overhang, and a complementary five-nucleotide oligomer. These produced predictable shoulder-spike and rapid near-full blockade signatures, respectively. When combined, strand annealing was monitored in real time. The residual current level dropped to a lower discrete level in the shoulder-spike blockade signatures, and the duration lengthened. However, these blockade signatures had a shorter duration than the unmodified l0bp hairpin. To test the pore sensitivity to nucleotide oxidation, we examined a 9-bp hairpin with a terminal 8-oxo-deoxyguanosine (8-oxo-dG), or a penultimate 8-oxo-dG. Each produced blockade signatures that differed from the otherwise identical control 9bp hairpins. This study showed that DNA structure is modified sufficiently by strand cleavage or oxidation damage at a single site to alter in a predictable manner the ionic current blockade signatures produced. This technique improves the ability to assess damage to DNA, and can provide a simple means to help characterize the risks of radiation exposure. It may also provide a method to test radiation protection.

  9. Non-nucleotide Agonists Triggering P2X7 Receptor Activation and Pore Formation.

    PubMed

    Di Virgilio, Francesco; Giuliani, Anna L; Vultaggio-Poma, Valentina; Falzoni, Simonetta; Sarti, Alba C

    2018-01-01

    The P2X7 receptor (P2X7R) is a ligand-gated plasma membrane ion channel belonging to the P2X receptor subfamily activated by extracellular nucleotides. General consensus holds that the physiological (and maybe the only) agonist is ATP. However, scattered evidence generated over the last several years suggests that ATP might not be the only agonist, especially at inflammatory sites. Solid data show that NAD + covalently modifies the P2X7R of mouse T lymphocytes, thus lowering the ATP threshold for activation. Other structurally unrelated agents have been reported to activate the P2X7R via a poorly understood mechanism of action: (a) the antibiotic polymyxin B, possibly a positive allosteric P2X7R modulator, (b) the bactericidal peptide LL-37, (c) the amyloidogenic β peptide, and (d) serum amyloid A. Some agents, such as Alu-RNA, have been suggested to activate the P2X7R acting on the intracellular N- or C-terminal domains. Mode of P2X7R activation by these non-nucleotide ligands is as yet unknown; however, these observations raise the intriguing question of how these different non-nucleotide ligands may co-operate with ATP at inflammatory or tumor sites. New information obtained from the cloning and characterization of the P2X7R from exotic mammalian species (e.g., giant panda) and data from recent patch-clamp studies are strongly accelerating our understanding of P2X7R mode of operation, and may provide hints to the mechanism of activation of P2X7R by non-nucleotide ligands.

  10. Complete mitochondrial genome of Yangtze River wild common carp (Cyprinus carpio haematopterus) and Russian scattered scale mirror carp (Cyprinus carpio carpio).

    PubMed

    Hu, Guang Fu; Liu, Xiang Jiang; Zou, Gui Wei; Li, Zhong; Liang, Hong-Wei; Hu, Shao-Na

    2016-01-01

    We sequenced the complete mitogenomes of (Cyprinus carpio haematopterus) and Russian scattered scale mirror carp (Cyprinus carpio carpio). Comparison of these two mitogenomes revealed that the mitogenomes of these two common carp strains were remarkably similar in genome length, gene order and content, and AT content. There were only 55 bp variations in 16,581 nucleotides. About 1 bp variation was located in rRNAs, 2 bp in tRNAs, 9 bp in the control region and 43 bp in protein-coding genes. Furthermore, forty-three variable nucleotides in the protein-coding genes of the two strains led to four variable amino acids, which were located in the ND2, ATPase 6, ND5 and ND6 genes, respectively.

  11. PUTATIVE GENE PROMOTER SEQUENCES IN THE CHLORELLA VIRUSES

    PubMed Central

    Fitzgerald, Lisa A.; Boucher, Philip T.; Yanai-Balser, Giane; Suhre, Karsten; Graves, Michael V.; Van Etten, James L.

    2008-01-01

    Three short (7 to 9 nucleotides) highly conserved nucleotide sequences were identified in the putative promoter regions (150 bp upstream and 50 bp downstream of the ATG translation start site) of three members of the genus Chlorovirus, family Phycodnaviridae. Most of these sequences occurred in similar locations within the defined promoter regions. The sequence and location of the motifs were often conserved among homologous ORFs within the Chlorovirus family. One of these conserved sequences (AATGACA) is predominately associated with genes expressed early in virus replication. PMID:18768195

  12. Human ribosomal protein L37 has motifs predicting serine/threonine phosphorylation and a zinc-finger domain.

    PubMed

    Barnard, G F; Staniunas, R J; Puder, M; Steele, G D; Chen, L B

    1994-08-02

    Ribosomal protein L37 mRNA is overexpressed in colon cancer. The nucleotide sequences of human L37 from several tumor and normal, colon and liver cDNA sources were determined to be identical. L37 mRNA was approximately 375 nucleotides long encoding 97 amino acids with M(r) = 11,070, pI = 12.6, multiple potential serine/threonine phosphorylation sites and a zinc-finger domain. The human sequence is compared to other species.

  13. Consequences of germline variation disrupting the constitutional translational initiation codon start sites of MLH1 and BRCA2: use of potential alternative start sites and implications for predicting variant pathogenicity

    PubMed Central

    Parsons, Michael T.; Whiley, Phillip J.; Beesley, Jonathan; Drost, Mark; de Wind, Niels; Thompson, Bryony A.; Marquart, Louise; Hopper, John L.; Jenkins, Mark A.; Brown, Melissa A.; Tucker, Kathy; Warwick, Linda; Buchanan, Daniel D.; Spurdle, Amanda B.

    2014-01-01

    Variants that disrupt the translation initiation sequences in cancer predisposition genes are generally assumed to be deleterious. However few studies have validated these assumptions with functional and clinical data. Two cancer syndrome gene variants likely to affect native translation initiation were identified by clinical genetic testing: MLH1:c.1A>G p.(Met1?) and BRCA2:c.67+3A>G. In vitro GFP-reporter assays were conducted to assess the consequences of translation initiation disruption on alternative downstream initiation codon usage. Analysis of MLH1:c.1A>G p.(Met1?) showed that translation was mostly initiated at an in-frame position 103 nucleotides downstream, but also at two ATG sequences downstream. The protein product encoded by the in-frame transcript initiating from position c.103 showed loss of in vitro mismatch repair activity comparable to known pathogenic mutations. BRCA2:c.67+3A>G was shown by mRNA analysis to result in an aberrantly spliced transcript deleting exon 2 and the consensus ATG site. In the absence of exon 2, translation initiated mostly at an out-of-frame ATG 323 nucleotides downstream, and to a lesser extent at an in-frame ATG 370 nucleotides downstream. Initiation from any of the downstream alternative sites tested in both genes would lead to loss of protein function, but further clinical data is required to confirm if these variants are associated with a high cancer risk. Importantly, our results highlight the need for caution in interpreting the functional and clinical consequences of variation that leads to disruption of the initiation codon, since translation may not necessarily occur from the first downstream alternative start site, or from a single alternative start site. PMID:24302565

  14. Multiple nucleotide preferences determine cleavage-site recognition by the HIV-1 and M-MuLV RNases H.

    PubMed

    Schultz, Sharon J; Zhang, Miaohua; Champoux, James J

    2010-03-19

    The RNase H activity of reverse transcriptase is required during retroviral replication and represents a potential target in antiviral drug therapies. Sequence features flanking a cleavage site influence the three types of retroviral RNase H activity: internal, DNA 3'-end-directed, and RNA 5'-end-directed. Using the reverse transcriptases of HIV-1 (human immunodeficiency virus type 1) and Moloney murine leukemia virus (M-MuLV), we evaluated how individual base preferences at a cleavage site direct retroviral RNase H specificity. Strong test cleavage sites (designated as between nucleotide positions -1 and +1) for the HIV-1 and M-MuLV enzymes were introduced into model hybrid substrates designed to assay internal or DNA 3'-end-directed cleavage, and base substitutions were tested at specific nucleotide positions. For internal cleavage, positions +1, -2, -4, -5, -10, and -14 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV significantly affected RNase H cleavage efficiency, while positions -7 and -12 for HIV-1 and positions -4, -9, and -11 for M-MuLV had more modest effects. DNA 3'-end-directed cleavage was influenced substantially by positions +1, -2, -4, and -5 for HIV-1 and positions +1, -2, -6, and -7 for M-MuLV. Cleavage-site distance from the recessed end did not affect sequence preferences for M-MuLV reverse transcriptase. Based on the identified sequence preferences, a cleavage site recognized by both HIV-1 and M-MuLV enzymes was introduced into a sequence that was otherwise resistant to RNase H. The isolated RNase H domain of M-MuLV reverse transcriptase retained sequence preferences at positions +1 and -2 despite prolific cleavage in the absence of the polymerase domain. The sequence preferences of retroviral RNase H likely reflect structural features in the substrate that favor cleavage and represent a novel specificity determinant to consider in drug design. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Systemic Exposure to Thiopurines and Risk of Relapse in Children with Acute Lymphoblastic Leukemia: A Children’s Oncology Group Study

    PubMed Central

    Bhatia, Smita; Landier, Wendy; Hageman, Lindsey; Chen, Yanjun; Kim, Heeyoung; Sun, Can-Lan; Kornegay, Nancy; Evans, William E; Angiolillo, Anne L; Bostrom, Bruce; Casillas, Jacqueline; Lew, Glen; Maloney, Kelly W; Mascarenhas, Leo; Ritchey, A. Kim; Termuhlen, Amanda M; Carroll, William L; Wong, F Lennie; Relling, Mary V

    2015-01-01

    Importance Variability in prescribed 6-mercaptopurine and lack of adherence to 6-mercaptopurine could result in intra-individual variability in systemic exposure to 6-mercaptopurine (measured as erythrocyte thioguanine nucleotide levels) in children with acute lymphoblastic leukemia. The impact of intra-individual variability in systemic exposure to 6-mercaptopurine on relapse risk is unknown. Objective To determine impact of high intra-individual variability in 6-mercaptopurine systemic exposure on relapse risk in children with acute lymphoblastic leukemia. Design Prospective longitudinal design; daily adherence monitoring, 6-mercaptopurine dose-intensity and erythrocyte thioguanine nucleotide levels (pmol/8*10^8 erythrocytes) measured for 6 consecutive months per patient; cohort followed for a median of 6.7 years from diagnosis. Setting Children’s Oncology Group study (COG-AALL03N1); 94 participating institutions; ambulatory care setting. Participants Participants included 742 children meeting the following eligibility criteria: diagnosis of acute lymphoblastic leukemia at ≤21 years; in first continuous remission at study entry; receiving self/parent/caregiver-administered oral 6-mercaptopurine during maintenance. Median age at diagnosis: 5 years; 68% were male; 43% with NCI-based high-risk disease. Main Outcome Measures Adherence measured electronically using Medication Event Monitoring System that recorded date/time of each 6-mercaptopurine bottle opening; adherence rate defined as ratio of days of 6-mercaptopurine bottle opened to days when 6-mercaptopurine prescribed. 6-mercaptopurine doses actually prescribed were divided by planned protocol doses (75mg/m2/day) to compute average monthly dose-intensity. Electronically-monitored adherence (68,716 person-days), 6-mercaptopurine dose-intensity (120,439 person-days) and monthly erythrocyte thioguanine nucleotide levels (n=3,944 measurements) contributed to the analysis. Using intra-individual coefficients of variation (CV %), patients were classified as having stable (CV % <85th percentile) vs. varying (CV % ≥85th percentile) indices. Results Adjusting for clinical prognosticators, patients with 6-mercaptopurine non-adherence (mean adherence rate <95%) were at a 2.7 fold increased risk of relapse (95% confidence interval [CI], 1.3 to 5.6, p=0.01). Among adherers, high intra-individual variability in thioguanine nucleotide levels contributes to increased relapse risk (HR=4.4, 95% CI, 1.2 to 15.7, p=0.02). Furthermore, adherers with varying thioguanine nucleotide levels had varying 6-mercaptopurine dose-intensity (OR=4.5, p=0.006) and 6-mercaptopurine drug interruptions (OR=10.2, p=0.003). Conclusions and Relevance These findings emphasize the need to maximize 6-mercaptopurine adherence and maintain steady thiopurine exposure to minimize relapse in children with acute lymphoblastic leukemia. PMID:26181173

  16. Evolutionary dynamics and genetic diversity from three genes of Anguillid rhabdovirus.

    PubMed

    Bellec, Laure; Cabon, Joelle; Bergmann, Sven; de Boisséson, Claire; Engelsma, Marc; Haenen, Olga; Morin, Thierry; Olesen, Niels Jørgen; Schuetze, Heike; Toffan, Anna; Way, Keith; Bigarré, Laurent

    2014-11-01

    Wild freshwater eel populations have dramatically declined in recent past decades in Europe and America, partially through the impact of several factors including the wide spread of infectious diseases. The anguillid rhabdoviruses eel virus European X (EVEX) and eel virus American (EVA) potentially play a role in this decline, even if their real contribution is still unclear. In this study, we investigate the evolutionary dynamics and genetic diversity of anguiillid rhabdoviruses by analysing sequences from the glycoprotein, nucleoprotein and phosphoprotein (P) genes of 57 viral strains collected from seven countries over 40 years using maximum-likelihood and Bayesian approaches. Phylogenetic trees from the three genes are congruent and allow two monophyletic groups, European and American, to be clearly distinguished. Results of nucleotide substitution rates per site per year indicate that the P gene is expected to evolve most rapidly. The nucleotide diversity observed is low (2-3 %) for the three genes, with a significantly higher variability within the P gene, which encodes multiple proteins from a single genomic RNA sequence, particularly a small C protein. This putative C protein is a potential molecular marker suitable for characterization of distinct genotypes within anguillid rhabdoviruses. This study provides, to our knowledge, the first molecular characterization of EVA, brings new insights to the evolutionary dynamics of two genotypes of Anguillid rhabdovirus, and is a baseline for further investigations on the tracking of its spread.

  17. The World Health Organization Global Programme on AIDS proposal for standardization of HIV sequence nomenclature. WHO Network for HIV Isolation and Characterization.

    PubMed

    Korber, B T; Osmanov, S; Esparza, J; Myers, G

    1994-11-01

    The World Health Organization Global Programme on AIDS (WHO/GPA) is conducting a large-scale collaborative study of human immunodeficiency virus type 1 (HIV-1) variation, based in four potential vaccine-trial site countries: Brazil, Rwanda, Thailand, and Uganda. Through the course of this study, it was crucial to keep track of certain attributes of the samples from which the viral nucleotide sequences were derived (e.g., country of origin and viral culture characterization), so that meaningful sequence comparisons could be made. Here we describe a system developed in the context of the WHO/GPA study that summarizes such critical attributes by representing them as standardized characters directly incorporated into sequence names. This nomenclature allows linkage of clinical, phenotypic, and geographic information with molecular data. We propose that other investigators involved in human immunodeficiency virus (HIV) nucleotide sequencing efforts adopt a similar standardized sequence nomenclature to facilitate cross-study sequence comparison. HIV sequence data are being generated at an ever-increasing rate; directly coupled to this increase is our deepening understanding of biological parameters that influence or result from sequence variability. A standardized sequence nomenclature that includes relevant biological information would enable researchers to better utilize the growing body of sequence data, and enhance their ability to interpret the biological implications of their own data through facilitating comparisons with previously published work.

  18. A MicroRNA Superfamily Regulates Nucleotide Binding Site–Leucine-Rich Repeats and Other mRNAs[W][OA

    PubMed Central

    Shivaprasad, Padubidri V.; Chen, Ho-Ming; Patel, Kanu; Bond, Donna M.; Santos, Bruno A.C.M.; Baulcombe, David C.

    2012-01-01

    Analysis of tomato (Solanum lycopersicum) small RNA data sets revealed the presence of a regulatory cascade affecting disease resistance. The initiators of the cascade are microRNA members of an unusually diverse superfamily in which miR482 and miR2118 are prominent members. Members of this superfamily are variable in sequence and abundance in different species, but all variants target the coding sequence for the P-loop motif in the mRNA sequences for disease resistance proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) motifs. We confirm, using transient expression in Nicotiana benthamiana, that miR482 targets mRNAs for NBS-LRR disease resistance proteins with coiled-coil domains at their N terminus. The targeting causes mRNA decay and production of secondary siRNAs in a manner that depends on RNA-dependent RNA polymerase 6. At least one of these secondary siRNAs targets other mRNAs of a defense-related protein. The miR482-mediated silencing cascade is suppressed in plants infected with viruses or bacteria so that expression of mRNAs with miR482 or secondary siRNA target sequences is increased. We propose that this process allows pathogen-inducible expression of NBS-LRR proteins and that it contributes to a novel layer of defense against pathogen attack. PMID:22408077

  19. pyr RNA binding to the Bacillus caldolyticus PyrR attenuation protein. Characterization and regulation by uridine and guanosine nucleotides

    PubMed Central

    Jørgensen, Casper Møller; Fields, Christopher J.; Chander, Preethi; Watt, Desmond; Burgner, John W.; Smith, Janet L.; Switzer, Robert L.

    2011-01-01

    Summary The PyrR protein regulates expression of pyrimidine biosynthetic (pyr) genes in many bacteria. PyrR binds to specific sites in the 5’ leader RNA of target operons and favors attenuation of transcription. Filter binding and gel mobility assays were used to characterize the binding of PyrR from Bacillus caldolyticus to RNA sequences (binding loops) from the three attenuation regions of the B. caldolyticus pyr operon. Binding of PyrR to the three binding loops and modulation of RNA binding by nucleotides was similar for all three RNAs. Apparent dissociation constants at 0° C ranged from 0.13 to 0.87 nM in the absence of effectors; dissociation constants were decreased by 3 to 12 fold by uridine nucleotides and increased by 40 to 200 fold by guanosine nucleotides. The binding data suggest that pyr operon expression is regulated by the ratio of intracellular uridine nucleotides to guanosine nucleotides; the effects of nucleoside addition to the growth medium on aspartate transcarbamylase (pyrB) levels in B. subtilis cells in vivo supported this conclusion. Analytical ultracentrifugation established that RNA binds to dimeric PyrR, even though the tetrameric form of unbound PyrR predominates in solution at the concentrations studied. PMID:18190533

  20. Promoter for Sindbis virus RNA-dependent subgenomic RNA transcription.

    PubMed Central

    Levis, R; Schlesinger, S; Huang, H V

    1990-01-01

    Sindbis virus is a positive-strand RNA enveloped virus, a member of the Alphavirus genus of the Togaviridae family. Two species of mRNA are synthesized in cells infected with Sindbis virus; one, the 49S RNA, is the genomic RNA; the other, the 26S RNA, is a subgenomic RNA that is identical in sequence to the 3' one-third of the genomic RNA. Ou et al. (J.-H. Ou, C. M. Rice, L. Dalgarno, E. G. Strauss, and J. H. Strauss, Proc. Natl. Acad. Sci. USA 79:5235-5239, 1982) identified a highly conserved region 19 nucleotides upstream and 2 nucleotides downstream from the start of the 26S RNA and proposed that in the negative-strand template, these nucleotides compose the promoter for directing the synthesis of the subgenomic RNA. Defective interfering (DI) RNAs of Sindbis virus were used to test this proposal. A 227-nucleotide sequence encompassing 98 nucleotides upstream and 117 nucleotides downstream from the start site of the Sindbis virus subgenomic RNA was inserted into a DI genome. The DI RNA containing the insert was replicated and packaged in the presence of helper virus, and cells infected with these DI particles produced a subgenomic RNA of the size and sequence expected if the promoter was functional. The initiating nucleotide was identical to that used for Sindbis virus subgenomic mRNA synthesis. Deletion analysis showed that the minimal region required to detect transcription of a subgenomic RNA from the negative-strand template of a DI RNA was 18 or 19 nucleotides upstream and 5 nucleotides downstream from the start of the subgenomic RNA. Images PMID:2319651

  1. Revised Mechanism and Improved Efficiency of the QuikChange Site-Directed Mutagenesis Method.

    PubMed

    Xia, Yongzhen; Xun, Luying

    2017-01-01

    Site-directed mutagenesis has been widely used for the substitution, addition or deletion of nucleotide residues in a defined DNA sequence. QuikChange™ site-directed mutagenesis and its related protocols have been widely used for this purpose because of convenience and efficiency. We have recently demonstrated that the mechanism of the QuikChange™ site-directed mutagenesis process is different from that being proposed. The new mechanism promotes the use of partially overlapping primers and commercial PCR enzymes for efficient PCR and mutagenesis.

  2. Four novel cystic fibrosis mutations in splice junction sequences affecting the CFTR nucleotide binding folds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerk, T.; Wulbrand, U.; Tuemmler, B.

    1993-03-01

    Single cases of the four novel splice site mutations 1525[minus]1 G [r arrow] A (intron 9), 3601[minus]2 A [r arrow] G (intron 18), 3850[minus]3 T [r arrow] G (intron 19), and 4374+1 G [r arrow] T (intron 23) were detected in the CFTR gene of cystic fibrosis patients of Indo-Iranian, Turkish, Polish, and Germany descent. The nucleotide substitutions at the +1, [minus]1, and [minus]2 positions all destroy splice sites and lead to severe disease alleles associated with features typical of gastrointestinal and pulmonary cystic fibrosis disease. The 3850[minus]3 T-to-G change was discovered in a very mildly affected 33-year-old [Delta]F508 compoundmore » heterozygote, suggesting that the T-to-G transversion at the less conserved [minus]3 position of the acceptor splice site may retain some wildtype function. 13 refs., 1 fig., 2 tabs.« less

  3. Substantial Regional Variation in Substitution Rates in the Human Genome: Importance of GC Content, Gene Density, and Telomere-Specific Effects

    NASA Astrophysics Data System (ADS)

    Arndt, Peter F.; Hwa, Terence; Petrov, Dmitri A.

    2005-06-01

    This study presents the first global, 1 Mbp level analysis of patterns of nucleotide substitutions along the human lineage. The study is based on the analysis of a large amount of repetitive elements deposited into the human genome since the mammalian radiation, yielding a number of results that would have been difficult to obtain using the more conventional comparative method of analysis. This analysis revealed substantial and consistent variability of rates of substitution, with the variability ranging up to 2-fold among different regions. The rates of substitutions of C or G nucleotides with A or T nucleotides vary much more sharply than the reverse rates suggesting that much of that variation is due to differences in mutation rates rather than in the probabilities of fixation of C/G vs. A/T nucleotides across the genome. For all types of substitution we observe substantially more hotspots than coldspots, with hotspots showing substantial clustering over tens of Mbp's. Our analysis revealed that GC-content of surrounding sequences is the best predictor of the rates of substitution. The pattern of substitution appears very different near telomeres compared to the rest of the genome and cannot be explained by the genome-wide correlations of the substitution rates with GC content or exon density. The telomere pattern of substitution is consistent with natural selection or biased gene conversion acting to increase the GC-content of the sequences that are within 10-15 Mbp away from the telomere.

  4. Genetic structuring of European anchovy (Engraulis encrasicolus) populations through mitochondrial DNA sequences.

    PubMed

    Keskin, Emre; Atar, Hasan Huseyin

    2012-04-01

    Mitochondrial DNA sequence variation in 655 bpfragments of the cytochrome oxidase c subunit I gene, known as the DNA barcode, of European anchovy (Engraulis encrasicolus) was evaluated by analyzing 1529 individuals representing 16 populations from the Black Sea, through the Marmara Sea and the Aegean Sea to the Mediterranean Sea. A total of 19 (2.9%) variable sites were found among individuals, and these defined 10 genetically diverged populations with an overall mean distance of 1.2%. The highest nucleotide divergence was found between samples of eastern Mediterranean and northern Aegean (2.2%). Evolutionary history analysis among 16 populations clustered the Mediterranean Sea clades in one main branch and the other clades in another branch. Diverging pattern of the European anchovy populations correlated with geographic dispersion supports the genetic structuring through the Black Sea-Marmara Sea-Aegean Sea-Mediterranean Sea quad.

  5. Aluminum as an inducer of the mitochondrial permeability transition.

    PubMed

    Toninello, A; Clari, G; Mancon, M; Tognon, G; Zatta, P

    2000-10-01

    Treatment of rat liver mitochondria with aluminum in the presence of Ca2+ results in large amplitude swelling accompanied by loss of endogenous Mg2+ and K+ and oxidation of endogenous pyridine nucleotides. The presence of cyclosporin A, ADP, bongkrekic acid, N-ethylmaleimide and dithioerythritol prevent these effects, indicating that binding of aluminum to the inner mitochondrial membrane, most likely at the level of adenine nucleotide translocase, correlates with the induction of the membrane permeability transition (MPT). Indeed, aluminum binding promotes such a perturbation at the level of ubiquinol-cytochrome c reductase, which favors the production of reactive oxygen species. These metabolites generate an oxidative stress involving two previously defined sites in equilibrium with the glutathione and pyridine nucleotides pools, the levels of which correlate with the increase in MPT induction. Although the above-described phenomena are typical of MPT, they are not paralleled by other events normally observed in response to treatment with inducers of MPT (e.g., phosphate), such as the collapse of the electrochemical gradient and the release of accumulated Ca2+ and oxidized pyridine nucleotides. Biochemical and ultrastructural observations demonstrate that aluminum induces a pore opening having a conformation intermediate between fully open and closed in a subpopulation of mitochondria. While inorganic phosphate enhances the MPT induced by ruthenium red plus a deenergizing agent, aluminum instead inhibits this phenomenon. This finding suggests the presence of a distinct binding site for aluminum differing from that involved in MPT induction.

  6. Single nucleotide polymorphism-specific regulation of matrix metalloproteinase-9 by multiple miRNAs targeting the coding exon

    PubMed Central

    Duellman, Tyler; Warren, Christopher; Yang, Jay

    2014-01-01

    Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221

  7. Structural analysis of the human U3 ribonucleoprotein particle reveal a conserved sequence available for base pairing with pre-rRNA.

    PubMed Central

    Parker, K A; Steitz, J A

    1987-01-01

    The human U3 ribonucleoprotein (RNP) has been analyzed to determine its protein constituents, sites of protein-RNA interaction, and RNA secondary structure. By using anti-U3 RNP antibodies and extracts prepared from HeLa cells labeled in vivo, the RNP was found to contain four nonphosphorylated proteins of 36, 30, 13, and 12.5 kilodaltons and two phosphorylated proteins of 74 and 59 kilodaltons. U3 nucleotides 72-90, 106-121, 154-166, and 190-217 must contain sites that interact with proteins since these regions are immunoprecipitated after treatment of the RNP with RNase A or T1. The secondary structure was probed with specific nucleases and by chemical modification with single-strand-specific reagents that block subsequent reverse transcription. Regions that are single stranded (and therefore potentially able to interact with a substrate RNA) include an evolutionarily conserved sequence at nucleotides 104-112 and nonconserved sequences at nucleotides 65-74, 80-84, and 88-93. Nucleotides 159-168 do not appear to be highly accessible, thus making it unlikely that this U3 sequence base pairs with sequences near the 5.8S rRNA-internal transcribed spacer II junction, as previously proposed. Alternative functions of the U3 RNP are discussed, including the possibility that U3 may participate in a processing event near the 3' end of 28S rRNA. Images PMID:2959855

  8. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.

    2010-12-08

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pocketsmore » that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.« less

  9. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species

    PubMed Central

    Wang, Jing; Street, Nathaniel R.; Scofield, Douglas G.; Ingvarsson, Pär K.

    2016-01-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. PMID:26721855

  10. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    PubMed

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.

  11. SENCA: A Multilayered Codon Model to Study the Origins and Dynamics of Codon Usage

    PubMed Central

    Pouyet, Fanny; Bailly-Bechet, Marc; Mouchiroud, Dominique; Guéguen, Laurent

    2016-01-01

    Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels. Disentangling the impact of those different levels on gene sequences requires developing a probabilistic model with three layers. Here we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1) nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons, and 3) preferences among amino acids. We argue that most synonymous substitutions are not neutral and that SENCA provides more accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has consequences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolutionary processes acting on sequences. PMID:27401173

  12. Solution structure of the catalytic domain of RICH protein from goldfish.

    PubMed

    Kozlov, Guennadi; Denisov, Alexey Y; Pomerantseva, Ekaterina; Gravel, Michel; Braun, Peter E; Gehring, Kalle

    2007-03-01

    Regeneration-induced CNPase homolog (RICH) is an axonal growth-associated protein, which is induced in teleost fish upon optical nerve injury. RICH consists of a highly acidic N-terminal domain, a catalytic domain with 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity and a C-terminal isoprenylation site. In vitro RICH and mammalian brain CNPase specifically catalyze the hydrolysis of 2',3'-cyclic nucleotides to produce 2'-nucleotides, but the physiologically relevant in vivo substrate remains unknown. Here, we report the NMR structure of the catalytic domain of goldfish RICH and describe its binding to CNPase inhibitors. The structure consists of a twisted nine-stranded antiparallel beta-sheet surrounded by alpha-helices on both sides. Despite significant local differences mostly arising from a seven-residue insert in the RICH sequence, the active site region is highly similar to that of human CNPase. Likewise, refinement of the catalytic domain of rat CNPase using residual dipolar couplings gave improved agreement with the published crystal structure. NMR titrations of RICH with inhibitors point to a similar catalytic mechanism for RICH and CNPase. The results suggest a functional importance for the evolutionarily conserved phosphodiesterase activity and hint of a link with pre-tRNA splicing.

  13. C-Terminal β9-Strand of the Cyclic Nucleotide-Binding Homology Domain Stabilizes Activated States of Kv11.1 Channels

    PubMed Central

    Ng, Chai Ann; Ke, Ying; Perry, Matthew D.; Tan, Peter S.; Hill, Adam P.; Vandenberg, Jamie I.

    2013-01-01

    Kv11.1 potassium channels are important for regulation of the normal rhythm of the heartbeat. Reduced activity of Kv11.1 channels causes long QT syndrome type 2, a disorder that increases the risk of cardiac arrhythmias and sudden cardiac arrest. Kv11.1 channels are members of the KCNH subfamily of voltage-gated K+ channels. However, they also share many similarities with the cyclic nucleotide gated ion channel family, including having a cyclic nucleotide-binding homology (cNBH) domain. Kv11.1 channels, however, are not directly regulated by cyclic nucleotides. Recently, crystal structures of the cNBH domain from mEAG and zELK channels, both members of the KCNH family of voltage-gated potassium channels, revealed that a C-terminal β9-strand in the cNBH domain occupied the putative cyclic nucleotide-binding site thereby precluding binding of cyclic nucleotides. Here we show that mutations to residues in the β9-strand affect the stability of the open state relative to the closed state of Kv11.1 channels. We also show that disrupting the structure of the β9-strand reduces the stability of the inactivated state relative to the open state. Clinical mutations located in this β9-strand result in reduced trafficking efficiency, which suggests that binding of the C-terminal β9-strand to the putative cyclic nucleotide-binding pocket is also important for assembly and trafficking of Kv11.1 channels. PMID:24204727

  14. Analysis of transitions at two-fold redundant sites in mammalian genomes. Transition redundant approach-to-equilibrium (TREx) distance metrics

    PubMed Central

    Li, Tang; Chamberlin, Stephen G; Caraco, M Daniel; Liberles, David A; Gaucher, Eric A; Benner, Steven A

    2006-01-01

    Background The exchange of nucleotides at synonymous sites in a gene encoding a protein is believed to have little impact on the fitness of a host organism. This should be especially true for synonymous transitions, where a pyrimidine nucleotide is replaced by another pyrimidine, or a purine is replaced by another purine. This suggests that transition redundant exchange (TREx) processes at the third position of conserved two-fold codon systems might offer the best approximation for a neutral molecular clock, serving to examine, within coding regions, theories that require neutrality, determine whether transition rate constants differ within genes in a single lineage, and correlate dates of events recorded in genomes with dates in the geological and paleontological records. To date, TREx analysis of the yeast genome has recognized correlated duplications that established a new metabolic strategies in fungi, and supported analyses of functional change in aromatases in pigs. TREx dating has limitations, however. Multiple transitions at synonymous sites may cause equilibration and loss of information. Further, to be useful to correlate events in the genomic record, different genes within a genome must suffer transitions at similar rates. Results A formalism to analyze divergence at two fold redundant codon systems is presented. This formalism exploits two-state approach-to-equilibrium kinetics from chemistry. This formalism captures, in a single equation, the possibility of multiple substitutions at individual sites, avoiding any need to "correct" for these. The formalism also connects specific rate constants for transitions to specific approximations in an underlying evolutionary model, including assumptions that transition rate constants are invariant at different sites, in different genes, in different lineages, and at different times. Therefore, the formalism supports analyses that evaluate these approximations. Transitions at synonymous sites within two-fold redundant coding systems were examined in the mouse, rat, and human genomes. The key metric (f2), the fraction of those sites that holds the same nucleotide, was measured for putative ortholog pairs. A transition redundant exchange (TREx) distance was calculated from f2 for these pairs. Pyrimidine-pyrimidine transitions at these sites occur approximately 14% faster than purine-purine transitions in various lineages. Transition rate constants were similar in different genes within the same lineages; within a set of orthologs, the f2 distribution is only modest overdispersed. No correlation between disparity and overdispersion is observed. In rodents, evidence was found for greater conservation of TREx sites in genes on the X chromosome, accounting for a small part of the overdispersion, however. Conclusion The TREx metric is useful to analyze the history of transition rate constants within these mammals over the past 100 million years. The TREx metric estimates the extent to which silent nucleotide substitutions accumulate in different genes, on different chromosomes, with different compositions, in different lineages, and at different times. PMID:16545144

  15. Sequence of a cDNA encoding pancreatic preprosomatostatin-22.

    PubMed Central

    Magazin, M; Minth, C D; Funckes, C L; Deschenes, R; Tavianini, M A; Dixon, J E

    1982-01-01

    We report the nucleotide sequence of a precursor to somatostatin that upon proteolytic processing may give rise to a hormone of 22 amino acids. The nucleotide sequence of a cDNA from the channel catfish (Ictalurus punctatus) encodes a precursor to somatostatin that is 105 amino acids (Mr, 11,500). The cDNA coding for somatostatin-22 consists of 36 nucleotides in the 5' untranslated region, 315 nucleotides that code for the precursor to somatostatin-22, 269 nucleotides at the 3' untranslated region, and a variable length of poly(A). The putative preprohormone contains a sequence of hydrophobic amino acids at the amino terminus that has the properties of a "signal" peptide. A connecting sequence of approximately 57 amino acids is followed by a single Arg-Arg sequence, which immediately precedes the hormone. Somatostatin-22 is homologous to somatostatin-14 in 7 of the 14 amino acids, including the Phe-Trp-Lys sequence. Hybridization selection of mRNA, followed by its translation in a wheat germ cell-free system, resulted in the synthesis of a single polypeptide having a molecular weight of approximately 10,000 as estimated on Na-DodSO4/polyacrylamide gels. Images PMID:6127673

  16. Transcription initiation from the dihydrofolate reductase promoter is positioned by HIP1 binding at the initiation site.

    PubMed

    Means, A L; Farnham, P J

    1990-02-01

    We have identified a sequence element that specifies the position of transcription initiation for the dihydrofolate reductase gene. Unlike the functionally analogous TATA box that directs RNA polymerase II to initiate transcription 30 nucleotides downstream, the positioning element of the dihydrofolate reductase promoter is located directly at the site of transcription initiation. By using DNase I footprint analysis, we have shown that a protein binds to this initiator element. Transcription initiated at the dihydrofolate reductase initiator element when 28 nucleotides were inserted between it and all other upstream sequences, or when it was placed on either side of the DNA helix, suggesting that there is no strict spatial requirement between the initiator and an upstream element. Although neither a single Sp1-binding site nor a single initiator element was sufficient for transcriptional activity, the combination of one Sp1-binding site and the dihydrofolate reductase initiator element cloned into a plasmid vector resulted in transcription starting at the initiator element. We have also shown that the simian virus 40 late major initiation site has striking sequence homology to the dihydrofolate reductase initiation site and that the same, or a similar, protein binds to both sites. Examination of the sequences at other RNA polymerase II initiation sites suggests that we have identified an element that is important in the transcription of other housekeeping genes. We have thus named the protein that binds to the initiator element HIP1 (Housekeeping Initiator Protein 1).

  17. ADP binding to TF1 and its subunits induces ultraviolet spectral changes.

    PubMed

    Hisabori, T; Yoshida, M; Sakurai, H

    1986-09-01

    Adenine nucleotide binding sites on the coupling factor ATPase of thermophilic bacterium PS3 (TF1) were investigated by UV spectroscopy and by equilibrium dialysis. When ADP was mixed with TF1 in the presence and in the absence of Mg2+, an UV absorbance change was induced (t1/2 approximately 1 min) with a peak at about 278 nm and a trough at about 250 nm. Similar spectral changes were induced by ADP with the isolated beta subunits in the presence and in the absence of Mg2+, and with the isolated alpha subunits in the presence of Mg2+ although the magnitudes of the changes were different. From equilibrium dialysis measurement we identified two classes of nucleotide binding sites in TF1 in the presence of Mg2+, three high-affinity sites (Kd = 61 nM) and three low-affinity sites (Kd = 87 microM). In the absence of Mg2+, TF1 has one high-affinity site (Kd less than 10 nM) and five low-affinity sites (Kd = 100 microM). Moreover, we found a single Mg2+-dependent ADP binding site on the isolated alpha subunit and a single Mg2+-independent ADP binding site on the isolated beta subunit. From the above observations, we concluded that the three Mg2+-dependent high-affinity sites for ADP are located on the alpha subunit in TF1 and that the single high-affinity site is located on one of the beta subunits in TF1 in the absence of Mg2+.

  18. Nucleotide substitutions in dengue virus serotypes from Asian and American countries: insights into intracodon recombination and purifying selection

    PubMed Central

    2013-01-01

    Background Dengue virus (DENV) infection represents a significant public health problem in many subtropical and tropical countries. Although genetically closely related, the four serotypes of DENV differ in antigenicity for which cross protection among serotypes is limited. It is also believed that both multi-serotype infection as well as the evolution of viral antigenicity may have confounding effects in increased dengue epidemics. Numerous studies have been performed that investigated genetic diversity of DENV, but the precise mechanism(s) of dengue virus evolution are not well understood. Results We investigated genome-wide genetic diversity and nucleotide substitution patterns in the four serotypes among samples collected from different countries in Asia and Central and South America and sequenced as part of the Genome Sequencing Center for Infectious Diseases at the Broad Institute. We applied bioinformatics, statistical and coalescent simulation methods to investigate diversity of codon sequences of DENV samples representing the four serotypes. We show that fixation of nucleotide substitutions is more prominent among the inter-continental isolates (Asian and American) of serotypes 1, 2 and 3 compared to serotype 4 isolates (South and Central America) and are distributed in a non-random manner among the genes encoded by the virus. Nearly one third of the negatively selected sites are associated with fixed mutation sites within serotypes. Our results further show that of all the sites showing evidence of recombination, the majority (~84%) correspond to sites under purifying selection in the four serotypes. The analysis further shows that genetic recombination occurs within specific codons, albeit with low frequency (< 5% of all recombination sites) throughout the DENV genome of the four serotypes and reveals significant enrichment (p < 0.05) among sites under purifying selection in the virus. Conclusion The study provides the first evidence for intracodon recombination in DENV and suggests that within codons, genetic recombination has a significant role in maintaining extensive purifying selection of DENV in natural populations. Our study also suggests that fixation of beneficial mutations may lead to virus evolution via translational selection of specific sites in the DENV genome. PMID:23410119

  19. Adsorption of nucleotides onto Fe-Mg-Al rich swelling clays

    NASA Astrophysics Data System (ADS)

    Feuillie, Cécile; Daniel, Isabelle; Michot, Laurent J.; Pedreira-Segade, Ulysse

    2013-11-01

    Mineral surfaces may have played a role in the origin of the first biopolymers, by concentrating organic monomers from a dilute ocean. Swelling clays provide a high surface area for the concentration of prebiotic monomers, and have therefore been the subject of numerous investigations. In that context, montmorillonite, the most abundant swelling clay in modern environments, has been extensively studied with regard to adsorption and polymerization of nucleic acids. However, montmorillonite was probably rather marginal on the primitive ocean floor compared to iron-magnesium rich phyllosilicates such as nontronite that results from the hydrothermal alteration of a mafic or ultramafic oceanic crust. In the present paper, we study the adsorption of nucleotides on montmorillonite and nontronite, at various pH and ionic strength conditions plausible for Archean sea-water. A thorough characterization of the mineral surfaces shows that nucleotide adsorb mainly on the edge faces of the smectites by ligand exchange between the phosphate groups of the nucleotides and the -OH groups from the edge sites over a wide pH range (4-10). Nontronite is more reactive than montmorillonite. At low pH, additional ion exchange may play a role as the nucleotides become positively charged.

  20. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters.

    PubMed

    Temple, Henry; Saez-Aguayo, Susana; Reyes, Francisca C; Orellana, Ariel

    2016-09-01

    The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. The primary structure of the thymidine kinase gene of fish lymphocystis disease virus.

    PubMed

    Schnitzler, P; Handermann, M; Szépe, O; Darai, G

    1991-06-01

    The DNA nucleotide sequence of the thymidine kinase (TK) gene of fish lymphocystis disease virus (FLDV) which has been localized between the coordinates 0.678 to 0.688 of the viral genome was determined. The analysis of the DNA nucleotide sequence located between the recognition sites of HindIII (0.669 map unit; nucleotide position 1) and AccI (nucleotide position 2032) revealed the presence of an open reading frame of 954 bp on the lower strand of this region between nucleotide positions 1868 (ATG) and 915 (TAA). It encodes for a protein of 318 amino acid residues. The evolutionary relationships of the TK gene of FLDV to the other known TK genes was investigated using the method of progressive sequence alignment. These analyses revealed a high degree of diversity between the protein sequence of FLDV TK gene and the amino acid composition of other TKs tested. However, significant conservations were detected at several regions of amino acid residues of the FLDV TK protein when compared to the amino acid sequence of TKs of African swine fever virus, fowlpox virus, shope fibroma virus, and vaccinia virus and to the amino acid sequences of the cellular cytoplasmic TK of chicken, mouse, and man.

  2. Single nucleotide polymorphisms in the mitochondrial displacement loop and outcome of esophageal squamous cell carcinoma.

    PubMed

    Zhang, Ruixing; Wang, Rui; Zhang, Fengbin; Wu, Chensi; Fan, Haiyan; Li, Yan; Wang, Cuiju; Guo, Zhanjun

    2010-11-26

    Accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-loop) of mitochondrial DNA (mtDNA) has been described for different types of cancers and might be associated with cancer risk and disease outcome. We used a population-based series of esophageal squamous cell carcinoma (ESCC) patients for investigating the prediction power of SNPs in mitochondrial D-loop. The D-loop region of mtDNA was sequenced for 60 ESCC patients recorded in the Fourth Hospital of Hebei Medical University between 2003 and 2004. The 5 year survival curve were calculated with the Kaplan-Meier method and compared by the log-rank test at each SNP site, a multivariate survival analysis was also performed with the Cox proportional hazards method. The SNP sites of nucleotides 16274G/A, 16278C/T and 16399A/G were identified for prediction of post-operational survival by the log-rank test. In an overall multivariate analysis, the 16278 and 16399 alleles were identified as independent predictors of ESCC outcome. The length of survival of patients with the minor allele 16278T genotype was significantly shorter than that of patients with 16278C at the 16278 site (relative risk, 3.001; 95% CI, 1.029 - 8.756; p = 0.044). The length of survival of patients with the minor allele 16399G genotype was significantly shorter than that of patients with the more frequent allele 16399A at the 16399 site in ESCC patients (relative risk, 3.483; 95% CI, 1.068 - 11.359; p = 0.039). Genetic polymorphisms in the D-loop are independent prognostic markers for patients with ESCC. Accordingly, the analysis of genetic polymorphisms in the mitochondrial D-loop can help identify patient subgroups at high risk of a poor disease outcome.

  3. A single alteration 20 nt 5′ to an editing target inhibits chloroplast RNA editing in vivo

    PubMed Central

    Reed, Martha L.; Peeters, Nemo M.; Hanson, Maureen R.

    2001-01-01

    Transcripts of typical dicot plant plastid genes undergo C→U RNA editing at approximately 30 locations, but there is no consensus sequence surrounding the C targets of editing. The cis-acting elements required for editing of the C located at tobacco rpoB editing site II were investigated by introducing translatable chimeric minigenes containing sequence –20 to +6 surrounding the C target of editing. When the –20 to +6 sequence specified by the homologous region present in the black pine chloroplast genome was incorporated, virtually no editing of the transcripts occurred in transgenic tobacco plastids. Nucleotides that differ between the black pine and tobacco sequence were tested for their role in C→U editing by designing chimeric genes containing one or more of these divergent nucleotides. Surprisingly, the divergent nucleotide that had the strongest negative effect on editing of the minigene transcript was located –20 nt 5′ to the C target of editing. Expression of transgene transcripts carrying the 27 nt sequence did not affect the editing extent of the endogenous rpoB transcripts, even though the chimeric transcripts were much more abundant than those of the endogenous gene. In plants carrying a 93 nt rpoB editing site sequence, transgene transcripts accumulated to a level three times greater than transgene transcripts in the plants carrying the 27 nt rpoB editing sites and resulted in editing of the endogenous transcripts from 100 to 50%. Both a lower affinity of the 27 nt site for a trans-acting factor and lower abundance of the transcript could explain why expression of minigene transcripts containing the 27 nt sequence did not affect endogenous editing. PMID:11266552

  4. The ferredoxin-thioredoxin reductase variable subunit gene from Anacystis nidulans.

    PubMed

    Szekeres, M; Droux, M; Buchanan, B B

    1991-03-01

    The ferredoxin-thioredoxin reductase variable subunit gene of Anacystis nidulans was cloned, and its nucleotide sequence was determined. A single-copy 219-bp open reading frame encoded a protein of 73 amino acid residues, with a calculated Mr of 8,400. The monocistronic transcripts were represented in a 400-base and a less abundant 300-base mRNA form.

  5. A molecular study of a family with Greek hereditary persistence of fetal hemoglobin and beta-thalassemia.

    PubMed Central

    Giglioni, B; Casini, C; Mantovani, R; Merli, S; Comi, P; Ottolenghi, S; Saglio, G; Camaschella, C; Mazza, U

    1984-01-01

    A family was studied in which two inherited defects of the non-alpha-globin cluster segregate: Greek hereditary persistence of fetal hemoglobin (HPFH) and beta-thalassemia. Fragments of the non-alpha-globin cluster from two patients were cloned in cosmid and phage lambda vectors, and assigned to either the HPFH or beta-thalassemic chromosome on the basis of the demonstration of a polymorphic BglII site in the HPFH gamma-globin cluster. The thalassemic beta-globin gene carries a mutation at nucleotide 1 of the intervening sequence I, known to cause beta zero-thalassemia; the beta-globin gene from the HPFH chromosome is entirely normal, both in the intron-exon sequence and in 5' flanking regions required for transcription. As the compound HPFH/beta-thalassemia heterozygote synthesizes HbA, these data prove that the HPFH beta-globin gene is functional, although at a decreased rate; its lower activity is likely to be due to a distant mutation. The HPFH A gamma-globin gene shows only two mutations: a T----C substitution in the large intervening sequence (responsible for the BglII polymorphic site) and a C----T substitution 196 nucleotides 5' to the cap site; the 5' flanking sequence is normal up to -1350 nucleotides upstream from the gene. Circumstantial evidence suggests that the mutation at -196 may be responsible for the abnormally high expression of the A gamma-globin gene. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. PMID:6210198

  6. Prehistoric introduction of domestic pigs onto the Okinawa Islands: ancient mitochondrial DNA evidence.

    PubMed

    Watanobe, Takuma; Ishiguro, Naotaka; Nakano, Masuo; Takamiya, Hiroto; Matsui, Akira; Hongo, Hitomi

    2002-08-01

    Ancient DNAs of Sus scrofa specimens excavated from archaeological sites on the Okinawa islands were examined to clarify the genetic relationships among prehistoric Sus scrofa, modern wild boars and domestic pigs inhabiting the Ryukyu archipelago, the Japanese islands, and the Asian continent. We extracted remain DNA from 161 bone specimens excavated from 12 archaeological sites on the Okinawa islands and successfully amplified mitochondrial DNA control region fragments from 33 of 161 specimens. Pairwise difference between prehistoric and modern S. scrofa nucleotide sequences showed that haplotypes of the East Asian domestic pig lineage were found from archaeological specimens together with Ryukyu wild boars native to the Ryukyu archipelago. Phylogenetic analysis of 14 ancient sequences (11 haplotypes; 574 bp) indicated that S. scrofa specimens from two Yayoi-Heian sites (Kitahara and Ara shellmiddens) and two Recent Times sites (Wakuta Kiln and Kiyuna sites) are grouped with modern East Asian domestic pigs. Sus scrofa specimens from Shimizu shellmidden (Yayoi-Heian Period) were very closely related to modern Sus scrofa riukiuanus but had a unique nucleotide insertion, indicating that the population is genetically distinct from the lineage of modern Ryukyu wild boars. This genetic evidence suggests that domestic pigs from the Asian continent were introduced to the Okinawa islands in the early Yayoi-Heian period (1700-2000 BP), or earlier.

  7. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus.

    PubMed

    Schmidt, Thomas L; Rašić, Gordana; Zhang, Dongjing; Zheng, Xiaoying; Xi, Zhiyong; Hoffmann, Ary A

    2017-10-01

    Aedes albopictus is a highly invasive disease vector with an expanding worldwide distribution. Genetic assays using low to medium resolution markers have found little evidence of spatial genetic structure even at broad geographic scales, suggesting frequent passive movement along human transportation networks. Here we analysed genetic structure of Aedes albopictus collected from 12 sample sites in Guangzhou, China, using thousands of genome-wide single nucleotide polymorphisms (SNPs). We found evidence for passive gene flow, with distance from shipping terminals being the strongest predictor of genetic distance among mosquitoes. As further evidence of passive dispersal, we found multiple pairs of full-siblings distributed between two sample sites 3.7 km apart. After accounting for geographical variability, we also found evidence for isolation by distance, previously undetectable in Ae. albopictus. These findings demonstrate how large SNP datasets and spatially-explicit hypothesis testing can be used to decipher processes at finer geographic scales than formerly possible. Our approach can be used to help predict new invasion pathways of Ae. albopictus and to refine strategies for vector control that involve the transformation or suppression of mosquito populations.

  8. Micro-epidemiological structuring of Plasmodium falciparum parasite populations in regions with varying transmission intensities in Africa.

    PubMed Central

    Omedo, Irene; Mogeni, Polycarp; Bousema, Teun; Rockett, Kirk; Amambua-Ngwa, Alfred; Oyier, Isabella; C. Stevenson, Jennifer; Y. Baidjoe, Amrish; de Villiers, Etienne P.; Fegan, Greg; Ross, Amanda; Hubbart, Christina; Jeffreys, Anne; N. Williams, Thomas; Kwiatkowski, Dominic; Bejon, Philip

    2017-01-01

    Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites (Kilifi county and Rachuonyo South district) and one Gambian site (Kombo coastal districts) to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and distance in space and time for parasite pairs. Results: Using 107, 177 and 82 SNPs that were successfully genotyped in 133, 1602, and 1034 parasite isolates from The Gambia, Kilifi and Rachuonyo South district, respectively, we show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population. PMID:28612053

  9. Methods and kits for nucleic acid analysis using fluorescence resonance energy transfer

    DOEpatents

    Kwok, Pui-Yan; Chen, Xiangning

    1999-01-01

    A method for detecting the presence of a target nucleotide or sequence of nucleotides in a nucleic acid is disclosed. The method is comprised of forming an oligonucleotide labeled with two fluorophores on the nucleic acid target site. The doubly labeled oligonucleotide is formed by addition of a singly labeled dideoxynucleoside triphosphate to a singly labeled polynucleotide or by ligation of two singly labeled polynucleotides. Detection of fluorescence resonance energy transfer upon denaturation indicates the presence of the target. Kits are also provided. The method is particularly applicable to genotyping.

  10. Evolutionary constraints and the neutral theory. [mutation-caused nucleotide substitutions in DNA

    NASA Technical Reports Server (NTRS)

    Jukes, T. H.; Kimura, M.

    1984-01-01

    The neutral theory of molecular evolution postulates that nucleotide substitutions inherently take place in DNA as a result of point mutations followed by random genetic drift. In the absence of selective constraints, the substitution rate reaches the maximum value set by the mutation rate. The rate in globin pseudogenes is about 5 x 10 to the -9th substitutions per site per year in mammals. Rates slower than this indicate the presence of constraints imposed by negative (natural) selection, which rejects and discards deleterious mutations.

  11. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.

    PubMed

    Murray, Vincent; Chen, Jon K; Tanaka, Mark M

    2016-07-01

    The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.

  12. HS3D, A Dataset of Homo Sapiens Splice Regions, and its Extraction Procedure from a Major Public Database

    NASA Astrophysics Data System (ADS)

    Pollastro, Pasquale; Rampone, Salvatore

    The aim of this work is to describe a cleaning procedure of GenBank data, producing material to train and to assess the prediction accuracy of computational approaches for gene characterization. A procedure (GenBank2HS3D) has been defined, producing a dataset (HS3D - Homo Sapiens Splice Sites Dataset) of Homo Sapiens Splice regions extracted from GenBank (Rel.123 at this time). It selects, from the complete GenBank Primate Division, entries of Human Nuclear DNA according with several assessed criteria; then it extracts exons and introns from these entries (actually 4523 + 3802). Donor and acceptor sites are then extracted as windows of 140 nucleotides around each splice site (3799 + 3799). After discarding windows not including canonical GT-AG junctions (65 + 74), including insufficient data (not enough material for a 140 nucleotide window) (686 + 589), including not AGCT bases (29 + 30), and redundant (218 + 226), the remaining windows (2796 + 2880) are reported in the dataset. Finally, windows of false splice sites are selected by searching canonical GT-AG pairs in not splicing positions (271 937 + 332 296). The false sites in a range +/- 60 from a true splice site are marked as proximal. HS3D, release 1.2 at this time, is available at the Web server of the University of Sannio: http://www.sci.unisannio.it/docenti/rampone/.

  13. CCTop: An Intuitive, Flexible and Reliable CRISPR/Cas9 Target Prediction Tool

    PubMed Central

    del Sol Keyer, Maria; Wittbrodt, Joachim; Mateo, Juan L.

    2015-01-01

    Engineering of the CRISPR/Cas9 system has opened a plethora of new opportunities for site-directed mutagenesis and targeted genome modification. Fundamental to this is a stretch of twenty nucleotides at the 5’ end of a guide RNA that provides specificity to the bound Cas9 endonuclease. Since a sequence of twenty nucleotides can occur multiple times in a given genome and some mismatches seem to be accepted by the CRISPR/Cas9 complex, an efficient and reliable in silico selection and evaluation of the targeting site is key prerequisite for the experimental success. Here we present the CRISPR/Cas9 target online predictor (CCTop, http://crispr.cos.uni-heidelberg.de) to overcome limitations of already available tools. CCTop provides an intuitive user interface with reasonable default parameters that can easily be tuned by the user. From a given query sequence, CCTop identifies and ranks all candidate sgRNA target sites according to their off-target quality and displays full documentation. CCTop was experimentally validated for gene inactivation, non-homologous end-joining as well as homology directed repair. Thus, CCTop provides the bench biologist with a tool for the rapid and efficient identification of high quality target sites. PMID:25909470

  14. Biphasic association of T7 RNA polymerase and a nucleotide analogue, cibacron blue as a model to understand the role of initiating nucleotide in the mechanism of enzyme action.

    PubMed

    Pai, Sudipta; Das, Mili; Banerjee, Rahul; Dasgupta, Dipak

    2011-08-01

    T7 RNA polymerase (T7 RNAP) is an enzyme that utilizes ribonucleotides to synthesize the nascent RNA chain in a template-dependent manner. Here we have studied the interaction of T7 RNAP with cibacron blue, an anthraquinone monochlorotriazine dye, its effect on the function of the enzyme and the probable mode of binding of the dye. We have used difference absorption spectroscopy and isothermal titration calorimetry to show that the dye binds T7 RNAP in a biphasic manner. The first phase of the binding is characterized by inactivation of the enzyme. The second binding site overlaps with the common substrate-binding site of the enzyme. We have carried out docking experiment to map the binding site of the dye in the promoter bound protein. Competitive displacement of the dye from the high affinity site by labeled GTP and isothermal titration calorimetry of high affinity GTP bound enzyme with the dye suggests a strong correlation between the high affinity dye binding and the high affinity GTP binding in T7 RNAP reported earlier from our laboratory.

  15. Spontaneous nucleotide exchange in low molecular weight GTPases by fluorescently labeled γ-phosphate-linked GTP analogs

    PubMed Central

    Korlach, Jonas; Baird, Daniel W.; Heikal, Ahmed A.; Gee, Kyle R.; Hoffman, Gregory R.; Webb, Watt W.

    2004-01-01

    Regulated guanosine nucleotide exchange and hydrolysis constitute the fundamental activities of low molecular weight GTPases. We show that three guanosine 5′-triphosphate analogs with BODIPY fluorophores coupled via the gamma phosphate bind to the GTPases Cdc42, Rac1, RhoA, and Ras and displace guanosine 5′-diphosphate with high intrinsic exchange rates in the presence of Mg2+ ions, thereby acting as synthetic, low molecular weight guanine nucleotide exchange factors. The accompanying large fluorescence enhancements (as high as 12-fold), caused by a reduction in guanine quenching of the environmentally sensitive BODIPY dye fluorescence on protein binding, allow for real-time monitoring of this spontaneous nucleotide exchange in the visible spectrum with high signal-to-noise ratios. Binding affinities increased with longer aliphatic linkers connecting the nucleotide and BODIPY fluorophore and were in the 10–100 nM range. Steady-state and time-resolved fluorescence spectroscopy showed an inverse relationship between linker length and fluorescence enhancement factors and differences in protein-bound fluorophore mobilities, providing optimization criteria for future applications of such compounds as efficient elicitors and reporters of nucleotide exchange. EDTA markedly enhanced nucleotide exchange, enabling rapid loading of GTPases with these probes. Differences in active site geometries, in the absence of Mg2+, caused qualitatively different reporting of the bound state by the different analogs. The BODIPY analogs also prevented the interaction of Cdc42 with p21 activated kinase. Together, these results validate the use of these analogs as valuable tools for studying GTPase functions and for developing potent synthetic nucleotide exchange factors for this important class of signaling molecules. PMID:14973186

  16. Complexes of yeast adenylate kinase and nucleotides investigated by sup 1 H NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetter, I.R.; Konrad, M.; Rosch, P.

    1991-04-30

    The role of one of the histidine residues present in many adenylate kinases (H36 in the porcine cytosolic enzyme) is highly disputed. The authors studied the yeast enzyme (AK{sub ye}) containing this His residue. AK{sub ye} is highly homologous to the Escherichia coli enzyme (AK{sub ec}), a protein that is already well characterized by NMR and does not contain the His residue in question. In addition, discrepancies between solution structural and X-ray crystallographic studies on the location of the nucleotide binding sites of adenylate kinases are clarified. One- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy was used to investigate AK{submore » ye} and its complex with the bisubstrate analogue P{sup 1},P{sup 5}-bis(5{prime}-adenosyl)pentaphosphate (AP{sub 5}A). From these studies, all aromatic residues of AK{sub ec} involved in the binding of ATP{center dot}Mg{sup 2+} have functional analogues in AK{sub ye}. The AMP site seems to make no contacts to aromatic side chains, neither in the AK{sub ye}{center dot}AP{sub 5}A{center dot}Mg{sup 2+} nor in the AK{sub ec}{center dot}AP{sub 5}A{center dot}Mg{sup 2+} complexes, so that it is presently not possible to localize this binding site by NMR. In combination with the recent X-ray results on the AP{sub 5}A complexes AK{sub ye} and AK{sub ec} and the GMP complex of guanylate kinase the latter one leading to the definition of the monophosphate site, the problem of the location of the nucleotide sites can be considered to be solved in a way contradicting earlier work and denying the His residue homologous to H36 in porcine adenylate kinase a direct role in substrate binding.« less

  17. Impact of vitamin D receptor gene polymorphisms in pathogenesis of Type-1 diabetes mellitus

    PubMed Central

    Kamel, Mahmoud M; Fouad, Shawky A; Salaheldin, Omina; El-Razek, Abd El-Rahman A Abd; El-Fatah, Abeer I Abd

    2014-01-01

    Background: Type 1 diabetes mellitus (TIDM) results from an immune-mediated destruction of insulin-producing-cells in the pancreatic islets of Langerhans. There are clear differences in immunogenetic predisposition to type1 diabetes among countries. Studies have indicated that vitamin D supplementation in early childhood decreases the risk of TIDM. Vitamin D exerts its action via the nuclear vitamin D receptor (VDR), which shows an extensive polymorphism. VDR gene polymorphisms have been associated with altered gene expression or gene function. Four single nucleotide polymorphisms (SNPs) in the VDR gene produce variation in four recognition sites. These recognition sites variants include Fok I, Bsm I, Apa I and Taq I. Aim of the study: TO investigate the relationship between VDR gene polymorphisms (at positions Taq I and Apa I) and the incidence of TIDM in Egyptian peoples. Subjects and methods: This study included 74 patients with type 1 DM in addition to 28 healthy age and sex matched control subjects. All of them were subjected to full history taking and clinical examination. Three ml of venous blood were withdrawn from each patient at fasting and postprandial times and used for genomic DNA extraction, estimation of Hb A1C, as well as, fasting and postprandial C-peptide and blood glucose levels. Results: Apa I recognition site was found in low frequency in diabetic patients (14/74) 18.9% while, its frequency was high (16/28) 57.1% among normal subjects. Taq I has two recognition sites. The first was found at nucleotide number 293 that was found in a frequency of (2/28) 7.1% in normal non-diabetic individuals while it was detected in (14/74) 18.9% in diabetic patients. The second Taq I recognition site was found at nucleotide number 494 without any differences between diabetic and normal individuals. Conclusion: This study indicates that there is an association between VDR genetic polymorphism and incidence of TIDM in Egyptian patients. PMID:25664062

  18. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    PubMed Central

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386

  19. Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles.

    PubMed

    Aiba, Toshiki; Saito, Toshiyuki; Hayashi, Akiko; Sato, Shinji; Yunokawa, Harunobu; Maruyama, Toru; Fujibuchi, Wataru; Kurita, Hisaka; Tohyama, Chiharu; Ohsako, Seiichiroh

    2017-03-09

    It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5' end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research.

  20. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles

    1997-01-01

    Modified gene encoding a modified DNA polymerase wherein the modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase.

  1. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage

    PubMed Central

    Josephs, Eric A.; Kocak, D. Dewran; Fitzgibbon, Christopher J.; McMenemy, Joshua; Gersbach, Charles A.; Marszalek, Piotr E.

    2015-01-01

    CRISPR-associated endonuclease Cas9 cuts DNA at variable target sites designated by a Cas9-bound RNA molecule. Cas9's ability to be directed by single ‘guide RNA’ molecules to target nearly any sequence has been recently exploited for a number of emerging biological and medical applications. Therefore, understanding the nature of Cas9's off-target activity is of paramount importance for its practical use. Using atomic force microscopy (AFM), we directly resolve individual Cas9 and nuclease-inactive dCas9 proteins as they bind along engineered DNA substrates. High-resolution imaging allows us to determine their relative propensities to bind with different guide RNA variants to targeted or off-target sequences. Mapping the structural properties of Cas9 and dCas9 to their respective binding sites reveals a progressive conformational transformation at DNA sites with increasing sequence similarity to its target. With kinetic Monte Carlo (KMC) simulations, these results provide evidence of a ‘conformational gating’ mechanism driven by the interactions between the guide RNA and the 14th–17th nucleotide region of the targeted DNA, the stabilities of which we find correlate significantly with reported off-target cleavage rates. KMC simulations also reveal potential methodologies to engineer guide RNA sequences with improved specificity by considering the invasion of guide RNAs into targeted DNA duplex. PMID:26384421

  2. The ferredoxin-thioredoxin reductase variable subunit gene from Anacystis nidulans.

    PubMed Central

    Szekeres, M; Droux, M; Buchanan, B B

    1991-01-01

    The ferredoxin-thioredoxin reductase variable subunit gene of Anacystis nidulans was cloned, and its nucleotide sequence was determined. A single-copy 219-bp open reading frame encoded a protein of 73 amino acid residues, with a calculated Mr of 8,400. The monocistronic transcripts were represented in a 400-base and a less abundant 300-base mRNA form. Images PMID:1705544

  3. [Intra- and interpopulation variability of southwestern Kamchatka sockeye salmon Oncorhynchus nerka inferred from the data on single nucleotide polymorphism].

    PubMed

    Khrustaleva, A M; Klovach, N V; Gritsenko, O F; Seeb, J E

    2014-07-01

    The variability of 45 single nucleotide polymorphism (SNP) loci was studied in nine samples of the sockeye salmon Oncorhynchus nerka from the rivers of southwestern Kamchatka. The Wahlund effect, gametic disequilibrium at some loci, and a decrease in interpopulation genetic diversity estimates observed in samples from the Bolshaya River outlet are explained in terms of the samples' heterogeneity. Partitioning of mixed samples using some biological characteristics of the individuals led to a noticeable decrease in the frequency of these phenomena. It was demonstrated that the allelic diversity between the populations within the river Plotnikovs accounted for the larger part of genetic variation, as compared to the differentiation between the basins. The SNP loci responsible for intra- and interpopulation differentiation of sockeye salmon from the rivers of southwestern Kamchatka were identified. Some recommendations for field population genetic studies of Asian sockeye salmon were formulated.

  4. Genetic variability in environmental isolates of Legionella pneumophila from Comunidad Valenciana (Spain).

    PubMed

    Coscollá, Mireia; Gosalbes, María José; Catalán, Vicente; González-Candelas, Fernando

    2006-06-01

    Legionella pneumophila is associated to recurrent outbreaks in several Comunidad Valenciana (Spain) localities, especially in Alcoi, where social and climatic conditions seem to provide an excellent environment for bacterial growth. We have analysed the nucleotide sequences of three loci from 25 environmental isolates from Alcoi and nearby locations sampled over 3 years. The analysis of these isolates has revealed a substantial level of genetic variation, with consistent patterns of variability across loci, and comparable to that found in a large, European-wide sampling of clinical isolates. Among the tree loci studied, fliC showed the highest level of nucleotide diversity. The analysis of isolates sampled in different years revealed a clear differentiation, with samples from 2001 being significantly distinct from those obtained in 2002 and 2003. Furthermore, although linkage disequilibrium measures indicate a clonal nature for population structure in this sample, the presence of some recombination events cannot be ruled out.

  5. Efficiency and Fidelity of Human DNA Polymerases λ and β during Gap-Filling DNA Synthesis

    PubMed Central

    Brown, Jessica A.; Pack, Lindsey R.; Sanman, Laura E.; Suo, Zucai

    2010-01-01

    The base excision repair (BER) pathway coordinates the replacement of 1 to 10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1- to 10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5′-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER. PMID:20961817

  6. Intraspecific Variation and Phylogenetic Relationships Are Revealed by ITS1 Secondary Structure Analysis and Single-Nucleotide Polymorphism in Ganoderma lucidum

    PubMed Central

    Pei, Haisheng; Chen, Zhou; Tan, Xiaoyan; Hu, Jing; Yang, Bin; Sun, Junshe

    2017-01-01

    Ganoderma lucidum is a typical polypore fungus used for traditional Chinese medical purposes. The taxonomic delimitation of Ganoderma lucidum is still debated. In this study, we sequenced seven internal transcribed spacer (ITS) sequences of Ganoderma lucidum strains and annotated the ITS1 and ITS2 regions. Phylogenetic analysis of ITS1 differentiated the strains into three geographic groups. Groups 1–3 were originated from Europe, tropical Asia, and eastern Asia, respectively. While ITS2 could only differentiate the strains into two groups in which Group 2 originated from tropical Asia gathered with Groups 1 and 3 originated from Europe and eastern Asia. By determining the secondary structures of the ITS1 sequences, these three groups exhibited similar structures with a conserved central core and differed helices. While compared to Group 2, Groups 1 and 3 of ITS2 sequences shared similar structures with the difference in helix 4. Large-scale evaluation of ITS1 and ITS2 both exhibited that the majority of subgroups in the same group shared the similar structures. Further Weblogo analysis of ITS1 sequences revealed two main variable regions located in helix 2 in which C/T or A/G substitutions frequently occurred and ITS1 exhibited more nucleotide variances compared to ITS2. ITS1 multi-alignment of seven spawn strains and culture tests indicated that a single-nucleotide polymorphism (SNP) site at position 180 correlated with strain antagonism. The HZ, TK and 203 fusion strains of Ganoderma lucidum had a T at position 180, whereas other strains exhibiting antagonism, including DB, RB, JQ, and YS, had a C. Taken together, compared to ITS2 region, ITS1 region could differentiated Ganoderma lucidum into three geographic originations based on phylogenetic analysis and secondary structure prediction. Besides, a SNP in ITS 1 could delineate Ganoderma lucidum strains at the intraspecific level. These findings will be implemented to improve species quality control in the Ganoderma industry. PMID:28056060

  7. Intraspecific Variation and Phylogenetic Relationships Are Revealed by ITS1 Secondary Structure Analysis and Single-Nucleotide Polymorphism in Ganoderma lucidum.

    PubMed

    Zhang, Xiuqing; Xu, Zhangyang; Pei, Haisheng; Chen, Zhou; Tan, Xiaoyan; Hu, Jing; Yang, Bin; Sun, Junshe

    2017-01-01

    Ganoderma lucidum is a typical polypore fungus used for traditional Chinese medical purposes. The taxonomic delimitation of Ganoderma lucidum is still debated. In this study, we sequenced seven internal transcribed spacer (ITS) sequences of Ganoderma lucidum strains and annotated the ITS1 and ITS2 regions. Phylogenetic analysis of ITS1 differentiated the strains into three geographic groups. Groups 1-3 were originated from Europe, tropical Asia, and eastern Asia, respectively. While ITS2 could only differentiate the strains into two groups in which Group 2 originated from tropical Asia gathered with Groups 1 and 3 originated from Europe and eastern Asia. By determining the secondary structures of the ITS1 sequences, these three groups exhibited similar structures with a conserved central core and differed helices. While compared to Group 2, Groups 1 and 3 of ITS2 sequences shared similar structures with the difference in helix 4. Large-scale evaluation of ITS1 and ITS2 both exhibited that the majority of subgroups in the same group shared the similar structures. Further Weblogo analysis of ITS1 sequences revealed two main variable regions located in helix 2 in which C/T or A/G substitutions frequently occurred and ITS1 exhibited more nucleotide variances compared to ITS2. ITS1 multi-alignment of seven spawn strains and culture tests indicated that a single-nucleotide polymorphism (SNP) site at position 180 correlated with strain antagonism. The HZ, TK and 203 fusion strains of Ganoderma lucidum had a T at position 180, whereas other strains exhibiting antagonism, including DB, RB, JQ, and YS, had a C. Taken together, compared to ITS2 region, ITS1 region could differentiated Ganoderma lucidum into three geographic originations based on phylogenetic analysis and secondary structure prediction. Besides, a SNP in ITS 1 could delineate Ganoderma lucidum strains at the intraspecific level. These findings will be implemented to improve species quality control in the Ganoderma industry.

  8. Molecular characterization of the 17D-204 yellow fever vaccine.

    PubMed

    Salmona, Maud; Gazaignes, Sandrine; Mercier-Delarue, Severine; Garnier, Fabienne; Korimbocus, Jehanara; Colin de Verdière, Nathalie; LeGoff, Jerome; Roques, Pierre; Simon, François

    2015-10-05

    The worldwide use of yellow fever (YF) live attenuated vaccines came recently under close scrutiny as rare but serious adverse events have been reported. The population identified at major risk for these safety issues were extreme ages and immunocompromised subjects. Study NCT01426243 conducted by the French National Agency for AIDS research is an ongoing interventional study to evaluate the safety of the vaccine and the specific immune responses in HIV-infected patients following 17D-204 vaccination. As a preliminary study, we characterized the molecular diversity from E gene of the single 17D-204 vaccine batch used in this clinical study. Eight vials of lyophilized 17D-204 vaccine (Stamaril, Sanofi-Pasteur, Lyon, France) of the E5499 batch were reconstituted for viral quantification, cloning and sequencing of C/prM/E region. The average rate of virions per vial was 8.68 ± 0.07 log₁₀ genome equivalents with a low coefficient of variation (0.81%). 246 sequences of the C/prM/E region (29-33 per vials) were generated and analyzed for the eight vials, 25 (10%) being defective and excluded from analyses. 95% of sequences had at least one nucleotide mutation. The mutations were observed on 662 variant sites distributed through all over the 1995 nucleotides sequence and were mainly non-synonymous (66%). Genome variability between vaccine vials was highly homogeneous with a nucleotide distance ranging from 0.29% to 0.41%. Average p-distances observed for each vial were also homogeneous, ranging from 0.15% to 0.31%. This study showed a homogenous YF virus RNA quantity in vaccine vials within a single lot and a low clonal diversity inter and intra vaccine vials. These results are consistent with a recent study showing that the main mechanism of attenuation resulted in the loss of diversity in the YF virus quasi-species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Structural basis for microRNA targeting

    DOE PAGES

    Schirle, Nicole T.; Sheu-Gruttadauria, Jessica; MacRae, Ian J.

    2014-10-31

    MicroRNAs (miRNAs) control expression of thousands of genes in plants and animals. miRNAs function by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. In this paper, we determined crystal structures of human Argonaute-2 (Ago2) bound to a defined guide RNA with and without target RNAs representing miRNA recognition sites. These structures suggest a stepwise mechanism, in which Ago2 primarily exposes guide nucleotides (nt) 2 to 5 for initial target pairing. Pairing to nt 2 to 5 promotes conformational changes that expose nt 2 to 8 and 13 to 16 for further target recognition. Interactions withmore » the guide-target minor groove allow Ago2 to interrogate target RNAs in a sequence-independent manner, whereas an adenosine binding-pocket opposite guide nt 1 further facilitates target recognition. Spurious slicing of miRNA targets is avoided through an inhibitory coordination of one catalytic magnesium ion. Finally, these results explain the conserved nucleotide-pairing patterns in animal miRNA target sites first observed over two decades ago.« less

  10. Binding of ATP by pertussis toxin and isolated toxin subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L.

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner;more » however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.« less

  11. Rare natural type 3/type 2 intertypic capsid recombinant vaccine-related poliovirus isolated from a case of acute flaccid paralysis in Brazil, 2015.

    PubMed

    Cassemiro, Klécia M S M; Burlandy, Fernanda M; da Silva, Edson E

    2016-07-01

    A natural type 3/type 2 intertypic capsid recombinant vaccine-related poliovirus was isolated from an acute flaccid paralytic case in Brazil. Genome sequencing revealed the uncommon location of the crossover site in the VP1 coding region (nucleotides 3251-3258 of Sabin 3 genome). The Sabin 2 donor sequence replaced the last 118 nt of VP1, resulting in the substitution of the complete antigenic site IIIa by PV2-specific amino acids. The low overall number of nucleotide substitutions in P1 region indicated that the predicted replication time of the isolate was about 8-9 weeks. Two of the principal determinants of attenuation in Sabin 3 genomes were mutated (U472C and C2493U), but the temperature-sensitive phenotype of the isolate was preserved. Our results support the theory that there exists a PV3/PV2 recombination hotspot site in the tail region of the VP1 capsid protein and that the recombination may occur soon after oral poliovirus vaccine administration.

  12. Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis

    PubMed Central

    Moore, Michael; Zhang, Chaolin; Gantman, Emily Conn; Mele, Aldo; Darnell, Jennifer C.; Darnell, Robert B.

    2014-01-01

    Summary Identifying sites where RNA binding proteins (RNABPs) interact with target RNAs opens the door to understanding the vast complexity of RNA regulation. UV-crosslinking and immunoprecipitation (CLIP) is a transformative technology in which RNAs purified from in vivo cross-linked RNA-protein complexes are sequenced to reveal footprints of RNABP:RNA contacts. CLIP combined with high throughput sequencing (HITS-CLIP) is a generalizable strategy to produce transcriptome-wide RNA binding maps with higher accuracy and resolution than standard RNA immunoprecipitation (RIP) profiling or purely computational approaches. Applying CLIP to Argonaute proteins has expanded the utility of this approach to mapping binding sites for microRNAs and other small regulatory RNAs. Finally, recent advances in data analysis take advantage of crosslinked-induced mutation sites (CIMS) to refine RNA-binding maps to single-nucleotide resolution. Once IP conditions are established, HITS-CLIP takes approximately eight days to prepare RNA for sequencing. Established pipelines for data analysis, including for CIMS, take 3-4 days. PMID:24407355

  13. Comparison of the acid-base properties of ribose and 2'-deoxyribose nucleotides.

    PubMed

    Mucha, Ariel; Knobloch, Bernd; Jezowska-Bojczuk, Małgorzata; Kozłowski, Henryk; Sigel, Roland K O

    2008-01-01

    The extent to which the replacement of a ribose unit by a 2'-deoxyribose unit influences the acid-base properties of nucleotides has not hitherto been determined in detail. In this study, by potentiometric pH titrations in aqueous solution, we have measured the acidity constants of the 5'-di- and 5'-triphosphates of 2'-deoxyguanosine [i.e., of H(2)(dGDP)(-) and H(2)(dGTP)(2-)] as well as of the 5'-mono-, 5'-di-, and 5'-triphosphates of 2'-deoxyadenosine [i.e., of H(2)(dAMP)(+/-), H(2)(dADP)(-), and H(2)(dATP)(2-)]. These 12 acidity constants (of the 56 that are listed) are compared with those of the corresponding ribose derivatives (published data) measured under the same experimental conditions. The results show that all protonation sites in the 2'-deoxynucleotides are more basic than those in their ribose counterparts. The influence of the 2'-OH group is dependent on the number of 5'-phosphate groups as well as on the nature of the purine nucleobase. The basicity of N7 in guanine nucleotides is most significantly enhanced (by about 0.2 pK units), while the effect on the phosphate groups and the N1H or N1H(+) sites is less pronounced but clearly present. In addition, (1)H NMR chemical shift change studies in dependence on pD in D(2)O have been carried out for the dAMP, dADP, and dATP systems, which confirmed the results from the potentiometric pH titrations and showed the nucleotides to be in their anti conformations. Overall, our results are not only of relevance for metal ion binding to nucleotides or nucleic acids, but also constitute an exact basis for the calculation, determination, and understanding of perturbed pK(a) values in DNAzymes and ribozymes, as needed for the delineation of acid-base mechanisms in catalysis.

  14. Characterization of a tandemly repeated DNA sequence family originally derived by retroposition of tRNA(Glu) in the newt.

    PubMed

    Nagahashi, S; Endoh, H; Suzuki, Y; Okada, N

    1991-11-20

    A previous report from this laboratory showed that in vitro transcription of total genomic DNA of the newt Cynopus pyrrhogaster resulted in a discrete sized 8 S RNA, which represented highly repetitive and transcribable sequences with a glutamic acid tRNA-like structure in the newt genome. We isolated four independent clones from a newt genomic library and determined the complete sequences of three 2000 to 2400 base-pair PstI fragments spanning the 8 S RNA gene. The glutamic acid tRNA-related segment in the 8 S RNA gene contains the CCA sequence expected as the 3' terminus of a tRNA molecule. Further, the 11 nucleotides located 13 nucleotides upstream from one of the two transcription initiation sites of the 8 S RNA were found to be repeated in the region upstream from the termination site, suggesting that the original unit, which is shorter than the 8 S RNA, was retrotransposed via cDNA intermediates from the PolIII transcript. In the upstream region of the 8 S RNA gene, a 360 nucleotide unit containing the glutamic acid tRNA-related segment was found to be duplicated (clones NE1 and NE10) or triplicated (clone NE3). Except for the difference in the number of the 360 nucleotide unit, the three sequences of the 2000 to 2400 base-pair PstI fragment were essentially the same with only a few mutations and minor deletions. Inverse polymerase chain reaction and sequence determination of the products, together with a Southern hybridization experiment, demonstrated that the family consists of a tandemly repeated unit of 3300, 3700 or 4100 base-pairs. Thus during evolution, this family in the newt was created by retroposition via cDNA intermediates, followed by duplication or triplication of the 360 nucleotide unit and multiplication of the 3300 to 4100 base-pair region at the DNA level.

  15. U2504 Determines the Species Specificity of the A-Site Cleft Antibiotics: The Structures of Tiamulin, Homoharringtonine, and Bruceantin Bound to the Ribosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gürel, Güliz; Blaha, Gregor; Moore, Peter B.

    2009-06-30

    Structures have been obtained for the complexes that tiamulin, homoharringtonine, and bruceantin form with the large ribosomal subunit of Haloarcula marismortui at resolutions ranging from 2.65 to 3.2 {angstrom}. They show that all these inhibitors block protein synthesis by competing with the amino acid side chains of incoming aminoacyl-tRNAs for binding in the Asite cleft in the peptidyl-transferase center, which is universally conserved. In addition, these structures support the hypothesis that the species specificity exhibited by the A-site cleft inhibitors is determined by the interactions they make, or fail to make, with a single nucleotide, U2504 (Escherichia coli). In themore » ribosome, the position of U2504 is controlled by its interactions with neighboring nucleotides, whose identities vary among kingdoms.« less

  16. The Role of TIR-NBS and TIR-X Proteins in Plant Basal Defense Responses1[W][OA

    PubMed Central

    Nandety, Raja Sekhar; Caplan, Jeffery L.; Cavanaugh, Keri; Perroud, Bertrand; Wroblewski, Tadeusz; Michelmore, Richard W.; Meyers, Blake C.

    2013-01-01

    Toll/interleukin receptor (TIR) domain-containing proteins encoded in the Arabidopsis (Arabidopsis thaliana) genome include the TIR-nucleotide binding site (TN) and TIR-unknown site/domain (TX) families. We investigated the function of these proteins. Transient overexpression of five TX and TN genes in tobacco (Nicotiana benthamiana) induced chlorosis. This induced chlorosis was dependent on ENHANCED DISEASE RESISTANCE1, a dependency conserved in both tobacco and Arabidopsis. Stable overexpression transgenic lines of TX and TN genes in Arabidopsis produced a variety of phenotypes associated with basal innate immune responses; these were correlated with elevated levels of salicylic acid. The TN protein AtTN10 interacted with the chloroplastic protein phosphoglycerate dehydrogenase in a yeast (Saccharomyces cerevisiae) two-hybrid screen; other TX and TN proteins interacted with nucleotide binding-leucine-rich repeat proteins and effector proteins, suggesting that TN proteins might act in guard complexes monitoring pathogen effectors. PMID:23735504

  17. An experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA: Structure, thermodynamics, and dynamics of hybridization

    PubMed Central

    Hinckley, Daniel M.; Freeman, Gordon S.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2013-01-01

    A new 3-Site-Per-Nucleotide coarse-grained model for DNA is presented. The model includes anisotropic potentials between bases involved in base stacking and base pair interactions that enable the description of relevant structural properties, including the major and minor grooves. In an improvement over available coarse-grained models, the correct persistence length is recovered for both ssDNA and dsDNA, allowing for simulation of non-canonical structures such as hairpins. DNA melting temperatures, measured for duplexes and hairpins by integrating over free energy surfaces generated using metadynamics simulations, are shown to be in quantitative agreement with experiment for a variety of sequences and conditions. Hybridization rate constants, calculated using forward-flux sampling, are also shown to be in good agreement with experiment. The coarse-grained model presented here is suitable for use in biological and engineering applications, including nucleosome positioning and DNA-templated engineering. PMID:24116642

  18. The role of TIR-NBS and TIR-X proteins in plant basal defense responses.

    PubMed

    Nandety, Raja Sekhar; Caplan, Jeffery L; Cavanaugh, Keri; Perroud, Bertrand; Wroblewski, Tadeusz; Michelmore, Richard W; Meyers, Blake C

    2013-07-01

    Toll/interleukin receptor (TIR) domain-containing proteins encoded in the Arabidopsis (Arabidopsis thaliana) genome include the TIR-nucleotide binding site (TN) and TIR-unknown site/domain (TX) families. We investigated the function of these proteins. Transient overexpression of five TX and TN genes in tobacco (Nicotiana benthamiana) induced chlorosis. This induced chlorosis was dependent on ENHANCED DISEASE RESISTANCE1, a dependency conserved in both tobacco and Arabidopsis. Stable overexpression transgenic lines of TX and TN genes in Arabidopsis produced a variety of phenotypes associated with basal innate immune responses; these were correlated with elevated levels of salicylic acid. The TN protein AtTN10 interacted with the chloroplastic protein phosphoglycerate dehydrogenase in a yeast (Saccharomyces cerevisiae) two-hybrid screen; other TX and TN proteins interacted with nucleotide binding-leucine-rich repeat proteins and effector proteins, suggesting that TN proteins might act in guard complexes monitoring pathogen effectors.

  19. Application of DNA Machineries for the Barcode Patterned Detection of Genes or Proteins.

    PubMed

    Zhou, Zhixin; Luo, Guofeng; Wulf, Verena; Willner, Itamar

    2018-06-05

    The study introduces an analytical platform for the detection of genes or aptamer-ligand complexes by nucleic acid barcode patterns generated by DNA machineries. The DNA machineries consist of nucleic acid scaffolds that include specific recognition sites for the different genes or aptamer-ligand analytes. The binding of the analytes to the scaffolds initiate, in the presence of the nucleotide mixture, a cyclic polymerization/nicking machinery that yields displaced strands of variable lengths. The electrophoretic separation of the resulting strands provides barcode patterns for the specific detection of the different analytes. Mixtures of DNA machineries that yield, upon sensing of different genes (or aptamer ligands), one-, two-, or three-band barcode patterns are described. The combination of nucleic acid scaffolds acting, in the presence of polymerase/nicking enzyme and nucleotide mixture, as DNA machineries, that generate multiband barcode patterns provide an analytical platform for the detection of an individual gene out of many possible genes. The diversity of genes (or other analytes) that can be analyzed by the DNA machineries and the barcode patterned imaging is given by the Pascal's triangle. As a proof-of-concept, the detection of one of six genes, that is, TP53, Werner syndrome, Tay-Sachs normal gene, BRCA1, Tay-Sachs mutant gene, and cystic fibrosis disorder gene by six two-band barcode patterns is demonstrated. The advantages and limitations of the detection of analytes by polymerase/nicking DNA machineries that yield barcode patterns as imaging readout signals are discussed.

  20. Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold?

    PubMed

    Grapes, L; Rudd, S; Fernando, R L; Megy, K; Rocha, D; Rothschild, M F

    2006-06-01

    Gene-to-gene variation in the frequency of single nucleotide polymorphisms (SNPs) has been observed in humans, mice, rats, primates and pigs, but a relationship across species in this variation has not been described. Here, the frequency of porcine coding SNPs (cSNPs) identified by in silico methods, and the frequency of murine cSNPs, were compared with the frequency of human cSNPs across homologous genes. From 150,000 porcine expressed sequence tag (EST) sequences, a total of 452 SNP-containing sequence clusters were found, totalling 1394 putative SNPs. All the clustered porcine EST annotations and SNP data have been made publicly available at http://sputnik.btk.fi/project?name=swine. Human and murine cSNPs were identified from dbSNP and were characterized as either validated or total number of cSNPs (validated plus non-validated) for comparison purposes. The correlation between in silico pig cSNP and validated human cSNP densities was found to be 0.77 (p < 0.00001) for a set of 25 homologous genes, while a correlation of 0.48 (p < 0.0005) was found for a primarily random sample of 50 homologous human and mouse genes. This is the first evidence of conserved gene-to-gene variability in cSNP frequency across species and indicates that site-directed screening of porcine genes that are homologous to cSNP-rich human genes may rapidly advance cSNP discovery in pigs.

  1. Genetic diversity analysis of the oriental river prawn (Macrobrachium nipponense) in Huaihe River.

    PubMed

    Cui, Feng; Yu, Yanyan; Bao, Fangyin; Wang, Song; Xiao, Ming Song

    2018-04-19

    The oriental river prawn (Macrobrachium nipponense) is an economically and nutritionally important species of decapod crustaceans in China. Genetic structure and demographic history of Macrobrachium nipponense were examined using sequence data from portions of the mitochondrial DNA cytochrome oxidase subunit I (COI) gene. Samples of 191 individuals were collected from 10 localities in the upper to middle reaches of the Huaihe River. Variability was detected at a total of 42 nucleotide sites along 684 bp length of homologous sequence (6.14%), and base substitutions occurred mostly at the second codon position. Haplotype diversity (h) and nucleotide diversity (π) of all populations were 0.9136 ± 0.0116 and 0.0078 ± 0.0042, respectively. Phylogenetic tree constructed using the maximum-likelihood (ML) method showed that the 44 haplotypes were assigned to two obvious clades associated with geographic regions. Moreover, the median-joining network was similar to the topology of the phylogenetic tree with 44 haplotypes. The pairwise F ST values between the populations varied from -0.0298 to 0.2994. Generally, moderate genetic differentiation (F ST  = 0.1598, p = .0000) among different geographic populations was detected, with the significant differentiation between the Huaibin (HB) and other Macrobrachium nipponense populations. Both mismatch distribution analyses and neutrality tests suggested the early stage of Late Pleistocene population expansion 85,500 years before present for the species, which was consistent with the palaeoclimatic condition of the Huaihe River Basin.

  2. Whole-exome sequencing and digital PCR identified a novel compound heterozygous mutation in the NPHP1 gene in a case of Joubert syndrome and related disorders.

    PubMed

    Koyama, Shingo; Sato, Hidenori; Wada, Manabu; Kawanami, Toru; Emi, Mitsuru; Kato, Takeo

    2017-03-27

    Joubert syndrome and related disorders (JSRD) is a clinically and genetically heterogeneous condition with autosomal recessive or X-linked inheritance, which share a distinctive neuroradiological hallmark, the so-called molar tooth sign. JSRD is classified into six clinical subtypes based on associated variable multiorgan involvement. To date, 21 causative genes have been identified in JSRD, which makes genetic diagnosis difficult. We report here a case of a 28-year-old Japanese woman diagnosed with JS with oculorenal defects with a novel compound heterozygous mutation (p.Ser219*/deletion) in the NPHP1 gene. Whole-exome sequencing (WES) of the patient identified the novel nonsense mutation in an apparently homozygous state. However, it was absent in her mother and heterozygous in her father. A read depth-based copy number variation (CNV) detection algorithm using WES data of the family predicted a large heterozygous deletion mutation in the patient and her mother, which was validated by digital polymerase chain reaction, indicating that the patient was compound heterozygous for the paternal nonsense mutation and the maternal deletion mutation spanning the site of the single nucleotide change. It should be noted that analytical pipelines that focus purely on sequence information cannot distinguish homozygosity from hemizygosity because of its inability to detect large deletions. The ability to detect CNVs in addition to single nucleotide variants and small insertion/deletions makes WES an attractive diagnostic tool for genetically heterogeneous disorders.

  3. Mitochondrial genetic variations in natural house fly (Musca domestica L.) populations from the western and southern parts of Turkey.

    PubMed

    Doğaç, Ersin

    2016-09-01

    The house fly Musca domestica Linnaeus (Diptera) is one of the most studied species that is globally distributed and well known to everyone. In order to ensure baseline knowledge for the genetic resources of the species, genetic variation in M. domestica populations from western and southern parts of Turkey was investigated using nucleotide sequence analysis of 348 base pairs (bp) in the mitochondrial cytochrome oxidase subunit I gene (COI). Samples of 192 individuals were collected from 16 localities of Turkey. There were 10 variable sites defining two haplotypes of COI in this species. There was no difference in geographical distribution frequency between the two regions of Turkey. Overall, haplotype diversity (h) was low, ranging from 0 to 0.5606 with the average overall value of 0.178 ± 0.04 and nucleotide diversity (π), ranged from 0 to 0.0056 with the overall mean of 0.0016. Analysis of molecular variance (AMOVA) indicated that genetic differentiation within individuals and populations was low and significant (p < 0.05). Except Afyon population, conventional population statistic FST showed no significant genetic structure along the range of M. domestica populations. Sixteen populations clustered under six haplotypes and two of them are unique to Turkey. Haplotype networks suggested that house fly populations in Turkey are grouped with the Palearctic region, which is the most probable place for the origin of this species.

  4. Analysis of Vibrio cholerae Genome Sequences Reveals Unique rtxA Variants in Environmental Strains and an rtxA-Null Mutation in Recent Altered El Tor Isolates

    PubMed Central

    Dolores, Jazel; Satchell, Karla J. F.

    2013-01-01

    ABSTRACT Vibrio cholerae genome sequences were analyzed for variation in the rtxA gene that encodes the multifunctional autoprocessing RTX (MARTX) toxin. To accommodate genomic analysis, a discrepancy in the annotated rtxA start site was resolved experimentally. The correct start site is an ATG downstream from rtxC resulting in a gene of 13,638 bp and deduced protein of 4,545 amino acids. Among the El Tor O1 and closely related O139 and O37 genomes, rtxA was highly conserved, with nine alleles differing by only 1 to 6 nucleotides in 100 years. In contrast, 12 alleles from environment-associated isolates are highly variable, at 1 to 3% by nucleotide and 3 to 7% by amino acid. The difference in variation rates did not represent a bias for conservation of the El Tor rtxA compared to that of other strains but rather reflected the lack of gene variation in overall genomes. Three alleles were identified that would affect the function of the MARTX toxin. Two environmental isolates carry novel arrangements of effector domains. These include a variant from RC385 that would suggest an adenylate cyclase toxin and from HE-09 that may have actin ADP-ribosylating activity. Within the recently emerged altered El Tor strains that have a classical ctxB gene, a mutation arose in rtxA that introduces a premature stop codon that disabled toxin function. This null mutant is the genetic background for subsequent emergence of the ctxB7 allele resulting in the strain that spread into Haiti in 2010. Thus, similar to classical strains, the altered El Tor pandemic strains eliminated rtxA after acquiring a classical ctxB. PMID:23592265

  5. Biophysical characterization of fluorotyrosine probes site-specifically incorporated into enzymes: E. coli ribonucleotide reductase as an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyala, Paul H.; Ravichandran, Kanchana R.; Funk, Michael A.

    Here, fluorinated tyrosines (F nY’s, n = 2 and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the recently evolved M. jannaschii Y-tRNA synthetase/tRNA pair. Class Ia RNRs require four redox active Y’s, a stable Y radical (Y·) in the β subunit (position 122 in E. coli), and three transiently oxidized Y’s (356 in β and 731 and 730 in α) to initiate the radicaldependent nucleotide reduction process. F nY (3,5; 2,3; 2,3,5; and 2,3,6) incorporation in place of Y 122-β and the X-ray structures of each resulting β with a diferric cluster aremore » reported and compared with wt-β2 crystallized under the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo F nY-β2, Fe 2+, and O 2 to produce ~1 Y·/β2 and ~3 Fe 3+/β2. The F nY· are stable and active in nucleotide reduction with activities that vary from 5% to 85% that of wt-β2. Each F nY·-β2 has been characterized by 9 and 130 GHz electron paramagnetic resonance and high-field electron nuclear double resonance spectroscopies. The hyperfine interactions associated with the 19F nucleus provide unique signatures of each F nY· that are readily distinguishable from unlabeled Y·’s. The variability of the abiotic F nY pK a’s (6.4 to 7.8) and reduction potentials (-30 to +130 mV relative to Y at pH 7.5) provide probes of enzymatic reactions proposed to involve Y·’s in catalysis and to investigate the importance and identity of hopping Y·’s within redox active proteins proposed to protect them from uncoupled radical chemistry.« less

  6. Methylation levels of the "long interspersed nucleotide element-1" repetitive sequences predict survival of melanoma patients

    PubMed Central

    2011-01-01

    Background The prognosis of cutaneous melanoma (CM) differs for patients with identical clinico-pathological stage, and no molecular markers discriminating the prognosis of stage III individuals have been established. Genome-wide alterations in DNA methylation are a common event in cancer. This study aimed to define the prognostic value of genomic DNA methylation levels in stage III CM patients. Methods Overall level of genomic DNA methylation was measured using bisulfite pyrosequencing at three CpG sites (CpG1, CpG2, CpG3) of the Long Interspersed Nucleotide Element-1 (LINE-1) sequences in short-term CM cultures from 42 stage IIIC patients. The impact of LINE-1 methylation on overall survival (OS) was assessed using Cox regression and Kaplan-Meier analysis. Results Hypomethylation (i.e., methylation below median) at CpG2 and CpG3 sites significantly associated with improved prognosis of CM, CpG3 showing the strongest association. Patients with hypomethylated CpG3 had increased OS (P = 0.01, log-rank = 6.39) by Kaplan-Meyer analysis. Median OS of patients with hypomethylated or hypermethylated CpG3 were 31.9 and 11.5 months, respectively. The 5 year OS for patients with hypomethylated CpG3 was 48% compared to 7% for patients with hypermethylated sequences. Among the variables examined by Cox regression analysis, LINE-1 methylation at CpG2 and CpG3 was the only predictor of OS (Hazard Ratio = 2.63, for hypermethylated CpG3; 95% Confidence Interval: 1.21-5.69; P = 0.01). Conclusion LINE-1 methylation is identified as a molecular marker of prognosis for CM patients in stage IIIC. Evaluation of LINE-1 promises to represent a key tool for driving the most appropriate clinical management of stage III CM patients. PMID:21615918

  7. Biophysical characterization of fluorotyrosine probes site-specifically incorporated into enzymes: E. coli ribonucleotide reductase as an example

    DOE PAGES

    Oyala, Paul H.; Ravichandran, Kanchana R.; Funk, Michael A.; ...

    2016-06-08

    Here, fluorinated tyrosines (F nY’s, n = 2 and 3) have been site-specifically incorporated into E. coli class Ia ribonucleotide reductase (RNR) using the recently evolved M. jannaschii Y-tRNA synthetase/tRNA pair. Class Ia RNRs require four redox active Y’s, a stable Y radical (Y·) in the β subunit (position 122 in E. coli), and three transiently oxidized Y’s (356 in β and 731 and 730 in α) to initiate the radicaldependent nucleotide reduction process. F nY (3,5; 2,3; 2,3,5; and 2,3,6) incorporation in place of Y 122-β and the X-ray structures of each resulting β with a diferric cluster aremore » reported and compared with wt-β2 crystallized under the same conditions. The essential diferric-FnY· cofactor is self-assembled from apo F nY-β2, Fe 2+, and O 2 to produce ~1 Y·/β2 and ~3 Fe 3+/β2. The F nY· are stable and active in nucleotide reduction with activities that vary from 5% to 85% that of wt-β2. Each F nY·-β2 has been characterized by 9 and 130 GHz electron paramagnetic resonance and high-field electron nuclear double resonance spectroscopies. The hyperfine interactions associated with the 19F nucleus provide unique signatures of each F nY· that are readily distinguishable from unlabeled Y·’s. The variability of the abiotic F nY pK a’s (6.4 to 7.8) and reduction potentials (-30 to +130 mV relative to Y at pH 7.5) provide probes of enzymatic reactions proposed to involve Y·’s in catalysis and to investigate the importance and identity of hopping Y·’s within redox active proteins proposed to protect them from uncoupled radical chemistry.« less

  8. Phylogeny and polymorphism in the long control regions E6, E7, and L1 of HPV Type 56 in women from southwest China

    PubMed Central

    Jing, Yaling; Wang, Tao; Chen, Zuyi; Ding, Xianping; Xu, Jianju; Mu, Xuemei; Cao, Man; Chen, Honghan

    2018-01-01

    Globally, human papillomavirus (HPV)-56 accounts for a small proportion of all high-risk HPV types; however, HPV-56 is detected at a higher rate in Asia, particularly in southwest China. The present study analyzed polymorphisms, intratypic variants, and genetic variability in the long control regions (LCR), E6, E7, and L1 of HPV-56 (n=75). The LCRs, E6, E7 and L1 were sequenced using a polymerase chain reaction and the sequences were submitted to GenBank. Maximum-likelihood trees were constructed using Kimura's two-parameter model, followed by secondary structure analysis and protein damaging prediction. Additionally, in order to assess the effect of variations in the LCR on putative binding sites for cellular proteins, MATCH server was used. Finally, the selection pressures of the E6-E7 and L1 genes were estimated. A total of 18 point substitutions, a 42-bp deletion and a 19-bp deletion of LCR were identified. Some of those mutations are embedded in the putative binding sites for transcription factors. 18 single nucleotide changes occurred in the E6-E7 sequence, 11/18 were non-synonymous substitutions and 7/18 were synonymous mutations. A total 24 single nucleotide changes were identified in the L1 sequence, 6/24 being non-synonymous mutations and 18/24 synonymous mutations. Selective pressure analysis predicted that the majority of mutations of HPV-56 E6, E7 and L1 were of positive selection. The phylogenetic tree demonstrated that the isolates distributed in two lineages. Data on the prevalence and genetic variation of HPV-56 types in southwest China may aid future studies on viral molecular mechanisms and contribute to future investigations of diagnostic probes and therapeutic vaccines. PMID:29568922

  9. [Determination of genetic bases of auxotrophy in Yersinia pestis ssp. caucasica strains].

    PubMed

    Odinokov, G N; Eroshenko, G A; Kukleva, L M; Shavina, N Iu; Krasnov, Ia M; Kutyrev, V V

    2012-04-01

    Based on the results of computer analysis of nucleotide sequences in strains Yersinia pestis and Y. pseudotuberculosis recorded in the files of NCBI GenBank database, differences between genes argA, aroG, aroF, thiH, and thiG of strain Pestoides F (subspecies caucasica) were found, compared to other strains of plaque agent and pseudotuberculosis microbe. Using PCR with calculated primers and the method of sequence analysis, the structure of variable regions of these genes was studied in 96 natural Y. pestis and Y. pseudotuberculosis strains. It was shown that all examined strains of subspecies caucasica, unlike strains of plague-causing agent of other subspecies and pseudotubercolosis microbe, had identical mutations in genes argA (integration of the insertion sequence IS100), aroG (insertion of ten nucleotides), aroF (inserion of IS100), thiH (insertion of nucleotide T), and thiG (deletion of 13 nucleotides). These mutations are the reason for the absence in strains belonging to this subspecies of the ability to synthesize arginine, phenylalanine, tyrosine, and vitamin B1 (thiamine), and cause their auxotrophy for these growth factors.

  10. The Structure of RalF, an ADP-Ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amor,J.; Swails, J.; Zhu, X.

    2005-01-01

    The Legionella pneumophila protein RalF is secreted into host cytosol via the Dot/Icm type IV transporter where it acts to recruit ADP-ribosylation factor (Arf) to pathogen-containing phagosomes in the establishment of a replicative organelle. The presence in RalF of the Sec7 domain, present in all Arf guanine nucleotide exchange factors, has suggested that recruitment of Arf is an early step in pathogenesis. We have determined the crystal structure of RalF and of the isolated Sec7 domain and found that RalF is made up of two domains. The Sec7 domain is homologous to mammalian Sec7 domains. The C-terminal domain forms amore » cap over the active site in the Sec7 domain and contains a conserved folding motif, previously observed in adaptor subunits of vesicle coat complexes. The importance of the capping domain and of the glutamate in the 'glutamic finger,' conserved in all Sec7 domains, to RalF functions was examined using three different assays. These data highlight the functional importance of domains other than Sec7 in Arf guanine nucleotide exchange factors to biological activities and suggest novel mechanisms of regulation of those activities.« less

  11. DNA variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato).

    PubMed Central

    Kado, Tomoyuki; Yoshimaru, Hiroshi; Tsumura, Yoshihiko; Tachida, Hidenori

    2003-01-01

    We investigated the nucleotide variation of a conifer, Cryptomeria japonica, and the divergence between this species and its closest relative, Taxodium distichum, at seven nuclear loci (Acl5, Chi1, Ferr, GapC, HemA, Lcyb, and Pat). Samples of C. japonica were collected from three areas, Kantou-Toukai, Hokuriku, and Iwate. No apparent geographic differentiation was found among these samples. However, the frequency spectrum of the nucleotide polymorphism revealed excesses of intermediate-frequency variants, which suggests that the population was not panmictic and a constant size in the past. The average nucleotide diversity, pi, for silent sites was 0.00383. However, values of pi for silent sites vary among loci. Comparisons of polymorphism to divergence among loci (the HKA test) showed that the polymorphism at the Acl5 locus was significantly lower. We also observed a nearly significant excess of replacement polymorphisms at the Lcyb locus. These results suggested possibilities of natural selection acting at some of the loci. Intragenic recombination was detected only once at the Chi1 locus and was not detected at the other loci. The low level of population recombination rate, 4Nr, seemed to be due to both low level of recombination, r, and small population size, N. PMID:12930759

  12. Identification of Bombyx mori bidensovirus VD1-ORF4 reveals a novel protein associated with viral structural component.

    PubMed

    Li, Guohui; Hu, Zhaoyang; Guo, Xuli; Li, Guangtian; Tang, Qi; Wang, Peng; Chen, Keping; Yao, Qin

    2013-06-01

    Bombyx mori bidensovirus (BmBDV) VD1-ORF4 (open reading frame 4, ORF4) consists of 3,318 nucleotides, which codes for a predicted 1,105-amino acid protein containing a conserved DNA polymerase motif. However, its functions in viral propagation remain unknown. In the current study, the transcription of VD1-ORF4 was examined from 6 to 96 h postinfection (p.i.) by RT-PCR, 5'-RACE revealed the transcription initiation site of BmBDV ORF4 to be -16 nucleotides upstream from the start codon, and 3'-RACE revealed the transcription termination site of VD1-ORF4 to be +7 nucleotides downstream from termination codon. Three different proteins were examined in the extracts of BmBDV-infected silkworms midguts by Western blot using raised antibodies against VD1-ORF4 deduced amino acid, and a specific protein band about 53 kDa was further detected in purified virions using the same antibodies. Taken together, BmBDV VD1-ORF4 codes for three or more proteins during the viral life cycle, one of which is a 53 kDa protein and confirmed to be a component of BmBDV virion.

  13. Mechanism of nucleotide sensing in group II chaperonins.

    PubMed

    Pereira, Jose H; Ralston, Corie Y; Douglas, Nicholai R; Kumar, Ramya; Lopez, Tom; McAndrew, Ryan P; Knee, Kelly M; King, Jonathan A; Frydman, Judith; Adams, Paul D

    2012-02-01

    Group II chaperonins mediate protein folding in an ATP-dependent manner in eukaryotes and archaea. The binding of ATP and subsequent hydrolysis promotes the closure of the multi-subunit rings where protein folding occurs. The mechanism by which local changes in the nucleotide-binding site are communicated between individual subunits is unknown. The crystal structure of the archaeal chaperonin from Methanococcus maripaludis in several nucleotides bound states reveals the local conformational changes associated with ATP hydrolysis. Residue Lys-161, which is extremely conserved among group II chaperonins, forms interactions with the γ-phosphate of ATP but shows a different orientation in the presence of ADP. The loss of the ATP γ-phosphate interaction with Lys-161 in the ADP state promotes a significant rearrangement of a loop consisting of residues 160-169. We propose that Lys-161 functions as an ATP sensor and that 160-169 constitutes a nucleotide-sensing loop (NSL) that monitors the presence of the γ-phosphate. Functional analysis using NSL mutants shows a significant decrease in ATPase activity, suggesting that the NSL is involved in timing of the protein folding cycle.

  14. Inhibition of Glucuronokinase by Substrate Analogs 1

    PubMed Central

    Gillard, Douglas F.; Dickinson, David B.

    1978-01-01

    Glucuronokinase from Lilium longiflorum pollen was purified 30- to 40- fold on a blue dextran-Sepharose column. Substrate analogs were tested for inhibitory effects, and nucleotide substrate specificity of the enzyme was determined. Nine nucleotides were tested, and all were inhibitory when the substrate was ATP. ADP was competitive with ATP and had a Ki value of 0.23 mm. None of the other nucleotide triphosphates could effectively substitute for ATP as a nucleotide substrate. Ten mm dATP and ITP reacted only 3% as rapidly as 10 mm ATP, while the rates for 10 mm GTP, CTP, UTP, and TTP were less than 1%. The glucuronic acid analogs, methyl α-glucuronoside, methyl β-glucuronoside, β-glucuronic acid-1-phosphate, and 4-O-methylglucuronic acid were tested as possible enzyme inhibitors. The three methyl derivatives showed little or no inhibition. The β-glucuronic acid-1-phosphate was inhibitory, with 50% inhibition obtained at 1 to 3 mm depending on the concentration of the glucuronic acid. It is concluded that the glucuronic acid-binding site on the enzyme is highly selective. PMID:16660589

  15. Morphology and genetics of Anadenanthera colubrina var. cebil (Fabaceae) tree from salta (Northwestern Argentina).

    PubMed

    de Viana, Marta L; Giamminola, Eugenia; Russo, Roberta; Ciaccio, Mirella

    2014-06-01

    Anadenanthera colubrina var. cebil is an important tree species for its cultural, economic, and medicinal uses in South America. In order to characterize A. colubrina populations, we collected fruits from four different sites (San Bernardo, El Cebilar, Metán and El Gallinato) within the species distribution area in Salta Province, Northwestern Argentina. For this, a total of 75 fruits and seeds per site were collected and described using morphological (fruits size and weight; seed weight and number per fruit) and genetic descriptors (ribosomic DNA extraction and PCR; nucleotide alignment and phylogenetic analysis) with standard protocols. Our results showed that the San Bernardo population had the heaviest fruits and seeds (7.89 +/- 0.2g and 0.19 +/- 0.002, respectively), and the Cebilar population the lightest (6.25 +/- 0.18g and 0.15 +/- 0.002g, respectively). Fruits and seeds from Metán and El Gallinato showed similar and intermediate values. The proportion viable (39 to 55%) and aborted (43 to 57%) seeds was different, while the proportion of predated (1.7 to 4.2%) seeds was similar among populations. The genetic analysis showed variability of ITS sequences within the especies, and also when compared with the same Brazilian species. Both, morphologic and genetic descriptors showed a high level of similarity between San Bernardo and Metán, and between El Cebilar and El Gallinato populations. Further studies are needed to assess levels of phenotypic and genetic variability within and between populations of different plant species, since this information is crucial for biodiversity and germplasm long-term conservation.

  16. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    PubMed

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in most performance measures. To the best of our knowledge, this is the first sequence-based prediction of protein-binding nucleotides in RNA which considers the binding partner of RNA. The new model will provide valuable information for designing biochemical experiments to find putative protein-binding sites in RNA with unknown structure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Human papillomavirus type 18 variant lineages in United States populations characterized by sequence analysis of LCR-E6, E2, and L1 regions.

    PubMed

    Arias-Pulido, Hugo; Peyton, Cheri L; Torrez-Martínez, Norah; Anderson, D Nelson; Wheeler, Cosette M

    2005-07-20

    While HPV 16 variant lineages have been well characterized, the knowledge about HPV 18 variants is limited. In this study, HPV 18 nucleotide variations in the E2 hinge region were characterized by sequence analysis in 47 control and 51 tumor specimens. Fifty of these specimens were randomly selected for sequencing of an LCR-E6 segment and 20 samples representative of LCR-E6 and E2 sequence variants were examined across the L1 region. A total of 2770 nucleotides per HPV 18 variant genome were considered in this study. HPV 18 variant nucleotides were linked among all gene segments analyzed and grouped into three main branches: Asian-American (AA), European (E), and African (Af). These three branches were equally distributed among controls and cases and when stratified by Hispanic and non-Hispanic ethnicities. Among invasive cervical cancer cases, no significant differences in the three HPV variant branches were observed among ethnic groups or when stratified by histopathology (squamous vs. adenocarcinoma). The Af branch showed the greatest nucleotide variability when compared to the HPV 18 reference sequence and was more closely related to HPV 45 than either AA or E branches. Our data also characterize nucleotide and amino acid variations in the L1 capsid gene among HPV 18 variants, which may be relevant to vaccine strategies and subsequent studies of naturally occurring HPV 18 variants. Several novel HPV 18 nucleotide variations were identified in this study.

  18. Host shifts and molecular evolution of H7 avian influenza virus hemagglutinin

    PubMed Central

    2011-01-01

    Evolutionary consequences of host shifts represent a challenge to identify the mechanisms involved in the emergence of influenza A (IA) viruses. In this study we focused on the evolutionary history of H7 IA virus in wild and domestic birds, with a particular emphasis on host shifts consequences on the molecular evolution of the hemagglutinin (HA) gene. Based on a dataset of 414 HA nucleotide sequences, we performed an extensive phylogeographic analysis in order to identify the overall genetic structure of H7 IA viruses. We then identified host shift events and investigated viral population dynamics in wild and domestic birds, independently. Finally, we estimated changes in nucleotide substitution rates and tested for positive selection in the HA gene. A strong association between the geographic origin and the genetic structure was observed, with four main clades including viruses isolated in North America, South America, Australia and Eurasia-Africa. We identified ten potential events of virus introduction from wild to domestic birds, but little evidence for spillover of viruses from poultry to wild waterbirds. Several sites involved in host specificity (addition of a glycosylation site in the receptor binding domain) and virulence (insertion of amino acids in the cleavage site) were found to be positively selected in HA nucleotide sequences, in genetically unrelated lineages, suggesting parallel evolution for the HA gene of IA viruses in domestic birds. These results highlight that evolutionary consequences of bird host shifts would need to be further studied to understand the ecological and molecular mechanisms involved in the emergence of domestic bird-adapted viruses. PMID:21711553

  19. Mapping the neutralizing epitopes on the glycoprotein of infectious haematopoietic necrosis virus, a fish rhabdovirus

    USGS Publications Warehouse

    Huang, C.; Chien, M.S.; Landolt, M.L.; Batts, W.; Winton, J.

    1996-01-01

    Twelve neutralizing monoclonal antibodies (MAbs) against the fish rhabdovirus, infectious haematopoietic necrosis virus (IHNV), were used to select 20 MAb escape mutants. The nucleotide sequence of the entire glycoprotein (G) gene was determined for six mutants representing differing cross-neutralization patterns and each had a single nucleotide change leading to a single amino acid substitution within one of three regions of the protein. These data were used to design nested PCR primers to amplify portions of the G gene of the 14 remaining mutants. When the PCR products from these mutants were sequenced, they also had single nucleotide substitutions coding for amino acid substitutions at the same, or nearby, locations. Of the 20 mutants for which all or part of the glycoprotein gene was sequenced, two MAbs selected mutants with substitutions at amino acids 230-231 (antigenic site I) and the remaining MAbs selected mutants with substitutions at amino acids 272-276 (antigenic site II). Two MAbs that selected mutants mapping to amino acids 272-276, selected other mutants that mapped to amino acids 78-81, raising the possibility that this portion of the N terminus of the protein was part of a discontinuous epitope defining antigenic site II. CLUSTAL alignment of the glycoproteins of rabies virus, vesicular stomatitis virus and IHNV revealed similarities in the location of the neutralizing epitopes and a high degree of conservation among cysteine residues, indicating that the glycoproteins of three different genera of animal rhabdoviruses may share a similar three-dimensional structure in spite of extensive sequence divergence.

  20. Nucleotide sequence of the gene determining plasmid-mediated citrate utilization.

    PubMed Central

    Ishiguro, N; Sato, G

    1985-01-01

    The citrate utilization determinant from transposon Tn3411 has been cloned and sequenced, and its polypeptide products have been characterized in minicell experiments. The nucleotide sequence was determined for a 2,047-base-pair BglII restriction endonuclease fragment that includes the citrate determinant. This region contains an open reading frame that would encode a 431-amino-acid very hydrophobic polypeptide and which is preceded by a reasonable ribosomal binding site. However, the single polypeptide found in minicell experiments had an apparent molecular weight of 35,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:2999087

  1. Gene sequence variability of the three surface proteins of human respiratory syncytial virus (HRSV) in Texas.

    PubMed

    Tapia, Lorena I; Shaw, Chad A; Aideyan, Letisha O; Jewell, Alan M; Dawson, Brian C; Haq, Taha R; Piedra, Pedro A

    2014-01-01

    Human respiratory syncytial virus (HRSV) has three surface glycoproteins: small hydrophobic (SH), attachment (G) and fusion (F), encoded by three consecutive genes (SH-G-F). A 270-nt fragment of the G gene is used to genotype HRSV isolates. This study genotyped and investigated the variability of the gene and amino acid sequences of the three surface proteins of HRSV strains collected from 1987 to 2005 from one center. Sixty original clinical isolates and 5 prototype strains were analyzed. Sequences containing SH, F and G genes were generated, and multiple alignments and phylogenetic trees were analyzed. Genetic variability by protein domains comparing virus genotypes was assessed. Complete sequences of the SH-G-F genes were obtained for all 65 samples: HRSV-A = 35; HRSV-B = 30. In group A strains, genotypes GA5 and GA2 were predominant. For HRSV-B strains, the genotype GB4 was predominant from 1992 to 1994 and only genotype BA viruses were detected in 2004-2005. Different genetic variability at nucleotide level was detected between the genes, with G gene being the most variable and the highest variability detected in the 270-nt G fragment that is frequently used to genotype the virus. High variability (>10%) was also detected in the signal peptide and transmembrane domains of the F gene of HRSV A strains. Variability among the HRSV strains resulting in non-synonymous changes was detected in hypervariable domains of G protein, the signal peptide of the F protein, a not previously defined domain in the F protein, and the antigenic site Ø in the pre-fusion F. Divergent trends were observed between HRSV -A and -B groups for some functional domains. A diverse population of HRSV -A and -B genotypes circulated in Houston during an 18 year period. We hypothesize that diverse sequence variation of the surface protein genes provide HRSV strains a survival advantage in a partially immune-protected community.

  2. Gene Sequence Variability of the Three Surface Proteins of Human Respiratory Syncytial Virus (HRSV) in Texas

    PubMed Central

    Tapia, Lorena I.; Shaw, Chad A.; Aideyan, Letisha O.; Jewell, Alan M.; Dawson, Brian C.; Haq, Taha R.; Piedra, Pedro A.

    2014-01-01

    Human respiratory syncytial virus (HRSV) has three surface glycoproteins: small hydrophobic (SH), attachment (G) and fusion (F), encoded by three consecutive genes (SH-G-F). A 270-nt fragment of the G gene is used to genotype HRSV isolates. This study genotyped and investigated the variability of the gene and amino acid sequences of the three surface proteins of HRSV strains collected from 1987 to 2005 from one center. Sixty original clinical isolates and 5 prototype strains were analyzed. Sequences containing SH, F and G genes were generated, and multiple alignments and phylogenetic trees were analyzed. Genetic variability by protein domains comparing virus genotypes was assessed. Complete sequences of the SH-G-F genes were obtained for all 65 samples: HRSV-A = 35; HRSV-B = 30. In group A strains, genotypes GA5 and GA2 were predominant. For HRSV-B strains, the genotype GB4 was predominant from 1992 to 1994 and only genotype BA viruses were detected in 2004–2005. Different genetic variability at nucleotide level was detected between the genes, with G gene being the most variable and the highest variability detected in the 270-nt G fragment that is frequently used to genotype the virus. High variability (>10%) was also detected in the signal peptide and transmembrane domains of the F gene of HRSV A strains. Variability among the HRSV strains resulting in non-synonymous changes was detected in hypervariable domains of G protein, the signal peptide of the F protein, a not previously defined domain in the F protein, and the antigenic site Ø in the pre-fusion F. Divergent trends were observed between HRSV -A and -B groups for some functional domains. A diverse population of HRSV -A and -B genotypes circulated in Houston during an 18 year period. We hypothesize that diverse sequence variation of the surface protein genes provide HRSV strains a survival advantage in a partially immune-protected community. PMID:24625544

  3. The structural basis of actinomycin D–binding induces nucleotide flipping out, a sharp bend and a left-handed twist in CGG triplet repeats

    PubMed Central

    Lo, Yu-Sheng; Tseng, Wen-Hsuan; Chuang, Chien-Ying; Hou, Ming-Hon

    2013-01-01

    The potent anticancer drug actinomycin D (ActD) functions by intercalating into DNA at GpC sites, thereby interrupting essential biological processes including replication and transcription. Certain neurological diseases are correlated with the expansion of (CGG)n trinucleotide sequences, which contain many contiguous GpC sites separated by a single G:G mispair. To characterize the binding of ActD to CGG triplet repeat sequences, the structural basis for the strong binding of ActD to neighbouring GpC sites flanking a G:G mismatch has been determined based on the crystal structure of ActD bound to ATGCGGCAT, which contains a CGG triplet sequence. The binding of ActD molecules to GCGGC causes many unexpected conformational changes including nucleotide flipping out, a sharp bend and a left-handed twist in the DNA helix via a two site-binding model. Heat denaturation, circular dichroism and surface plasmon resonance analyses showed that adjacent GpC sequences flanking a G:G mismatch are preferred ActD-binding sites. In addition, ActD was shown to bind the hairpin conformation of (CGG)16 in a pairwise combination and with greater stability than that of other DNA intercalators. Our results provide evidence of a possible biological consequence of ActD binding to CGG triplet repeat sequences. PMID:23408860

  4. Complex Structure and Biochemical Characterization of the Staphylococcus aureus Cyclic Diadenylate Monophosphate (c-di-AMP)-binding Protein PstA, the Founding Member of a New Signal Transduction Protein Family*

    PubMed Central

    Campeotto, Ivan; Zhang, Yong; Mladenov, Miroslav G.; Freemont, Paul S.; Gründling, Angelika

    2015-01-01

    Signaling nucleotides are integral parts of signal transduction systems allowing bacteria to cope with and rapidly respond to changes in the environment. The Staphylococcus aureus PII-like signal transduction protein PstA was recently identified as a cyclic diadenylate monophosphate (c-di-AMP)-binding protein. Here, we present the crystal structures of the apo- and c-di-AMP-bound PstA protein, which is trimeric in solution as well as in the crystals. The structures combined with detailed bioinformatics analysis revealed that the protein belongs to a new family of proteins with a similar core fold but with distinct features to classical PII proteins, which usually function in nitrogen metabolism pathways in bacteria. The complex structure revealed three identical c-di-AMP-binding sites per trimer with each binding site at a monomer-monomer interface. Although distinctly different from other cyclic-di-nucleotide-binding sites, as the half-binding sites are not symmetrical, the complex structure also highlighted common features for c-di-AMP-binding sites. A comparison between the apo and complex structures revealed a series of conformational changes that result in the ordering of two anti-parallel β-strands that protrude from each monomer and allowed us to propose a mechanism on how the PstA protein functions as a signaling transduction protein. PMID:25505271

  5. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, S.; Richardson, C.

    1997-03-25

    A modified gene encoding a modified DNA polymerase is disclosed. The modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase. 6 figs.

  6. Evidence for a G protein-coupled diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) receptor binding site in lung membranes from rat.

    PubMed

    Laubinger, W; Reiser, G

    1999-01-29

    Nucleotide receptors are of considerable importance in the treatment of lung diseases, such as cystic fibrosis. Because diadenosine polyphosphates may also be of significance as signalling molecules in lung, as they are in a variety of tissues, in the present work we investigated the binding sites for [3H]diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) in plasma membranes from rat lung and studied their possible coupling to G proteins. We present evidence for a single high-affinity binding site for [3H]Ap4A with similar affinity for other diadenosine polyphosphates ApnA (n = 2 to 6). Displacement studies with different nucleotides revealed that the [3H]Ap4A binding site was different from P2X and P2Y2 receptor binding sites. Pretreatment of lung membranes with GTPgammaS or GTP in the presence of Mg2+ increased the Ki for Ap4A from 91 nM to 5.1 microM, which is indicative of G protein coupling. The putative coupling to G proteins was further confirmed by the enhancement of [35S]GTPgammaS binding (to Galpha proteins) to lung membranes by Ap4A (63% increase over basal) in a concentration-dependent manner. Therefore, our data for the first time provide evidence of a G protein-coupled Ap4A binding site in lung membranes.

  7. Familial Blau syndrome without uveitis caused by a novel mutation in the nucleotide-binding oligomerization domain-containing protein 2 gene with good response to infliximab.

    PubMed

    Toral-López, Jaime; González-Huerta, Luz M; Martín-Del Campo, Mónica; Messina-Baas, Olga; Cuevas-Covarrubias, Sergio A

    2018-05-01

    The proband in this study was a 4-year-old Mexican girl with Blau syndrome. She and her affected family members had skin rash and arthritis but no uveitis. Exome sequencing and DNA direct sequencing from blood samples revealed a novel nucleotide-binding oligomerization domain-containing protein 2 gene mutation in the affected family members. This study is the first report of a Mexican family with Blau syndrome showing good infliximab treatment response. The novel mutation in the nucleotide-binding oligomerization domain-containing protein 2 gene (c.1808A>G) enriches the mutation spectrum in Blau syndrome. This family represents one of the few cases of autosomal Blau syndrome with no uveitis; because of phenotype variability, it is important to recognize Blau syndrome's clinical spectrum and recommend genetic consultation. © 2018 Wiley Periodicals, Inc.

  8. Combined Real-Time PCR and Pyrosequencing Strategy for Objective, Sensitive, Specific, and High-Throughput Identification of Reduced Susceptibility to Penicillins in Neisseria meningitidis▿

    PubMed Central

    Thulin, Sara; Olcén, Per; Fredlund, Hans; Unemo, Magnus

    2008-01-01

    A segment of penA in Neisseria meningitidis strains (n = 127), including two nucleotide sites closely associated to reduced susceptibility to penicillins, was amplified and pyrosequenced. All results were in concordance with Sanger sequencing, and a high correlation between alterations in the two Peni-specific sites and reduced susceptibility to penicillins was identified. PMID:18070955

  9. Mutational Analysis of the TnrA-Binding Sites in the Bacillus subtilis nrgAB and gabP Promoter Regions

    PubMed Central

    Wray, Lewis V.; Zalieckas, Jill M.; Ferson, Amy E.; Fisher, Susan H.

    1998-01-01

    Transcription of the Bacillus subtilis nrgAB promoter is activated during nitrogen-limited growth by the TnrA protein. A common inverted repeat, TGTNAN7TNACA (TnrA site), is centered 49 to 51 bp upstream of the transcriptional start sites for the TnrA-regulated nrgAB, gabP P2, and nas promoters. Oligonucleotide-directed mutagenesis of the nrgAB promoter region showed that conserved nucleotides within the TnrA site, the A+T-rich region between the two TnrA half-sites, and an upstream A tract are all required for high-level activation of nrgAB expression. Mutations that alter the relative distance between the two half-sites of the nrgAB TnrA site abolish nitrogen regulation of nrgAB expression. Spacer mutations that change the relative distance between the TnrA site and −35 region of the nrgAB promoter reveal that activation of nrgAB expression occurs only when the TnrA site is located 49 to 51 bp upstream of the transcriptional start site. Mutational analysis of the conserved nucleotides in the gabP P2 TnrA site showed that this sequence is also required for nitrogen-regulated gabP P2 expression. The TnrA protein, expressed in an overproducing Escherichia coli strain, had a 625-fold-higher affinity for the wild-type nrgAB promoter DNA than for a mutated nrgAB promoter DNA fragment that is unable to activate nrgAB expression in vivo. These results indicate that the proposed TnrA site functions as the binding site for the TnrA protein. TnrA was found to activate nrgAB expression during late exponential growth in nutrient sporulation medium containing glucose, suggesting that cells become nitrogen limited during growth in this medium. PMID:9603886

  10. Molecular mechanisms of retroviral integration site selection

    PubMed Central

    Kvaratskhelia, Mamuka; Sharma, Amit; Larue, Ross C.; Serrao, Erik; Engelman, Alan

    2014-01-01

    Retroviral replication proceeds through an obligate integrated DNA provirus, making retroviral vectors attractive vehicles for human gene-therapy. Though most of the host cell genome is available for integration, the process of integration site selection is not random. Retroviruses differ in their choice of chromatin-associated features and also prefer particular nucleotide sequences at the point of insertion. Lentiviruses including HIV-1 preferentially integrate within the bodies of active genes, whereas the prototypical gammaretrovirus Moloney murine leukemia virus (MoMLV) favors strong enhancers and active gene promoter regions. Integration is catalyzed by the viral integrase protein, and recent research has demonstrated that HIV-1 and MoMLV targeting preferences are in large part guided by integrase-interacting host factors (LEDGF/p75 for HIV-1 and BET proteins for MoMLV) that tether viral intasomes to chromatin. In each case, the selectivity of epigenetic marks on histones recognized by the protein tether helps to determine the integration distribution. In contrast, nucleotide preferences at integration sites seem to be governed by the ability for the integrase protein to locally bend the DNA duplex for pairwise insertion of the viral DNA ends. We discuss approaches to alter integration site selection that could potentially improve the safety of retroviral vectors in the clinic. PMID:25147212

  11. Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidarius L.).

    PubMed

    Theodorou, Panagiotis; Radzevičiūtė, Rita; Kahnt, Belinda; Soro, Antonella; Grosse, Ivo; Paxton, Robert J

    2018-04-25

    Urbanization is considered a global threat to biodiversity; the growth of cities results in an increase in impervious surfaces, soil and air pollution, fragmentation of natural vegetation and invasion of non-native species, along with numerous environmental changes, including the heat island phenomenon. The combination of these effects constitutes a challenge for both the survival and persistence of many native species, while also imposing altered selective regimes. Here, using 110 314 single nucleotide polymorphisms generated by restriction-site-associated DNA sequencing, we investigated the genome-wide effects of urbanization on putative neutral and adaptive genomic diversity in a major insect pollinator, Bombus lapidarius , collected from nine German cities and nine paired rural sites. Overall, genetic differentiation among sites was low and there was no obvious genome-wide genetic structuring, suggesting the absence of strong effects of urbanization on gene flow. We nevertheless identified several loci under directional selection, a subset of which was associated with urban land use, including the percentage of impervious surface surrounding each sampling site. Overall, our results provide evidence of local adaptation to urbanization in the face of gene flow in a highly mobile insect pollinator. © 2018 The Author(s).

  12. A contact photo-cross-linking investigation of the active site of the 8-17 deoxyribozyme.

    PubMed

    Liu, Yong; Sen, Dipankar

    2008-09-12

    The small RNA-cleaving 8-17 deoxyribozyme (DNAzyme) has been the subject of extensive mechanistic and structural investigation, including a number of recent single-molecule studies of its global folding. Little detailed insight exists, however, into this DNAzyme's active site; for instance, the identity of specific nucleotides that are proximal to or in contact with the scissile site in the substrate. Here, we report a systematic replacement of a number of bases within the magnesium-folded DNAzyme-substrate complex with thio- and halogen-substituted base analogues, which were then photochemically activated to generate contact cross-links within the complex. Mapping of the cross-links revealed a striking pattern of DNAzyme-substrate cross-links but an absence of significant intra-DNAzyme cross-links. Notably, the two nucleotides directly flanking the scissile phosphodiester cross-linked strongly with functionally important elements within the DNAzyme, the thymine of a G.T wobble base pair, a WCGR bulge loop, and a terminal AGC loop. Mutation of the wobble base pair to a G-C pair led to a significant folding instability of the DNAzyme-substrate complex. The cross-linking patterns obtained were used to generate a model for the DNAzyme's active site that had the substrate's scissile phosphodiester sandwiched between the DNAzyme's wobble thymine and its AGC and WCGR loops.

  13. The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids.

    PubMed

    Jheng, Cheng-Fong; Chen, Tien-Chih; Lin, Jhong-Yi; Chen, Ting-Chieh; Wu, Wen-Luan; Chang, Ching-Chun

    2012-07-01

    The chloroplast genome of Phalaenopsis equestris was determined and compared to those of Phalaenopsis aphrodite and Oncidium Gower Ramsey in Orchidaceae. The chloroplast genome of P. equestris is 148,959 bp, and a pair of inverted repeats (25,846 bp) separates the genome into large single-copy (85,967 bp) and small single-copy (11,300 bp) regions. The genome encodes 109 genes, including 4 rRNA, 30 tRNA and 75 protein-coding genes, but loses four ndh genes (ndhA, E, F and H) and seven other ndh genes are pseudogenes. The rate of inter-species variation between the two moth orchids was 0.74% (1107 sites) for single nucleotide substitution and 0.24% for insertions (161 sites; 1388 bp) and deletions (189 sites; 1393 bp). The IR regions have a lower rate of nucleotide substitution (3.5-5.8-fold) and indels (4.3-7.1-fold) than single-copy regions. The intergenic spacers are the most divergent, and based on the length variation of the three intergenic spacers, 11 native Phalaenopsis orchids could be successfully distinguished. The coding genes, IR junction and RNA editing sites are relatively more conserved between the two moth orchids than between those of Phalaenopsis and Oncidium spp. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. HIP1 propagates in cyanobacterial DNA via nucleotide substitutions but promotes excision at similar frequencies in Escherichia coli and Synechococcus PCC 7942.

    PubMed

    Robinson, P J; Cranenburgh, R M; Head, I M; Robinson, N J

    1997-04-01

    The sequence 5'-GCGATCGC-3', designated HIP1, for highly iterated palindrome, was first identified at the borders of a gene-deletion event and subsequently shown to constitute up to 2.5% of the DNA in some cyanobacteria. It is now reported that HIP1 is polyphyletic, occurring in several distinct cyanobacterial lineages and not defining a clade. HIP1 does not introduce gaps into sequence alignments. It aligns with partial HIP1 sites in related sequences showing that it propagates by nucleotide substitutions rather than insertion. Constructs have been created to determine the frequencies at which deletion events occur between palindromes located within the selectable marker neo. Deletion between HIP1 sites was more frequent in Synechococcus PCC 7942 than deletion between control palindromes, 5'-CCGATCGG-3', designated PAL0. However, this is not due to a recombinase that recognises HIP1 and is peculiar to cyanobacteria because similar deletion frequencies were detected in Escherichia coli. Furthermore, the frequency of deletion of DNA flanked asymmetrically by one HIP1 site and one PAL0 site was less than the frequency of deletion of DNA flanked asymmetrically by identical copies of either palindrome. This is consistent with deletion by copy-choice.

  15. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments

    PubMed Central

    Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard

    2015-01-01

    The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141

  16. HIV-1 RT Inhibitors with a Novel Mechanism of Action: NNRTIs that Compete with the Nucleotide Substrate

    PubMed Central

    Maga, Giovanni; Radi, Marco; Gerard, Marie-Aline; Botta, Maurizio; Ennifar, Eric

    2010-01-01

    HIV-1 reverse transcriptase (RT) inhibitors currently used in antiretroviral therapy can be divided into two classes: (i) nucleoside analog RT inhibitors (NRTIs), which compete with natural nucleoside substrates and act as terminators of proviral DNA synthesis, and (ii) non-nucleoside RT inhibitors (NNRTIs), which bind to a hydrophobic pocket close to the RT active site. In spite of the efficiency of NRTIs and NNRTIs, the rapid emergence of multidrug-resistant mutations requires the development of new RT inhibitors with an alternative mechanism of action. Recently, several studies reported the discovery of novel non-nucleoside inhibitors with a distinct mechanism of action. Unlike classical NNRTIs, they compete with the nucleotide substrate, thus forming a new class of RT inhibitors: nucleotide-competing RT inhibitors (NcRTIs). In this review, we discuss current progress in the understanding of the peculiar behavior of these compounds. PMID:21994659

  17. Probing the stabilizing effects of modified nucleotides in the bacterial decoding region of 16S ribosomal RNA

    PubMed Central

    Mahto, Santosh K.

    2013-01-01

    The bacterial decoding region of 16S ribosomal RNA has multiple modified nucleotides. In order to study the role of N4,2′-O-dimethylcytidine (m4Cm), the corresponding phosphoramidite was synthesized utilizing 5′-silyl-2′-ACE chemistry. Using solid-phase synthesis, m4Cm, 5-methylcytidine (m5C), 3-methyluridine (m3U), and 2′-O-methylcytidine (Cm) were site-specifically incorporated into small RNAs representing the decoding regions of different bacterial species. Biophysical studies were then used to provide insight into the stabilizing roles of the modified nucleotides. These studies reveal that methylation of cytidine and uridine has different effects. The same modifications at different positions or sequence contexts within similar RNA constructs also have contrasting roles, such as stabilizing or destabilizing the RNA helix. PMID:23566761

  18. A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.

    PubMed

    Zeng, Lingwen; Xiao, Zhuo

    2017-01-01

    A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.

  19. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  20. Distinct profiles of TERT promoter mutations and telomerase expression in head and neck cancer and cervical carcinoma.

    PubMed

    Annunziata, Clorinda; Pezzuto, Francesca; Greggi, Stefano; Ionna, Franco; Losito, Simona; Botti, Gerardo; Buonaguro, Luigi; Buonaguro, Franco M; Tornesello, Maria Lina

    2018-03-31

    Two recurrent mutations (-124 G > A and -146 G > A) in the core promoter region of the human telomerase reverse transcriptase (TERT) gene create consensus binding sites for ETS transcription factors and cause increased TERT expression in several tumour types. We analyzed TERT promoter mutations and TERT mRNA levels in head and neck cancer, cervical carcinoma and cervical intraepithelial neoplasia (CIN) as well as in C-4I, CaSki, HeLa and SiHa cervical cell lines. Nucleotide sequence analysis of TERT promoter region showed that 33.3% of oral squamous cell carcinoma (SCC) and 16.8% of cervical SCC harboured mutually exclusive G to A transitions at nucleotide position -124 or -146. TERT promoter was mutated at nucleotide -146 (G > A) in SiHa cell line. Other nucleotide changes creating in some cases putative ETS binding sites were more frequent in oral SCC (26.7%) than in cervical carcinoma (4.8%). The frequency of mutations was independent of human papillomavirus (HPV) tumour status in both cervical and oral cancer. Expression of TERT gene was significantly higher in TERT promoter mutated (-124G > A or -146G > A) cervical SCC compared to not mutated SCC irrespective of HPV16 E6 and E7 levels. Such hot spot changes were not detected in oropharyngeal SCC, cervical adenocarcinoma and CIN lesions. Our results suggest that TERT promoter mutations play a relevant role in oral SCC as well as in cervical SCC, besides the already known effect of HPV16 E6 protein on TERT expression. © 2018 UICC.

  1. Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres

    PubMed Central

    Duke, Adrian M; Steele, Derek S

    1998-01-01

    The effect of caffeine and adenine nucleotides on the sarcoplasmic reticulum (SR) Ca2+ release mechanism was investigated in permeabilized frog skeletal muscle fibres. Caffeine was rapidly applied and the resulting release of Ca2+ from the SR detected using fura-2 fluorescence. Decreasing the [ATP] from 5 to 0.1 mm reduced the caffeine-induced Ca2+ transient by 89 ± 1.4 % (mean ± s.e.m., n = 16), while SR Ca2+ uptake was unaffected.The dependence of caffeine-induced Ca2+ release on cytosolic [ATP] was used to study the relative ability of other structurally related compounds to substitute for, or compete with, ATP at the adenine nucleotide binding site. It was found that AMP, ADP and the non-hydrolysable analogue adenylyl imidodiphosphate (AMP-PNP) partially substituted for ATP, although none was as potent in facilitating the Ca2+-releasing action of caffeine.Adenosine reversibly inhibited caffeine-induced Ca2+ release, without affecting SR Ca2+ uptake. Five millimolar adenosine markedly reduced the amplitude of the caffeine-induced Ca2+ transient by 64 ± 4 % (mean ± s.e.m., n = 11). The degree of inhibition was dependent upon the cytosolic [ATP], suggesting that adenosine may act as a competitive antagonist at the adenine nucleotide binding site.These data show that (i) the sensitivity of the in situ SR Ca2+ channel to caffeine activation is strongly dependent upon the cytosolic [ATP], (ii) the number of phosphates attached to the 5′ carbon of the ribose ring influences the efficacy of the ligand, and (iii) removal of a single phosphate group transforms AMP from a partial agonist, to adenosine, which acts as a competitive antagonist under these conditions. PMID:9782158

  2. Effects of caffeine and adenine nucleotides on Ca2+ release by the sarcoplasmic reticulum in saponin-permeabilized frog skeletal muscle fibres.

    PubMed

    Duke, A M; Steele, D S

    1998-11-15

    1. The effect of caffeine and adenine nucleotides on the sarcoplasmic reticulum (SR) Ca2+ release mechanism was investigated in permeabilized frog skeletal muscle fibres. Caffeine was rapidly applied and the resulting release of Ca2+ from the SR detected using fura-2 fluorescence. Decreasing the [ATP] from 5 to 0.1 mM reduced the caffeine-induced Ca2+ transient by 89 +/- 1.4% (mean +/- s.e.m., n = 16), while SR Ca2+ uptake was unaffected. 2. The dependence of caffeine-induced Ca2+ release on cytosolic [ATP] was used to study the relative ability of other structurally related compounds to substitute for, or compete with, ATP at the adenine nucleotide binding site. It was found that AMP, ADP and the non-hydrolysable analogue adenylyl imidodiphosphate (AMP-PNP) partially substituted for ATP, although none was as potent in facilitating the Ca2+-releasing action of caffeine. 3. Adenosine reversibly inhibited caffeine-induced Ca2+ release, without affecting SR Ca2+ uptake. Five millimolar adenosine markedly reduced the amplitude of the caffeine-induced Ca2+ transient by 64 +/- 4% (mean +/- s.e.m., n = 11). The degree of inhibition was dependent upon the cytosolic [ATP], suggesting that adenosine may act as a competitive antagonist at the adenine nucleotide binding site. 4. These data show that (i) the sensitivity of the in situ SR Ca2+ channel to caffeine activation is strongly dependent upon the cytosolic [ATP], (ii) the number of phosphates attached to the 5' carbon of the ribose ring influences the efficacy of the ligand, and (iii) removal of a single phosphate group transforms AMP from a partial agonist, to adenosine, which acts as a competitive antagonist under these conditions.

  3. Variation in the Nucleotide Sequence of Cottontail Rabbit Papillomavirus a and b Subtypes Affects Wart Regression and Malignant Transformation and Level of Viral Replication in Domestic Rabbits

    PubMed Central

    Salmon, Jérôme; Nonnenmacher, Mathieu; Cazé, Sandrine; Flamant, Patricia; Croissant, Odile; Orth, Gérard; Breitburd, Françoise

    2000-01-01

    We previously reported the partial characterization of two cottontail rabbit papillomavirus (CRPV) subtypes with strikingly divergent E6 and E7 oncoproteins. We report now the complete nucleotide sequences of these subtypes, referred to as CRPVa4 (7,868 nucleotides) and CRPVb (7,867 nucleotides). The CRPVa4 and CRPVb genomes differed at 238 (3%) nucleotide positions, whereas CRPVa4 and the prototype CRPV differed by only 5 nucleotides. The most variable region (7% nucleotide divergence) included the long regulatory region (LRR) and the E6 and E7 genes. A mutation in the stop codon resulted in an 8-amino-acid-longer CRPVb E4 protein, and a nucleotide deletion reduced the coding capacity of the E5 gene from 101 to 25 amino acids. In domestic rabbits homozygous for a specific haplotype of the DRA and DQA genes of the major histocompatibility complex, warts induced by CRPVb DNA or a chimeric genome containing the CRPVb LRR/E6/E7 region showed an early regression, whereas warts induced by CRPVa4 or a chimeric genome containing the CRPVa4 LRR/E6/E7 region persisted and evolved into carcinomas. In contrast, most CRPVa, CRPVb, and chimeric CRPV DNA-induced warts showed no early regression in rabbits homozygous for another DRA-DQA haplotype. Little, if any, viral replication is usually observed in domestic rabbit warts. When warts induced by CRPVa and CRPVb virions and DNA were compared, the number of cells positive for viral DNA or capsid antigens was found to be greater by 1 order of magnitude for specimens induced by CRPVb. Thus, both sequence variation in the LRR/E6/E7 region and the genetic constitution of the host influence the expression of the oncogenic potential of CRPV. Furthermore, intratype variation may overcome to some extent the host restriction of CRPV replication in domestic rabbits. PMID:11044121

  4. Spontaneous and engineered deletions in the 3' noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus.

    PubMed

    Mandl, C W; Holzmann, H; Meixner, T; Rauscher, S; Stadler, P F; Allison, S L; Heinz, F X

    1998-03-01

    The flavivirus genome is a positive-strand RNA molecule containing a single long open reading frame flanked by noncoding regions (NCR) that mediate crucial processes of the viral life cycle. The 3' NCR of tick-borne encephalitis (TBE) virus can be divided into a variable region that is highly heterogeneous in length among strains of TBE virus and in certain cases includes an internal poly(A) tract and a 3'-terminal conserved core element that is believed to fold as a whole into a well-defined secondary structure. We have now investigated the genetic stability of the TBE virus 3' NCR and its influence on viral growth properties and virulence. We observed spontaneous deletions in the variable region during growth of TBE virus in cell culture and in mice. These deletions varied in size and location but always included the internal poly(A) element of the TBE virus 3' NCR and never extended into the conserved 3'-terminal core element. Subsequently, we constructed specific deletion mutants by using infectious cDNA clones with the entire variable region and increasing segments of the core element removed. A virus mutant lacking the entire variable region was indistinguishable from wild-type virus with respect to cell culture growth properties and virulence in the mouse model. In contrast, even small extensions of the deletion into the core element led to significant biological effects. Deletions extending to nucleotides 10826, 10847, and 10870 caused distinct attenuation in mice without measurable reduction of cell culture growth properties, which, however, were significantly restricted when the deletion was extended to nucleotide 10919. An even larger deletion (to nucleotide 10994) abolished viral viability. In spite of their high degree of attenuation, these mutants efficiently induced protective immune responses even at low inoculation doses. Thus, 3'-NCR deletions represent a useful technique for achieving stable attenuation of flaviviruses that can be included in the rational design of novel flavivirus live vaccines.

  5. Human renin 5'-flanking DNA to nucleotide-2750.

    PubMed

    Smith, D L; Jeyapalan, S; Lang, J A; Guo, X H; Sigmund, C D; Morris, B J

    1995-01-01

    Renin is one of the most important factors in blood pressure and electrolyte regulation in mammals and the renin locus has been implicated in hypertension. To assist studies of promoter control we therefore determined the 5'-flanking sequence of the human gene (REN) to residue -2750 relative to the transcription start site (+1). Sites of homology to consensus sequences for binding of trans-acting factors involved in transcriptional control of other genes were identified, and functionality for two of these (a CRE and Pit-1 site) have so far been demonstrated.

  6. Single nucleotide polymorphisms in the Mycobacterium bovis genome resolve phylogenetic relationships

    USDA-ARS?s Scientific Manuscript database

    Mycobacterium bovis isolates carry restricted allelic variation yet exhibit a range of disease phenotypes and host preferences. Conventional genotyping methods target small hyper-variable regions of their genome and provide anonymous biallelic information insufficient to develop phylogeny. To resolv...

  7. Data on polymorphisms in CYP2A6 associated to risk and predispose to smoking related variables.

    PubMed

    López-Flores, Luis A; Pérez-Rubio, Gloria; Ramírez-Venegas, Alejandra; Ambrocio-Ortiz, Enrique; Sansores, Raúl H; Falfán-Valencia, Ramcés

    2017-12-01

    This article contains data on the single nucleotide polymorphisms (SNPs) rs1137115, rs1801272 and rs28399433 rs4105144 in CYP2A6 associated to smoking related variables in Mexican Mestizo smokers (Pérez-Rubio et al., 2017) [1]. These SNPs were selected due to previous associations with other populations. Mexican Mestizo smokers were classified according their smoking pattern. A genetic association test was performed.

  8. Unrelated sequences at the 5' end of mouse LINE-1 repeated elements define two distinct subfamilies.

    PubMed Central

    Wincker, P; Jubier-Maurin, V; Roizès, G

    1987-01-01

    Some full length members of the mouse long interspersed repeated DNA family L1Md have been shown to be associated at their 5' end with a variable number of tandem repetitions, the A repeats, that have been suggested to be transcription controlling elements. We report that the other type of repeat, named F, found at the 5' end of a few L1 elements is also an integral part of full length L1 copies. Sequencing shows that the F repeats are GC rich, and organized in tandem. The L1 copies associated with either A or F repeats can be correlated with two different subsets of L1 sequences distinguished by a series of variant nucleotides specific to each and by unassociated but frequent restriction sites. These findings suggest that sequence replacement has occurred at least once in 5' of L1Md, and is related to the generation of specific subfamilies. Images PMID:3684566

  9. Brief Note :Variability in the cathelicidin 6 (CATHL-6) gene in Tianzhu white yak from Tibetan area in China.

    PubMed

    E, G X; Na, R S; Zhao, Y J; Chen, L P; Qiu, X Y; Huang, Y F

    2015-04-10

    Cathelicidins are a major family of antimicrobial peptides (AMPs), an important component of innate immune system, playing a critical role in host defense and disease resistance in virtually all living species. Polymorphism and functional studies on cathelicidin of Tianzhu white yak contribute to understanding the specific innate immune mechanism in animals living at high altitudes in comparison to cattle and domesticated white yak. Thirty-six individuals of Tianzhu white yak, originating from the area of three ecotypes (Gansu in China), were investigated. The total length of the aligned Yak cathelicidin 6 (CATHL-6) sequences was 1923 bp, including six single nucleotide polymorphisms and one indel. Ten haplotypes were identified, and phylogenetic analyses resolved those 10 haplotypes in two clusters. The results indicate that the white yak originated from two domestication sites. In addition, lack of significant pairwise difference between sequences (Tajima's D = 0.92865, P > 0.10) in the CATHL-6 region indicates absence of population size expansion in current white yak population.

  10. Genome-Wide Analysis of NBS-LRR Genes in Sorghum Genome Revealed Several Events Contributing to NBS-LRR Gene Evolution in Grass Species

    PubMed Central

    Yang, Xiping; Wang, Jianping

    2016-01-01

    The nucleotide-binding site (NBS)–leucine-rich repeat (LRR) gene family is crucially important for offering resistance to pathogens. To explore evolutionary conservation and variability of NBS-LRR genes across grass species, we identified 88, 107, 24, and 44 full-length NBS-LRR genes in sorghum, rice, maize, and Brachypodium, respectively. A comprehensive analysis was performed on classification, genome organization, evolution, expression, and regulation of these NBS-LRR genes using sorghum as a representative of grass species. In general, the full-length NBS-LRR genes are highly clustered and duplicated in sorghum genome mainly due to local duplications. NBS-LRR genes have basal expression levels and are highly potentially targeted by miRNA. The number of NBS-LRR genes in the four grass species is positively correlated with the gene clustering rate. The results provided a valuable genomic resource and insights for functional and evolutionary studies of NBS-LRR genes in grass species. PMID:26792976

  11. Neighborhood of 16S rRNA nucleotides U788/U789 in the 30S ribosomal subunit determined by site-directed crosslinking.

    PubMed

    Mundus, D; Wollenzien, P

    1998-11-01

    Site-specific photo crosslinking has been used to investigate the RNA neighborhood of 16S rRNA positions U788/ U789 in Escherichia coli 30S subunits. For these studies, site-specific psoralen (SSP) which contains a sulfhydryl group on a 17 A side chain was first added to nucleotides U788/U789 using a complementary guide DNA by annealing and phototransfer. Modified RNA was purified from the DNA and unmodified RNA. For some experiments, the SSP, which normally crosslinks at an 8 A distance, was derivitized with azidophenacylbromide (APAB) resulting in the photoreactive azido moiety at a maximum of 25 A from the 4' position on psoralen (SSP25APA). 16S rRNA containing SSP, SSP25APA or control 16S rRNA were reconstituted and 30S particles were isolated. The reconstituted subunits containing SSP or SSP25APA had normal protein composition, were active in tRNA binding and had the usual pattern of chemical reactivity except for increased kethoxal reactivity at G791 and modest changes in four other regions. Irradiation of the derivatized 30S subunits in activation buffer produced several intramolecular RNA crosslinks that were visualized and separated by gel electrophoresis and characterized by primer extension. Four major crosslink sites made by the SSP reagent were identified at positions U561/U562, U920/U921, C866 and U723; a fifth major crosslink at G693 was identified when the SSP25APA reagent was used. A number of additional crosslinks of lower frequency were seen, particularly with the APA reagent. These data indicate a central location close to the decoding region and central pseudoknot for nucleotides U788/U789 in the activated 30S subunit.

  12. Molecular Dynamics Study of Twister Ribozyme: Role of Mg(2+) Ions and the Hydrogen-Bonding Network in the Active Site.

    PubMed

    Ucisik, Melek N; Bevilacqua, Philip C; Hammes-Schiffer, Sharon

    2016-07-12

    The recently discovered twister ribozyme is thought to utilize general acid-base catalysis in its self-cleavage mechanism, but the roles of nucleobases and metal ions in the mechanism are unclear. Herein, molecular dynamics simulations of the env22 twister ribozyme are performed to elucidate the structural and equilibrium dynamical properties, as well as to examine the role of Mg(2+) ions and possible candidates for the general base and acid in the self-cleavage mechanism. The active site region and the ends of the pseudoknots were found to be less mobile than other regions of the ribozyme, most likely providing structural stability and possibly facilitating catalysis. A purported catalytic Mg(2+) ion and the closest neighboring Mg(2+) ion remained chelated and relatively immobile throughout the microsecond trajectories, although removal of these Mg(2+) ions did not lead to any significant changes in the structure or equilibrium motions of the ribozyme on the microsecond time scale. In addition, a third metal ion, a Na(+) ion remained close to A1(O5'), the leaving group atom, during the majority of the microsecond trajectories, suggesting that it might stabilize the negative charge on A1(O5') during self-cleavage. The locations of these cations and their interactions with key nucleotides in the active site suggest that they may be catalytically relevant. The P1 stem is partially melted at its top and bottom in the crystal structure and further unwinds in the trajectories. The simulations also revealed an interconnected network comprised of hydrogen-bonding and π-stacking interactions that create a relatively rigid network around the self-cleavage site. The nucleotides involved in this network are among the highly conserved nucleotides in twister ribozymes, suggesting that this interaction network may be important to structure and function.

  13. Footprinting of Chlorella virus DNA ligase bound at a nick in duplex DNA.

    PubMed

    Odell, M; Shuman, S

    1999-05-14

    The 298-amino acid ATP-dependent DNA ligase of Chlorella virus PBCV-1 is the smallest eukaryotic DNA ligase known. The enzyme has intrinsic specificity for binding to nicked duplex DNA. To delineate the ligase-DNA interface, we have footprinted the enzyme binding site on DNA and the DNA binding site on ligase. The size of the exonuclease III footprint of ligase bound a single nick in duplex DNA is 19-21 nucleotides. The footprint is asymmetric, extending 8-9 nucleotides on the 3'-OH side of the nick and 11-12 nucleotides on the 5'-phosphate side. The 5'-phosphate moiety is essential for the binding of Chlorella virus ligase to nicked DNA. Here we show that the 3'-OH moiety is not required for nick recognition. The Chlorella virus ligase binds to a nicked ligand containing 2',3'-dideoxy and 5'-phosphate termini, but cannot catalyze adenylation of the 5'-end. Hence, the 3'-OH is important for step 2 chemistry even though it is not itself chemically transformed during DNA-adenylate formation. A 2'-OH cannot substitute for the essential 3'-OH in adenylation at a nick or even in strand closure at a preadenylated nick. The protein side of the ligase-DNA interface was probed by limited proteolysis of ligase with trypsin and chymotrypsin in the presence and absence of nicked DNA. Protease accessible sites are clustered within a short segment from amino acids 210-225 located distal to conserved motif V. The ligase is protected from proteolysis by nicked DNA. Protease cleavage of the native enzyme prior to DNA addition results in loss of DNA binding. These results suggest a bipartite domain structure in which the interdomain segment either comprises part of the DNA binding site or undergoes a conformational change upon DNA binding. The domain structure of Chlorella virus ligase inferred from the solution experiments is consistent with the structure of T7 DNA ligase determined by x-ray crystallography.

  14. Functional Analysis of a Novel Genome-Wide Association Study Signal in SMAD3 That Confers Protection From Coronary Artery Disease.

    PubMed

    Turner, Adam W; Martinuk, Amy; Silva, Anada; Lau, Paulina; Nikpay, Majid; Eriksson, Per; Folkersen, Lasse; Perisic, Ljubica; Hedin, Ulf; Soubeyrand, Sebastien; McPherson, Ruth

    2016-05-01

    A recent genome-wide association study meta-analysis identified an intronic single nucleotide polymorphism in SMAD3, rs56062135C>T, the minor allele (T) which associates with protection from coronary artery disease. Relevant to atherosclerosis, SMAD3 is a key contributor to transforming growth factor-β pathway signaling. Here, we seek to identify ≥1 causal coronary artery disease-associated single nucleotide polymorphisms at the SMAD3 locus and characterize mechanisms whereby the risk allele(s) contribute to coronary artery disease risk. By genetic and epigenetic fine mapping, we identified a candidate causal single nucleotide polymorphism rs17293632C>T (D', 0.97; r(2), 0.94 with rs56062135) in intron 1 of SMAD3 with predicted functional effects. We show that the sequence encompassing rs17293632 acts as a strong enhancer in human arterial smooth muscle cells. The common allele (C) preserves an activator protein (AP)-1 site and enhancer function, whereas the protective (T) allele disrupts the AP-1 site and significantly reduces enhancer activity (P<0.001). Pharmacological inhibition of AP-1 activity upstream demonstrates that this allele-specific enhancer effect is AP-1 dependent (P<0.001). Chromatin immunoprecipitation experiments reveal binding of several AP-1 component proteins with preferential binding to the (C) allele. We show that rs17293632 is an expression quantitative trait locus for SMAD3 in blood and atherosclerotic plaque with reduced expression of SMAD3 in carriers of the protective allele. Finally, siRNA knockdown of SMAD3 in human arterial smooth muscle cells increases cell viability, consistent with an antiproliferative role. The coronary artery disease-associated rs17293632C>T single nucleotide polymorphism represents a novel functional cis-acting element at the SMAD3 locus. The protective (T) allele of rs17293632 disrupts a consensus AP-1 binding site in a SMAD3 intron 1 enhancer, reduces enhancer activity and SMAD3 expression, altering human arterial smooth muscle cell proliferation. © 2016 American Heart Association, Inc.

  15. Characterization of avian paramyxovirus serotype 14, a novel serotype, isolated from a duck fecal sample in Japan.

    PubMed

    Thampaisarn, Rapeewan; Bui, Vuong N; Trinh, Dai Q; Nagai, Makoto; Mizutani, Tetsuya; Omatsu, Tsutomu; Katayama, Yukie; Gronsang, Dulyatad; Le, Duong H T; Ogawa, Haruko; Imai, Kunitoshi

    2017-01-15

    A hemagglutinating virus isolate designated 11OG0352, was obtained from a duck fecal sample. Genetic and virological analyses indicated that it might represent a novel serotype of avian paramyxovirus (APMV). Electron micrographs showed that the morphology of the virus particle was similar to that of APMV. The complete genome of this virus comprised 15,444 nucleotides complying with the paramyxovirus "rule of six" and contains six open reading frames (3'-N-P-M-F-HN-L-5'). The phylogenetic analysis of the whole genome revealed that the virus was a member of the genus Avulavirus, but that it was distinct from APMV-1 to APMV-13. Although the F-protein cleavage site was TREGK↓L, which resembles a lentogenic strain of APMV-1, the K residue at position -1 of the cleavage site was first discovered in APMV members. The phosphoprotein gene of isolate 11OG0352 contains a putative RNA editing site, 3'-AUUUUCCC-5' (negative sense) which sequence differs from that of other APMVs. The intracerebral pathogenicity index test did not detect virulence in infected chicks. In hemagglutination inhibition (HI) tests, an antiserum against this virus did not detectably react with other APMVs (serotypes 1-4, 6-9) except for low reciprocal cross-reactivity with APMV-6. We designated this isolate, as APMV-14/duck/Japan/11OG0352/2011 and propose that it is a novel APMV serotype. The HI test may not be widely applicable for the classification of a new serotype because of the limited availability of reference antisera against all serotypes and cross-reactivity data. The nucleotide sequence identities of the whole genome of 11OG0352 and other APMVs ranged from 46.3% to 56.1%. Such comparison may provide a useful tool for classifying new APMV isolates. However, the nucleotide sequence identity between APMV-12 and APMV-13 was higher (64%), which was nearly identical to the lowest nucleotide identity (67%) reported in subgroups within the serotype. Therefore, consensus criteria for using whole genome analysis should be established. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. E6 and E7 Gene Polymorphisms in Human Papillomavirus Types-58 and 33 Identified in Southwest China

    PubMed Central

    Wen, Qiang; Wang, Tao; Mu, Xuemei; Chenzhang, Yuwei; Cao, Man

    2017-01-01

    Cancer of the cervix is associated with infection by certain types of human papillomavirus (HPV). The gene variants differ in immune responses and oncogenic potential. The E6 and E7 proteins encoded by high-risk HPV play a key role in cellular transformation. HPV-33 and HPV-58 types are highly prevalent among Chinese women. To study the gene intratypic variations, polymorphisms and positive selections of HPV-33 and HPV-58 E6/E7 in southwest China, HPV-33 (E6, E7: n = 216) and HPV-58 (E6, E7: n = 405) E6 and E7 genes were sequenced and compared to others submitted to GenBank. Phylogenetic trees were constructed by Maximum-likelihood and the Kimura 2-parameters methods by MEGA 6 (Molecular Evolutionary Genetics Analysis version 6.0). The diversity of secondary structure was analyzed by PSIPred software. The selection pressures acting on the E6/E7 genes were estimated by PAML 4.8 (Phylogenetic Analyses by Maximun Likelihood version4.8) software. The positive sites of HPV-33 and HPV-58 E6/E7 were contrasted by ClustalX 2.1. Among 216 HPV-33 E6 sequences, 8 single nucleotide mutations were observed with 6/8 non-synonymous and 2/8 synonymous mutations. The 216 HPV-33 E7 sequences showed 3 single nucleotide mutations that were non-synonymous. The 405 HPV-58 E6 sequences revealed 8 single nucleotide mutations with 4/8 non-synonymous and 4/8 synonymous mutations. Among 405 HPV-58 E7 sequences, 13 single nucleotide mutations were observed with 10/13 non-synonymous mutations and 3/13 synonymous mutations. The selective pressure analysis showed that all HPV-33 and 4/6 HPV-58 E6/E7 major non-synonymous mutations were sites of positive selection. All variations were observed in sites belonging to major histocompatibility complex and/or B-cell predicted epitopes. K93N and R145 (I/N) were observed in both HPV-33 and HPV-58 E6. PMID:28141822

  17. Kinetic parameters and renal clearances of plasma adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in man

    PubMed Central

    Broadus, Arthur E.; Kaminsky, Neil I.; Hardman, Joel G.; Sutherland, Earl W.; Liddle, Grant W.

    1970-01-01

    Kinetic parameters and the renal clearances of plasma adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) were evaluated in normal subjects using tritium-labeled cyclic nucleotides. Each tracer was administered both by single, rapid intravenous injection and by constant intravenous infusion, and the specific activities of the cyclic nucleotides in plasma and urine were determined. Both cyclic AMP and cyclic GMP were cleared from plasma by glomerular filtration. The kidney was found to add a variable quantity of endogenous cyclic AMP to the tubular urine, amounting to an average of approximately one-third of the total level of cyclic AMP excreted. Plasma was the source of virtually all of the cyclic GMP excreted. Plasma levels of the cyclic nucleotides appeared to be in dynamic steady state. The apparent volumes of distribution of both nucleotides exceeded extracellular fluid volume, averaging 27 and 38% of body weight for cyclic AMP and cyclic GMP, respectively. Plasma production rates ranged from 9 to 17 nmoles/min for cyclic AMP and from 7 to 13 nmoles/min for cyclic GMP. Plasma clearance rates averaged 668 ml/min for cyclic AMP and 855 ml/min for cyclic GMP. Approximately 85% of the elimination of the cyclic nucleotides from the circulation was due to extrarenal clearance. PMID:5480849

  18. An inherited variable poly-T repeat genotype in TOMM40 in Alzheimer disease.

    PubMed

    Roses, Allen D

    2010-05-01

    I coauthored a recently published research article describing a variable length, poly-T polymorphism in the TOMM40 gene, adjacent to apolipoprotein E (APOE) on chromosome 19, that accounts for the age at onset distribution for a complex disease, late-onset Alzheimer disease. These new data explain the mean age at disease onset for patients with the APOE4/4 genotype and differentiate 2 forms of TOMM40 poly-T polymorphisms linked to APOE, with each form associated with a different age at disease onset distribution. When linked to APOE3 (encoding the epsilon3 isoform of APOE), the longer TOMM40 poly-T repeats (19-39 nucleotides) at the rs10524523 (hereafter, 523) locus are associated with earlier age at onset and the shorter TOMM40 523 alleles (11-16 nucleotides) are associated with later age at onset. The data suggest that the poly-T alleles are codominant, with the age at onset phenotype determined by the 2 inherited 523 alleles, but with variable expressivity. Additional data will further refine the relationship between the length of the poly-T alleles and age at disease onset and determine if the relationship is linear.

  19. Identification of differentially methylated sites with weak methylation effect

    USDA-ARS?s Scientific Manuscript database

    DNA methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect dif...

  20. Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct nontranscribed spacers.

    PubMed

    Martins, C; Galetti, P M

    2001-10-01

    To address understanding the organization of the 5S rRNA multigene family in the fish genome, the nucleotide sequence and organization array of 5S rDNA were investigated in the genus Leporinus, a representative freshwater fish group of South American fauna. PCR, subgenomic library screening, genomic blotting, fluorescence in situ hybridization, and DNA sequencing were employed in this study. Two arrays of 5S rDNA were identified for all species investigated, one consisting of monomeric repeat units of around 200 bp and another one with monomers of 900 bp. These 5S rDNA arrays were characterized by distinct NTS sequences (designated NTS-I and NTS-II for the 200- and 900-bp monomers, respectively); however, their coding sequences were nearly identical. The 5S rRNA genes were clustered in two chromosome loci, a major one corresponding to the NTS-I sites and a minor one corresponding to the NTS-II sites. The NTS-I sequence was variable among Leporinus spp., whereas the NTS-II was conserved among them and even in the related genus Schizodon. The distinct 5S rDNA arrays might characterize two 5S rRNA gene subfamilies that have been evolving independently in the genome.

  1. cDNA sequences and organization of IgM heavy chain genes in two holostean fish.

    PubMed

    Wilson, M R; van Ravenstein, E; Miller, N W; Clem, L W; Middleton, D L; Warr, G W

    1995-01-01

    Immunoglobulin M heavy chain (mu) sequences of two holostean fish, the bowfin, Amia calva, and the longnose gar, Lepisosteus osseus, were amplified from spleen mRNA by RACE-PCR, cloned, and sequenced. Each mu chain showed the conserved four constant domain structure typical of a secreted mu chain. Southern blot analyses with specific heavy chain variable (VH) and constant (CH) region probes suggest that both fish possess an IgH locus that resembles that of the teleosts, amphibians, and mammals in its organization. The overall sequence similarity of gar and bowfin mu chains was 60% and 48% at the nucleotide and amino acid levels, respectively, while similarity to the mu chains of teleosts and elasmobranchs was lower. The bowfin mu chain possesses a distinctive proline-rich sequence at the C mu 1/C mu 2 boundary; a shorter proline-rich sequence is present at this position in the gar mu chain. Both gar and bowfin show, in their C mu 4 sequences, motifs that could serve as cryptic splice donor sites for the production of mRNA encoding the membrane-bound form of the mu chains, and the bowfin also shows a potential cryptic splice donor site in the C mu 3 exon.

  2. Differences in Transcriptional Activity of Human Papillomavirus Type 6 Molecular Variants in Recurrent Respiratory Papillomatosis

    PubMed Central

    Measso do Bonfim, Caroline; Simão Sobrinho, João; Lacerda Nogueira, Rodrigo; Salgado Kupper, Daniel; Cardoso Pereira Valera, Fabiana; Lacerda Nogueira, Maurício; Villa, Luisa Lina; Rahal, Paula; Sichero, Laura

    2015-01-01

    A significant proportion of recurrent respiratory papillomatosis (RRP) is caused by human papillomavirus type 6 (HPV-6). The long control region (LCR) contains cis-elements for regulation of transcription. Our aim was to characterize LCR HPV-6 variants in RRP cases, compare promoter activity of these isolates and search for cellular transcription factors (TFs) that could explain the differences observed. The complete LCR from 13 RRP was analyzed. Transcriptional activity of 5 variants was compared using luciferase assays. Differences in putative TFs binding sites among variants were revealed using the TRANSFAC database. Chromatin immunoprecipation (CHIP) and luciferase assays were used to evaluate TF binding and impact upon transcription, respectively. Juvenile-onset RRP cases harbored exclusively HPV-6vc related variants, whereas among adult-onset cases HPV-6a variants were more prevalent. The HPV-6vc reference was more transcriptionally active than the HPV-6a reference. Active FOXA1, ELF1 and GATA1 binding sites overlap variable nucleotide positions among isolates and influenced LCR activity. Furthermore, our results support a crucial role for ELF1 on transcriptional downregulation. We identified TFs implicated in the regulation of HPV-6 early gene expression. Many of these factors are mutated in cancer or are putative cancer biomarkers, and must be further studied. PMID:26151558

  3. Similar Mutation Rates but Highly Diverse Mutation Spectra in Ascomycete and Basidiomycete Yeasts.

    PubMed

    Long, Hongan; Behringer, Megan G; Williams, Emily; Te, Ronald; Lynch, Michael

    2016-12-01

    Yeast species are extremely diverse and not monophyletic. Because the majority of yeast research focuses on ascomycetes, the mutational determinants of genetic diversity across yeast species are not well understood. By combining mutation-accumulation techniques with whole-genome sequencing, we resolved the genomic mutation rate and spectrum of the oleaginous (oil-producing) ‘red yeast’ Rhodotorula toruloides, the first such study in the fungal phylum Basidiomycota. We find that the mutation spectrum is quite different from what has been observed in all other studied unicellular eukaryotes, but similar to that in most bacteria—a predominance of transitions relative to transversions. Rhodotorula toruloides has a significantly higher A:T→G:C transition rate—possibly elevated by the abundant flanking G/C nucleotides in the GC-rich genome, as well as a much lower G:C→T:A transversion rate. In spite of these striking differences, there are substantial consistencies between R. toruloides and the ascomycete model yeasts: a spontaneous base-substitution mutation rate of 1.90 × 10 −10 per site per cell division as well as an elevated mutation rate at non-methylated 5'CpG3' sites. These results imply the evolution of variable mutation spectra in the face of similar mutation rates in yeasts.

  4. Synthesis and Labeling of RNA In Vitro

    PubMed Central

    Huang, Chao; Yu, Yi-Tao

    2013-01-01

    This unit discusses several methods for generating large amounts of uniformly labeled, end-labeled, and site-specifically labeled RNAs in vitro. The methods involve a number of experimental procedures, including RNA transcription, 5′ dephosphorylation and rephosphorylation, 3′ terminal nucleotide addition (via ligation), site-specific RNase H cleavage directed by 2′-O-methyl RNA-DNA chimeras, and 2-piece splint ligation. The applications of these RNA radiolabeling approaches are also discussed. PMID:23547015

  5. Phylogenetic analysis of the envelope protein (domain lll) of dengue 4 viruses

    PubMed Central

    Mota, Javier; Ramos-Castañeda, José; Rico-Hesse, Rebeca; Ramos, Celso

    2011-01-01

    Objective To evaluate the genetic variability of domain III of envelope (E) protein and to estimate phylogenetic relationships of dengue 4 (Den-4) viruses isolated in Mexico and from other endemic areas of the world. Material and Methods A phylogenetic study of domain III of envelope (E) protein of Den-4 viruses was conducted in 1998 using virus strains from Mexico and other parts of the world, isolated in different years. Specific primers were used to amplify by RT-PCR the domain III and to obtain nucleotide sequence. Based on nucleotide and deduced aminoacid sequence, genetic variability was estimated and a phylogenetic tree was generated. To make an easy genetic analysis of domain III region, a Restriction Fragment Length Polymorphism (RFLP) assay was performed, using six restriction enzymes. Results Study results demonstrate that nucleotide and aminoacid sequence analysis of domain III are similar to those reported from the complete E protein gene. Based on the RFLP analysis of domain III using the restriction enzymes Nla III, Dde I and Cfo I, Den-4 viruses included in this study were clustered into genotypes 1 and 2 previously reported. Conclusions Study results suggest that domain III may be used as a genetic marker for phylogenetic and molecular epidemiology studies of dengue viruses. The English version of this paper is available too at: http://www.insp.mx/salud/index.html PMID:12132320

  6. The immediate upstream region of the 5′-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana

    PubMed Central

    Kim, Younghyun; Lee, Goeun; Jeon, Eunhyun; Sohn, Eun ju; Lee, Yongjik; Kang, Hyangju; Lee, Dong wook; Kim, Dae Heon; Hwang, Inhwan

    2014-01-01

    The nucleotide sequence around the translational initiation site is an important cis-acting element for post-transcriptional regulation. However, it has not been fully understood how the sequence context at the 5′-untranslated region (5′-UTR) affects the translational efficiency of individual mRNAs. In this study, we provide evidence that the 5′-UTRs of Arabidopsis genes showing a great difference in the nucleotide sequence vary greatly in translational efficiency with more than a 200-fold difference. Of the four types of nucleotides, the A residue was the most favourable nucleotide from positions −1 to −21 of the 5′-UTRs in Arabidopsis genes. In particular, the A residue in the 5′-UTR from positions −1 to −5 was required for a high-level translational efficiency. In contrast, the T residue in the 5′-UTR from positions −1 to −5 was the least favourable nucleotide in translational efficiency. Furthermore, the effect of the sequence context in the −1 to −21 region of the 5′-UTR was conserved in different plant species. Based on these observations, we propose that the sequence context immediately upstream of the AUG initiation codon plays a crucial role in determining the translational efficiency of plant genes. PMID:24084084

  7. A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs.

    PubMed

    Hatoum-Aslan, Asma; Samai, Poulami; Maniv, Inbal; Jiang, Wenyan; Marraffini, Luciano A

    2013-09-27

    Small RNAs undergo maturation events that precisely determine the length and structure required for their function. CRISPRs (clustered regularly interspaced short palindromic repeats) encode small RNAs (crRNAs) that together with CRISPR-associated (cas) genes constitute a sequence-specific prokaryotic immune system for anti-viral and anti-plasmid defense. crRNAs are subject to multiple processing events during their biogenesis, and little is known about the mechanism of the final maturation step. We show that in the Staphylococcus epidermidis type III CRISPR-Cas system, mature crRNAs are measured in a Cas10·Csm ribonucleoprotein complex to yield discrete lengths that differ by 6-nucleotide increments. We looked for mutants that impact this crRNA size pattern and found that an alanine substitution of a conserved aspartate residue of Csm3 eliminates the 6-nucleotide increments in the length of crRNAs. In vitro, recombinant Csm3 binds RNA molecules at multiple sites, producing gel-shift patterns that suggest that each protein binds 6 nucleotides of substrate. In vivo, changes in the levels of Csm3 modulate the crRNA size distribution without disrupting the 6-nucleotide periodicity. Our data support a model in which multiple Csm3 molecules within the Cas10·Csm complex bind the crRNA with a 6-nucleotide periodicity to function as a ruler that measures the extent of crRNA maturation.

  8. Interaction of ligands with the opiate receptors of brain membranes: Regulation by ions and nucleotides

    PubMed Central

    Blume, Arthur J.

    1978-01-01

    This study shows that nucleotides, as well as ions, regulate the opiate receptors of brain. GMP-P(NH)P and Na+ reduce the amount of steady-state specific [3H]dihydromorphine binding and increase the rate of dissociation of the ligand from the opiate receptor. In contrast, Mn2+ decreases the rate of ligand dissociation and antagonizes the ability of Na+ to increase dissociation. The effects of GMP-P(NH)P on steady-state binding and dissociation are not reversed by washing. Only GTP, GDP, ITP, and IMP-P(NH)P, in addition to GMP-P(NH)P, increase the rate of dihydromorphine dissociation. The site of nucleotide action appears to have high affinity: <1 μM GMP-P(NH)P produces half-maximal increases in ligand dissociation. GMP-P(NH)P- and Na+-directed increases in dissociation have also been found for the opiate agonists [3H]etorphine, [3H]Leu-enkephalin, and [3H]Met-enkephalin and the opiate antagonist [3H]naltrexone. Mn2+-directed decreases in dissociation have been found for the agonist [3H]-etorphine and the antagonist [3H]naltrexone. Although the plasma membrane receptors for a number of other neuro-transmitters and hormones are also regulated by guanine nucleotides, the opiate receptors appear unique because only they show nucleotide regulation of both agonist and antagonist binding. PMID:205867

  9. Exploring the Roles of Nucleobase Desolvation and Shape Complementarity during the Misreplication of O6-Methylguanine

    PubMed Central

    Chavarria, Delia; Ramos-Serrano, Andrea; Hirao, Ichiro; Berdis, Anthony J.

    2011-01-01

    O6-methylguanine is a miscoding DNA lesion arising from the alkylation of guanine. This report uses the bacteriophage T4 DNA polymerase as a model to probe the roles hydrogen-bonding interactions, shape/size, and nucleobase desolvation during the replication of this miscoding lesion. This was accomplished by using transient kinetic techniques to monitor the kinetic parameters for incorporating and extending natural and non-natural nucleotides. In general, the efficiency of nucleotide incorporation does not depend on the hydrogen-bonding potential of the incoming nucleotide. Instead, nucleobase hydrophobicity and shape complementarity appear to be the preeminent factors controlling nucleotide incorporation. In addition, shape complementarity plays a large role in controlling the extension of various mispairs containing O6-methylguanine. This is evident as the rate constants for extension correlate with proper interglycosyl distances and symmetry between the base angles of the formed mispair. Base pairs not conforming to an acceptable geometry within the polymerase’s active site are refractory to elongation and are processed via exonuclease proofreading. The collective data set encompassing nucleotide incorporation, extension, and excision is used to generate a model accounting for the mutagenic potential of O6-methylguanine observed in vivo. In addition, kinetic studies monitoring the incorporation and extension of non-natural nucleotides identified an analog that displays high selectivity for incorporation opposite O6-methylguanine compared to unmodified purines. The unusual selectivity of this analog for replicating damaged DNA provides a novel biochemical tool to study translesion DNA synthesis. PMID:21819995

  10. Modification by protons of frog skeletal muscle KATP channels: effects on ion conduction and nucleotide inhibition.

    PubMed Central

    Vivaudou, M; Forestier, C

    1995-01-01

    1. The molecular mechanisms underlying pH regulation of skeletal muscle ATP-sensitive K+ (KATP) channels were studied using the patch clamp technique in the inside-out configuration. Two effects of intracellular protons were studied in detail: the decrease in magnitude of single-channel currents and the increase in open probability (Po) of nucleotide-inhibited channels. 2. The pH dependence of inward unit currents under different ionic conditions was in poor agreement with either a direct block of the pore by protons or an indirect proton-induced conformational change, but was compatible with the protonation of surface charges located near the cytoplasmic entrance of the pore. This latter electrostatic mechanism was modelled using Gouy-Chapman-Stern theory, which predicted the data accurately with a surface charge density of about 0.1 negative elementary charges per square nanometre and a pK (pH value for 50% effect) value for protonation of these charges of 6.25. The same mechanism, i.e. neutralization of negative surface charges by cation binding, could also account for the previously reported reduction of inward unit currents by Mg2+. 3. Intracellular alkalization did not affect Po of the KATP channels. Acidification increased Po. In the presence of 0.1 mM ATP (no Mg2+), the channel activation vs. pH relationship could be fitted with a sigmoid curve with a Hill coefficient slightly above 2 and a pK value of 6. This latter value was dependent on the ATP concentration, decreasing from 6.3 in 30 microM ATP to 5.3 in 1 microM ATP. 4. Conversely, the channel inhibition vs. ATP concentration curve was shifted to the right when the pH was lowered. At pH 7.1, the ATP concentration causing half-maximal inhibition was about 10 microM. At pH 5.4, it was about 400 microM. The Hill coefficient values remained slightly below 2. Similar effects were observed when ADP was used as the inhibitory nucleotide. 5. These results confirm that a reciprocal competitive link exists between proton and nucleotide binding sites. Quantitatively, they are in full agreement with a steady-state model of a KATP channel possessing four identical protonation sites (microscopic pK, 6) allosterically connected to the channel open state and two identical nucleotide sites (microscopic ATP dissociation constant, approximately 30 microM) connected to the closed state. Images Figure 13 PMID:7473225

  11. High Genetic Diversity Revealed by Variable-Number Tandem Repeat Genotyping and Analysis of hsp65 Gene Polymorphism in a Large Collection of “Mycobacterium canettii” Strains Indicates that the M. tuberculosis Complex Is a Recently Emerged Clone of “M. canettii”

    PubMed Central

    Fabre, Michel; Koeck, Jean-Louis; Le Flèche, Philippe; Simon, Fabrice; Hervé, Vincent; Vergnaud, Gilles; Pourcel, Christine

    2004-01-01

    We have analyzed, using complementary molecular methods, the diversity of 43 strains of “Mycobacterium canettii” originating from the Republic of Djibouti, on the Horn of Africa, from 1998 to 2003. Genotyping by multiple-locus variable-number tandem repeat analysis shows that all the strains belong to a single but very distant group when compared to strains of the Mycobacterium tuberculosis complex (MTBC). Thirty-one strains cluster into one large group with little variability and five strains form another group, whereas the other seven are more diverged. In total, 14 genotypes are observed. The DR locus analysis reveals additional variability, some strains being devoid of a direct repeat locus and others having unique spacers. The hsp65 gene polymorphism was investigated by restriction enzyme analysis and sequencing of PCR amplicons. Four new single nucleotide polymorphisms were discovered. One strain was characterized by three nucleotide changes in 441 bp, creating new restriction enzyme polymorphisms. As no sequence variability was found for hsp65 in the whole MTBC, and as a single point mutation separates M. tuberculosis from the closest “M. canettii” strains, this diversity within “M. canettii” subspecies strongly suggests that it is the most probable source species of the MTBC rather than just another branch of the MTBC. PMID:15243089

  12. Characterization of the 2′,3′ cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage λ phosphatase

    PubMed Central

    Keppetipola, Niroshika; Shuman, Stewart

    2007-01-01

    Clostridium thermocellum polynucleotide kinase-phosphatase (CthPnkp) catalyzes 5′ and 3′ end-healing reactions that prepare broken RNA termini for sealing by RNA ligase. The central phosphatase domain of CthPnkp belongs to the dinuclear metallophosphoesterase superfamily exemplified by bacteriophage λ phosphatase (λ-Pase). CthPnkp is a Ni2+/Mn2+-dependent phosphodiesterase-monoesterase, active on nucleotide and non-nucleotide substrates, that can be transformed toward narrower metal and substrate specificities via mutations of the active site. Here we characterize the Mn2+-dependent 2′,3′ cyclic nucleotide phosphodiesterase activity of CthPnkp, the reaction most relevant to RNA repair pathways. We find that CthPnkp prefers a 2′,3′ cyclic phosphate to a 3′,5′ cyclic phosphate. A single H189D mutation imposes strict specificity for a 2′,3′ cyclic phosphate, which is cleaved to form a single 2′-NMP product. Analysis of the cyclic phosphodiesterase activities of mutated CthPnkp enzymes illuminates the active site and the structural features that affect substrate affinity and kcat. We also characterize a previously unrecognized phosphodiesterase activity of λ-Pase, which catalyzes hydrolysis of bis-p-nitrophenyl phosphate. λ-Pase also has cyclic phosphodiesterase activity with nucleoside 2′,3′ cyclic phosphates, which it hydrolyzes to yield a mixture of 2′-NMP and 3′-NMP products. We discuss our results in light of available structural and functional data for other phosphodiesterase members of the binuclear metallophosphoesterase family and draw inferences about how differences in active site composition influence catalytic repertoire. PMID:17986465

  13. Mutation of mapped TIA-1/TIAR binding sites in the 3' terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification.

    PubMed

    Emara, Mohamed M; Liu, Hsuan; Davis, William G; Brinton, Margo A

    2008-11-01

    Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.

  14. DRoP: a water analysis program identifies Ras-GTP-specific pathway of communication between membrane-interacting regions and the active site.

    PubMed

    Kearney, Bradley M; Johnson, Christian W; Roberts, Daniel M; Swartz, Paul; Mattos, Carla

    2014-02-06

    Ras GTPase mediates several cellular signal transduction pathways and is found mutated in a large number of cancers. It is active in the GTP-bound state, where it interacts with effector proteins, and at rest in the GDP-bound state. The catalytic domain is tethered to the membrane, with which it interacts in a nucleotide-dependent manner. Here we present the program Detection of Related Solvent Positions (DRoP) for crystallographic water analysis on protein surfaces and use it to study Ras. DRoP reads and superimposes multiple Protein Data Bank coordinates, transfers symmetry-related water molecules to the position closest to the protein surface, and ranks the waters according to how well conserved and tightly clustered they are in the set of structures. Coloring according to this rank allows visualization of the results. The effector-binding region of Ras is hydrated with highly conserved water molecules at the interface between the P-loop, switch I, and switch II, as well as at the Raf-RBD binding pocket. Furthermore, we discovered a new conserved water-mediated H-bonding network present in Ras-GTP, but not in Ras-GDP, that links the nucleotide sensor residues R161 and R164 on helix 5 to the active site. The double mutant RasN85A/N86A, where the final link between helix 5 and the nucleotide is not possible, is a severely impaired enzyme, while the single mutant RasN86A, with partial connection to the active site, has a wild-type hydrolysis rate. DRoP was instrumental in determining the water-mediated connectivity networks that link two lobes of the catalytic domain in Ras. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Identification of novel alleles of the rice blast resistance gene Pi54

    NASA Astrophysics Data System (ADS)

    Vasudevan, Kumar; Gruissem, Wilhelm; Bhullar, Navreet K.

    2015-10-01

    Rice blast is one of the most devastating rice diseases and continuous resistance breeding is required to control the disease. The rice blast resistance gene Pi54 initially identified in an Indian cultivar confers broad-spectrum resistance in India. We explored the allelic diversity of the Pi54 gene among 885 Indian rice genotypes that were found resistant in our screening against field mixture of naturally existing M. oryzae strains as well as against five unique strains. These genotypes are also annotated as rice blast resistant in the International Rice Genebank database. Sequence-based allele mining was used to amplify and clone the Pi54 allelic variants. Nine new alleles of Pi54 were identified based on the nucleotide sequence comparison to the Pi54 reference sequence as well as to already known Pi54 alleles. DNA sequence analysis of the newly identified Pi54 alleles revealed several single polymorphic sites, three double deletions and an eight base pair deletion. A SNP-rich region was found between a tyrosine kinase phosphorylation site and the nucleotide binding site (NBS) domain. Together, the newly identified Pi54 alleles expand the allelic series and are candidates for rice blast resistance breeding programs.

  16. Reverse transcription of phage RNA and its fragment directed by synthetic heteropolymeric primers

    PubMed Central

    Frolova, L. Yu.; Metelyev, V. G.; Ratmanova, K. I.; Smirnov, V. D.; Shabarova, Z. A.; Prokofyev, M. A.; Berzin, V. M.; Jansone, I. V.; Gren, E. J.; Kisselev, L. L.

    1977-01-01

    DNA synthesis catalysed by RNA-directed DNA-polymerase (reverse transcriptase) was found to proceed on the RNA template of an MS2 phage in the presence of heteropolymeric synthetic octa- and nonadeoxyribonucleotide primers complementary to the intercistronic region (coat protein binding site) and the region of the coat protein cistron, respectively. The product of synthesis consists of discrete DNA fractions of different length, including transcripts longer than 1,000 nucleotides. The coat protein inhibits DNA synthesis if it is initiated at its binding site, but has no effect on DNA synthesis initiated at the coat protein cistron. It has been suggested that, in this system, the initiation of DNA synthesis by synthetic primers is topographically specific. The MS2 coat protein binding site (an RNA fragment of 59 nucleotides) serves as a template for polydeoxyribonucleotide synthesis in the presence of octanucleotide primer and reverse transcriptase. The product of synthesis is homogenous and its length corresponds to the length of the template. The effective and complete copying of the fragment having a distinct secondary structure proves that the secondary structure does not interfere, in principle, with RNA being a template in the system of reverse transcription. PMID:71713

  17. Synthesis of two fluorescent GTPγS molecules and their biological relevance.

    PubMed

    Trans, Denise J; Bai, Ruoli; Addison, J Bennet; Liu, Ruiwu; Hamel, Ernest; Coleman, Matthew A; Henderson, Paul T

    2017-06-03

    Fluorescent GTP analogues are utilized for an assortment of nucleic acid and protein characterization studies. Non-hydrolysable analogues such as GTPγS offer the advantage of keeping proteins in a GTP-bound conformation due to their resistance to hydrolysis into GDP. Two novel fluorescent GTPγS molecules were developed by linking fluorescein and tetramethylrhodamine to the γ-thiophosphate of GTPγS. Chemical and biological analysis of these two compounds revealed their successful synthesis and ability to bind to the nucleotide-binding site of tubulin. These two new fluorescent non-hydrolysable nucleotides offer new possibilities for biophysical and biochemical characterization of GTP-binding proteins.

  18. Adenovirus sequences required for replication in vivo.

    PubMed Central

    Wang, K; Pearson, G D

    1985-01-01

    We have studied the in vivo replication properties of plasmids carrying deletion mutations within cloned adenovirus terminal sequences. Deletion mapping located the adenovirus DNA replication origin entirely within the first 67 bp of the adenovirus inverted terminal repeat. This region could be further subdivided into two functional domains: a minimal replication origin and an adjacent auxillary region which boosted the efficiency of replication by more than 100-fold. The minimal origin occupies the first 18 to 21 bp and includes sequences conserved between all adenovirus serotypes. The adjacent auxillary region extends past nucleotide 36 but not past nucleotide 67 and contains the binding site for nuclear factor I. Images PMID:2991857

  19. Heavy atom labeled nucleotides for measurement of kinetic isotope effects.

    PubMed

    Weissman, Benjamin P; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A

    2015-11-01

    Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Genome Wide Association Mapping of Grain Arsenic, Copper, Molybdenum and Zinc in Rice (Oryza sativa L.) Grown at Four International Field Sites

    PubMed Central

    Norton, Gareth J.; Douglas, Alex; Lahner, Brett; Yakubova, Elena; Guerinot, Mary Lou; Pinson, Shannon R. M.; Tarpley, Lee; Eizenga, Georgia C.; McGrath, Steve P.; Zhao, Fang-Jie; Islam, M. Rafiqul; Islam, Shofiqul; Duan, Guilan; Zhu, Yongguan; Salt, David E.; Meharg, Andrew A.; Price, Adam H.

    2014-01-01

    The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel. PMID:24586963

  1. Base damage, local sequence context and TP53 mutation hotspots: a molecular dynamics study of benzo[a]pyrene induced DNA distortion and mutability

    PubMed Central

    Menzies, Georgina E.; Reed, Simon H.; Brancale, Andrea; Lewis, Paul D.

    2015-01-01

    The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots. PMID:26400171

  2. Diversifying Selection Underlies the Origin of Allozyme Polymorphism at the Phosphoglucose Isomerase Locus in Tigriopus californicus

    PubMed Central

    Schoville, Sean D.; Flowers, Jonathan M.; Burton, Ronald S.

    2012-01-01

    The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations. PMID:22768211

  3. Target Site Recognition by a Diversity-Generating Retroelement

    PubMed Central

    Guo, Huatao; Tse, Longping V.; Nieh, Angela W.; Czornyj, Elizabeth; Williams, Steven; Oukil, Sabrina; Liu, Vincent B.; Miller, Jeff F.

    2011-01-01

    Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification. PMID:22194701

  4. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions

    PubMed Central

    Ostrem, Jonathan M.; Peters, Ulf; Sos, Martin L.; Wells, James A.; Shokat, Kevan M.

    2014-01-01

    Somatic mutations in the small GTPase K-Ras are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies1–3. Efforts to target this oncogene directly have faced difficulties owing to its picomolar affinity for GTP/GDP4 and the absence of known allosteric regulatory sites. Oncogenic mutations result in functional activation of Ras family proteins by impairing GTP hydrolysis5,6. With diminished regulation by GTPase activity, the nucleotide state of Ras becomes more dependent on relative nucleotide affinity and concentration. This gives GTP an advantage over GDP7 and increases the proportion of active GTP-bound Ras. Here we report the development of small molecules that irreversibly bind to a common oncogenic mutant, K-Ras(G12C). These compounds rely on the mutant cysteine for binding and therefore do not affect the wild-type protein. Crystallographic studies reveal the formation of a new pocket that is not apparent in previous structures of Ras, beneath the effector binding switch-II region. Binding of these inhibitors to K-Ras(G12C) disrupts both switch-I and switch-II, subverting the native nucleotide preference to favour GDP over GTP and impairing binding to Raf. Our data provide structure-based validation of a new allosteric regulatory site on Ras that is targetable in a mutant-specific manner. PMID:24256730

  5. Dairy consumption, systolic blood pressure, and risk of hypertension: Mendelian randomization study

    USDA-ARS?s Scientific Manuscript database

    Objective: To examine whether previous observed inverse associations of dairy intake with systolic blood pressure and risk of hypertension were causal. Design: Mendelian randomization study using the single nucleotide polymorphism rs4988235 related to lactase persistence as an instrumental variable...

  6. Molecular variability analysis of five new complete cacao swollen shoot virus genomic sequences.

    PubMed

    Muller, E; Sackey, S

    2005-01-01

    Cacao swollen shoot virus (CSSV), a member of the family Caulimovi-ridae, genus Badnavirus occurs in all the main cacao-growing areas of West Africa. We amplified, cloned and sequenced complete genomes of five new isolates, two originating from Togo and three originating from Ghana. The genome of these five newly sequenced isolates all contain the five putative open reading frames I, II, III, X and Y described for the first sequenced CSSV isolate, Agou1 originating from Togo. Their genomes have been aligned with the genome of Agou1. The nucleotide and amino acid sequence identities between isolates have been calculated and a phylogenetic analysis has been made including other pararetroviruses. Maximum nucleotide sequence variability between complete genomes of CSSV isolates was 29.4%. Geographical differentiation between isolates appears more important than differentiation between mild and severe isolates. ORF X differs greatly in size and sequence between the Togolese isolates Nyongbo2 and Agou1, and the four other isolates, its functional role is therefore clearly questionable.

  7. Genetic variability of the equine casein genes.

    PubMed

    Brinkmann, J; Jagannathan, V; Drögemüller, C; Rieder, S; Leeb, T; Thaller, G; Tetens, J

    2016-07-01

    The casein genes are known to be highly variable in typical dairy species, such as cattle and goat, but the knowledge about equine casein genes is limited. Nevertheless, mare milk production and consumption is gaining importance because of its high nutritive value, use in naturopathy, and hypoallergenic properties with respect to cow milk protein allergies. In the current study, the open reading frames of the 4 casein genes CSN1S1 (αS1-casein), CSN2 (β-casein), CSN1S2 (αS2-casein), and CSN3 (κ-casein) were resequenced in 253 horses of 14 breeds. The analysis revealed 21 nonsynonymous nucleotide exchanges, as well as 11 synonymous nucleotide exchanges, leading to a total of 31 putative protein isoforms predicted at the DNA level, 26 of which considered novel. Although the majority of the alleles need to be confirmed at the transcript and protein level, a preliminary nomenclature was established for the equine casein alleles. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Oligomeric Status and Nucleotide Binding Properties of the Plastid ATP/ADP Transporter 1: Toward a Molecular Understanding of the Transport Mechanism

    PubMed Central

    Deniaud, Aurélien; Panwar, Pankaj; Frelet-Barrand, Annie; Bernaudat, Florent; Juillan-Binard, Céline; Ebel, Christine; Rolland, Norbert; Pebay-Peyroula, Eva

    2012-01-01

    Background Chloroplast ATP/ADP transporters are essential to energy homeostasis in plant cells. However, their molecular mechanism remains poorly understood, primarily due to the difficulty of producing and purifying functional recombinant forms of these transporters. Methodology/Principal Findings In this work, we describe an expression and purification protocol providing good yields and efficient solubilization of NTT1 protein from Arabidopsis thaliana. By biochemical and biophysical analyses, we identified the best detergent for solubilization and purification of functional proteins, LAPAO. Purified NTT1 was found to accumulate as two independent pools of well folded, stable monomers and dimers. ATP and ADP binding properties were determined, and Pi, a co-substrate of ADP, was confirmed to be essential for nucleotide steady-state transport. Nucleotide binding studies and analysis of NTT1 mutants lead us to suggest the existence of two distinct and probably inter-dependent binding sites. Finally, fusion and deletion experiments demonstrated that the C-terminus of NTT1 is not essential for multimerization, but probably plays a regulatory role, controlling the nucleotide exchange rate. Conclusions/Significance Taken together, these data provide a comprehensive molecular characterization of a chloroplast ATP/ADP transporter. PMID:22438876

  9. Homogeneity of the 16S rDNA sequence among geographically disparate isolates of Taylorella equigenitalis

    PubMed Central

    Matsuda, M; Tazumi, A; Kagawa, S; Sekizuka, T; Murayama, O; Moore, JE; Millar, BC

    2006-01-01

    Background At present, six accessible sequences of 16S rDNA from Taylorella equigenitalis (T. equigenitalis) are available, whose sequence differences occur at a few nucleotide positions. Thus it is important to determine these sequences from additional strains in other countries, if possible, in order to clarify any anomalies regarding 16S rDNA sequence heterogeneity. Here, we clone and sequence the approximate full-length 16S rDNA from additional strains of T. equigenitalis isolated in Japan, Australia and France and compare these sequences to the existing published sequences. Results Clarification of any anomalies regarding 16S rDNA sequence heterogeneity of T. equigenitalis was carried out. When cloning, sequencing and comparison of the approximate full-length 16S rDNA from 17 strains of T. equigenitalis isolated in Japan, Australia and France, nucleotide sequence differences were demonstrated at the six loci in the 1,469 nucleotide sequence. Moreover, 12 polymorphic sites occurred among 23 sequences of the 16S rDNA, including the six reference sequences. Conclusion High sequence similarity (99.5% or more) was observed throughout, except from nucleotide positions 138 to 501 where substitutions and deletions were noted. PMID:16398935

  10. A nucleotide sequence comparison of coxsackievirus B4 isolates from aquatic samples and clinical specimens.

    PubMed Central

    Hughes, M. S.; Hoey, E. M.; Coyle, P. V.

    1993-01-01

    Ten coxsackievirus B4 (CVB4) strains isolated from clinical and environmental sources in Northern Ireland in 1985-7, were compared at the nucleotide sequence level. Dideoxynucleotide sequencing of a polymerase chain reaction (PCR) amplified fragment, spanning the VP1/P2A genomic region, classified the isolates into two distinct groups or genotypes as defined by Rico-Hesse and colleagues for poliovirus type 1. Isolates within each group shared approximately 99% sequence identity at the nucleotide level whereas < or = 86% sequence identity was shared between groups. One isolate derived from a clinical specimen in 1987 was grouped with six CVB4 isolates recovered from the aquatic environment in 1986-7. The second group comprised CVB4 isolates from clinical specimens in 1985-6. Both groups were different at the nucleotide level from the prototype strain isolated in 1950. It was concluded that the method could be used to sub-type CVB4 isolates and would be of value in epidemiological studies of CVB4. Predicted amino acid sequences revealed non-conservation of the tyrosine residue at the VP1/P2A cleavage site but were of little value in distinguishing CVB4 variants. PMID:8386098

  11. Molecular characterization of beta-tubulin from Phakopsora pachyrhizi, the causal agent of Asian soybean rust

    PubMed Central

    2010-01-01

    β-tubulins are structural components of microtubules and the targets of benzimidazole fungicides used to control many diseases of agricultural importance. Intron polymorphisms in the intron-rich genes of these proteins have been used in phylogeographic investigations of phytopathogenic fungi. In this work, we sequenced 2764 nucleotides of the β-tubulin gene (Pp tubB) in samples of Phakopsora pachyrhizi collected from seven soybean fields in Brazil. Pp tubB contained an open reading frame of 1341 nucleotides, including nine exons and eight introns. Exon length varied from 14 to 880 nucleotides, whereas intron length varied from 76 to 102 nucleotides. The presence of only four polymorphic sites limited the usefulness of Pp tubB for phylogeographic studies in P. pachyrhizi. The gene structures of Pp tubB and orthologous β-tubulin genes of Melampsora lini and Uromyces viciae-fabae were highly conserved. The amino acid substitutions in β-tubulin proteins associated with the onset of benzimidazole resistance in model organisms, especially at His 6 , Glu 198 and Phe 200 , were absent from the predicted sequence of the P. pachyrhizi β-tubulin protein. PMID:21637494

  12. Mapping allosteric connections from the receptor to the nucleotide-binding pocket of heterotrimeric G proteins

    PubMed Central

    Oldham, William M.; Van Eps, Ned; Preininger, Anita M.; Hubbell, Wayne L.; Hamm, Heidi E.

    2007-01-01

    Heterotrimeric G proteins function as molecular relays that mediate signal transduction from heptahelical receptors in the cell membrane to intracellular effector proteins. Crystallographic studies have demonstrated that guanine nucleotide exchange on the Gα subunit causes specific conformational changes in three key “switch” regions of the protein, which regulate binding to Gβγ subunits, receptors, and effector proteins. In the present study, nitroxide side chains were introduced at sites within the switch I region of Gαi to explore the structure and dynamics of this region throughout the G protein cycle. EPR spectra obtained for each of the Gα(GDP), Gα(GDP)βγ heterotrimer and Gα(GTPγS) conformations are consistent with the local environment observed in the corresponding crystal structures. Binding of the heterotrimer to activated rhodopsin to form the nucleotide-free (empty) complex, for which there is no crystal structure, causes prominent changes relative to the heterotrimer in the structure of switch I and contiguous sequences. The data identify a putative pathway of allosteric changes triggered by receptor binding and, together with previously published data, suggest elements of a mechanism for receptor-catalyzed nucleotide exchange. PMID:17463080

  13. A 5′ Splice Site-Proximal Enhancer Binds SF1 and Activates Exon Bridging of a Microexon

    PubMed Central

    Carlo, Troy; Sierra, Rebecca; Berget, Susan M.

    2000-01-01

    Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3′ and 5′ splice sites of microexons. Despite these problems, very small naturally occurring exons exist. Here we studied the factors and mechanism involved in recognizing a constitutively included six-nucleotide exon from the cardiac troponin T gene. Inclusion of this exon is dependent on an enhancer located downstream of the 5′ splice site. This enhancer contains six copies of the simple sequence GGGGCUG. The enhancer activates heterologous microexons and will work when located either upstream or downstream of the target exon, suggesting an ability to bind factors that bridge splicing units. A single copy of this sequence is sufficient for in vivo exon inclusion and is the binding site for the known bridging mammalian splicing factor 1 (SF1). The enhancer and its bound SF1 act to increase recognition of the upstream exon during exon definition, such that competition of in vitro reactions with RNAs containing the GGGGCUG repeated sequence depress splicing of the upstream intron, assembly of the spliceosome on the 3′ splice site of the exon, and cross-linking of SF1. These results suggest a model in which SF1 bridges the small exon during initial assembly, thereby effectively extending the domain of the exon. PMID:10805741

  14. Population pharmacokinetic and pharmacogenetic analysis of 6-mercaptopurine in paediatric patients with acute lymphoblastic leukaemia

    PubMed Central

    Hawwa, Ahmed F; Collier, Paul S; Millership, Jeff S; McCarthy, Anthony; Dempsey, Sid; Cairns, Carole; McElnay, James C

    2008-01-01

    WHAT IS ALREADY KNOWN ABOUT THIS SUBJECTThe cytotoxic effects of 6-mercaptopurine (6-MP) were found to be due to drug-derived intracellular metabolites (mainly 6-thioguanine nucleotides and to some extent 6-methylmercaptopurine nucleotides) rather than the drug itself.Current empirical dosing methods for oral 6-MP result in highly variable drug and metabolite concentrations and hence variability in treatment outcome. WHAT THIS STUDY ADDSThe first population pharmacokinetic model has been developed for 6-MP active metabolites in paediatric patients with acute lymphoblastic leukaemia and the potential demographic and genetically controlled factors that could lead to interpatient pharmacokinetic variability among this population have been assessed.The model shows a large reduction in interindividual variability of pharmacokinetic parameters when body surface area and thiopurine methyltransferase polymorphism are incorporated into the model as covariates.The developed model offers a more rational dosing approach for 6-MP than the traditional empirical method (based on body surface area) through combining it with pharmacogenetically guided dosing based on thiopurine methyltransferase genotype. AIMS To investigate the population pharmacokinetics of 6-mercaptopurine (6-MP) active metabolites in paediatric patients with acute lymphoblastic leukaemia (ALL) and examine the effects of various genetic polymorphisms on the disposition of these metabolites. METHODS Data were collected prospectively from 19 paediatric patients with ALL (n = 75 samples, 150 concentrations) who received 6-MP maintenance chemotherapy (titrated to a target dose of 75 mg m−2 day−1). All patients were genotyped for polymorphisms in three enzymes involved in 6-MP metabolism. Population pharmacokinetic analysis was performed with the nonlinear mixed effects modelling program (nonmem) to determine the population mean parameter estimate of clearance for the active metabolites. RESULTS The developed model revealed considerable interindividual variability (IIV) in the clearance of 6-MP active metabolites [6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-mMPNs)]. Body surface area explained a significant part of 6-TGNs clearance IIV when incorporated in the model (IIV reduced from 69.9 to 29.3%). The most influential covariate examined, however, was thiopurine methyltransferase (TPMT) genotype, which resulted in the greatest reduction in the model's objective function (P < 0.005) when incorporated as a covariate affecting the fractional metabolic transformation of 6-MP into 6-TGNs. The other genetic covariates tested were not statistically significant and therefore were not included in the final model. CONCLUSIONS The developed pharmacokinetic model (if successful at external validation) would offer a more rational dosing approach for 6-MP than the traditional empirical method since it combines the current practice of using body surface area in 6-MP dosing with a pharmacogenetically guided dosing based on TPMT genotype. PMID:18823306

  15. In silico Analysis of 3′-End-Processing Signals in Aspergillus oryzae Using Expressed Sequence Tags and Genomic Sequencing Data

    PubMed Central

    Tanaka, Mizuki; Sakai, Yoshifumi; Yamada, Osamu; Shintani, Takahiro; Gomi, Katsuya

    2011-01-01

    To investigate 3′-end-processing signals in Aspergillus oryzae, we created a nucleotide sequence data set of the 3′-untranslated region (3′ UTR) plus 100 nucleotides (nt) sequence downstream of the poly(A) site using A. oryzae expressed sequence tags and genomic sequencing data. This data set comprised 1065 sequences derived from 1042 unique genes. The average 3′ UTR length in A. oryzae was 241 nt, which is greater than that in yeast but similar to that in plants. The 3′ UTR and 100 nt sequence downstream of the poly(A) site is notably U-rich, while the region located 15–30 nt upstream of the poly(A) site is markedly A-rich. The most frequently found hexanucleotide in this A-rich region is AAUGAA, although this sequence accounts for only 6% of all transcripts. These data suggested that A. oryzae has no highly conserved sequence element equivalent to AAUAAA, a mammalian polyadenylation signal. We identified that putative 3′-end-processing signals in A. oryzae, while less well conserved than those in mammals, comprised four sequence elements: the furthest upstream U-rich element, A-rich sequence, cleavage site, and downstream U-rich element flanking the cleavage site. Although these putative 3′-end-processing signals are similar to those in yeast and plants, some notable differences exist between them. PMID:21586533

  16. Structure of the human gene encoding the protein repair L-isoaspartyl (D-aspartyl) O-methyltransferase.

    PubMed

    DeVry, C G; Tsai, W; Clarke, S

    1996-11-15

    The protein L-isoaspartyl/D-aspartyl O-methyltransferase (EC 2.1.1.77) catalyzes the first step in the repair of proteins damaged in the aging process by isomerization or racemization reactions at aspartyl and asparaginyl residues. A single gene has been localized to human chromosome 6 and multiple transcripts arising through alternative splicing have been identified. Restriction enzyme mapping, subcloning, and DNA sequence analysis of three overlapping clones from a human genomic library in bacteriophage P1 indicate that the gene spans approximately 60 kb and is composed of 8 exons interrupted by 7 introns. Analysis of intron/exon splice junctions reveals that all of the donor and acceptor splice sites are in agreement with the mammalian consensus splicing sequence. Determination of transcription initiation sites by primer extension analysis of poly(A)+ mRNA from human brain identifies multiple start sites, with a major site 159 nucleotides upstream from the ATG start codon. Sequence analysis of the 5'-untranslated region demonstrates several potential cis-acting DNA elements including SP1, ETF, AP1, AP2, ARE, XRE, CREB, MED-1, and half-palindromic ERE motifs. The promoter of this methyltransferase gene lacks an identifiable TATA box but is characterized by a CpG island which begins approximately 723 nucleotides upstream of the major transcriptional start site and extends through exon 1 and into the first intron. These features are characteristic of housekeeping genes and are consistent with the wide tissue distribution observed for this methyltransferase activity.

  17. Estimating the parameters of background selection and selective sweeps in Drosophila in the presence of gene conversion

    PubMed Central

    Campos, José Luis; Charlesworth, Brian

    2017-01-01

    We used whole-genome resequencing data from a population of Drosophila melanogaster to investigate the causes of the negative correlation between the within-population synonymous nucleotide site diversity (πS) of a gene and its degree of divergence from related species at nonsynonymous nucleotide sites (KA). By using the estimated distributions of mutational effects on fitness at nonsynonymous and UTR sites, we predicted the effects of background selection at sites within a gene on πS and found that these could account for only part of the observed correlation between πS and KA. We developed a model of the effects of selective sweeps that included gene conversion as well as crossing over. We used this model to estimate the average strength of selection on positively selected mutations in coding sequences and in UTRs, as well as the proportions of new mutations that are selectively advantageous. Genes with high levels of selective constraint on nonsynonymous sites were found to have lower strengths of positive selection and lower proportions of advantageous mutations than genes with low levels of constraint. Overall, background selection and selective sweeps within a typical gene reduce its synonymous diversity to ∼75% of its value in the absence of selection, with larger reductions for genes with high KA. Gene conversion has a major effect on the estimates of the parameters of positive selection, such that the estimated strength of selection on favorable mutations is greatly reduced if it is ignored. PMID:28559322

  18. Structural and functional characterization of the Mycobacterium tuberculosis uridine monophosphate kinase: insights into the allosteric regulation.

    PubMed

    Labesse, Gilles; Benkali, Khaled; Salard-Arnaud, Isabelle; Gilles, Anne-Marie; Munier-Lehmann, Hélène

    2011-04-01

    Nucleoside Monophosphate Kinases (NMPKs) family are key enzymes in nucleotide metabolism. Bacterial UMPKs depart from the main superfamily of NMPKs. Having no eukaryotic counterparts they represent attractive therapeutic targets. They are regulated by GTP and UTP, while showing different mechanisms in Gram(+), Gram(-) and archaeal bacteria. In this work, we have characterized the mycobacterial UMPK (UMPKmt) combining enzymatic and structural investigations with site-directed mutagenesis. UMPKmt exhibits cooperativity toward ATP and an allosteric regulation by GTP and UTP. The crystal structure of the complex of UMPKmt with GTP solved at 2.5 Å, was merely identical to the modelled apo-form, in agreement with SAXS experiments. Only a small stretch of residues was affected upon nucleotide binding, pointing out the role of macromolecular dynamics rather than major structural changes in the allosteric regulation of bacterial UMPKs. We further probe allosteric regulation by site-directed mutagenesis. In particular, a key residue involved in the allosteric regulation of this enzyme was identified.

  19. Campylobacter jejuni chromosomal sequences that hybridize to Vibrio cholerae and Escherichia coli LT enterotoxin genes.

    PubMed

    Calva, E; Torres, J; Vázquez, M; Angeles, V; de la Vega, H; Ruíz-Palacios, G M

    1989-02-20

    Campylobacter jejuni is one of the main etiologic agents of gastrointestinal illness in developing and developed areas throughout the world. Isolation of enterotoxin-producing C. jejuni has been associated with clinical symptoms of a watery-secretory type of diarrhea. Although physiological and immunological relatedness has been demonstrated between the C. jejuni enterotoxin (CJT), the Vibrio cholerae enterotoxin (CT), and the heat-labile cholera-like Escherichia coli enterotoxin (LT), nucleotide sequence similarity between C. jejuni DNA and either the toxA, toxB, eltA or eltB genes remained to be shown. We found that binding to ganglioside GM1 prevented recognition of CJT by monoclonal antibodies directed to either CT or LT. This indicates antigenic similarity between the three enterotoxins in the ganglioside GM1-binding site. Therefore we searched for corresponding similarities at the DNA level and found, by oligodeoxynucleotide hybridization, C. jejuni chromosomal nucleotide sequences similar to the coding region for a postulated ganglioside GM1-binding site on toxB and eltB.

  20. The uncoupling of catalysis and translocation in the viral RNA-dependent RNA polymerase

    PubMed Central

    Shu, Bo; Gong, Peng

    2017-01-01

    ABSTRACT The nucleotide addition cycle of nucleic acid polymerases includes 2 major events: the pre-chemistry active site closure leading to the addition of one nucleotide to the product chain; the post-chemistry translocation step moving the polymerase active site one position downstream on its template. In viral RNA-dependent RNA polymerases (RdRPs), structural and biochemical evidences suggest that these 2 events are not tightly coupled, unlike the situation observed in A-family polymerases such as the bacteriophage T7 RNA polymerase. Recently, an RdRP translocation intermediate crystal structure of enterovirus 71 shed light on how translocation may be controlled by elements within RdRP catalytic motifs, and a series of poliovirus apo RdRP crystal structures explicitly suggest that a motif B loop may assist the movement of the template strand in late stages of transcription. Implications of RdRP catalysis-translocation uncoupling and the remaining challenges to further elucidate RdRP translocation mechanism are also discussed. PMID:28277928

  1. An experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA: Structure, thermodynamics, and dynamics of hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinckley, Daniel M.; Freeman, Gordon S.; Whitmer, Jonathan K.

    2013-10-14

    A new 3-Site-Per-Nucleotide coarse-grained model for DNA is presented. The model includes anisotropic potentials between bases involved in base stacking and base pair interactions that enable the description of relevant structural properties, including the major and minor grooves. In an improvement over available coarse-grained models, the correct persistence length is recovered for both ssDNA and dsDNA, allowing for simulation of non-canonical structures such as hairpins. DNA melting temperatures, measured for duplexes and hairpins by integrating over free energy surfaces generated using metadynamics simulations, are shown to be in quantitative agreement with experiment for a variety of sequences and conditions. Hybridizationmore » rate constants, calculated using forward-flux sampling, are also shown to be in good agreement with experiment. The coarse-grained model presented here is suitable for use in biological and engineering applications, including nucleosome positioning and DNA-templated engineering.« less

  2. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing.

    PubMed

    Menger, Marcus; Yarman, Aysu; Erdőssy, Júlia; Yildiz, Huseyin Bekir; Gyurcsányi, Róbert E; Scheller, Frieder W

    2016-07-18

    Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.

  3. Analysis of evolutionary rate of HIV-1 subtype B using blood donor samples in Japan.

    PubMed

    Shinohara, Naoya; Matsumoto, Chieko; Matsubayashi, Keiji; Nagai, Tadashi; Satake, Masahiro

    2018-06-01

    There are few reports on HIV-1 intra-host evolutionary rate in asymptomatic treatment-naïve patients. Here, the HIV-1 intra-host evolutionary rate was estimated based on HIV-1 RNA sequences from plasma samples of blood donors in Japan. Blood donors were assumed to have received no treatment for and have no symptoms of HIV-1 infection because they were healthy, and declared no risky behaviors of HIV-1 infection on a self-reported questionnaire or interview followed by donation. HIV-1 RNA was obtained from 85 plasma samples from 36 blood donors who donated blood multiple times and were HIV-1-positive. The C2V3C3 region which encodes for a part of the envelope protein, and the V3 loop in the C2V3C3 region were analyzed by RT-PCR and direct sequencing, and the sequences were compared. The nucleotide substitution rate was calculated by linear regression. All HIV-1 samples analyzed were classified as subtype B. The mean nucleotide substitution rate in C2V3C3 was calculated to be 6.2 × 10 -3 -1.8 × 10 -2 /site/year (V3: 4.5 × 10 -3 -2.3 × 10 -2 /site/year). The mean non-synonymous substitution rate in C2V3C3 was calculated to be 5.2 × 10 -3 -1.7 × 10 -2 /site/year (V3: 4.5 × 10 -3 -2.1 × 10 -2 /site/year). The mean synonymous substitution rate in C2V3C3 was calculated to be 1.1 × 10 -4 -2.3 × 10 -3 /site/year (V3: 2.9 × 10 -3 /site/year). Among HIV-1 subtype B RNA-positive blood donors in Japan, the nucleotide substitution rate in C2V3C3 was estimated to be higher than that of reported cases using HIV-1 samples mainly obtained from AIDS patients. Compared to AIDS patients, immune responses against HIV-1 are probably more effective in HIV-1 RNA-positive blood donors. Consequently, immune pressure presumably promotes mutation of the virus genome.

  4. Active and regulatory sites of cytosolic 5'-nucleotidase.

    PubMed

    Pesi, Rossana; Allegrini, Simone; Careddu, Maria Giovanna; Filoni, Daniela Nicole; Camici, Marcella; Tozzi, Maria Grazia

    2010-12-01

    Cytosolic 5'-nucleotidase (cN-II), which acts preferentially on 6-hydroxypurine nucleotides, is essential for the survival of several cell types. cN-II catalyses both the hydrolysis of nucleotides and transfer of their phosphate moiety to a nucleoside acceptor through formation of a covalent phospho-intermediate. Both activities are regulated by a number of phosphorylated compounds, such as diadenosine tetraphosphate (Ap₄A), ADP, ATP, 2,3-bisphosphoglycerate (BPG) and phosphate. On the basis of a partial crystal structure of cN-II, we mutated two residues located in the active site, Y55 and T56. We ascertained that the ability to catalyse the transfer of phosphate depends on the presence of a bulky residue in the active site very close to the aspartate residue that forms the covalent phospho-intermediate. The molecular model indicates two possible sites at which adenylic compounds may interact. We mutated three residues that mediate interaction in the first activation site (R144, N154, I152) and three in the second (F127, M436 and H428), and found that Ap₄A and ADP interact with the same site, but the sites for ATP and BPG remain uncertain. The structural model indicates that cN-II is a homotetrameric protein that results from interaction through a specific interface B of two identical dimers that have arisen from interaction of two identical subunits through interface A. Point mutations in the two interfaces and gel-filtration experiments indicated that the dimer is the smallest active oligomerization state. Finally, gel-filtration and light-scattering experiments demonstrated that the native enzyme exists as a tetramer, and no further oligomerization is required for enzyme activation. © 2010 The Authors Journal compilation © 2010 FEBS.

  5. The estimation of genetic divergence

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Conroy, T.

    1981-01-01

    Consideration is given to the criticism of Nei and Tateno (1978) of the REH (random evolutionary hits) theory of genetic divergence in nucleic acids and proteins, and to their proposed alternative estimator of total fixed mutations designated X2. It is argued that the assumption of nonuniform amino acid or nucleotide substitution will necessarily increase REH estimates relative to those made for a model where each locus has an equal likelihood of fixing mutations, thus the resulting value will not be an overestimation. The relative values of X2 and measures calculated on the basis of the PAM and REH theories for the number of nucleotide substitutions necessary to explain a given number of observed amino acid differences between two homologous proteins are compared, and the smaller values of X2 are attributed to (1) a mathematical model based on the incorrect assumption that an entire structural gene is free to fix mutations and (2) the assumptions of different numbers of variable codons for the X2 and REH calculations. Results of a repeat of the computer simulations of Nei and Tateno are presented which, in contrast to the original results, confirm the REH theory. It is pointed out that while a negative correlation is observed between estimations of the fixation intensity per varion and the number of varions for a given pair of sequences, the correlation between the two fixation intensities and varion numbers of two different pairs of sequences need not be negative. Finally, REH theory is used to resolve a paradox concerning the high rate of covarion turnover and the nature of general function sites as permanent covarions.

  6. Different Duck Species Infected Intramuscularly with Duck-Origin Genotype IX APMV-1 Show Discrepant Mortality and Indicate Another Fatal Genotype APMV-1 to Ducks.

    PubMed

    Fu, Guanghua; Cheng, Longfei; Fu, Qiuling; Qi, Baomin; Chen, Cuiteng; Shi, Shaohua; Chen, Hongmei; Wan, Chunhe; Liu, Rongchang; Huang, Yu

    2017-03-01

    Isolations of genotype IX (gIX) avian paramyxovirus type 1 (APMV-1) from various bird species have been more common recently, with isolates showing variable pathogenicity in different species of poultry. Here we sequenced the genome of a Muscovy duck origin gIX virus strain XBT14 and characterized the virulence and pathogenicity of this isolate in chickens and ducks. The genome sequence of strain XBT14 is 15,192 nt in length, containing multiple basic amino acids at the fusion protein cleavage site. The XBT14 strain shared 91.6%-91.9% nucleotide identities with early-genotype viruses (such as genotype III and IV) and shared 85.3%-85.9% nucleotide homologies with later genotype viruses (such as genotype VII). Pathogenicity tests showed that strain XBT14 could cause death in different duck breeds with a mortality rate of 44.4% in Muscovy duck, 25.9% in Sheldrake, and 11.1% in Cherry Valley duck, respectively. Similar mortality discrepancies were also observed in different ducks when infected with chicken-origin gIX virus strain F48E8. These results indicate that XBT14-like velogenic gIX APMV-1 (such as XBT14, F48E8, and GD09-2) could cause fatal infection in duck, and genotype IX is another genotype velogenic to duck as well as genotype VII. Accompanied by genetic differences in the vaccine strains or dominant strains prevailing in poultry, the virulent XBT14-like gIX viruses might become potentially endemic strains in poultry in the future.

  7. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles.

    PubMed

    McMeel, O M; Hoey, E M; Ferguson, A

    2001-01-01

    The cDNA nucleotide sequences of the lactate dehydrogenase alleles LDH-C1*90 and *100 of brown trout (Salmo trutta) were found to differ at position 308 where an A is present in the *100 allele but a G is present in the *90 allele. This base substitution results in an amino acid change from aspartic acid at position 82 in the LDH-C1 100 allozyme to a glycine in the 90 allozyme. Since aspartic acid has a net negative charge whilst glycine is uncharged, this is consistent with the electrophoretic observation that the LDH-C1 100 allozyme has a more anodal mobility relative to the LDH-C1 90 allozyme. Based on alignment of the cDNA sequence with the mouse genomic sequence, a local primer set was designed, incorporating the variable position, and was found to give very good amplification with brown trout genomic DNA. Sequencing of this fragment confirmed the difference in both homozygous and heterozygous individuals. Digestion of the polymerase chain reaction products with BslI, a restriction enzyme specific for the site difference, gave one, two and three fragments for the two homozygotes and the heterozygote, respectively, following electrophoretic separation. This provides a DNA-based means of routine screening of the highly informative LDH-C1* polymorphism in brown trout population genetic studies. Primer sets presented could be used to sequence cDNA of other LDH* genes of brown trout and other species.

  8. The wheat homolog of putative nucleotide-binding site-leucine-rich repeat resistance gene TaRGA contributes to resistance against powdery mildew.

    PubMed

    Wang, Defu; Wang, Xiaobing; Mei, Yu; Dong, Hansong

    2016-03-01

    Powdery mildew, one of the most destructive wheat diseases worldwide, is caused by Blumeria graminis f. sp. tritici (Bgt), a fungal species with a consistently high mutation rate that makes individual resistance (R) genes ineffective. Therefore, effective resistance-related gene cloning is vital for breeding and studying the resistance mechanisms of the disease. In this study, a putative nucleotide-binding site-leucine-rich repeat (NBS-LRR) R gene (TaRGA) was cloned using a homology-based cloning strategy and analyzed for its effect on powdery mildew disease and wheat defense responses. Real-time reverse transcription-PCR (RT-PCR) analyses revealed that a Bgt isolate 15 and salicylic acid stimulation significantly induced TaRGA in the resistant variety. Furthermore, the silencing of TaRGA in powdery mildew-resistant plants increased susceptibility to Bgt15 and prompted conidia propagation at the infection site. However, the expression of TaRGA in leaf segments after single-cell transient expression assay highly increased the defense responses to Bgt15 by enhancing callose deposition and phenolic autofluorogen accumulation at the pathogen invading sites. Meanwhile, the expression of pathogenesis-related genes decreased in the TaRGA-silenced plants and increased in the TaRGA-transient-overexpressing leaf segments. These results implied that the TaRGA gene positively regulates the defense response to powdery mildew disease in wheat.

  9. DNase I hypersensitivity and epsilon-globin transcriptional enhancement are separable in locus control region (LCR) HS1 mutant human beta-globin YAC transgenic mice.

    PubMed

    Shimotsuma, Motoshi; Okamura, Eiichi; Matsuzaki, Hitomi; Fukamizu, Akiyoshi; Tanimoto, Keiji

    2010-05-07

    Expression of the five beta-like globin genes (epsilon, Ggamma, Agamma, delta, beta) in the human beta-globin locus depends on enhancement by the locus control region, which consists of five DNase I hypersensitive sites (5'HS1 through 5'HS5). We report here a novel enhancer activity in 5'HS1 that appears to be potent in transfected K562 cells. Deletion analyses identified a core activating element that bound to GATA-1, and a two-nucleotide mutation that disrupted GATA-1 binding in vitro abrogated 5'HS1 enhancer activity in transfection experiments. To determine the in vivo role of this GATA site, we generated multiple lines of human beta-globin YAC transgenic mice bearing the same two-nucleotide mutation. In the mutant mice, epsilon-, but not gamma-globin, gene expression in primitive erythroid cells was severely attenuated, while adult beta-globin gene expression in definitive erythroid cells was unaffected. Interestingly, DNaseI hypersensitivity near the 5'HS1 mutant sequence was eliminated in definitive erythroid cells, whereas it was only mildly affected in primitive erythroid cells. We therefore conclude that, although the GATA site in 5'HS1 is critical for efficient epsilon-globin gene expression, hypersensitive site formation per se is independent of 5'HS1 function, if any, in definitive erythroid cells.

  10. Bitterness of the Non-nutritive Sweetener Acesulfame Potassium Varies With Polymorphisms in TAS2R9 and TAS2R31

    PubMed Central

    2013-01-01

    Demand for nonnutritive sweeteners continues to increase due to their ability to provide desirable sweetness with minimal calories. Acesulfame potassium and saccharin are well-studied nonnutritive sweeteners commonly found in food products. Some individuals report aversive sensations from these sweeteners, such as bitter and metallic side tastes. Recent advances in molecular genetics have provided insight into the cause of perceptual differences across people. For example, common alleles for the genes TAS2R9 and TAS2R38 explain variable response to the bitter drugs ofloxacin in vitro and propylthiouracil in vivo. Here, we wanted to determine whether differences in the bitterness of acesulfame potassium could be predicted by common polymorphisms (genetic variants) in bitter taste receptor genes (TAS2Rs). We genotyped participants (n = 108) for putatively functional single nucleotide polymorphisms in 5 TAS2Rs and asked them to rate the bitterness of 25 mM acesulfame potassium on a general labeled magnitude scale. Consistent with prior reports, we found 2 single nucleotide polymorphisms in TAS2R31 were associated with acesulfame potassium bitterness. However, TAS2R9 alleles also predicted additional variation in acesulfame potassium bitterness. Conversely, single nucleotide polymorphisms in TAS2R4, TAS2R38, and near TAS2R16 were not significant predictors. Using 1 single nucleotide polymorphism each from TAS2R9 and TAS2R31, we modeled the simultaneous influence of these single nucleotide polymorphisms on acesulfame potassium bitterness; together, these 2 single nucleotide polymorphisms explained 13.4% of the variance in perceived bitterness. These data suggest multiple polymorphisms within TAS2Rs contribute to the ability to perceive the bitterness from acesulfame potassium. PMID:23599216

  11. Sequence diversity within the reovirus S2 gene: reovirus genes reassort in nature, and their termini are predicted to form a panhandle motif.

    PubMed Central

    Chapell, J D; Goral, M I; Rodgers, S E; dePamphilis, C W; Dermody, T S

    1994-01-01

    To better understand genetic diversity within mammalian reoviruses, we determined S2 nucleotide and deduced sigma 2 amino acid sequences of nine reovirus strains and compared these sequences with those of prototype strains of the three reovirus serotypes. The S2 gene and sigma 2 protein are highly conserved among the four type 1, one type 2, and seven type 3 strains studied. Phylogenetic analyses based on S2 nucleotide sequences of the 12 reovirus strains indicate that diversity within the S2 gene is independent of viral serotype. Additionally, we found marked topological differences between phylogenetic trees generated from S1 and S2 gene nucleotide sequences of the seven type 3 strains. These results demonstrate that reovirus S1 and S2 genes have distinct evolutionary histories, thus providing phylogenetic evidence for lateral transfer of reovirus genes in nature. When variability among the 12 sigma 2-encoding S2 nucleotide sequences was analyzed at synonymous positions, we found that approximately 60 nucleotides at the 5' terminus and 30 nucleotides at the 3' terminus were markedly conserved in comparison with other sigma 2-encoding regions of S2. Predictions of RNA secondary structures indicate that the more conserved S2 sequences participate in the formation of an extended region of duplex RNA interrupted by a pair of stem-loops. Among the 12 deduced sigma 2 amino acid sequences examined, substitutions were observed at only 11% of amino acid positions. This finding suggests that constraints on the structure or function of sigma 2, perhaps in part because of its location in the virion core, have limited sequence diversity within this protein. PMID:8289378

  12. DNA methylation levels at chromosome 8q24 in peripheral blood are associated with 8q24 cancer susceptibility loci.

    PubMed

    Barry, Kathryn Hughes; Moore, Lee E; Sampson, Joshua; Yan, Liying; Meyer, Ann; Oler, Andrew J; Chung, Charles C; Wang, Zhaoming; Yeager, Meredith; Amundadottir, Laufey; Berndt, Sonja I

    2014-12-01

    Chromosome 8q24 has emerged as an important region for genetic susceptibility to various cancers, but little is known about the contribution of DNA methylation at 8q24. To evaluate variability in DNA methylation levels at 8q24 and the relationship with cancer susceptibility single nucleotide polymorphisms (SNPs) in this region, we quantified DNA methylation levels in peripheral blood at 145 CpG sites nearby 8q24 cancer susceptibility SNPs or MYC using pyrosequencing among 80 Caucasian men in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. For the 60 CpG sites meeting quality control, which also demonstrated temporal stability over a 5-year period, we calculated pairwise Spearman correlations for DNA methylation levels at each CpG site with 42 8q24 cancer susceptibility SNPs. To account for multiple testing, we adjusted P values into q values reflecting the false discovery rate (FDR). In contrast to the MYC CpG sites, most sites nearby the SNPs demonstrated good reproducibility, high methylation levels, and moderate-high between-individual variation. We observed 10 statistically significant (FDR < 0.05) CpG site-SNP correlations. These included correlations between an intergenic CpG site at Chr8:128393157 and the prostate cancer SNP rs16902094 (ρ = -0.54; P = 9.7 × 10(-7); q = 0.002), a PRNCR1 CpG site at Chr8:128167809 and the prostate cancer SNP rs1456315 (ρ = 0.52; P = 1.4 × 10(-6); q = 0.002), and two POU5F1B CpG sites and several prostate/colorectal cancer SNPs (for Chr8:128498051 and rs6983267, ρ = 0.46; P = 2.0 × 10(-5); q = 0.01). This is the first report of correlations between blood DNA methylation levels and cancer susceptibility SNPs at 8q24, suggesting that DNA methylation at this important susceptibility locus may contribute to cancer risk. ©2014 American Association for Cancer Research.

  13. Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials.

    PubMed

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2018-02-21

    The incorporation of biomolecules into nanomaterials generates functional nanosystems with novel and advanced properties, presenting great potential for applications in various fields. Nucleobases, nucleosides and nucleotides, as building blocks of nucleic acids and biological coenzymes, constitute necessary components of the foundation of life. In recent years, as versatile biomolecules for the construction or regulation of functional nanomaterials, they have stimulated interest in researchers, due to their unique properties such as structural diversity, multiplex binding sites, self-assembly ability, stability, biocompatibility, and chirality. In this review, strategies for the synthesis of nanomaterials and the regulation of their morphologies and functions using nucleobases, nucleosides, and nucleotides as building blocks, templates or modulators are summarized alongside selected applications. The diverse applications range from sensing, bioimaging, and drug delivery to mimicking light-harvesting antenna, the construction of logic gates, and beyond. Furthermore, some perspectives and challenges in this emerging field are proposed. This review is directed toward the broader scientific community interested in biomolecule-based functional nanomaterials.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    R Vasquez-Del Carpio; T Silverstein; S Lone

    Exposure of DNA to UV radiation causes covalent linkages between adjacent pyrimidines. The most common lesion found in DNA from these UV-induced linkages is the cis-syn cyclobutane pyrimidine dimer. Human DNA polymerase {Kappa} (Pol{Kappa}), a member of the Y-family of DNA polymerases, is unable to insert nucleotides opposite the 3'T of a cis-syn T-T dimer, but it can efficiently extend from a nucleotide inserted opposite the 3'T of the dimer by another DNA polymerase. We present here the structure of human Pol{Kappa} in the act of inserting a nucleotide opposite the 5'T of the cis-syn T-T dimer. The structure revealsmore » a constrained active-site cleft that is unable to accommodate the 3'T of a cis-syn T-T dimer but is remarkably well adapted to accommodate the 5'T via Watson-Crick base pairing, in accord with a proposed role for Pol{Kappa} in the extension reaction opposite from cyclobutane pyrimidine dimers in vivo.« less

  15. Structures of Human Pumilio with Noncognate RNAs Reveal Molecular Mechanisms for Binding Promiscuity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta,Y.; Nair, D.; Wharton, R.

    2008-01-01

    Pumilio is a founder member of the evolutionarily conserved Puf family of RNA-binding proteins that control a number of physiological processes in eukaryotes. A structure of human Pumilio (hPum) Puf domain bound to a Drosophila regulatory sequence showed that each Puf repeat recognizes a single nucleotide. Puf domains in general bind promiscuously to a large set of degenerate sequences, but the structural basis for this promiscuity has been unclear. Here, we describe the structures of hPum Puf domain complexed to two noncognate RNAs, CycBreverse and Puf5. In each complex, one of the nucleotides is ejected from the binding surface, inmore » effect, acting as a 'spacer.' The complexes also reveal the plasticity of several Puf repeats, which recognize noncanonical nucleotides. Together, these complexes provide a molecular basis for recognition of degenerate binding sites, which significantly increases the number of mRNAs targeted for regulation by Puf proteins in vivo.« less

  16. Muju Virus, Harbored by Myodes regulus in Korea, Might Represent a Genetic Variant of Puumala Virus, the Prototype Arvicolid Rodent-Borne Hantavirus

    PubMed Central

    Lee, Jin Goo; Gu, Se Hun; Baek, Luck Ju; Shin, Ok Sarah; Park, Kwang Sook; Kim, Heung-Chul; Klein, Terry A.; Yanagihara, Richard; Song, Jin-Won

    2014-01-01

    The genome of Muju virus (MUJV), identified originally in the royal vole (Myodes regulus) in Korea, was fully sequenced to ascertain its genetic and phylogenetic relationship with Puumala virus (PUUV), harbored by the bank vole (My. glareolus), and a PUUV-like virus, named Hokkaido virus (HOKV), in the grey red-backed vole (My. rufocanus) in Japan. Whole genome sequence analysis of the 6544-nucleotide large (L), 3652-nucleotide medium (M) and 1831-nucleotide small (S) segments of MUJV, as well as the amino acid sequences of their gene products, indicated that MUJV strains from different capture sites might represent genetic variants of PUUV, the prototype arvicolid rodent-borne hantavirus in Europe. Distinct geographic-specific clustering of MUJV was found in different provinces in Korea, and phylogenetic analyses revealed that MUJV and HOKV share a common ancestry with PUUV. A better understanding of the taxonomic classification and pathogenic potential of MUJV must await its isolation in cell culture. PMID:24736214

  17. 3D RNA and functional interactions from evolutionary couplings

    PubMed Central

    Weinreb, Caleb; Riesselman, Adam; Ingraham, John B.; Gross, Torsten; Sander, Chris; Marks, Debora S.

    2016-01-01

    Summary Non-coding RNAs are ubiquitous, but the discovery of new RNA gene sequences far outpaces research on their structure and functional interactions. We mine the evolutionary sequence record to derive precise information about function and structure of RNAs and RNA-protein complexes. As in protein structure prediction, we use maximum entropy global probability models of sequence co-variation to infer evolutionarily constrained nucleotide-nucleotide interactions within RNA molecules, and nucleotide-amino acid interactions in RNA-protein complexes. The predicted contacts allow all-atom blinded 3D structure prediction at good accuracy for several known RNA structures and RNA-protein complexes. For unknown structures, we predict contacts in 160 non-coding RNA families. Beyond 3D structure prediction, evolutionary couplings help identify important functional interactions, e.g., at switch points in riboswitches and at a complex nucleation site in HIV. Aided by accelerating sequence accumulation, evolutionary coupling analysis can accelerate the discovery of functional interactions and 3D structures involving RNA. PMID:27087444

  18. pH profile of the adsorption of nucleotides onto montmorillonite. I - Selected homoionic clays

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Church, F. M.; Mazzurco, J.; Banin, A.; Huff, R.; Kao, J.; Cook, A.; Lowe, T.; Orenberg, J. B.; Edelson, E.

    1985-01-01

    The effect of pH and adsorbed ions on the adsorption of purine and pyrimidine nucleotides on montmorillonite clay was studied experimentally. The specific nucleotides examined were: 5 prime-AMP; 3-prime AMP; and 5 prime-CMP. The pH of the clay samples was adjusted to various levels in the 2-12 pH range using microliter volumes of concentrated acid (1N HCl) and base (1NHNaOH). It was found that preferential adsorption among nulceotides was dependent on the pH level and on the characteristics of the substituted metal cation and anion exchange mechanisms. Below pH 4, adsorption was attributed to cation and anion exchange mechanisms. Above pH 4, however, adsorption was attributed to the complexation mechanisms occurring between the metal cations in the clay exchange site and in the biomolecule. The possible role of homoionic clays in the concentration mechanisms of biomonomers in the prebiotic environment is discussed.

  19. Single nucleotide polymorphisms in multiple sclerosis: disease susceptibility and treatment response biomarkers.

    PubMed

    Pravica, Vera; Popadic, Dusan; Savic, Emina; Markovic, Milos; Drulovic, Jelena; Mostarica-Stojkovic, Marija

    2012-04-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by unpredictable and variable clinical course. Etiology of MS involves both genetic and environmental factors. New technologies identified genetic polymorphisms associated with MS susceptibility among which immunologically relevant genes are significantly overrepresented. Although individual genes contribute only a small part to MS susceptibility, they might be used as biomarkers, thus helping to identify accurate diagnosis, predict clinical disease course and response to therapy. This review focuses on recent progress in research on MS genetics with special emphasis on the possibility to use single nucleotide polymorphism of candidate genes as biomarkers of susceptibility to disease and response to therapy.

  20. A Method to Determine 18O Kinetic Isotope Effects in the Hydrolysis of Nucleotide Triphosphates

    PubMed Central

    Du, Xinlin; Ferguson, Kurt; Sprang, Stephen R.

    2007-01-01

    A method to determine 18O kinetic isotope effects (KIE) in the hydrolysis of GTP is described that is generally applicable to reactions involving other nucleotide triphosphates. Internal competition, wherein the substrate of the reaction is a mixture of 18O-labeled and unlabeled nucleotides, is employed and the change in relative abundance of the two species in the course of the reaction is used to calculate KIE. The nucleotide labeled with 18O at sites of mechanistic interest also contains 13C at all carbon positions, while the 16O-nucleotide is depleted of 13C. The relative abundance of the labeled and unlabeled substrates or products is reflected in the carbon isotope ratio (13C/12C) in GTP or GDP, which is determined by use of a liquid chromatography-coupled isotope ratio mass spectrometer (LC-coupled IRMS). The LC is coupled to the IRMS by an Isolink™ interface (ThermoFinnigan). Carbon isotope ratios can be determined with accuracy and precision greater than 0.04%, and are consistent over an order of magnitude in sample amount. KIE values for Ras/NF1333-catalyzed hydrolysis of [β18O3,13C]GTP were determined by change in the isotope ratio of GTP or GDP or the ratio of the isotope ratio of GDP to that of GTP. KIE values computed in the three ways agree within 0.1%, although the method using the ratio of isotope ratios of GDP and GTP gives superior precision (< 0.1%). A single KIE measurement can be conducted in 25 minutes with less than 5 μg nucleotide reaction product. PMID:17963711

  1. The guanine nucleotide exchange factor Ric-8A induces domain separation and Ras domain plasticity in Gαi1

    PubMed Central

    Van Eps, Ned; Thomas, Celestine J.; Hubbell, Wayne L.; Sprang, Stephen R.

    2015-01-01

    Heterotrimeric G proteins are activated by exchange of GDP for GTP at the G protein alpha subunit (Gα), most notably by G protein-coupled transmembrane receptors. Ric-8A is a soluble cytoplasmic protein essential for embryonic development that acts as both a guanine nucleotide exchange factor (GEF) and a chaperone for Gα subunits of the i, q, and 12/13 classes. Previous studies demonstrated that Ric-8A stabilizes a dynamically disordered state of nucleotide-free Gα as the catalytic intermediate for nucleotide exchange, but no information was obtained on the structures involved or the magnitude of the structural fluctuations. In the present study, site-directed spin labeling (SDSL) together with double electron-electron resonance (DEER) spectroscopy is used to provide global distance constraints that identify discrete members of a conformational ensemble in the Gαi1:Ric-8A complex and the magnitude of structural differences between them. In the complex, the helical and Ras-like nucleotide-binding domains of Gαi1 pivot apart to occupy multiple resolved states with displacements as large as 25 Å. The domain displacement appears to be distinct from that observed in Gαs upon binding of Gs to the β2 adrenergic receptor. Moreover, the Ras-like domain exhibits structural plasticity within and around the nucleotide-binding cavity, and the switch I and switch II regions, which are known to adopt different conformations in the GDP- and GTP-bound states of Gα, undergo structural rearrangements. Collectively, the data show that Ric-8A induces a conformationally heterogeneous state of Gαi and provide insight into the mechanism of action of a nonreceptor Gα GEF. PMID:25605908

  2. Sulfonylureas suppress the stimulatory action of Mg-nucleotides on Kir6.2/SUR1 but not Kir6.2/SUR2A KATP channels: a mechanistic study.

    PubMed

    Proks, Peter; de Wet, Heidi; Ashcroft, Frances M

    2014-11-01

    Sulfonylureas, which stimulate insulin secretion from pancreatic β-cells, are widely used to treat both type 2 diabetes and neonatal diabetes. These drugs mediate their effects by binding to the sulfonylurea receptor subunit (SUR) of the ATP-sensitive K(+) (KATP) channel and inducing channel closure. The mechanism of channel inhibition is unusually complex. First, sulfonylureas act as partial antagonists of channel activity, and second, their effect is modulated by MgADP. We analyzed the molecular basis of the interactions between the sulfonylurea gliclazide and Mg-nucleotides on β-cell and cardiac types of KATP channel (Kir6.2/SUR1 and Kir6.2/SUR2A, respectively) heterologously expressed in Xenopus laevis oocytes. The SUR2A-Y1206S mutation was used to confer gliclazide sensitivity on SUR2A. We found that both MgATP and MgADP increased gliclazide inhibition of Kir6.2/SUR1 channels and reduced inhibition of Kir6.2/SUR2A-Y1206S. The latter effect can be attributed to stabilization of the cardiac channel open state by Mg-nucleotides. Using a Kir6.2 mutation that renders the KATP channel insensitive to nucleotide inhibition (Kir6.2-G334D), we showed that gliclazide abolishes the stimulatory effects of MgADP and MgATP on β-cell KATP channels. Detailed analysis suggests that the drug both reduces nucleotide binding to SUR1 and impairs the efficacy with which nucleotide binding is translated into pore opening. Mutation of one (or both) of the Walker A lysines in the catalytic site of the nucleotide-binding domains of SUR1 may have a similar effect to gliclazide on MgADP binding and transduction, but it does not appear to impair MgATP binding. Our results have implications for the therapeutic use of sulfonylureas. © 2014 Proks et al.

  3. Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae.

    PubMed

    Rosinski-Chupin, Isabelle; Sauvage, Elisabeth; Sismeiro, Odile; Villain, Adrien; Da Cunha, Violette; Caliot, Marie-Elise; Dillies, Marie-Agnès; Trieu-Cuot, Patrick; Bouloc, Philippe; Lartigue, Marie-Frédérique; Glaser, Philippe

    2015-05-30

    Streptococcus agalactiae, or Group B Streptococcus, is a leading cause of neonatal infections and an increasing cause of infections in adults with underlying diseases. In an effort to reconstruct the transcriptional networks involved in S. agalactiae physiology and pathogenesis, we performed an extensive and robust characterization of its transcriptome through a combination of differential RNA-sequencing in eight different growth conditions or genetic backgrounds and strand-specific RNA-sequencing. Our study identified 1,210 transcription start sites (TSSs) and 655 transcript ends as well as 39 riboswitches and cis-regulatory regions, 39 cis-antisense non-coding RNAs and 47 small RNAs potentially acting in trans. Among these putative regulatory RNAs, ten were differentially expressed in response to an acid stress and two riboswitches sensed directly or indirectly the pH modification. Strikingly, 15% of the TSSs identified were associated with the incorporation of pseudo-templated nucleotides, showing that reiterative transcription is a pervasive process in S. agalactiae. In particular, 40% of the TSSs upstream genes involved in nucleotide metabolism show reiterative transcription potentially regulating gene expression, as exemplified for pyrG and thyA encoding the CTP synthase and the thymidylate synthase respectively. This comprehensive map of the transcriptome at the single nucleotide resolution led to the discovery of new regulatory mechanisms in S. agalactiae. It also provides the basis for in depth analyses of transcriptional networks in S. agalactiae and of the regulatory role of reiterative transcription following variations of intra-cellular nucleotide pools.

  4. Identification of a nucleotide in 5′ untranslated region contributing to virus replication and virulence of Coxsackievirus A16

    PubMed Central

    Li, Zhaolong; Liu, Xin; Wang, Shaohua; Li, Jingliang; Hou, Min; Liu, Guanchen; Zhang, Wenyan; Yu, Xiao-Fang

    2016-01-01

    Coxsackievirus A16 (CA16) and enterovirus 71 (EV71) are two main causative pathogens of hand, foot and mouth disease (HFMD). Unlike EV71, virulence determinants of CA16, particularly within 5′ untranslated region (5′UTR), have not been investigated until now. Here, a series of nucleotides present in 5′UTR of lethal but not in non-lethal CA16 strains were screened by aligning nucleotide sequences of lethal circulating Changchun CA16 and the prototype G10 as well as non-lethal SHZH05 strains. A representative infectious clone based on a lethal Changchun024 sequence and infectious mutants with various nucleotide alterations in 5′UTR were constructed and further investigated by assessing virus replication in vitro and virulence in neonatal mice. Compared to the lethal infectious clone, the M2 mutant with a change from cytosine to uracil at nucleotide 104 showed weaker virulence and lower replication capacity. The predicted secondary structure of the 5′UTR of CA16 RNA showed that M2 mutant located between the cloverleaf and stem-loop II, affected interactions between the 5′UTR and the heterogeneous nuclear ribonucleoprotein K (hnRNP K) and A1 (hnRNP A1) that are important for translational activity. Thus, our research determined a virulence-associated site in the 5′UTR of CA16, providing a crucial molecular target for antiviral drug development. PMID:26861413

  5. A Ruler Protein in a Complex for Antiviral Defense Determines the Length of Small Interfering CRISPR RNAs

    PubMed Central

    Hatoum-Aslan, Asma; Samai, Poulami; Maniv, Inbal; Jiang, Wenyan; Marraffini, Luciano A.

    2013-01-01

    Small RNAs undergo maturation events that precisely determine the length and structure required for their function. CRISPRs (clustered regularly interspaced short palindromic repeats) encode small RNAs (crRNAs) that together with CRISPR-associated (cas) genes constitute a sequence-specific prokaryotic immune system for anti-viral and anti-plasmid defense. crRNAs are subject to multiple processing events during their biogenesis, and little is known about the mechanism of the final maturation step. We show that in the Staphylococcus epidermidis type III CRISPR-Cas system, mature crRNAs are measured in a Cas10·Csm ribonucleoprotein complex to yield discrete lengths that differ by 6-nucleotide increments. We looked for mutants that impact this crRNA size pattern and found that an alanine substitution of a conserved aspartate residue of Csm3 eliminates the 6-nucleotide increments in the length of crRNAs. In vitro, recombinant Csm3 binds RNA molecules at multiple sites, producing gel-shift patterns that suggest that each protein binds 6 nucleotides of substrate. In vivo, changes in the levels of Csm3 modulate the crRNA size distribution without disrupting the 6-nucleotide periodicity. Our data support a model in which multiple Csm3 molecules within the Cas10·Csm complex bind the crRNA with a 6-nucleotide periodicity to function as a ruler that measures the extent of crRNA maturation. PMID:23935102

  6. Functional interactions between A' helices in the C-linker of open CNG channels.

    PubMed

    Hua, Li; Gordon, Sharona E

    2005-03-01

    Cyclic nucleotide-gated (CNG) channels are nonselective cation channels that are activated by the direct binding of the cyclic nucleotides cAMP and cGMP. The region linking the last membrane-spanning region (S6) to the cyclic nucleotide binding domain in the COOH terminus, termed the C-linker, has been shown to play an important role in coupling cyclic nucleotide binding to opening of the pore. In this study, we explored the intersubunit proximity between the A' helices of the C-linker regions of CNGA1 in functional channels using site-specific cysteine substitution. We found that intersubunit disulfide bonds can be formed between the A' helices in open channels, and that inducing disulfide bonds in most of the studied constructs resulted in potentiation of channel activation. This suggests that the A' helices of the C-linker regions are in close proximity when the channel is in the open state. Our finding is not compatible with a homology model of the CNGA1 C-linker made from the recently published X-ray crystallographic structure of the hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channel COOH terminus, and leads us to suggest that the C-linker region depicted in the crystal structure may represent the structure of the closed state. The opening conformational change would then involve a movement of the A' helices from a position parallel to the axis of the membrane to one perpendicular to the axis of the membrane.

  7. Nucleotide-Protectable Labeling of Sulfhydryl Groups in Subunit I of the ATPhase from Halobacterium Saccharovorum

    NASA Technical Reports Server (NTRS)

    Sulzner, Michael; Stan-Lotter, Helga; Hochstein, Lawrence I.

    1992-01-01

    A membrane-bound ATPase from the archaebacterium Halobacterium saccharovorum is inhibited by N-ethyl-maleimide in a nucleotide-protectable manner. When the enzyme was incubated with N-[C-14]jethylmaleimide, the bulk of radioactivity was as- sociated with the 87,000-Da subunit (subunit 1). ATP, ADP, or AMP reduced incorporation of the inhibitor. No charge shift of subunit I was detected following labeling with N-ethylmaleimide, indicating an electroneutral reaction. The results are consistent with the selective modification of sulfhydryl groups in subunit I at or near the catalytic site and are further evidence of a resemblance between this archaebacterial ATPase and the vacuolar-type ATPases.

  8. EBI metagenomics--a new resource for the analysis and archiving of metagenomic data.

    PubMed

    Hunter, Sarah; Corbett, Matthew; Denise, Hubert; Fraser, Matthew; Gonzalez-Beltran, Alejandra; Hunter, Christopher; Jones, Philip; Leinonen, Rasko; McAnulla, Craig; Maguire, Eamonn; Maslen, John; Mitchell, Alex; Nuka, Gift; Oisel, Arnaud; Pesseat, Sebastien; Radhakrishnan, Rajesh; Rocca-Serra, Philippe; Scheremetjew, Maxim; Sterk, Peter; Vaughan, Daniel; Cochrane, Guy; Field, Dawn; Sansone, Susanna-Assunta

    2014-01-01

    Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.ebi.ac.uk/metagenomics/) that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored (together with descriptive, standards-compliant metadata) in the European Nucleotide Archive.

  9. Mycobacterium leprae: genes, pseudogenes and genetic diversity

    PubMed Central

    Singh, Pushpendra; Cole, Stewart T

    2011-01-01

    Leprosy, which has afflicted human populations for millenia, results from infection with Mycobacterium leprae, an unculturable pathogen with an exceptionally long generation time. Considerable insight into the biology and drug resistance of the leprosy bacillus has been obtained from genomics. M. leprae has undergone reductive evolution and pseudogenes now occupy half of its genome. Comparative genomics of four different strains revealed remarkable conservation of the genome (99.995% identity) yet uncovered 215 polymorphic sites, mainly single nucleotide polymorphisms, and a handful of new pseudogenes. Mapping these polymorphisms in a large panel of strains defined 16 single nucleotide polymorphism-subtypes that showed strong geographical associations and helped retrace the evolution of M. leprae. PMID:21162636

  10. EBI metagenomics—a new resource for the analysis and archiving of metagenomic data

    PubMed Central

    Hunter, Sarah; Corbett, Matthew; Denise, Hubert; Fraser, Matthew; Gonzalez-Beltran, Alejandra; Hunter, Christopher; Jones, Philip; Leinonen, Rasko; McAnulla, Craig; Maguire, Eamonn; Maslen, John; Mitchell, Alex; Nuka, Gift; Oisel, Arnaud; Pesseat, Sebastien; Radhakrishnan, Rajesh; Rocca-Serra, Philippe; Scheremetjew, Maxim; Sterk, Peter; Vaughan, Daniel; Cochrane, Guy; Field, Dawn; Sansone, Susanna-Assunta

    2014-01-01

    Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.ebi.ac.uk/metagenomics/) that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored (together with descriptive, standards-compliant metadata) in the European Nucleotide Archive. PMID:24165880

  11. Are we there yet for rice disease control

    USDA-ARS?s Scientific Manuscript database

    Plant resistance (R) genes play an important role in fighting against plant pathogens. For the past two decades, significant efforts have been directed to map and clone R genes. Most of the cloned plant R genes encode proteins with leucine rich repeat and nucleotide binding sites (NLR), their cellul...

  12. Genome-wide comparative analysis of NBS-encoding genes in four Gossypium species

    USDA-ARS?s Scientific Manuscript database

    Nucleotide binding site (NBS) genes encode a large family of disease resistance (R) proteins in plants. The availability of genomic data of the two diploid cotton species, Gossypium arboreum and Gossypium raimondii, and the two allotetraploid cotton species, Gossypium hirsutum (TM-1) and Gossypium ...

  13. The role of differing probe and target strand lengths in DNA microarrays investigated via Monte Carlo molecular simulation

    NASA Astrophysics Data System (ADS)

    Rivard, Brea R.; Cooper, Sarah J.; Stubbs, John M.

    2018-02-01

    DNA duplexes consisting of a 25mer together with shorter complementary sequences were studied over a range of temperature and surface binding motifs using a coarse-grained two-site nucleotide model. Results were analyzed in terms of hydrogen bonding interactions and structural characteristics and indicate that hybridization is most stable when furthest from the surface binding site. Strand elongation and straightening near the bound end are found to be correlated to duplex destabilization.

  14. Top single nucleotide polymorphisms affecting carbohydrate metabolism in metabolic syndrome: from the LIPGENE study.

    PubMed

    Delgado-Lista, Javier; Perez-Martinez, Pablo; Solivera, Juan; Garcia-Rios, Antonio; Perez-Caballero, A I; Lovegrove, Julie A; Drevon, Christian A; Defoort, Catherine; Blaak, Ellen E; Dembinska-Kieć, Aldona; Risérus, Ulf; Herruzo-Gomez, Ezequiel; Camargo, Antonio; Ordovas, Jose M; Roche, Helen; Lopez-Miranda, José

    2014-02-01

    Metabolic syndrome (MetS) is a high-prevalence condition characterized by altered energy metabolism, insulin resistance, and elevated cardiovascular risk. Although many individual single nucleotide polymorphisms (SNPs) have been linked to certain MetS features, there are few studies analyzing the influence of SNPs on carbohydrate metabolism in MetS. A total of 904 SNPs (tag SNPs and functional SNPs) were tested for influence on 8 fasting and dynamic markers of carbohydrate metabolism, by performance of an intravenous glucose tolerance test in 450 participants in the LIPGENE study. From 382 initial gene-phenotype associations between SNPs and any phenotypic variables, 61 (16% of the preselected variables) remained significant after bootstrapping. Top SNPs affecting glucose metabolism variables were as follows: fasting glucose, rs26125 (PPARGC1B); fasting insulin, rs4759277 (LRP1); C-peptide, rs4759277 (LRP1); homeostasis assessment of insulin resistance, rs4759277 (LRP1); quantitative insulin sensitivity check index, rs184003 (AGER); sensitivity index, rs7301876 (ABCC9), acute insulin response to glucose, rs290481 (TCF7L2); and disposition index, rs12691 (CEBPA). We describe here the top SNPs linked to phenotypic features in carbohydrate metabolism among approximately 1000 candidate gene variations in fasting and postprandial samples of 450 patients with MetS from the LIPGENE study.

  15. Comparison of Insertional RNA Editing in Myxomycetes

    PubMed Central

    Chen, Cai; Frankhouser, David; Bundschuh, Ralf

    2012-01-01

    RNA editing describes the process in which individual or short stretches of nucleotides in a messenger or structural RNA are inserted, deleted, or substituted. A high level of RNA editing has been observed in the mitochondrial genome of Physarum polycephalum. The most frequent editing type in Physarum is the insertion of individual Cs. RNA editing is extremely accurate in Physarum; however, little is known about its mechanism. Here, we demonstrate how analyzing two organisms from the Myxomycetes, namely Physarum polycephalum and Didymium iridis, allows us to test hypotheses about the editing mechanism that can not be tested from a single organism alone. First, we show that using the recently determined full transcriptome information of Physarum dramatically improves the accuracy of computational editing site prediction in Didymium. We use this approach to predict genes in the mitochondrial genome of Didymium and identify six new edited genes as well as one new gene that appears unedited. Next we investigate sequence conservation in the vicinity of editing sites between the two organisms in order to identify sites that harbor the information for the location of editing sites based on increased conservation. Our results imply that the information contained within only nine or ten nucleotides on either side of the editing site (a distance previously suggested through experiments) is not enough to locate the editing sites. Finally, we show that the codon position bias in C insertional RNA editing of these two organisms is correlated with the selection pressure on the respective genes thereby directly testing an evolutionary theory on the origin of this codon bias. Beyond revealing interesting properties of insertional RNA editing in Myxomycetes, our work suggests possible approaches to be used when finding sequence motifs for any biological process fails. PMID:22383871

  16. Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes.

    PubMed

    Li, Shisheng; Smerdon, Michael J

    2004-04-02

    Transcription-coupled repair (TCR) and global genomic repair (GGR) of UV-induced cyclobutane pyrimidine dimers were investigated in the yeast GAL1-10 genes. Both Rpb9- and Rad26-mediated TCR are confined to the transcribed strands, initiating at upstream sites approximately 100 nucleotides from the upstream activating sequence shared by the two genes. However, TCR initiation sites do not correlate with either transcription start sites or TATA boxes. Rad16-mediated GGR tightly correlates with nucleosome positioning when the genes are repressed and are slow in the nucleosome core and fast in linker DNA. Induction of transcription enhanced GGR in nucleosome core DNA, especially in the nucleosomes around and upstream of the transcription start sites. Furthermore, when the genes were induced, GGR was slower in the transcribed regions than in the upstream regions. Finally, simultaneous deletion of RAD16, RAD26, and RPB9 resulted in no detectable repair in all sites along the region analyzed. Our results suggest that (a). TCR may be initiated by a transcription activator, presumably through the loading of RNA polymerase II, rather than by transcription initiation or elongation per se; (b). TCR and nucleosome disruption-enhanced GGR are the major causes of rapid repair in regions around and upstream of transcription start sites; (c). transcription machinery may hinder access of NER factors to a DNA lesion in the absence of a transcription-repair coupling factor; and (d). other than GGR mediated by Rad16 and TCR mediated by Rad26 and Rpb9, no other nucleotide excision repair pathway exists in these RNA polymerase II-transcribed genes.

  17. Structure of the coding region and mRNA variants of the apyrase gene from pea (Pisum sativum)

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Abe, S.; Davies, E.

    2001-01-01

    Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3' untranslated regions (3'-UTR). There are some similarities between the 3'-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3'-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments.

  18. Amino acid changes in disease-associated variants differ radically from variants observed in the 1000 genomes project dataset.

    PubMed

    de Beer, Tjaart A P; Laskowski, Roman A; Parks, Sarah L; Sipos, Botond; Goldman, Nick; Thornton, Janet M

    2013-01-01

    The 1000 Genomes Project data provides a natural background dataset for amino acid germline mutations in humans. Since the direction of mutation is known, the amino acid exchange matrix generated from the observed nucleotide variants is asymmetric and the mutabilities of the different amino acids are very different. These differences predominantly reflect preferences for nucleotide mutations in the DNA (especially the high mutation rate of the CpG dinucleotide, which makes arginine mutability very much higher than other amino acids) rather than selection imposed by protein structure constraints, although there is evidence for the latter as well. The variants occur predominantly on the surface of proteins (82%), with a slight preference for sites which are more exposed and less well conserved than random. Mutations to functional residues occur about half as often as expected by chance. The disease-associated amino acid variant distributions in OMIM are radically different from those expected on the basis of the 1000 Genomes dataset. The disease-associated variants preferentially occur in more conserved sites, compared to 1000 Genomes mutations. Many of the amino acid exchange profiles appear to exhibit an anti-correlation, with common exchanges in one dataset being rare in the other. Disease-associated variants exhibit more extreme differences in amino acid size and hydrophobicity. More modelling of the mutational processes at the nucleotide level is needed, but these observations should contribute to an improved prediction of the effects of specific variants in humans.

  19. Conformational Dynamics of a Y-Family DNA Polymerase during Substrate Binding and Catalysis As Revealed by Interdomain Förster Resonance Energy Transfer

    PubMed Central

    2015-01-01

    Numerous kinetic, structural, and theoretical studies have established that DNA polymerases adjust their domain structures to enclose nucleotides in their active sites and then rearrange critical active site residues and substrates for catalysis, with the latter conformational change acting to kinetically limit the correct nucleotide incorporation rate. Additionally, structural studies have revealed a large conformational change between the apoprotein and the DNA–protein binary state for Y-family DNA polymerases. In previous studies [Xu, C., Maxwell, B. A., Brown, J. A., Zhang, L., and Suo, Z. (2009) PLoS Biol.7, e1000225], a real-time Förster resonance energy transfer (FRET) method was developed to monitor the global conformational transitions of DNA polymerase IV from Sulfolobus solfataricus (Dpo4), a prototype Y-family enzyme, during nucleotide binding and incorporation by measuring changes in distance between locations on the enzyme and the DNA substrate. To elucidate further details of the conformational transitions of Dpo4 during substrate binding and catalysis, in this study, the real-time FRET technique was used to monitor changes in distance between various pairs of locations in the protein itself. In addition to providing new insight into the conformational changes as revealed in previous studies, the results here show that the previously described conformational change between the apo and DNA-bound states of Dpo4 occurs in a mechanistic step distinct from initial formation or dissociation of the binary complex of Dpo4 and DNA. PMID:24568554

  20. Nucleotide sequence of the L1 ribosomal protein gene of Xenopus laevis: remarkable sequence homology among introns.

    PubMed Central

    Loreni, F; Ruberti, I; Bozzoni, I; Pierandrei-Amaldi, P; Amaldi, F

    1985-01-01

    Ribosomal protein L1 is encoded by two genes in Xenopus laevis. The comparison of two cDNA sequences shows that the two L1 gene copies (L1a and L1b) have diverged in many silent sites and very few substitution sites; moreover a small duplication occurred at the very end of the coding region of the L1b gene which thus codes for a product five amino acids longer than that coded by L1a. Quantitatively the divergence between the two L1 genes confirms that a whole genome duplication took place in Xenopus laevis approximately 30 million years ago. A genomic fragment containing one of the two L1 gene copies (L1a), with its nine introns and flanking regions, has been completely sequenced. The 5' end of this gene has been mapped within a 20-pyridimine stretch as already found for other vertebrate ribosomal protein genes. Four of the nine introns have a 60-nucleotide sequence with 80% homology; within this region some boxes, one of which is 16 nucleotides long, are 100% homologous among the four introns. This feature of L1a gene introns is interesting since we have previously shown that the activity of this gene is regulated at a post-transcriptional level and it involves the block of the normal splicing of some intron sequences. Images Fig. 3. Fig. 5. PMID:3841512

  1. Distinguishing functional polymorphism from random variation in the sequences of >10,000 HLA-A, -B and -C alleles.

    PubMed

    Robinson, James; Guethlein, Lisbeth A; Cereb, Nezih; Yang, Soo Young; Norman, Paul J; Marsh, Steven G E; Parham, Peter

    2017-06-01

    HLA class I glycoproteins contain the functional sites that bind peptide antigens and engage lymphocyte receptors. Recently, clinical application of sequence-based HLA typing has uncovered an unprecedented number of novel HLA class I alleles. Here we define the nature and extent of the variation in 3,489 HLA-A, 4,356 HLA-B and 3,111 HLA-C alleles. This analysis required development of suites of methods, having general applicability, for comparing and analyzing large numbers of homologous sequences. At least three amino-acid substitutions are present at every position in the polymorphic α1 and α2 domains of HLA-A, -B and -C. A minority of positions have an incidence >1% for the 'second' most frequent nucleotide, comprising 70 positions in HLA-A, 85 in HLA-B and 54 in HLA-C. The majority of these positions have three or four alternative nucleotides. These positions were subject to positive selection and correspond to binding sites for peptides and receptors. Most alleles of HLA class I (>80%) are very rare, often identified in one person or family, and they differ by point mutation from older, more common alleles. These alleles with single nucleotide polymorphisms reflect the germ-line mutation rate. Their frequency predicts the human population harbors 8-9 million HLA class I variants. The common alleles of human populations comprise 42 core alleles, which represent all selected polymorphism, and recombinants that have assorted this polymorphism.

  2. Distinguishing functional polymorphism from random variation in the sequences of >10,000 HLA-A, -B and -C alleles

    PubMed Central

    Cereb, Nezih; Yang, Soo Young; Marsh, Steven G. E.; Parham, Peter

    2017-01-01

    HLA class I glycoproteins contain the functional sites that bind peptide antigens and engage lymphocyte receptors. Recently, clinical application of sequence-based HLA typing has uncovered an unprecedented number of novel HLA class I alleles. Here we define the nature and extent of the variation in 3,489 HLA-A, 4,356 HLA-B and 3,111 HLA-C alleles. This analysis required development of suites of methods, having general applicability, for comparing and analyzing large numbers of homologous sequences. At least three amino-acid substitutions are present at every position in the polymorphic α1 and α2 domains of HLA-A, -B and -C. A minority of positions have an incidence >1% for the ‘second’ most frequent nucleotide, comprising 70 positions in HLA-A, 85 in HLA-B and 54 in HLA-C. The majority of these positions have three or four alternative nucleotides. These positions were subject to positive selection and correspond to binding sites for peptides and receptors. Most alleles of HLA class I (>80%) are very rare, often identified in one person or family, and they differ by point mutation from older, more common alleles. These alleles with single nucleotide polymorphisms reflect the germ-line mutation rate. Their frequency predicts the human population harbors 8–9 million HLA class I variants. The common alleles of human populations comprise 42 core alleles, which represent all selected polymorphism, and recombinants that have assorted this polymorphism. PMID:28650991

  3. Within-site variability in surveys of wildlife populations

    USGS Publications Warehouse

    Link, William A.; Barker, Richard J.; Sauer, John R.; Droege, Sam

    1994-01-01

    Most large-scale surveys of animal populations are based on counts of individuals observed during a sampling period, which are used as indexes to the population. The variability in these indexes not only reflects variability in population sizes among sites but also variability due to the inexactness of the counts. Repeated counts at survey sites can be used to document this additional source of variability and, in some applications, to mitigate its effects. We present models for evaluating the proportion of total variability in counts that is attributable to this within-site variability and apply them in the analysis of data from repeated counts on routes from the North American Breeding Bird Survey. We analyzed data on 98 species, obtaining estimates of these percentages, which ranged from 3.5 to 100% with a mean of 36.25%. For at least 14 of the species, more than half of the variation in counts was attributable to within-site sources. Counts for species with lower average counts had a higher percentage of within-site variability. We discuss the relative cost efficiency of replicating sites or initiating new sites for several objectives, concluding that it is frequently better to initiate new sites than to attempt to replicate existing sites.

  4. DNA sequence requirements for the accurate transcription of a protein-coding plastid gene in a plastid in vitro system from mustard (Sinapis alba L.)

    PubMed Central

    Link, Gerhard

    1984-01-01

    A nuclease-treated plastid extract from mustard (Sinapis alba L.) allows efficient transcription of cloned plastid DNA templates. In this in vitro system, the major runoff transcript of the truncated gene for the 32 000 mol. wt. photosystem II protein was accurately initiated from a site close to or identical with the in vivo start site. By using plasmids with deletions in the 5'-flanking region of this gene as templates, a DNA region required for efficient and selective initiation was detected ˜28-35 nucleotides upstream of the transcription start site. This region contains the sequence element TTGACA, which matches the consensus sequence for prokaryotic `−35' promoter elements. In the absence of this region, a region ˜13-27 nucleotides upstream of the start site still enables a basic level of specific transcription. This second region contains the sequence element TATATAA, which matches the consensus sequence for the `TATA' box of genes transcribed by RNA polymerase II (or B). The region between the `TATA'-like element and the transcription start site is not sufficient but may be required for specific transcription of the plastid gene. This latter region contains the sequence element TATACT, which resembles the prokaryotic `−10' (Pribnow) box. Based on the structural and transcriptional features of the 5' upstream region, a `promoter switch' mechanism is proposed, which may account for the developmentally regulated expression of this plastid gene. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Figure 5. PMID:16453540

  5. Homo sapiens-Specific Binding Site Variants within Brain Exclusive Enhancers Are Subject to Accelerated Divergence across Human Population.

    PubMed

    Zehra, Rabail; Abbasi, Amir Ali

    2018-03-01

    Empirical assessments of human accelerated noncoding DNA frgaments have delineated presence of many cis-regulatory elements. Enhancers make up an important category of such accelerated cis-regulatory elements that efficiently control the spatiotemporal expression of many developmental genes. Establishing plausible reasons for accelerated enhancer sequence divergence in Homo sapiens has been termed significant in various previously published studies. This acceleration by including closely related primates and archaic human data has the potential to open up evolutionary avenues for deducing present-day brain structure. This study relied on empirically confirmed brain exclusive enhancers to avoid any misjudgments about their regulatory status and categorized among them a subset of enhancers with an exceptionally accelerated rate of lineage specific divergence in humans. In this assorted set, 13 distinct transcription factor binding sites were located that possessed unique existence in humans. Three of 13 such sites belonging to transcription factors SOX2, RUNX1/3, and FOS/JUND possessed single nucleotide variants that made them unique to H. sapiens upon comparisons with Neandertal and Denisovan orthologous sequences. These variants modifying the binding sites in modern human lineage were further substantiated as single nucleotide polymorphisms via exploiting 1000 Genomes Project Phase3 data. Long range haplotype based tests laid out evidence of positive selection to be governing in African population on two of the modern human motif modifying alleles with strongest results for SOX2 binding site. In sum, our study acknowledges acceleration in noncoding regulatory landscape of the genome and highlights functional parts within it to have undergone accelerated divergence in present-day human population.

  6. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-01

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5'-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  7. Novel avian paramyxovirus (APMV-15) isolated from a migratory bird in South America.

    PubMed

    Thomazelli, Luciano Matsumiya; de Araújo, Jansen; Fabrizio, Thomas; Walker, David; Reischak, Dilmara; Ometto, Tatiana; Barbosa, Carla Meneguin; Petry, Maria Virginia; Webby, Richard J; Durigon, Edison Luiz

    2017-01-01

    A novel avian paramyxovirus (APMV) isolated from a migratory bird cloacal swab obtained during active surveillance in April 2012 in the Lagoa do Peixe National Park, Rio Grande do Sul state, South of Brazil was biologically and genetically characterized. The nucleotide sequence of the full viral genome was completed using a next-generation sequencing approach. The genome was 14,952 nucleotides (nt) long, with six genes (3'-NP-P-M-F-HN-L-5') encoding 7 different proteins, typical of APMV. The fusion (F) protein gene of isolate RS-1177 contained 1,707 nucleotides in a single open reading frame encoding a protein of 569 amino acids. The F protein cleavage site contained two basic amino acids (VPKER↓L), typical of avirulent strains. Phylogenetic analysis of the whole genome indicated that the virus is related to APMV-10, -2 and -8, with 60.1% nucleotide sequence identity to the closest APMV-10 virus, 58.7% and 58.5% identity to the closest APMV-8 and APMV-2 genome, respectively, and less than 52% identity to representatives of the other APMVs groups. Such distances are comparable to the distances observed among other previously identified APMVs serotypes. These results suggest that unclassified/calidris_fuscicollis/Brazil/RS-1177/2012 is the prototype strain of a new APMV serotype, APMV-15.

  8. Assessment of primer/template mismatch effects on real-time PCR amplification of target taxa for GMO quantification.

    PubMed

    Ghedira, Rim; Papazova, Nina; Vuylsteke, Marnik; Ruttink, Tom; Taverniers, Isabel; De Loose, Marc

    2009-10-28

    GMO quantification, based on real-time PCR, relies on the amplification of an event-specific transgene assay and a species-specific reference assay. The uniformity of the nucleotide sequences targeted by both assays across various transgenic varieties is an important prerequisite for correct quantification. Single nucleotide polymorphisms (SNPs) frequently occur in the maize genome and might lead to nucleotide variation in regions used to design primers and probes for reference assays. Further, they may affect the annealing of the primer to the template and reduce the efficiency of DNA amplification. We assessed the effect of a minor DNA template modification, such as a single base pair mismatch in the primer attachment site, on real-time PCR quantification. A model system was used based on the introduction of artificial mismatches between the forward primer and the DNA template in the reference assay targeting the maize starch synthase (SSIIb) gene. The results show that the presence of a mismatch between the primer and the DNA template causes partial to complete failure of the amplification of the initial DNA template depending on the type and location of the nucleotide mismatch. With this study, we show that the presence of a primer/template mismatch affects the estimated total DNA quantity to a varying degree.

  9. SNPGenie: estimating evolutionary parameters to detect natural selection using pooled next-generation sequencing data.

    PubMed

    Nelson, Chase W; Moncla, Louise H; Hughes, Austin L

    2015-11-15

    New applications of next-generation sequencing technologies use pools of DNA from multiple individuals to estimate population genetic parameters. However, no publicly available tools exist to analyse single-nucleotide polymorphism (SNP) calling results directly for evolutionary parameters important in detecting natural selection, including nucleotide diversity and gene diversity. We have developed SNPGenie to fill this gap. The user submits a FASTA reference sequence(s), a Gene Transfer Format (.GTF) file with CDS information and a SNP report(s) in an increasing selection of formats. The program estimates nucleotide diversity, distance from the reference and gene diversity. Sites are flagged for multiple overlapping reading frames, and are categorized by polymorphism type: nonsynonymous, synonymous, or ambiguous. The results allow single nucleotide, single codon, sliding window, whole gene and whole genome/population analyses that aid in the detection of positive and purifying natural selection in the source population. SNPGenie version 1.2 is a Perl program with no additional dependencies. It is free, open-source, and available for download at https://github.com/hugheslab/snpgenie. nelsoncw@email.sc.edu or austin@biol.sc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Vacuum ultraviolet photoionization of carbohydrates and nucleotides.

    PubMed

    Shin, Joong-Won; Bernstein, Elliot R

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  11. Base Preferences in Non-Templated Nucleotide Incorporation by MMLV-Derived Reverse Transcriptases

    PubMed Central

    Zajac, Pawel; Islam, Saiful; Hochgerner, Hannah; Lönnerberg, Peter; Linnarsson, Sten

    2013-01-01

    Reverse transcriptases derived from Moloney Murine Leukemia Virus (MMLV) have an intrinsic terminal transferase activity, which causes the addition of a few non-templated nucleotides at the 3´ end of cDNA, with a preference for cytosine. This mechanism can be exploited to make the reverse transcriptase switch template from the RNA molecule to a secondary oligonucleotide during first-strand cDNA synthesis, and thereby to introduce arbitrary barcode or adaptor sequences in the cDNA. Because the mechanism is relatively efficient and occurs in a single reaction, it has recently found use in several protocols for single-cell RNA sequencing. However, the base preference of the terminal transferase activity is not known in detail, which may lead to inefficiencies in template switching when starting from tiny amounts of mRNA. Here, we used fully degenerate oligos to determine the exact base preference at the template switching site up to a distance of ten nucleotides. We found a strong preference for guanosine at the first non-templated nucleotide, with a greatly reduced bias at progressively more distant positions. Based on this result, and a number of careful optimizations, we report conditions for efficient template switching for cDNA amplification from single cells. PMID:24392002

  12. Determination of human DNA polymerase utilization for the repair of a model ionizing radiation-induced DNA strand break lesion in a defined vector substrate

    NASA Technical Reports Server (NTRS)

    Winters, T. A.; Russell, P. S.; Kohli, M.; Dar, M. E.; Neumann, R. D.; Jorgensen, T. J.

    1999-01-01

    Human DNA polymerase and DNA ligase utilization for the repair of a major class of ionizing radiation-induced DNA lesion [DNA single-strand breaks containing 3'-phosphoglycolate (3'-PG)] was examined using a novel, chemically defined vector substrate containing a single, site-specific 3'-PG single-strand break lesion. In addition, the major human AP endonuclease, HAP1 (also known as APE1, APEX, Ref-1), was tested to determine if it was involved in initiating repair of 3'-PG-containing single-strand break lesions. DNA polymerase beta was found to be the primary polymerase responsible for nucleotide incorporation at the lesion site following excision of the 3'-PG blocking group. However, DNA polymerase delta/straightepsilon was also capable of nucleotide incorporation at the lesion site following 3'-PG excision. In addition, repair reactions catalyzed by DNA polymerase beta were found to be most effective in the presence of DNA ligase III, while those catalyzed by DNA polymerase delta/straightepsilon appeared to be more effective in the presence of DNA ligase I. Also, it was demonstrated that the repair initiating 3'-PG excision reaction was not dependent upon HAP1 activity, as judged by inhibition of HAP1 with neutralizing HAP1-specific polyclonal antibody.

  13. Molecular evolution of type 2 porcine reproductive and respiratory syndrome viruses circulating in Vietnam from 2007 to 2015.

    PubMed

    Do, Hai Quynh; Trinh, Dinh Thau; Nguyen, Thi Lan; Vu, Thi Thu Hang; Than, Duc Duong; Van Lo, Thi; Yeom, Minjoo; Song, Daesub; Choe, SeEun; An, Dong-Jun; Le, Van Phan

    2016-11-17

    Porcine respiratory and reproductive syndrome (PRRS) virus is one of the most economically significant pathogens in the Vietnamese swine industry. ORF5, which participates in many functional processes, including virion assembly, entry of the virus into the host cell, and viral adaptation to the host immune response, has been widely used in molecular evolution and phylogeny studies. Knowing of molecular evolution of PRRSV fields strains might contribute to PRRS control in Vietnam. The results showed that phylogenetic analysis indicated that all strains belonged to sub-lineages 8.7 and 5.1. The nucleotide and amino acid identities between strains were 84.5-100% and 82-100%, respectively. Furthermore, the results revealed differences in nucleotide and amino acid identities between the 2 sub-lineage groups. N-glycosylation prediction identified 7 potential N-glycosylation sites and 11 glycotypes. Analyses of the GP5 sequences, revealed 7 sites under positive selective pressure and 25 under negative selective pressure. Phylogenetic analysis based on ORF5 sequence indicated the diversity of PRRSV in Vietnam. Furthermore, the variance of N-glycosylation sites and position under selective pressure were demonstrated. This study expands existing knowledge on the genetic diversity and evolution of PRRSV in Vietnam and assists the effective strategies for PRRS vaccine development in Vietnam.

  14. Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI.

    PubMed

    Antipova, Valeriya N; Zheleznaya, Lyudmila A; Zyrina, Nadezhda V

    2014-08-01

    In the absence of added DNA, thermophilic DNA polymerases synthesize double-stranded DNA from free dNTPs, which consist of numerous repetitive units (ab initio DNA synthesis). The addition of thermophilic restriction endonuclease (REase), or nicking endonuclease (NEase), effectively stimulates ab initio DNA synthesis and determines the nucleotide sequence of reaction products. We have found that NEases Nt.AlwI, Nb.BbvCI, and Nb.BsmI with non-palindromic recognition sites stimulate the synthesis of sequences organized mainly as palindromes. Moreover, the nucleotide sequence of the palindromes appeared to be dependent on NEase recognition/cleavage modes. Thus, the heterodimeric Nb.BbvCI stimulated the synthesis of palindromes composed of two recognition sites of this NEase, which were separated by AT-reach sequences or (A)n (T)m spacers. Palindromic DNA sequences obtained in the ab initio DNA synthesis with the monomeric NEases Nb.BsmI and Nt.AlwI contained, along with the sites of these NEases, randomly synthesized sequences consisted of blocks of short repeats. These findings could help investigation of the potential abilities of highly productive ab initio DNA synthesis for the creation of DNA molecules with desirable sequence. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Influence of codon usage bias on FGLamide-allatostatin mRNA secondary structure.

    PubMed

    Martínez-Pérez, Francisco; Bendena, William G; Chang, Belinda S W; Tobe, Stephen S

    2011-03-01

    The FGLamide allatostatins (ASTs) are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders. They also show myomodulatory activity. FGLamide AST nucleotide frequencies and codon bias were investigated with respect to possible effects on mRNA secondary structure. 367 putative FGLamide ASTs and their potential endoproteolytic cleavage sites were identified from 40 species of crustaceans, chelicerates and insects. Among these, 55% comprised only 11 amino acids. An FGLamide AST consensus was identified to be (X)(1→16)Y(S/A/N/G)FGLGKR, with a strong bias for the codons UUU encoding for Phe and AAA for Lys, which can form strong Watson-Crick pairing in all peptides analyzed. The physical distance between these codons favor a loop structure from Ser/Ala-Phe to Lys-Arg. Other loop and hairpin loops were also inferred from the codon frequencies in the N-terminal motif, and the first amino acids from the C-terminal motif, or the dibasic potential endoproteolytic cleavage site. Our results indicate that nucleotide frequencies and codon usage bias in FGLamide ASTs tend to favor mRNA folds in the codon sequence in the C-terminal active peptide core and at the dibasic potential endoproteolytic cleavage site. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Statistical Analysis of Readthrough Levels for Nonsense Mutations in Mammalian Cells Reveals a Major Determinant of Response to Gentamicin

    PubMed Central

    Floquet, Célia; Hatin, Isabelle; Rousset, Jean-Pierre; Bidou, Laure

    2012-01-01

    The efficiency of translation termination depends on the nature of the stop codon and the surrounding nucleotides. Some molecules, such as aminoglycoside antibiotics (gentamicin), decrease termination efficiency and are currently being evaluated for diseases caused by premature termination codons. However, the readthrough response to treatment is highly variable and little is known about the rules governing readthrough level and response to aminoglycosides. In this study, we carried out in-depth statistical analysis on a very large set of nonsense mutations to decipher the elements of nucleotide context responsible for modulating readthrough levels and gentamicin response. We quantified readthrough for 66 sequences containing a stop codon, in the presence and absence of gentamicin, in cultured mammalian cells. We demonstrated that the efficiency of readthrough after treatment is determined by the complex interplay between the stop codon and a larger sequence context. There was a strong positive correlation between basal and induced readthrough levels, and a weak negative correlation between basal readthrough level and gentamicin response (i.e. the factor of increase from basal to induced readthrough levels). The identity of the stop codon did not affect the response to gentamicin treatment. In agreement with a previous report, we confirm that the presence of a cytosine in +4 position promotes higher basal and gentamicin-induced readthrough than other nucleotides. We highlight for the first time that the presence of a uracil residue immediately upstream from the stop codon is a major determinant of the response to gentamicin. Moreover, this effect was mediated by the nucleotide itself, rather than by the amino-acid or tRNA corresponding to the −1 codon. Finally, we point out that a uracil at this position associated with a cytosine at +4 results in an optimal gentamicin-induced readthrough, which is the therapeutically relevant variable. PMID:22479203

  17. A single nucleotide polymorphism in osteonectin 3’ untranslated region regulates bone volume and is targeted by miR-433

    PubMed Central

    Dole, Neha S.; Kapinas, Kristina; Kessler, Catherine B.; Yee, Siu-Pok; Adams, Douglas J.; Pereira, Renata C.; Delany, Anne M.

    2014-01-01

    Osteonectin/SPARC is one of the most abundant non-collagenous extracellular matrix proteins in bone, regulating collagen fiber assembly and promoting osteoblast differentiation. Osteonectin-null and –haploinsufficient mice have low turnover osteopenia, indicating that osteonectin contributes to normal bone formation. In male idiopathic osteoporosis patients, osteonectin 3’ UTR single nucleotide polymorphism (SNP) haplotypes that differed only at SNP1599 (rs1054204) were previously associated with bone mass. Haplotype A (containing SNP1599G) was more frequent in severely affected patients, whereas haplotype B (containing SNP1599C) was more frequent in less affected patients and healthy controls. We hypothesized that SNP1599 contributes to variability in bone mass by modulating osteonectin levels. Osteonectin 3’UTR reporter constructs demonstrated that haplotype A has a repressive effect on gene expression compared to B. We found that SNP1599G contributed to a miR-433 binding site and miR-433 inhibitor relieved repression of the haplotype A, but not B, 3’ UTR reporter construct. We tested our hypothesis in vivo, using a knock-in approach to replace the mouse osteonectin 3’ UTR with human haplotype A or B 3’ UTR. Compared to haplotype A mice, bone osteonectin levels were higher in haplotype B mice. B mice displayed higher bone formation rate and gained more trabecular bone with age. When parathyroid hormone was administered intermittently, haplotype B mice gained more cortical bone area than A mice. Cultured marrow stromal cells from B mice deposited more mineralized matrix and had higher osteocalcin mRNA compared with A mice, demonstrating a cell-autonomous effect on differentiation. Altogether, SNP1599 differentially regulates osteonectin expression and contributes to variability in bone mass, by a mechanism that may involve differential targeting by miR-433. This work validates the findings of the previous candidate gene study, and it assigns a physiological function to a common osteonectin allele, providing support for its role in the complex trait of skeletal phenotype. PMID:25262637

  18. Virological Characteristics of Acute Hepatitis B in Eastern India: Critical Differences with Chronic Infection.

    PubMed

    Sarkar, Neelakshi; Pal, Ananya; Das, Dipanwita; Saha, Debraj; Biswas, Avik; Bandopadhayay, Bhaswati; Chakraborti, Mandira; Ghosh, Mrinmoy; Chakravarty, Runu

    2015-01-01

    Hepatitis B Virus (HBV) manifests high genetic variability and is classifiable into ten genotypes (A-J). HBV infection can lead to variable clinical outcomes, ranging from self-limiting acute hepatitis to active chronic hepatitis, cirrhosis and hepatocellular carcinoma. The present study characterizes HBV strains circulating among patients with acute (AHB) and chronic HBV infection (CHB). Among a total of 653 HBsAg positive cases, 40 manifested acute infection. After sequencing the surface(S), basal core promoter/pre-core(BCP/PC) and the X gene regions, phylogenetic tree was constructed using MEGA4 by neighbor-joining method. Statistical robustness was established with bootstrap analysis. Nucleotide diversity was determined by Shannon entropy per site using the Entropy program of the Los Alamos National Laboratories. Analyses of acute patients revealed that HBV/D2 is the major circulating sub-genotype and commonly associated with sexual promiscuity and the age group between15-30 years. Comparison of AHB and CHB patients revealed that HBeAg positivity, ALT levels and genotype D were significantly high in AHB, whereas CHB patients were predominantly male, had a high viral load, and were commonly associated with genotype C. The frequencies of mutations in the S, BCP/PC, and X gene were low in AHB as compared to CHB. Drug resistant mutations were not detectable in the polymerase gene of AHB. Average nucleotide diversity in AHB was considerably low as compared to CHB. Further, the highest average ΔH (average difference in entropy between chronic and acute infection) was observed in the BCP/PC region implying that this region was most vulnerable to mutations upon HBV persistence, especially in case of genotype C. Additionally, among all substitutions, the A1762T and G1764A BCP mutations were the strongest indicators of chronicity. In conclusion, the study exhibits a general portrait of HBV strains circulating among acute hepatitis B patients in Eastern India and their intricate differences with chronic patients which should be useful from the clinical point of view.

  19. Genetic and evolutionary characterization of RABVs from China using the phosphoprotein gene.

    PubMed

    Wang, Lihua; Wu, Hui; Tao, Xiaoyan; Li, Hao; Rayner, Simon; Liang, Guodong; Tang, Qing

    2013-01-07

    While the function of the phosphoprotein (P) gene of the rabies virus (RABV) has been well studied in laboratory adapted RABVs, the genetic diversity and evolution characteristics of the P gene of street RABVs remain unclear. The objective of the present study was to investigate the mutation and evolution of P genes in Chinese street RABVs. The P gene of 77 RABVs from brain samples of dogs and wild animals collected in eight Chinese provinces through 2003 to 2008 were sequenced. The open reading frame (ORF) of the P genes was 894 nucleotides (nt) in length, with 85-99% (80-89%) amino acid (nucleotide) identity compared with the laboratory RABVs and vaccine strains. Phylogenetic analysis based on the P gene revealed that Chinese RABVs strains could be divided into two distinct clades, and several RABV variants were found to co circulating in the same province. Two conserved (CD1, 2) and two variable (VD1, 2) domains were identified by comparing the deduced primary sequences of the encoded P proteins. Two sequence motifs, one believed to confer binding to the cytoplasmic dynein light chain LC8 and a lysine-rich sequence were conserved throughout the Chinese RABVs. In contrast, the isolates exhibited lower conservation of one phosphate acceptor and one internal translation initiation site identified in the P protein of the rabies challenge virus standard (CVS) strain. Bayesian coalescent analysis showed that the P gene in Chinese RABVs have a substitution rate (3.305x10(-4) substitutions per site per year) and evolution history (592 years ago) similar to values for the glycoprotein (G) and nucleoprotein (N) reported previously. Several substitutions were found in the P gene of Chinese RABVs strains compared to the laboratory adapted and vaccine strains, whether these variations could affect the biological characteristics of Chinese RABVs need to be further investigated. The substitution rate and evolution history of P gene is similar to G and N gene, combine the topology of phylogenetic tree based on the P gene is similar to the G and N gene trees, indicate that the P, G and N genes are equally valid for examining the phylogenetics of RABVs.

  20. Convergent transmission of RNAi guide-target mismatch information across Argonaute internal allosteric network.

    PubMed

    Joseph, Thomas T; Osman, Roman

    2012-01-01

    In RNA interference, a guide strand derived from a short dsRNA such as a microRNA (miRNA) is loaded into Argonaute, the central protein in the RNA Induced Silencing Complex (RISC) that silences messenger RNAs on a sequence-specific basis. The positions of any mismatched base pairs in an miRNA determine which Argonaute subtype is used. Subsequently, the Argonaute-guide complex binds and silences complementary target mRNAs; certain Argonautes cleave the target. Mismatches between guide strand and the target mRNA decrease cleavage efficiency. Thus, loading and silencing both require that signals about the presence of a mismatched base pair are communicated from the mismatch site to effector sites. These effector sites include the active site, to prevent target cleavage; the binding groove, to modify nucleic acid binding affinity; and surface allosteric sites, to control recruitment of additional proteins to form the RISC. To examine how such signals may be propagated, we analyzed the network of internal allosteric pathways in Argonaute exhibited through correlations of residue-residue interactions. The emerging network can be described as a set of pathways emanating from the core of the protein near the active site, distributed into the bulk of the protein, and converging upon a distributed cluster of surface residues. Nucleotides in the guide strand "seed region" have a stronger relationship with the protein than other nucleotides, concordant with their importance in sequence selectivity. Finally, any of several seed region guide-target mismatches cause certain Argonaute residues to have modified correlations with the rest of the protein. This arises from the aggregation of relatively small interaction correlation changes distributed across a large subset of residues. These residues are in effector sites: the active site, binding groove, and surface, implying that direct functional consequences of guide-target mismatches are mediated through the cumulative effects of a large number of internal allosteric pathways.

Top