Anatomy of the AGN in NGC 5548. VII. Swift study of obscuration and broadband continuum variability
NASA Astrophysics Data System (ADS)
Mehdipour, M.; Kaastra, J. S.; Kriss, G. A.; Cappi, M.; Petrucci, P.-O.; De Marco, B.; Ponti, G.; Steenbrugge, K. C.; Behar, E.; Bianchi, S.; Branduardi-Raymont, G.; Costantini, E.; Ebrero, J.; Di Gesu, L.; Matt, G.; Paltani, S.; Peterson, B. M.; Ursini, F.; Whewell, M.
2016-04-01
We present our investigation into the long-term variability of the X-ray obscuration and optical-UV-X-ray continuum in the Seyfert 1 galaxy NGC 5548. In 2013 and 2014, the Swift observatory monitored NGC 5548 on average every day or two, with archival observations reaching back to 2005, totalling about 670 ks of observing time. Both broadband spectral modelling and temporal rms variability analysis are applied to the Swift data. We disentangle the variability caused by absorption, due to an obscuring weakly-ionised outflow near the disk, from variability of the intrinsic continuum components (the soft X-ray excess and the power law) originating in the disk and its associated coronae. The spectral model that we apply to this extensive Swift data is the global model that we derived for NGC 5548 from analysis of the stacked spectra from our multi-satellite campaign of 2013 (including XMM-Newton, NuSTAR, and HST). The results of our Swift study show that changes in the covering fraction of the obscurer is the primary and dominant cause of variability in the soft X-ray band on timescales of 10 days to ~5 months. The obscuring covering fraction of the X-ray source is found to range between 0.7 and nearly 1.0. The contribution of the soft excess component to the X-ray variability is often much less than that of the obscurer, but it becomes comparable when the optical-UV continuum flares up. We find that the soft excess is consistent with being the high-energy tail of the optical-UV continuum and can be explained by warm Comptonisation: up-scattering of the disk seed photons in a warm, optically thick corona as part of the inner disk. To this date, the Swift monitoring of NGC 5548 shows that the obscurer has been continuously present in our line of sight for at least 4 years (since at least February 2012).
NASA Technical Reports Server (NTRS)
Stirpe, G. M.; Winge, C.; Altieri, B.; Alloin, D.; Aguero, E. L.; Anupama, G. C.; Ashley, R.; Bertram, R.; Calderon, J. H.; Catchpole, R. M.
1994-01-01
The Seyfert 1 galaxy NGC 3783 was intensely monitored in several bands between 1991 December and 1992 August. This paper presents the results from the ground-based observations in the optical and near-IR bands, which complement the data set formed by the International Ultraviolet Explorer (IUE) spectra, discussed elsewhere. Spectroscopic and photometric data from several observatories were combined in order to obtain well-sampled light curves of the continuum and of H(beta). During the campaign the source underwent significant variability. The light curves of the optical continuum and of H(beta) display strong similarities to those obtained with the IUE. The near-IR flux did not vary significantly except for a slight increase at the end of the campaign. The cross-correlation analysis shows that the variations of the optical continuum have a lag of 1 day or less with respect to those of the UV continuum, with an uncertainty of is less than or equal to 4 days. The integrated flux of H(beta) varies with a delay of about 8 days. These results confirm that (1) the continuum variations occur simultaneously or with a very small lag across the entire UV-optical range, as in the Seyfert galaxy NGC 5548; and (2) the emission lines of NGC 3783 respond to ionizing continuum variations with less delay than those of NGC 5548. As observed in NGC 5548, the lag of H(beta) with respect to the continuum is greater than those of the high-ionization lines.
Optical Variability of Two High-Luminosity Radio-Quiet Quasars, PDS 456 and PHL 1811
NASA Astrophysics Data System (ADS)
Gaskell, C. M.; Benker, A. J.; Campbell, J. S.; Crowley, K. A.; George, T. A.; Hedrick, C. H.; Hiller, M. E.; Klimek, E. S.; Leonard, J. P.; Peterson, B. W.; Sanders, K. M.
2003-12-01
PDS 456 and PHL 1811 are two of the highest luminosity low-redshift quasars. Both have optical luminosities comparable to 3C 273, but they have low radio luminosities. PDS 456 is a broad line object but PHL 1811 could be classified as a high-luminosity Narrow-Line Seyfert 1 (NLS1) object. We present the results of optical (V-band) continuum monitoring of PDS 456 and PHL 1811. We compare the variability properties of these two very different AGNs compared with the radio-loud AGN 3C 273, and we discuss the implications for the origin of the optical continuum variability in AGNs. This research has been supported in part by the Howard Hughes Foundation, Nebraska EPSCoR, the University of Nebraska Layman Fund, the University of Nebraska Undergraduate Creative Activities and Research Experiences, Pepsi-Cola, and the National Science Foundation through grant AST 03-07912.
NASA Astrophysics Data System (ADS)
Sun, Mouyuan; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Dawson, Kyle; Denney, Kelly D.; Hall, Patrick B.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Richards, Gordon T.; Schneider, Donald P.; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey
2015-09-01
We explore the variability of quasars in the Mg ii and {{H}}β broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with {{H}}β . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with {{H}}β . The Mg ii emission line is significantly variable ({{Δ }}f/f∼ 10% on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. {{H}}β is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1\\lt z\\lt 2 quasars.
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Berlind, P.; Bertram, R.; Bischoff, K.; Bochkarev, N. G.; Burenkov, A. N.; Calkins, M.; Carrasco, L.; Chavushyan, V. H.
2002-01-01
We present the final installment of an intensive 13 year study of variations of the optical continuum and broad H beta emission line in the Seyfert 1 galaxy NGC 5548. The database consists of 1530 optical continuum measurements and 1248 H beta measurements. The H beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction between the size of the broad-line region and the ionizing luminosity, r is proportional to L(sup 1/2)(sub ion). Moreover, the apparently linear nature of the correlation between the H beta response time and the nonstellar optical continuum F(sub opt) arises as a consequence of the changing shape of the continuum as it varies, specifically F(sub opt) is proportional to F(sup 0.56)(sub UV).
Reverberation Mapping of the Continuum Source in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael Martin
I present results from a monitoring campaign of 11 active galactic nuclei (AGN) conducted in Spring of 2014. I use the reverberation mapping method to probe the interior structures of the AGN, specifically the broad line regions (BLRs) and accretion disks. One of these AGN, NGC 5548, was also subject to multi-wavelength (X-ray, UV, optical, and near-IR) monitoring using 25 ground-based telescopes and four space-based facilities. For NGC 5548, I detect lags between the continuum emission at different wavelengths that follow a trend consistent with the prediction for continuum reprocessing by an accretion disk with temperature profile T ∝ R -3/4. However, the lags imply a disk radius that is 3 times larger than the prediction from standard thin-disk models. The lags at wavelengths longer than the Vband are also equal to or greater than the lags of high-ionization-state emission lines (such as HeII lambda1640 and lambda4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region. Using optical spectra from the Large Binocular Telescope, I estimate the bias of the interband continuum lags due to BLR emission observed in the filters, and I find that the bias for filters with high levels of BLR contamination (˜20%) can be important for the shortest continuum lags. This likely has a significant impact on the u and U bands owing to Balmer continuum emission. I then develop a new procedure for the internal (night-to-night) calibration of time series spectra that can reach precisions of ˜1 millimagnitude and improves traditional techniques by up to a factor of 5. At this level, other systematic issues (e.g., the nightly sensitivity functions and Fe II contamination) limit the final precision of the observed light curves. Using the new calibration method, I next present the data and first results from the optical spectroscopic monitoring component of the reverberation mapping campaign. Five AGN were sufficiently variable to measure continuum-Hbeta lags and super-massive black hole masses: MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. I also obtain Hgamma and HeII lags for all objects except 3C 382. The HeII lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines to continuum variations are also in qualitative agreement with photoionization models. Finally, I measure optical continuum lags for the two most variable targets, MCG+08-11-011 and NGC 2617. I again find lags consistent with geometrically thin accretion-disk models that have temperature profiles T ∝ R-3/4. The observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. Using a physical model, these differences can be explained if the mass accretion rates are larger than inferred from the optical continuum luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long 2.6 day lag is problematic for coronal reprocessing models.
NASA Astrophysics Data System (ADS)
Kokubo, Mitsuru
2017-05-01
We examine the optical photometric and polarimetric variability of the luminous type 1 non-blazar quasar 3C 323.1 (PG 1545+210). Two optical spectropolarimetric measurements taken during the periods 1996-1998 and 2003 combined with a V-band imaging-polarimetric measurement taken in 2002 reveal that (1) as noted in the literature, the polarization of 3C 323.1 is confined only to the continuum emission, I.e. the emission from the broad-line region is unpolarized; (2) the polarized flux spectra show evidence of a time-variable broad absorption feature in the wavelength range of the Balmer continuum and other recombination lines; (3) weak variability in the polarization position angle (PA) of ˜4°over a time-scale of 4-6 yr is observed and (4) the V-band total flux and the polarized flux show highly correlated variability over a time-scale of 1 yr. Taking the above-mentioned photometric and polarimetric variability properties and the results from previous studies into consideration, we propose a geometrical model for the polarization source in 3C 323.1, in which an equatorial absorbing region and an axi-asymmetric equatorial electron-scattering region are assumed to be located between the accretion disc and the broad-line region. The scattering/absorbing regions can perhaps be attributed to the accretion disc wind or flared disc surface, but further polarimetric monitoring observations for 3C 323.1 and other quasars with continuum-confined polarization are needed to probe the true physical origins of these regions.
Multiwavelength Photometric and Spectropolarimetric Analysis of the FSRQ 3C 279
NASA Astrophysics Data System (ADS)
Patiño-Álvarez, V. M.; Fernandes, S.; Chavushyan, V.; López-Rodríguez, E.; León-Tavares, J.; Schlegel, E. M.; Carrasco, L.; Valdés, J.; Carramiñana, A.
2018-06-01
In this paper, we present light curves for 3C 279 over a time period of six years; from 2008 to 2014. Our multiwavelength data comprise 1 mm to gamma-rays, with additional optical polarimetry. Based on the behaviour of the gamma-ray light curve with respect to other bands, we identified three different activity periods. One of the activity periods shows anomalous behaviour with no gamma-ray counterpart associated with optical and NIR flares. Another anomalous activity period shows a flare in gamma-rays, 1 mm and polarization degree, however, it does not have counterparts in the UV continuum, optical and NIR bands. We find a significant overall correlation of the UV continuum emission, the optical and NIR bands. This correlation suggests that the NIR to UV continuum is co-spatial. We also find a correlation between the UV continuum and the 1 mm data, which implies that the dominant process in producing the UV continuum is synchrotron emission. The gamma-ray spectral index shows statistically significant variability and an anti-correlation with the gamma-ray luminosity. We demonstrate that the dominant gamma-ray emission mechanism in 3C 279 changes over time. Alternatively, the location of the gamma-ray emission zone itself may change depending on the activity state of the central engine.
NASA Technical Reports Server (NTRS)
Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.
1994-01-01
We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-89. IUE spectra were obtained once every two days for a period of 74 days beginning on 14 March 1993. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October to 1993 September, although much of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution, we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 A continuum flux is found to have varied by nearly a factor of two. In other wavebands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short time-scale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous, with any lag between the 1350 A continuum and the 5100 A continuum amounting to less than about one day; (2) that the variations in the highest ionization lines observed, He II lambda 1640 and N V lambda 1240, lag behind the continuum variations by somewhat less than 2 days, and (3) that the velocity field of the C IV-emitting region is not dominated by radial motion. The results on the C IV velocity field are preliminary and quite uncertain, but there are some weak indications that the emission-line (wings absolute value of Delta upsilon is greater than or equal to 3000 km/s) respond to continuum variations slightly more rapidly than does the core. The optical observations show that the variations in the broad H beta line flux follow the continuum variations with a time lag of around two weeks, about twice the lag for Ly alpha and C IV, as in our previous monitoring campaign on this same galaxy. However, the lags measured for Ly alpha, C IV, and H Beta are each slightly smaller than previously determined. We confirm two trends reported earlier, namely (1) that the UV/optical continuum becomes 'harder' as it gets brighter, and (2) that the highest ionization emission lines have the shortest lags, thus indicating radial ionization stratificatin of a broad-line region that spans over an order of magnitude range in radius.
A SPECTROPOLARIMETRIC TEST OF THE STRUCTURE OF THE INTRINSIC ABSORBERS IN THE QUASAR HS 1603+3820
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misawa, Toru; Kawabata, Koji S.; Eracleous, Michael
We report the results of a spectropolarimetric observation of the C VI 'mini-broad' absorption line (mini-BAL) in the quasar HS 1603+3820 (z {sub em} = 2.542). The observations were carried out with the FOCAS instrument on the Subaru Telescope and yielded an extremely high polarization sensitivity of {delta}p{approx} 0.1%, at a resolving power of R {approx} 1500. HS 1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C VI mini-BAL profile. Using the monitoring observations in an earlier paper, we were able to narrow down the causesmore » of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber and (2) a variable, highly ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (1) the polarization level is very small (p {approx} 0.6%) throughout the spectrum and (2) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C VI mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth.« less
A Spectropolarimetric Test of the Structure of the Intrinsic Absorbers in the Quasar HS 1603+3820
NASA Astrophysics Data System (ADS)
Misawa, Toru; Kawabata, Koji S.; Eracleous, Michael; Charlton, Jane C.; Kashikawa, Nobunari
2010-08-01
We report the results of a spectropolarimetric observation of the C VI "mini-broad" absorption line (mini-BAL) in the quasar HS 1603+3820 (z em = 2.542). The observations were carried out with the FOCAS instrument on the Subaru Telescope and yielded an extremely high polarization sensitivity of δp~ 0.1%, at a resolving power of R ~ 1500. HS 1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C VI mini-BAL profile. Using the monitoring observations in an earlier paper, we were able to narrow down the causes of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber and (2) a variable, highly ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (1) the polarization level is very small (p ~ 0.6%) throughout the spectrum and (2) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C VI mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Optical, near, infrared and ultraviolet monitoring of the Seyfert 1 galaxy Markarian 335
NASA Technical Reports Server (NTRS)
Shrader, Chris R.; Sun, W.-H.; Turner, T. J.; Hintzen, P. M.
1990-01-01
Preliminary results of a multifrequency monitoring campaign for the bright, Seyfert 1 galactic nuclei Mkn335 are presented. Nearly uniform sampling at 3 day intervals is achieved quasi simultaneously at each wavelength band. Wavelength dependent variability is seen at the 20 to 30 percent level. Interpretation of variability in terms of geometrically thin, optically thick accretion disk models is discussed. The inferred blackhole masses and accretion rates are discussed. Possible correlation between continuum and emission line variations is discussed.
Optical Spectra of Four Objects Identified with Variable Radio Sources
NASA Astrophysics Data System (ADS)
Chavushyan, V.; Mujica, R.; Gorshkov, A. G.; Konnikova, V. K.; Mingaliev, M. G.
2000-06-01
We obtained optical spectra of four objects identified with variable radio sources. Three objects (0029+0554, 0400+0550, 2245+0500) were found to be quasars with redshifts of 1.314, 0.761, and 1.091. One object (2349+0534) has a continuum spectrum characteristic of BL Lac objects. We analyze spectra of the radio sources in the range 0.97-21.7 GHz for the epoch 1997 and in the range 3.9-11.1 GHz for the epoch 1990, as well as the pattern of variability of their flux densities on time scales of 1.5 and 7 years.
NASA Astrophysics Data System (ADS)
Bon, Edi; Jovanović, Predrag; Marziani, Paola; Bon, Nataša; Otašević, Aleksandar
2018-06-01
Here we investigate the connection of broad emission line shapes and continuum light curve variability time scales of type-1 Active Galactic Nuclei (AGN). We developed a new model to describe optical broad emission lines as an accretion disk model of a line profile with additional ring emission. We connect ring radii with orbital time scales derived from optical light curves, and using Kepler's third law, we calculate mass of central supermassive black hole (SMBH). The obtained results for central black hole masses are in a good agreement with other methods. This indicates that the variability time scales of AGN may not be stochastic, but rather connected to the orbital time scales which depend on the central SMBH mass.
Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars
NASA Astrophysics Data System (ADS)
Honnappa, Vijayakumar; Prabhakar, Vedavvathi
Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars Vijayakumar H. Doddamani*and P. Vedavathi Department of Physics, Bangalore University, Bangalore-560056, *Corresponding author:drvkdmani@gmail.com, Abstract The line and continuum flux variability is a hallmark phenomenon of Seyfert 1 galaxies and quasars. Large amplitude luminosity variability is observed in AGNs from x-rays through radio waves over a wide-ranging timescales from minutes to years. The combinations of high luminosity and short variability time scales suggests, that the power of AGN is produced by a phenomena more efficient in terms of energy release per unit mass than ordinary stellar processes. The basic structure of AGNs thus developed based on the variability studies consists of a central super massive black hole surrounded by an accretion disk or more generally optically thick plasma radiating brightly at UV and soft X-ray wavelengths. The variability studies have been important tools of understanding the physics of the central regions of AGNs, which in general cannot be resolved with the existing or planned ground and space telescopes. Therefore, we have undertaken a study of the simultaneous ultraviolet line and continuum flux variability studies in MRK501, ESOB113-IG45 (also called as Fairall 9), MRK1506, MRK1095 V*GQCOM, PG1211+143, MRK205, PG1226+023 (also known as 3C273), PG1351+640, MRK 1383, MRK876 and QSO2251-178 as these objects have been repeatedly observed by IUE satellite over several years.. It is observed that Fairall 9, MRK 1095 and 3C273 exhibit the large amplitude variability (» 30 times) over the observed timescale, which spans several years. The remaining nine objects exhibit small amplitude (» 5 times) variability over the long time scale of observations. The highest amplitude variability is observed in Lya with a least in the MgII line. The amplitude of variability decreases in the order of Lya, CIV and Mg II, lines. These results suggest that the BLR is spatially stratified into different regions from the central compact nuclear engine. Keywords: Active galaxies, Seyfert galaxies, Quasars, Line and continuum, Variability, Supermassive black hole
WIND STRUCTURE AND LUMINOSITY VARIATIONS IN THE WOLF-RAYET/LUMINOUS BLUE VARIABLE HD 5980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgiev, Leonid; Koenigsberger, Gloria; Hillier, D. John
Over the past 40 years, the massive luminous blue variable/Wolf-Rayet system HD 5980 in the Small Magellanic Cloud (SMC) has undergone a long-term S Doradus-type variability cycle and two brief and violent eruptions in 1993 and 1994. In this paper we analyze a collection of UV and optical spectra obtained between 1979 and 2009 and perform CMFGEN model fits to spectra of 1994, 2000, 2002, and 2009. The results are as follows: (1) the long-term S Dor-type variability is associated with changes of the hydrostatic radius; (2) the 1994 eruption involved changes in its bolometric luminosity and wind structure; (3)more » the emission-line strength, the wind velocity, and the continuum luminosity underwent correlated variations in the sense that a decreasing V{sub {infinity}} is associated with increasing emission line and continuum levels; and (4) the spectrum of the third star in the system (Star C) is well fit by a T{sub eff} = 32 K model atmosphere with SMC chemical abundances. For all epochs, the wind of the erupting star is optically thick at the sonic point and is thus driven mainly by the continuum opacity. We speculate that the wind switches between two stable regimes driven by the 'hot' (during the eruption) and the 'cool' (post-eruption) iron opacity bumps as defined by Lamers and Nugis and Graefener and Hamann, and thus the wind may undergo a bi-stability jump of a different nature from that which occurs in OB stars.« less
NASA Astrophysics Data System (ADS)
Mathur, S.; Gupta, A.; Page, K.; Pogge, R. W.; Krongold, Y.; Goad, M. R.; Adams, S. M.; Anderson, M. D.; Arévalo, P.; Barth, A. J.; Bazhaw, C.; Beatty, T. G.; Bentz, M. C.; Bigley, A.; Bisogni, S.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Brown, J. E.; Brown, J. S.; Cackett, E. M.; Canalizo, G.; Carini, M. T.; Clubb, K. I.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Crenshaw, D. M.; Croft, S.; Croxall, K. V.; Dalla Bontà, E.; Deason, A. J.; Denney, K. D.; De Lorenzo-Cáceres, A.; De Rosa, G.; Dietrich, M.; Edelson, R.; Ely, J.; Eracleous, M.; Evans, P. A.; Fausnaugh, M. M.; Ferland, G. J.; Filippenko, A. V.; Flatland, K.; Fox, O. D.; Gates, E. L.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Gorjian, V.; Greene, J. E.; Grier, C. J.; Grupe, D.; Hall, P. B.; Henderson, C. B.; Hicks, S.; Holmbeck, E.; Holoien, T. W.-S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Jensen, J. J.; Johnson, C. A.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kelly, P. L.; Kennea, J. A.; Kim, M.; Kim, S.; Kim, S. C.; King, A.; Klimanov, S. A.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Lau, M. W.; Lee, J. C.; Leonard, D. C.; Li, M.; Lira, P.; Ma, Z.; MacInnis, F.; Manne-Nicholas, E. R.; Malkan, M. A.; Mauerhan, J. C.; McGurk, R.; McHardy, I. M.; Montouri, C.; Morelli, L.; Mosquera, A.; Mudd, D.; Muller-Sanchez, F.; Musso, R.; Nazarov, S. V.; Netzer, H.; Nguyen, M. L.; Norris, R. P.; Nousek, J. A.; Ochner, P.; Okhmat, D. N.; Ou-Yang, B.; Pancoast, A.; Papadakis, I.; Parks, J. R.; Pei, L.; Peterson, B. M.; Pizzella, A.; Poleski, R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Runnoe, J.; Saylor, D. A.; Schimoia, J. S.; Schnülle, K.; Sergeev, S. G.; Shappee, B. J.; Shivvers, I.; Siegel, M.; Simonian, G. V.; Siviero, A.; Skielboe, A.; Somers, G.; Spencer, M.; Starkey, D.; Stevens, D. J.; Sung, H.-I.; Tayar, J.; Tejos, N.; Turner, C. S.; Uttley, P.; Van Saders, J.; Vestergaard, M.; Vican, L.; Villanueva, S., Jr.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Yuk, H.; Zheng, W.; Zhu, W.; Zu, Y.
2017-09-01
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.
Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Fausnaugh, M. M.; Starkey, D. A.; Horne, Keith; Kochanek, C. S.; Peterson, B. M.; Bentz, M. C.; Denney, K. D.; Grier, C. J.; Grupe, D.; Pogge, R. W.; De Rosa, G.; Adams, S. M.; Barth, A. J.; Beatty, Thomas G.; Bhattacharjee, A.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brown, Jacob E.; Brown, Jonathan S.; Brotherton, M. S.; Coker, C. T.; Crawford, S. M.; Croxall, K. V.; Eftekharzadeh, Sarah; Eracleous, Michael; Joner, M. D.; Henderson, C. B.; Holoien, T. W.-S.; Hutchison, T.; Kaspi, Shai; Kim, S.; King, Anthea L.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; MacInnis, F.; Manne-Nicholas, E. R.; Mason, M.; Montuori, Carmen; Mosquera, Ana; Mudd, Dale; Musso, R.; Nazarov, S. V.; Nguyen, M. L.; Okhmat, D. N.; Onken, Christopher A.; Ou-Yang, B.; Pancoast, A.; Pei, L.; Penny, Matthew T.; Poleski, Radosław; Rafter, Stephen; Romero-Colmenero, E.; Runnoe, Jessie; Sand, David J.; Schimoia, Jaderson S.; Sergeev, S. G.; Shappee, B. J.; Simonian, Gregory V.; Somers, Garrett; Spencer, M.; Stevens, Daniel J.; Tayar, Jamie; Treu, T.; Valenti, Stefano; Van Saders, J.; Villanueva, S., Jr.; Villforth, C.; Weiss, Yaniv; Winkler, H.; Zhu, W.
2018-02-01
We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC 2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of τ ∝ λ 4/3. However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long (2.6 day) lag is problematic for coronal reprocessing models.
NASA Technical Reports Server (NTRS)
Maoz, Dan; Smith, Paul S.; Jannuzi, Buell T.; Kaspi, Shai; Netzer, Hagai
1994-01-01
We have monitored spectrophotometrically a subsample (28) of the Palomar-Green Bright Quasar Sample for 2 years in order to test for correlations between continuum and emission-line variations and to determine the timescales relevant to mapping the broad-line regions of high-luminosity active galactic nuclei (AGNs). Half of the quasars showed optical continuum variations with amplitudes in the range 20-75%. The rise and fall time for the continuum variations is typically 0.5-2 years. In most of the objects with continuum variations, we detect correlated variations in the broad H-alpha and H-beta emission lines. The amplitude of the line variations is usually 2-4 times smaller than the optical continuum fluctuations. We present light curves and analyze spectra for six of the variable quasars with 1000-10,000 A luminosity in the range 0.3-4 x 10(exp 45) ergs/s. In four of these objects the lines respond to the continuum variations with a lag that is smaller than or comparable to our typical sampling interval (a few months). Although continued monitoring is required to confirm these results and increase their accuracy, the present evidence indicates that quasars with the above luminosities have broad-line regions smaller than about 1 1t-yr. Two of the quasars monitored show no detectable line variations despite relatively large-amplitude continuum changes. This could be a stronger manifestation of the low-amplitude line-response phenomenon we observe in the other quasars.
NASA Technical Reports Server (NTRS)
Starkey, D.; Gehrels, Cornelis; Horne, Keith; Fausnaugh, M. M.; Peterson, B. M.; Bentz, M. C.; Kochanek, C. S.; Denney, K. D.; Edelson, R.; Goad, M. R.;
2017-01-01
We conduct a multi-wavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Angstrom to 9157 Angstrom) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36deg +/- 10deg, temperature T(sub 1) = (44+/-6) times 10 (exp 3)K at 1 light day from the black hole, and a temperature radius slope (T proportional to r (exp -alpha)) of alpha = 0.99 +/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/L(sub Edd) = 0.1.
Numerical simulations of continuum-driven winds of super-Eddington stars
NASA Astrophysics Data System (ADS)
van Marle, A. J.; Owocki, S. P.; Shaviv, N. J.
2008-09-01
We present the results of numerical simulations of continuum-driven winds of stars that exceed the Eddington limit and compare these against predictions from earlier analytical solutions. Our models are based on the assumption that the stellar atmosphere consists of clumped matter, where the individual clumps have a much larger optical thickness than the matter between the clumps. This `porosity' of the stellar atmosphere reduces the coupling between radiation and matter, since photons tend to escape through the more tenuous gas between the clumps. This allows a star that formally exceeds the Eddington limit to remain stable, yet produce a steady outflow from the region where the clumps become optically thin. We have made a parameter study of wind models for a variety of input conditions in order to explore the properties of continuum-driven winds. The results show that the numerical simulations reproduce quite closely the analytical scalings. The mass-loss rates produced in our models are much larger than can be achieved by line driving. This makes continuum driving a good mechanism to explain the large mass-loss and flow speeds of giant outbursts, as observed in η Carinae and other luminous blue variable stars. Continuum driving may also be important in population III stars, since line driving becomes ineffective at low metallicities. We also explore the effect of photon tiring and the limits it places on the wind parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, S.; Gupta, A.; Page, K.
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
Mathur, S.; Gupta, A.; Page, K.; ...
2017-08-31
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, S.; Pogge, R. W.; Adams, S. M.
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
NASA Astrophysics Data System (ADS)
Owocki, Stanley P.; Sundqvist, Jon O.
2018-03-01
We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.
Do some x-ray stars have white dwarf companions
NASA Technical Reports Server (NTRS)
Mccollum, Bruce
1995-01-01
Some Be stars which are intermittent X-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be + WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 100 A. Either the detection or the nondetection of Be + WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.
Do Some X-ray Stars Have White Dwarf Companions?
NASA Technical Reports Server (NTRS)
McCollum, Bruce
1995-01-01
Some Be stars which are intermittent C-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be+WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 1OOOA. Either the detection or the nondetection of Be+WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.
The near-infrared broad emission line region of active galactic nuclei - II. The 1-μm continuum
NASA Astrophysics Data System (ADS)
Landt, Hermine; Elvis, Martin; Ward, Martin J.; Bentz, Misty C.; Korista, Kirk T.; Karovska, Margarita
2011-06-01
We use quasi-simultaneous near-infrared (near-IR) and optical spectroscopy from four observing runs to study the continuum around 1 μm in 23 well-known broad emission line active galactic nuclei (AGN). We show that, after correcting the optical spectra for host galaxy light, the AGN continuum around this wavelength can be approximated by the sum of mainly two emission components, a hot dust blackbody and an accretion disc. The accretion disc spectrum appears to dominate the flux at ˜ 1 μm, which allows us to derive a relation for estimating AGN black hole masses based on the near-IR virial product. This result also means that a near-IR reverberation programme can determine the AGN state independent of simultaneous optical spectroscopy. On average we derive hot dust blackbody temperatures of ˜1400 K, a value close to the sublimation temperature of silicate dust grains, and relatively low hot dust covering factors of ˜7 per cent. Our preliminary variability studies indicate that in most sources, the hot dust emission responds to changes in the accretion disc flux with the expected time lag; however, a few sources show a behaviour that can be attributed to dust destruction.
Intensive HST, RXTE, and ASCA Monitoring of NGC 3516: Evidence against Thermal Reprocessing
NASA Technical Reports Server (NTRS)
Edelson, Rick; Koratkar, Anuradha; Nandra, Kirpal; Goad, Michael; Peterson, Bradley M.; Collier, Stefan; Krolik, Julian; Malkan, Matthew; Maoz, Dan; OBrien, Paul
2000-01-01
During 1998 April 1316, the bright, strongly variable Seyfert 1 galaxy NGC 3516 was monitored almost continuously with HST for 10.3 hr at ultraviolet wavelengths and 2.8 days at optical wavelengths, and simultaneous RXTE and ASCA monitoring covered the same period. The X-ray fluxes were strongly variable with the soft (0.5-2 keV) X-rays showing stronger variations (approx. 65% peak to peak) than the hard (2-10 keV) X-rays (approx. 50% peak to peak). The optical continuum showed much smaller but still highly significant variations: a slow approx. 2.5% rise followed by a faster approx. 3.5% decline. The short ultraviolet observation did not show significant variability. The soft and hard X-ray light curves were strongly correlated, with no evidence for a significant interband lag. Likewise, the optical continuum bands (3590 and 5510 A) were also strongly correlated, with no measurable lag, to 3(sigma) limits of approx. less than 0.15 day. However, the optical and X-ray light curves showed very different behavior, and no significant correlation or simple relationship could be found. These results appear difficult to reconcile with previous reports of correlations between X-ray and optical variations and of measurable lags within the optical band for some other Seyfert 1 galaxies. These results also present serious problems for "reprocessing" models in which the X-ray source heats a stratified accretion disk, which then reemits in the optical/ultraviolet : the synchronous variations within the optical would suggest that the emitting region is approx. less than 0.3 It-day across, while the lack of correlation between X-ray and optical variations would indicate, in the context of this model, that any reprocessing region must be approx. greater than 1 It-day in size. It may be possible to resolve this conflict by invoking anisotropic emission or special geometry, but the most natural explanation appears to be that the bulk of the optical luminosity is generated by some mechanism other than reprocessing.
Understanding AGNs in the Local Universe through Optical Reverberation Mapping
NASA Astrophysics Data System (ADS)
Pei, Liuyi
2016-01-01
I present the results of observational projects aimed at measuring the mass of the black hole at the center of active galactic nuclei (AGNs) and understanding the structure and kinematics of the broad-line emitting gas within the black hole's sphere of influence.The first project aims to measure the black hole mass in the Kepler-field AGN KA1858. We obtained simultaneous spectroscopic data from the Lick Observatory 3-m telescope using the Kast Double Spectrograph and photometry data from five ground-based telescopes, and used reverberation mapping (RM) techniques to measure the emission-line light curves' lags relative to continuum variations. We obtained lags for H-beta, H-gamma, H-delta, and He II, and obtained the first black hole mass measurement for this object. Our results will serve as a reference point for future studies on relations between black hole mass and continuum variability characteristics using Kepler AGN light curves.The second project, in collaboration with the AGN STORM team, aims to understand the structure and dynamics of the broad line region (BLR) in NGC 5548 in both UV and optical wavelengths. To supplement 6 months of HST UV observations, we obtained simultaneous optical spectroscopic data from six ground-based observatories. We obtained emission-line lags for the optical H-beta and He II lines as well as velocity-resolved lag measurements for H-beta. We also compared the velocity-resolved lags for H-beta to the UV emission lines C IV and Ly-alpha and found similar lag profiles for all three lines.Finally, I will discuss my contributions to two other collaborations in AGN RM. A key component in RM is monitoring continuum variability, which is often done through ground-based photometry. I will present a pipeline that performs aperture photometry on any number of images of an AGN with WCS coordinates and immediately produces relative light curves. This pipeline enables quick looks of AGN variability in real time and has been used in the LAMP 2011 and the LCOGT Key Project collaborations. It is also applicable to large archival datasets in preparation for survey campaigns in the near future.
NASA Technical Reports Server (NTRS)
Ku, W. H.-M.; Helfand, D. J.; Lucy, L. B.
1980-01-01
The X-ray properties of 111 catalogued quasars have been examined with the imaging proportional counter on board the Einstein Observatory. Thirty-five of the objects, of redshift between 0.064 and 3.53, were detected as X-ray sources. The 0.5-4.5-keV X-ray properties of these quasars are correlated with their optical and radio continuum properties and with their redshifts and variability characteristics. The X-ray luminosity of quasars tends to be highest for those objects which are bright in the optical and radio regimes and which exhibit optically violent variability. These observations suggest that quasars should be divided into two classes on the basis of radio luminosities, spectra, evolution and underlying morphology and that quasars can make up a significant portion of the diffuse soft X-ray background only if the slope of the optical quasar log N-log S relation is steeper than 2 to m sub b of about 21.5.
NASA Astrophysics Data System (ADS)
MacLeod, Chelsea L.; Morgan, Christopher W.; Mosquera, A.; Kochanek, C. S.; Tewes, M.; Courbin, F.; Meylan, G.; Chen, B.; Dai, X.; Chartas, G.
2015-06-01
We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089 Å) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770 Å) monitoring spanning 11 years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5× {10}13 and 1015 cm, and we find an upper limit of 1015 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7{{GM}}{BH}/{c}2 for a 2.8× {10}8 {M}⊙ black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 1014 cm \\lt {r}1/2,{UV}\\lt 3× {10}15 cm. Finally, the optical size is significantly larger, by 1.5σ, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk.
NASA Astrophysics Data System (ADS)
Kriss, G.; Storm Team
2015-07-01
The Space Telescope and Optical Reverberation Mapping (STORM) project monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, obtaining 171 far-ultraviolet HST/COS spectra at approximately daily intervals. We find significant correlated variability in the continuum and broad emission lines, with amplitudes ranging from a factor of two in the emission lines to a factor of three in the continuum. The variations of all the strong emission lines lag behind those of the continuum, with He II lagging by ˜ 2.5 days and Ly&alpha,; C IV, and Si IV lagging by 5 to 6 days. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow absorption lines associated with the historical warm absorber varied in response to the changing UV flux on a daily basis with lags of 3 to 8 days. The ionization response allows precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.
Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei
2015-06-01
In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.
Overview of the observations of symbiotic stars
NASA Technical Reports Server (NTRS)
Viotti, Roberto
1993-01-01
The term Symbiotic stars commonly denotes variable stars whose optical spectra simultaneously present a cool absorption spectrum (typically TiO absorption bands) and emission lines of high ionization energy. This term is now used for the category of variable stars with composite spectrum. The main spectral features of these objects are: (1) the presence of the red continuum typical of a cool star, (2) the rich emission line spectrum, and (3) the UV excess, frequently with the Balmer continuum in emission. In addition to the peculiar spectrum, the very irregular photometric and spectroscopic variability is the major feature of the symbiotic stars. Moreover, the light curve is basic to identify the different phases of activity in a symbiotic star. The physical mechanisms that cause the symbiotic phenomenon and its variety are the focus of this paper. An astronomical phenomenon characterized by a composite stellar spectrum with two apparently conflicting features, and large variability has been observed. Our research set out to find the origin of this behavior and, in particular, to identify and measure the physical mechanism(s) responsible for the observed phenomena.
Mid-IR Spectra Herbig Ae/Be Stars
NASA Technical Reports Server (NTRS)
Wooden, Diane; Witteborn, Fred C. (Technical Monitor)
1997-01-01
Herbig Ae/Be stars are intermediate mass pre-main sequence stars, the higher mass analogues to the T Tauri stars. Because of their higher mass, they are expected form more rapidly than the T Tauri stars. Whether the Herbig Ae/Be stars accrete only from collapsing infalling envelopes or whether accrete through geometrically flattened viscous accretion disks is of current debate. When the Herbig Ae/Be stars reach the main sequence they form a class called Vega-like stars which are known from their IR excesses to have debris disks, such as the famous beta Pictoris. The evolutionary scenario between the pre-main sequence Herbig Ae/Be stars and the main sequence Vega-like stars is not yet revealed and it bears on the possibility of the presence of Habitable Zone planets around the A stars. Photometric studies of Herbig Ae/Be stars have revealed that most are variable in the optical, and a subset of stars show non-periodic drops of about 2 magnitudes. These drops in visible light are accompanied by changes in their colors: at first the starlight becomes reddened, and then it becomes bluer, the polarization goes from less than 0.1 % to roughly 1% during these minima. The theory postulated by V. Grinnin is that large cometary bodies on highly eccentric orbits occult the star on their way to being sublimed, for systems that are viewed edge-on. This theory is one of several controversial theories about the nature of Herbig Ae/Be stars. A 5 year mid-IR spectrophotometric monitoring campaign was begun by Wooden and Butner in 1992 to look for correlations between the variations in visible photometry and mid-IR dust emission features. Generally the approximately 20 stars that have been observed by the NASA Ames HIFOGS spectrometer have been steady at 10 microns. There are a handful, however, that have shown variable mid-IR spectra, with 2 showing variations in both the continuum and features anti-correlated with visual photometry, and 3 showing variations in the emission features only while the continuum level remained unchanged. The first 2 stars mentioned probably have reprocessing envelopes. The other 3 stars gives important clues to the controversy over the geometry of the gas and dust around these pre-main sequence stars: the steady underlying 10 microns continuum and variable features indicates that an optically thick continuum probably arising from an accretion disk is decoupled from the optically thin emission features which may arise in a disk atmosphere. Bernadette Rodgers has joined this monitoring campaign in the near-IR using GRIMII with the goal of detecting variations in the hot dust continuum and the gas density in the dense accretion region close to these stars.
On the Scatter in the Radius-Luminosity Relationship for Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.; Denney, K. D.; Bentz, M. C.
2015-03-01
We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1 galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ~40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ~0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ~0.13 dex.
A SUPER-EDDINGTON, COMPTON-THICK WIND IN GRO J1655–40?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilsen, J.; Homan, J.; Rahoui, F.
2016-05-01
During its 2005 outburst, GRO J1655–40 was observed at high spectral resolution with the Chandra High-Energy Transmission Grating Spectrometer, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind—apparently too hot, too dense, and too close to the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). However, this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley and Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on themore » orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this “hypersoft state” are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.« less
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael; Agn Storm Team
2015-01-01
The AGN STORM collaboration recently completed an extensive reverberation mapping campaign, targeting NGC 5548 with observations spanning the hard X-rays to mid-infrared. This campaign represents a massive collaborative effort, with far UV continuum spectrophotometry obtained through an intensive HST COS program, and near-UV/optical broad band photometry obtained from Swift and over 25 ground-based telescopes (in BVR and griz). The campaign spanned the entire 2014 observing season with virtually daily cadence, which allows us to compare with unprecedented accuracy the detailed structure of the observed UV and optical continuum emission signals in this archetypal AGN. We find statistically significant time delays between lightcurves from different wavebands, and this result has implications for the temperature, ionization, and geometric configuration of the AGN's sub-parsec scale environment. We will present the UV/optical continuum lightcurves from this campaign, as well as an analysis of the wavelength-dependent structure of the time delays.
The high velocity symbiotic star AG Draconis after its 1980 outburst
NASA Technical Reports Server (NTRS)
Viotti, R.; Altamore, A.; Baratta, G. B.; Cassatella, A.; Friedjung, M.; Giangrande, A.; Ponz, D.; Ricciardi, O.
1982-01-01
High and low resolution spectra of AG Dra taken in 1981 are analyzed. The UV spectrum of AG Dra is characterized by prominent high ionization emission lines superimposed on a strong continuum. At high resolution, several intense absorption lines of interstellar origin are seen, in spite of the low interstellar extinction. A similar situation is displayed by the high galactic latitude sd0 stars. The radial velocity difference between the emission lines and the i.s. lines is about -105 Km/sec in agreement with the optical observations. The He II 1640 A line appears much stronger than in other symbiotic stars and suggests the presence of a hot source which is variable according to the activity of the star. The line also exhibits broad emission wings which could be formed in a rotating disk. The NV resonance doublet displays a P Cygni profile and is probably formed in a warm wind. Two components in the UV continuum are identified: a steep component dominating the far UV probably associated with the hot source, and a flatter continuum in the near UV which cannot be accounted for by f-f and f-b emission alone, but which is probably emitted by an optically thick region or disk.
Are some BL Lac objects artefacts of gravitational lensing?
NASA Technical Reports Server (NTRS)
Ostriker, J. P.; Vietri, M.
1985-01-01
It is proposed here that a significant fraction of BL Lac objects are optically violently variable quasars whose continuum emission has been greatly amplified, relative to the line emission, by pointlike gravitational lenses in intervening galaxies. Several anomalous physical and statistical properties of BL Lacs can be understood on the basis of this model, which is immediately testable on the basis of absorption line studies and by direct imaging.
NASA Astrophysics Data System (ADS)
Davis, Anthony B.; Xu, Feng; Diner, David J.
2018-01-01
We demonstrate the computational advantage gained by introducing non-exponential transmission laws into radiative transfer theory for two specific situations. One is the problem of spatial integration over a large domain where the scattering particles cluster randomly in a medium uniformly filled with an absorbing gas, and only a probabilistic description of the variability is available. The increasingly important application here is passive atmospheric profiling using oxygen absorption in the visible/near-IR spectrum. The other scenario is spectral integration over a region where the absorption cross-section of a spatially uniform gas varies rapidly and widely and, moreover, there are scattering particles embedded in the gas that are distributed uniformly, or not. This comes up in many applications, O2 A-band profiling being just one instance. We bring a common framework to solve these problems both efficiently and accurately that is grounded in the recently developed theory of Generalized Radiative Transfer (GRT). In GRT, the classic exponential law of transmission is replaced by one with a slower power-law decay that accounts for the unresolved spectral or spatial variability. Analytical results are derived in the single-scattering limit that applies to optically thin aerosol layers. In spectral integration, a modest gain in accuracy is obtained. As for spatial integration of near-monochromatic radiance, we find that, although both continuum and in-band radiances are affected by moderate levels of sub-pixel variability, only extreme variability will affect in-band/continuum ratios.
WISE J233237.05-505643.5: A Double-Peaked Broad-Lined AGN with Spiral-Shaped Radio Morphology
NASA Technical Reports Server (NTRS)
Tsai, Chao Wei; Jarrett, Thomas H.; Stern, Daniel; Emonts, Bjorn; Barrows, R. Scott; Assef, Roberto J.; Norris, Ray P.; Eisenhardt, Peter R. M.; Lonsdale, Carol; Blain, Andrew W.;
2013-01-01
We present radio continuum mapping, optical imaging and spectroscopy of the newly discovered double-peaked broad-lined AGN WISE J233237.05-505643.5 at redshift z = 0.3447. This source exhibits an FR-I and FR-II hybrid-morphology, characterized by bright core, jet, and Doppler-boosted lobe structures in ATCA continuum maps at 1.5, 5.6, and 9 GHz. Unlike most FR-II objects, W2332-5056 is hosted by a disk-like galaxy. The core has a projected 5" linear radio feature that is perpendicular to the curved primary jet, hinting at unusual and complex activity within the inner 25 kpc. The multi-epoch optical-near-IR photometric measurements indicate significant variability over a 3-20 year baseline from the AGN component. Gemini-South optical data shows an unusual double-peaked emission-line features: the centroids of the broad-lined components of H-alpha and H-beta are blueshifted with respect to the narrow lines and host galaxy by approximately 3800 km/s. We examine possible cases which involve single or double supermassive black holes in the system, and discuss required future investigations to disentangle the mystery nature of this system.
The nature of the cataclysmic variable PT Per
NASA Astrophysics Data System (ADS)
Watson, M. G.; Bruce, A.; MacLeod, C.; Osborne, J. P.; Schwope, A. D.
2016-08-01
We present a study of the cataclysmic variable star PT Per based on archival XMM-Newton X-ray data and new optical spectroscopy from the William Herschel Telescope (WHT) with Intermediate dispersion Spectrograph and Imaging System (ISIS). The X-ray data show deep minima which recur at a period of 82 min and a hard, unabsorbed X-ray spectrum. The optical spectra of PT Per show a relatively featureless blue continuum. From an analysis of the X-ray and optical data we conclude that PT Per is likely to be a magnetic cataclysmic variable of the polar class in which the minima correspond to those phase intervals when the accretion column rotates out of the field of view of the observer. We suggest that the optical spectrum, obtained around 4 yr after the X-ray coverage, is dominated by the white dwarf in the system, implying that PT Per was in a low accretion state at the time of the observations. An analysis of the likely system parameters for PT Per suggests a distance of ≈90 pc and a very low mass secondary, consistent with the idea that PT Per is a `period-bounce' binary. Matching the observed absorption features in the optical spectrum with the expected Zeeman components constrains the white dwarf polar field to be Bp ≈ 25-27 MG.
ON THE SCATTER IN THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilerci Eser, E.; Vestergaard, M.; Peterson, B. M.
2015-03-01
We investigate and quantify the observed scatter in the empirical relationship between the broad line region size R and the luminosity of the active galactic nucleus, in order to better understand its origin. This study is motivated by the indispensable role of this relationship in the mass estimation of cosmologically distant black holes, but may also be relevant to the recently proposed application of this relationship for measuring cosmic distances. We study six nearby reverberation-mapped active galactic nuclei (AGNs) for which simultaneous UV and optical monitoring data exist. We also examine the long-term optical luminosity variations of the Seyfert 1more » galaxy NGC 5548 and employ Monte Carlo simulations to study the effects of the intrinsic variability of individual objects on the scatter in the global relationship for a sample of ∼40 AGNs. We find the scatter in this relationship has a correctable dependence on color. For individual AGNs, the size of the Hβ emitting region has a steeper dependence on the nuclear optical luminosity than on the UV luminosity, which can introduce a scatter of ∼0.08 dex into the global relationship, due the nonlinear relationship between the variations in the ionizing continuum and those in the optical continuum. Also, our analysis highlights the importance of understanding and minimizing the scatter in the relationship traced by the intrinsic variability of individual AGNs since it propagates directly into the global relationship. We find that using the UV luminosity as a substitute for the ionizing luminosity can reduce a sizable fraction of the current observed scatter of ∼0.13 dex.« less
SWIFT Observations of a Far UV Luminosity Component in SS433
NASA Technical Reports Server (NTRS)
Cannizzo, J. K.; Boyd, P. T.; Dolan, J. F.
2007-01-01
SS433 is a binary system showing relativistic Doppler shifts in its two sets of emission lines. The origin of its UV continuum is not well established. We observed SS433 to determine the emission mechanism responsible for its far UV spectrum. The source was observed at several different phases of both its 13 d orbital period and 162.5 d precession period using the UVOT and XRT detector systems on Swift. The far UV spectrum down to 1880 Angstrom lies significantly above the spectral flux distribution predicted by extrapolating the reddened blackbody continuum that fits the spectrum above 3500 Angstroms. The intensity of the far UV flux varies over a period of days and the variability is correlated with the variability of the soft X-ray flux from the source. An emission mechanism in addition to those previously detected in the optical and X-ray regions must exist in the far UV spectrum of SS433.
NASA Astrophysics Data System (ADS)
Adelman, S. J.
1983-03-01
Optical region spectrophotometry of six relatively hot Ap stars is presented. Additional scans of 56 Ari extend the results of an earlier paper in this series. The data for 41 Tau, 25 Sex, HD 170973, and HD 215441 are studied as a function of phase. The observations of HD 205087 are inconclusive about its variability although they show spectrophotometrically that it is a definite Ap star. The observations of HD 215441 show a prominent λ5200 broad, continuum feature with an unusual shape. However, when the data are corrected for interstellar reddening, the energy distribution resembles those of other silicon stars. The λ5200 feature is found to be variable in phase with the U-B and B-V colors and with the magnetic field strength. This feature is strongest when the Balmer jump is smallest, the Paschen continuum the bluest according to B-V, and the surface magnetic field strength the largest.
NASA Astrophysics Data System (ADS)
Li, Linghui; Gruzdev, Vitaly; Yu, Ping; Chen, J. K.
2009-02-01
High pulse energy continuum generation in conventional multimode optical fibers has been studied for potential applications to a holographic optical coherence imaging system. As a new imaging modality for the biological tissue imaging, high-resolution holographic optical coherence imaging requires a broadband light source with a high brightness, a relatively low spatial coherence and a high stability. A broadband femtosecond laser can not be used as the light source of holographic imaging system since the laser creates a lot of speckle patterns. By coupling high peak power femtosecond laser pulses into a multimode optical fiber, nonlinear optical effects cause a continuum generation that can be served as a super-bright and broadband light source. In our experiment, an amplified femtosecond laser was coupled into the fiber through a microscopic objective. We measured the FWHM of the continuum generation as a function of incident pulse energy from 80 nJ to 800 μJ. The maximum FWHM is about 8 times higher than that of the input pulses. The stability was analyzed at different pump energies, integration times and fiber lengths. The spectral broadening and peak position show that more than two processes compete in the fiber.
Optimization of an Offset Receiver Optics for Radio Telescopes
NASA Astrophysics Data System (ADS)
Yeap, Kim Ho; Tham, Choy Yoong
2018-01-01
The latest generation of Cassegrain radio astronomy antennas is designed for multiple frequency bands with receivers for individual bands offset from the antenna axis. The offset feed arrangement typically has two focusing elements in the form of ellipsoidal mirrors in the optical path between the feed horn and the antenna focus. This arrangement aligns the beam from the offset feed horn to illuminate the subreflector. The additional focusing elements increase the number of design variables, namely the distances between the horn aperture and the first mirror and that between the two mirrors, and their focal lengths. There are a huge number of possible combinations of these four variables in which the optics system can take on. The design aim is to seek the combination that will give the optimum antenna efficiency, not only at the centre frequency of the particular band but also across its bandwidth. To pick the optimum combination of the variables, it requires working through, by computational mean, a continuum range of variable values at different frequencies which will fit the optics system within the allocated physical space. Physical optics (PO) is a common technique used in optics design. However, due to the repeated iteration of the huge number of computation involved, the use of PO is not feasible. We present a procedure based on using multimode Gaussian optics to pick the optimum design and using PO for final verification of the system performance. The best antenna efficiency is achieved when the beam illuminating the subreflector is truncated with the optimum edge taper. The optimization procedure uses the beam's edge taper at the subreflector as the iteration target. The band 6 receiver optics design for the Atacama Large Millimetre Array (ALMA) antenna is used to illustrate the optimization procedure.
NASA Technical Reports Server (NTRS)
Fausnaugh, M. M.; Denney, K. D.; Barth, A.J.; Bentz, M.C.; Bottorff, M.C.; Carini, M.T.; Croxall, K. V.; Rosa, G. De; Goad, M.R.; Gehrels, Cornelis;
2016-01-01
We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in ninefilters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Angstrom to the z band (approximately 9160 angstrom). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He pi lambdal1640 and lambda 4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with (tau varies as lambda(exp 4/3)). However, the lags also imply a disk radius that is 3 times larger than the prediction from standardthin-disk theory, assuming that the bolometric luminosity is 10 percent of the Eddington luminosity (L 0.1L(sub Edd)).Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lagsdue to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination(20 percent) can be important for the shortest continuum lags and likely has a significant impact on the u and U bandsowing to Balmer continuum emission.
The nova-like cataclysmic variable star: KUV 0859+415
NASA Astrophysics Data System (ADS)
Grauer, Albert D.; Ringwald, F. A.; Wegner, Gary; Liebert, James; Schmidt, Gary D.; Green, Richard F.
1994-07-01
KUV 0859+415 has been found to be an eclipsing, nova-like cataclysmic variable with an orbital period of 3 h and 40 min. We find that it differs from other eclipsing systems of similar period (sometimes called the SW Sex stars) in several important respects. First, the eclipses are shallow, V-shaped dips, suggesting that the inclination angle is relatively low. Also, while the excitation of the emission lines are relatively high (He II comparable to H-beta), they are relatively weak compared to the continuum. The high Balmer lines have broad absorption wings, characteristic of an optically thick accretion disk. Yet there is evidence for a 'hot spot' in the system, which reaches peak brightness near phase 0.9 before the eclipse. Perhaps the most puzzling property of this system is that the H-alpha emission line radial velocity leads rather than lags the expected position for the location of the accretion disk. We present briefly a phenomenological model for the system which has a hot spot located at the normal location for the accretion stream to first impact the disk and is the source of excess optical continuum. However, the velocity curve of the emission lines requires us to conclude that the bulk of this radiation forms on the opposite side of the disk. This also explains the fact that the peak equivalent widths of H-alpha occur at phases 0.4-0.5.
WPVS 007: Dramatic Broad Absorption Line Variability in a Narrow-line Seyfert 1
NASA Astrophysics Data System (ADS)
Cooper, Erin M.; Leighly, K.; Hamann, F. W.; Grupe, D.; Dietrich, M.
2014-01-01
Blue-shifted broad absorption lines are the manifestation of gaseous outflows in astrophysical phenomena. In active galaxies, these outflowing winds may play a key role in the central engine physics by removing angular momentum and in influencing host galaxy evolution by imparting energy and chemically enriched gas to the surrounding medium. AGN wind variability affords us a valuable tool to study this still poorly understood phenomenon. The existence of a high velocity broad line outflow in WPVS007 is especially extraordinary, as Seyfert-luminosity active galaxies are unexpected to produce them. With its lower luminosity and compact size, the NLS1 galaxy WPVS007 (M_V=-19.7, z=0.02882) provides us the ability to study even colossal variability on merely human timescales. Since its 1996 FOS observation, displaying miniBALs but no true broad absorption lines, WPVS007 has experienced a short but rich history of UV BAL variability. By the 2003 FUSE observation, WPVS007 had developed a BAL with v_max ~ 6000km/s, indicating an optically thick, high velocity outflow. We present the 2010 and 2013 June and December HST COS spectra. Between 2003 and 2010, both the maximum and minimum outflow velocity had increased substantially. As of 2013 June, the continuum emission has since dimmed by a factor of ~2 and the BALs have appeared to weaken, with both decreased maximum and minimum velocities. Such dramatic shifts in BAL velocity are unprecedented, as BAL variability is typically confined to changes in optical depth. What is the nature of the variability in this BAL wind? The upcoming (as of the writing of this abstract) December observation should give us more insight into tackling that question, whether it be the transient response of a continuous flow to a fluctuating continuum or perhaps the continued decline of a discrete outflow event.
A VLA 3.6 centimeter survey of N-type carbon stars
NASA Technical Reports Server (NTRS)
Luttermoser, Donald G.; Brown, Alexander
1992-01-01
The results are presented of a VLA-continuum survey of 7 N-type carbon stars at 3.6 cm. Evidence exists for hot plasma around such stars; the IUE satellite detected emission lines of singly ionized metals in the optically brightest carbon stars, which in solar-type stars indicate the existence of a chromosphere. In the past, these emission lines were used to constrain the lower portion of the archetypical chromospheric model of N-type carbon stars, that of TX Psc. Five of the survey stars are semiregular (1 SRa and 4 SRb) variables and two are irregular (Lb) variables. Upper limits of about 0.07 mJy are set of the SRb and Lb variables and the lone SRa (V Hya) was detected with a flux of 0.22 mJy. The upper limits for the six stars that are not detected indicate that the temperature in their winds is less than 10,000 K. Various scenarios for the emission from V Hya are proposed, and it is suggested that the radio continuum is shock-related (either due to pulsation or the suspected bipolar jet) and not due to a supposed accretion disk around an unseen companion.
The near-infrared radius-luminosity relationship for active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Bentz, Misty C.; Peterson, Bradley M.; Elvis, Martin; Ward, Martin J.; Korista, Kirk T.; Karovska, Margarita
2011-05-01
Black hole masses for samples of active galactic nuclei (AGNs) are currently estimated from single-epoch optical spectra. In particular, the size of the broad-line emitting region needed to compute the black hole mass is derived from the optical or ultraviolet continuum luminosity. Here we consider the relationship between the broad-line region size, R, and the near-infrared (near-IR) AGN continuum luminosity, L, as the near-IR continuum suffers less dust extinction than at shorter wavelengths and the prospects for separating the AGN continuum from host-galaxy starlight are better in the near-IR than in the optical. For a relationship of the form R∝Lα, we obtain for a sample of 14 reverberation-mapped AGN a best-fitting slope of α= 0.5 ± 0.1, which is consistent with the slope of the relationship in the optical band and with the value of 0.5 naïvely expected from photoionization theory. Black hole masses can then be estimated from the near-IR virial product, which is calculated using the strong and unblended Paschen broad emission lines (Paα or Paβ).
1E 1048.5 + 5421 - A new 114 minute AM Herculis binary
NASA Technical Reports Server (NTRS)
Morris, Simon L.; Schmidt, Gary D.; Liebert, James; Gioia, Isabella M.; Maccacaro, Tommaso
1987-01-01
The discovery of a new AM Herculis binary system, found as a serendipitous Einstein X-ray source, is described. Like the previously discovered mass-transfer binaries involving synchronously rotating magnetic white-dwarf primaries, the system exhibits strong circular polarization, X-ray and optical continuum variations, and optical emission lines, all of which seem to be modulated with these binary periods of 114.5 + or - 0.2 minutes. Although all data are not concurrent, the new system appears to possess the highest ratio of F(x)/F(opt) yet found for an AM Her system. The surprising accumulation of AM Her variables with periods near 114 minute is commented on.
Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)
NASA Technical Reports Server (NTRS)
Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.
1994-01-01
Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (T(sub eff) approximately 7000 K) outer edge and the hot (T(sub eff) approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 10(exp 18) sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 10(exp 19) sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10(exp -8) solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.
Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)
NASA Astrophysics Data System (ADS)
Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.
1994-03-01
Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (Teff approximately 7000 K) outer edge and the hot (Teff approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 1018 sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 1019 sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10-8 solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.
Near-Simultaneous Spectroscopic and Broadband Polarimetric Observations of Be Stars
NASA Technical Reports Server (NTRS)
Ghosh, K.; Iyengar, K. V. K.; Ramsey, B. D.; Austin, R. A.
1999-01-01
Near simultaneous optical spectroscopic (on four nights) and broadband linear continuum (B, V, R, and I bands) polarimetric (on seven nights) observations of 29 Be stars were carried out during 1993 November-December. The program Be stars displayed wavelength dependence of intrinsic polarizations with no frequency dependence of polarimetric position angles. Some of the Be stars displayed long-term polarization variability. The Be and Be-shell stars could not be distinguished from one another solely on the basis of their polarization values. Full widths at half-maximum of the H.alpha profiles and the intrinsic linear continuum polarizations are closely correlated with the projected rotational velocities of the program stars. Photospheric-absorption-corrected equivalent widths of H.alpha profiles [W(alpha)] and the radii of H.alpha-emitting or -absorbing envelopes (R(sub e) or R(sub a)) are nonlinearly correlated with the intrinsic continuum polarizations of these stars. However, W(alpha) and R(sub e) are linearly correlated. With large uncertainties, there is a trend of spectral dependence of polarization. Detailed discussion of these results is presented in this paper.
Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun
2017-01-01
Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284
Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun
2017-11-15
Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers.
NASA Astrophysics Data System (ADS)
Guo, Hengxiao; Malkan, Matthew A.; Gu, Minfeng; Li, Linlin; Prochaska, J. Xavier; Ma, Jingzhe; You, Bei; Zafar, Tayyaba; Liao, Mai
2016-08-01
We have collected near-infrared to X-ray data of 20 multi-epoch heavily reddened SDSS quasars to investigate the physical mechanism of reddening. Of these, J2317+0005 is found to be a UV cutoff quasar. Its continuum, which usually appears normal, decreases by a factor 3.5 at 3000 Å, compared to its more typical bright state during an interval of 23 days. During this sudden continuum cut-off the broad emission line fluxes do not change, perhaps due to the large size of the broad-line region (BLR), r \\gt 23/(1+z) days. The UV continuum may have suffered a dramatic drop out. However, there are some difficulties with this explanation. Another possibility is that the intrinsic continuum did not change but was temporarily blocked out, at least toward our line of sight. As indicated by X-ray observations, the continuum rapidly recovers after 42 days. A comparison of the bright state and dim states would imply an eclipse by a dusty cloud with a reddening curve having a remarkably sharp rise shortward of 3500 Å. Under the assumption of being eclipsed by a Keplerian dusty cloud, we characterized the cloud size with our observations, however, which is a little smaller than the 3000 Å continuum-emitting size inferred from accretion disk models. Therefore, we speculate that this is due to a rapid outflow or inflow with a dusty cloud passing through our line of sight to the center.
Spectral Variability of the UXOR Star RR Tau Over 2.5 Magnitudes in V
NASA Astrophysics Data System (ADS)
Rodgers, B.; Wooden, D. H.; Grinin, V. P.; Shakhovskoy, D.
2000-12-01
We present moderate resolution optical spectra of the highly variable Herbig Ae star RR Tau over 12 epochs spanning 2.5 magnitudes in V. The data cover most of the optical spectrum from the CaII K line in the blue to the CaII infrared triplet in the far red. Using contemporaneous photometric measurements from two sources, we have reliable estimates of the visual magnitude of the system at each spectral epoch. We find some spectral activity to be closely correlated with photometric variability, while other features are remarkably stable. Significant variability is common in the cores of Hα and Hβ , but is not well correlated with photometric variability. On the other hand, the wings (Δ v>400km/s) of the Balmer lines are quite stable, showing no change in spectral type when compared to Kurucz line profiles. This, along with the constant equivalent width seen in several weak metal lines, suggest that the physical conditions of the underlying continuum source are not changing significantly, despite a factor of ten change in brightness. In contrast, strong low-ionization permitted lines, such as FeII, CaII and NaI, are seen in deep absorption when the star is bright (V <= 12), but disappear during photometric minima to reveal weak emission lines. These absorption lines are not being filled in by the emission but rather are physically disappearing from the system. This could occur, for example, if an obscuring screen moved between the continuum source and the absorbing gas. The [OI]6300 line, a common wind diagnostic, is seen in emission at all epochs, with flux which is roughly constant except increasing slightly when the system is faint. We discuss these data in the context of different scenarios for the photometric variability and find them to be more consistent with the obscuration hypothesis, than changing accretion luminosity. This work is part of the dissertation research of B. Rodgers, which has been funded in large part by a NASA Graduate Student Research Program (GSRP) grant, for which D.H. Wooden is Rodgers' advisor. We gratefully acknowledge the use of the database of the Amateur Astronomers Variable Star Organization (AAVSO).
NASA Astrophysics Data System (ADS)
Shappee, B. J.; Prieto, J. L.; Grupe, D.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; Pogge, R. W.; Komossa, S.; Im, M.; Jencson, J.; Holoien, T. W.-S.; Basu, U.; Beacom, J. F.; Szczygieł, D. M.; Brimacombe, J.; Adams, S.; Campillay, A.; Choi, C.; Contreras, C.; Dietrich, M.; Dubberley, M.; Elphick, M.; Foale, S.; Giustini, M.; Gonzalez, C.; Hawkins, E.; Howell, D. A.; Hsiao, E. Y.; Koss, M.; Leighly, K. M.; Morrell, N.; Mudd, D.; Mullins, D.; Nugent, J. M.; Parrent, J.; Phillips, M. M.; Pojmanski, G.; Rosing, W.; Ross, R.; Sand, D.; Terndrup, D. M.; Valenti, S.; Walker, Z.; Yoon, Y.
2014-06-01
After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look active galactic nuclei (AGNs)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 107 M ⊙. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.
Pei, L.; Fausnaugh, M. M.; Barth, A. J.; ...
2017-03-10
Here, we present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum bymore » $${4.17}_{-0.36}^{+0.36}\\,\\mathrm{days}$$ and $${0.79}_{-0.34}^{+0.35}\\,\\mathrm{days}$$, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ~50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ~50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He II(+O III]), and Si Iv(+O Iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR–L AGN relation based on the past behavior of NGC 5548.« less
NASA Astrophysics Data System (ADS)
Pei, L.; Fausnaugh, M. M.; Barth, A. J.; Peterson, B. M.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Goad, M. R.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Pogge, R. W.; Bennert, V. N.; Brotherton, M.; Clubb, K. I.; Dalla Bontà, E.; Filippenko, A. V.; Greene, J. E.; Grier, C. J.; Vestergaard, M.; Zheng, W.; Adams, Scott M.; Beatty, Thomas G.; Bigley, A.; Brown, Jacob E.; Brown, Jonathan S.; Canalizo, G.; Comerford, J. M.; Coker, Carl T.; Corsini, E. M.; Croft, S.; Croxall, K. V.; Deason, A. J.; Eracleous, Michael; Fox, O. D.; Gates, E. L.; Henderson, C. B.; Holmbeck, E.; Holoien, T. W.-S.; Jensen, J. J.; Johnson, C. A.; Kelly, P. L.; Kim, S.; King, A.; Lau, M. W.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; Manne-Nicholas, E. R.; Mauerhan, J. C.; Malkan, M. A.; McGurk, R.; Morelli, L.; Mosquera, Ana; Mudd, Dale; Muller Sanchez, F.; Nguyen, M. L.; Ochner, P.; Ou-Yang, B.; Pancoast, A.; Penny, Matthew T.; Pizzella, A.; Poleski, Radosław; Runnoe, Jessie; Scott, B.; Schimoia, Jaderson S.; Shappee, B. J.; Shivvers, I.; Simonian, Gregory V.; Siviero, A.; Somers, Garrett; Stevens, Daniel J.; Strauss, M. A.; Tayar, Jamie; Tejos, N.; Treu, T.; Van Saders, J.; Vican, L.; Villanueva, S., Jr.; Yuk, H.; Zakamska, N. L.; Zhu, W.; Anderson, M. D.; Arévalo, P.; Bazhaw, C.; Bisogni, S.; Borman, G. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Crenshaw, D. M.; De Lorenzo-Cáceres, A.; Dietrich, M.; Edelson, R.; Efimova, N. V.; Ely, J.; Evans, P. A.; Ferland, G. J.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Grupe, D.; Gupta, A.; Hall, P. B.; Hicks, S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, M.; Kim, S. C.; Klimanov, S. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; MacInnis, F.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Netzer, H.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Papadakis, I.; Parks, J. R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schnülle, K.; Sergeev, S. G.; Siegel, M.; Skielboe, A.; Spencer, M.; Starkey, D.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zu, Y.
2017-03-01
We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum by {4.17}-0.36+0.36 {days} and {0.79}-0.34+0.35 {days}, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ˜50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ˜50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He II emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C IV, Lyα, He II(+O III]), and Si IV(+O IV]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR-L AGN relation based on the past behavior of NGC 5548.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Fausnaugh, M. M.; Barth, A. J.
Here, we present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum bymore » $${4.17}_{-0.36}^{+0.36}\\,\\mathrm{days}$$ and $${0.79}_{-0.34}^{+0.35}\\,\\mathrm{days}$$, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ~50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ~50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He II(+O III]), and Si Iv(+O Iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR–L AGN relation based on the past behavior of NGC 5548.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon, R. M.; Ravi, V., E-mail: ryan.shannon@csiro.au, E-mail: vikram@caltech.edu
2017-03-10
The localization of fast radio bursts (FRBs) has been hindered by the poor angular resolution of the detection observations and inconclusive identification of transient or variable counterparts. Recently a γ -ray pulse of 380 s duration has been associated with FRB 131104. We report on radio-continuum imaging observations of the original localization region of the FRB, beginning three days after the event and comprising 25 epochs over 2.5 years. We argue that the probability of an association between the FRB and the γ -ray transient has been overestimated. We provide upper limits on radio afterglow emission that would be predictedmore » if the γ -ray transient was associated with an energetic γ -ray burst. We further report the discovery of an unusual variable radio source spatially and temporally coincident with FRB 131104, but not spatially coincident with the γ -ray event. The radio variable flares by a factor of 3 above its long-term average within 10 day of the FRB at 7.5 GHz, with a factor-of-2 increase at 5.5 GHz. Since the flare, the variable has persisted with only modest modulation and never approached the flux density observed in the days after the FRB. We identify an optical counterpart to the variable. Optical and infrared photometry, and deep optical spectroscopy, suggest that the object is a narrow-line radio active galactic nucleus.« less
NASA Astrophysics Data System (ADS)
Vazquez, Billy
The dusty torus is the key component in the Active Galactic Nuclei (AGN) Unification Scheme that explains the spectroscopic differences between Seyfert galaxies of types 1 and 2. The torus dust is heated by the nuclear source and emits the absorbed energy in the infrared (IR); but because of light travel times, the torus IR emission responds to variations of the nuclear ultraviolet/optical continuum with a delay that corresponds to the size of the emitting region. The results from a mid-infrared (MIR) monitoring campaign using the Spitzer Space Telescope and optical ground-based telescopes (B and V band imaging), which spanned over 2 years and covered a sample of 12 Seyfert galaxies, are presented. The aim was to constrain the distances from the nucleus to the regions in the torus emitting at wavelengths of 3.6 microm and 4.5 microm. MIR light curves showing the variability characteristics of these AGN are presented and the effects of photometric uncertainties on the time-series analysis of the light curves are discussed. Significant variability was observed in the IR light curves of 10 of 12 objects, with relative amplitudes ranging from ˜10% to ˜100% from their mean flux. The "reverberation lags" between the 3.6 microm and 4.5 microm IR bands were determined for the entire sample and between the optical and MIR bands for NGC6418. In NGC6418, the 3.6 microm and 4.5 microm fluxes lagged behind those of the optical continuum by 47.5+2.0-1.9) days and 62.5+2.5-2.9 days, respectively. This is consistent with the inferred lower limit to the sublimation radius for pure graphite grains at T=1800 K but smaller by a factor of 2 than the lower limit for dust grains with a "standard" interstellar medium (ISM) composition. There is evidence that the lags increased following approximately by a factor of 2 increase in luminosity, consistent with an increase in the sublimation radius.
NASA Technical Reports Server (NTRS)
Baptista, Raymundo; Horne, Keith; Wade, Richard A.; Hubeny, Ivan; Long, Knox S.; Rutten, Rene G. M.
1998-01-01
Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) on 1994 August and November is analysed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disk and gas stream as a function of distance from the disk centre. The inner accretion disk is characterized by a blue continuum filled with absorption bands and lines, which cross over to emission with increasing disk radius, similar to that reported at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disk emission at ultraviolet (UV) wavelengths, with the disk side closest to the secondary star showing pronounced absorption by an 'iron curtain' and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disk radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at the disk rim and continues along the stream trajectory, producing distinct emission down to 0.1 R(sub LI). The spectrum of the uneclipsed light shows prominent emission lines of Lyalpha, N v lambda1241, SiIV Lambda 1400, C IV Lambda 1550, HeII Lambda 1640, and MgII Lambda 2800, and a UV continuum rising towards longer wavelengths. The Balmer jump appears clearly in emission indicating that the uneclipsed light has an important contribution from optically thin gas. The lines and optically thin continuum emission are most probably emitted in a vertically extended disk chromosphere + wind. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disk regions (R greater than or equal to 0.3R(sub LI) ). There is evidence of an increase in the mass accretion rate from August to November (from V = 10 (exp -8.3 +/-0.1) to 10(exp -8.1 +/- 0.1 solar mass yr(exp -1)), in accordance with the observed increase in brightness. Since the UX UMA disc seems to be in a high mass accretion, high-viscosity regime in both epochs, this result suggests that the mass transfer rate of UX UMA varies substantially (approximately equal to 50 per cent) on time-scales of a few months. It is suggested that the reason for the discrepancies between the prediction of the standard disk model and observations is not an inadequate treatment of radiative transfer in the disc atmosphere, but rather the presence of addition important sources of light in the system besides the accretion disk (e.g., optically thin contiuum emission from the disk wind and possible absorption by circumstellar cool gas).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzel, P.; Kleint, L., E-mail: pheinzel@asu.cas.cz
We present a novel observation of the white light flare (WLF) continuum, which was significantly enhanced during the X1 flare on 2014 March 29 (SOL2014-03-29T17:48). Data from the Interface Region Imaging Spectrograph (IRIS) in its near-UV channel show that at the peak of the continuum enhancement, the contrast at the quasi-continuum window above 2813 Å reached 100%-200% and can be even larger closer to Mg II lines. This is fully consistent with the hydrogen recombination Balmer-continuum emission, which follows an impulsive thermal and non-thermal ionization caused by the precipitation of electron beams through the chromosphere. However, a less probable photosphericmore » continuum enhancement cannot be excluded. The light curves of the Balmer continuum have an impulsive character with a gradual fading, similar to those detected recently in the optical region on the Solar Optical Telescope on board Hinode. This observation represents a first Balmer-continuum detection from space far beyond the Balmer limit (3646 Å), eliminating seeing effects known to complicate the WLF detection. Moreover, we use a spectral window so far unexplored for flare studies, which provides the potential to study the Balmer continuum, as well as many metallic lines appearing in emission during flares. Combined with future ground-based observations of the continuum near the Balmer limit, we will be able to disentangle various scenarios of the WLF origin. IRIS observations also provide a critical quantitative measure of the energy radiated in the Balmer continuum, which constrains various models of the energy transport and deposit during flares.« less
Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar
NASA Technical Reports Server (NTRS)
Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.;
2016-01-01
We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.
Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR
NASA Astrophysics Data System (ADS)
Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.
2016-01-01
We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.
A continuum state variable theory to model the size-dependent surface energy of nanostructures.
Jamshidian, Mostafa; Thamburaja, Prakash; Rabczuk, Timon
2015-10-14
We propose a continuum-based state variable theory to quantify the excess surface free energy density throughout a nanostructure. The size-dependent effect exhibited by nanoplates and spherical nanoparticles i.e. the reduction of surface energy with reducing nanostructure size is well-captured by our continuum state variable theory. Our constitutive theory is also able to predict the reducing energetic difference between the surface and interior (bulk) portions of a nanostructure with decreasing nanostructure size.
NASA Technical Reports Server (NTRS)
Friedjung, Michael
1993-01-01
One of the most important features of symbiotic stars is the coexistence of a cool spectral component that is apparently very similar to the spectrum of a cool giant, with at least one hot continuum, and emission lines from very different stages of ionization. The cool component dominates the infrared spectrum of S-type symbiotics; it tends to be veiled in this wavelength range by what appears to be excess emission in D-type symbiotics, this excess usually being attributed to circumstellar dust. The hot continuum (or continua) dominates the ultraviolet. X-rays have sometimes also been observed. Another important feature of symbiotic stars that needs to be explained is the variability. Different forms occur, some variability being periodic. This type of variability can, in a few cases, strongly suggest the presence of eclipses of a binary system. One of the most characteristic forms of variability is that characterizing the active phases. This basic form of variation is traditionally associated in the optical with the veiling of the cool spectrum and the disappearance of high-ionization emission lines, the latter progressively appearing (in classical cases, reappearing) later. Such spectral changes recall those of novae, but spectroscopic signatures of the high-ejection velocities observed for novae are not usually detected in symbiotic stars. However, the light curves of the 'symbiotic nova' subclass recall those of novae. We may also mention in this connection that radio observations (or, in a few cases, optical observations) of nebulae indicate ejection from symbiotic stars, with deviations from spherical symmetry. We shall give a historical overview of the proposed models for symbiotic stars and make a critical analysis in the light of the observations of symbiotic stars. We describe the empirical approach to models and use the observational data to diagnose the physical conditions in the symbiotics stars. Finally, we compare the results of this empirical approach with existing models and discuss unresolved problems requiring new observational and theoretical work.
A search for optical variability of type 2 quasars in SDSS stripe 82
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Aaron J.; Carson, Daniel J.; Voevodkin, Alexey
Hundreds of Type 2 quasars have been identified in Sloan Digital Sky Survey (SDSS) data, and there is substantial evidence that they are generally galaxies with highly obscured central engines, in accord with unified models for active galactic nuclei (AGNs). A straightforward expectation of unified models is that highly obscured Type 2 AGNs should show little or no optical variability on timescales of days to years. As a test of this prediction, we have carried out a search for variability in Type 2 quasars in SDSS Stripe 82 using difference-imaging photometry. Starting with the Type 2 AGN catalogs of Zakamskamore » et al. and Reyes et al., we find evidence of significant g-band variability in 17 out of 173 objects for which light curves could be measured from the Stripe 82 data. To determine the nature of this variability, we obtained new Keck spectropolarimetry observations for seven of these variable AGNs. The Keck data show that these objects have low continuum polarizations (p ≲ 1% in most cases) and all seven have broad Hα and/or Mg II emission lines in their total (unpolarized) spectra, indicating that they should actually be classified as Type 1 AGNs. We conclude that the primary reason variability is found in the SDSS-selected Type 2 AGN samples is that these samples contain a small fraction of Type 1 AGNs as contaminants, and it is not necessary to invoke more exotic possible explanations such as a population of 'naked' or unobscured Type 2 quasars. Aside from misclassified Type 1 objects, the Type 2 quasars do not generally show detectable optical variability over the duration of the Stripe 82 survey.« less
Spectroscopic observations of the optical counterpart of Centaurus X-4
NASA Technical Reports Server (NTRS)
Van Paradijs, J.; Verbunt, F.; Van Der Linden, T.; Pedersen, H.; Wamsteker, W.
1980-01-01
The optical spectrum of the transient X-ray burst source Centaurus X-4 was observed about 5 weeks after the source reached its maximum. The brightness of the optical counterpart had decreased to V = 18.2, and the star had become appreciably redder (B - V = 0.7) compared to its color at maximum. The spectrum of Centaurus X-4 is similar to that of cataclysmic variables showing strong emission lines of H-1 and weaker lines of He-1 and He-2. The N03 lambda 4640 line is not visible. The continuum energy distribution of Centaurus X-4 shows the presence of a main-sequence star in the system, with spectral type between K3 and K7. This is consistent with the orbital period of 8.2 hr proposed by Kaluzienski et al (1980), if the main-sequence star is close to filling its Roche lobe.
NASA Astrophysics Data System (ADS)
Alfonso-Garzón, J.; Fabregat, J.; Reig, P.; Kajava, J. J. E.; Sánchez-Fernández, C.; Townsend, L. J.; Mas-Hesse, J. M.; Crawford, S. M.; Kretschmar, P.; Coe, M. J.
2017-11-01
Context. Multiwavelength monitoring of Be/X-ray binaries is crucial to understand the mechanisms producing their outbursts. H 1145-619 is one of these systems, which has recently displayed X-ray activity. Aims: We investigate the correlation between the optical emission and X-ray activity to predict the occurrence of new X-ray outbursts from the inferred state of the circumstellar disc. Methods: We have performed a multiwavelength study of H 1145-619 from 1973 to 2017 and present here a global analysis of its variability over the last 40 yr. We used optical spectra from the SAAO, SMARTS, and SALT telescopes and optical photometry from the Optical Monitoring Camera (OMC) onboard INTEGRAL and from the All Sky Automated Survey (ASAS). We also used X-ray observations from INTEGRAL/JEM-X, and IBIS to generate the light curves and combined them with Swift/XRT to extract the X-ray spectra. In addition, we compiled archival observations and measurements from the literature to complement these data. Results: Comparing the evolution of the optical continuum emission with the Hα line variability, we identified three different patterns of optical variability: first, global increases and decreases of the optical brightness, observed from 1982 to 1994 and from 2009 to 2017, which can be explained by the dissipation and replenishment of the circumstellar disc; second, superorbital variations with a period of Psuperorb ≈ 590 days, observed in 2002-2009, which seems to be related to the circumstellar disc; and third, optical outbursts, observed in 1998-1999 and 2002-2005, which we interpret as mass ejections from the Be star. We discovered the presence of a retrograde one-armed density wave, which appeared in 2016 and is still present in the circumstellar disc. Conclusions: We carried out the most complete long-term optical study of the Be/X-ray binary H 1145-619 in correlation with its X-ray activity. For the first time, we found the presence of a retrograde density perturbation in the circumstellar disc of a Be/X-ray binary.
Photoexcited escape probability, optical gain, and noise in quantum well infrared photodetectors
NASA Technical Reports Server (NTRS)
Levine, B. F.; Zussman, A.; Gunapala, S. D.; Asom, M. T.; Kuo, J. M.; Hobson, W. S.
1992-01-01
We present a detailed and thorough study of a wide variety of quantum well infrared photodetectors (QWIPs), which were chosen to have large differences in their optical and transport properties. Both n- and p-doped QWIPs, as well as intersubband transitions based on photoexcitation from bound-to-bound, bound-to-quasi-continuum, and bound-to-continuum quantum well states were investigated. The measurements and theoretical analysis included optical absorption, responsivity, dark current, current noise, optical gain, hot carrier mean free path; net quantum efficiency, quantum well escape probability, quantum well escape time, as well as detectivity. These results allow a better understanding of the optical and transport physics and thus a better optimization of the QWIP performance.
Using principal component analysis to understand the variability of PDS 456
NASA Astrophysics Data System (ADS)
Parker, M. L.; Reeves, J. N.; Matzeu, G. A.; Buisson, D. J. K.; Fabian, A. C.
2018-02-01
We present a spectral-variability analysis of the low-redshift quasar PDS 456 using principal component analysis. In the XMM-Newton data, we find a strong peak in the first principal component at the energy of the Fe absorption line from the highly blueshifted outflow. This indicates that the absorption feature is more variable than the continuum, and that it is responding to the continuum. We find qualitatively different behaviour in the Suzaku data, which is dominated by changes in the column density of neutral absorption. In this case, we find no evidence of the absorption produced by the highly ionized gas being correlated with this variability. Additionally, we perform simulations of the source variability, and demonstrate that PCA can trivially distinguish between outflow variability correlated, anticorrelated and un-correlated with the continuum flux. Here, the observed anticorrelation between the absorption line equivalent width and the continuum flux may be due to the ionization of the wind responding to the continuum. Finally, we compare our results with those found in the narrow-line Seyfert 1 IRAS 13224-3809. We find that the Fe K UFO feature is sharper and more prominent in PDS 456, but that it lacks the lower energy features from lighter elements found in IRAS 13224-3809, presumably due to differences in ionization.
2008-05-02
information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data sources, gathering...their central engines cannot be resolved with ordinary telescopes. Gravitational telescopes, however, provide the necessary resolution to study the...structure of the continuum emission regions at optical and X-ray wavelengths and make time delay estimates in the systems in which sufficient data were
NASA Astrophysics Data System (ADS)
Dey, Soumyodeep; Bongu, Sudhakara Reddy; Bisht, Prem Ballabh
2017-03-01
We study the nonlinear optical response of a standard dye IR26 using the Z-scan technique, but with the white light continuum. The continuum source of wavelength from 450 nm to 1650 nm has been generated from the photonic crystal fiber on pumping with 772 nm of Ti:Sapphire oscillator. The use of broadband incident pulse enables us to probe saturable absorption (SA) and reverse saturable absorption (RSA) over the large spectral range with a single Z-scan measurement. The system shows SA in the resonant region while it turns to RSA in the non-resonant regions. The low saturation intensity of the dye can be explained based on the simultaneous excitation from ground states to various higher energy levels with the help of composite energy level diagram. The cumulative effects of excited state absorption and thermal induced nonlinear optical effects are responsible for the observed RSA.
NASA Astrophysics Data System (ADS)
Hoard, D. W.; Szkody, Paula; Ishioka, Ryoko; Ferrario, L.; Gänsicke, B. T.; Schmidt, Gary D.; Kato, Taichi; Uemura, Makoto
2002-10-01
We present the first far-ultraviolet (FUV) observations of the magnetic cataclysmic variable VV Puppis, obtained with the Far Ultraviolet Spectroscopic Explorer satellite. In addition, we have obtained simultaneous ground-based optical photometric observations of VV Pup during part of the FUV observation. The shapes of the FUV and optical light curves are consistent with each other and with those of past observations at optical, extreme-ultraviolet, and X-ray wavelengths. Time-resolved FUV spectra during the portion of VV Pup's orbit when the accreting magnetic pole of the white dwarf can be seen show an increasing continuum level as the accretion spot becomes more directly visible. The most prominent features in the spectrum are the O VI λλ1031.9, 1037.6 emission lines. We interpret the shape and velocity shift of these lines in the context of an origin in the accretion funnel near the white dwarf surface. A blackbody function with Tbb>~90,000 K provides an adequate fit to the FUV spectral energy distribution of VV Pup. Based on observations with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by Johns Hopkins University under NASA contract NAS 5-32985.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baloković, M.; Harrison, F. A.; Esmerian, C. J.
2015-02-10
Measurements of the high-energy cut-off in the coronal continuum of active galactic nuclei have long been elusive for all but a small number of the brightest examples. We present a direct measurement of the cut-off energy in the nuclear continuum of the nearby Seyfert 1.9 galaxy MCG-05-23-016 with unprecedented precision. The high sensitivity of NuSTAR up to 79 keV allows us to clearly disentangle the spectral curvature of the primary continuum from that of its reflection component. Using a simple phenomenological model for the hard X-ray spectrum, we constrain the cut-off energy to 116{sub −5}{sup +6} keV with 90% confidence.more » Testing for more complex models and nuisance parameters that could potentially influence the measurement, we find that the cut-off is detected robustly. We further use simple Comptonized plasma models to provide independent constraints for both the kinetic temperature of the electrons in the corona and its optical depth. At the 90% confidence level, we find kT{sub e} = 29 ± 2 keV and τ {sub e} = 1.23 ± 0.08 assuming a slab (disk-like) geometry, and kT{sub e} = 25 ± 2 keV and τ {sub e} = 3.5 ± 0.2 assuming a spherical geometry. Both geometries are found to fit the data equally well and their two principal physical parameters are correlated in both cases. With the optical depth in the τ {sub e} ≳ 1 regime, the data are pushing the currently available theoretical models of the Comptonized plasma to the limits of their validity. Since the spectral features and variability arising from the inner accretion disk have been observed previously in MCG-05-23-016, the inferred high optical depth implies that a spherical or disk-like corona cannot be homogeneous.« less
Self-consistent continuum solvation for optical absorption of complex molecular systems in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timrov, Iurii; Biancardi, Alessandro; Andreussi, Oliviero
2015-01-21
We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model. The former allows one to obtain the absorption spectrum over a whole wide frequency range, using a recently proposed Lanczos-based technique, or selected excitation energies, using the Casida equation, without having to ever compute any unoccupied molecular orbitals. The latter is conceptually similar to the polarizable continuum model and offers the further advantages of allowing an easy computation of atomic forces via the Hellmann-Feynman theorem andmore » a ready implementation in periodic-boundary conditions. The new method has been implemented using pseudopotentials and plane-wave basis sets, benchmarked against polarizable continuum model calculations on 4-aminophthalimide, alizarin, and cyanin and made available through the QUANTUM ESPRESSO distribution of open-source codes.« less
ACTIVITY-BRIGHTNESS CORRELATIONS FOR THE SUN AND SUN-LIKE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preminger, D. G.; Chapman, G. A.; Cookson, A. M.
2011-10-01
We analyze the effect of solar features on the variability of the solar irradiance in three different spectral ranges. Our study is based on two solar-cycles' worth of full-disk photometric images from the San Fernando Observatory, obtained with red, blue, and Ca II K-line filters. For each image we measure the photometric sum, {Sigma}, which is the relative contribution of solar features to the disk-integrated intensity of the image. The photometric sums in the red and blue continuum, {Sigma}{sub r} and {Sigma}{sub b}, exhibit similar temporal patterns: they are negatively correlated with solar activity, with strong short-term variability, and weakmore » solar-cycle variability. However, the Ca II K-line photometric sum, {Sigma}{sub K}, is positively correlated with solar activity and has strong variations on solar-cycle timescales. We show that we can model the variability of the Sun's bolometric flux as a linear combination of {Sigma}{sub r} and {Sigma}{sub K}. We infer that, over solar-cycle timescales, the variability of the Sun's bolometric irradiance is directly correlated with spectral line variability, but inversely correlated with continuum variability. Our blue and red continuum filters are quite similar to the Stroemgren b and y filters used to measure stellar photometric variability. We conclude that active stars whose visible continuum brightness varies inversely with activity, as measured by the Ca HK index, are displaying a pattern that is similar to that of the Sun, i.e., radiative variability in the visible continuum that is spot-dominated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.
We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. Themore » NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.« less
NASA Astrophysics Data System (ADS)
Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady
2015-06-01
Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.
SPATIALLY RESOLVED HCN J = 4-3 AND CS J = 7-6 EMISSION FROM THE DISK AROUND HD 142527
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van der Plas, G.; Casassus, S.; Perez, S.
2014-09-10
The disk around HD 142527 attracts a great amount of attention compared to others because of its resolved (sub-)millimeter dust continuum that is concentrated into the shape of a horseshoe toward the north of the star. In this Letter we present spatially resolved ALMA detections of the HCN J = 4-3 and CS J = 7-6 emission lines. These lines give us a deeper view into the disk compared to the (optically thicker) CO isotopes. This is the first detection of CS J = 7-6 coming from a protoplanetary disk. Both emission lines are azimuthally asymmetric and are suppressed under the horseshoe-shapedmore » continuum emission peak. A possible mechanism for explaining the decrease under the horseshoe-shaped continuum is the increased opacity coming from the higher dust concentration at the continuum peak. Lower dust and/or gas temperatures and an optically thick radio-continuum reduce line emission by freezing out and shielding emission from the far side of the disk.« less
Continuum radiation from active galactic nuclei: A statistical study
NASA Technical Reports Server (NTRS)
Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.
1986-01-01
The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.
NASA Astrophysics Data System (ADS)
Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce
2015-06-01
Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.
The active quiescence of HR Del (Nova Del 1967). The ex-nova HR Del
NASA Astrophysics Data System (ADS)
Selvelli, P.; Friedjung, M.
2003-04-01
This new UV study of the ex-nova HR Del is based on all of the data obtained with the International Ultraviolet Explorer (IUE) satellite, and includes the important series of spectra taken in 1988 and 1992 that have not been analyzed so far. This has allowed us to make a detailed study of both the long-timescale and the short-timescale UV variations, after the return of the nova, around 1981-1982, to the pre-outburst optical magnitude. After the correction for the reddening (EB-V=0.16), adopting a distance d =850 pc we have derived a mean UV luminosity close to LUV ~ 56 Lsun, the highest value among classical novae in ``quiescence". Also the ``average" optical absolute magnitude (Mv=+2.30) is indicative of a bright object. The UV continuum luminosity, the HeII 1640 Å emission line luminosity, and the optical absolute magnitude all give a mass accretion rate dot {M} very close to 1.4x 10-7 Msun yr-1, if one assumes that the luminosity of the old nova is due to a non-irradiated accretion disk. The UV continuum has declined by a factor less than 1.2 over the 13 years of the IUE observations, while the UV emission lines have faded by larger factors. The continuum distribution is well fitted with either a black body of 33 900 K, or a power-law Flambda ~ lambda -2.20. A comparison with the grid of models of Wade & Hubeny (\\cite{Wade}) indicates a low M1 value and a relatively high dot {M} but the best fittings to the continuum and the line spectrum come from different models. We show that the ``quiescent" optical magnitude at mv ~ 12 comes from the hot component and not from the companion star. Since most IUE observations correspond to the ``quiescent" magnitude at mv ~ 12, the same as in the pre-eruption stage, we infer that the pre-nova, for at least 70 years prior to eruption, was also very bright at near the same LUV, Mv, dot {M}, and T values as derived in the present study for the ex-nova. The wind components in the P Cyg profiles of the CIV 1550 Å and NV 1240 Å resonance lines are strong and variable on short timescales, with vedge up to -5000 km s-1, a remarkably high value. The phenomenology of the short-time variations of the wind indicates the presence of an inhomogeneous outflow. We discuss the nature of the strong UV continuum and wind features and the implications of the presence of a ``bright" state a long time before and after outburst on our present knowledge of the pre-nova and post-nova behavior. Based on observations made with the International Ultraviolet Explorer and de-archived from the ESA VILSPA Database. }
Uses of continuum radiation in the AXAF calibration
NASA Technical Reports Server (NTRS)
Kolodziejczak, J. J.; Austin, R. A.; Elsner, R. F.; O'Dell, S. L.; Sulkanen, M. E.; Swartz, D. A.; Tennant, A. F.; Weisskopf, M. C.; Zirnstein, G.; McDermott, W. C.
1997-01-01
X-ray calibration of the Advanced X-ray Astrophysics Facility (AXAF) observatory at the MSFC X-Ray Calibration Facility (XRCF) made novel use of the x-ray continuum from a conventional electron-impact source. Taking advantage of the good spectral resolution of solid-state detectors, continuum measurements proved advantageous in calibrating the effective area of AXAF's High-Resolution Mirror Assembly (HRMA) and in verifying its alignment to the XRCF's optical axis.
BE Ursae Majoris: A detached binary with a unique reprocessing spectrum
NASA Technical Reports Server (NTRS)
Steiner, Joao E.; Ferguson, Donald H.; Liebert, James; Tokarz, Susan; Cutri, Roc; Green, Richard F.; Willner, S. P.
1987-01-01
New infrared photometry, optical and UV spectrophotometry, and a photographic ephemeris are presented for the detached binary BE UMa. Results show the primary to be a DO white dwarf with an effective temperature of 80,000 + or - 15,000 K and a mass of 0.6 + or - 0.1 solar masses. No evidence is found for variability of the primary. The main sequence secondary star is shown to be of early M spectral type, with a formal range of M1 to M5 being possible. A reflection effect in reprocessed line and continuum radiation is produced by EUV radiation from the primary incident on the secondary atmosphere. It is suggested that the temperature of the reprocessed component of the secondary's atmosphere is in the 5000 to 8500 K range, and that emission lines of decreasing ionization form deeper in the irradiated envelope. Relatively narrow He II and high excitation metal lines are formed from recombination and continuum fluorescence processes.
EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan
2015-12-01
We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsicmore » Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.« less
Baldwin Effect and Additional BLR Component in AGN with Superluminal Jets
NASA Astrophysics Data System (ADS)
Patiño Álvarez, Víctor; Torrealba, Janet; Chavushyan, Vahram; Cruz González, Irene; Arshakian, Tigran; León Tavares, Jonathan; Popovic, Luka
2016-06-01
We study the Baldwin Effect (BE) in 96 core-jet blazars with optical and ultraviolet spectroscopic data from a radio-loud AGN sample obtained from the MOJAVE 2cm survey. A statistical analysis is presented of the equivalent widths W_lambda of emission lines H beta 4861, Mg II 2798, C IV 1549, and continuum luminosities at 5100, 3000, and 1350 angstroms. The BE is found statistically significant (with confidence level c.l. > 95%) in H beta and C IV emission lines, while for Mg II the trend is slightly less significant (c.l. = 94.5%). The slopes of the BE in the studied samples for H beta and Mg II are found steeper and with statistically significant difference than those of a comparison radio-quiet sample. We present simulations of the expected BE slopes produced by the contribution to the total continuum of the non-thermal boosted emission from the relativistic jet, and by variability of the continuum components. We find that the slopes of the BE between radio-quiet and radio-loud AGN should not be different, under the assumption that the broad line is only being emitted by the canonical broad line region around the black hole. We discuss that the BE slope steepening in radio AGN is due to a jet associated broad-line region.
Are There Intrinsically X-Ray Quiet Quasars
NASA Technical Reports Server (NTRS)
Gallagher, S. C.; Brandt, W. N.; Laor, A.; Elvis, Martin; Mathur, S.; Wills, Beverly J.; Iyomoto, N.; White, Nicholas (Technical Monitor)
2000-01-01
Recent ROSAT studies have identified a significant population of Active Galactic Nuclei (AGN) that are notably faint in soft X-rays relative to their optical fluxes. Are these AGN intrinsically X-ray weak or are they just highly absorbed? Brandt, Laor & Wills have systematically examined the optical and UV spectral properties of a well-defined sample of these soft X-ray weak (SXW) AGN drawn from the Boroson & Green sample of all the Palomar Green AGN 00 with z < 0.5. We present ASCA observations of three of these SXW AGN: PG 1011-040, PG 1535+547 (Mrk 486), and PG 2112+059. In general, our ASCA observations support the intrinsic absorption scenario for explaining soft X-ray weakness; both PG 1535+547 and PG 2112+059 show significant column densities (NH is approximately 10(exp 22) - 10(exp 23)/sq cm) of absorbing gas. Interestingly, PG 1011-040 shows no spectral evidence for X-ray absorption. The weak X-ray emission may result from very strong absorption of a partially covered source, or this AGN may be intrinsically X-ray weak. PG 2112+059 is a Broad Absorption Line (BAL) QSO, and we find it to have the highest X-ray flux known of this class. It shows a typical power-law X-ray continuum above 3 keV; this is the first direct evidence that BAL QSOs indeed have normal X-ray continua underlying their intrinsic absorption. Finally, marked variability between the ROSAT and ASCA observations of PG 1535+547 and PG 2112+059 suggests that the soft X-ray weak designation may be transient, and multi-epoch 0.1-10.0 KeV X-ray observations are required to constrain variability of the absorber and continuum.
Spectral Variations of T Tauri stars
NASA Astrophysics Data System (ADS)
Guenther, E.
1994-02-01
Although it can now be taken for granted that T Tauri stars accrete matter from circumstellar disks, the way in which the matter is ultimately accreted by the star is still under discussion. Boundary layer models, as well as models of magnetic accretion are considered. Since the very inner part of the disk, the star, and the boundary layer or the accretion shock radiate mainly in the optical, it is necessary to investigate this wavelength region. Optical spectra of classical T Tauri stars consist of emission lines superimposed on a late-type photospheric spectrum, but the photospheric lines in T Tauri stars are much weaker than the lines of main sequence stars of the same spectral type. This is generally attributed to the presence of an additional continuum which veils the photospheric spectrum of the star, which may be be the emission of the boundary layer, or the emission of the immediate vicinity of an accretion shock. The aim of this work is to give additional information on the nature of the region that emits the veiling continuum by investigating the correlations between the veiling and line fluxes in time serieses of T Tauri stars. For this work a time series of 27, 117, and 89 spectra of BM And, DI Cep and DG Tau, were taken in 9, 13, and 12 nights, using the Echellette-Spectrograph of the 2.2m telescope on Calar Alto, Spain. These T Tauri stars were selected because of their different of levels of activity. The spectra cover the whole region between 3200Å and 11000Å with a resolution of about Δ λ λ = 3000. Using 32 template stars the spectral types of the stars were determined, which is found to remain unchanged during the whole time series. The wavelengths of all photospheric lines are in agreement with a single doppler shift (+/- 6 km/s), which is taken as the systemic velocity. It is thus assumed that the low excitation lines are indeed the photospheric lines of the star and the veiling is an additional continuum source. The spectrum of the veiling continuum is determined by subtracting a flux calibrated, scaled template spectrum from the flux calibrated, deredened T Taui star spectrum. The spectra of the veiling continuum exhibit a strong, variable Balmer Jump, but no Pashen Jump is seen. Hα is the only emission line in the spectrum of BM And, all other Balmer lines and the lines of He I appear in absorption, and are redshifted by at least 100 km/s. While the correlation between Hα and the veiling continuum is high, the correlation between all redshifted absorption lines and the veiling continuum is very low. From a comparison of observed and computed profiles of He I it is concluded that this line might form close to an accretion shock, and so should the higher Balmer. Since no redshifted absorption component is seen in Hα, the emission component must be optically thick, and should then be formed at a larger distance from the star than the redshifted absorption components, and hence the veiling continuum. The observations of BM And clearly show that the magnetic model is valid in this case, but the veiling continuum is not the emission of the accretion shock itself. DG Tau and DI Cep show the same kind of behavior. All emission lines have correlation factors between about 0.3 and 0.8. The highest correlations are found in the Balmer lines and low excitation Fe I and Fe II lines. There are no delay effects between the lines, all lines reach their maxima and minima at the same time. From the large Balmer decrement, and calculation of the Balmer lines and the veiling continuum in a simple slab model, it is concluded that the emitting region that is responsible for the emission lines and the veiling continuum has a temperature of 10000 K, and a density of 3**1018m-3 or less. In the slab geometry this corresponds to an emitting region which is at least 10000 km (≅ 0.01 R*) thick. It can thus be concluded that the region emitting the veiling continuum is relatively large and thin.
NASA Astrophysics Data System (ADS)
Suberlak, Krzysztof; Ivezić, Željko; MacLeod, Chelsea L.; Graham, Matthew; Sesar, Branimir
2017-12-01
We present an improved photometric error analysis for the 7 100 CRTS (Catalina Real-Time Transient Survey) optical light curves for quasars from the SDSS (Sloan Digital Sky Survey) Stripe 82 catalogue. The SDSS imaging survey has provided a time-resolved photometric data set, which greatly improved our understanding of the quasar optical continuum variability: Data for monthly and longer time-scales are consistent with a damped random walk (DRW). Recently, newer data obtained by CRTS provided puzzling evidence for enhanced variability, compared to SDSS results, on monthly time-scales. Quantitatively, SDSS results predict about 0.06 mag root-mean-square (rms) variability for monthly time-scales, while CRTS data show about a factor of 2 larger rms, for spectroscopically confirmed SDSS quasars. Our analysis has successfully resolved this discrepancy as due to slightly underestimated photometric uncertainties from the CRTS image processing pipelines. As a result, the correction for observational noise is too small and the implied quasar variability is too large. The CRTS photometric error correction factors, derived from detailed analysis of non-variable SDSS standard stars that were re-observed by CRTS, are about 20-30 per cent, and result in reconciling quasar variability behaviour implied by the CRTS data with earlier SDSS results. An additional analysis based on independent light curve data for the same objects obtained by the Palomar Transient Factory provides further support for this conclusion. In summary, the quasar variability constraints on weekly and monthly time-scales from SDSS, CRTS and PTF surveys are mutually compatible, as well as consistent with DRW model.
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.
1993-01-01
Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.
Short-period cataclysmic variables at Observatorio Astronomico Nacional IA UNAM.
NASA Astrophysics Data System (ADS)
Zharikov, S.
2014-03-01
We present results of time-resolved spectroscopy and photometry of faint (∼17-19 mag) Cataclysmic Variable stars with periods around the minimum orbital period (∼80 min). In this work we concentrated to our results of study of CVs systems which have evolved beyond the period minimum (so-called bounce-back systems). Using various instruments attached to 2.1m, 1.5m and 0.84m telescopes of OAN SPM of IA UNAM we explored conditions and structure of accretion disks in those short-period Cataclysmic Variables. We showed that the accretion disk in a system with an extremely low mass ratio (≤0.05) grows in the size reaching 2:1 resonance radius and is relatively cool. The disk in such systems also becomes largely optically thin in the continuum, contributing to the total flux less than the stellar components of the system. In contrast, the viscosity and the temperature in spiral arms formed at the outer edge of the disk are higher and their contribution in continuum plays an increasingly important role. We model such disks and generate light curves which successfully simulate the observed double-humped light curves in the quiescence. Thanks to support of our programs by the Time Allocation Commission of OAN SPM, the perfect astroclimate in the observatory, and the phase-locked method of spectroscopic observations, the significant progress in the study of bounce-back systems using a small size telescope was reached.
NASA Astrophysics Data System (ADS)
Kowalski, A. F.; Hawley, S. L.; Holtzman, J. A.; Wisniewski, J. P.; Hilton, E. J.
2012-03-01
The white light during M dwarf flares has long been known to exhibit the broadband shape of a T≈10 000 K blackbody, and the white light in solar-flares is thought to arise primarily from hydrogen recombination. Yet, a current lack of broad-wavelength coverage solar flare spectra in the optical/near-UV region prohibits a direct comparison of the continuum properties to determine if they are indeed so different. New spectroscopic observations of a secondary flare during the decay of a megaflare on the dM4.5e star YZ CMi have revealed multiple components in the white-light continuum of stellar flares, including both a blackbody-like spectrum and a hydrogen-recombination spectrum. One of the most surprising findings is that these two components are anti-correlated in their temporal evolution. We combine initial phenomenological modeling of the continuum components with spectra from radiative hydrodynamic models to show that continuum veiling causes the measured anti-correlation. This modeling allows us to use the components' inferred properties to predict how a similar spatially resolved, multiple-component, white-light continuum might appear using analogies to several solar-flare phenomena. We also compare the properties of the optical stellar flare white light to Ellerman bombs on the Sun.
X-ray spectral variability of Seyfert 2 galaxies
NASA Astrophysics Data System (ADS)
Hernández-García, L.; Masegosa, J.; González-Martín, O.; Márquez, I.
2015-07-01
Context. Variability across the electromagnetic spectrum is a property of active galactic nuclei (AGN) that can help constrain the physical properties of these galaxies. Nonetheless, the way in which the changes happen and whether they occur in the same way in every AGN are still open questions. Aims: This is the third in a series of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern(s) in a sample of optically selected Seyfert 2 galaxies. Methods: We use the 26 Seyfert 2s in the Véron-Cetty and Véron catalog with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source were simultaneously fitted, and we let different parameters vary in the model. Whenever possible, short-term variations from the analysis of the light curves and/or long-term UV flux variations were studied. We divided the sample into Compton-thick and Compton-thin candidates to account for the degree of obscuration. When transitions between Compton-thick and thin were obtained for different observations of the same source, we classified it as a changing-look candidate. Results: Short-term variability at X-rays was studied in ten cases, but variations are not found. From the 25 analyzed sources, 11 show long-term variations. Eight (out of 11) are Compton-thin, one (out of 12) is Compton-thick, and the two changing-look candidates are also variable. The main driver for the X-ray changes is related to the nuclear power (nine cases), while variations at soft energies or related to absorbers at hard X-rays are less common, and in many cases these variations are accompanied by variations in the nuclear continuum. At UV frequencies, only NGC 5194 (out of six sources) is variable, but the changes are not related to the nucleus. We report two changing-look candidates, MARK 273 and NGC 7319. Conclusions: A constant reflection component located far away from the nucleus plus a variable nuclear continuum are able to explain most of our results. Within this scenario, the Compton-thick candidates are dominated by reflection, which suppresses their continuum, making them seem fainter, and they do not show variations (except MARK 3), while the Compton-thin and changing-look candidates do. Appendices are available in electronic form at http://www.aanda.org
Ultraviolet spectroscopy of old novae and symbiotic stars
NASA Technical Reports Server (NTRS)
Lambert, D. L.; Slovak, M. H.; Shields, G. A.; Ferland, G. J.
1981-01-01
The IUE spectra are presented for two old novae and for two of the symbiotic variables. Prominent emission line spectra are revealed as a continuum whose appearance is effected by the system inclination. These data provide evidence for hot companions in the symbiotic stars, making plausible the binary model for these peculiar stars. Recent IUE spectra of dwarf novae provide additional support for the existence of optically thick accretion disks in active binary systems. The ultraviolet data of the eclipsing dwarf novae EX Hya and BV Cen appear flatter than for the noneclipsing systems, an effect which could be ascribed to the system inclination.
Extreme Variability in a Broad Absorption Line Quasar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, Daniel; Jun, Hyunsung D.; Graham, Matthew J.
CRTS J084133.15+200525.8 is an optically bright quasar at z = 2.345 that has shown extreme spectral variability over the past decade. Photometrically, the source had a visual magnitude of V ∼ 17.3 between 2002 and 2008. Then, over the following five years, the source slowly brightened by approximately one magnitude, to V ∼ 16.2. Only ∼1 in 10,000 quasars show such extreme variability, as quantified by the extreme parameters derived for this quasar assuming a damped random walk model. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line quasar withmore » extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. We report the first definitive redshift for this source, based on the detection of broad H α in a Keck/MOSFIRE spectrum. Absorption systems separated by several 1000 km s{sup −1} in velocity show coordinated weakening in the depths of their troughs as the continuum flux increases. We interpret the broad absorption line variability to be due to changes in photoionization, rather than due to motion of material along our line of sight. This source highlights one sort of rare transition object that astronomy will now be finding through dedicated time-domain surveys.« less
Optical fiber sources and transmission controls for multi-Tb/s systems
NASA Astrophysics Data System (ADS)
Nowak, George Adelbert
The accelerating demand for bandwidth capacity in backbone links of terrestrial communications systems is projected to exceed 1Tb/s by 2002. Lightwave carrier frequencies and fused-silica optical fibers provide the natural combination of high passband frequencies and low- loss medium to satisfy this evolving demand for bandwidth capacity. This thesis addresses three key technologies for enabling multi-Tb/s optical fiber communication systems. The first technology is a broadband source based on supercontinuum generation in optical fiber. Using a single modelocked laser with output pulsewidths of 0.5psec pulses, we generate in ~2m of dispersion-shifted fiber more that 200nm of spectral continuum in the vicinity of 1550nm that is flat to better than +/- 0.5 dB over more than 60nm. The short fiber length prevents degradation of timing jitter of the seed pulses and preserves coherence of the continuum by inhibiting environmental perturbations and mapping of random noise from the vicinity of the input pulse across the continuum. Through experiments and simulations, we find that the continuum characteristics result from 3rd order dispersion effects on higher-order soliton compression. We determine optimal fiber properties to provide desired continuum broadness and flatness for given input pulsewidth and energy conditions. The second technology is a novel delay-shifted nonlinear optical loop mirror (DS-NOLM) that performs a transmission control function by serving as an intensity filter and frequency compensator for <5psec soliton transmission systems. A theoretical and experimental study of the DS-NOLM as a transmission control element in a periodically amplified soliton transmission system is presented. We show that DS-NOLMs enable 4ps soliton transmission over 75km of standard dispersion fiber, with 25km spacing between amplifiers, by filtering the dispersive waves and compensating for Raman-induced soliton self-frequency shift. The third technology is all-fiber wavelength conversion employing induced modulational instability. We obtain wavelength conversion over 40nm with a peak conversion efficiency of 28dB using 600mW pump pulses in 720m of high-nonlinearity optical fiber. We show that the high- nonlinearity fiber enhances the phase-matching bandwidth as well as reducing the required fiber lengths and pump powers.
PROBING WOLF–RAYET WINDS: CHANDRA/HETG X-RAY SPECTRA OF WR 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huenemoerder, David P.; Schulz, N. S.; Gayley, K. G.
With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of themore » extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.« less
Spectrophotometry of emission-line stars in the magellanic clouds
NASA Technical Reports Server (NTRS)
Bohannan, Bruce
1990-01-01
The strong emission lines in the most luminous stars in the Magellanic Clouds indicate that these stars have such strong stellar winds that their photospheres are so masked that optical absorption lines do not provide an accurate measure of photospheric conditions. In the research funded by this grant, temperatures and gravities of emission-line stars both in the Large (LMC) and Small Magellanic Clouds (SMC) have been measured by fitting of continuum ultraviolet-optical fluxes observed with IUE with theoretical model atmospheres. Preliminary results from this work formed a major part of an invited review 'The Distribution of Types of Luminous Blue Variables'. Interpretation of the IUE observations obtained in this grant and archive data were also included in a talk at the First Boulder-Munich Hot Stars Workshop. Final results of these studies are now being completed for publication in refereed journals.
Electrons and Phonons in Semiconductor Multilayers
NASA Astrophysics Data System (ADS)
Ridley, B. K.
1996-11-01
This book provides a detailed description of the quantum confinement of electrons and phonons in semiconductor wells, superlattices and quantum wires, and shows how this affects their mutual interactions. It discusses the transition from microscopic to continuum models, emphasizing the use of quasi-continuum theory to describe the confinement of optical phonons and electrons. The hybridization of optical phonons and their interactions with electrons are treated, as are other electron scattering mechanisms. The book concludes with an account of the electron distribution function in three-, two- and one-dimensional systems, in the presence of electrical or optical excitation. This text will be of great use to graduate students and researchers investigating low-dimensional semiconductor structures, as well as to those developing new devices based on these systems.
Qi, Fei; Ju, Feng; Bai, Dong Ming; Chen, Bai
2018-02-01
For the outstanding compliance and dexterity of continuum robot, it is increasingly used in minimally invasive surgery. The wide workspace, high dexterity and strong payload capacity are essential to the continuum robot. In this article, we investigate the workspace of a cable-driven continuum robot that we proposed. The influence of section number on the workspace is discussed when robot is operated in narrow environment. Meanwhile, the structural parameters of this continuum robot are optimized to achieve better kinematic performance. Moreover, an indicator based on the dexterous solid angle for evaluating the dexterity of robot is introduced and the distal end dexterity is compared for the three-section continuum robot with different range of variables. Results imply that the wider range of variables achieve the better dexterity. Finally, the static model of robot based on the principle of virtual work is derived to analyze the relationship between the bending shape deformation and the driven force. The simulations and experiments for plane and spatial motions are conducted to validate the feasibility of model, respectively. Results of this article can contribute to the real-time control and movement and can be a design reference for cable-driven continuum robot.
Far-ultraviolet Spectroscopy of the Nova-like Variable KQ Monocerotis: A New SW Sextantis Star?
NASA Astrophysics Data System (ADS)
Wolfe, Aaron; Sion, Edward M.; Bond, Howard E.
2013-06-01
New optical spectra obtained with the SMARTS 1.5 m telescope and archival International Ultraviolet Explorer (IUE) far-ultraviolet (FUV) spectra of the nova-like variable KQ Mon are discussed. The optical spectra reveal Balmer lines in absorption as well as He I absorption superposed on a blue continuum. The 2011 optical spectrum is similar to the KPNO 2.1 m IIDS spectrum we obtained 33 years earlier except that the Balmer and He I absorption is stronger in 2011. Far-ultraviolet IUE spectra reveal deep absorption lines due to C II, Si III, Si IV, C IV, and He II, but no P Cygni profiles indicative of wind outflow. We present the results of the first synthetic spectral analysis of the IUE archival spectra of KQ Mon with realistic optically thick, steady-state, viscous accretion-disk models with vertical structure and high-gravity photosphere models. We find that the photosphere of the white dwarf (WD) contributes very little FUV flux to the spectrum and is overwhelmed by the accretion light of a steady disk. Disk models corresponding to a WD mass of ~0.6 M ⊙, with an accretion rate of order 10-9 M ⊙ yr-1 and disk inclinations between 60° and 75°, yield distances from the normalization in the range of 144-165 pc. KQ Mon is discussed with respect to other nova-like variables. Its spectroscopic similarity to the FUV spectra of three definite SW Sex stars suggests that it is likely a member of the SW Sex class and lends support to the possibility that the WD is magnetic.
Long time scale hard X-ray variability in Seyfert 1 galaxies
NASA Astrophysics Data System (ADS)
Markowitz, Alex Gary
This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and continuum, severely challenging models in which the line tracks continuum variations modified only by a light-travel time delay. This experiment yields further support for spectral softening as continuum flux increases.
NASA Astrophysics Data System (ADS)
Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.
2016-04-01
We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes at the La Silla Paranal Observatory under programme ID 085.D-0501(A).
Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Wang, Q. Q.; Muller, A.; Bianucci, P.; Rossi, E.; Xue, Q. K.; Takagahara, T.; Piermarocchi, C.; MacDonald, A. H.; Shih, C. K.
2005-07-01
Using photoluminescence spectroscopy, we have investigated the nature of Rabi oscillation damping during optical manipulation of excitonic qubits in self-assembled quantum dots. Rabi oscillations were recorded by varying the pulse amplitude for fixed pulse durations between 4ps and 10ps . Up to five periods are visible, making it possible to quantify the excitation dependent damping. We find that this damping is more pronounced for shorter pulse widths and show that its origin is the nonresonant excitation of carriers in the wetting layer, most likely involving bound-to-continuum and continuum-to-bound transitions.
Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chen; Sinitsyn, Nikolai A.
2015-11-19
We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can alsomore » escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. In conclusion, we also discuss extension of our results to multistate systems.« less
Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability
NASA Technical Reports Server (NTRS)
Edelson, R. A.; Pike, G. F.; Krolik, J. H.
1990-01-01
A total of 657 archived IUE spectra are used to study the UV variability properties of six members of the CfA Seyfert I galaxy sample. All show strong evidence for continuum and line variations and a tendency for less luminous objects to be more strongly variable. Most objects show a clear correlation at zero lag between UV spectral index and luminosity, evidence that the variable component is an accretion disk around a black hole which is systematically smaller in less luminous sources. No correlation is seen between the continuum luminosity and equivalent width of the C IV, Mg II, and semiforbidden C III emission lines when the entire sample is examined, but a clear anticorrelation is present when only repeated observations of individual objects are considered. This is due to a combination of light-travel time effects in the broad-line region and the nonlinear responses of lines to continuum fluctuations.
Spectroscopic monitoring of the BL Lac object AO 0235+164
NASA Astrophysics Data System (ADS)
Raiteri, C. M.; Villata, M.; Capetti, A.; Heidt, J.; Arnaboldi, M.; Magazzù, A.
2007-03-01
Aims:Spectroscopic monitoring of BL Lac objects is a difficult task that nonetheless can provide important information on the different components of the active galactic nucleus. Methods: We performed optical spectroscopic monitoring of the BL Lac object AO 0235+164 (z=0.94) with the VLT and TNG telescopes from Aug. 2003 to Dec. 2004, during an extended WEBT campaign. The flux of this source is both contaminated and absorbed by a foreground galactic system at z=0.524, the stars of which can act as gravitational micro-lenses. Results: In this period the object was in an optically faint, though variable state, and a broad Mg II emission line was visible at all epochs. The spectroscopic analysis reveals an overall variation in the Mg II line flux of a factor 1.9, while the corresponding continuum flux density changed by a factor 4.3. Most likely, the photoionising radiation can be identified with the emission component that was earlier recognised to be present as a UV-soft-X-ray bump in the source spectral energy distribution and that is visible in the optical domain only in very faint optical states. We estimate an upper limit to the broad line region (BLR) size of a few light months from the historical minimum brightness level; from this we infer the maximum amplification of the Mg II line predicted by the microlensing scenario. Conclusions: .Unless we have strongly overestimated the size of the BLR, only very massive stars could significantly magnify the broad Mg II emission line, but the time scale of variations due to these (rare) events would be of several years. In contrast, the continuum flux, coming from much smaller emission regions in the jet, could be affected by microlensing from the more plausible MACHO deflectors, with variability time scales of the order of some months. Based on observations collected at the European Southern Observatory, Chile (ESO Programme 71.A-0174), and on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.
Parameterizations of Chromospheric Condensations in dG and dMe Model Flare Atmospheres
NASA Astrophysics Data System (ADS)
Kowalski, Adam F.; Allred, Joel C.
2018-01-01
The origin of the near-ultraviolet and optical continuum radiation in flares is critical for understanding particle acceleration and impulsive heating in stellar atmospheres. Radiative-hydrodynamic (RHD) simulations in 1D have shown that high energy deposition rates from electron beams produce two flaring layers at T ∼ 104 K that develop in the chromosphere: a cooling condensation (downflowing compression) and heated non-moving (stationary) flare layers just below the condensation. These atmospheres reproduce several observed phenomena in flare spectra, such as the red-wing asymmetry of the emission lines in solar flares and a small Balmer jump ratio in M dwarf flares. The high beam flux simulations are computationally expensive in 1D, and the (human) timescales for completing NLTE models with adaptive grids in 3D will likely be unwieldy for some time to come. We have developed a prescription for predicting the approximate evolved states, continuum optical depth, and emergent continuum flux spectra of RHD model flare atmospheres. These approximate prescriptions are based on an important atmospheric parameter: the column mass ({m}{ref}) at which hydrogen becomes nearly completely ionized at the depths that are approximately in steady state with the electron beam heating. Using this new modeling approach, we find that high energy flux density (>F11) electron beams are needed to reproduce the brightest observed continuum intensity in IRIS data of the 2014 March 29 X1 solar flare, and that variation in {m}{ref} from 0.001 to 0.02 g cm‑2 reproduces most of the observed range of the optical continuum flux ratios at the peak of M dwarf flares.
ERIC Educational Resources Information Center
Paredes, Liliana
2001-01-01
Examines the variable use of verbal clitics in bilingual Spanish and proposes that the contact between Quechua and Spanish is expressed in the existence of more than one clitic system across an oral proficiency continuum in Spanish. Proposes that the clitic use in these different systems is variable and constrained by different factors.…
NASA Astrophysics Data System (ADS)
Guenther, Hans; Brickhouse, N. S.; Dupree, A. K.; Luna, G.; Schneider, P. C.; Wolk, S. J.
2014-01-01
Classical T Tauri stars (CTTS) show strong, broad and asymmetric FUV emission lines. Neither the width, nor the line profile is understood. Likely, different mechanisms influence the line profile; the best candidates are accretion, winds and stellar activity. We monitored the C IV 1548/1550 Å doublet in the nearby, bright CTTS TW Hya to correlate it with i) the cool wind, as seen in COS NUV Mg II line profiles, ii) the photometric period from joint ground-based monitoring, iii) the accretion rate as determined from the UV continuum and iv) the Ha line profile from independent ground-based observations. The observations span 10 orbits distributed over a few weeks to cover the typical time scales of stellar rotation, accretion and winds. On short time scales (seconds) the variability in the data is compatible with counting statistics when we take certain instrumental effects (the detector dead-time fraction increases when the wavelength calibration lamps are switched on). This rules out any type of coherent accretion shock fluctuation as predicted in some simulations. On longer time scales (days) variability of a factor of 3 in the continuum and similarly massive changes in the line shape are seen. The ratio of the two lines of the doublet indicates that the lines are optically thick, calling into question the idea that the blue-shifted components of the C IV lines are formed in the pre-shock region.
NASA Astrophysics Data System (ADS)
Corbin, Michael R.; Boroson, Todd A.
1996-11-01
We present combined ultraviolet and optical spectra of 48 QSOs and Seyfert 1 galaxies in the redshift range 0.034-0.774. The UV spectra were obtained non-simultaneously with the optical and are derived from archival Hubble Space Telescope (HST) Faint Object Spectrograph and International Ultraviolet Explorer (IUE) observations. The sample consists of 22 radio- quiet objects, 12 flat radio spectrum radio-loud objects, and 14 steep radio spectrum objects, and it covers approximately 2.5 decades in ultraviolet continuum luminosity. The sample objects are among the most luminous known in this redshift range and include 3C 273 and Fairall 9, as well as many objects discovered in the Bright Quasar Survey. We measure and compare an array of emission-line and continuum parameters, including 2 keV X-ray luminosities derived from the Einstein database. We examine individual correlations and also apply a principal components analysis (PCA) in an effort to determine the underlying sources of variance among these observables. Our main results are as follows. 1. The C IV λ1549 profile asymmetry is correlated with the UV continuum luminosity measured at the position of that line, such that increasing continuum luminosity produces increasing redward asymmetry. This is the same correlation found between Hβ asymmetry and 2 keV luminosity in a larger sample of objects and appears to be followed by both radio-loud and radio-quiet sources. The C IV profile asymmetry is also correlated with the FWZI of the Lyα profile, with more redward asymmetric profiles associated with wider profile bases. The PCA reveals that the correlated increase in luminosity, C IV redward asymmetry, and profile base width accounts for over half the statistical variance in the sample. 2. There is a statistically significant difference between the FWZI distributions of the Lyα and Hβ lines, such that the former is wider on average by ~10^4^ km s^-1^. The FWHM values of the broad Hβ line are weakly correlated with those of C IV λ1549 and Lyα, and in contrast to the FWZI values the Hβ profiles are wider. Measures of the asymmetry of the Hβ and C IV profiles also show a weak correlation. The wavelength centroids at 3/4 maximum of the Lyα and C IV lines also show average blueshifts ~50-200 km s^-1^ from [O III] λ5007, versus an average redshift of 75 km s^-1^ for broad Hβ. 3. There is no clear evidence of narrow components to the stronger UV lines, even among objects in which the optical narrow lines including [O III] λλ4959, 5007 are unusually strong. We measure the average fractional contributions of such components to the Lyα and C III] λ1909 lines to be ~4%-5%, consistent with the findings from smaller samples. However, a sizable fraction (50%) of radio-loud objects display a narrow component of He II λ1640, the same as in the QSO population at intermediate redshifts, and such a component is likely to contribute to the other UV lines. We interpret the first result as the effect of a black hole mass/luminosity relation in which the profile widths and redward asymmetries are produced respectively by the virialized motions and gravitational redshift associated with 10^9^-10^10^ M_sun_ holes. This does not explain the cases of blueward profile asymmetries and blueshifted profile peaks, which require an effect acting oppositely to gravitational redshift. The peak redshift differences and relative weakness of the correlations between the UV profile widths and asymmetries and those of Hβ suggests a stratified ionization structure of the broad-line region (BLR), consistent with the variability studies of Seyfert 1 galaxies. Continuum variability and the dynamical evolution of the BLR gas may also influence these results. The difference between the Lyα and Hβ FWZI values provides additional evidence of an optically thin very broad line region (VBLR) lying interior to an intermediate line region (ILR) producing the profile cores. The smaller average FWHM values of the UV lines compared to Hβ indicate that they have a higher relative contribution of ILR emission, versus a more dominant VBLR component in the Balmer lines. The narrow He II λ1640 feature of radio-loud objects is likely associated with the inner regions of extended (100 kpc) ionized halos that are not present around radio-quiet objects, and which appear to be best explained as cooling flows around the QSO host galaxies.
The evolution of the quasar continuum
NASA Technical Reports Server (NTRS)
Elvis, M.
1992-01-01
We now have in hand a large data base of Roentgen Satellite (ROSAT), optical, and IR complementary data. We are in the process of obtaining a large amount of the International Ultraviolet Explorer (IUE) data for the same quasar sample. For our complementary sample at high redshifts, where the UV was redshifted into the optical, we have just had approved large amounts of observing time to cover the quasar continuum in the near-IR using the new Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) array spectrographs. Ten micron, optical, and VLA radio, data also have approved time. An ISO US key program was approved to extend this work into the far-IR, and the launch of ASTRO-D (early in 1993) promises to extend it to higher energy X-rays.
The HEMP QSO Monitoring Project
NASA Astrophysics Data System (ADS)
Welsh, William F.; Robinson, E. L.
2000-02-01
Many AGN are highly variable sources. Some of these show a pronounced time delay between variations seen in their optical continuum and in their emission lines. ``Echo mapping'' is a technique that uses these time delays to measure the geometry and kinematics of the gas inside the AGN, near the supermassive black hole. The technique is immensely powerful, but the results so far have been modest due to relatively low quality data. We have initiated a long--term project to echo map QSOs. We will examine nearby (but intrinsically faint) QSOs as well as QSOs at high redshift. The high--z QSOs present a problem: it is not known ahead of time which of these are variable sources. Thus we have started a campaign to monitor about 60 high-redshift QSOs for the purpose of determining their variability characteristics. We request SSTO time on the 0.9m telescope for long--term monitoring of high--redshift QSOs to: (i) test their suitability as viable echo mapping candidates; and (ii) measure (for the first time) their variability properties, which is of intrinsic value itself.
Optical effects related to Keplerian discs orbiting Kehagias-Sfetsos naked singularities
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Schee, Jan
2014-10-01
We demonstrate possible optical signatures of the Kehagias-Sfetsos (KS) naked singularity spacetimes representing a spherically symmetric vacuum solution of the modified Hořava gravity. In such spacetimes, accretion structures significantly different from those present in standard black hole spacetimes occur due to the ‘antigravity’ effect, which causes an internal static sphere surrounded by Keplerian discs. We focus our attention on the optical effects related to the Keplerian accretion discs, constructing the optical appearance of the Keplerian discs, the spectral continuum due to their thermal radiation, and the spectral profiled lines generated in the innermost parts of such discs. The KS naked singularity signature is strongly encoded in the characteristics of predicted optical effects, especially in cases where the spectral continuum and spectral lines are profiled by the strong gravity of the spacetimes due to the vanishing region of the angular velocity gradient influencing the effectiveness of the viscosity mechanism. We can conclude that optical signatures of KS naked singularities can be well distinguished from the signatures of standard black holes.
SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.
2012-09-15
We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with amore » sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.« less
The absence of a thin disc in M81*
NASA Astrophysics Data System (ADS)
Young, A. J.; McHardy, I.; Emmanoulopoulos, D.; Connolly, S.
2018-06-01
We present the results of simultaneous Suzaku and NuSTAR observations of the nearest low-luminosity active galactic nucleus (LLAGN), M81*. The spectrum is well described by a cut-off power law plus narrow emission lines from Fe K α, Fe xxv, and Fe xxvi. There is no evidence of Compton reflection from an optically thick disc, and we obtain the strongest constraint on the reflection fraction in M81* to date, with a best-fitting value of R = 0.0 with an upper limit of R < 0.1. The Fe K α line may be produced in optically thin, N_H = 1 × 10^{23} cm^{-2}, gas located in the equatorial plane that could be the broad line region. The ionized iron lines may originate in the hot, inner accretion flow. The X-ray continuum shows significant variability on ˜40 ks time-scales suggesting that the primary X-ray source is ˜100 s of gravitational radii in size. If this X-ray source illuminates any putative optically thick disc, the weakness of reflection implies that such a disc lies outside a few ×103 gravitational radii. An optically thin accretion flow inside a truncated optically thick disc appears to be a common feature of LLAGN that are accreting at only a tiny fraction of the Eddington limit.
A brightening of the symbiotic variable SY Muscae
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Feibelman, W. A.; Kafatos, M.; Wallerstein, G.
1982-01-01
The symbiotic variable SY Muscae has been observed with IUE in September 1980 and June 1981 and in the photographic region in May 1981. The entire ultraviolet spectrum brightened between September and June by about a factor of 5. The spectrum shows high excitation including emission from N v and high electron density, about 10-billion per cu cm as determined from various line ratios in the ultraviolet. The optical spectrum is dominated by permitted lines; even forbidden O III is very weak again indicating high density in the ionized region. The increase in ultraviolet continuum and line emission may be due to enhanced mass transfer from the cool star whose period is 623d and whose maximum was predicted to occur very close to the time of the June 1981 observations. Alternatively the hot star and much of the emitting gas could have been in eclipse in September 1980.
NASA Astrophysics Data System (ADS)
Wong, Jonathan; Abilez, Oscar J.; Kuhl, Ellen
2012-06-01
Electrical stimulation is currently the gold standard treatment for heart rhythm disorders. However, electrical pacing is associated with technical limitations and unavoidable potential complications. Recent developments now enable the stimulation of mammalian cells with light using a novel technology known as optogenetics. The optical stimulation of genetically engineered cells has significantly changed our understanding of electrically excitable tissues, paving the way towards controlling heart rhythm disorders by means of photostimulation. Controlling these disorders, in turn, restores coordinated force generation to avoid sudden cardiac death. Here, we report a novel continuum framework for the photoelectrochemistry of living systems that allows us to decipher the mechanisms by which this technology regulates the electrical and mechanical function of the heart. Using a modular multiscale approach, we introduce a non-selective cation channel, channelrhodopsin-2, into a conventional cardiac muscle cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, this channel opens and allows sodium ions to enter the cell, inducing electrical activation. In side-by-side comparisons with conventional heart muscle cells, we show that photostimulation directly increases the sodium concentration, which indirectly decreases the potassium concentration in the cell, while all other characteristics of the cell remain virtually unchanged. We integrate our model cells into a continuum model for excitable tissue using a nonlinear parabolic second-order partial differential equation, which we discretize in time using finite differences and in space using finite elements. To illustrate the potential of this computational model, we virtually inject our photosensitive cells into different locations of a human heart, and explore its activation sequences upon photostimulation. Our computational optogenetics tool box allows us to virtually probe landscapes of process parameters, and to identify optimal photostimulation sequences with the goal to pace human hearts with light and, ultimately, to restore mechanical function.
Wong, Jonathan; Abilez, Oscar J; Kuhl, Ellen
2012-06-01
Electrical stimulation is currently the gold standard treatment for heart rhythm disorders. However, electrical pacing is associated with technical limitations and unavoidable potential complications. Recent developments now enable the stimulation of mammalian cells with light using a novel technology known as optogenetics. The optical stimulation of genetically engineered cells has significantly changed our understanding of electrically excitable tissues, paving the way towards controlling heart rhythm disorders by means of photostimulation. Controlling these disorders, in turn, restores coordinated force generation to avoid sudden cardiac death. Here, we report a novel continuum framework for the photoelectrochemistry of living systems that allows us to decipher the mechanisms by which this technology regulates the electrical and mechanical function of the heart. Using a modular multiscale approach, we introduce a non-selective cation channel, channelrhodopsin-2, into a conventional cardiac muscle cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, this channel opens and allows sodium ions to enter the cell, inducing electrical activation. In side-by-side comparisons with conventional heart muscle cells, we show that photostimulation directly increases the sodium concentration, which indirectly decreases the potassium concentration in the cell, while all other characteristics of the cell remain virtually unchanged. We integrate our model cells into a continuum model for excitable tissue using a nonlinear parabolic second order partial differential equation, which we discretize in time using finite differences and in space using finite elements. To illustrate the potential of this computational model, we virtually inject our photosensitive cells into different locations of a human heart, and explore its activation sequences upon photostimulation. Our computational optogenetics tool box allows us to virtually probe landscapes of process parameters, and to identify optimal photostimulation sequences with the goal to pace human hearts with light and, ultimately, to restore mechanical function.
A near-infrared relationship for estimating black hole masses in active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Ward, Martin J.; Peterson, Bradley M.; Bentz, Misty C.; Elvis, Martin; Korista, Kirk T.; Karovska, Margarita
2013-06-01
Black hole masses for samples of active galactic nuclei (AGN) are currently estimated from single-epoch optical spectra using scaling relations anchored in reverberation mapping results. In particular, the two quantities needed for calculating black hole masses, namely the velocity and the radial distance of the orbiting gas are derived from the widths of the Balmer hydrogen broad emission lines and the optical continuum luminosity, respectively. We have recently presented a near-infrared (near-IR) relationship for estimating AGN black hole masses based on the widths of the Paschen hydrogen broad emission lines and the total 1 μm continuum luminosity. The near-IR offers several advantages over the optical: it suffers less from dust extinction, the AGN continuum is observed only weakly contaminated by the host galaxy and the strongest Paschen broad emission lines Paα and Paβ are unblended. Here, we improve the calibration of the near-IR black hole mass relationship by increasing the sample from 14 to 23 reverberation-mapped AGN using additional spectroscopy obtained with the Gemini Near-Infrared Spectrograph. The additional sample improves the number statistics in particular at the high-luminosity end.
2013-01-01
Background The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. Results The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94–106% in atomic absorption and 97–103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6–5.2% in atomic absorption, similar with that of 1.9–6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. Conclusions High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry. PMID:23452327
Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca
2013-03-01
The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry.
NASA Astrophysics Data System (ADS)
Almeyda, Triana
2018-01-01
The obscuring circumnuclear dusty torus is a cornerstone of AGN unification, yet its shape, composition, and structure have not been well constrained. Infrared (IR) interferometry can partially resolve the dust structures in nearby AGN. However, the size and structure of the torus can also be investigated at all redshifts by reverberation mapping, that is, analyzing the temporal variability of the torus dust emission in response to changes in the AGN luminosity. In simple models, the lag between the AGN optical continuum variations and the torus IR response is directly related to the effective size of the emitting region. However, the IR response is sensitive to many poorly constrained variables including the geometry and illumination of the torus, which complicates the interpretation of measured reverberation lags. I will present results from the first comprehensive analysis of the multi-wavelength IR torus response, showing how various structural and geometrical torus parameters influence the measured lag. A library of torus response functions has been computed using a new code, TORMAC, which simulates the temporal response of the IR emission of a 3D ensemble of dust clouds given an input optical light curve. TORMAC accounts for anisotropic emission from the dust clouds, inter-cloud and AGN-cloud shadowing, and anisotropic illumination of the torus by the AGN continuum source. We can use the model grid to quantify the relationship between the lag and the effective size of the torus for various torus parameters at any selected wavelength. Although the shapes of the response functions vary widely over our grid parameter range, the reverberation lag provides an estimate of the effective torus radius that is always within a factor of 2.5. TORMAC can also be used to model observed IR light curves; we present preliminary simulations for the “changing-look” Seyfert galaxy, NGC 6418, which exhibited large IR variability during a recent Spitzer monitoring campaign. This work will aid in the interpretation of reverberation mapping measurements, especially for the new VEILS wide field near-IR extragalactic time domain survey, whose aim is to use AGN IR reverberation mapping lags as cosmological standard candles.
Effects of Shocks on Emission from Central Engines of Active Galactic Nuclei. I
NASA Technical Reports Server (NTRS)
Sivron, R.; Caditz, D.; Tsuruta, S.
1996-01-01
In this paper we show that perturbations of the accretion flow within the central engines of some active galactic nuclei (AGNS) are likely to form shock waves in the accreting plasma. Such shocks, which may be either collisional or collisionless, can contribute to the observed high-energy temporal and spectral variability. Our rationale is the following: Observations show that the continuum emission probably originates in an optically thin, hot plasma in the AGN central engine. The flux and spectrum from this hot plasma varies significantly over light crossing timescales. Several authors have suggested that macroscopic perturbations contained within this plasma are the sources of this variability. In order to produce the observed emission the perturbations must be radiatively coupled with the optically thin hot matter and must also move with high velocities. We suggest that shocks, which can be very effective in randomizing the bulk motion of the perturbations, are responsible for this coupling. Shocks should form in the central engine, because the temperatures and magnetic fields are probably reduced below their virial values by radiative dissipation. Perturbations moving at Keplerian speeds, or strong non-linear excitations, result in supersonic and super-Alfvenic velocities leading to shock waves within the hot plasma. We show that even a perturbation smaller than the emitting region can form a shock that significantly modifies the continuum emission in an AGN, and that the spectral and temporal variability from such a shock generally resembles those of radio-quiet AGNS. As an example, the shock inducing perturbation in our model is a small main-sequence star, the capturing and eventual accretion of which are known to be a plausible process. We argue that shocks in the central engine may also provide a natural triggering mechanism for the "cold" component of Guilbert & Rees two-phase medium and an efficient mecha- nism for angular momentum transfer. Current and future missions, such as ASCA, XTE, XMM, AXAF, and ASTRO-E may determine the importance of shock-related emission from the central engines of AGNS.
Unbound states in quantum heterostructures
Bastard, G
2006-01-01
We report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed.
Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052
NASA Astrophysics Data System (ADS)
Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Liu, Wenjuan; Pan, Xiang; Shi, Xiheng; Wang, Jianguo; Wang, Tinggui; Yang, Chenwei; Zhang, Shaohua; Miller, Lauren P.
2017-04-01
In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ˜700 and ˜1400 km s-1 relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V-band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ˜700 km s-1 has a density in the range of 109 to 1010 cm-3 and a distance of ˜1 pc, and the gas with blueshift velocity of ˜1400 km s-1 has a density of 103 cm-3 and a distance of ˜1 kpc.
CXO J004318.8+412016, a steady supersoft X-ray source in M 31
NASA Astrophysics Data System (ADS)
Orio, Marina; Luna, G. J. M.; Kotulla, R.; Gallager, J. S.; Zampieri, L.; Mikolajewska, J.; Harbeck, D.; Bianchini, A.; Chiosi, E.; Della Valle, M.; de Martino, D.; Kaur, A.; Mapelli, M.; Munari, U.; Odendaal, A.; Trinchieri, G.; Wade, J.; Zemko, P.
2017-09-01
We obtained an optical spectrum of a star we identify as the optical counterpart of the M31 Chandra source CXO J004318.8+412016, because of prominent emission lines of the Balmer series, of neutral helium, and a He II line at 4686 Å. The continuum energy distribution and the spectral characteristics demonstrate the presence of a red giant of K or earlier spectral type, so we concluded that the binary is likely to be a symbiotic system. CXO J004318.8+412016 has been observed in X-rays as a luminous supersoft source (SSS) since 1979, with effective temperature exceeding 40 eV and variable X-ray luminosity, oscillating between a few times 1035 erg s-1 and a few times 1037 erg s-1 in the space of a few weeks. The optical, infrared and ultraviolet colours of the optical object are consistent with an an accretion disc around a compact object companion, which may be either a white dwarf or a black hole, depending on the system parameters. If the origin of the luminous supersoft X-rays is the atmosphere of a white dwarf that is burning hydrogen in shell, it is as hot and luminous as post-thermonuclear flash novae, yet no major optical outburst has ever been observed, suggesting that the white dwarf is very massive (m ≥ 1.2 M⊙) and it is accreting and burning at the high rate \\dot{m} > 10^{-8} M⊙ yr-1 expected for Type Ia supernovae progenitors. In this case, the X-ray variability may be due to a very short recurrence time of only mildly degenerate thermonuclear flashes.
NASA Astrophysics Data System (ADS)
Carbone, D.; Bondı, M.; Bonaccorso, A.; Agodi, C.; Cappuzzello, F.; Cavallaro, M.; Charity, R. J.; Cunsolo, A.; De Napoli, M.; Foti, A.
2014-12-01
The 9Be(18O,17O ) 10Be reaction has been studied at an incident energy of 84 MeV, and the ejectiles have been detected at forward angles. The 10Be excitation energy spectrum has been obtained up to about 18 MeV, and several known bound and resonant states of 10Be have been identified. Calculations that describe the interaction of the neutron removed from the 18O projectile with the 9Be target by means of an optical potential with a semiclassical approximation for the relative motion account for a significant part of the 10Be continuum. Two parametrizations of the optical-model potential for the system n - 9Be have been used and compared.
Ultraviolet and optical spectrophotometry of the Seyfert 1.8 galaxy Markarian 609
NASA Technical Reports Server (NTRS)
Rudy, Richard J.; Cohen, Ross D.; Ake, T. B.
1988-01-01
Ultraviolet and optical observations of the Seyfert 1.8 galaxy Mrk 609 were collected simultaneously. The observations reveal strong line and continuum emission in the UV, an increase in the flux of H-beta and He I 5876, and a decrease in the H-alpha/H-beta value since the measurements by Osterbrock (1978, 1981), as well as an extended population of early-type stars, which is considered to be the source powering the larger part of the far-IR emission. Special attention is given to the origin of steep broad-line Balmer decrement measured by Osterbrock, since the strong UV continuum and the emission lines of Mrk 609 observed rule out reddening as the cause of the Balmer decrement. It is suggested that smaller-than-normal optical depths are likely to be the cause of the decrement.
NASA Astrophysics Data System (ADS)
Julian, J. P.; Doyle, M. W.; Stanley, E. H.
2006-12-01
Light is vital to the dynamics of aquatic ecosystems. It drives photosynthesis and photochemical reactions, affects thermal structure, and influences behavior of aquatic biota. Despite the fundamental role of light to riverine ecosystems, light studies in rivers have been mostly neglected because i) boundary conditions (e.g., banks, riparian vegetation) make ambient light measurements difficult, and ii) the optical water quality of rivers is highly variable and difficult to characterize. We propose a benthic light availability model (BLAM) that predicts the percent of incoming photosynthetically active radiation (PAR) available at the river bed. BLAM was developed by quantifying light attenuation of the five hydrogeomorphic controls that dictate riverine light availability: topography, riparian vegetation, channel geometry, optical water quality, and water depth. BLAM was calibrated using hydrogeomorphic data and light measurements from two rivers: Deep River - a 5th-order, turbid river in central North Carolina, and Big Spring Creek - a 2nd-order, optically clear stream in central Wisconsin. We used a series of four PAR sensors to measure i) above-canopy PAR, ii) PAR above water surface, iii) PAR below water surface, and iv) PAR on stream bed. These measurements were used to develop empirical light attenuation coefficients, which were then used in combination with optical water quality measurements, shading analyses, channel surveys, and flow records to quantify the spatial and temporal variability in riverine light availability. Finally, we apply BLAM to the Baraboo River - a 6th-order, 120-mile, unimpounded river in central Wisconsin - in order to characterize light availability along the river continuum (from headwaters to mouth).
NASA Astrophysics Data System (ADS)
Xu, Zexuan; Hu, Bill
2016-04-01
Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow condition but discrete-continuum models provide more accurate results. Parameters sensitivities analysis indicates that conduit diameter and friction factor, matrix hydraulic conductivity and porosity are important parameters that significantly affect variable-density flow and solute transport simulation. The pros and cons of model assumptions, conceptual simplifications and numerical techniques in VDFST-CFP are discussed. In general, the development of VDFST-CFP model is an innovation in numerical modeling methodology and could be applied to quantitatively evaluate the seawater/freshwater interaction in coastal karst aquifers. Keywords: Discrete-continuum numerical model; Variable density flow and transport; Coastal karst aquifer; Non-laminar flow
Electromagnetic-continuum-induced nonlinearity
NASA Astrophysics Data System (ADS)
Matsko, Andrey B.; Vyatchanin, Sergey P.
2018-05-01
A nonrelativistic Hamiltonian describing interaction between a mechanical degree of freedom and radiation pressure is commonly used as an ultimate tool for studying system behavior in optomechanics. This Hamiltonian is derived from the equation of motion of a mechanical degree of freedom and the optical wave equation with time-varying boundary conditions. We show that this approach is deficient for studying higher-order nonlinear effects in an open resonant optomechanical system. Optomechanical interaction induces a large mechanical nonlinearity resulting from a strong dependence of the power of the light confined in the optical cavity on the mechanical degrees of freedom of the cavity due to coupling with electromagnetic continuum. This dissipative nonlinearity cannot be inferred from the standard Hamiltonian formalism.
Temperature-insensitive long-wavelength (λ ≈14 µm) Quantum Cascade lasers with low threshold.
Huang, Xue; Charles, William O; Gmachl, Claire
2011-04-25
We demonstrate high-performance, long-wavelength (λ ≈14 µm) Quantum Cascade (QC) lasers based on a diagonal optical transition and a "two-phonon-continuum" depletion scheme in which the lower laser level is depopulated by resonant longitudinal optical phonon scattering followed by scattering to a lower energy level continuum. A 2.8 mm long QC laser shows a low threshold current density of 2.0 kA/cm2, a peak output power of ~336 mW, and a slope efficiency of 375 mW/A, all at 300 K, with a high characteristic temperature T0 ~310 K over a wide temperature range from 240 K to 390 K.
X-ray Reverberation Mapping of Ci Cam
NASA Astrophysics Data System (ADS)
Bartlett, Elizabeth; Garcia, M.
2009-01-01
We have analyzed the X-ray lightcurve of the star CI Cam, the optical counterpart of the X-ray transient XTE J0421+56 using data from XMM-Newton. Our motivation is based on evidence from ground based optical interferometry from the Keck and IOTA observatories which suggests that the dust surrounding CI CAM has a taurus morphology rather than a spherical distribution as previously hypothesized. By using a technique known as reverberation mapping we have constrained the time delay between the continuum of CI Cam and the Fe-K fluorescence line, corresponding to the reflection of the continuum off the dusty taurus. The time delay yields information on the size of the taurus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Vikram; Harrison, Fiona A.; Walton, Dominic J.
We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ∼7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04{sub −0.06}{sup +0.08}×10{sup 40} erg s{sup –1} for IC 342 X-1 and 7.40 ± 0.20 × 10{sup 39} erg s{sup –1} for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXsmore » exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.« less
ROSAT and ASCA Observations of the Seyfert Galaxy 1H0419-577-577, Identified with LB 1727
NASA Technical Reports Server (NTRS)
Turner, T. J.; George, I. M.; Nandra, K.; Marshall, H. L.; Grupe, D.; Remillard, R.; Leighly, K.
1998-01-01
We discuss the properties of the Seyfert 1.5 galaxy LB 1727 based upon the analysis of two ASCA observations, a two-month Rosat monitoring campaign, and optical data. The target is identified with the HEAO-A1 source 1H0419-577, so it has been observed by ASCA and ROSAT in order to obtain better X-ray variability and spectra data. Only modest (20%) variability is observed within or between ASCA and BeppoSAX observations in the approximately 2 - 10 keV band. However, the soft X-ray flux increased by a factor of 3 over a period of 2 months, while it was monitored daily by the ROSAT HRI instrument. The hard X-ray continuum can be parameterized as a power-law of slope Gamma approximately 1.5 - 1.6 across 0.7 - 11 keV in the rest-frame. We also report the first detection of an iron K(alpha) line in this source, consistent with emission from neutral material. The X-ray spectrum steepens sharply below 0.7 keV yielding a power-law of slope Gamma approximately 3.2. There is no evidence for absorption by neutral material, intrinsic to the nucleus. If the nucleus is unattenuated, then the break energy between the soft-excess and hard component is 0.7+/-0.08 keV. An ionized absorber may produce some turn-up in the spectrum at low energies, but a steepening of the underlying continuum is also required to explain the simultaneous ASCA and HRI data. We cannot rule out the possibility that a significant column of ionized material exists in the line-of-sight, if that is true, then the continuum break-energy can only be constrained to lie within the approximately 0.1 - 0.7 keV band.
ROSAT and ASCA Observations of the Seyfert Galaxy 1H0419-577, Identified with LB 1727
NASA Technical Reports Server (NTRS)
Turner, T. J.; George, I. M.; Nandra, K.; Grupe, D.; Remillard, R.; Leighly, K.; Marshall, H. L.
1998-01-01
We discuss the properties of the Seyfert 1.5 galaxy LB 1727 based upon the analysis of two ASCA observations, a two-month Rosat monitoring campaign, and optical data. The target is identified with the HEAO-A1 source 1H0419-577, so it has been observed by ASCA and ROSAT in order to obtain better X-ray variability and spectra data. Only modest (20%) variability is observed within or between ASCA and BeppoSAX observations in the approximately 2 - 10 keV band. However, the soft X-ray flux increased by a factor of 3 over a period of 2 months, while it was monitored daily by the ROSAT HRI instrument. The hard X-ray continuum can be parameterized as a power-law of slope Gamma approximately 1.5 - 1.6 across 9.7 - 11 keV in the rest-frame. We also report the first detection of an iron K(alpha) line in this source, consistent with emission from neutral material. The X-ray spectrum steepens sharply below 0.7 keV yielding a power-law of slope Gamma approximately 3.2. There is no evidence for absorption by neutral material, instrinsic to the nucleus. If the nucleus is unattenuated, then the break energy between the soft-excess and hard component is 0.7+/-0.08 keV. An ionized absorber may produce some tum-up in the spectrum at low energies, but a steepening of the underlying continuum is also required to explain the simultaneous ASCA and HRI data. We cannot rule out the possibility that a significant column of ionized material exists in the line-of-sight, if that is true, then the continuum break-energy can only be constrained to lie within the approximately 0.1 - -0.7 keV band.
First Optical observation of a microquasar at sub-milliarsec scale: SS 433 resolved by VLTI/GRAVITY
NASA Astrophysics Data System (ADS)
Petrucci, P.; Waisberg, I.; Lebouquin, J.; Dexter, J.; Dubus, G.; Perraut, K.; Kervella, P.; Gravity Collaboration
2017-10-01
We present the first Optical observation at sub-milliarcsec (mas) scale of the famous microquasar SS 433 obtained with the GRAVITY instrument on the VLTI interferometer. This observation reveals the SS 433 inner regions with unprecedent details: The K-band continuum emitting region is dominated by a marginally resolved point source (< 1 mas) embedded inside a diffuse background accounting for 10% of the total flux. The significant visibility drop across the jet lines present in the K-band spectrum, together with the small and nearly identical phases for all baselines, point toward a jet that is offset by < 0.5 mas from the continuum source and resolved in the direction of propagation, with a size of ˜2 mas. Jet emission so close to the central binary system implies that line locking, if relevant to explain the 0.26c jet velocity, operates on elements heavier than hydrogen. Concerning The Brγ line, it is better resolved than the continuum and the S-shape phase signal present across the line suggests an East-West oriented geometry alike the jet direction and supporting a (polar) disk wind origin. This observation show the potentiality of Optical interferometry to constrain the inner regions of high energy sources like microquasars.
Broad-Band Continuum and Line Emission of the gamma-Ray Blazar PKS 0537-441
NASA Technical Reports Server (NTRS)
Pian, E.; Falomo, R.; Hartman, R. C.; Maraschi, L.; Tavecchio, F.; Tornikoski, M.; Treves, A.; Urry, C. M.; Ballo, L.; Mukherjee, R.;
2002-01-01
PKS 0537-441, a bright gamma ray emitting blazar was observed at radio, optical, UV and X-ray frequencies during various EGRET paintings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazer component, which we attribute to inverse Compton scatter in The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the barometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by ICE in 1995 appears to be partially absorbed shortward of approximately 1700 Angstroms. However, this signature is not detected in the HST spectrum taker during a lower state of the source. The presence of intervening absorbers is not supported by optical imaging and spectroscopy of the field.
The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236
NASA Technical Reports Server (NTRS)
Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa
1994-01-01
The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.
Comment on "Route from discreteness to the continuum for the Tsallis q -entropy"
NASA Astrophysics Data System (ADS)
Ou, Congjie; Abe, Sumiyoshi
2018-06-01
Several years ago, it had been discussed that nonlogarithmic entropies, such as the Tsallis q -entropy cannot be applied to systems with continuous variables. Now, in their recent paper [Phys. Rev. E 97, 012104 (2018), 10.1103/PhysRevE.97.012104], Oikonomou and Bagci have modified the form of the q -entropy for discrete variables in such a way that its continuum limit exists. Here, it is shown that this modification violates the expandability property of entropy, and their work is actually supporting evidence for the absence of the q -entropy for systems with continuous variables.
Topology and layout optimization of discrete and continuum structures
NASA Technical Reports Server (NTRS)
Bendsoe, Martin P.; Kikuchi, Noboru
1993-01-01
The basic features of the ground structure method for truss structure an continuum problems are described. Problems with a large number of potential structural elements are considered using the compliance of the structure as the objective function. The design problem is the minimization of compliance for a given structural weight, and the design variables for truss problems are the cross-sectional areas of the individual truss members, while for continuum problems they are the variable densities of material in each of the elements of the FEM discretization. It is shown how homogenization theory can be applied to provide a relation between material density and the effective material properties of a periodic medium with a known microstructure of material and voids.
Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Luming; Zhou, Hongyan; Ji, Tuo
In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do notmore » change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salloum, Maher N.; Sargsyan, Khachik; Jones, Reese E.
2015-08-11
We present a methodology to assess the predictive fidelity of multiscale simulations by incorporating uncertainty in the information exchanged between the components of an atomistic-to-continuum simulation. We account for both the uncertainty due to finite sampling in molecular dynamics (MD) simulations and the uncertainty in the physical parameters of the model. Using Bayesian inference, we represent the expensive atomistic component by a surrogate model that relates the long-term output of the atomistic simulation to its uncertain inputs. We then present algorithms to solve for the variables exchanged across the atomistic-continuum interface in terms of polynomial chaos expansions (PCEs). We alsomore » consider a simple Couette flow where velocities are exchanged between the atomistic and continuum components, while accounting for uncertainty in the atomistic model parameters and the continuum boundary conditions. Results show convergence of the coupling algorithm at a reasonable number of iterations. As a result, the uncertainty in the obtained variables significantly depends on the amount of data sampled from the MD simulations and on the width of the time averaging window used in the MD simulations.« less
Spectroscopic monitoring of active Galactic nuclei from CTIO. 1: NGC 3227
NASA Technical Reports Server (NTRS)
Winge, Claudia; Peterson, Bradley M.; Horne, Keith; Pogge, Richard W.; Pastoriza, Miriani G.; Storchi-Bergmann, Thaisa
1995-01-01
The results of a five-month monitoring campaign on the Seyfert 1.5 galaxy NGC 3227 are presented. Variability was detected in the continuum and in the broad emission lines. Cross correlations of the 4200 A continuum light curve with the H beta and He II wavelength 4686 emission-line light curves indicate delays of 18 +/- 5 and 16 +/- 2 days, respectively, between the continuum variations and the response of the lines. We apply a maximum entropy method to solve for the transfer function that relates the H beta and He II wavelength 4686 lines and 4200 A continuum variability and the result of this analysis suggests that there is a deficit of emission-line response due to gas along the line of sight to the continuum source for both lines. Using a composite off-nuclear spectrum, we synthesize the bulge stellar population, which is found to be mainly old (77% with age greater than 10 Gyr) with a metallicity twice the solar value. The synthesis also yields an internal color excess E(B - V) approximately equal 0.04. The mean contribution of the stellar population to the inner 5 sec x 10 sec spectra during the campaign was approximately equal 40%.
Radio continuum from FU Orionis stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, L.F.; Hartmann, L.W.; Chavira, E.
1990-12-01
Using the very large array a sensitive search is conducted for 3.6-cm continuum emission toward four FU Orionis objects: FU Ori, V1515 Cyg, V1057 Cyg, and Elias 1-12. V1057 Cyg and Elias 1-12 at the level of about 0.1 mJy is detected. The association of radio continuum emission with these FU Ori objects strengthens a possible relation between FU Ori stars and objects like L 1551 IRS 5 and Z CMa that are also sources of radio continuum emission and have been proposed as post-FU Ori objects. Whether the radio continuum emission is caused by free-free emission from ionized ejectamore » or if it is optically thin emission from a dusty disk is discussed. It was determined that, in the archives of the Tonantzintla Observatory, a plate taken in 1957 does not show Elias 1-12. This result significantly narrows the time range for the epoch of the outburst of this source to between 1957 and 1965. 38 refs.« less
The correlation between far-IR and radio continuum emission from spiral galaxies
NASA Technical Reports Server (NTRS)
Dickey, John M.; Garwood, Robert W.; Helou, George
1987-01-01
A sample of 30 galaxies selected for their intense IRAS flux at 60 and 100 micron using the Arecibo telescope at 21 cm to measure the continuum and HI line luminosities were observed. The centimeter wave continuum correlates very well with the far-infrared flux, with a correlation coefficient as high as that found for other samples, and the same ratio between FIR and radio luminosities. Weaker correlations are seen between the FIR and optical luminosity and between the FIR and radio continuum. There is very little correlation between the FIR and the HI mass deduced from the integral of the 21 cm line. The strength of the radio continuum correlation suggests that there is little contribution to either the radio and FIR from physical processes not affecting both. If they each reflect time integrals of the star formation rate then the time constants must be similar, or the star formation rate must change slowly in these galaxies.
Observations of cataclysmic variables with IUE
NASA Technical Reports Server (NTRS)
Hartmann, L.; Raymond, J.
1981-01-01
Observations are reported of the cataclysmic variables AN UMa, 2AO311-227, VV Pup, DQ Her, and GK Per. Continuum emission was detected in the short wavelength region in DQ Her. This object exhibits a quasi-blackbody spectrum at short wavelengths, such blackbody components are a common property of the variables AM Her, SS Cyg, and U Gem, suggesting an underlying similarity in the activity of these diverse systems. Flat continuum components at longer wavelengths in general are not compatible with standard disk models. The emission line ratios in AE Aqr are anomalous in that C IV is absent to a very low level relative to N V.
NASA Technical Reports Server (NTRS)
Eaton, J. E.; Cherepashchuk, A. M.; Khaliullin, K. F.
1982-01-01
The 1200-1900 angstrom region and fine error sensor observations in the optical for V444 Cyg were continuously observed. More than half of a primary minimum and almost a complete secondary minimum were observed. It is found that the time of minimum for the secondary eclipse is consistent with that for primary eclipse, and the ultraviolet times of minimum are consistent with the optical ones. The spectrum shows a considerable amount of phase dependence. The general shaps and depths of the light curves for the FES signal and the 1565-1900 angstrom continuum are similar to those for the blue continuum. The FES, however, detected an atmospheric eclipse in line absorption at about the phase the NIV absorption was strongest. It is suggested that there is a source of continuum absorption shortward of 1460 angstrom which exists throughout a large part of the extended atmosphere and which, by implication, must redden considerably the ultraviolet continuua of WN stars. A fairly high degree of ionization for the inner part of the WN star a atmosphere is implied.
The Eating Disorders Continuum, Self-Esteem, and Perfectionism
ERIC Educational Resources Information Center
Peck, Lisa D.; Lightsey, Owen Richard
2008-01-01
Among 261 undergraduate women, increased severity of eating disorders along a continuum was associated with decreased self-esteem, increased perfectionism, and increased scores on 7 subscales of the Eating Disorders Inventory-2. Women with eating disorders differed from both symptomatic women and asymptomatic women on all variables, whereas…
Testing the Contingency Theory of Accommodation in Public Relations.
ERIC Educational Resources Information Center
Cancel, Amanda E.; Mitrook, Michael A.; Cameron, Glen T.
1999-01-01
Interviews 18 public-relations professionals to provide grounding and refinement of the contingency theory of accommodation in public relations. Supports a continuum from pure accommodation to pure advocacy and a matrix of variables affecting the continuum. Concludes that the practitioners' view of their communication world offers validity to the…
THE BINARY BLACK HOLE MODEL FOR MRK 231 BITES THE DUST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighly, Karen M.; Terndrup, Donald M.; Gallagher, Sarah C.
2016-09-20
Mrk 231 is a nearby quasar with an unusually red near-UV-to-optical continuum, generally explained as heavy reddening by dust. Yan et al. proposed that Mrk 231 is a milliparsec black hole binary with little intrinsic reddening. We show that if the observed FUV continuum is intrinsic, as assumed by Yan et al., it fails by a factor of about 100 in powering the observed strength of the near-infrared emission lines and the thermal near and mid-infrared continuum. In contrast, the line and continuum strengths are typical for a reddened AGN spectral energy distribution (SED). We find that the He i*/Pmore » β ratio is sensitive to the SED for a one-zone model. If this sensitivity is maintained in general broadline region models, then this ratio may prove a useful diagnostic for heavily reddened quasars. Analysis of archival Hubble Space Telescope STIS and Faint Object Camera data revealed evidence that the far-UV continuum emission is resolved on size scales of ∼40 pc. The lack of broad absorption lines in the far-UV continuum might be explained if it were not coincident with the central engine. One possibility is that it is the central engine continuum reflected from the receding wind on the far side of the quasar.« less
The X-ray variability history of Markarian 3
NASA Astrophysics Data System (ADS)
Guainazzi, M.; La Parola, V.; Miniutti, G.; Segreto, A.; Longinotti, A. L.
2012-11-01
Context. The unified scenario for active galactic nuclei (AGN) postulates that our orientation with respect to a parsec-scale azimuthally-symmetric gas and dust system causes the difference in their phenomenology in the optical/UV and X-ray bands. Only recently have high-resolution radio (VLBI) and IR interferometric observations provided direct constraints on the size and structure of this obscuring system (known historically as the "torus"). On the other hand, variability in optically-thick X-ray absorption and reprocessing in heavily obscured AGN often probe smaller scales, down to the broad line region and beyond. Aims: We aim at constraining the geometry of the reprocessing matter in the nearby prototypical Seyfert 2 Galaxy Markarian 3 by studying the time evolution of the spectral components associated to the primary AGN emission and to its Compton-scattering. Methods: We analyzed archival spectroscopic observations of Markarian 3 taken over the last ≃ 12 years with the XMM-Newton, Suzaku and Swift observatories, as well as data taken during a monitoring campaign activated by us in 2012. Results: The timescale of the Compton-reflection component variability (originally discovered by ASCA in the mid-'90s) is ≲ 64 days. This upper limit improves by more than a factor of 15 on previous estimates of the Compton-reflection variability timescale for this source. When the light curve of the Compton-reflection continuum in the 4-5 keV band is correlated with the 15-150 keV Swift/BAT curve, a delay ≳1200 days is found. The cross-correlation results depend on the model used to fit the spectra, although the detection of the Compton-reflection component variability is independent of the range of models employed to fit the data. Reanalysis of an archival Chandra image of Markarian 3 indicates that the Compton-reflection and the Fe Kα emitting regions are extended to the north up to ≃300 pc. The combination of these findings suggests that the optically-thick reprocessor in Markarian 3 is clumpy. Conclusions: There is mounting experimental evidence that the structure of the optically-thick gas and dust in the nuclear environment of nearby heavily obscured AGN is extended and complex. We discuss possible modifications to the standard unification scenarios encompassing this complexity. Markarian 3, which exhibits X-ray absorption and reprocessing on widely different spatial scales, is an ideal laboratory to test these models.
ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirota, Tomoya; Matsumoto, Naoko; Machida, Masahiro N.
2016-12-20
We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperaturemore » is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.« less
Exploring the Full Range of Properties of Quasar Spectral Distributions
NASA Technical Reports Server (NTRS)
Wilkes, B.
1998-01-01
The aim of this work is to support our ISO, far-infrared (IR) observing program of quasars and active galaxies. We have obtained, as far as possible, complete spectral energy distributions (radio-X-ray) of the ISO sample in order to fully delineate the continuum shapes and to allow detailed modelling of that continuum. This includes: ground-based optical, near-IR and mm data, the spectral ranges closest to the ISO data, within 1-2 years of the ISO observations themselves. ISO was launched in Nov 1995 and is currently observing routinely. It has an estimated lifetime is 2 years. All near-IR and optical imaging and spectroscopy are now in hand and in the process of being reduced, mm data collection and proposal writing continues.
NASA Astrophysics Data System (ADS)
Baglio, M. C.; D'Avanzo, P.; Muñoz-Darias, T.; Breton, R. P.; Campana, S.
2013-11-01
Aims: We present a study of the quiescent optical counterpart of the accreting millisecond X-ray pulsar XTE J1814-338 that is aimed at unveiling the different components, which contribute to the quiescent optical emission of the system. Methods: We carried out multiband (BVR) orbital phase-resolved photometry of the system using the ESO Very Large Telescope (VLT) that is equipped with the FORS2 camera, covering about 70% of the 4.3 hour orbital period. Results: The optical light curves are consistent with a sinusoidal variability that are modulated with an orbital period with a semi-amplitude of 0.5-0.7 mag. They show evidence of a strongly irradiated companion star, which agrees with previous findings for this system. However, the observed colours cannot be accounted for by the companion star alone, suggesting the presence of an accretion disc during quiescence. The system seems to be fainter in all analysed bands compared to previous observations. The R band light curve displays a possible phase offset with respect to the B and V band. Through a combined fit of the multi-band light curve performed with a Markov chain Monte Carlo technique, we derive constraints on the companion star, disc fluxes, system distance, and companion star mass. Conclusions: The irradiation luminosity required to account for the observed day-side temperature of the companion star is consistent with the spin-down luminosity of a millisecond radio pulsar. Compared to our data with previous observations, which were collected over 5 years, the flux decrease and spectral evolution of the observed quiescent optical emission cannot be satisfactorily explained with the combined contribution of an irradiated companion star and of an accretion disc alone. The observed progressive flux decrease as the system gets bluer could be due to a continuum component that evolves towards a lower, bluer spectrum. While most of the continuum component is likely due to the disc, we do not expect it to become bluer in quiescence. Hence, we hypothesize that an additional component, such as synchrotron emission from a jet was significantly contributing in the data obtained earlier during quiescence and then progressively fading or moving its break frequency towards longer wavelengths. Based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 383.D-0730(A).
The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk
NASA Technical Reports Server (NTRS)
Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.;
2016-01-01
We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93 < approx. a* < approx. 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be approx.10deg-15deg. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at approx. 6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.
The Soft State of Cygnus X-1 Observed with NuSTAR: A Variable Corona and a Stable Inner Disk
NASA Astrophysics Data System (ADS)
Walton, D. J.; Tomsick, J. A.; Madsen, K. K.; Grinberg, V.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Clavel, M.; Craig, W. W.; Fabian, A. C.; Fuerst, F.; Hailey, C. J.; Harrison, F. A.; Miller, J. M.; Parker, M. L.; Rahoui, F.; Stern, D.; Tao, L.; Wilms, J.; Zhang, W.
2016-07-01
We present a multi-epoch hard X-ray analysis of Cygnus X-1 in its soft state based on four observations with the Nuclear Spectroscopic Telescope Array (NuSTAR). Despite the basic similarity of the observed spectra, there is clear spectral variability between epochs. To investigate this variability, we construct a model incorporating both the standard disk-corona continuum and relativistic reflection from the accretion disk, based on prior work on Cygnus X-1, and apply this model to each epoch independently. We find excellent consistency for the black hole spin and the iron abundance of the accretion disk, which are expected to remain constant on observational timescales. In particular, we confirm that Cygnus X-1 hosts a rapidly rotating black hole, 0.93≲ {a}* ≲ 0.96, in broad agreement with the majority of prior studies of the relativistic disk reflection and constraints on the spin obtained through studies of the thermal accretion disk continuum. Our work also confirms the apparent misalignment between the inner disk and the orbital plane of the binary system reported previously, finding the magnitude of this warp to be ˜10°-15°. This level of misalignment does not significantly change (and may even improve) the agreement between our reflection results and the thermal continuum results regarding the black hole spin. The spectral variability observed by NuSTAR is dominated by the primary continuum, implying variability in the temperature of the scattering electron plasma. Finally, we consistently observe absorption from ionized iron at ˜6.7 keV, which varies in strength as a function of orbital phase in a manner consistent with the absorbing material being an ionized phase of the focused stellar wind from the supergiant companion star.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yu-Han; Wang, Jun-Xian; Chen, Xiao-Yang
Quasars are variable on timescales from days to years in UV/optical and generally appear bluer while they brighten. The physics behind the variations in fluxes and colors remains unclear. Using Sloan Digital Sky Survey g- and r-band photometric monitoring data for quasars in Stripe 82, we find that although the flux variation amplitude increases with timescale, the color variability exhibits the opposite behavior. The color variability of quasars is prominent at timescales as short as ∼10 days, but gradually reduces toward timescales up to years. In other words, the variable emission at shorter timescales is bluer than that at longermore » timescales. This timescale dependence is clearly and consistently detected at all redshifts from z = 0 to 3.5; thus, it cannot be due to contamination to broadband photometry from emission lines that do not respond to fast continuum variations. The discovery directly rules out the possibility that simply attributes the color variability to contamination from a non-variable redder component such as the host galaxy. It cannot be interpreted as changes in global accretion rate either. The thermal accretion disk fluctuation model is favored in the sense that fluctuations in the inner, hotter region of the disk are responsible for short-term variations, while longer-term and stronger variations are expected from the larger and cooler disk region. An interesting implication is that one can use quasar variations at different timescales to probe disk emission at different radii.« less
NASA Technical Reports Server (NTRS)
Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey
2012-01-01
During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote sensing and climate research studies in dynamic aerosol-rich environments like Dongsha.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuzhou, E-mail: yuzhousun@126.com; Chen, Gensheng; Li, Dongxia
2016-06-08
This paper attempts to study the application of mesh-free method in the numerical simulations of the higher-order continuum structures. A high-order bending beam considers the effect of the third-order derivative of deflections, and can be viewed as a one-dimensional higher-order continuum structure. The moving least-squares method is used to construct the shape function with the high-order continuum property, the curvature and the third-order derivative of deflections are directly interpolated with nodal variables and the second- and third-order derivative of the shape function, and the mesh-free computational scheme is establish for beams. The coupled stress theory is introduced to describe themore » special constitutive response of the layered rock mass in which the bending effect of thin layer is considered. The strain and the curvature are directly interpolated with the nodal variables, and the mesh-free method is established for the layered rock mass. The good computational efficiency is achieved based on the developed mesh-free method, and some key issues are discussed.« less
Place, Poverty, and Algebra: A Statewide Comparative Spatial Analysis of Variable Relationships
ERIC Educational Resources Information Center
Hogrebe, Mark C.; Tate, William F.
2012-01-01
Place matters in moderating variable relationships between algebra performance and educational variables because there are differences on the socioeconomic (SES) poverty-affluence continuum that shape local contexts. This article examines relationships between variables for school district demographic composition, teaching and financial contexts,…
A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate-Mass Black Hole
NASA Astrophysics Data System (ADS)
Barth, Aaron
2004-07-01
We propose a comprehensive optical, UV, and X-ray investigation of the unique galaxy POX 52. POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy appears to be a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses, placing POX 52 in a region of AGN parameter space that is almost completely unexplored at present. We request ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACS imaging to detect the X-ray emission from the nucleus and investigate its spectral and variability properties. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.
A Multi-ringed, Modestly Inclined Protoplanetary Disk around AA Tau
NASA Astrophysics Data System (ADS)
Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; MacGregor, Meredith A.
2017-05-01
AA Tau is the archetype for a class of stars with a peculiar periodic photometric variability thought to be related to a warped inner disk structure with a nearly edge-on viewing geometry. We present high resolution (˜0.″2) ALMA observations of the 0.87 and 1.3 mm dust continuum emission from the disk around AA Tau. These data reveal an evenly spaced three-ringed emission structure, with distinct peaks at 0.″34, 0.″66, and 0.″99, all viewed at a modest inclination of 59.°1 ± 0.°3 (decidedly not edge-on). In addition to this ringed substructure, we find non-axisymmetric features, including a “bridge” of emission that connects opposite sides of the innermost ring. We speculate on the nature of this “bridge” in light of accompanying observations of HCO+ and 13CO (J = 3-2) line emission. The HCO+ emission is bright interior to the innermost dust ring, with a projected velocity field that appears rotated with respect to the resolved disk geometry, indicating the presence of a warp or inward radial flow. We suggest that the continuum bridge and HCO+ line kinematics could originate from gap-crossing accretion streams, which may be responsible for the long-duration dimming of optical light from AA Tau.
Paula, Andreia S; Matos, João T V; Duarte, Regina M B O; Duarte, Armando C
2016-02-01
The chemical and light-absorption dynamics of organic aerosols (OAs), a master variable in the atmosphere, have yet to be resolved. This study uses a comprehensive multidimensional analysis approach for exploiting simultaneously the compositional changes over a molecular size continuum and associated light-absorption (ultraviolet absorbance and fluorescence) properties of two chemically distinct pools of urban OAs chromophores. Up to 45% of aerosol organic carbon (OC) is soluble in water and consists of a complex mixture of fluorescent and UV-absorbing constituents, with diverse relative abundances, hydrophobic, and molecular weight (Mw) characteristics between warm and cold periods. In contrast, the refractory alkaline-soluble OC pool (up to 18%) is represented along a similar Mw and light-absorption continuum throughout the different seasons. Results suggest that these alkaline-soluble chromophores may actually originate from primary OAs sources in the urban site. This work shows that the comprehensive multidimensional analysis method is a powerful and complementary tool for the characterization of OAs fractions. The great diversity in the chemical composition and optical properties of OAs chromophores, including both water-soluble and alkaline-soluble OC, may be an important contribution to explain the contrasting photo-reactivity and atmospheric behavior of OAs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Variable H13CO+ Emission in the IM Lup Disk: X-Ray Driven Time-dependent Chemistry?
NASA Astrophysics Data System (ADS)
Cleeves, L. Ilsedore; Bergin, Edwin A.; Öberg, Karin I.; Andrews, Sean; Wilner, David; Loomis, Ryan
2017-07-01
We report the first detection of a substantial brightening event in an isotopologue of a key molecular ion, HCO+, within a protoplanetary disk of a T Tauri star. The H13CO+ J=3-2 rotational transition was observed three times toward IM Lup between 2014 July and 2015 May with the Atacama Large Millimeter/submillimeter Array. The first two observations show similar spectrally integrated line and continuum fluxes, while the third observation shows a doubling in the disk-integrated J=3-2 line flux compared to the continuum, which does not change between the three epochs. We explore models of an X-ray active star irradiating the disk via stellar flares, and find that the optically thin H13CO+ emission variation can potentially be explained via X-ray-driven chemistry temporarily enhancing the HCO+ abundance in the upper layers of the disk atmosphere during large or prolonged flaring events. If the HCO+ enhancement is indeed caused by an X-ray flare, future observations should be able to spatially resolve these events and potentially enable us to watch the chemical aftermath of the high-energy stellar radiation propagating across the face of protoplanetary disks, providing a new pathway to explore ionization physics and chemistry, including electron density, in disks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.
AA Tau is the archetype for a class of stars with a peculiar periodic photometric variability thought to be related to a warped inner disk structure with a nearly edge-on viewing geometry. We present high resolution (∼0.″2) ALMA observations of the 0.87 and 1.3 mm dust continuum emission from the disk around AA Tau. These data reveal an evenly spaced three-ringed emission structure, with distinct peaks at 0.″34, 0.″66, and 0.″99, all viewed at a modest inclination of 59.°1 ± 0.°3 (decidedly not edge-on). In addition to this ringed substructure, we find non-axisymmetric features, including a “bridge” of emission thatmore » connects opposite sides of the innermost ring. We speculate on the nature of this “bridge” in light of accompanying observations of HCO{sup +} and {sup 13}CO ( J = 3–2) line emission. The HCO{sup +} emission is bright interior to the innermost dust ring, with a projected velocity field that appears rotated with respect to the resolved disk geometry, indicating the presence of a warp or inward radial flow. We suggest that the continuum bridge and HCO{sup +} line kinematics could originate from gap-crossing accretion streams, which may be responsible for the long-duration dimming of optical light from AA Tau.« less
NASA Astrophysics Data System (ADS)
Cai, Zhen-Yi; Wang, Jun-Xian; Zhu, Fei-Fan; Sun, Mou-Yuan; Gu, Wei-Min; Cao, Xin-Wu; Yuan, Feng
2018-03-01
The tight interband correlation and the lag–wavelength relation among UV/optical continua of active galactic nuclei have been firmly established. They are usually understood within the widespread reprocessing scenario; however, the implied interband lags are generally too small. Furthermore, it is challenged by new evidence, such as that the X-ray reprocessing yields too much high-frequency UV/optical variation and that it fails to reproduce the observed timescale-dependent color variations among the Swift light curves of NGC 5548. In a different manner, we demonstrate that an upgraded inhomogeneous accretion disk model, whose local independent temperature fluctuations are subject to a speculated common large-scale temperature fluctuation, can intrinsically generate the tight interband correlation and lag across the UV/optical and be in nice agreement with several observational properties of NGC 5548, including the timescale-dependent color variation. The emergent lag is a result of the differential regression capability of local temperature fluctuations when responding to the large-scale fluctuation. An average speed of propagations as large as ≳15% of the speed of light may be required by this common fluctuation. Several potential physical mechanisms for such propagations are discussed. Our interesting phenomenological scenario may shed new light on comprehending the UV/optical continuum variations of active galactic nuclei.
PKS 0537-286, carrying the information of the environment of SMBHs in the early Universe
NASA Astrophysics Data System (ADS)
Bottacini, E.; Ajello, M.; Greiner, J.; Pian, E.; Rau, A.; Palazzi, E.; Covino, S.; Ghisellini, G.; Krühler, T.; Küpcü Yoldaş, A.; Cappelluti, N.; Afonso, P.
2010-01-01
Context. The high-redshift (z = 3.1) blazar PKS 0537-286, belonging to the flat spectrum radio quasar blazar subclass, is one of the most luminous active galactic nuclei (AGN) in the Universe. Blazars are very suitable candidates for multiwavelength observations. Indeed, the relativistic beaming effect at work within the jet enhances their luminosity. This in turn allows the properties of the extragalactic jets, the powering central engine, and the surrounding environment to be derived. Aims: Our aim is to present the results of a multifrequency campaign from the near-IR to hard X-ray energies on PKS 0537-286 and give insight into the physical environment where the radiation processes take place. Methods: We observed the source at different epochs from 2006 to 2008 with INTEGRAL and Swift, and nearly simultaneously with ground-based optical telescopes. We also analyzed two archival spectra taken with XMM-Newton in 1999 and 2005. A comparative analysis of the results is performed. Results: The X-ray continuum of the blazar, as sampled by XMM, is described by a power law of index Γ = 1.2, modified by variable absorption at the soft X-rays, as found in other high-redshift QSOs. Modest X-ray continuum variability is found in the Swift observations. The combined Swift/BAT and Swift/XRT spectrum is very hard (Γ = 1.3). This, together with the non simultaneous EGRET detection and the more recent non detection by Fermi-LAT, constrains the peak of the high-energy component robustly. The optical/UV data, heavily affected by intervening Ly α absorption, indicate the presence of a bright thermal accretion disk that decreased in luminosity between 2006 and 2008. We infer from this a reduction of the BLR radius. When taking this into account, the 2006 and 2008 SEDs are compatible with a model based on synchrotron radiation and external inverse Compton scattering where the accretion-disk luminosity decreases between the 2 epochs by a factor 2, while the bulk Lorentz factor remains unchanged and the magnetic field changed only marginally.
Observations of CI Cam needed to support spectroscopy
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2016-10-01
Kelly Gourdji and Marcella Wijngaarden (graduate students at the University of Amsterdam/Anton Pannekoek Institute for Astronomy) have requested AAVSO observers' assistance in providing optical photometry of CI Cam in support of their high-resolution spectroscopy from now through January 2017. They write: "...We are currently observing the variable star CI Cam (the B[e] optical counterpart of a HMXB system) with the HERMES spectrograph at the Mercator Telescope in La Palma. Having observed the star for three nights now, the object appears to be in outburst. In particular, H alpha was measured to be 80 times the continuum flux, and increasing between Oct. 9 and 12. This is similar to the previous outburst in 2004/5. Photometric data obtained during the 2004/5 outburst suggested an outburst duration of about 3 months and a peak brightness of 11.2 in the V band." More information is available in ATel #9634 (Wijngaarden et al.). Multiple snapshot observations per night in BVRI are requested beginning immediately and continuing through January 2017. Time series are not necessary unless requested later via an AAVSO Special Notice. Observations made using other filters will be useful as well as long as there are multiple observations in these bands. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
NASA Astrophysics Data System (ADS)
Smith, Nathan
2007-02-01
Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron. In addition, η Car shows long term changes as it is still recovering from its giant 19th century outburst. Both types of variability are directly linked to the current mass-loss rate and dust formation in its wind. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and trace dust formation episodes. This will provide a direct measurement of the mass ejected. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with GNIRS will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula.
NASA Technical Reports Server (NTRS)
Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph
2015-01-01
We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.
NASA Technical Reports Server (NTRS)
Moroz, L. V.; Fisenko, A. V.; Semjonova, L. F.; Pieters, C. M.
1993-01-01
The spectral properties of some powdered chondrites and minerals altered by Isser impulse are studied in order to estimate possible optical effects of regolith processes (micrometeoritic bombardment). Gradual reduction of overall reflectance and spectral contrast, the increase of continuum slope, the increase of spectrally derived olivine/pyroxene ratio and Fs content of orthopyroxene with increasing alteration degree show that regolith processes could affect optical properties of surface material more heavily than has been previously appreciated. Ordinary chondrites (OC's) are known to account for 80 percent of observed meteorite falls, but so far no main belt parent bodies have been identified for these meteorites. S-asteroids resemble OC's spectrally, but are characterized by a steeper red continuum unlike that of OC's and their spectrally derived mineralogies are far outside OC range. Attempts were made to explain the spectral mismatch between OC's and S asteroids by some process, which alters optical properties of uppermost regolith. However, the spectral studies of shocked (black) OC's, gas-rich OC's, melted OC's and synthetic metal-rich regoliths derived from OC's demonstrate that such altered OC materials darken, but do not redden.
Spectral structure and stability studies on microstructure-fiber continuum
NASA Astrophysics Data System (ADS)
Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.
2003-07-01
Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.
Political ideology is contextually variable and flexible rather than fixed.
Morgan, G Scott; Skitka, Linda J; Wisneski, Daniel C
2014-06-01
Hibbing et al. argue that the liberal-conservative continuum is (a) universal and (b) grounded in psychological differences in sensitivity to negative stimuli. Our commentary argues that both claims overlook the importance of context. We review evidence that the liberal-conservative continuum is far from universal and that ideological differences are contextually flexible rather than fixed.
Continuum Reverberation Mapping of AGN Accretion Disks
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael M.; Peterson, Bradley M.; Starkey, David A.; Horne, Keith; AGN Storm Collaboration
2017-12-01
We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3 to 3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T˜ R^{-3/4} expected for a standard thin disk . Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminsoity AGN.
Empirical Temperature Measurement in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Weaver, Erik; Isella, Andrea; Boehler, Yann
2018-02-01
The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.
Extreme AGN Captured in a Low State by XMM-Newton and NuSTAR
NASA Astrophysics Data System (ADS)
Frederick, Sara; Kara, Erin; Reynolds, Christopher S.
2018-01-01
The most variable active galactic nuclei (AGN), taken together, are a compelling wellspring of interesting accretion-related phenomena and can exhibit dramatic variability in the X-ray band down to timescales of a few minutes. We present the exemplifying case study of 1H 1934-063 (z = 0.0102), a narrow-line Seyfert I (NLS1) that is among the most variable AGN ever observed with XMM-Newton. We present spectroscopic and temporal analyses of a concurrent XMM-Newton and NuSTAR 120 ks observation, during which the source exhibited a steep (factor of 1.5) plummet and subsequent full recovery of flux that we explore in detail. Combined spectral and timing results point to a dramatic change in the continuum on timescales as short as a few ks. Similar to other highly variable Seyfert 1s, this AGN is X-ray bright and displays strong reflection spectral features. We find agreement with a change in the continuum, and we rule out absorption as the cause for this dramatic variability that is observed even at NuSTAR energies. We compare measurements from detailed time-resolved spectral fitting with Fourier-based timing results to constrain coronal geometry, dynamics, and emission/absorption processes dictating the nature of this variability. We also announce the discovery of a Fe-K time lag between the hard X-ray continuum emission (1-4 keV) and relativistically-blurred reprocessing by the inner accretion flow (0.3-1 keV).
Neural Network Grasping Controller for Continuum Robots
2006-01-01
string encoders attached to the base of section 1 and optical encoders located at the end plates of section 1 and 2. The cables from each of the...string encoders run the entire length of the arm through the optical encoders at the lower sections, as seen in Figure 1. This configuration enables the...encoders at the base section and the optical encoders at the end plates of the distal sections, there were a number of protrusions on the surface of the arm
NASA Astrophysics Data System (ADS)
Lechevallier, Loic; Vasilchenko, Semen; Grilli, Roberto; Mondelain, Didier; Romanini, Daniele; Campargue, Alain
2018-04-01
The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long-standing issue in molecular spectroscopy with direct impact in atmospheric and planetary sciences. In recent years, we have determined the self-continuum absorption of water vapour at different spectral points of the atmospheric windows at 4.0, 2.1, 1.6, and 1.25 µm, by highly sensitive cavity-enhanced laser techniques. These accurate experimental constraints have been used to adjust the last version (3.2) of the semi-empirical MT_CKD model (Mlawer-Tobin_Clough-Kneizys-Davies), which is widely incorporated in atmospheric radiative-transfer codes. In the present work, the self-continuum cross-sections, CS, are newly determined at 3.3 µm (3007 cm-1) and 2.0 µm (5000 cm-1) by optical-feedback-cavity enhanced absorption spectroscopy (OFCEAS) and cavity ring-down spectroscopy (CRDS), respectively. These new data allow extending the spectral coverage of the 4.0 and 2.1 µm windows, respectively, and testing the recently released 3.2 version of the MT_CKD continuum. By considering high temperature literature data together with our data, the temperature dependence of the self-continuum is also obtained.
Observing the Fast X-ray Spectral Variability of NLS1 1H1934-063 with XMM-Newton and NuSTAR
NASA Astrophysics Data System (ADS)
Frederick, Sara; Kara, Erin; Reynolds, Christopher S.
2017-08-01
The most variable active galactic nuclei (AGN), taken together, are a compelling wellspring of interesting accretion-related phenomena. They can exhibit dramatic variability in the X-ray band on a range of timescales down to a few minutes. We present the exemplifying case study of 1H1934-063 (z = 0.0102), a narrow-line Seyfert I (NLS1) that is among the most variable AGN ever observed with XMM-Newton. We present spectral and temporal analyses of a concurrent XMM-Newton and NuSTAR observation taken in 2015 and lasting 120 ks, during which the source exhibited a steep (factor of 1.5) plummet and subsequent full recovery of flux that we explore in detail here. Combined spectral and timing results point to a dramatic change in the continuum on timescales as short as a few ks. Similar to other highly variable Seyfert 1s, this AGN is quite X-ray bright and displays strong reflection spectral features. We find agreement with a change in the continuum, and we rule out absorption as the cause for this dramatic variability observed even at NuSTAR energies. We compare detailed time-resolved spectral fitting with Fourier-based timing analysis in order to constrain coronal geometry, dynamics, and emission/absorption processes dictating the nature of this variability. We also announce the discovery of a Fe-K time lag between the hard X-ray continuum emission (1 - 4 keV) and its relativistically-blurred reflection off the inner accretion flow (0.3 - 1 keV).
A Multiwavelength Study of POX 52, a Dwarf Seyfert Galaxy with an Intermediate Mass Black Hole
NASA Astrophysics Data System (ADS)
Barth, Aaron
2004-09-01
POX 52 is a Seyfert 1 galaxy with unprecedented properties: its host galaxy is a dwarf elliptical, and its stellar velocity dispersion is only 36 km/s. The stellar velocity dispersion and the broad emission-line widths both suggest a black hole mass of order 10^5 solar masses. We request HST ACS/HRC imaging to perform a definitive measurement of the host galaxy structure; STIS UV and optical spectroscopy to study the nonstellar continuum and the structure of the broad-line region; and Chandra ACIS imaging to investigate the spectral and variability properties of the X-ray emission. The results of this program will give a detailed understanding of the host galaxy and accretion properties of one of the very few known black holes in the mass range around 10^5 solar masses.
Jet activity in the symbiotic variable R Aquarii
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Hollis, J. M.; Kafatos, M.
1986-01-01
Low-resolution ultraviolet spectra of the R Aquarii jet have been obtained with the International Ultraviolet Explorer (IUE). The most recent IUE observations indicate the ionization state of the jet is increasing. Subarcsecond, Very Large Array observations of R Aquarii have resolved the radio-continuum structure into discrete parcels of emission that are extended and nearly collinear. R Aquarii provides evidence that indicates stellar jet activity is not unique to objects associated with high-energy emission processes alone. Rather, the nature of the aligned radio-optical features that comprise the R Aquarii jet indicate that directional mass expulsion, in the form of discrete-collimated ejecta, probably reflect a general, underlying, physical process associated with a wide variety of peculiar stellar objects. As such, the R Aquarii jet constitutes a prototype for jet activity in composite or peculiar emission stars.
NASA Astrophysics Data System (ADS)
Chen, Chian-Chou; Hodge, J. A.; Smail, Ian; Swinbank, A. M.; Walter, Fabian; Simpson, J. M.; Calistro Rivera, Gabriela; Bertoldi, F.; Brandt, W. N.; Chapman, S. C.; da Cunha, Elisabete; Dannerbauer, H.; De Breuck, C.; Harrison, C. M.; Ivison, R. J.; Karim, A.; Knudsen, K. K.; Wardlow, J. L.; Weiß, A.; van der Werf, P. P.
2017-09-01
We present detailed studies of a z = 2.12 submillimeter galaxy, ALESS67.1, using sub-arcsecond resolution ALMA, adaptive optics-aided VLT/SINFONI, and Hubble Space Telescope (HST)/CANDELS data to investigate the kinematics and spatial distributions of dust emission (870 μm continuum), 12CO(J = 3–2), strong optical emission lines, and visible stars. Dynamical modeling of the optical emission lines suggests that ALESS67.1 is not a pure rotating disk but a merger, consistent with the apparent tidal features revealed in the HST imaging. Our sub-arcsecond resolution data set allows us to measure half-light radii for all the tracers, and we find a factor of 4–6 smaller sizes in dust continuum compared to all the other tracers, including 12CO; also, ultraviolet (UV) and Hα emission are significantly offset from the dust continuum. The spatial mismatch between the UV continuum and the cold dust and gas reservoir supports the explanation that geometrical effects are responsible for the offset of the dusty galaxy on the IRX–β diagram. Using a dynamical method we derive an {α }CO}=1.8+/- 1.0, consistent with other submillimeter galaxies (SMGs) that also have resolved CO and dust measurements. Assuming a single {α }CO} value we also derive resolved gas and star formation rate surface densities, and find that the core region of the galaxy (≲ 5 kpc) follows the trend of mergers on the Schmidt–Kennicutt relationship, whereas the outskirts (≳ 5 kpc) lie on the locus of normal star-forming galaxies, suggesting different star formation efficiencies within one galaxy. Our results caution against using single size or morphology for different tracers of the star formation activity and gas content of galaxies, and therefore argue the need to use spatially resolved, multi-wavelength observations to interpret the properties of SMGs, and perhaps even for z> 1 galaxies in general.
An Experimental Approach to Understanding the Optical Effects of Space Weathering
NASA Technical Reports Server (NTRS)
Noble, Sarah K.; Keller, Lindsay P.; Pieters, Carle M.
2007-01-01
The creation and accumulation of nanophase iron (npFe(sup 0)) is the primary mechanism by which spectra of materials exposed to the space environment incur systematic changes referred to as "space weathering." The optical effects of this npFe(sup 0) on lunar soils are well documented. Space weathering though, should occur on the surface of any planetary body that is not protected by an atmosphere. There is no reason to assume that cumulative space weathering products throughout the solar system will be the same as those found in lunar soils. In fact, these products are likely to be very dependent on the specific environmental conditions under which they were produced. We have prepared a suite of analog soils to explore the optical effects of npFe(sup 0). By varying the size and concentration of npFe(sup 0) in the analogs we found significant systematic changes in the Vis/NIR spectral properties of the materials. Smaller npFe(sup 0) (<10 nm in diameter) dramatically reddens spectra in the visible wavelengths while leaving the infrared region largely unaffected. Larger npFe(sup 0) (>40 nm in diameter) lowers the albedo across the Vis/NIR range with little change in the overall shape of the continuum. Intermediate npFe(sup 0) sizes impact the spectra in a distinct pattern that changes with concentration. The products of these controlled experiments have implications for space-weathered material throughout the inner solar system. Our results indicate that the lunar soil continuum is best modeled by npFe(sup 0) particles with bulk properties in the approx.15-25 nm size range. Larger npFe0 grains result in spectra that are similar in shape to the Mercury continuum. The continuum of S-type asteroid spectra appear to be best represented by small amounts of npFe(sup 0) that is similar to, but slightly smaller on average, than the npFe(sup 0) in lunar soils (approx.10-15 nm).
VLTI-GRAVITY measurements of cool evolved stars
NASA Astrophysics Data System (ADS)
Wittkowski, M.; Rau, G.; Chiavassa, A.; Höfner, S.; Scholz, M.; Wood, P. R.; de Wit, W. J.; Eisenhauer, F.; Haubois, X.; Paumard, T.
2018-06-01
Context. Dynamic model atmospheres of Mira stars predict variabilities in the photospheric radius and in atmospheric molecular layers which are not yet strongly constrained by observations. Aims: Here we measure the variability of the oxygen-rich Mira star R Peg in near-continuum and molecular bands. Methods: We used near-infrared K-band spectro-interferometry with a spectral resolution of about 4000 obtained at four epochs between post-maximum and minimum visual phases employing the newly available GRAVITY beam combiner at the Very Large Telescope Interferometer (VLTI). Results: Our observations show a continuum radius that is anti-correlated with the visual lightcurve. Uniform disc (UD) angular diameters at a near-continuum wavelength of 2.25 μm are steadily increasing with values of 8.7 ± 0.1 mas, 9.4 ± 0.1 mas, 9.8 ± 0.1 mas, and 9.9 ± 0.1 mas at visual phases of 0.15, 0.36, 0,45, 0.53, respectively. UD diameters at a bandpass around 2.05 μm, dominated by water vapour, follow the near-continuum variability at larger UD diameters between 10.7 mas and 11.7 mas. UD diameters at the CO 2-0 bandhead, instead, are correlated with the visual lightcurve and anti-correlated with the near-continuum UD diameters, with values between 12.3 mas and 11.7 mas. Conclusions: The observed anti-correlation between continuum radius and visual lightcurve is consistent with an earlier study of the oxygen-rich Mira S Lac, and with recent 1D CODEX dynamic model atmosphere predictions. The amplitude of the variation is comparable to the earlier observations of S Lac, and smaller than predicted by CODEX models. The wavelength-dependent visibility variations at our epochs can be reproduced by a set of CODEX models at model phases between 0.3 and 0.6. The anti-correlation of water vapour and CO contributions at our epochs suggests that these molecules undergo different processes in the extended atmosphere along the stellar cycle. The newly available GRAVITY instrument is suited to conducting longer time series observations, which are needed to provide strong constraints on the model-predicted intra- and inter-cycle variability. Based on observations made with the VLT Interferometer at Paranal Observatory under programme IDs 60.A-9176 and 098.D-0647.
Discovery of an optical synchrotron jet in 3C 264
NASA Technical Reports Server (NTRS)
Crane, P.; Peletier, R.; Baxter, D.; Sparks, W. B.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Boksenberg, A.; Deharveng, J. M.; Disney, M. J.
1993-01-01
Observations with the Faint Object Camera on board the Hubble Space Telescope have revealed a new optical jet in the core of the elliptical galaxy NGC 3862 (3C 264). Morphologically, this jet is similar to the synchrotron jets seen in other galaxies, as it shows knots and bifurcations. The optical spectral index is also similar to that found in other jets. Thus, the nucleus of NGC 3862 appears to contain the fifth known example of an optical synchrotron jet. Since NGC 3862 is a typical radio-loud elliptical galaxy, it seems likely that many nonthermal jets found in the radio continuum may also have optical counterparts.
Physics of the infrared spectrum
NASA Technical Reports Server (NTRS)
Deming, Drake; Jennings, Donald E.; Jefferies, John; Lindsey, Charles
1991-01-01
The IR bandpass is attractive for solar magnetic field studies in virtue of the proportionality to wavelength of the ratio of Zeeman splitting to line width. The large Zeeman splitting and optical thinness of the 12-micron observations render them especially useful for vector magnetic field derivations. The IR continuum, and many IR spectral lines, are formed in LTE and are useful in studies of the temperature structure of the solar atmosphere from the deepest observable photospheric layers to chromospheric altitudes. The far-IR continuum is an excellent thermometer for the upper photosphere and chromosphere.
Rivera, Nicholas; Hsu, Chia Wei; Zhen, Bo; ...
2016-09-19
Here, a bound state in the continuum (BIC) is an unusual localized state that is embedded in a continuum of extended states. Here, we present the general condition for BICs to arise from wave equation separability. Then we show that by exploiting perturbations of certain symmetry such BICs can be turned into resonances that radiate with a tailorable directionality and dimensionality. Using this general framework, we construct new examples of separable BICs and resonances that can exist in optical potentials for ultracold atoms, photonic systems, and systems described by tight binding. Such resonances with easily reconfigurable radiation allow for applicationsmore » such as the storage and release of waves at a controllable rate and direction, as well systems that switch between different dimensions of confinement.« less
A Comparison of the Radio and Optical Time-Evolution of HH 1 and 2
NASA Astrophysics Data System (ADS)
Rodríguez, L. F.; Raga, A. C.; Rodríguez-Kamenetzky, A.; Carrasco-González, C.
2018-04-01
We present a comparison between the time-evolution over the past ≍20 years of the radio continuum and Hα emission of HH 1 and 2. We find that the radio continuum and the Hα emission of both objects show very similar trends, with HH 1 becoming fainter and HH 2 brightening quite considerably (by about a factor of 2). We also find that the FHα /Fff (Hα to freefree continuum) ratio of HH 1 and 2 has higher values than the ones typically found in planetary nebulae (PNe), which we interpret as an indication that the Hα and free-free emission of HH 1/2 is produced in emitting regions with lower temperatures (≍2000 K) than the emission of PNe (with ≍104 K).
NASA Astrophysics Data System (ADS)
Navrátil, Zdeněk; Morávek, Tomáš; Ráheľ, Jozef; Čech, Jan; Lalinský, Ondřej; Trunec, David
2017-05-01
Weak light emission (˜10-3 of active discharge signal; average count rate ˜ 1 photon s-1 nm-1) associated with surface charge relaxation during the dark phase of a helium diffuse coplanar barrier discharge was studied by optical emission spectroscopy, using a technique of phase-resolved single photon counting. The optical emission spectra of the dark phase contained luminescent bands of the dielectrics used (Al2O3, AlN) and spectral lines from the gas constituents (OH*, {{{N}}}2* , {{{N}}}2+* , He*, He{}2* , O*). During the charge relaxation event, a broad continuum appeared in the optical emission spectra, consisting of bremsstrahlung radiation and amplified luminescence of the dielectric barrier. The analysis presented suggests that the bremsstrahlung radiation originated from slow electrons colliding with neutral helium atoms. The fitting procedure we developed reproduced well the observed shape of the continuum. Moreover, it provided a method for the determination of electric field strength in the discharge during this particular phase. The electric field reached 1 kV cm-1 during the charge relaxation event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizushima, Yuki; Saito, Takayuki, E-mail: saito.takayuki@shizuoka.ac.jp
Bubble nucleation and growth following plasma channeling (filament) and white-light continuum in liquid irradiated by a single-shot fs-pulse were experimentally investigated with close observation of the time scale. Making full use of a new confocal system and time-resolved visualization techniques, we obtained evidence suggestive of a major/minor role of the non-linear/thermal effects during the fs-pulse-induced bubble's fountainhead (10{sup −13} s) and growth (10{sup −7} s), which was never observed with the use of the ns-pulse (i.e., optic cavitation). In this context, the fs-pulse-induced bubble is not an ordinary optic cavitation but rather is nonlinear-optic cavitation. We present the intrinsic differencesmore » in the dominant-time domain of the fs-pulse and ns-pulse excitation, and intriguingly, a mere hundred femtoseconds' excitation predetermines the size of the bubble appearing several microseconds after irradiation. That is, the nucleation happens temporally beyond a six-order-of-magnitude difference.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentz, Misty C.; Walsh, Jonelle L.; Barth, Aaron J.
2010-06-20
We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3 m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range {approx}10{sup 6}-10{sup 7} M{sub sun} and also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to allow for a time lag to be measured between the continuum fluctuations and the response to these fluctuations in themore » broad H{beta} emission, which we have previously reported. We present here the light curves for the H{alpha}, H{gamma}, He II {lambda}4686, and He I {lambda}5876 emission lines and the time lags for the emission-line responses relative to changes in the continuum flux. Combining each emission-line time lag with the measured width of the line in the variable part of the spectrum, we determine a virial mass of the central supermassive black hole from several independent emission lines. We find that the masses are generally consistent within the uncertainties. The time-lag response as a function of velocity across the Balmer line profiles is examined for six of the AGNs. We find similar responses across all three Balmer lines for Arp 151, which shows a strongly asymmetric profile, and for SBS 1116+583A and NGC 6814, which show a symmetric response about zero velocity. For the other three AGNs, the data quality is somewhat lower and the velocity-resolved time-lag response is less clear. Finally, we compare several trends seen in the data set against the predictions from photoionization calculations as presented by Korista and Goad. We confirm several of their predictions, including an increase in responsivity and a decrease in the mean time lag as the excitation and ionization level for the species increases. Specifically, we find the time lags of the optical recombination lines to have weighted mean ratios of {tau}(H{alpha}):{tau}(H{beta}):{tau}(H{gamma}):{tau}(He I):{tau}(He II) = 1.54:1.00:0.61:0.36:0.25. Further confirmation of photoionization predictions for broad-line gas behavior will require additional monitoring programs for these AGNs while they are in different luminosity states.« less
Infrared images of distant 3C radio galaxies
NASA Technical Reports Server (NTRS)
Eisenhardt, Peter; Chokshi, Arati
1990-01-01
J (1.2-micron) and K (2.2 micron) images have been obtained for eight 3CR radio galaxies with redshifts from 0.7 to 1.8. Most of the objects were known to have extended asymmetric optical continuum or line emission aligned with the radio lobe axis. In general, the IR morphologies of these galaxies are just as peculiar as their optical morphologies. For all the galaxies, when asymmetric structure is present in the optical, structure with the same orientation is seen in the IR and must be accounted for in any model to explain the alignment of optical and radio emission.
NASA Technical Reports Server (NTRS)
Schlegel, E.; Swank, Jean (Technical Monitor)
2001-01-01
Analysis of 80 ks ASCA (Advanced Satellite for Cosmology and Astrophysics) and 60 ks ROSAT HRI (High Resolution Image) observations of the face-on spiral galaxy NGC 6946 are presented. The ASCA image is the first observation of this galaxy above approximately 2 keV. Diffuse emission may be present in the inner approximately 4' extending to energies above approximately 2-3 keV. In the HRI data, 14 pointlike sources are detected, the brightest two being a source very close to the nucleus and a source to the northeast that corresponds to a luminous complex of interacting supernova remnants (SNRs). We detect a point source that lies approximately 30" west of the SNR complex but with a luminosity -1115 of the SNR complex. None of the point sources show evidence of strong variability; weak variability would escape our detection. The ASCA spectrum of the SNR complex shows evidence for an emission line at approximately 0.9 keV that could be either Ne IX at approximately 0.915 keV or a blend of ion stages of Fe L-shell emission if the continuum is fitted with a power law. However, a two-component, Raymond-Smith thermal spectrum with no lines gives an equally valid continuum fit and may be more physically plausible given the observed spectrum below 3 keV. Adopting this latter model, we derive a density for the SNR complex of 10-35 cm(exp -3), consistent with estimates inferred from optical emission-line ratios. The complex's extraordinary X-ray luminosity may be related more to the high density of the surrounding medium than to a small but intense interaction region where two of the complex's SNRs are apparently colliding.
An archetype hydrogen atmosphere problem
NASA Technical Reports Server (NTRS)
Athay, R. G.; Mihalas, D.; Shine, R. A.
1975-01-01
Populations for the first three bound states and the continuum of hydrogen are determined for an isothermal hydrostatic atmosphere at 20,000 K. The atmosphere is treated as optically thin in the Balmer and Paschen continua and illuminated by continuum radiation at these wavelengths with prescribed radiation temperatures. The atmosphere is optically thick in the 2-1, 3-1, 3-2 and c-1 transitions. Three stages of approximation are treated: (1) radiative detailed balance in the 2-1, 3-1 and 3-2 transitions, (2) radiative detailed balance in the 3-1 and 3-2 transitions, and (3) all transitions out of detailed balance. The solution of this problem is nontrivial and presents sufficient difficulty to have caused the failure of at least one rather standard technique. The problem is thus a good archetype against which new methods or new implementations of old methods may be tested.
Properties of R136a as derived from its optical light distribution
NASA Technical Reports Server (NTRS)
Chu, Y.-H.; Wolfire, M. G.; Cassinelli, J. P.
1984-01-01
Short exposure 4 m prime focus plates taken with interference filters centered on blue continuum 4765 A, He II 4686 line, red continuum 6485 A, and H-alpha line have been used to study the light distribution within R136a. R136a contains a bright component and several fainter components superposed on an extended background. The brightest component, unresolved under sub-arcsec seeing condition, contributes about 37 percent of the total light from a 3 in. diameter aperture. Combining the optical and UV information, it is found that this brightest component R136a1 may be a single star with a mass of approximately 750 solar masses with a brightness of six HD 93129A or 20 O3 V stars, or it could be a cluster of such stars. In either case, R136a1 supplies no more than one-half of the ionization of the 30 Doradus nebula.
Properties of R136a as derived from its optical light distribution
NASA Astrophysics Data System (ADS)
Chu, Y. H.; Cassinelli, J. P.; Wolfire, M. G.
1984-08-01
Short exposure 4 m prime focus plates taken with interference filters centered on blue continuum 4765 A, He II 4686 line, red continuum 6485 A, and H-alpha line have been used to study the light distribution within R136a. R136a contains a bright component and several fainter components superposed on an extended background. The brightest component, unresolved under sub-arcsec seeing condition, contributes about 37 percent of the total light from a 3 in. diameter aperture. Combining the optical and UV information, it is found that this brightest component R136a1 may be a single star with a mass of approximately 750 solar masses with a brightness of six HD 93129A or 20 O3 V stars, or it could be a cluster of such stars. In either case, R136a1 supplies no more than one-half of the ionization of the 30 Doradus nebula.
Resonances and bound states in the continuum on periodic arrays of slightly noncircular cylinders
NASA Astrophysics Data System (ADS)
Hu, Zhen; Lu, Ya Yan
2018-02-01
Optical bound states in the continuum (BICs), especially those on periodic structures, have interesting properties and potentially important applications. Existing theoretical and numerical studies for optical BICs are mostly for idealized structures with simple and perfect geometric features, such as circular holes, rectangular cylinders and spheres. Since small distortions are always present in actual fabricated structures, we perform a high accuracy numerical study for BICs and resonances on a simple periodic structure with small distortions, i.e., periodic arrays of slightly noncircular cylinders. Our numerical results confirm that symmetries are important not only for the so-called symmetry-protected BICs, but also for the majority of propagating BICs which do not have a symmetry mismatch with the outgoing radiation waves. Typically, the BICs continue to exist if the small distortions keep the relevant symmetries, and they become resonant modes with finite quality factors if the small distortions break a required symmetry.
NASA Astrophysics Data System (ADS)
Sander, Oliver; Schiela, Anton
2014-12-01
We formulate the static mechanical coupling of a geometrically exact Cosserat rod to a nonlinearly elastic continuum. In this setting, appropriate coupling conditions have to connect a one-dimensional model with director variables to a three-dimensional model without directors. Two alternative coupling conditions are proposed, which correspond to two different configuration trace spaces. For both, we show existence of solutions of the coupled problems, using the direct method of the calculus of variations. From the first-order optimality conditions, we also derive the corresponding conditions for the dual variables. These are then interpreted in mechanical terms.
NASA Technical Reports Server (NTRS)
Jelinsky, P.; Jelinsky, S. R.; Miller, A.; Vallerga, J.; Malina, R. F.
1988-01-01
The Extreme Ultraviolet Explorer (EUVE) has a spectrometer which utilizes variable line-spaced, plane diffraction gratings in the converging beam of a Wolter-Schwarzschild type II mirror. The gratings, microchannel plate detector, and thin film filters have been calibrated with continuum radiation provided by the NBS SURF II facility. These were calibrated in a continuum beam to find edges or other sharp spectral features in the transmission of the filters, quantum efficiency of the microchannel plate detector, and efficiency of the gratings. The details of the calibration procedure and the results of the calibration are presented.
SALT long-slit spectroscopy of CTS C30.10: two-component Mg II line
NASA Astrophysics Data System (ADS)
Modzelewska, J.; Czerny, B.; Hryniewicz, K.; Bilicki, M.; Krupa, M.; Świȩtoń, A.; Pych, W.; Udalski, A.; Adhikari, T. P.; Petrogalli, F.
2014-10-01
Context. Quasars can be used as a complementary tool to SN Ia to probe the distribution of dark energy in the Universe by measuring the time delay of the emission line with respect to the continuum. The understanding of the Mg II emission line structure is important for cosmological application and for the black hole mass measurements of intermediate redshift quasars. Aims: Knowing the shape of Mg II line and its variability allows for identifying which part of the line should be used to measure the time delay and the black hole mass. We thus aim at determining the structure and the variability of the Mg II line, as well as the underlying Fe II pseudo-continuum. Methods: We performed five spectroscopic observations of a quasar CTS C30.10 (z = 0.9000) with the SALT telescope between December 2012 and March 2014, and we studied the variations in the spectral shape in the 2700 Å-2900 Å rest frame. Results: We show that the Mg II line in this source consists of two kinematic components, which makes the source representative of type B quasars. Both components were modeled well with a Lorentzian shape, and they vary in a similar way. The Fe II contribution seems to be related only to the first (blue) Mg II component. Broad band spectral fitting instead favor the use of the whole line profile. The contribution of the narrow line region to Mg II is very low, below 2%. The Mg II variability is lower than the variability of the continuum, which is consistent with the simple reprocessing scenario. The variability level of CTS C30.10 and the measurement accuracy of the line and continuum is high enough to expect that further monitoring will allow the time delay between the Mg II line and continuum to be measured. Based on observations made with the Southern African Large Telescope (SALT) under program 2012-2-POL-003 and 2013-1-POL-RSA-002 (PI: B. Czerny).Spectra shown in Figs. 3 and 4 are only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/570/A53Table 1 is available in electronic form at http://www.aanda.org
Discrete structures in continuum descriptions of defective crystals.
Parry, G P
2016-04-28
I discuss various mathematical constructions that combine together to provide a natural setting for discrete and continuum geometric models of defective crystals. In particular, I provide a quite general list of 'plastic strain variables', which quantifies inelastic behaviour, and exhibit rigorous connections between discrete and continuous mathematical structures associated with crystalline materials that have a correspondingly general constitutive specification. © 2016 The Author(s).
The dusty aftermath of SN Hunt 248: merger-burst remnant?
NASA Astrophysics Data System (ADS)
Mauerhan, Jon C.; Van Dyk, Schuyler D.; Johansson, Joel; Fox, Ori D.; Filippenko, Alexei V.; Graham, Melissa L.
2018-01-01
SN Hunt 248 was classified as a non-terminal eruption (a supernova 'impostor') from a directly identified and highly variable cool hypergiant star. The 2014 outburst achieved peak luminosity equivalent to that of the historic eruption of luminous blue variable (LBV) η Car, and exhibited a multipeaked optical light curve which rapidly faded after ∼100 d. We report ultraviolet (UV) through optical observations of SN Hunt 248 with the Hubble Space Telescope (HST) about 1 yr after the outburst, and mid-infrared observations with the Spitzer Space Telescope before the burst and in decline. The HST data reveal a source which is a factor of ∼10 dimmer in apparent brightness than the faintest available measurement of the precursor star. The UV-optical spectral energy distribution (SED) requires a strong Balmer continuum, consistent with a hot B4-B5 photosphere attenuated by grey circumstellar extinction. Substantial mid-infrared excess of the source is consistent with thermal emission from hot dust with a mass of ∼10-6-10-5 M⊙ and a geometric extent which is comparable to the expansion radius of the ejecta from the 2014 event. SED modelling indicates that the dust consists of relatively large grains ( > 0.3 μm), which could be related to the grey circumstellar extinction which we infer for the UV-optical counterpart. Revised analysis of the precursor photometry is also consistent with grey extinction by circumstellar dust, and suggests that the initial mass of the star could be twice as large as previously estimated (nearly ∼ 60 M⊙). Re-analysis of the earlier outburst data shows that the peak luminosity and outflow velocity of the eruption are consistent with a trend exhibited by stellar merger candidates, prompting speculation that SN Hunt 248 may also have stemmed from a massive stellar merger or common-envelope ejection.
Multi-time-scale X-ray reverberation mapping of accreting black holes
NASA Astrophysics Data System (ADS)
Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel
2018-04-01
Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.
Siddaway, Andy P; Wood, Alex M; Taylor, Peter J
2017-04-15
Two core but untested predictions of Positive Clinical Psychology (PCP) are that (1) Many psychiatric problems can be understood as one end of bipolar continua with well-being, and (2) that reducing psychiatric symptoms will provide an equal (near linear) decrease in risk for several other psychiatric variables, irrespective of position on continua. We test these predictions in relation to a purported well-being/depression continuum, as measured by the Center for Epidemiologic Studies-Depression (CES-D), a popular measure of depressive experiences in research and clinical practice. A large (N=4138), diverse sample completed the CES-D, which contains a mixture of negatively worded and positively worded items (e.g., "I felt sad," "I enjoyed life"). The latter are conventionally reverse scored to compute a total score. We first examined whether purportedly separate well-being and depression CES-D factors can be reconceptualised as a bipolar well-being/depression continuum. We then characterised the (linear or nonlinear) form of the relationship between this continuum and other psychiatric variables. Both predictions were supported. When controlling for shared method bias amongst positively worded items, a single factor well-being/depression continuum underlies the CES-D. Baseline levels on this continuum are found to have near linear relationships with changes in anxiety symptoms, aggression, and substance misuse over time, demonstrating that moving from depression to well-being on the CES-D provides an equal decrease in risk for several other psychological problems irrespective of position on the continuum. The CES-D does not measure well-being as comprehensively as established scales of well-being. Results support calls for mental health services to jointly focus on increasing well-being and reducing distress, and point to the value of early intervention and instilling resilience in order to prevent people moving away from high levels of well-being. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Advances In Understanding Solar And Stellar Flares
NASA Astrophysics Data System (ADS)
Kowalski, Adam F.
2016-07-01
Flares result from the sudden reconnection and relaxation of magnetic fields in the coronae of stellar atmospheres. The highly dynamic atmospheric response produces radiation across the electromagnetic spectrum, from the radio to X-rays, on a range of timescales, from seconds to days. New high resolution data of solar flares have revealed the intrinsic spatial properties of the flaring chromosphere, which is thought to be where the majority of the flare energy is released as radiation in the optical and near-UV continua and emission lines. New data of stellar flares have revealed the detailed properties of the broadband (white-light) continuum emission, which provides straightforward constraints for models of the transformation of stored magnetic energy in the corona into thermal energy of the lower atmosphere. In this talk, we discuss the physical processes that produce several important spectral phenomena in the near-ultraviolet and optical as revealed from new radiative-hydrodynamic models of flares on the Sun and low mass stars. We present recent progress with high-flux nonthermal electron beams in reproducing the observed optical continuum color temperature of T 10,000 K and the Balmer jump properties in the near-ultraviolet. These beams produce dense, heated chromospheric condensations, which can explain the shape and strength of the continuum emission in M dwarf flares and the red-wing asymmetries in the chromospheric emission lines in recent observations of solar flares from the Interface Region Imaging Spectrograph. Current theoretical challenges and future modeling directions will be discussed, as well as observational synergies between solar and stellar flares.
Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves.
Singh, Inderjeet; Amara, Yacine; Melingui, Achille; Mani Pathak, Pushparaj; Merzouki, Rochdi
2018-05-10
Research on continuum manipulators is increasingly developing in the context of bionic robotics because of their many advantages over conventional rigid manipulators. Due to their soft structure, they have inherent flexibility, which makes it a huge challenge to control them with high performances. Before elaborating a control strategy of such robots, it is essential to reconstruct first the behavior of the robot through development of an approximate behavioral model. This can be kinematic or dynamic depending on the conditions of operation of the robot itself. Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipulator, the assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator.
Steep and flat bandpass filter using linearly chirped and apodized fiber Bragg grating
NASA Astrophysics Data System (ADS)
Wu, Xunqi; Jacquet, Jo"l.; Duan, Guanghua
2010-02-01
The development of new optical systems requires the design of novel components that fulfill the market constraints. In particular, low loss, high optical rejection and low cost narrowband filters can play an important role for the introduction of the Wavelength Division Multiplexing (WDM) technology in the local network. So, a novel fiber filter is proposed in this article, with a special combined apodized Linearly Chirped Fiber Bragg Grating (LCFBG) which presents the preferable flat-top and steep-edge characteristics. In the design, we use a continuum cavity condition which is obtained when the effective round-trip phase of oscillated wavelength band is kept identical over the whole Bragg wavelength range. And the transmission spectra are calculated by the reconstruction of the matrixes with the continuum oscillation condition. Therefore, our works show that the ideal square shaped filter is obtained with a lower chirp value relatively together with symmetric reflectivity on both mirrors. The coupling coefficient of the FBG is adjusted to get the same reflectivity values and then to get a transmission filter close to unity. We have then introduced an apodization function of the filter to get a flatter transfer function. Various apodizations schemes have been tested. In this paper, we design and analyze a type of continuum fiber filter with the cavity formed between mirror and apodized LCFBG as reflectors. We calculate firstly the reflectivity, the transmissivity and the group time delay of LCFBG modeled by a simple and practical Transfer Matrix Method (TMM), and then the cavity is reconstructed by TMM, the length of the oscillated cavity is calculated by the continuum oscillation condition, so the output of transmission from the side of LCFBG is continuous in the corresponded reflected bandwidth of LCFBG. We obtain the results and discuss some characteristics of this type of continuum fiber filter.
IRIS Ultraviolet Spectral Properties of a Sample of X-Class Solar Flares
NASA Astrophysics Data System (ADS)
Butler, Elizabeth; Kowalski, Adam; Cauzzi, Gianna; Allred, Joel C.; Daw, Adrian N.
2018-06-01
The white-light (near-ultraviolet (NUV) and optical) continuum emission comprises the majority of the radiated energy in solar flares. However, there are nearly as many explanations for the origin of the white-light continuum radiation as there are white-light flares that have been studied in detail with spectra. Furthermore, there are rarely robust constraints on the time-resolved dynamics in the white-light emitting flare layers. We are conducting a statistical study of the properties of Fe II lines, Mg II lines, and NUV continuum intensity in bright flare kernels observed by the Interface Region Imaging Spectrograph (IRIS), in order to provide comprehensive constraints for radiative-hydrodynamic flare models. Here we present a new technique for identifying bright flare kernels and preliminary relationships among IRIS spectral properties for a sample of X-class solar flares.
NASA Technical Reports Server (NTRS)
Wilkes, B. J.; Mcdowell, J.
1994-01-01
Research into the optical, ultraviolet and infrared continuum emission from quasars and their host galaxies was carried out. The main results were the discovery of quasars with unusually weak infrared emission and the construction of a quantitative estimate of the dispersion in quasar continuum properties. One of the major uncertainties in the measurement of quasar continuum strength is the contribution to the continuum of the quasar host galaxy as a function of wavelength. Continuum templates were constructed for different types of host galaxy and individual estimates made of the decomposed quasar and host continua based on existing observations of the target quasars. The results are that host galaxy contamination is worse than previously suspected, and some apparent weak bump quasars are really normal quasars with strong host galaxies. However, the existence of true weak bump quasars such as PHL 909 was confirmed. The study of the link between the bump strength and other wavebands was continued by comparing with IRAS data. There is evidence that excess far infrared radiation is correlated with weaker ultraviolet bumps. This argues against an orientation effect and implies a probable link with the host galaxy environment, for instance the presence of a luminous starburst. However, the evidence still favors the idea that reddening is not important in those objects with ultraviolet weak bumps. The same work has led to the discovery of a class of infrared weak quasars. Pushing another part of the envelope of quasar continuum parameter space, the IR-weak quasars have implications for understanding the effects of reddening internal to the quasars, the reality of ultraviolet turnovers, and may allow further tests of the Phinney dust model for the IR continuum. They will also be important objects for studying the claimed IR to x-ray continuum correlation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa; Grupe, Dirk
2015-02-10
Recent studies have suggested that the short-timescale (≲ 7 days) variability of the broad (∼10,000 km s{sup –1}) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previousmore » campaigns and showing only limited (∼20%) variability. The X-ray variations were small, only ∼13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.« less
NASA Astrophysics Data System (ADS)
Yang, Jin-Wei; Gao, Yi-Tian; Wang, Qi-Min; Su, Chuan-Qi; Feng, Yu-Jie; Yu, Xin
2016-01-01
In this paper, a fourth-order variable-coefficient nonlinear Schrödinger equation is studied, which might describe a one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain with the octuple-dipole interaction or an alpha helical protein with higher-order excitations and interactions under continuum approximation. With the aid of auxiliary function, we derive the bilinear forms and corresponding constraints on the variable coefficients. Via the symbolic computation, we obtain the Lax pair, infinitely many conservation laws, one-, two- and three-soliton solutions. We discuss the influence of the variable coefficients on the solitons. With different choices of the variable coefficients, we obtain the parabolic, cubic, and periodic solitons, respectively. We analyse the head-on and overtaking interactions between/among the two and three solitons. Interactions between a bound state and a single soliton are displayed with different choices of variable coefficients. We also derive the quasi-periodic formulae for the three cases of the bound states.
Review: Magnetic Fields of O-Type Stars
NASA Astrophysics Data System (ADS)
Wade, G. A.; MiMeS Collaboration
2015-04-01
Since 2002, strong, organized magnetic fields have been firmly detected at the surfaces of about 10 Galactic O-type stars. In this paper I will review the characteristics of the inferred fields of individual stars as well as the overall population. I will discuss the extension of the “magnetic desert,” first inferred among the A-type stars, to O stars up to 60 M⊙. I will discuss the interaction of the winds of the magnetic stars with the fields above their surfaces, generating complex “dynamical magnetosphere” structures detected in optical and UV lines, and in X-ray lines and continuum. Finally, I will discuss the detection of a small number of variable O stars in the LMC and SMC that exhibit spectral characteristics analogous to the known Galactic magnetic stars, and that almost certainly represent the first known examples of extragalactic magnetic stars.
NASA Astrophysics Data System (ADS)
Malina, R. F.
PSR_0656+14: Measurement of surface thermal emission from neutron stars (NS) is essential to theories regarding the condensed matter state equation, the thermal evolution of NS, and of NS atmospheres. We propose to conduct 50 Ang band FUV photometric observations of PSR B0656+14, an X-ray, SXR and EUV bright isolated NS with an optical counterpart. FUV photometry will provide critical characterization of the NS's surface thermal radiation. Higher energy observations may be effected by poorly established effects including magnetized atmospheres, chemical compositions, temperature gradients and gravitational effects. Optical observations may be subject to non-thermal effects. V3885 Sgr: V3885 Sgr is one of the brightest nonmagnetic cataclysmic variables. We propose to observe V3885 Sgr for 5 to 6 contiguous FUSE orbits, achieving a S/N of about 12 at full resolution even at the troughs of the source's O VI absorption lines in each spectrum (assuming 2000 sec visibility per orbit). The primary purpose of the observations is to use the source as a bright continuum against which to study local interstellar absorption lines. Although observed on Malina's Co-I Program, the data will be analyzed in collaboration with members of the O VI Project.
An X-ray survey of variable radio bright quasars
NASA Technical Reports Server (NTRS)
Henriksen, M. J.; Marshall, F. E.; Mushotzky, R. F.
1984-01-01
A sample consisting primarily of radio bright quasars was observed in X-rays with the Einstein Observatory for times ranging from 1500 to 5000 seconds. Detected sources had luminosities ranging from 0.2 to 41.0 x 10 to the 45th power ergs/sec in the 0.5 to 4.5 keV band. Three of the fourteen objects which were reobserved showed flux increases greater than a factor of two on a time scale greater than six months. No variability was detected during the individual observations. The optical and X-ray luminosities are correlated, which suggests a common origin. However, the relationship (L sub x is approximately L sub op to the (.89 + or - .15)) found for historic radio variables may be significantly different than that reported for other radio bright sources. Some of the observed X-ray fluxes were substantially below the predicted self-Compton flux, assuming incoherent synchrotron emission and using VLBI results to constrain the size of the emission region, which suggests relativistic expansion in these sources. Normal CIV emission in two of the sources with an overpredicted Compton component suggests that although they, like BL Lac objects, have highly relativistic material apparently moving at small angle to the line of sight, they have a smaller fraction of the continuum component in the beam.
NASA Astrophysics Data System (ADS)
Smith, Nathan
2008-02-01
Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron, and the next periastron event will occur at the very end of 2008. In addition, η Car shows long term changes as it is still recovering from its giant 19th century outburst. Both types of variability are directly linked to the current mass-loss rate and dust formation in its wind. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and a direct measure of the massw in dust formation episodes that may occur at periastron in the colliding wind shock. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with Phoenix will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula.
IR Variability During a Shell Ejection of Eta Carinae
NASA Astrophysics Data System (ADS)
Smith, Nathan
2006-02-01
Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to a very eccentric binary system with a shell ejection occurring at periastron. Mid-IR images and spectra with T-ReCS are needed to measure changes in the current bolometric luminosity and to trace dust formation episodes. This will provide a direct estimate of the mass ejected. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. High resolution near-IR spectra with GNIRS will continue the important work of HST/STIS, investigating changes in the direct and reflected spectrum of the stellar wind, and ionization changes in the nebula. The complex kinematic structure of η Car's ejecta also holds important clues to its mass ejection history, and is essential for interpreting other data. Phoenix can provide a unique kinematic map of the complex density and time-variable ionization structure of η Car's nebula, which is our best example of the pre-explosion environment of very massive stars.
Ultraviolet Imaging Telescope observations of the Crab Nebula
NASA Technical Reports Server (NTRS)
Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore P.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.
1992-01-01
We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.
Free-Free Radiation Cannot Make the UV/Soft-X-Ray Excess in AGN
NASA Astrophysics Data System (ADS)
Kriss, G. A.
1994-05-01
Thermal gas always has associated atomic spectral features either in absorption or in emission. In optically thin gas the emission spectrum is dominated by line radiation and recombination continua. An example of radiation from optically thin material in accreting systems is the emission-line-dominated spectrum of a cataclysmic variable in its low state. Barvainis (1993, ApJ, 412, 513) and others have proposed that the UV/soft-X-ray excess prominent in the spectra of many AGN is due to free-free emission from gas at temperatures of 10(5) - 10(6) K. Simple arguments using only atomic data show that the recombination radiation from emission lines would produce UV, optical, and soft X-ray spectral features orders of magnitude stronger than observed. Collisional excitation produces even more line radiation under most physical conditions. As a particular example I take the Astro-1 observations of the Seyfert 1 galaxy Mrk 335 by HUT and BBXRT. Depending on the ionization state of the gas (which may be photoionized by the central source), the emission measure of the free-free radiation necessary to produce the UV continuum (3 times 10(68) cm(-3) at 8.2 times 10(5) K for H_o = 75 km s(-1) Mpc(-1) ) implies line emission from O VI, O VII, or O VIII more than a factor of 10 stronger than any features observed by HUT or BBXRT.
Macrobend optical sensing for pose measurement in soft robot arms
NASA Astrophysics Data System (ADS)
Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar
2015-12-01
This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic tracking system (NDI Aurora) for validation.
Limb observations of the 12.32 micron solar emission line during the 1991 July total eclipse
NASA Technical Reports Server (NTRS)
Deming, Drake; Jennings, Donald E.; Mccabe, George; Noyes, Robert; Wiedemann, Gunter; Espenak, Fred
1992-01-01
The limb profile of the Mg I 12.32-micron emission line is determined by occultation in the July 11, 1991 total solar eclipse over Mauna Kea. It is shown that the emission peaks are very close to the 12-micron continuum limb, as predicted by recent theory for this line as a non-LTE photospheric emission. The increase in optical depth for this extreme limb-viewing situation indicates that most of the observed emission arises from above the chromospheric temperature minimum, and it is found that this emission is extended to heights well in excess of the model predictions. The line emission can be observed as high as 2000 km above the 12-micron continuum limb, whereas theory predicts it to remain observable no higher than about 500 km above the continuum limb. The substantial limb extension observed in this line is quantitatively consistent with limb extensions seen in the far-IR continuum, and it is concluded that it is indicative of departures from gravitational hydrostatic equilibrium, or spatial inhomogeneities, in the upper solar atmosphere.
Kityk, A V
2014-07-15
A long-range-corrected time-dependent density functional theory (LC-TDDFT) in combination with polarizable continuum model (PCM) have been applied to study charge transfer (CT) optical absorption and fluorescence emission energies basing on parameterized LC-BLYP xc-potential. The molecule of 4-(9-acridyl)julolidine selected for this study represents typical CT donor-acceptor dye with strongly solvent dependent optical absorption and fluorescence emission spectra. The result of calculations are compared with experimental spectra reported in the literature to derive an optimal value of the model screening parameter ω. The first absorption band appears to be quite well predictable within DFT/TDDFT/PCM with the screening parameter ω to be solvent independent (ω ≈ 0.245 Bohr(-1)) whereas the fluorescence emission exhibits a strong dependence on the range separation with ω-value varying on a rising solvent polarity from about 0.225 to 0.151 Bohr(-1). Dipolar properties of the initial state participating in the electronic transition have crucial impact on the effective screening. Copyright © 2014 Elsevier B.V. All rights reserved.
THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela
2015-04-15
In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hβ line widths in mean and rms spectra. For the most highly variable AGNs wemore » also measured broad Hβ line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad Hβ width and luminosity, demonstrating that the broad-line region “breathes” on short timescales of days to weeks in response to continuum variations. We also find that broad Hβ velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad Hβ velocity shifted by ∼250 km s{sup −1} over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.« less
The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves
NASA Technical Reports Server (NTRS)
Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E..; Li, Weidong; Malkan, Matthew A.; Pancoast, Anna; Sand, David J.;
2016-01-01
In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hß line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad H beta line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad H beta width and luminosity, demonstrating that the broad-line region "breathes" on short timescales of days to weeks in response to continuum variations. We also find that broad H beta velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad H beta velocity shifted by approximately 250 km s(exp -1) over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.
SMA Continuum Survey of Circumstellar Disks in Serpens
NASA Astrophysics Data System (ADS)
Law, Charles; Ricci, Luca; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua
2017-06-01
The lifetime of disks surrounding pre-main-sequence stars is closely linked to planet formation and provides information on disk dispersal mechanisms and dissipation timescales. The potential for these optically thick, gas-rich disks to form planets is critically dependent on how much dust is available to be converted into terrestrial planets and rocky cores of giant planets. For this reason, an understanding of how dust mass varies with key properties such as stellar mass, age, and environment is critical for understanding planet formation. Millimeter wavelength observations, in which the dust emission is optically thin, are required to study the colder dust residing in the disk’s outer regions and to measure disk dust masses. Hence, we have obtained SMA 1.3 mm continuum observations of 62 Class II sources with suspected circumstellar disks in the Serpens star-forming region (SFR). Relative to the well-studied Taurus SFR, Serpens allows us to probe the distribution of dust masses for disks in a much denser and more clustered environment. Only 13 disks were detected in the continuum with the SMA. We calculate the total dust masses of these disks and compare their masses to those of disks in Taurus, Lupus, and Upper Scorpius. We do not find evidence of diminished dust masses in Serpens disks relative to those in Taurus despite the fact that disks in denser clusters may be expected to contain less dust mass due to stronger and more frequent tidal interactions that can disrupt the outer regions of disks. However, considering the low detection fraction, we likely detected only bright continuum sources and a more sensitive survey of Serpens would help clarify these results.
ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii
NASA Astrophysics Data System (ADS)
Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.
2018-05-01
We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.
Fluctuation relation based continuum model for thermoviscoplasticity in metals
NASA Astrophysics Data System (ADS)
Roy Chowdhury, Shubhankar; Roy, Debasish; Reddy, J. N.; Srinivasa, Arun
2016-11-01
A continuum plasticity model for metals is presented from considerations of non-equilibrium thermodynamics. Of specific interest is the application of a fluctuation relation that subsumes the second law of thermodynamics en route to deriving the evolution equations for the internal state variables. The modelling itself is accomplished in a two-temperature framework that appears naturally by considering the thermodynamic system to be composed of two weakly interacting subsystems, viz. a kinetic vibrational subsystem corresponding to the atomic lattice vibrations and a configurational subsystem of the slower degrees of freedom describing the motion of defects in a plastically deforming metal. An apparently physical nature of the present model derives upon considering the dislocation density, which characterizes the configurational subsystem, as a state variable. Unlike the usual constitutive modelling aided by the second law of thermodynamics that merely provides a guideline to select the admissible (though possibly non-unique) processes, the present formalism strictly determines the process or the evolution equations for the thermodynamic states while including the effect of fluctuations. The continuum model accommodates finite deformation and describes plastic deformation in a yield-free setup. The theory here is essentially limited to face-centered cubic metals modelled with a single dislocation density as the internal variable. Limited numerical simulations are presented with validation against relevant experimental data.
Garcia-Allende, P Beatriz; Mirapeix, Jesus; Conde, Olga M; Cobo, Adolfo; Lopez-Higuera, Jose M
2009-01-01
Plasma optical spectroscopy is widely employed in on-line welding diagnostics. The determination of the plasma electron temperature, which is typically selected as the output monitoring parameter, implies the identification of the atomic emission lines. As a consequence, additional processing stages are required with a direct impact on the real time performance of the technique. The line-to-continuum method is a feasible alternative spectroscopic approach and it is particularly interesting in terms of its computational efficiency. However, the monitoring signal highly depends on the chosen emission line. In this paper, a feature selection methodology is proposed to solve the uncertainty regarding the selection of the optimum spectral band, which allows the employment of the line-to-continuum method for on-line welding diagnostics. Field test results have been conducted to demonstrate the feasibility of the solution.
Mid-IR super-continuum generation
NASA Astrophysics Data System (ADS)
Islam, Mohammed N.; Xia, Chenan; Freeman, Mike J.; Mauricio, Jeremiah; Zakel, Andy; Ke, Kevin; Xu, Zhao; Terry, Fred L., Jr.
2009-02-01
A Mid-InfraRed FIber Laser (MIRFIL) has been developed that generates super-continuum covering the spectral range from 0.8 to 4.5 microns with a time-averaged power as high as 10.5W. The MIRFIL is an all-fiber integrated laser with no moving parts and no mode-locked lasers that uses commercial off-the-shelf parts and leverages the mature telecom/fiber optics platform. The MIRFIL power can be easily scaled by changing the repetition rate and modifying the erbium-doped fiber amplifier. Some of the applications using the super-continuum laser will be described in defense, homeland security and healthcare. For example, the MIRFIL is being applied to a catheter-based medical diagnostic system to detect vulnerable plaque, which is responsible for most heart attacks resulting from hardening-of-the-arteries or atherosclerosis. More generally, the MIRFIL can be a platform for selective ablation of lipids without damaging normal protein or smooth muscle tissue.
A Candidate Young Massive Planet in Orbit around the Classical T Tauri Star CI Tau
NASA Astrophysics Data System (ADS)
Johns-Krull, Christopher M.; McLane, Jacob N.; Prato, L.; Crockett, Christopher J.; Jaffe, Daniel T.; Hartigan, Patrick M.; Beichman, Charles A.; Mahmud, Naved I.; Chen, Wei; Skiff, B. A.; Cauley, P. Wilson; Jones, Joshua A.; Mace, G. N.
2016-08-01
The ˜2 Myr old classical T Tauri star CI Tau shows periodic variability in its radial velocity (RV) variations measured at infrared (IR) and optical wavelengths. We find that these observations are consistent with a massive planet in a ˜9 day period orbit. These results are based on 71 IR RV measurements of this system obtained over five years, and on 26 optical RV measurements obtained over nine years. CI Tau was also observed photometrically in the optical on 34 nights over ˜one month in 2012. The optical RV data alone are inadequate to identify an orbital period, likely the result of star spot and activity-induced noise for this relatively small data set. The infrared RV measurements reveal significant periodicity at ˜9 days. In addition, the full set of optical and IR RV measurements taken together phase coherently and with equal amplitudes to the ˜9 day period. Periodic RV signals can in principle be produced by cool spots, hotspots, and reflection of the stellar spectrum off the inner disk, in addition to resulting from a planetary companion. We have considered each of these and find the planet hypothesis most consistent with the data. The RV amplitude yields an M\\sin I of ˜8.1 M Jup; in conjunction with a 1.3 mm continuum emission measurement of the circumstellar disk inclination from the literature, we find a planet mass of ˜11.3 M Jup, assuming alignment of the planetary orbit with the disk. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.
NASA Astrophysics Data System (ADS)
Hew, Y. M.; Linscott, I.; Close, S.
2015-12-01
Meteoroids and orbital debris, collectively referred to as hypervelocity impactors, travel between 7 and 72 km/s in free space. Upon their impact onto the spacecraft, the energy conversion from kinetic to ionization/vaporization occurs within a very brief timescale and results in a small and dense expanding plasma with a very strong optical flash. The radio frequency (RF) emission produced by this plasma can potentially lead to electrical anomalies within the spacecraft. In addition, space weather, such as solar activity and background plasma, can establish spacecraft conditions which can exaggerate the damages done by these impacts. During the impact, a very strong impact flash will be generated. Through the studying of this emission spectrum of the impact, we hope to study the impact generated gas cloud/plasma properties. The impact flash emitted from a ground-based hypervelocity impact test is long expected by many scientists to contain the characteristics of the impact generated plasma, such as plasma temperature and density. This paper presents a method for the time-resolved plasma temperature estimation using three-color visible band photometry data with a global pattern search optimization method. The equilibrium temperature of the plasma can be estimated using an optical model which accounts for both the line emission and continuum emission from the plasma. Using a global pattern search based optimizer, the model can isolate the contribution of the continuum emission versus the line emission from the plasma. The plasma temperature can thus be estimated. Prior to the optimization step, a Gaussian process is also applied to extract the optical emission signal out of the noisy background. The resultant temperature and line-to-continuum emission weighting factor are consistent with the spectrum of the impactor material and current literature.
SiNOI and AlGaAs-on-SOI nonlinear circuits for continuum generation in Si photonics
NASA Astrophysics Data System (ADS)
El Dirani, Houssein; Monat, Christelle; Brision, Stéphane; Olivier, Nicolas; Jany, Christophe; Letartre, Xavier; Pu, Minhao; Girouard, Peter D.; Hagedorn Frandsen, Lars; Semenova, Elizaveta; Katsuo Oxenløwe, Leif; Yvind, Kresten; Sciancalepore, Corrado
2018-02-01
In this communication, we report on the design, fabrication, and testing of Silicon Nitride on Insulator (SiNOI) and Aluminum-Gallium-Arsenide (AlGaAs) on silicon-on-insulator (SOI) nonlinear photonic circuits for continuum generation in Silicon (Si) photonics. As recently demonstrated, the generation of frequency continua and supercontinua can be used to overcome the intrinsic limitations of nowadays silicon photonics notably concerning the heterogeneous integration of III-V on SOI lasers for datacom and telecom applications. By using the Kerr nonlinearity of monolithic silicon nitride and heterointegrated GaAs-based alloys on SOI, the generation of tens or even hundreds of new optical frequencies can be obtained in dispersion tailored waveguides, thus providing an all-optical alternative to the heterointegration of hundreds of standalone III-V on Si lasers. In our work, we present paths to energy-efficient continua generation on silicon photonics circuits. Notably, we demonstrate spectral broadening covering the full C-band via Kerrbased self-phase modulation in SiNOI nanowires featuring full process compatibility with Si photonic devices. Moreover, AlGaAs waveguides are heterointegrated on SOI in order to dramatically reduce (x1/10) thresholds in optical parametric oscillation and in the power required for supercontinuum generation under pulsed pumping. The manufacturing techniques allowing the monolithic co-integration of nonlinear functionalities on existing CMOS-compatible Si photonics for both active and passive components will be shown. Experimental evidence based on self-phase modulation show SiNOI and AlGaAs nanowires capable of generating wide-spanning frequency continua in the C-Band. This will pave the way for low-threshold power-efficient Kerr-based comb- and continuum- sources featuring compatibility with Si photonic integrated circuits (Si-PICs).
NASA Technical Reports Server (NTRS)
Rahoui, Farid; Lee, Julia C.; Heinz, Sebastian; Hines, Dean C.; Pottschmidt, Katja; Wilms, Joern
2011-01-01
We report on a Spitzer/IRS (mid-infrared), RXTE /PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multi-wavelength study of the micro quasar Cygnus X-I, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break - where the transition from the optically thick to the optically thin regime takes place - at about 2.9 x 10(exp 13) Hz. We then show that the jet's optically thin synchrotron emission accounts for the Cygnus X-1's emission beyond 400 keY, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 micron mid-infrared continuum of Cygnus X-I stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Raleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f(sub infinity) approx.= 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anticorrelation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and the Cygnus X-1's environment and/or companion star's stellar wind.
The Lyman Continuum Escape Fraction of Emission Line-selected z ∼ 2.5 Galaxies Is Less Than 15%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutkowski, Michael J.; Hayes, Matthew; Scarlata, Claudia
Recent work suggests that strong emission line, star-forming galaxies (SFGs) may be significant Lyman continuum leakers. We combine archival Hubble Space Telescope broadband ultraviolet and optical imaging (F275W and F606W, respectively) with emission line catalogs derived from WFC3 IR G141 grism spectroscopy to search for escaping Lyman continuum (LyC) emission from homogeneously selected z ∼ 2.5 SFGs. We detect no escaping Lyman continuum from SFGs selected on [O ii] nebular emission ( N = 208) and, within a narrow redshift range, on [O iii]/[O ii]. We measure 1 σ upper limits to the LyC escape fraction relative to the non-ionizingmore » UV continuum from [O ii] emitters, f {sub esc} ≲ 5.6%, and strong [O iii]/[O ii] > 5 ELGs, f {sub esc} ≲ 14.0%. Our observations are not deep enough to detect f {sub esc} ∼ 10% typical of low-redshift Lyman continuum emitters. However, we find that this population represents a small fraction of the star-forming galaxy population at z ∼ 2. Thus, unless the number of extreme emission line galaxies grows substantially to z ≳ 6, such galaxies may be insufficient for reionization. Deeper survey data in the rest-frame ionizing UV will be necessary to determine whether strong line ratios could be useful for pre-selecting LyC leakers at high redshift.« less
ALMA REVEALS POTENTIAL LOCALIZED DUST ENRICHMENT FROM MASSIVE STAR CLUSTERS IN II Zw 40
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consiglio, S. Michelle; Turner, Jean L.; Beck, Sara
2016-12-10
We present subarcsecond images of submillimeter CO and continuum emission from a local galaxy forming massive star clusters: the blue compact dwarf galaxy II Zw 40. At ∼0.″4 resolution (20 pc), the CO(3-2), CO(1-0), 3 mm, and 870 μ m continuum maps illustrate star formation on the scales of individual molecular clouds. Dust contributes about one-third of the 870 μ m continuum emission, with free–free accounting for the rest. On these scales, there is not a good correspondence between gas, dust, and free–free emission. Dust continuum is enhanced toward the star-forming region as compared to the CO emission. We suggestmore » that an unexpectedly low and spatially variable gas-to-dust ratio is the result of rapid and localized dust enrichment of clouds by the massive clusters of the starburst.« less
2013-01-01
evolution of binaries as well as the structure of circumstellar disks. Aims. A multiwavelength high angular resolution study of the prototypical object...optical to mid-IR wave- lengths. For YSOs this has led to the discovery of an empiri- cal size-luminosity relation (Millan-Gabet et al. 2001; Monnier...Millan-Gabet 2002), which in turn has led to the current paradigm (Dullemond & Monnier 2010) of a passive dusty disk with an optically thin cavity and the
Emission of dispersive waves from a train of dark solitons in optical fibers.
Marest, T; Mas Arabí, C; Conforti, M; Mussot, A; Milián, C; Skryabin, D V; Kudlinski, A
2016-06-01
We report the experimental observation of multiple dispersive waves (DWs) emitted in the anomalous dispersion region of an optical fiber from a train of dark solitons. Each DW can be associated to one dark soliton of the train, using phase-matching arguments involving higher-order dispersion and soliton velocity. For a large number of dark solitons (>10), we observe the formation of a continuum associated with the efficient emission of DWs.
Ultraviolet to optical spectral distributions of northern star-forming galaxies
NASA Technical Reports Server (NTRS)
Mcquade, Kerry; Calzetti, Daniela; Kinney, Anne L.
1995-01-01
We report spectral energy distribution from the UV to the optical for a sample of 31 northern star-forming galaxies. We also present measurements for emission-line fluxes, continuum levels, and equivalent widths of absorption features for each individual spectrum as well as averages for the eight galactic activity classes, including normal, starburst, Seyfert 2, blue compact dwarf, blue compact, Low-Inonization Nuclear Emission Regions (LINER), H II, and combination LINER-H II galaxies.
Comparison of stellar population model predictions using optical and infrared spectroscopy
NASA Astrophysics Data System (ADS)
Baldwin, C.; McDermid, R. M.; Kuntschner, H.; Maraston, C.; Conroy, C.
2018-02-01
We present Gemini/GNIRS cross-dispersed near-infrared spectra of 12 nearby early-type galaxies, with the aim of testing commonly used stellar population synthesis models. We select a subset of galaxies from the ATLAS3D sample which span a wide range of ages (single stellar population equivalent ages of 1-15 Gyr) at approximately solar metallicity. We derive star formation histories using four different stellar population synthesis models, namely those of Bruzual & Charlot, Conroy, Gunn & White, Maraston & Strömbäck and Vazdekis et al. We compare star formation histories derived from near-infrared spectra with those derived from optical spectra using the same models. We find that while all models agree in the optical, the derived star formation histories vary dramatically from model to model in the near-infrared. We find that this variation is largely driven by the choice of stellar spectral library, such that models including high-quality spectral libraries provide the best fits to the data, and are the most self-consistent when comparing optically derived properties with near-infrared ones. We also find the impact of age variation in the near-infrared to be subtle, and largely encoded in the shape of the continuum, meaning that the common approach of removing continuum information with a high-order polynomial greatly reduces our ability to constrain ages in the near-infrared.
Discovery of low-redshift X-ray selected quasars - New clues to the QSO phenomenon
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Forman, W. R.; Steiner, J. E.; Canizares, C. R.; Mcclintock, J. E.
1980-01-01
The identification of six X-ray sources discovered by the Einstein Observatory with X-ray quasars is reported, and the properties of these X-ray selected quasars are discussed. The four high-latitude fields of 1 sq deg each in which the Einstein imaging proportional counter detected serendipitous X-ray sources at intermediate exposures of 10,000 sec were observed by 4-m and 1.5-m telescopes, and optical sources with uv excesses and emission line spectra typical of many low-redshift quasars and Seyfert 1 galaxies were found within the 1-arcsec error boxes of the X-ray sources. All six quasars identified were found to be radio quiet, with low redshift and relatively faint optical magnitudes, and to be similar in space density, colors and magnitude versus redshift relation to an optically selected sample at the same mean magnitude. X-ray luminosity was found to be well correlated with both continuum and broad-line emission luminosities for the known radio-quiet quasars and Seyfert 1 galaxies, and it was observed that the five objects with the lowest redshifts have very similar X-ray/optical luminosity ratios despite tenfold variations in X-ray luminosity. It is concluded that photoionization by a continuum extending to X-ray energies is the dominant excitation mechanism in radio-quiet quasars.
NASA Astrophysics Data System (ADS)
Pejova, Biljana
2014-05-01
Raman scattering in combination with optical spectroscopy and structural studies by X-ray diffraction was employed to investigate the phonon confinement and strain-induced effects in 3D assemblies of variable-size zincblende ZnSe quantum dots close packed in thin film form. Nanostructured thin films were synthesized by colloidal chemical approach, while tuning of the nanocrystal size was enabled by post-deposition thermal annealing treatment. In-depth insights into the factors governing the observed trends of the position and half-width of the 1LO band as a function of the average QD size were gained. The overall shifts in the position of 1LO band were found to result from an intricate compromise between the influence of phonon confinement and lattice strain-induced effects. Both contributions were quantitatively and exactly modeled. Accurate assignments of the bands due to surface optical (SO) modes as well as of the theoretically forbidden transverse optical (TO) modes were provided, on the basis of reliable physical models (such as the dielectric continuum model of Ruppin and Englman). The size-dependence of the ratio of intensities of the TO and LO modes was studied and discussed as well. Relaxation time characterizing the phonon decay processes in as-deposited samples was found to be approximately 0.38 ps, while upon post-deposition annealing already at 200 °C it increases to about 0.50 ps. Both of these values are, however, significantly smaller than those characteristic for a macrocrystalline ZnSe sample.
IUE observations of Centaurus X-4 during the 1979 May outburst
NASA Technical Reports Server (NTRS)
Blair, W. P.; Raymond, J. C.; Dupree, A. K.; Wu, C.-C.; Holm, A. V.; Swank, J. H.
1984-01-01
Ultraviolet spectrophotometry of the X-ray transient/burst source Centaurus X-4 at several intervals during the peak and decay of the May 1979 X-ray transient event was obtained. The spectrum was characterized by a blue continuum with alpha = 0.0 + or - 0.3 (F/nu/ varies as nu to the alpha power) and strong emission lines of N V lambda 1240, C IV lambda 1550, and Si IV lambda 1398. The relative intensities of the emission lines and the ratio of line to continuum strengths remained nearly constant during the decline. The emission lines may have arisen from a 'disk chromosphere', from X-ray heating of the K4 V companion star, or both. The ultraviolet data are combined with previously published optical and X-ray data to determine some of the physical characteristics of the system and to show that X-ray reprocessing plays an important role in producing the optical and ultraviolet continua.
Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea
NASA Astrophysics Data System (ADS)
Koenraad, P. M.; Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Hamhuis, G. J.; Notzel, R.; Silov, A. Yu.
2010-03-01
Using voltage dependent photoluminescence spectroscopy we have studied the coupling between QD states and the continuum of states of a Fermi sea of electrons in the close proximity of a self-assembled InAs quantum dot embedded in GaAs. This coupling gives rise to new optical transitions, manifesting the formation of many-body exciton states. The lines in the photoluminescence spectra can be well explained within the Anderson and Mahan exciton models. The presence of Mahan excitons originates from the Coulomb interaction between electrons in the Fermi sea and the hole(s) in the QD whereas a the second type of many-body exciton is due to a hybridized exciton originating from the tunnel interaction between the continuum of states in the Fermi sea and the localized state in the QD. Our study demonstrates the possibility to investigate a variety of many-body states in QDs coupled to a Fermi sea and opens the way to investigate optically the Kondo effect and related spin phenomena in these systems.
Strong coupling between 0D and 2D modes in optical open microcavities
NASA Astrophysics Data System (ADS)
Trichet, A. A. P.; Dolan, P. R.; Smith, J. M.
2018-02-01
We present a study of the coupling between confined modes and continuum states in an open microcavity system. The confined states are the optical modes of a plano-concave Fabry-Pérot cavity while the continuum states are the propagating modes in a surrounding planar cavity. The length tunability of the open cavity system allows to study the evolution of localised modes as they are progressively deconfined and coupled to the propagating modes. We observe an anti-crossing between the confined and propagating modes proving that mode-mixing takes place in between these two families of modes, and identify 0D-2D mixed modes which exhibit reduced loss compared with their highly localised counterparts. For practical design, we investigate the details of the microcavity shape that can be used to engineer the degree of mode-mixing. This study discusses for the first time experimentally and theoretically how light confinement arises in planar micromirrors and is of interest for the realisation of chip-based extended microphotonics using open cavities.
NASA Astrophysics Data System (ADS)
Duncan, Kenneth J.; Jarvis, Matt J.; Brown, Michael J. I.; Röttgering, Huub J. A.
2018-07-01
Building on the first paper in this series (Duncan et al. 2018), we present a study investigating the performance of Gaussian process photometric redshift (photo-z) estimates for galaxies and active galactic nuclei (AGNs) detected in deep radio continuum surveys. A Gaussian process redshift code is used to produce photo-z estimates targeting specific subsets of both the AGN population - infrared (IR), X-ray, and optically selected AGNs - and the general galaxy population. The new estimates for the AGN population are found to perform significantly better at z > 1 than the template-based photo-z estimates presented in our previous study. Our new photo-z estimates are then combined with template estimates through hierarchical Bayesian combination to produce a hybrid consensus estimate that outperforms both of the individual methods across all source types. Photo-z estimates for radio sources that are X-ray sources or optical/IR AGNs are significantly improved in comparison to previous template-only estimates - with outlier fractions and robust scatter reduced by up to a factor of ˜4. The ability of our method to combine the strengths of the two input photo-z techniques and the large improvements we observe illustrate its potential for enabling future exploitation of deep radio continuum surveys for both the study of galaxy and black hole coevolution and for cosmological studies.
Breakdown and Limit of Continuum Diffusion Velocity for Binary Gas Mixtures from Direct Simulation
NASA Astrophysics Data System (ADS)
Martin, Robert Scott; Najmabadi, Farrokh
2011-05-01
This work investigates the breakdown of the continuum relations for diffusion velocity in inert binary gas mixtures. Values of the relative diffusion velocities for components of a gas mixture may be calculated using of Chapman-Enskog theory and occur not only due to concentration gradients, but also pressure and temperature gradients in the flow as described by Hirschfelder. Because Chapman-Enskog theory employs a linear perturbation around equilibrium, it is expected to break down when the velocity distribution deviates significantly from equilibrium. This breakdown of the overall flow has long been an area of interest in rarefied gas dynamics. By comparing the continuum values to results from Bird's DS2V Monte Carlo code, we propose a new limit on the continuum approach specific to binary gases. To remove the confounding influence of an inconsistent molecular model, we also present the application of the variable hard sphere (VSS) model used in DS2V to the continuum diffusion velocity calculation. Fitting sample asymptotic curves to the breakdown, a limit, Vmax, that is a fraction of an analytically derived limit resulting from the kinetic temperature of the mixture is proposed. With an expected deviation of only 2% between the physical values and continuum calculations within ±Vmax/4, we suggest this as a conservative estimate on the range of applicability for the continuum theory.
de Lima, Guilherme Ferreira; Duarte, Hélio Anderson; Pliego, Josefredo R
2010-12-09
A new dynamical discrete/continuum solvation model was tested for NH(4)(+) and OH(-) ions in water solvent. The method is similar to continuum solvation models in a sense that the linear response approximation is used. However, different from pure continuum models, explicit solvent molecules are included in the inner shell, which allows adequate treatment of specific solute-solvent interactions present in the first solvation shell, the main drawback of continuum models. Molecular dynamics calculations coupled with SCC-DFTB method are used to generate the configurations of the solute in a box with 64 water molecules, while the interaction energies are calculated at the DFT level. We have tested the convergence of the method using a variable number of explicit water molecules and it was found that even a small number of waters (as low as 14) are able to produce converged values. Our results also point out that the Born model, often used for long-range correction, is not reliable and our method should be applied for more accurate calculations.
Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows
NASA Astrophysics Data System (ADS)
Richard, L.; Vasilchenko, S.; Mondelain, D.; Ventrillard, I.; Romanini, D.; Campargue, A.
2017-11-01
In a recent contribution [A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, D. Romanini, Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J. Geophys. Res. Atmos., 121,13,180-13,203, doi:10.1002/2016JD025531], we reported accurate water vapor absorption continuum measurements by Cavity Ring-down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Absorption Spectroscopy (OF-CEAS) at selected spectral points of 4 near infrared transparency windows. In the present work, the self-continuum cross-sections, CS, are determined for two new spectral points. The 2491 cm-1 spectral point in the region of maximum transparency of the 4.0 μm window was measured by OF-CEAS in the 23-52 °C temperature range. The 4435 cm-1 spectral point of the 2.1 μm window was measured by CRDS at room temperature. The self-continuum cross-sections were determined from the pressure squared dependence of the continuum absorption. Comparison to the literature shows a reasonable agreement with 1970 s and 1980 s measurements using a grating spectrograph in the 4.0 μm window and a very good consistency with our previous laser measurements in the 2.1 μm window. For both studied spectral points, our values are much smaller than previous room temperature measurements by Fourier Transform Spectroscopy. Significant deviations (up to about a factor 4) are noted compared to the widely used semi empirical MT_CKD model of the absorption continuum. The measured temperature dependence at 2491 cm-1 is consistent with previous high temperature measurements in the 4.0 μm window and follows an exp(D0/kT) law, D0 being the dissociation energy of the water dimer.
Optical and infrared spectrophotometry of 18 Markarian galaxies
NASA Technical Reports Server (NTRS)
Becklin, E. E.; Neugebauer, G.; Oke, J. B.; Searle, L.
1975-01-01
Slit spectra, spectrophotometric scans and infrared broad band observations are presented. Eight of the program galaxies can be classified as Seyfert galaxies. Arguments are given that thermal, nonthermal and stellar radiation components were present. One group of Seyfert galaxies was characterized both by the presence of a high density region of gas and by a continuum dominated by nonthermal radiation. The continua of the remaining program Seyferts, which did not have a high density region of gas, were dominated by thermal radiation from dust and a stellar continuum. Ten of the galaxies, which are not Seyfert galaxies, are shown to be examples of extragalactic H 2 regions.
NASA Astrophysics Data System (ADS)
Starkey, David; Agn Storm Team
2015-01-01
Reverberation mapping is a proven method for obtaining black hole mass estimates and constraining the size of the BLR. We analyze multi-wavelength continuum light curves from the 7 month AGN STORM monitoring of NGC 5548 and use reverberation mapping to model the accretion disk time delays. The model fits the light curves at UV to IR wavelengths assuming reprocessing on a flat, steady-state blackbody accretion disk. We calculate the inclination-dependent transfer function and investigate to what extent our model can determine the disk inclination, black hole MMdot and power law index of the disc temperature-radius relation.
NASA Astrophysics Data System (ADS)
Boychuk, T. M.; Ivashchuk, O. I.; Kolomoiets, M. Y.; Mikhaliev, K. O.; Chursina, T. Y.
2011-09-01
The results of examination of 35 arterial hypertension and coronary heart disease patients are presented. The clinical, paraclinical and echocardiographic examinations were performed, and the parameters of prognosis (survival) according to Seattle Heart Failure Model, as well as the optical (polarimetric) properties of erythrocytic suspension were determined. The group of patients under examination was stratified by patterns of remodeling of left ventricle (LV). It was determined that increasing of anisotropy of erythrocytic suspension along LV remodeling patterns continuum correlates with aggravation of structural and functional state of LV and is associated with unfavorable prognosis.
Variable Weight Fractional Collisions for Multiple Species Mixtures
2017-08-28
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 6 / 21 VARIABLE WEIGHTS FOR DYNAMIC RANGE Continuum to Discrete ...Representation: Many Particles →̃ Continuous Distribution Discretized VDF Yields Vlasov But Collision Integral Still a Problem Particle Methods VDF to Delta...Function Set Collisions between Discrete Velocities But Poorly Resolved Tail (Tail Critical to Inelastic Collisions) Variable Weights Permit Extra DOF in
Microstructure-Based Fatigue Life Prediction Methods for Naval Steel Structures
1993-01-30
approach is to work with the lognormal random variable model proposed by Yang et al . [2], which avoids these difficulties. The simplest form of the...I Al - I I 11. and Ti-alloys [ 10- 111 correlate with the elastic modulus only in the continuum growth regime. On the other hand. compilation of...growth. In fact, Eq. (5) implies that microstructure plays no role in the continuum growth regime. Theoretical models of Frost, et al . [35], and
Search for correlated UV and x ray absorption of NGC 3516
NASA Technical Reports Server (NTRS)
Martin, Christopher; Halpern, Jules P.; Kolman, Michiel
1991-01-01
NGC 3516, a low-luminosity Seyfert galaxy, is one of a small fraction of Seyfert galaxies that exhibit broad absorption in a resonance line. In order to determine whether the UV and x ray absorption in NGC 3516 are related, 5 IUE observations were obtained, quasi-simultaneously with 4 Ginga observations. The results are presented and discussed. The following subject areas are covered: short-term UV variability; emission lines; galactic absorption lines; the C IV, N V, and Si IV absorption features; lower limit on the carbon column density; estimate of the distance from the absorber to the continuum source; variability in the continuum and absorption; a comparison with BAL QSO's; and the x ray-UV connection.
Tereshchenko, Larisa G.; Cygankiewicz, Iwona; McNitt, Scott; Vazquez, Rafael; Bayes-Genis, Antoni; Han, Lichy; Sur, Sanjoli; Couderc, Jean-Philippe; Berger, Ronald D.; de Luna, Antoni Bayes; Zareba, Wojciech
2012-01-01
Background The goal of this study was to determine the predictive value of beat-to-beat QT variability in heart failure (HF) patients across the continuum of left ventricular dysfunction. Methods and Results Beat-to-beat QT variability index (QTVI), heart rate variance (LogHRV), normalized QT variance (QTVN), and coherence between heart rate variability and QT variability have been measured at rest during sinus rhythm in 533 participants of the Muerte Subita en Insuficiencia Cardiaca (MUSIC) HF study (mean age 63.1±11.7; males 70.6%; LVEF >35% in 254 [48%]) and in 181 healthy participants from the Intercity Digital Electrocardiogram Alliance (IDEAL) database. During a median of 3.7 years of follow-up, 116 patients died, 52 from sudden cardiac death (SCD). In multivariate competing risk analyses, the highest QTVI quartile was associated with cardiovascular death [hazard ratio (HR) 1.67(95%CI 1.14-2.47), P=0.009] and in particular with non-sudden cardiac death [HR 2.91(1.69-5.01), P<0.001]. Elevated QTVI separated 97.5% of healthy individuals from subjects at risk for cardiovascular [HR 1.57(1.04-2.35), P=0.031], and non-sudden cardiac death in multivariate competing risk model [HR 2.58(1.13-3.78), P=0.001]. No interaction between QTVI and LVEF was found. QTVI predicted neither non-cardiac death (P=0.546) nor SCD (P=0.945). Decreased heart rate variability (HRV) rather than increased QT variability was the reason for increased QTVI in this study. Conclusions Increased QTVI due to depressed HRV predicts cardiovascular mortality and non-sudden cardiac death, but neither SCD nor excracardiac mortality in HF across the continuum of left ventricular dysfunction. Abnormally augmented QTVI separates 97.5% of healthy individuals from HF patients at risk. PMID:22730411
Discovery of 21 New Changing-look AGNs: Study on Evolution of AGNs and AGN Host Galaxies
NASA Astrophysics Data System (ADS)
Yang, Qian; Wu, Xuebing; Fan, Xiaohui; Jiang, Linhua; McGreer, Ian; Shangguan, Jinyi; Yao, Su; Wang, Bingquan; Joshi, Ravi; Green, Richard F.; Wang, Feige; Feng, Xiaotong; Fu, Yuming; Yang, Jinyi; Liu, Yuanqi
2018-01-01
The rare case of changing-look (CL) AGNs, with the appearance or disappearance of broad Balmer emission lines within a few years, challenges our understanding of the AGN unified model. We present a sample of 21 new CL AGNs at 0.08 < z < 0.58. The new sample doubles the number of such objects known to date. These new CL AGNs were discovered by several ways, from repeat spectra in the SDSS, repeat spectra in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and SDSS, and from photometric variability and new spectroscopic observations. The estimated upper limits of transition timescale of the CL AGNs in this sample span from 0.9 to 13 years in rest-frame. The continuum flux in the optical and mid-infrared becomes brighter when the CL AGNs turn on, or vice versa. Variations of more than 0.2 mag in the mid-infrared W1 band, from the Wide-field Infrared Survey Explorer (WISE), were detected in 15 CL AGNs during the transition. The optical and mid-infrared variability is not consistent with the scenario of variable obscuration in 10 CL AGNs at higher than 3σ confidence level. We confirm a bluer-when-brighter trend in the optical. However, the mid-infrared colors W1‑W2 become redder when the objects become brighter in the W1 band, possibly due to a stronger hot dust contribution in the W2 band when the AGN activity becomes stronger. The physical mechanism of type transition is important for understanding the evolution of AGNs. The rare CL AGNs provide exceptional cases for the black hole and host stellar velocity dispersion relation studies at higher redshift. The faint state spectrum can be used to obtain the host stellar velocity dispersion without contamination from AGN component, and the bright state spectrum can be used to calculate the black hole mass with broad Balmer emission lines. The images at the non-AGN phase of CL AGNs are useful for studies of AGN host galaxies avoiding contamination from the luminous central engines.
FeO "Orange Arc" Emission Detected in Optical Spectrum of Leonid Persistent Trains
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Lacey, Matt; Allan, Beverly J.; Self, Daniel E.; Plane, John M. C.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
We report the detection of a broad continuum emission dominating the visual spectrum of a Leonid persistent train. A comparison with laboratory spectra of FeO 1 "orange arc" emission at I mbar shows a general agreement of the band position and shape. The detection of FeO confirms the classical mechanism of metal atom catalyzed recombination of ozone and oxygen atoms as the driving force behind optical emission from persistent trains. Sodium and iron atoms are now confirmed catalysts.
NASA Astrophysics Data System (ADS)
Shine, Keith P.; Campargue, Alain; Mondelain, Didier; McPheat, Robert A.; Ptashnik, Igor V.; Weidmann, Damien
2016-09-01
Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth's atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm-1) and include reference to the window centred on 2600 cm-1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback - cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum - as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleint, Lucia; Krucker, Säm; Heinzel, Petr
2016-01-10
Enhanced continuum brightness is observed in many flares (“white light flares”), yet it is still unclear which processes contribute to the emission. To understand the transport of energy needed to account for this emission, we must first identify both the emission processes and the emission source regions. Possibilities include heating in the chromosphere causing optically thin or thick emission from free-bound transitions of Hydrogen, and heating of the photosphere causing enhanced H{sup −} continuum brightness. To investigate these possibilities, we combine observations from Interface Region Imaging Spectrograph (IRIS), SDO/Helioseismic and Magnetic Imager, and the ground-based Facility Infrared Spectrometer instrument, coveringmore » wavelengths in the far-UV, near-UV (NUV), visible, and infrared during the X1 flare SOL20140329T17:48. Fits of blackbody spectra to infrared and visible wavelengths are reasonable, yielding radiation temperatures ∼6000–6300 K. The NUV emission, formed in the upper photosphere under undisturbed conditions, exceeds these simple fits during the flare, requiring extra emission from the Balmer continuum in the chromosphere. Thus, the continuum originates from enhanced radiation from photosphere (visible-IR) and chromosphere (NUV). From the standard thick-target flare model, we calculate the energy of the nonthermal electrons observed by Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) and compare it to the energy radiated by the continuum emission. We find that the energy contained in most electrons >40 keV, or alternatively, of ∼10%–20% of electrons >20 keV is sufficient to explain the extra continuum emission of ∼(4–8) × 10{sup 10} erg s{sup −1} cm{sup −2}. Also, from the timing of the RHESSI HXR and the IRIS observations, we conclude that the NUV continuum is emitted nearly instantaneously when HXR emission is observed with a time difference of no more than 15 s.« less
Observability of forming planets and their circumplanetary discs - I. Parameter study for ALMA
NASA Astrophysics Data System (ADS)
Szulágyi, J.; Plas, G. van der; Meyer, M. R.; Pohl, A.; Quanz, S. P.; Mayer, L.; Daemgen, S.; Tamburello, V.
2018-01-01
We present mock observations of forming planets with Atacama Large Millimeter Array (ALMA). The possible detections of circumplanetary discs (CPDs) were investigated around planets of Saturn, 1, 3, 5, and 10 Jupiter-masses that are placed at 5.2 au from their star. The radiative, 3D hydrodynamic simulations were then post-processed with RADMC3D and the ALMA observation simulator. We found that even though the CPDs are too small to be resolved, they are hot due to the accreting planet in the optically thick limit; therefore, the best chance to detect them with continuum observations in this case is at the shortest ALMA wavelengths, such as band 9 (440 μm). Similar fluxes were found in the case of Saturn and Jupiter-mass planets, as for the 10 MJup gas-giant, due to temperature-weighted optical depth effects: when no deep gap is carved, the planet region is blanketed by the optically thick circumstellar disc leading to a less efficient cooling there. A test was made for a 52 au orbital separation, which showed that optically thin CPDs are also detectable in band 7 but they need longer integration times (>5 h). Comparing the gap profiles of the same simulation at various ALMA bands and the hydro simulation confirmed that they change significantly, first because the gap is wider at longer wavelengths due to decreasing optical depth; secondly, the beam convolution makes the gap shallower and at least 25 per cent narrower. Therefore, caution has to be made when estimating planet masses based on ALMA continuum observations of gaps.
X-ray stars observed in LAMOST spectral survey
NASA Astrophysics Data System (ADS)
Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Shi, Jianrong
2018-05-01
X-ray stars have been studied since the beginning of X-ray astronomy. Investigating and studying the chromospheric activity from X-ray stellar optical spectra is highly significant in providing insights into stellar magnetic activity. The big data of LAMOST survey provides an opportunity for researching stellar optical spectroscopic properties of X-ray stars. We inferred the physical properties of X-ray stellar sources from the analysis of LAMOST spectra. First, we cross-matched the X-ray stellar catalogue (12254 X-ray stars) from ARXA with LAMOST data release 3 (DR3), and obtained 984 good spectra from 713 X-ray sources. We then visually inspected and assigned spectral type to each spectrum and calculated the equivalent width (EW) of Hα line using the Hammer spectral typing facility. Based on the EW of Hα line, we found 203 spectra of 145 X-ray sources with Hα emission above the continuum. For these spectra we also measured the EWs of Hβ, Hγ, Hδ and Ca ii IRT lines of these spectra. After removing novae, planetary nebulae and OB-type stars, we found there are 127 X-ray late-type stars with Hα line emission. By using our spectra and results from the literature, we found 53 X-ray stars showing Hα variability; these objects are Classical T Tauri stars (CTTs), cataclysmic variables (CVs) or chromospheric activity stars. We also found 18 X-ray stars showing obvious emissions in the Ca ii IRT lines. Of the 18 X-ray stars, 16 are CTTs and 2 are CVs. Finally, we discussed the relationships between the EW of Hα line and X-ray flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shappee, B. J.; Kochanek, C. S.; Stanek, K. Z.
2014-06-10
After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ∼70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuummore » blue bump. Such 'changing look active galactic nuclei (AGNs)' are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 10{sup 7} M {sub ☉}. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.« less
Creating a zero-order resonator using an optical surface transformation
Sun, Fei; Ge, Xiaochen; He, Sailing
2016-01-01
A novel zero-order resonator has been designed by an optical surface transformation (OST) method. The resonator proposed here has many novel features. Firstly, the mode volume can be very small (e.g. in the subwavelength scale). Secondly, the resonator is open (no reflecting walls are utilized) and resonant effects can be found in a continuous spectrum (i.e. a continuum of eigenmodes). Thirdly, we only need one homogenous medium to realize the proposed resonator. The shape of the resonator can be a ring structure of arbitrary shape. In addition to the natural applications (e.g. optical storage) of an optical resonator, we also suggest some other applications of our novel optical open resonator (e.g. power combination, squeezing electromagnetic energy in the free space). PMID:26888359
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillenbrand, Lynne A.; Carpenter, John M.; Muirhead, Philip S.
2013-03-15
We report extensive new photometry and spectroscopy of the highly variable young stellar object PTF 10nvg (also known as IRAS 20496+4354 and V2492 Cyg), including optical and near-infrared time-series data as well as mid-infrared and millimeter data. Following the previously reported 2010 rise to R{sub PTF} {approx}<13.{sup m}5 and subsequent fade, during 2011 and 2012 the source underwent additional episodes of brightening, followed by several magnitude dimming events including prolonged faint states at R{sub PTF} {approx}> 20{sup m}. The observed high-amplitude variations are largely consistent with extinction changes ({Delta}A{sub V} up to 30 mag) having a {approx}220 day quasi-periodic signal.more » However, photometry measured when the source was near maximum brightness in mid-2010 as well as in late-2012 does not phase well to this period. Spectral evolution includes not only changes in the spectral slope but also correlated variation in the prominence of TiO/VO/CO bands and atomic line emission, as well as anti-correlated variation in forbidden line emission which, along with H{sub 2}, dominates optical and infrared spectra at faint epochs. Notably, night-to-night variations in several forbidden doublet strengths and ratios are observed. High-dispersion spectra were obtained in a variety of photometric states and reveal time-variable line profiles. Neutral and singly ionized atomic species are likely formed in an accretion flow and/or impact while the origin of zero-velocity atomic Li I {lambda}6707 in emission is unknown. Forbidden lines, including several rare species, exhibit blueshifted emission profiles and likely arise from an outflow/jet. Several of these lines are also seen spatially offset from the continuum source position, presumably in a shocked region of an extended jet. Blueshifted absorption components of the Na I D doublet, K I {lambda}{lambda}7665, 7669 doublet, and the O I 7774 triplet, as well as blueshifted absorption components seen against the broad H{alpha} and Ca II triplet emission lines, similarly are formed in the outflow. CARMA maps resolve on larger scales a spatially extended outflow in millimeter-wavelength CO. We attribute the recently observed photometric and spectroscopic behavior to rotating circumstellar disk material located at separation a Almost-Equal-To 0.7(M{sub *}/M{sub Sun }){sup 1/3} AU from the continuum source, causing the semi-periodic dimming. Occultation of the central star as well as the bright inner disk and the accretion/outflow zones renders shocked gas in the inner part of the jet amenable to observation at the faint epochs. We discuss PTF 10nvg as a source exhibiting both accretion-driven (perhaps analogous to V1647 Ori) and extinction-driven (perhaps analogous to UX Ori or GM Cep) high-amplitude variability phenomena.« less
NE VIII lambda 774 and time variable associated absorption in the QSO UM 675
NASA Technical Reports Server (NTRS)
Hamann, Fred; Barlow, Thomas A.; Beaver, E. A.; Burbidge, E. M.; Cohen, Ross D.; Junkkarinen, Vesa; Lyons, R.
1995-01-01
We discuss measurements of Ne VIII lambda 774 absorption and the time variability of other lines in the z(sub a) approximately equal z(sub e) absorption system of the z(sub e) = 2.15 QSO UM 675 (0150-203). The C IV lambda 1549 and N V 1240 doublets at z(sub a) = 2.1340 (shifted approximately 1500 km/s from z(sub e) strengthened by a factor of approximately 3 between observations by Sargent, Boksenberg and Steidel (1981 November) and our earliest measurements (1990 November and December). We have no information on changes in other z(sub a) approximately equal z(sub e) absorption lines. Continued monitoring since 1990 November shows no clear changes in any of the absorptions between approximately 1100 and 1640 A rest. The short timescale of the variability (less than or approximately equal to 2.9 yr rest) strongly suggests that the clouds are dense, compact, close to the QSO, and photoionized by the QSO continuum. If the line variability is caused by changes in the ionization, the timescale requires densities greater than approximately 4000/cu cm. Photoionization calculations place the absorbing clouds within approximately 200 pc of the continuum source. The full range of line ionizations (from Ne VIII lambda 774 to C III lambda 977) in optically thin gas (no Lyman limit) implies that the absorbing regions span a factor of more than approximately 10 in distance or approximately 100 in density. Across these regions, the total hydrogen (H I + H II) column ranges from a few times 10(exp 18)/sq cm in the low-ionization gas to approximately 10(exp 20)/sq cm where the Ne VIII doublet forms. The metallicity is roughly solar or higher, with nitrogen possibly more enhanced by factors of a few. The clouds might contribute significant line emission if they nearly envelop the QSO. The presence of highly ionized Ne VIII lambda 774 absorption near the QSO supports recent studies that link z(sub a) approximately equal to z(sub e) systems with X-ray 'wamr absorbers. We show that the Ne VIII absorbing gas would itself produce measurable warm absorption -- characterized by bound-free O VII or O VIII edegs near 0.8 keV -- if the column densities were N(sub H) greater than or approximately equal to 10(exp 21)/sq cm (for solar abundances).
NE VIII lambda 774 and time variable associated absorption in the QSO UM 675
NASA Astrophysics Data System (ADS)
Hamann, Fred; Barlow, Thomas A.; Beaver, E. A.; Burbidge, E. M.; Cohen, Ross D.; Junkkarinen, Vesa; Lyons, R.
1995-04-01
We discuss measurements of Ne VIII lambda 774 absorption and the time variability of other lines in the za approximately equal ze absorption system of the ze = 2.15 QSO UM 675 (0150-203). The C IV lambda 1549 and N V 1240 doublets at za = 2.1340 (shifted approximately 1500 km/s from ze strengthened by a factor of approximately 3 between observations by Sargent, Boksenberg and Steidel (1981 November) and our earliest measurements (1990 November and December). We have no information on changes in other za approximately equal ze absorption lines. Continued monitoring since 1990 November shows no clear changes in any of the absorptions between approximately 1100 and 1640 A rest. The short timescale of the variability (less than or approximately equal to 2.9 yr rest) strongly suggests that the clouds are dense, compact, close to the QSO, and photoionized by the QSO continuum. If the line variability is caused by changes in the ionization, the timescale requires densities greater than approximately 4000/cu cm. Photoionization calculations place the absorbing clouds within approximately 200 pc of the continuum source. The full range of line ionizations (from Ne VIII lambda 774 to C III lambda 977) in optically thin gas (no Lyman limit) implies that the absorbing regions span a factor of more than approximately 10 in distance or approximately 100 in density. Across these regions, the total hydrogen (H I + H II) column ranges from a few times 1018/sq cm in the low-ionization gas to approximately 1020/sq cm where the Ne VIII doublet forms. The metallicity is roughly solar or higher, with nitrogen possibly more enhanced by factors of a few. The clouds might contribute significant line emission if they nearly envelop the QSO. The presence of highly ionized Ne VIII lambda 774 absorption near the QSO supports recent studies that link za approximately equal to ze systems with X-ray 'wamr absorbers. We show that the Ne VIII absorbing gas would itself produce measurable warm absorption -- characterized by bound-free O VII or O VIII edegs near 0.8 keV -- if the column densities were NH greater than or approximately equal to 1021/sq cm (for solar abundances).
NASA Astrophysics Data System (ADS)
Mallick, L.; Alston, W. N.; Parker, M. L.; Fabian, A. C.; Pinto, C.; Dewangan, G. C.; Markowitz, A.; Gandhi, P.; Kembhavi, A. K.; Misra, R.
2018-06-01
We present the first results from a detailed spectral-timing analysis of a long (˜130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ˜1.5 keV, iron Kα emission complex at ˜6 -7 keV and a `Compton hump' at ˜15 -30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2 - 6] × 10-5 Hz), the power-law continuum dominated 1.5-5 keV band lags behind the reflection dominated 0.3-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1 - 2] × 10-4 Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk 1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.
Cassini ISS Observations of Jupiter: An Exoplanet Perspective
NASA Astrophysics Data System (ADS)
West, Robert A.; Knowles, Benjamin
2017-10-01
Understanding the optical and physical properties of planets in our solar system can guide our approach to the interpretation of observations of exoplanets. Although some work has already been done along these lines, there remain low-hanging fruit. During the Cassini Jupiter encounter, the Imaging Science Subsystem (ISS) obtained an extensive set of images over a large range of phase angles (near-zero to 140 degrees) and in filters from near-UV to near-IR, including three methane bands and nearby continuum. The ISS also obtained images using polarizers. Much later in the mission we also obtained distant images while in orbit around Saturn. Some of these data have already been studied to reveal phase behavior (Dyudina et al., Astrophys. J.822, DOI: 10.3847/0004-637X/822/2/76; Mayorga et al., 2016, Astron. J. 152, DOI: 10.3847/0004-6256/152/6/209). Here we examine rotational modulation to determine wavelength and phase angle dependence, and how these may depend on cloud and haze vertical structure and optical properties. The existence of an optically thin forward-scattering and longitudinally-homogeneous haze overlying photometrically-variable cloud fields tends to suppress rotational modulation as phase angle increases, although in the strong 890-nm methane band cloud vertical structure is important. Cloud particles (non-spherical ammonia ice, mostly) have very small polarization signatures at intermediate phase angles and rotational modulation is not apparent above the noise level of our instrument. Part of this work was performed by the Jet Propulsion Lab, Cal. Inst. Of Technology.
The optical properties of platinum and gold in the vacuum ultraviolet
NASA Technical Reports Server (NTRS)
Linton, R. C.
1972-01-01
The optical constants of platinum and gold thin films have been determined in the spectral region of 40 to 200 nm by reflection measurements. The highly polarized continuum of synchrotron radiation emitted by the 240-MeV electron storage ring at the Physical Sciences Laboratory of the University of Wisconsin was used as a light source for the spectrum below 120 nm, while a windowless discharge lamp coupled to a normal incidence monochromator provided a source for the longer wavelengths. Optical constants were determined by a computer program based on iterative solutions to the Fresnel equations for reflection as a function of the angle of incidence.
Optimizing Nanoscale Quantitative Optical Imaging of Subfield Scattering Targets
Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui; Sohn, Martin; Silver, Richard M.
2016-01-01
The full 3-D scattered field above finite sets of features has been shown to contain a continuum of spatial frequency information, and with novel optical microscopy techniques and electromagnetic modeling, deep-subwavelength geometrical parameters can be determined. Similarly, by using simulations, scattering geometries and experimental conditions can be established to tailor scattered fields that yield lower parametric uncertainties while decreasing the number of measurements and the area of such finite sets of features. Such optimized conditions are reported through quantitative optical imaging in 193 nm scatterfield microscopy using feature sets up to four times smaller in area than state-of-the-art critical dimension targets. PMID:27805660
Ultraviolet Opacity and Fluorescence in Supernova Envelopes
NASA Technical Reports Server (NTRS)
Li, Hongwei; McCray, Richard
1996-01-01
By the time the expanding envelope of a Type 2 supernova becomes transparent in the optical continuum, most of the gamma-ray luminosity produced by radioactive Fe/Co/Ni clumps propagates into the hydrogen/helium envelope and is deposited there, if at all. The resulting fast electrons excite He 1 and H 1, the two- photon continua of which are the dominant internal sources of ultraviolet radiation. The UV radiation is blocked by scattering in thousands of resonance lines of metals and converted by fluorescence into optical and infrared emission lines that escape freely. We describe results of Monte Carlo calculations that simulate non-LTE scattering and fluorescence in more than five million allowed lines of Ca, Sc, Ti, V, Cr, Mn, Fe, Co, and Ni. For a model approximating conditions in the envelope of SN 1987A, the calculated emergent spectrum resembles the observed one. For the first 2 yr after explosion, the ultraviolet radiation (lambda less than or approximately equals 3000) is largely blocked and converted into a quasi continuum of many thousands of weak optical and infrared emission lines and some prominent emission features, such as the Ca 2 lambdalambda8600 triplet. Later, as the envelope cools and expands, it becomes more transparent, and an increasing fraction of the luminosity emerges in the UV band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumbilavil, Sreekanth; Sankar, Pranitha; Priya Rose, T.
Wavelength dispersion of optical power limiting is an important factor to be considered while designing potential optical limiters for laser safety applications. We report the observation of broadband, ultrafast optical limiting in reduced graphene oxide (rGO), measured by a single open aperture Z-scan using a white light continuum (WLC) source. WLC Z-scan is fast when the nonlinearity is to be measured over broad wavelength ranges, and it obviates the need for an ultrafast tunable laser making it cost-economic compared to conventional Z-scan. The nonlinearity arises from nondegenerate two-photon absorption, owing mostly to the crystallinity and extended π conjugation of rGO.
Breakage mechanics—Part I: Theory
NASA Astrophysics Data System (ADS)
Einav, Itai
2007-06-01
Different measures have been suggested for quantifying the amount of fragmentation in randomly compacted crushable aggregates. A most effective and popular measure is to adopt variants of Hardin's [1985. Crushing of soil particles. J. Geotech. Eng. ASCE 111(10), 1177-1192] definition of relative breakage ' Br'. In this paper we further develop the concept of breakage to formulate a new continuum mechanics theory for crushable granular materials based on statistical and thermomechanical principles. Analogous to the damage internal variable ' D' which is used in continuum damage mechanics (CDM), here the breakage internal variable ' B' is adopted. This internal variable represents a particular form of the relative breakage ' Br' and measures the relative distance of the current grain size distribution from the initial and ultimate distributions. Similar to ' D', ' B' varies from zero to one and describes processes of micro-fractures and the growth of surface area. However, unlike damage that is most suitable to tensioned solid-like materials, the breakage is aimed towards compressed granular matter. While damage effectively represents the opening of micro-cavities and cracks, breakage represents comminution of particles. We term the new theory continuum breakage mechanics (CBM), reflecting the analogy with CDM. A focus is given to developing fundamental concepts and postulates, and identifying the physical meaning of the various variables. In this part of the paper we limit the study to describe an ideal dissipative process that includes breakage without plasticity. Plastic strains are essential, however, in representing aspects that relate to frictional dissipation, and this is covered in Part II of this paper together with model examples.
ERIC Educational Resources Information Center
Khumalo, I. P.; Temane, Q. M.; Wissing, M. P.
2012-01-01
Age, gender, marital status, education attainment, employment status, and environmental setting explain different amounts of variance in psychological well-being and mental health. Inconsistent findings are reported for the socio-demographic variables in psychological well-being depending amongst others on the definition and measurement of…
Extended optical model for fission
Sin, M.; Capote, R.; Herman, M. W.; ...
2016-03-07
A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less
NASA Astrophysics Data System (ADS)
Ishii, Nobuhisa; Kaneshima, Keisuke; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro
2018-01-01
An optical parametric chirped-pulse amplifier (OPCPA) based on bismuth triborate (BiB3O6, BIBO) crystals has been developed to deliver 1.5 mJ, 10.1 fs optical pulses around 1.6 μm with a repetition rate of 1 kHz and a stable carrier-envelope phase. The seed and pump pulses of the BIBO-based OPCPA are provided from two Ti:sapphire chirped-pulse amplification (CPA) systems. In both CPA systems, transmission gratings are used in the stretchers and compressors that result in a high throughput and robust operation without causing any thermal problem and optical damage. The seed pulses of the OPCPA are generated by intrapulse frequency mixing of a spectrally broadened continuum, temporally stretched to approximately 5 ps then, and amplified to more than 1.5 mJ. The amplified pulses are compressed in a fused silica block down to 10.1 fs. This BIBO-based OPCPA has been applied to high-flux high harmonic generation beyond the carbon K edge at 284 eV. The high-flux soft-x-ray continuum allows measuring the x-ray absorption near-edge structure of the carbon K edge within 2 min, which is shorter than a typical measurement time using synchrotron-based light sources. This laser-based table-top soft-x-ray source is a promising candidate for ultrafast soft x-ray spectroscopy with femtosecond to attosecond time resolution.
ngVLA Key Science Goal 1: Unveiling the Formation of Solar System Analogues
NASA Astrophysics Data System (ADS)
Liu, Shangfei; Ricci, Luca; Isella, Andrea; Li, Hui; Li, Shengtai
2018-01-01
The annular gaps and other substructures discovered in several protoplanetary disks by ALMA and optical/NIR telescopes are reminiscent of the interaction between newborn planets and the circumstellar material. The comparison with theoretical models indicates that these structures might indeed result from the gravitational interaction between the circumstellar disk and Saturn-mass planets orbiting at tens of AU from the parent star. The same observations also revealed that the submm-wave dust continuum emission arising within 10-30 AU from the star is optically thick. The large optical depth prevents us from accurately measuring the dust density and, therefore, image planet-driven density perturbations. A natural solution to this problem consists in imaging disks at wavelengths of 3mm and longer, where the dust continuum emission from the innermost disk regions is optically thin, but still bright enough to be detected. These wavelengths are covered by the VLA, which, however, lacks the angular resolution and sensitivity to efficiently search for signatures of planets orbiting in the innermost and densest disk regions. Thanks to its much larger collecting area, resolving power, and image quality the Next Generation VLA (ngVLA) will transform the study of planet formation. we present the results of a recent study aimed at investigating the potential of the ngVLA of discovering disk sub-structures, such as gaps and azimuthal asymmetries, generated by the interaction with low-mass forming planets at < 10 au from the star.
Probing the origin of UX Ori-type variability in the YSO binary CO Ori with VLTI/GRAVITY
NASA Astrophysics Data System (ADS)
Davies, C. L.; Kreplin, A.; Kluska, J.; Hone, E.; Kraus, S.
2018-03-01
The primary star in the young stellar object binary CO Ori displays UX Ori-type variability: irregular, high amplitude optical, and near-infrared photometric fluctuations where flux minima coincide with polarization maxima. This is attributed to changes in local opacity. In CO Ori A, these variations exhibit a 12.4 yr cycle. Here, we investigate the physical origin of the fluctuating opacity and its periodicity using interferometric observations of CO Ori obtained using VLTI/GRAVITY. Continuum K-band circum-primary and circum-secondary emission are marginally spatially resolved for the first time, while Brγ emission is detected in the spectrum of the secondary. We estimate a spectral type range for CO Ori B of K2-K5 assuming visual extinction, AV = 2 and a distance of 430 pc. From geometric modelling of the continuum visibilities, the circum-primary emission is consistent with a central point source plus a Gaussian component with a full width at half-maximum of 2.31 ± 0.04 mas, inclined at 30.2° ± 2.2° and with a major axis position angle of 40° ± 6°. This inclination is lower than that reported for the discs of other UX Ori-type stars, providing a first indication that the UX Ori phenomena may arise through fluctuations in circum-stellar material exterior to a disc, for example, in a dusty outflow. An additional wide, symmetric Gaussian component is required to fit the visibilities of CO Ori B, signifying a contribution from scattered light. Finally, closure phases of CO Ori A were used to investigate whether the 12.4 yr periodicity is associated with an undetected third component, as has been previously suggested. We rule out any additional companions contributing more than 3.6 per cent to the K-band flux within ˜7.3-20 mas of CO Ori A.
The evidence for clumpy accretion in the Herbig Ae star HR 5999
NASA Technical Reports Server (NTRS)
Perez, M. R.; Grady, C. A.; The, P. S.
1993-01-01
Analysis of IUE high- and low-dispersion spectra of the young Herbig Ae star HR 5999 (HD 144668) covering 1978-1992 revealed dramatic changes in the Mg II h and k (2795.5, 2802.7 A) emission profiles, changes in the column density and distribution in radial velocity of accreting gas, and flux in the Ly(alpha), O I, and C IV emission lines, which are correlated with the UV excess luminosity. Variability in the spectral type inferred from the UV spectral energy distribution, ranging from A5 IV-III in high state to A7 III in the low state, was also observed. The trend of earlier inferred spectral type with decreasing wavelength and with increasing UV continuum flux has previously been noted as a signature of accretion disks in lower mass pre-main sequence stars (PMS) and in systems undergoing FU Orionis-type outbursts. Our data represent the first detection of similar phenomena in an intermediate mass (M greater than or equal to 2 solar mass) PMS star. Recent IUE spectra show gas accreting toward the star with velocities as high as plus 300 km/s, much as is seen toward beta Pic, and suggest that we also view this system through the debris disk. The absence of UV lines with the rotational broadening expected given the optical data (A7 IV, V sini=180 plus or minus 20 km/s for this system) also suggests that most of the UV light originates in the disk, even in the low continuum state. The dramatic variability in the column density of accreting gas, is consistent with clumpy accretion, such as has been observed toward beta Pic, is a hallmark of accretion onto young stars, and is not restricted to the clearing phase, since detectable amounts of accretion are present for stars with 0.5 Myr less than t(sub age) less than 2.8 Myr. The implications for models of beta Pic and similar systems are briefly discussed.
Current and Future X-ray Studies of High-Redshift AGNs and the First Supermassive Black Holes
NASA Astrophysics Data System (ADS)
Brandt, Niel
2016-01-01
X-ray observations of high-redshift AGNs at z = 4-7 have played a critical role in understanding the physical processes at work inthese objects as well as their basic demographics. Since 2000, Chandra and XMM-Newton have provided new X-ray detections for more than 120 such objects, and well-defined samples of z > 4 AGNs now allow reliable X-ray population studies. Once luminosity effectsare considered, the basic X-ray continuum properties of most high-redshift AGNs appear remarkably similar to those of local AGNs, although there are some notable apparent exceptions (e.g., highly radio-loud quasars). Furthermore, the X-ray absorption found in some objects has been used as a diagnostic of outflowing winds and circumnuclear material. Demographically, the X-ray data now support an exponential decline in the number density of luminous AGNs above z ~ 3, and quantitative space-density comparisons for optically selected and X-ray selected quasars indicate basic statistical agreement.The current X-ray discoveries point the way toward the future breakthroughs that will be possible with, e.g., Athena and the X-raySurveyor. These missions will execute powerful blank-field surveys to elucidate the demographics of the first growing supermassive black holes (SMBHs), including highly obscured systems, up to z ~ 10. They will also carry out complementary X-ray spectroscopic and variability investigations of high-redshift AGNs by targeting the most-luminous z = 7-10 quasars found in wide-field surveys by, e.g., Euclid, LSST, and WFIRST. X-ray spectroscopic and variability studies of the X-ray continuum and reflection signatures will help determine Eddington ratios and disk/corona properties; measuring these will clarify how the first quasars grew so quickly. Furthermore, absorption line/edge studies will reveal how outflows from the first SMBHs influenced the growth of the first galaxies. I will suggest some efficient observational strategies for Athena and the X-ray Surveyor.
Metal line blanketing and opacity in the ultraviolet of alpha 2 Canum Venaticorum
NASA Technical Reports Server (NTRS)
Molnar, M. R.
1972-01-01
Ultraviolet photometry by OAO-2 was made of alpha 2 CVn covering the entire 5.5d period of this magnetic Ap variable. The light curves ranging from 1330 A to 3320 A indicate the dominant role of rare-earth line-blanketing in redistributing flux. In a broad depression of the continuum covering 2300-2600 A, scanner observations possibly identify strong lines of Eu III as major contributors to this feature. At maximum intensity of the rare-earth lines, the ultraviolet continuum shortward of 2900 A is greatly diminished while the longer wavelength regions into the visual become brighter. In addition, there is evidence that the hydrogen line opacity is variable and the photoionization edge of Si I at 1680 A is identified.
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-06-17
In this paper, we report the discovery by the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope of high-energy γ-ray emission from the peculiar quasar PMN J0948+0022 (z = 0.5846). The optical spectrum of this object exhibits rather narrow Hβ (FWHM(Hβ) ~1500 km s –1), weak forbidden lines, and is therefore classified as a narrow-line type I quasar. This class of objects is thought to have relatively small black hole mass and to accrete at a high Eddington ratio. The radio loudness and variability of the compact radio core indicate the presence of a relativistic jet. Quasi-simultaneous radio/optical/X-raymore » and γ-ray observations are presented. Both radio and γ-ray emissions (observed over five months) are strongly variable. The simultaneous optical and X-ray data from Swift show a blue continuum attributed to the accretion disk and a hard X-ray spectrum attributed to the jet. The resulting broadband spectral energy distribution (SED) and, in particular, the γ-ray spectrum measured by Fermi are similar to those of more powerful Flat-Spectrum Radio Quasars (FSRQs). A comparison of the radio and γ-ray characteristics of PMN J0948+0022 with the other blazars detected by LAT shows that this source has a relatively low radio and γ-ray power with respect to other FSRQs. The physical parameters obtained from modeling the SED also fall at the low power end of the FSRQ parameter region discussed in Celotti & Ghisellini. Finally, we suggest that the similarity of the SED of PMN J0948+0022 to that of more massive and more powerful quasars can be understood in a scenario in which the SED properties depend on the Eddington ratio rather than on the absolute power.« less
Properties of Narrow line Seyfert 1 galaxies
NASA Astrophysics Data System (ADS)
Rakshit, Suvendu; Stalin, Chelliah Subramonian; Chand, Hum; Zhang, Xue-Guang
2018-04-01
Narrow line Seyfert 1 (NLSy1) galaxies constitute a class of active galactic nuclei characterized by the full width at half maximum (FWHM) of the Hα broad emission line <2000 km s-1 and the flux ratio of [O III] to Hα <3. Their properties are not well understood since only a few NLSy1 galaxies were known earlier. We have studied various properties of NLSy1 galaxies using an enlarged sample and compared them with the conventional broad-line Seyfert 1 (BLSy1) galaxies. Both the sample of sources have z˜ 0.8 and their optical spectra from SDSS-DR12 that are used to derive various physical parameters have a median signal to noise (S/N) ratio >10 pixel-1. A strong correlation between the Hα and Hα emission lines is found both in the FWHM and flux. The nuclear continuum luminosity is found to be strongly correlated with the luminosity of Hα, Hα and [O III] emission lines. The black hole mass in NLSy1 galaxies is lower compared to their broad line counterparts. Compared to BLSy1 galaxies, NLSy1 galaxies have a stronger FeII emission and a higher Eddington ratio that place them in the extreme upper right corner of the R4570 - λEdd diagram. The distribution of the radio-loudness parameter (R) in NLSy1 galaxies drops rapidly at R>10 compared to the BLSy1 galaxies that have powerful radio jets. The soft X-ray photon index in NLSy1 galaxies is on average higher (2.9 ± 0.9) than BLSy1 galaxies (2.4 ± 0.8). It is anti-correlated with the Hα width but correlated with the FeII strength. NLSy1 galaxies on average have a lower amplitude of optical variability compared to their broad lines counterparts. These results suggest Eddington ratio as the main parameter that drives optical variability in these sources.
NASA Astrophysics Data System (ADS)
Porquet, D.; Reeves, J. N.; Matt, G.; Marinucci, A.; Nardini, E.; Braito, V.; Lobban, A.; Ballantyne, D. R.; Boggs, S. E.; Christensen, F. E.; Dauser, T.; Farrah, D.; Garcia, J.; Hailey, C. J.; Harrison, F.; Stern, D.; Tortosa, A.; Ursini, F.; Zhang, W. W.
2018-01-01
Context. The physical characteristics of the material closest to supermassive black holes (SMBHs) are primarily studied through X-ray observations. However, the origins of the main X-ray components such as the soft X-ray excess, the Fe Kα line complex, and the hard X-ray excess are still hotly debated. This is particularly problematic for active galactic nuclei (AGN) showing a significant intrinsic absorption, either warm or neutral, which can severely distort the observed continuum. Therefore, AGN with no (or very weak) intrinsic absorption along the line of sight, so-called "bare AGN", are the best targets to directly probe matter very close to the SMBH. Aims: We perform an X-ray spectral analysis of the brightest and cleanest bare AGN known so far, Ark 120, in order to determine the process(es) at work in the vicinity of the SMBH. Methods: We present spectral analyses of data from an extensive campaign observing Ark 120 in X-rays with XMM-Newton (4 × 120 ks, 2014 March 18-24), and NuSTAR (65.5 ks, 2014 March 22). Results: During this very deep X-ray campaign, the source was caught in a high-flux state similar to the earlier 2003 XMM-Newton observation, and about twice as bright as the lower-flux observation in 2013. The spectral analysis confirms the "softer when brighter" behavior of Ark 120. The four XMM-Newton/pn spectra are characterized by the presence of a prominent soft X-ray excess and a significant Fe Kα complex. The continuum is very similar above about 3 keV, while significant variability is present for the soft X-ray excess. We find that relativistic reflection from a constant-density, flat accretion disk cannot simultaneously produce the soft excess, broad Fe Kα complex, and hard X-ray excess. Instead, Comptonization reproduces the broadband (0.3-79 keV) continuum well, together with a contribution from a mildly relativistic disk reflection spectrum. Conclusions: During this 2014 observational campaign, the soft X-ray spectrum of Ark 120 below 0.5 keV was found to be dominated by Comptonization of seed photons from the disk by a warm (kTe 0.5 keV), optically-thick corona (τ 9). Above this energy, the X-ray spectrum becomes dominated by Comptonization from electrons in a hot optically thin corona, while the broad Fe Kα line and the mild Compton hump result from reflection off the disk at several tens of gravitational radii.
NASA Technical Reports Server (NTRS)
Coats, Timothy William
1994-01-01
Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.
Bipotential continuum models for granular mechanics
NASA Astrophysics Data System (ADS)
Goddard, Joe
2014-03-01
Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).
Pankavich, S; Ortoleva, P
2010-06-01
The multiscale approach to N-body systems is generalized to address the broad continuum of long time and length scales associated with collective behaviors. A technique is developed based on the concept of an uncountable set of time variables and of order parameters (OPs) specifying major features of the system. We adopt this perspective as a natural extension of the commonly used discrete set of time scales and OPs which is practical when only a few, widely separated scales exist. The existence of a gap in the spectrum of time scales for such a system (under quasiequilibrium conditions) is used to introduce a continuous scaling and perform a multiscale analysis of the Liouville equation. A functional-differential Smoluchowski equation is derived for the stochastic dynamics of the continuum of Fourier component OPs. A continuum of spatially nonlocal Langevin equations for the OPs is also derived. The theory is demonstrated via the analysis of structural transitions in a composite material, as occurs for viral capsids and molecular circuits.
Using Models for How Energetic Electrons Heat the Atmosphere During Flares
NASA Technical Reports Server (NTRS)
Allred, Joel
2011-01-01
Using models for how energetic electrons heat the atmosphere during flares, we simulate the radiative-hydrodynamic response of the lower solar atmosphere to flare heating. The simulations account for much of the non-LTE, optically thick radiative transfer that occurs in the chromosphere. Our models predict an increase in white light continuum during the flare on the order of 20%, but this is highly sensitive to the electron beam flux used in the simulation. We find that a majority of the white light continuum originates in the chromosphere as a result of Balmer and Paschen recombinations, but a significant portion also forms in the photosphere which has been heated by radiative backwarming.
NASA Astrophysics Data System (ADS)
Izumi, Takuma; Onoue, Masafusa; Shirakata, Hikari; Nagao, Tohru; Kohno, Kotaro; Matsuoka, Yoshiki; Imanishi, Masatoshi; Strauss, Michael A.; Kashikawa, Nobunari; Schulze, Andreas; Silverman, John D.; Fujimoto, Seiji; Harikane, Yuichi; Toba, Yoshiki; Umehata, Hideki; Nakanishi, Kouichiro; Greene, Jenny E.; Tamura, Yoichi; Taniguchi, Akio; Yamaguchi, Yuki; Goto, Tomotsugu; Hashimoto, Yasuhiro; Ikarashi, Soh; Iono, Daisuke; Iwasawa, Kazushi; Lee, Chien-Hsiu; Makiya, Ryu; Minezaki, Takeo; Tang, Ji-Jia
2018-04-01
We present our ALMA Cycle 4 measurements of the [C II] emission line and the underlying far-infrared (FIR) continuum emission from four optically low-luminosity (M1450 > -25) quasars at z ≳ 6 discovered by the Subaru Hyper Suprime Cam (HSC) survey. The [C II] line and FIR continuum luminosities lie in the ranges L_[C II] = (3.8-10.2)× 108 L_{⊙} and LFIR = (1.2-2.0) × 1011 L_{⊙}, which are at least one order of magnitude smaller than those of optically-luminous quasars at z ≳ 6. We estimate the star formation rates (SFRs) of our targets as ≃ 23-40 M_{⊙} yr-1. Their line and continuum-emitting regions are marginally resolved, and found to be comparable in size to those of optically-luminous quasars, indicating that their SFR or likely gas mass surface densities (key controlling parameter of mass accretion) are accordingly different. The L_[C II]/L_FIR ratios of the hosts, ≃ (2.2-8.7) × 10-3, are fully consistent with local star-forming galaxies. Using the [C II] dynamics, we derived their dynamical masses within a radius of 1.5-2.5 kpc as ≃ (1.4-8.2) × 1010 M_{⊙}. By interpreting these masses as stellar ones, we suggest that these faint quasar hosts are on or even below the star-forming main sequence at z ˜ 6, i.e., they appear to be transforming into quiescent galaxies. This is in contrast to the optically-luminous quasars at those redshifts, which show starburst-like properties. Finally, we find that the ratios of black hole mass to host galaxy dynamical mass of most of the low-luminosity quasars, including the HSC ones, are consistent with the local value. The mass ratios of the HSC quasars can be reproduced by a semi-analytical model that assumes merger-induced black hole host galaxy evolution.
Visible and Near-Infrared Spectroscopy of Seyfert 1 and Narrow-Line Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Rodríguez-Ardila, Alberto; Pastoriza, Miriani G.; Donzelli, Carlos J.
2000-01-01
This paper studies the continuum and emission-line properties of a sample composed of 16 normal Seyfert 1 and seven narrow-line Seyfert 1 (NLS1) galaxies using optical and near-IR CCD spectroscopy. The continuum emission of the galaxies can be described in terms of a combination of stellar population, a nonstellar continuum of power-law form, and Fe II emission. A significative difference in the optical spectral index between NLS1's and normal Seyfert 1's is observed; the latter is steeper. Most NLS1's show Fe II/Hβ ratios larger than those observed in the other Seyfert 1's. In the IRAS band, both groups of galaxies have very similar properties. We have searched for the presence of optically thin gas in the broad-line region (BLR) of the galaxies by comparing the broad O I λ8446 and Hα emission-line profiles. Our analysis show that in the NLS1's, both profiles are similar in shape and width. This result contradicts the hypothesis of thin gas emission in the high-velocity part of the BLR to explain the ``narrowness'' of broad optical permitted lines in these objects. Evidence of narrow O I λ8446 emission is found in six galaxies of our sample, implying that this line is not restricted to a pure BLR phenomenon. In the narrow-line region, we find similar luminosities in the permitted and high-ionization lines of NLS1's and normal Seyfert 1's. However, low-ionization lines such as [O I] λ6300, [O II] λ3727, and [S II] λλ6717, 6731 are intrinsically less luminous in NLS1's. Physical properties derived from density- and temperature-sensitive line ratios suggest that the [O II] and [S II] emitting zones are overlapping in normal Seyfert 1's and separated in NLS1's. Based on observations made at CASLEO. Complejo Astronómico El Leoncito (CASLEO) is operated under agreement between the Consejo Nacional de Investigaciones Científicas y técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juán.
NASA Astrophysics Data System (ADS)
Izumi, Takuma; Onoue, Masafusa; Shirakata, Hikari; Nagao, Tohru; Kohno, Kotaro; Matsuoka, Yoshiki; Imanishi, Masatoshi; Strauss, Michael A.; Kashikawa, Nobunari; Schulze, Andreas; Silverman, John D.; Fujimoto, Seiji; Harikane, Yuichi; Toba, Yoshiki; Umehata, Hideki; Nakanishi, Kouichiro; Greene, Jenny E.; Tamura, Yoichi; Taniguchi, Akio; Yamaguchi, Yuki; Goto, Tomotsugu; Hashimoto, Yasuhiro; Ikarashi, Soh; Iono, Daisuke; Iwasawa, Kazushi; Lee, Chien-Hsiu; Makiya, Ryu; Minezaki, Takeo; Tang, Ji-Jia
2018-06-01
We present our ALMA Cycle 4 measurements of the [C II] emission line and the underlying far-infrared (FIR) continuum emission from four optically low-luminosity (M1450 > -25) quasars at z ≳ 6 discovered by the Subaru Hyper Suprime Cam (HSC) survey. The [C II] line and FIR continuum luminosities lie in the ranges L_[C II] = (3.8-10.2)× 108 L_{⊙} and LFIR = (1.2-2.0) × 1011 L_{⊙}, which are at least one order of magnitude smaller than those of optically-luminous quasars at z ≳ 6. We estimate the star formation rates (SFRs) of our targets as ≃ 23-40 M_{⊙} yr-1. Their line and continuum-emitting regions are marginally resolved, and found to be comparable in size to those of optically-luminous quasars, indicating that their SFR or likely gas mass surface densities (key controlling parameter of mass accretion) are accordingly different. The L_[C II}]}/L_FIR ratios of the hosts, ≃ (2.2-8.7) × 10-3, are fully consistent with local star-forming galaxies. Using the [C II] dynamics, we derived their dynamical masses within a radius of 1.5-2.5 kpc as ≃ (1.4-8.2) × 1010 M_{⊙}. By interpreting these masses as stellar ones, we suggest that these faint quasar hosts are on or even below the star-forming main sequence at z ˜ 6, i.e., they appear to be transforming into quiescent galaxies. This is in contrast to the optically-luminous quasars at those redshifts, which show starburst-like properties. Finally, we find that the ratios of black hole mass to host galaxy dynamical mass of most of the low-luminosity quasars, including the HSC ones, are consistent with the local value. The mass ratios of the HSC quasars can be reproduced by a semi-analytical model that assumes merger-induced black hole host galaxy evolution.
NASA Astrophysics Data System (ADS)
Druett, M. K.; Zharkova, V. V.
2018-03-01
Aim. Sharp rises of hard X-ray (HXR) emission accompanied by Hα line profiles with strong red-shifts up to 4 Å from the central wavelength, often observed at the onset of flares with the Specola Solare Ticinese Telescope (STT) and the Swedish Solar Telescope (SST), are not fully explained by existing radiative models. Moreover, observations of white light (WL) and Balmer continuum emission with the Interface Region Imaging Spectrograph (IRISH) reveal strong co-temporal enhancements and are often nearly co-spatial with HXR emission. These effects indicate a fast effective source of excitation and ionisation of hydrogen atoms in flaring atmospheres associated with HXR emission. In this paper, we investigate electron beams as the agents accounting for the observed hydrogen line and continuum emission. Methods: Flaring atmospheres are considered to be produced by a 1D hydrodynamic response to the injection of an electron beam defining their kinetic temperatures, densities, and macro velocities. We simulated a radiative response in these atmospheres using a fully non-local thermodynamic equilibrium (NLTE) approach for a 5-level plus continuum hydrogen atom model, considering its excitation and ionisation by spontaneous, external, and internal diffusive radiation and by inelastic collisions with thermal and beam electrons. Simultaneous steady-state and integral radiative transfer equations in all optically thick transitions (Lyman and Balmer series) were solved iteratively for all the transitions to define their source functions with the relative accuracy of 10-5. The solutions of the radiative transfer equations were found using the L2 approximation. Resulting intensities of hydrogen line and continuum emission were also calculated for Balmer and Paschen series. Results: We find that inelastic collisions with beam electrons strongly increase excitation and ionisation of hydrogen atoms from the chromosphere to photosphere. This leads to an increase in Lyman continuum radiation, which has high optical thickness, and after the beam is off it governs hydrogen ionisation and leads to the long lasting orders of magnitude enhancement of emission in Balmer and Paschen continua. The ratio of Balmer-to-other-continuum head intensities are found to be correlated with the initial flux of the beam. The height distribution of contribution functions for Paschen continuum emission indicate a close correlation with the observations of heights of WL and HXR emission reported for limb flares. This process also leads to a strong increase of wing emission (Stark's wings) in Balmer and Paschen lines, which is superimposed on large red-shifted enhancements of Hα-Hγ line emission resulting from a downward motion by hydrodynamic shocks. The simulated line profiles are shown to fit closely the observations for various flaring events.
NASA Astrophysics Data System (ADS)
Hutchins, Ryan H. S.; Aukes, Pieter; Schiff, Sherry L.; Dittmar, Thorsten; Prairie, Yves T.; del Giorgio, Paul A.
2017-11-01
Soils export large amounts of organic matter to rivers, and there are still major uncertainties concerning the composition and reactivity of this material and its fate within the fluvial network. Here we reconstructed the pattern of movement and processing of dissolved organic matter (DOM) along a soil-stream-river continuum under summer baseflow conditions in a boreal region of Québec (Canada), using a combination of fluorescence spectra, size exclusion chromatography and ultrahigh resolution mass spectrometry. Our results show that there is a clear sequence of selective DOM degradation along the soil-stream-river continuum, which results in pronounced compositional shifts downstream. The soil-stream interface was a hot spot of DOM degradation, where biopolymers and low molecular weight (LMW) compounds were selectively removed. In contrast, processing in the stream channel was dominated by the degradation of humic-like aromatic DOM, likely driven by photolysis, with little further degradation of either biopolymers or LMW compounds. Overall, there was a high degree of coherence between the patterns observed in DOM chemical composition, optical properties, and molecular profiles, and none of these approaches pointed to measurable production of new DOM components, suggesting that the DOM pools removed during transit were likely mineralized to CO2. Our first order estimates suggest that rates of soil-derived DOM mineralization could potentially sustain over half of the measured CO2 emissions from this stream network, with mineralization of biopolymers and humic substances contributing roughly equally to these fluvial emissions.
Heating mechanism(s) for transition layers in giants
NASA Technical Reports Server (NTRS)
Bohm-Vitense, Erika; Mena-Werth, Jose
1991-01-01
The emission-line fluxes of lines originating in the lower parts of the transition layers between stellar chromospheres and coronas are studied. Simon and Drake (1989) suspect different heating mechanisms for 'hot' and cool stars. Changes in the flux ratios for the C IV to C II emission lines support this suspicion. Large C IV/C II line flux ratios appear to be indicative of magnetically controlled heating. A correlation between excess continuum flux around 1950 A and C II emission-line fluxes are confirmed for the cooler giants (late F and cooler). Excess continuum flux correlates positively with large C IV/C II line flux ratio. The excess continuum flux corresponds to an increase in temperature by several hundred degrees in layers with a mean optical depth of about 0.03. For chromospherically active stars these layers experience a mechanical flux deposition of the order of 1 percent of the total radiative flux. This flux is tentatively identified as an MHD wave flux similar to Alfven waves.
NASA Technical Reports Server (NTRS)
Hawley, Suzanne L.; Fisher, George H.; Simon, Theodore; Cully, Scott L.; Deustua, Susana E.; Jablonski, Marek; Johns-Krull, Christopher; Pettersen, Bjorn R.; Smith, Verne; Spiesman, William J.;
1995-01-01
We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics.
Stokes solitons in optical microcavities
NASA Astrophysics Data System (ADS)
Yang, Qi-Fan; Yi, Xu; Yang, Ki Youl; Vahala, Kerry
2017-01-01
Solitons are wave packets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fibre waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers, and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities, thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The discovery of a new optical soliton can impact work in other areas of photonics, including nonlinear optics and spectroscopy.
The Ionization Source in the Nucleus of M84
NASA Technical Reports Server (NTRS)
Bower, G. A.; Green, R. F.; Quillen, A. C.; Danks, A.; Malumuth, E. M.; Gull, T.; Woodgate, B.; Hutchings, J.; Joseph, C.; Kaiser, M. E.
2000-01-01
We have obtained new Hubble Space Telescope (HST) observations of M84, a nearby massive elliptical galaxy whose nucleus contains a approximately 1.5 X 10(exp 9) solar mass dark compact object, which presumably is a supermassive black hole. Our Space Telescope Imaging Spectrograph (STIS) spectrum provides the first clear detection of emission lines in the blue (e.g., [0 II] lambda 3727, HBeta and [0 III] lambda lambda4959,5007), which arise from a compact region approximately 0".28 across centered on the nucleus. Our Near Infrared Camera and MultiObject Spectrometer (NICMOS) images exhibit the best view through the prominent dust lanes evident at optical wavelengths and provide a more accurate correction for the internal extinction. The relative fluxes of the emission lines we have detected in the blue together with those detected in the wavelength range 6295 - 6867 A by Bower et al. indicate that the gas at the nucleus is photoionized by a nonstellar process, instead of hot stars. Stellar absorption features from cool stars at the nucleus are very weak. We update the spectral energy distribution of the nuclear point source and find that although it is roughly flat in most bands, the optical to UV continuum is very red, similar to the spectral energy distribution of BL Lac. Thus, the nuclear point source seen in high-resolution optical images is not a star cluster but is instead a nonstellar source. Assuming isotropic emission from this source, we estimate that the ratio of bolometric luminosity to Eddington luminosity is about 5 x 10(exp -7). However, this could be underestimated if this source is a misaligned BL Lac object, which is a possibility suggested by the spectral energy distribution and the evidence of optical variability we describe.
Time-Resolved Properties and Global Trends in dMe Flares from Simultaneous Photometry and Spectra
NASA Astrophysics Data System (ADS)
Kowalski, Adam F.
We present a homogeneous survey of near-ultraviolet (NUV) /optical line and continuum emission during twenty M dwarf flares with simultaneous, high cadence photometry and spectra. These data were obtained to study the white-light continuum components to the blue and red of the Balmer jump to break the degeneracy with fitting emission mechanisms to broadband colors and to provide constraints for radiative-hydrodynamic flare models that seek to reproduce the white-light flare emission. The main results from the continuum analysis are the following: 1) the detection of Balmer continuum (in emission) that is present during all flares, with a wide range of relative contribution to the continuum flux in the NUV; 2) a blue continuum at the peak of the photometry that is linear with wavelength from λ = 4000 - 4800Å, matched by the spectral shape of hot, blackbody emission with typical temperatures of 10 000 - 12 000 K; 3) a redder continuum apparent at wavelengths longer than Hβ; this continuum becomes relatively more important to the energy budget during the late gradual phase. The hot blackbody component and redder continuum component (which we call "the conundruum") have been detected in previous UBVR colorimetry studies of flares. With spectra, one can compare the properties and detailed timings of all three components. Using time-resolved spectra during the rise phase of three flares, we calculate the speed of an expanding flare region assuming a simple geometry; the speeds are found to be ~5- 10 km s-1 and 50 - 120 km s -1, which are strikingly consistent with the speeds at which two-ribbon flares develop on the Sun. The main results from the emission line analysis are 1) the presentation of the "time-decrement", a relation between the timescales of the Balmer series; 2) a Neupert-like relation between Ca \\pcy K and the blackbody continuum, and 3) the detection of absorption wings in the Hydrogen Balmer lines during times of peak continuum emission, indicative of hot-star spectra forming during the flare. A byproduct of this study is a new method for deriving absolute fluxes during M dwarf flare observations obtained from narrow-slit spectra or during variable weather conditions. This technique allows us to analyze the spectra and photometry independently of one another, in order to connect the spectral properties to the rise, peak, and decay phases of broadband light curve morphology. We classify the light curve morphology according to an "impulsiveness index" and find that the fast (impulsive) flares have less Balmer continuum at peak emission than the slow (gradual) flares. In the gradual phase, the energy budget of the flare spectrum during almost all flares has a larger contribution from the Hydrogen Balmer component than in the impulsive phase, suggesting that the heating and cooling processes evolve over the course of a flare. We find that, in general, the evolution of the hot blackbody is rapid, and that the blackbody temperature decreases to ~8000 K in the gradual phase. The Balmer continuum evolves more slowly than the blackbody ¨C similar to the higher order Balmer lines but faster than the lower order Balmer lines. The height of the Balmer jump increases during the gradual decay phase. We model the Balmer continuum emission using the RHD F11 model spectrum from Allred et al. (2006), but we discuss several important systematic uncertainties in relating the apparent amount of Balmer continuum to a given RHD beam model. Good fits to the shape of the RHD F11 model spectrum are not obtained at peak times, in contrast to the gradual phase. We model the blackbody component using model hot star atmospheres from Castelli & Kurucz (2004) in order to account for the effects of flux redistribution in the flare atmosphere. This modeling is motivated by observations during a secondary flare in the decay phase of a megaflare, when the newly formed flare spectrum resembled that of Vega with the Balmer continuum and lines in absorption. We model this continuum phenomenologically with the RH code using hot spots placed at high column mass in the M dwarf quiescent atmosphere; a superposition of hot spot models and the RHD model are used to explain the anti-correlation in the apparent amount of Balmer continuum in emission and the U-band light curve. We attempt to reproduce the blackbody component in self-consistent 1D radiative hydrodynamic flare models using the RADYN code. We simulate the flare using a solar-type nonthermal electron beam heating function with a total energy flux of 1012 ergs cm-2 s-1 (F12) for a duration of 5 seconds and a subsequent gradual phase. Although there is a larger amount of NUV backwarming at log mc/(1g cm-2)~0 than in the F11 model, the resulting flare continuum shape is similar to the F11 model spectrum with a larger Balmer jump and a much redder spectral shape than is seen in the observations. We do not find evidence of white-light emitting chromospheric condensations, in contrast to the previous F12 model of Livshits et al. (1981). We discuss future avenues for RHD modeling in order to produce a hot blackbody component, including the treatment of nonthermal protons in M dwarf flares.
Laser-induced chemiluminescence of NaMg
NASA Astrophysics Data System (ADS)
Benard, D. J.; Michels, H. H.
1982-03-01
An unstructured continuum emission around 670 nm was observed when Mg was added to an optically pumped heat pipe containing Na and K vapor, in good agreement with ab initio calculations of the NaMg potential energy curves. The corresponding excitation spectrum showed that the incident radiation was observed by NaK molecules (X → C transitions).
Grid-Independent Compressive Imaging and Fourier Phase Retrieval
ERIC Educational Resources Information Center
Liao, Wenjing
2013-01-01
This dissertation is composed of two parts. In the first part techniques of band exclusion(BE) and local optimization(LO) are proposed to solve linear continuum inverse problems independently of the grid spacing. The second part is devoted to the Fourier phase retrieval problem. Many situations in optics, medical imaging and signal processing call…
Optical continuum generation on a silicon chip
NASA Astrophysics Data System (ADS)
Jalali, Bahram; Boyraz, Ozdal; Koonath, Prakash; Raghunathan, Varun; Indukuri, Tejaswi; Dimitropoulos, Dimitri
2005-08-01
Although the Raman effect is nearly two orders of magnitude stronger than the electronic Kerr nonlinearity in silicon, under pulsed operation regime where the pulse width is shorter than the phonon response time, Raman effect is suppressed and Kerr nonlinearity dominates. Continuum generation, made possible by the non-resonant Kerr nonlinearity, offers a technologically and economically appealing path to WDM communication at the inter-chip or intra-chip levels. We have studied this phenomenon experimentally and theoretically. Experimentally, a 2 fold spectral broadening is obtained by launching ~4ps optical pulses with 2.2GW/cm2 peak power into a conventional silicon waveguide. Theoretical calculations, that include the effect of two-photon-absorption, free carrier absorption and refractive index change indicate that up to >30 times spectral broadening is achievable in an optimized device. The broadening is due to self phase modulation and saturates due to two photon absorption. Additionally, we find that free carrier dynamics also contributes to the spectral broadening and cause the overall spectrum to be asymmetric with respect to the pump wavelength.
The total energy-momentum tensor for electromagnetic fields in a dielectric
NASA Astrophysics Data System (ADS)
Crenshaw, Michael E.
2017-08-01
Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density ρmv. Newtonian fluids can behave very much like dust with the same energy-momentum tensor. The energy and momentum conservation properties of light propagating in the vacuum were long-ago cast in the energy-momentum tensor formalism in terms of the electromagnetic energy density and electromagnetic momentum density. However, extrapolating the tensor theory of energy-momentum conservation for propagation of light in the vacuum to propagation of light in a simple linear dielectric medium has proven to be problematic and controversial. A dielectric medium is not "otherwise empty" and it is typically assumed that optically induced forces accelerate and decelerate nanoscopic material constituents of the dielectric. The corresponding material energy-momentum tensor is added to the electromagnetic energy-momentum tensor to form the total energy-momentum tensor, thereby ensuring that the total energy and the total momentum of the thermodynamically closed system remain constant in time.
NASA Astrophysics Data System (ADS)
Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.
2017-01-01
The CO2 absorption continuum near 2.3 μm is determined for a series of sub atmospheric pressures (250-750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO2 continuum was obtained as the difference between the CO2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm-1. Following the results of the preceding analysis of the CO2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer 10.1016/j.jqsrt.2016.07.002, a CO2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10-8 cm-1 amagat-2 between 4320 and 4380 cm-1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting
We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relationsmore » obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.« less
Surveying Low-Mass Star Formation with the Submillimeter Array
NASA Astrophysics Data System (ADS)
Dunham, Michael
2018-01-01
Large astronomical surveys yield important statistical information that can’t be derived from single-object and small-number surveys. In this talk I will review two recent surveys in low-mass star formation undertaken by the Submillimeter Array (SMA): a millimeter continuum survey of disks surrounding variably accreting young stars, and a complete continuum and molecular line survey of all protostars in the nearby Perseus Molecular Cloud. I will highlight several new insights into the processes by which low-mass stars gain their mass that have resulted from the statistical power of these surveys.
ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Survey Description
NASA Astrophysics Data System (ADS)
Walter, Fabian; Decarli, Roberto; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Inami, Hanae; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff
2016-12-01
We present the rationale for and the observational description of ASPECS: the ALMA SPECtroscopic Survey in the Hubble Ultra-Deep Field (UDF), the cosmological deep field that has the deepest multi-wavelength data available. Our overarching goal is to obtain an unbiased census of molecular gas and dust continuum emission in high-redshift (z > 0.5) galaxies. The ˜1‧ region covered within the UDF was chosen to overlap with the deepest available imaging from the Hubble Space Telescope. Our ALMA observations consist of full frequency scans in band 3 (84-115 GHz) and band 6 (212-272 GHz) at approximately uniform line sensitivity ({L}{CO}\\prime ˜ 2 × 109 K km s-1 pc2), and continuum noise levels of 3.8 μJy beam-1 and 12.7 μJy beam-1, respectively. The molecular surveys cover the different rotational transitions of the CO molecule, leading to essentially full redshift coverage. The [C II] emission line is also covered at redshifts 6.0\\lt z\\lt 8.0. We present a customized algorithm to identify line candidates in the molecular line scans and quantify our ability to recover artificial sources from our data. Based on whether multiple CO lines are detected, and whether optical spectroscopic redshifts as well as optical counterparts exist, we constrain the most likely line identification. We report 10 (11) CO line candidates in the 3 mm (1 mm) band, and our statistical analysis shows that <4 of these (in each band) are likely spurious. Less than one-third of the total CO flux in the low-J CO line candidates are from sources that are not associated with an optical/NIR counterpart. We also present continuum maps of both the band 3 and band 6 observations. The data presented here form the basis of a number of dedicated studies that are presented in subsequent papers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ran; Wu, Xue-Bing; Jiang, Linhua
We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μ Jy beam{sup −1} and a total flux density of 88 ± 19 μ Jy. The position of themore » radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be T {sub B} = (1.6 ± 1.2) × 10{sup 7} K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.« less
Calibration of the High Energy Replicated Optics to Explore the Sun (HEROES) Hard X-ray Telescope
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Gaskin, Jessica; Christe, Steven; Shih, Albert; Tennant, Allyn; Swartz, Doug; Kilaru, Kiranmayee; Elsner, Ron; Kolodziejczak, Jeff; Ramsey, Brian
2014-01-01
On September 21-22, 2013, the High Energy Replicated Optics to Explore the Sun (HEROES) hard X-ray telescope, flew as a balloon payload from Ft. Sumner, N.M. HEROES observed the Sun, the black hole binary GRS 1915+105, and the Crab Nebula during its 27 hour flight. In this paper we describe laboratory calibration measurements of the HEROES detectors using line and continuum sources, applications of these measurements to define channel to energy (gain) corrections for observed events and to define detector response matrices. We characterize the HEROES X-ray grazing incidence optics using measurements taken in the Stray-Light (SLF) Facility in Huntsville, AL, and using ray traces.
An optical flow-based state-space model of the vocal folds.
Granados, Alba; Brunskog, Jonas
2017-06-01
High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.
Photometric Variations of Solar-type Stars: Results of the Cloudcroft Survey
NASA Technical Reports Server (NTRS)
Giampapa, M. S.
1984-01-01
The results of a synoptic program to search for the occurrence of photometric variability in solar type stars as seen in continuum band photometry are summarized. The survey disclosed the existence of photometric variability in solar type stars that is related to the presence of spots on the stellar surface. The observed variability detected in solar type stars is at enhanced levels compared to that observed for the Sun.
NASA Astrophysics Data System (ADS)
Fabbiano, G.; Elvis, M.; Paggi, A.; Karovska, M.; Maksym, W. P.; Raymond, J.; Risaliti, G.; Wang, Junfeng
2017-06-01
We report the discovery of kiloparsec-scale diffuse emission in both the hard continuum (3-6 keV) and in the Fe-Kα line in the Compton thick (CT) Seyfert galaxy ESO 428-G014. This extended hard component contains at least ˜24% of the observed 3-8 keV emission, and follows the direction of the extended optical line emission (ionization cone) and radio jet. The extended hard component has ˜0.5% of the intrinsic 2-10 keV luminosity within the bi-cones. A uniform scattering medium of density 1 {{cm}}-3 would produce this luminosity in a 1 kpc path length in the bi-cones. Alternatively, higher column density molecular clouds in the disk of ESO 428-G014 may be responsible for these components. The continuum may also be enhanced by the acceleration of charged particles in the radio jet. The steeper spectrum (Γ ˜ 1.7 ± 0.4) of the hard continuum outside of the central 1.″5 radius nuclear region suggests a contribution of scattered/fluorescent intrinsic Seyfert emission. Ultrafast nuclear outflows cannot explain the extended Fe-Kα emission. This discovery suggests that we may need to revise the picture at the base of our interpretation of CT AGN spectra.
Detection of Heating Processes in Coronal Loops by Soft X-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Kawate, Tomoko; Narukage, Noriyuki; Ishikawa, Shin-nosuke; Imada, Shinsuke
2017-08-01
Imaging and Spectroscopic observations in the soft X-ray band will open a new window of the heating/acceleration/transport processes in the solar corona. The soft X-ray spectrum between 0.5 and 10 keV consists of the electron thermal free-free continuum and hot coronal lines such as O VIII, Fe XVII, Mg XI, Si XVII. Intensity of free-free continuum emission is not affected by the population of ions, whereas line intensities especially from highly ionized species have a sensitivity of the timescale of ionization/recombination processes. Thus, spectroscopic observations of both continuum and line intensities have a capability of diagnostics of heating/cooling timescales. We perform a 1D hydrodynamic simulation coupled with the time-dependent ionization, and calculate continuum and line intensities under different heat input conditions in a coronal loop. We also examine the differential emission measure of the coronal loop from the time-integrated soft x-ray spectra. As a result, line intensity shows a departure from the ionization equilibrium and shows different responses depending on the frequency of the heat input. Solar soft X-ray spectroscopic imager will be mounted in the sounding rocket experiment of the Focusing Optics X-ray Solar Imager (FOXSI). This observation will deepen our understanding of heating processes to solve the “coronal heating problem”.
Impact of line parameter database and continuum absorption on GOSAT TIR methane retrieval
NASA Astrophysics Data System (ADS)
Yamada, A.; Saitoh, N.; Nonogaki, R.; Imasu, R.; Shiomi, K.; Kuze, A.
2017-12-01
The current methane retrieval algorithm (V1) at wavenumber range from 1210 cm-1 to 1360 cm-1 including CH4 ν 4 band from the thermal infrared (TIR) band of Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT) uses LBLRTM V12.1 with AER V3.1 line database and MT CKD 2.5.2 continuum absorption model to calculate optical depth. Since line parameter databases have been updated and the continuum absorption may have large uncertainty, the purpose of this study is to assess the impact on {CH}4 retrieval from the choice of line parameter databases and the uncertainty of continuum absorption. We retrieved {CH}4 profiles with replacement of line parameter database from AER V3.1 to AER v1.0, HITRAN 2004, HITRAN 2008, AER V3.2, or HITRAN 2012 (Rothman et al. 2005, 2009, and 2013. Clough et al., 2005), we assumed 10% larger continuum absorption coefficients and 50% larger temperature dependent coefficient of continuum absorption based on the report by Paynter and Ramaswamy (2014). We compared the retrieved CH4 with the HIPPO CH4 observation (Wofsy et al., 2012). The difference from HIPPO observation of AER V3.2 was the smallest and 24.1 ± 45.9 ppbv. The differences of AER V1.0, HITRAN 2004, HITRAN 2008, and HITRAN 2012 were 35.6 ± 46.5 ppbv, 37.6 ± 46.3 ppbv, 32.1 ± 46.1 ppbv, and 35.2 ± 46.0 ppbv, respectively. Maximum {CH}4 retrieval differences were -0.4 ppbv at the layer of 314 hPa when we used 10% larger absorption coefficients of {H}2O foreign continuum. Comparing AER V3.2 case to HITRAN 2008 case, the line coupling effect reduced difference by 8.0 ppbv. Line coupling effects were important for GOSAT TIR {CH}4 retrieval. Effects from the uncertainty of continuum absorption were negligible small for GOSAT TIR CH4 retrieval.
The inter-outburst behavior of cataclysmic variables
NASA Technical Reports Server (NTRS)
Szkody, Paula; Mattei, Janet A.; Waagen, Elizabeth O.; Stablein, Clay
1990-01-01
Existing International Ultraviolet Explorer (IUE) and American Association of Variable Star Observers (AAVSO) archive data was used to accomplish a large scale study of what happens to the ultraviolet flux of accretion disk systems during the quiescent intervals between outbursts and how it relates to the preceding outburst characteristics of amplitude and width. The data sample involved multiple IUE observations for 16 dwarf novae and 8 novae along with existing optical coverage. Results indicate that most systems show correlated ultraviolet (UV) flux behavior with interoutburst phase, with 60 percent of the dwarf novae and 50 percent of the novae having decreasing flux trends while 33 percent of the dwarf novae and 38 percent of the novae show rising UV flux during the quiescent interval. All of the dwarf novae with decreasing UV fluxes at 1475A have orbital periods longer than 4.4 hours, while all (except BV Cen) with flat or rising fluxes at 1475A have orbital periods less than two hours. There are not widespread correlations of the UV fluxes with the amplitude of the preceding outburst and no correlations with the width of the outburst. From a small sample (7) that have relatively large quiescent V magnitude changes between the IUE observations, most show a strong correlation between the UV and optical continuum. Interpretation of the results is complicated by not being able to determine how much the white dwarf contributes to the ultraviolet flux. However, it is now evident that noticeable changes are occurring in the hot zones in accreting systems long after the outburst, and not only for systems that are dominated by the white dwarf. Whether these differences are due to different outburst mechanisms or to changes on white dwarfs which provide varying contributions to the UV flux remains to be determined.
NASA Astrophysics Data System (ADS)
Shishkovsky, Laura; Strader, Jay; Chomiuk, Laura; Bahramian, Arash; Tremou, Evangelia; Li, Kwan-Lok; Salinas, Ricardo; Tudor, Vlad; Miller-Jones, James C. A.; Maccarone, Thomas J.; Heinke, Craig O.; Sivakoff, Gregory R.
2018-03-01
We present the discovery and characterization of a radio-bright binary in the Galactic globular cluster M10. First identified in deep radio continuum data from the Karl G. Jansky Very Large Array, M10-VLA1 has a flux density of 27 ± 4 μJy at 7.4 GHz and a flat-to-inverted radio spectrum. Chandra imaging shows an X-ray source with L X ≈ 1031 erg s‑1 matching the location of the radio source. This places M10-VLA1 within the scatter of the radio-X-ray luminosity correlation for quiescent stellar-mass black holes, and a black hole X-ray binary is a viable explanation for this system. The radio and X-ray properties of the source disfavor, but do not rule out, identification as an accreting neutron star or white dwarf system. Optical imaging from the Hubble Space Telescope and spectroscopy from the SOAR telescope show that the system has an orbital period of 3.339 days and an unusual “red straggler” component: an evolved star found redward of the M10 red giant branch. These data also show UV/optical variability and double-peaked Hα emission characteristic of an accretion disk. However, SOAR spectroscopic monitoring reveals that the velocity semi-amplitude of the red straggler is low. We conclude that M10-VLA1 is most likely either a quiescent black hole X-ray binary with a rather face-on (i < 4°) orientation or an unusual flaring RS Canum Venaticorum variable-type active binary, and discuss future observations that could distinguish between these possibilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapovalova, A. I.; Burenkov, A. N.; Zhdanova, V. E.
2016-02-15
We report the results of the first long-term (1990–2014) optical spectrophotometric monitoring of a binary black hole candidate QSO E1821+643, a low-redshift, high-luminosity, radio-quiet quasar. In the monitored period, the continua and Hγ fluxes changed about two times, while the Hβ flux changed about 1.4 times. We found periodical variations in the photometric flux with periods of 1200, 1850, and 4000 days, and 4500-day periodicity in the spectroscopic variations. However, the periodicity of 4000–4500 days covers only one cycle of variation and should be confirmed with a longer monitoring campaign. There is an indication of the period around 1300 daysmore » in the spectroscopic light curves, buts with small significance level, while the 1850-day period could not be clearly identified in the spectroscopic light curves. The line profiles have not significantly changed, showing an important red asymmetry and broad line peak redshifted around +1000 km s{sup −1}. However, Hβ shows a broader mean profile and has a larger time lag (τ ∼ 120 days) than Hγ (τ ∼ 60 days). We estimate that the mass of the black hole is ∼2.6 × 10{sup 9} M{sub ⊙}. The obtained results are discussed in the frame of the binary black hole hypothesis. To explain the periodicity in the flux variability and high redshift of the broad lines, we discuss a scenario where dense, gas-rich, cloudy-like structures are orbiting around a recoiling black hole.« less
Analysis of cataclysmic variable GSC02197-00886 evolution
NASA Astrophysics Data System (ADS)
Mitrofanova, A. A.; Borisov, N. V.; Shimansky, V. V.
2014-01-01
We present the spectral analysis of the physical state and evolution of the WZSge-type cataclysmic variable GSC02197-00886. The spectra of the system, covering the total orbital period at the time of the outburst on May 8, 2010, at the late relaxation stage, and in the quiescent state, were obtained at the SAO RAS 6-m BTA telescope in 2010-2012. From the absorption and emission HI, He I, and Fe II lines, we have determined the radial velocities for all the nights of observations and constructed the maps of Doppler tomography for the quiescent state. It was found that during the outburst the spectra of the object were formed in an optically thick accretion disk with an effective temperature of T eff ≈ 45 000 K and in a hotter boundary layer. During the relaxation of the system, the accretion disk gradually became optically thinner in the continuum and in the emission lines. In the quiescent state (July 2012), the continuous spectrum was dominated by the radiation of the cooling white dwarf with T eff = 18 000 K. The emission lines are formed on the surface of the cool star by the X-ray irradiation of the 1RXSJ213807.1+261958 source. We propose a method for determining the parameters of the white dwarf, based on the numerical modeling of the system spectra in the quiescent state and their comparison with the observed spectra. It is shown that the effective temperature of white dwarf has decreased by Δ T eff = 6000 K during the relaxation from August 2010 to July 2012. We have obtained a set of parameters for GSC02197-00886 and shown their good agreement with the average parameters of the W Z Sge-type systems, presented in the literature.
An UXor among FUors: Extinction-related Brightness Variations of the Young Eruptive Star V582 Aur
NASA Astrophysics Data System (ADS)
Ábrahám, P.; Kóspál, Á.; Kun, M.; Fehér, O.; Zsidi, G.; Acosta-Pulido, J. A.; Carnerero, M. I.; García-Álvarez, D.; Moór, A.; Cseh, B.; Hajdu, G.; Hanyecz, O.; Kelemen, J.; Kriskovics, L.; Marton, G.; Mező, Gy.; Molnár, L.; Ordasi, A.; Rodríguez-Coira, G.; Sárneczky, K.; Sódor, Á.; Szakáts, R.; Szegedi-Elek, E.; Szing, A.; Farkas-Takács, A.; Vida, K.; Vinkó, J.
2018-01-01
V582 Aur is an FU Ori-type young eruptive star in outburst since ∼1985. The eruption is currently in a relatively constant plateau phase, with photometric and spectroscopic variability superimposed. Here we will characterize the progenitor of the outbursting object, explore its environment, and analyze the temporal evolution of the eruption. We are particularly interested in the physical origin of the two deep photometric dips, one that occurred in 2012 and one that is ongoing since 2016. We collected archival photographic plates and carried out new optical, infrared, and millimeter-wave photometric and spectroscopic observations between 2010 and 2018, with a high sampling rate during the current minimum. Besides analyzing the color changes during fading, we compiled multiepoch spectral energy distributions and fitted them with a simple accretion disk model. Based on pre-outburst data and a millimeter continuum measurement, we suggest that the progenitor of the V582 Aur outburst is a low-mass T Tauri star with average properties. The mass of an unresolved circumstellar structure, probably a disk, is 0.04 M ⊙. The optical and near-infrared spectra demonstrate the presence of hydrogen and metallic lines, show the CO band head in absorption, and exhibit a variable Hα profile. The color variations strongly indicate that both the ∼1 yr long brightness dip in 2012 and the current minimum since 2016 are caused by increased extinction along the line of sight. According to our accretion disk models, the reddening changed from A V = 4.5 to 12.5 mag, while the accretion rate remained practically constant. Similarly to the models of the UXor phenomenon of intermediate- and low-mass young stars, orbiting disk structures could be responsible for the eclipses.
IR Variability of Eta Carinae: The 2009 Event
NASA Astrophysics Data System (ADS)
Smith, Nathan
2008-08-01
Every 5.5 years, η Carinae experiences a dramatic ``spectroscopic event'' when high-excitation lines in its UV, optical, and IR spectrum disappear, and its hard X-ray and radio continuum flux crash. This periodicity has been attributed to an eccentric binary system with a shell ejection occurring at periastron, and the next periastron event will occur in January 2009. The last event in June/July 2003 was poorly observed because the star was very low in the sky, but this next event is perfectly suited for an intense ground-based monitoring campaign. Mid-IR images and spectra with T-ReCS provide a direct measure of changes in the current bolometric luminosity and a direct measure of the mass in dust formation episodes that may occur at periastron in the colliding wind shock. Near-IR emission lines trace related changes in the post-event wind and ionization changes in the circumstellar environment needed to test specific models for the cause of η Car's variability as it recovers from its recent ``event''. Because the nebular geometry is known very well from previous observations in this program, monitoring the changes in nebular ionization will yield a 3-D map of the changing asymmetric UV radiation field geometry in the binary system, and the first estimate of the orientation of its orbit.
The corona of the broad-line radio galaxy 3C 390.3
Lohfink, A. M.; Ogle, P.; Tombesi, F.; ...
2015-11-13
We present the results from a joint Suzaku/NuSTAR broadband spectral analysis of 3C 390.3. The high quality data enables us to clearly separate the primary continuum from the reprocessed components allowing us to detect a high energy spectral cut-off (more » $${E}_{\\mathrm{cut}}={117}_{-14}^{+18}$$ keV), and to place constraints on the Comptonization parameters of the primary continuum for the first time. The hard over soft compactness is $${69}_{-24}^{+124}$$ and the optical depth is $${4.1}_{-3.6}^{+0.5},$$ this leads to an electron temperature of $${30}_{-8}^{+32}$$ keV. Expanding our study of the Comptonization spectrum to the optical/UV by studying the simultaneous Swift-UVOT data, we find indications that the compactness of the corona allows only a small fraction of the total UV/optical flux to be Comptonized. Our analysis of the reprocessed emission show that 3C 390.3 only has a small amount of reflection (R ~ 0.3), and of that the vast majority is from distant neutral matter. Furthermore, we also discover a soft-X-ray excess in the source, which can be described by a weak ionized reflection component from the inner parts of the accretion disk. In addition to the backscattered emission, we also detect the highly ionized iron emission lines Fe xxv and Fe xxvi.« less
Kityk, Andriy V
2012-03-22
Long-range-corrected (LC) DFT/TDDFT methods may provide adequate description of ground and excited state properties; however, accuracy of such an approach depends much on a range separation (exchange screening) representing adjustable model parameter. Its relation to a size or specific of molecular systems has been explored in numerous studies, whereas the effect of solvent environment is usually ignored during the evaluation of state properties. To benchmark and assess the quality of the LC-DFT/TDDFT formalism, we report the optical absorption and fluorescence emission energies of organic heterocyclic isomers, DPIPQ and PTNA, calculated by LC-BLYP DFT/TDDFT method in the polarizable continuum (PCM) approach. The calculations are compared with the optical absorption and fluorescence spectra measured in organic solvents of different polarity. Despite a considerable structural difference, both dyes exhibit quite similar range separations being somewhat different for the optical absorption and fluorescence emission processes. Properly parametrized LC-BLYP xc-potential well reproduces basic features of the optical absorption spectra including the electronic transitions to higher excited states. The DFT/TDDFT/PCM analysis correctly predicts the solvation trends although solvatochromic shifts of the electronic transition energies appear to be evidently underestimated in most cases, especially for the fluorescence emission. Considering the discrepancy between the experiment and theory, evaluated state dipole moments and solvation corrections to the exchange screening are analyzed. The results of the present study emphasize the importance of a solvent-dependent range separation in DFT/TDDFT/PCM calculations for investigating excited state properties. © 2012 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almeyda, Triana; Robinson, Andrew; Richmond, Michael
The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the codemore » computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.« less
An X-Ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Chiang, James; White, Nicholas E. (Technical Monitor)
2002-01-01
Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert. galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, and Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubifiski, and Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can, in principle, be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the heretofore poorly measured hard X-ray continuum above approximately 50 keV in type 1 Seyfert galaxies. Conversely, forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft gamma-ray telescopes, such as those aboard the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.
Rest-frame Optical Spectra and Black Hole Masses of 3 < z < 6 Quasars
NASA Astrophysics Data System (ADS)
Jun, Hyunsung David; Im, Myungshin; Lee, Hyung Mok; Ohyama, Youichi; Woo, Jong-Hak; Fan, Xiaohui; Goto, Tomotsugu; Kim, Dohyeong; Kim, Ji Hoon; Kim, Minjin; Lee, Myung Gyoon; Nakagawa, Takao; Pearson, Chris; Serjeant, Stephen
2015-06-01
We present the rest-frame optical spectral properties of 155 luminous quasars at 3.3 < z < 6.4 taken with the AKARI space telescope, including the first detection of the Hα emission line as far out as z ∼ 6. We extend the scaling relation between the rest-frame optical continuum and the line luminosity of active galactic nuclei (AGNs) to the high-luminosity, high-redshift regime that has rarely been probed before. Remarkably, we find that a single log-linear relation can be applied to the 5100 Å and Hα AGN luminosities over a wide range of luminosity (1042 < L5100 < 1047 ergs s-1) or redshift (0 < z < 6), suggesting that the physical mechanism governing this relation is unchanged from z = 0 to 6, over five decades in luminosity. Similar scaling relations are found between the optical and the UV continuum luminosities or line widths. Applying the scaling relations to the Hβ black hole (BH) mass (MBH) estimator of local AGNs, we derive the MBH estimators based on the Hα, Mg ii, and C iv lines, finding that the UV-line-based masses are overall consistent with the Balmer-line-based, but with a large intrinsic scatter of 0.40 dex for the C iv estimates. Our 43 MBH estimates from Hα confirm the existence of BHs as massive as ∼ 1010 M⊙ out to z ∼ 5 and provide a secure footing for previous results from Mg ii-line-based studies that a rapid MBH growth has occurred in the early universe.
NASA Astrophysics Data System (ADS)
Eisner, J. A.; Arce, H. G.; Ballering, N. P.; Bally, J.; Andrews, S. M.; Boyden, R. D.; Di Francesco, J.; Fang, M.; Johnstone, D.; Kim, J. S.; Mann, R. K.; Matthews, B.; Pascucci, I.; Ricci, L.; Sheehan, P. D.; Williams, J. P.
2018-06-01
We present Atacama Large Millimeter Array 850 μm continuum observations of the Orion Nebula Cluster that provide the highest angular resolution (∼0.″1 ≈ 40 au) and deepest sensitivity (∼0.1 mJy) of the region to date. We mosaicked a field containing ∼225 optical or near-IR-identified young stars, ∼60 of which are also optically identified “proplyds.” We detect continuum emission at 850 μm toward ∼80% of the proplyd sample, and ∼50% of the larger sample of previously identified cluster members. Detected objects have fluxes of ∼0.5–80 mJy. We remove submillimeter flux due to free–free emission in some objects, leaving a sample of sources detected in dust emission. Under standard assumptions of isothermal, optically thin disks, submillimeter fluxes correspond to dust masses of ∼0.5–80 Earth masses. We measure the distribution of disk sizes, and find that disks in this region are particularly compact. Such compact disks are likely to be significantly optically thick. The distributions of submillimeter flux and inferred disk size indicate smaller, lower-flux disks than in lower-density star-forming regions of similar age. Measured disk flux is correlated weakly with stellar mass, contrary to studies in other star-forming regions that found steeper correlations. We find a correlation between disk flux and distance from the massive star θ 1 Ori C, suggesting that disk properties in this region are influenced strongly by the rich cluster environment.
Ultraviolet spectrophotometry of three LINERs
NASA Technical Reports Server (NTRS)
Goodrich, R. W.; Keel, W. C.
1986-01-01
Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.
A multi-wavelength investigation of Seyfert 1.8 and 1.9 galaxies
NASA Astrophysics Data System (ADS)
Trippe, Margaret L.
We focus on determining the underlying physical cause of a Seyfert galaxy's appearance as type a 1.8 or 1.9. Are these "intermediate" Seyfert types typical Seyfert 1 nuclei reddened by central dusty tori or by nuclear dust lanes/spirals in the narrow-line region? Or, are they similar to NGC 2992, objects that have intrinsically weak continua and weak broad emission lines? Our study compares measurements of the reddenings of the narrow and broad-line regions with each other and with the X-ray column derived from XMM Newton 0.5--10 keV spectra to determine the presence and location of dust in the line of sight for a sample of 35 Seyfert 1.8s and 1.9s. From this, we find that Seyfert 1.9s are an almost equal mix of low-flux objects with unreddened broad line regions, and objects with broad line regions reddened by an internal dust source, either the torus or dust structures on the same size scale as the narrow line region. The 1.9s that recieved this designation due to a low continuum flux state showed variable type classifications. All three of the Seyfert 1.8s in our study are probably in low continuum states. Many objects have been misclassified as Seyfert 1.8/1.9s in the past, probably due to improper [N II]/Halpha deconvolution leading to a false detection of weak broad Halpha. INDEX WORDS: Active galaxies, Seyfert galaxies, Optical spectroscopy, X-ray spectroscopy, Astronomical dust
High-sensitivity survey of a pole-on disk-jet system around high mass YSOs
NASA Astrophysics Data System (ADS)
Motogi, Kazuhito; Walsh, Andrew; Hirota, Tomoya; Niinuma, Kotaro; Sugiyama, Koichiro; Fujisawa, Kenta; Yonekura, Yoshinori; Honma, Mareki; Sorai, Kazuo
2013-10-01
Recent theoretical works have suggested that detailed evolution of a high mass protostellar object highly depends on effective accretion rate and exact accretion geometry. Observational studies of the innermost accretion properties are, thus, an essential task in the ALMA era. High mass protostellar objects with a pole-on disk-jet system are, hence, excellent targets for such a study, since an outflow cavity reduces the total optical depth along the line-of-sight. Our previous studies have shown that some singular water maser sources called dominant blue-shifted masers (DBSMs) are plausible candidates of pole-on disk jet systems. There are, however, still two major problems as follows, (1) Some DBSMs can be a "fake", because of the significant variability of water masers. (2) It is difficult to verify the sources are really in pole-on geometry. The first problems can be checked with the thermal counterparts, and the second problem can be tested by morphologies of the class II CH3OH maser sources. We propose a high-sensitivity survey of real “pole-on” disk-jet systems towards the southern ten DBSMs. This new survey consists of multi-band observations between C/X/K/W bands. We will start from the C/X-continuum survey in this semester. Scientific goals in this semester are, (1) surveying radio jet activities with the C/X continuum emission, (2) estimating the inclination angle of disk-jet systems based on the morphologies of the CH3OH maser spots. (3) determining the exact positions of driving sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, Zulema; Beaklini, Pedro P. B.; Falceta-Gonçalves, Diego, E-mail: zulema.abraham@iag.usp.br
We report observations of η Carinae obtained with ALMA in the continuum of 100, 230, 280, and 660 GHz in 2012 November, with a resolution that varied from 2.''88 to 0.''45 for the lower and higher frequencies, respectively. The source is not resolved, even at the highest frequency; its spectrum is characteristic of thermal bremsstrahlung of a compact source, but different from the spectrum of optically thin wind. The recombination lines H42α, He42α, H40α, He40α, H50β, H28α, He28α, H21α, and He21α were also detected, and their intensities reveal non-local thermodynamic equilibrium effects. We found that the line profiles could onlymore » be fit by an expanding shell of dense and ionized gas, which produces a slow shock in the surroundings of η Carinae. Combined with fittings to the continuum, we were able to constrain the shell size, radius, density, temperature, and velocity. The detection of the He recombination lines is compatible with the high-temperature gas and requires a high-energy ionizing photon flux, which must be provided by the companion star. The mass-loss rate and wind velocity, necessary to explain the formation of the shell, are compatible with an luminous blue variable eruption. The position, velocity, and physical parameters of the shell coincide with those of the Weigelt blobs. The dynamics found for the expanding shell correspond to matter ejected by η Carinae in 1941 in an event similar to that which formed the Little Homunculus; for that reason, we called the new ejecta the 'Baby Homunculus'.« less
27-Year R&D 100 Awards Winning Streak - Continuum Magazine | NREL
the real-time quantum efficiency system. Photo by Dennis Schroeder, NREL 27-Year R&D 100 Awards Mehta, and Peter Rupnowski at the controls of the Optical Cavity Furnace. Photo by Dennis Schroeder signals in solar cells used with Innovalight's Silicon Ink. Photo by Dennis Schroeder, NREL Problem: For
Modal kinematics for multisection continuum arms.
Godage, Isuru S; Medrano-Cerda, Gustavo A; Branson, David T; Guglielmino, Emanuele; Caldwell, Darwin G
2015-05-13
This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs.
ERIC Educational Resources Information Center
Pierce, Norma F.
Studies have indicated that mature women maintain a permanent role identity along two dimensions, i.e., traditional women or nontraditional women. However, the lifeset of many mature adult women may be on the continuum between these two positions, i.e., in the position of "deferred achiever." The personality variables and sex-role orientations of…
Breathers and rogue waves in a Heisenberg ferromagnetic spin chain or an alpha helical protein
NASA Astrophysics Data System (ADS)
Yang, Jin-Wei; Gao, Yi-Tian; Su, Chuan-Qi; Wang, Qi-Min; Lan, Zhong-Zhou
2017-07-01
In this paper, a fourth-order variable-coefficient nonlinear Schrödinger equation for a one-dimensional continuum anisotropic Heisenberg ferromagnetic spin chain or an alpha helical protein has been investigated. Breathers and rogue waves are constructed via the Darboux transformation and generalized Darboux transformation, respectively. Results of the breathers and rogue waves are presented: (1) The first- and second-order Akhmediev breathers and Kuznetsov-Ma solitons are presented with different values of variable coefficients which are related to the energy transfer or higher-order excitations and interactions in the helical protein, or related to the spin excitations resulting from the lowest order continuum approximation and octupole-dipole interaction in a Heisenberg ferromagnetic spin chain, and the nonlinear periodic breathers resulting from the Akhmediev breathers are studied as well; (2) For the first- and second-order rogue waves, we find that they can be split into many similar components when the variable coefficients are polynomial functions of time; (3) Rogue waves can also be split when the variable coefficients are hyperbolic secant functions of time, but the profile of each component in such a case is different.
The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission
Damé, Luc; Meftah, Mustapha; Hauchecorne, Alain; Keckhut, Philippe; Sarkissian, Alain; Marchand, Marion; Irbah, Abdenour; Quémerais, Éric; Bekki, Slimane; Foujols, Thomas; Kretzschmar, Matthieu; Cessateur, Gaël; Shapiro, Alexander; Schmutz, Werner; Kuzin, Sergey; Slemzin, Vladimir; Urnov, Alexander; Bogachev, Sergey; Merayo, José; Brauer, Peter; Tsinganos, Kanaris; Paschalis, Antonis; Mahrous, Ayman; Khaled, Safinaz; Ghitas, Ahmed; Marzouk, Besheir; Zaki, Amal; Hady, Ahmed A.; Kariyappa, Rangaiah
2013-01-01
We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200–220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017–2018. PMID:25685424
NASA Technical Reports Server (NTRS)
Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.
2004-01-01
An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below -1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess then appears to be an artefact of absorption of the underlying continuum while the core soft emission can be attributed to re- combination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.
The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission.
Damé, Luc
2013-05-01
We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017-2018.
On the design of the NIF Continuum Spectrometer
NASA Astrophysics Data System (ADS)
Thorn, D. B.; MacPhee, A.; Ayers, J.; Galbraith, J.; Hardy, C. M.; Izumi, N.; Bradley, D. K.; Pickworth, L. A.; Bachmann, B.; Kozioziemski, B.; Landen, O.; Clark, D.; Schneider, M. B.; Hill, K. W.; Bitter, M.; Nagel, S.; Bell, P. M.; Person, S.; Khater, H. Y.; Smith, C.; Kilkenny, J.
2017-08-01
In inertial confinement fusion (ICF) experiments on the National Ignition Facility (NIF), measurements of average ion temperature using DT neutron time of flight broadening and of DD neutrons do not show the same apparent temperature. Some of this may be due to time and space dependent temperature profiles in the imploding capsule which are not taken into account in the analysis. As such, we are attempting to measure the electron temperature by recording the free-free electron-ion scattering-spectrum from the tail of the Maxwellian temperature distribution. This will be accomplished with the new NIF Continuum Spectrometer (ConSpec) which spans the x-ray range of 20 keV to 30 keV (where any opacity corrections from the remaining mass of the ablator shell are negligible) and will be sensitive to temperatures between ˜ 3 keV and 6 keV. The optical design of the ConSpec is designed to be adaptable to an x-ray streak camera to record time resolved free-free electron continuum spectra for direct measurement of the dT/dt evolution across the burn width of a DT plasma. The spectrometer is a conically bent Bragg crystal in a focusing geometry that allows for the dispersion plane to be perpendicular to the spectrometer axis. Additionally, to address the spatial temperature dependence, both time integrated and time resolved pinhole and penumbral imaging will be provided along the same polar angle. The optical and mechanical design of the instrument is presented along with estimates for the dispersion, solid angle, photometric sensitivity, and performance.
FAR-ULTRAVIOLET OBSERVATIONS OF THE SPICA NEBULA AND THE INTERACTION ZONE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yeon-Ju; Min, Kyoung-Wook; Lim, Tae-Ho
2013-09-01
We report the analysis results of far-ultraviolet (FUV) observations, made for a broad region around {alpha} Vir (Spica) including the interaction zone of Loop I and the Local Bubble. The whole region was optically thin and a general correlation was seen between the FUV continuum intensity and the dust extinction, except in the neighborhood of the bright central star, indicating the dust scattering nature of the FUV continuum. We performed Monte Carlo radiative transfer simulations to obtain the optical parameters related to the dust scattering as well as to the geometrical structure of the region. The albedo and asymmetry factormore » were found to be 0.38 {+-} 0.06 and 0.46 {+-} 0.06, respectively, in good agreement with the Milky Way dust grain models. The distance to and the thickness of the interaction zone were estimated to be 70{sup +4}{sub -8} pc and 40{sup +8}{sub -10} pc, respectively. The diffuse FUV continuum in the northern region above Spica was mostly the result of scattering of the starlight from Spica, while that in the southern region was mainly due to the background stars. The C IV {lambda}{lambda}1548, 1551 emission was found throughout the whole region, in contrast to the Si II* {lambda}1532 emission which was bright only within the H II region. This indicates that the C IV line arises mostly at the shell boundaries of the bubbles, with a larger portion likely from the Loop I than from the Local Bubble side, whereas the Si II* line is from the photoionized Spica Nebula.« less
Eight to 14 μm spectral monitoring of long period variable stars with GLADYS.
NASA Astrophysics Data System (ADS)
Levan, P. D.; Sloan, G.; Grasdalen, G.
The authors describe an ongoing program of spectral monitoring of long period variable stars using GLADYS, a long slit prism spectrometer that employs a 58x62 pixel Si:Ga detector array. The goal is to compare the equivalent widths of the SiC emission features in carbon-rich circumstellar shells, and the silicate emission features in oxygen-rich circumstellar stars, obtained over different phases of the continuum variability cycle. Spectra of long period variables and low amplitude variables recently obtained on the Wyoming Infrared Observatory 2.3 m telescope are presented.
NASA Astrophysics Data System (ADS)
Banerjee, Indrani; Chakraborty, Sumanta; SenGupta, Soumitra
2017-10-01
Continuum spectrum from black hole accretion disc holds enormous information regarding the strong gravity regime around the black hole and hence about the nature of gravitational interaction in extreme situations. Since in such strong gravity regime the dynamics of gravity should be modified from the Einstein-Hilbert one, its effect should be imprinted on the continuum spectrum originating from the black hole accretion. To explore the effects of these alternative theories on the black hole continuum spectrum in an explicit manner, we have discussed three alternative gravitational models having their origin in three distinct paradigms—(a) higher dimensions, (b) higher curvature gravity, and (c) generalized Horndeski theories. All of them can have signatures sculptured on the black hole continuum spectrum, distinct from the standard general relativistic scenario. Interestingly all these models exhibit black hole solutions with tidal charge parameter which in these alternative gravity scenarios can become negative, in sharp contrast with the Reissner-Nordström black hole. Using the observational data of optical luminosity for eighty Palomer Green quasars we have illustrated that the difference between the theoretical estimates and the observational results gets minimized for negative values of the tidal charge parameter. As a quantitative estimate of this result we concentrate on several error estimators, including reduced χ2 , Nash-Sutcliffe efficiency, index of agreement etc. Remarkably, all of them indicates a negative value of the tidal charge parameter, signaling the possibility of higher dimensions as well as scalar charge at play in those high gravity regimes.
A Spectroscopic Search for Leaking Lyman Continuum at Zeta Approximately 0.7
NASA Technical Reports Server (NTRS)
Bridge, Carrie R.; Teplitz, Harry I.; Siana, Brian; Scarlata, Claudia; Rudie, Gwen C.; Colbert, James; Ferguson, Henry C.; Brown, Thomas M.; Conselice, Christopher J.; Armus, Lee;
2010-01-01
We present the results of rest-frame, UV slitless spectroscopic observations of a sample of 32 z approx. 0.7 Lyman Break Galaxy (LBG) analogs in the COSMOS field. The spectroscopic search was performed with the Solar Blind Channel (SBC) on HST. While we find no direct detections of the Lyman Continuum we achieve individual limits (3sigma) of the observed non-ionizing UV to Lyman continuum flux density ratios, f(sub nu)(1500A)/f(sub nu)(830A) of 20 to 204 (median of 73.5) and 378.7 for the stack. Assuming an intrinsic Lyman Break of 3.4 and an optical depth of Lyman continuum photons along the line of sight to the galaxy of 85% we report an upper limit for the relative escape fraction in individual galaxies of 0.02 - 0.19 and a stacked 3sigma upper limit of 0.01. We find no indication of a relative escape fraction near unity as seen in some LBGs at z approx. 3. Our UV spectra achieve the deepest limits to date at any redshift on the escape fraction in individual sources. The contrast between these z approx. 0.7 low escape fraction LBG analogs with z approx. 3 LBGs suggests that either the processes conducive to high f(sub esc) are not being selected for in the z less than or approx.1 samples or the average escape fraction is decreasing from z approx. 3 to z approx. 1. We discuss possible mechanisms which could affect the escape of Lyman continuum photons
RADIO IMAGING OF THE NGC 2024 FIR 5/6 REGION: A HYPERCOMPACT H II REGION CANDIDATE IN ORION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr
The NGC 2024 FIR 5/6 region was observed in the 6.9 mm continuum with an angular resolution of about 1.5 arcsec. The 6.9 mm continuum map shows four compact sources, FIR 5w, 5e, 6c, and 6n, as well as an extended structure of the ionization front associated with the optical nebulosity. FIR 6c has a source size of about 0.4 arcsec or 150 AU. The spectral energy distribution (SED) of FIR 6c is peculiar: rising steeply around 6.9 mm and flat around 1 mm. The possibility of a hypercompact H II region is explored. If the millimeter flux of FIRmore » 6c comes from hot ionized gas heated by a single object at the center, the central object may be a B1 star of about 5800 solar luminosities and about 13 solar masses. The 6.9 mm continuum of FIR 6n may be a mixture of free-free emission and dust continuum emission. Archival data show that both FIR 6n and 6c exhibit water maser activity, suggesting the existence of shocked gas around them. The 6.9 mm continuum emission from FIR 5w has a size of about 1.8 arcsec or 760 AU. The SEDs suggest that the 6.9 mm emission of FIR 5w and 5e comes from dust, and the masses of the dense molecular gas are about 0.6 and 0.5 solar masses, respectively.« less
NASA Technical Reports Server (NTRS)
Szkody, Paula
1987-01-01
IUE time-resolved spectra of the high-inclination cataclysmic variables IP Peg, PG 1030+590, and V1315 Aql are analyzed in order to determine the characteristics of the disk, hotspots, and white dwarfs. The UV continuum flux distributions are generally flatter than systems of low inclination and high mass-transfer rate, and the white dwarfs/inner disk appear to be relatively cool (15,000-19,000 K) for their orbital periods, possibly because the boundary layers are blocked from view. The continuum fluxes increase at spot phases, with the spot providing the dominant flux in IP Peg. The spot temperatures range from hot (20,000 K) in IP Peg, and perhaps in PG 1030+590, to cool (11,000 K) in V1315 Aql. The C IV emission lines show slightly larger decreases at spot phases than during eclipse, which implies an extended stream area.
Evidence for variability of the hard X-ray feature in the Hercules X-1 energy spectrum
NASA Technical Reports Server (NTRS)
Tueller, J.; Cline, T. L.; Teegarden, B. J.; Paciesas, W. S.; Boclet, D.; Durochoux, P.; Hameury, J. M.; Prantzos, N.; Haymes, R. C.
1983-01-01
The hard X-ray spectrum of HER X-1 was measured for the first time with a high resolution (1.4 keV FWHM) germanium spectrometer. The observation was performed near the peak of the on-state in the 35 day cycle and the 1.24 pulsations were observed between the energies of 20 keV and 70 keV. The feature corresponds to an excess of 7.5 sigma over the low energy continuum. Smooth continuum models are poor fits to the entire energy range (chance probabilities of 2 percent or less). The best fit energies are 35 keV for an absorption line and 39 keV for an emission line. These are significantly lower energies than those derived from previous experiments. A direct comparison of our data with the results of the MPI/AIT group shows statistically significant variations which strongly suggest variability in the source.
Resolving the Cygnus X-3 iron K line
NASA Technical Reports Server (NTRS)
Kitamoto, Shunji; Kawashima, Kenji; Negoro, Hitoshi; Miyamoto, Sigenori; White, N. E.; Nagase, Fumiaki
1994-01-01
An Advanced Satellite for Cosmology and Astrophysics (ASCA) observation of Cygnus X-3 on 1993 June 11, in its X-ray high intensity state, has for the first time resolved the broad iron K line emission into three components: a He-like line at 6.67 +/- 0.01 keV, a H-like line at 6.96 +/- 0.02 keV, and a neutral line at 6.37 +/- 0.03 keV. The line intensities of the 6.67 keV and 6.96 keV lines are modulated with the 4.8 hr orbital period and are maximum when the continuum intensity is minimum. There is a sharp minimum of the line intensity on the rising phase of the continuum intensity. An iron absorption edge is observed at 7.19 +/- 0.02 keV. The optical depth of the absorption edge varies from 0.3 to 0.5 and is in anti-phase with the overall X-ray continuum modulation. The observed complexity of the iron K line region is greater than that had been assumed in previous spectral modeling based on observations with lower resolution detectors.
Understanding the HMI Pseudocontinuum in White-light Solar Flares
NASA Astrophysics Data System (ADS)
Švanda, Michal; Jurčák, Jan; Kašparová, Jana; Kleint, Lucia
2018-06-01
We analyze observations of the X9.3 solar flare (SOL2017-09-06T11:53) observed by SDO/HMI and Hinode/Solar Optical Telescope. Our aim is to learn about the nature of the HMI pseudocontinuum I c used as a proxy for the white-light continuum. From model atmospheres retrieved by an inversion code applied to the Stokes profiles observed by the Hinode satellite, we synthesize profiles of the Fe I 617.3 nm line and compare them to HMI observations. Based on a pixel-by-pixel comparison, we show that the value of I c represents the continuum level well in quiet-Sun regions only. In magnetized regions, it suffers from a simplistic algorithm that is applied to a complex line shape. During this flare, both instruments also registered emission profiles in the flare ribbons. Such emission profiles are poorly represented by the six spectral points of HMI and the MDI-like algorithm does not account for emission profiles in general; thus, the derived pseudocontinuum intensity does not approximate the continuum value properly.
Observations of a Two Ribbon White Light Flare
NASA Astrophysics Data System (ADS)
Li, J.; Mickey, D.; LaBonte, B.
2003-05-01
On July 15 2002, an X3 flare occured within AR10030 and it was accompanied with a white light flare (WLF). The Imaging Vector Magnetograph (IVM) at Mees Solar Observatory recorded the entire event including several hours of data before and after the flare. The IVM continuum images are taken at time cadence as high as 1 seconds per image. Such observations enabled us to resolve the WLF patches in time and space. We will present (1). the initial WLF patch fell on a small sunspot located at an area surrounded with single relatively weak magnetic polarity between proceeding and following sunspot groups; (2) the energy deposited during the WLF flare; (3) the light curves of the optical continuum, the UV continuum (TRACE/1600) and microwaves (1.2 - 18 GHz from Oven's Valley Solar Array). They demonstrate the same profiles during flare impulsive phase. The observations suggest that the origin of the WLF flare was caused by accelerated particles precipitate into lower atmosphere along magnetic field lines. This work is supported by NASA grant to Mess Solar Observatory and MURI program.
NASA Technical Reports Server (NTRS)
Feldman, P. D.; Davidsen, A. F.; Blair, W. P.; Bowers, C. W.; Durrance, S. T.; Kriss, G. A.; Ferguson, H. C.; Kimble, R. A.; Long, K. S.
1992-01-01
Ultraviolet spectra of the tropical oxygen nightglow in the range of 830 to 1850 A (in first order) at 3 A resolution were obtained with the Hopkins Ultraviolet Telescope in December 1990. The data are presented which were obtained on a setting celestial target as the zenith angle of the line-of-sight varied from 77 to 95 deg. The dominant features in the spectrum (other than geocoronal hydrogen) are O I 1304 and 1356 and the radiative recombination continuum near 911 A. The continuum is resolved and found to be consistent with an electron temperature in the range 1000-1250 K. The observed ratio of the brightness of O I 1356 to the continuum suggests that O(+)-O(-) mutual neutralization contributes about 40 percent to the 1356 A emission. The dependence of the optically thin emissions on zenith angle is consistent with a simple ionospheric model. Weak O I 989 emission is also detected, but there is no evidence for any similarly produced atomic nitrogen emissions.
High-resolution frequency-domain second-harmonic optical coherence tomography
NASA Astrophysics Data System (ADS)
Su, Jianping; Tomov, Ivan V.; Jiang, Yi; Chen, Zhongping
2007-04-01
We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain second-harmonic optical coherence tomography (SH-OCT) to 12 μm. The acquisition time was shortened by more than 2 orders of magnitude compared to the time-domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon, and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on the SH has been used to obtain polarization resolved images.
Ionization potential depression and optical spectra in a Debye plasma model
NASA Astrophysics Data System (ADS)
Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich
2017-11-01
We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.
Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm.
Lim, Hyungsik; Jiang, Yi; Wang, Yimin; Huang, Yu-Chih; Chen, Zhongping; Wise, Frank W
2005-05-15
We report a compact, high-power, fiber-based source for ultrahigh-resolution optical coherence tomography (OCT) near 1 microm. The practical source is based on a short-pulse, ytterbium-doped fiber laser and on generation of a continuum spectrum in a photonic crystal fiber. The broadband emission has an average power of 140 mW and offers an axial resolution of 2.1 microm in air (<1.6 microm in biological tissue). The generation of a broad bandwidth is robust and efficient. We demonstrate ultrahigh-resolution, time-domain OCT imaging of in vitro and in vivo biological tissues.
Lattice QCD phase diagram in and away from the strong coupling limit.
de Forcrand, Ph; Langelage, J; Philipsen, O; Unger, W
2014-10-10
We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling, "dual" variables can be introduced, which render the finite-density sign problem mild and allow a full determination of the μ-T phase diagram by Monte Carlo simulations, also in the chiral limit. However, the continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach towards the continuum limit. We show first results, including the phase diagram and its chiral critical point, from this expansion truncated at next-to-leading order.
Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics
NASA Astrophysics Data System (ADS)
Farajpour, Ali; Danesh, Mohammad; Mohammadi, Moslem
2011-12-01
This paper presents an investigation on the buckling characteristics of nanoscale rectangular plates under bi-axial compression considering non-uniformity in the thickness. Based on the nonlocal continuum mechanics, governing differential equations are derived. Numerical solutions for the buckling loads are obtained using the Galerkin method. The present study shows that the buckling behaviors of single-layered graphene sheets (SLGSs) are strongly sensitive to the nonlocal and non-uniform parameters. The influence of percentage change of thickness on the stability of SLGSs is more significant in the strip-type nonoplates (nanoribbons) than in the square-type nanoplates.
Discovery of Variable Hydrogen Balmer Absorption Lines with Inverse Decrement in PG 1411+442
NASA Astrophysics Data System (ADS)
Shi, Xi-Heng; Pan, Xiang; Zhang, Shao-Hua; Sun, Lu-Ming; Wang, Jian-Guo; Ji, Tuo; Yang, Chen-Wei; Liu, Bo; Jiang, Ning; Zhou, Hong-Yan
2017-07-01
We present new optical spectra of the well-known broad absorption line (BAL) quasar PG 1411+442, using the DBSP spectrograph at the Palomar 200 inch telescope in 2014 and 2017 and the YFOSC spectrograph at the Lijiang 2.4 m telescope in 2015. A blueshifted narrow absorption line system is clearly revealed in 2014 and 2015 consisting of hydrogen Balmer series and metastable He I lines. The velocity of these lines is similar to the centroid velocity of the UV BALs, suggesting that both originate from the outflow. The Balmer lines vary significantly between the two observations and vanished in 2017. They were also absent in the archived spectra obtained before 2001. The variation is thought to be driven by photoionization change. Besides, the absorption lines show inversed Balmer decrement, I.e., the apparent optical depths of higher-order Balmer absorption lines are larger than those of lower-order lines, which is inconsistent with the oscillator strengths of the transitions. We suggest that such anomalous line ratios can be naturally explained by the thermal structure of a background accretion disk, which allows the obscured part of the disk to contribute differently to the continuum flux at different wavelengths. High-resolution spectroscopic and photometric monitoring would be very useful to probe the structure of the accretion disk as well as the geometry and physical conditions of the outflow.
Discovery of Variable Hydrogen Balmer Absorption Lines with Inverse Decrement in PG 1411+442
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xi-Heng; Pan, Xiang; Zhang, Shao-Hua
We present new optical spectra of the well-known broad absorption line (BAL) quasar PG 1411+442, using the DBSP spectrograph at the Palomar 200 inch telescope in 2014 and 2017 and the YFOSC spectrograph at the Lijiang 2.4 m telescope in 2015. A blueshifted narrow absorption line system is clearly revealed in 2014 and 2015 consisting of hydrogen Balmer series and metastable He i lines. The velocity of these lines is similar to the centroid velocity of the UV BALs, suggesting that both originate from the outflow. The Balmer lines vary significantly between the two observations and vanished in 2017. Theymore » were also absent in the archived spectra obtained before 2001. The variation is thought to be driven by photoionization change. Besides, the absorption lines show inversed Balmer decrement, i.e., the apparent optical depths of higher-order Balmer absorption lines are larger than those of lower-order lines, which is inconsistent with the oscillator strengths of the transitions. We suggest that such anomalous line ratios can be naturally explained by the thermal structure of a background accretion disk, which allows the obscured part of the disk to contribute differently to the continuum flux at different wavelengths. High-resolution spectroscopic and photometric monitoring would be very useful to probe the structure of the accretion disk as well as the geometry and physical conditions of the outflow.« less
ERIC Educational Resources Information Center
Samejima, Fumiko
In latent trait theory the latent space, or space of the hypothetical construct, is usually represented by some unidimensional or multi-dimensional continuum of real numbers. Like the latent space, the item response can either be treated as a discrete variable or as a continuous variable. Latent trait theory relates the item response to the latent…
Short-term X-ray spectral variability of the quasar PDS 456 observed in a low-flux state
NASA Astrophysics Data System (ADS)
Matzeu, G. A.; Reeves, J. N.; Nardini, E.; Braito, V.; Costa, M. T.; Tombesi, F.; Gofford, J.
2016-05-01
We present a detailed analysis of a recent, 2013 Suzaku campaign on the nearby (z = 0.184) luminous (Lbol ˜ 1047 erg s-1) quasar PDS 456. This consisted of three observations, covering a total duration of ˜1 Ms and a net exposure of 455 ks. During these observations, the X-ray flux was unusually low, suppressed by a factor of >10 in the soft X-ray band when compared to previous observations. We investigated the broad-band continuum by constructing a spectral energy distribution (SED), making use of the optical/UV photometry and hard X-ray spectra from the later simultaneous XMM-Newton and NuSTAR campaign in 2014. The high-energy part of this low-flux SED cannot be accounted for by physically self-consistent accretion disc and corona models without attenuation by absorbing gas, which partially covers a substantial fraction of the line of sight towards the X-ray continuum. At least two layers of absorbing gas are required, of column density log (NH,low/cm-2) = 22.3 ± 0.1 and log (NH,high/cm-2) = 23.2 ± 0.1, with average line-of-sight covering factors of ˜80 per cent (with typical ˜5 per cent variations) and 60 per cent (±10-15 per cent), respectively. During these observations PDS 456 displays significant short-term X-ray spectral variability, on time-scales of ˜100 ks, which can be accounted for by variable covering of the absorbing gas along the line of sight. The partial covering absorber prefers an outflow velocity of v_pc = 0.25^{+0.01}_{-0.05} c at the >99.9 per cent confidence level over the case where vpc = 0. This is consistent with the velocity of the highly ionized outflow responsible for the blueshifted iron K absorption profile. We therefore suggest that the partial covering clouds could be the denser, or clumpy part of an inhomogeneous accretion disc wind. Finally estimates are placed upon the size-scale of the X-ray emission region from the source variability. The radial extent of the X-ray emitter is found to be of the order ˜15-20Rg, although the hard X-ray (>2 keV) emission may originate from a more compact or patchy corona of hot electrons, which is typically ˜6-8Rg in size.
Temporal studies of black hole X-ray transients during outburst decay
NASA Astrophysics Data System (ADS)
Kalemci, Emrah
Galactic black holes (GBH) are a class of astrophysical sources with X-ray emission that is powered by accretion from a companion star. An important goal of GBH research is to understand the accretion structure and the nature of the variability of these systems. The GBHs sometimes show significant changes in the X-ray emission properties, and these changes are called state transitions. The transitions are believed to be caused by variation of the mass accretion rate and changes in accretion geometry. Thus, their study provides valuable information on the nature of the accretion structure. In this thesis work, I present results from studying the spectral and temporal evolution of all GBH transients that have been observed with NASA's Rossi X-ray Timing Explorer during outburst decay. I explore the physical conditions before, during and after the state transition, characterize the quasi-periodic oscillations (QPO) and continuum of power spectral density (PSD) in different energy bands, and study the correlations between spectral and temporal fit parameters. I also analyze the evolution of the cross- spectral parameters during and after the transition. I show that the appearance of the broad band variability is coincident with an increase of power-law flux. The evolution of the characteristic frequencies and the spectral parameters after the transition are consistent with retreating of the inner accretion disk. The energy dependent PSD analysis shows that the level of variability increases with energy when there is significant soft flux from the optically thick accretion disk. The variability level also increases with energy if the absorption column density to the source is high. This may be a result of small angle scatterings of lower energy X-ray photons with the ISM dust around these sources. I find global correlations between the spectral index and three temporal fit parameters: the QPO frequency, the overall level of variability and the integrated time lag. The relation between the spectral index and the time lags are interpreted within the context of the average number of Compton scatterings and the temperature of the scattering medium. During the transitions, the average lag is higher and average coherence is lower. I discuss whether a hybrid accretion model, for which the hot electron corona is the base of an optically thin outflow or a jet, can explain the physical properties during the transition.
IUEAGN: A database of ultraviolet spectra of active galactic nuclei
NASA Technical Reports Server (NTRS)
Pike, G.; Edelson, R.; Shull, J. M.; Saken, J.
1993-01-01
In 13 years of operation, IUE has gathered approximately 5000 spectra of almost 600 Active Galactic Nuclei (AGN). In order to undertake AGN studies which require large amounts of data, we are consistently reducing this entire archive and creating a homogeneous, easy-to-use database. First, the spectra are extracted using the Optimal extraction algorithm. Continuum fluxes are then measured across predefined bands, and line fluxes are measured with a multi-component fit. These results, along with source information such as redshifts and positions, are placed in the IUEAGN relational database. Analysis algorithms, statistical tests, and plotting packages run within the structure, and this flexible database can accommodate future data when they are released. This archival approach has already been used to survey line and continuum variability in six bright Seyfert 1s and rapid continuum variability in 14 blazars. Among the results that could only be obtained using a large archival study is evidence that blazars show a positive correlation between degree of variability and apparent luminosity, while Seyfert 1s show an anti-correlation. This suggests that beaming dominates the ultraviolet properties for blazars, while thermal emission from an accretion disk dominates for Seyfert 1s. Our future plans include a survey of line ratios in Seyfert 1s, to be fitted with photoionization models to test the models and determine the range of temperatures, densities and ionization parameters. We will also include data from IRAS, Einstein, EXOSAT, and ground-based telescopes to measure multi-wavelength correlations and broadband spectral energy distributions.
[Activities of Texas University
NASA Technical Reports Server (NTRS)
Oliversen, R. (Technical Monitor); Wills, Beverley J.; Wills, D.
2003-01-01
All the principal investigator's current projects investigate aspects of radio-loud, radio-quiet, BAL QSOs, and buried (IRAS-selected) QSOs and the relationships among these different classes, with the aim of probing the nature of accretion onto the massive central black hole - via relativistic jets, X-ray and optical absorption outflows, and the kinematics of the surrounding gas whose emission lines are excited by the accretion continuum.
Elastic scattering of ^4He by ^6Li at E(^4He) = 24, 25, and 26 MeV
NASA Astrophysics Data System (ADS)
Bartosz, E. E.; Cathers, P. D.; Kemper, K. W.; Maréchal, F.; Rusek, K.
1998-11-01
A previous optical model analysis of the elastic scattering of ^4He by ^6Li at E(^4He) = 18.5 MeV (P. V. Green, K. W. Kemper, P. L. Kerr, K. Mohajeri, E. G. Myers, D. Robson, K. Rusek and I. J. Thompson, Phys. Rev. C 53) 2862 (1996)., as well as a cluster-folded continuum- discretized coupled channels analysis (K. Rusek, P. V. Green, P. L. Kerr, and K. W. Kemper, Phys. Rev. C 56) 1895 (1997)., resulted in a good description of the data set, but the optical model analysis yielded a poor description of the 25 MeV elastic scattering data measured at the same time. New elastic and inelastic scattering angular distribution cross sections are reported for ^4He + ^6Li at E(^4He) = 24, 25 and 26 MeV. Three energies were used to rule out anomalous scattering at 25 MeV. The results of a cluster-folded continuum- discretized coupled channels analysis similar to that used with the 18.5 MeV data are presented for the three new data sets at 24, 25, and 26 MeV.
Optical and infrared spectrophotometry of the symbiotic system V1016 Cygni
NASA Technical Reports Server (NTRS)
Rudy, Richard J.; Rossano, George S.; Cohen, Ross D.; Puetter, R. C.
1990-01-01
Spectrophotometry from 0.46 to 1.3 micron of the peculiar emission-line object V1016 Cyg is presented. The optical region displays a weak continuum underlying the rich emission-line spectrum detailed in past studies. The infrared spectrum consists of prominent emission lines of H I, He I, He II, forbidden Ni, O I, and forbidden S III overlying a strong stellar continuum. The latter displays bands at 0.94 micron and 1.13 micron characteristic of a late-type, oxygen-rich giant as well as an absorption at 1.05 micron which is due to VO. The presence of these molecular features indicates a spectral class of M6 or later for the cool secondary. The reddening of the secondary does not appear to be much different from that of the emission lines. Among the infrared emission features is the rarely seen permitted transition of neutral oxygen at 1.1287 micron. Its presence at a strength comparable to O I 8446 A, together with the absence of O I 13164 A, confirms the result of Strafella that the strong O I lines arise primarily from fluorescent excitation by Ly-beta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian
2017-02-10
The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramatymore » High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.« less
The spectral energy distribution of powerful starburst galaxies - I. Modelling the radio continuum
NASA Astrophysics Data System (ADS)
Galvin, T. J.; Seymour, N.; Marvil, J.; Filipović, M. D.; Tothill, N. F. H.; McDermid, R. M.; Hurley-Walker, N.; Hancock, P. J.; Callingham, J. R.; Cook, R. H.; Norris, R. P.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.
2018-02-01
We have acquired radio-continuum data between 70 MHz and 48 GHz for a sample of 19 southern starburst galaxies at moderate redshifts (0.067 < z < 0.227) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework, we find the radio continuum is rarely characterized well by a single power law, instead often exhibiting low-frequency turnovers below 500 MHz, steepening at mid to high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 and 500 MHz the radio continuum at low frequency (ν < 200 MHz) could be overestimated by upwards of a factor of 12 if a simple power-law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be α = -1.06, which is steeper than the canonical value of -0.8 for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.
NASA Technical Reports Server (NTRS)
Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian N.; Cauzzi, Gianna; Carlsson, Mats
2017-01-01
The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe II chromospheric emission line profiles observed in the impulsive phase.
NASA Astrophysics Data System (ADS)
Zajaček, Michal; Britzen, Silke; Eckart, Andreas; Shahzamanian, Banafsheh; Busch, Gerold; Karas, Vladimír; Parsa, Marzieh; Peissker, Florian; Dovčiak, Michal; Subroweit, Matthias; Dinnbier, František; Zensus, J. Anton
2017-06-01
Context. The Dusty S-cluster Object (DSO/G2) orbiting the supermassive black hole (Sgr A*) in the Galactic centre has been monitored in both near-infrared continuum and line emission. There has been a dispute about the character and the compactness of the object: it being interpreted as either a gas cloud or a dust-enshrouded star. A recent analysis of polarimetry data in Ks-band (2.2 μm) allows us to put further constraints on the geometry of the DSO. Aims: The purpose of this paper is to constrain the nature and the geometry of the DSO. Methods: We compared 3D radiative transfer models of the DSO with the near-infrared (NIR) continuum data including polarimetry. In the analysis, we used basic dust continuum radiative transfer theory implemented in the 3D Monte Carlo code Hyperion. Moreover, we implemented analytical results of the two-body problem mechanics and the theory of non-thermal processes. Results: We present a composite model of the DSO - a dust-enshrouded star that consists of a stellar source, dusty, optically thick envelope, bipolar cavities, and a bow shock. This scheme can match the NIR total as well as polarized properties of the observed spectral energy distribution (SED). The SED may be also explained in theory by a young pulsar wind nebula that typically exhibits a large linear polarization degree due to magnetospheric synchrotron emission. Conclusions: The analysis of NIR polarimetry data combined with the radiative transfer modelling shows that the DSO is a peculiar source of compact nature in the S cluster (r ≲ 0.04 pc). It is most probably a young stellar object embedded in a non-spherical dusty envelope, whose components include optically thick dusty envelope, bipolar cavities, and a bow shock. Alternatively, the continuum emission could be of a non-thermal origin due to the presence of a young neutron star and its wind nebula. Although there has been so far no detection of X-ray and radio counterparts of the DSO, the analysis of the neutron star model shows that young, energetic neutron stars similar to the Crab pulsar could in principle be detected in the S cluster with current NIR facilities and they appear as apparent reddened, near-infrared-excess sources. The searches for pulsars in the NIR bands can thus complement standard radio searches, which can put further constraints on the unexplored pulsar population in the Galactic centre. Both thermal and non-thermal models are in accordance with the observed compactness, total as well polarized continuum emission of the DSO.
Dispersion-free continuum two-dimensional electronic spectrometer
Zheng, Haibin; Caram, Justin R.; Dahlberg, Peter D.; Rolczynski, Brian S.; Viswanathan, Subha; Dolzhnikov, Dmitriy S.; Khadivi, Amir; Talapin, Dmitri V.; Engel, Gregory S.
2015-01-01
Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an ~180 nm window of the available bandwidth at ~10 fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a. PMID:24663470
Simpson, Matthew J; Baker, Ruth E; McCue, Scott W
2011-02-01
Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multiscale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (PME). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the PME to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.
Calibration and Limitations of the Mg II Line-based Black Hole Masses
NASA Astrophysics Data System (ADS)
Woo, Jong-Hak; Le, Huynh Anh N.; Karouzos, Marios; Park, Dawoo; Park, Daeseong; Malkan, Matthew A.; Treu, Tommaso; Bennert, Vardha N.
2018-06-01
We present single-epoch black hole mass ({M}BH}) calibrations based on the rest-frame ultraviolet (UV) and optical measurements of Mg II 2798 Å and Hβ 4861 Å lines and the active galactic nucleus (AGN) continuum, using a sample of 52 moderate-luminosity AGNs at z ∼ 0.4 and z ∼ 0.6 with high-quality Keck spectra. We combine this sample with a large number of luminous AGNs from the Sloan Digital Sky Survey to increase the dynamic range for a better comparison of UV and optical velocity and luminosity measurements. With respect to the reference {M}BH} based on the line dispersion of Hβ and continuum luminosity at 5100 Å, we calibrate the UV and optical mass estimators by determining the best-fit values of the coefficients in the mass equation. By investigating whether the UV estimators show a systematic trend with Eddington ratio, FWHM of Hβ, Fe II strength, or UV/optical slope, we find no significant bias except for the slope. By fitting the systematic difference of Mg II-based and Hβ-based masses with the L 3000/L 5100 ratio, we provide a correction term as a function of the spectral index as ΔC = 0.24 (1 + α λ ) + 0.17, which can be added to the Mg II-based mass estimators if the spectral slope can be well determined. The derived UV mass estimators typically show >∼0.2 dex intrinsic scatter with respect to the Hβ-based {M}BH}, suggesting that the UV-based mass has an additional uncertainty of ∼0.2 dex, even if high-quality rest-frame UV spectra are available.
Dissipation consistent fabric tensor definition from DEM to continuum for granular media
NASA Astrophysics Data System (ADS)
Li, X. S.; Dafalias, Y. F.
2015-05-01
In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.
NASA Astrophysics Data System (ADS)
Truebenbach, Alexandra E.; Darling, Jeremy
2017-06-01
A large fraction of active galactic nuclei (AGN) are 'invisible' in extant optical surveys due to either distance or dust-obscuration. The existence of this large population of dust-obscured, infrared (IR)-bright AGN is predicted by models of galaxy-supermassive black hole coevolution and is required to explain the observed X-ray and IR backgrounds. Recently, IR colour cuts with Wide-field Infrared Survey Explorer have identified a portion of this missing population. However, as the host galaxy brightness relative to that of the AGN increases, it becomes increasingly difficult to differentiate between IR emission originating from the AGN and from its host galaxy. As a solution, we have developed a new method to select obscured AGN using their 20-cm continuum emission to identify the objects as AGN. We created the resulting invisible AGN catalogue by selecting objects that are detected in AllWISE (mid-IR) and FIRST (20 cm), but are not detected in SDSS (optical) or 2MASS (near-IR), producing a final catalogue of 46 258 objects. 30 per cent of the objects are selected by existing selection methods, while the remaining 70 per cent represent a potential previously unidentified population of candidate AGN that are missed by mid-IR colour cuts. Additionally, by relying on a radio continuum detection, this technique is efficient at detecting radio-loud AGN at z ≥ 0.29, regardless of their level of dust obscuration or their host galaxy's relative brightness.
An Explanation of the Very Low Radio Flux of Young Planet-mass Companions
NASA Astrophysics Data System (ADS)
Wu, Ya-Lin; Close, Laird M.; Eisner, Josh A.; Sheehan, Patrick D.
2017-12-01
We report Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum upper limits for five planetary-mass companions DH Tau B, CT Cha B, GSC 6214-210 B, 1RXS 1609 B, and GQ Lup B. Our survey, together with other ALMA studies, have yielded null results for disks around young planet-mass companions and placed stringent dust mass upper limits, typically less than 0.1 M ⊕, when assuming dust continuum is optically thin. Such low-mass gas/dust content can lead to a disk lifetime estimate (from accretion rates) much shorter than the age of the system. To alleviate this timescale discrepancy, we suggest that disks around wide companions might be very compact and optically thick in order to sustain a few Myr of accretion, yet have very weak (sub)millimeter flux so as to still be elusive to ALMA. Our order-of-magnitude estimate shows that compact optically thick disks might be smaller than 1000 R Jup and only emit ∼μJy of flux in the (sub)millimeter, but their average temperature can be higher than that of circumstellar disks. The high disk temperature could impede satellite formation, but it also suggests that mid- to far-infrared might be more favorable than radio wavelengths to characterize disk properties. Finally, the compact disk size might imply that dynamical encounters between the companion and the star, or any other scatterers in the system, play a role in the formation of planetary-mass companions.
High-velocity Interstellar Bullets in IRAS 05506+2414: A Very Young Protostar
NASA Technical Reports Server (NTRS)
Sahai, Raghvendra; Claussen, Mark; Sanchez Contreras, Carmen; Morris, Mark; Sarkar, Geetanjali
2008-01-01
We have made a serendipitous discovery of an enigmatic outflow source, IRAS 05506+2414 (hereafter IRAS 05506), as part of a multiwavelength survey of pre-planetary nebulae (PPNs). The HST optical and near-infrared images show a bright compact central source with a jet-like extension, and a fan-like spray of high-velocity (with radial velocities up to 350 km/s) elongated knots which appear to emanate from it. These structures are possibly analogous to the near-IR bullets'' seen in the Orion Nebula. Interferometric observations at 2.6 mm show the presence of a continuum source and a high-velocity CO outflow, which is aligned with the optical jet structure. IRAS 05506 is most likely not a PPN. We find extended NH3 (1,1) emission toward IRAS 05506; these data, together with the combined presence of far-IR emission, H2O and OH masers, and CO and CS J=2-1 emission, strongly argue for a dense, dusty star-forming core associated with IRAS 05506. IRAS 05506 is probably an intermediate-mass or massive protostar, and the very short timescale (200 yr) of its outflows indicates that it is very young. If IRAS 05506 is a massive star, then the lack of radio continuum and the late G to early K spectral type we find from our optical spectra imply that in this object we are witnessing the earliest stages of its life, while its temperature is still too low to provide sufficient UV flux for ionization.
Things that go bump in the light - On the optical specification of contact severity
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Phatak, Anil V.
1993-01-01
Psychologists are intrigued with the idea that optical variables can specify not only the time until an object impacts an observer but also the severity of the impact. However, the mapping between the optical variables and the kinematic variables has been misstated, erroneously implying that there exist critical values of the optical variables used for locomotion and control. In this commentary, the mathematical relationship between the optical and kinematic variables is reexamined and the erroneous assumptions that have led to the proposal of critical values are shown. Also examined are the empirical data on deceleration to approach to assess whether the proposed optical variables are likely candidates for control strategies. Finally, problems associated with numerical approximations to dynamic systems, particularly when analytic solutions exist, are discussed.
Optical Spectroscopic Survey of a Sample of Unidentified Fermi Objects
NASA Astrophysics Data System (ADS)
Paiano, Simona; Falomo, Renato; Franceschini, Alberto; Treves, Aldo; Scarpa, Riccardo
2017-12-01
We present optical spectroscopy secured at the 10 m Gran Telescopio Canarias of the counterparts of 20 extragalactic γ-ray sources detected by the Fermi satellite. The observations allow us to investigate the nature of these sources and to determine their redshift. We find that all optical counterparts have a spectrum that is consistent with a BL Lac object nature. We are able to determine the redshift for 11 objects and set spectroscopic redshift limits for five targets. The optical spectrum is found featureless for only four sources. In the latter cases, we can set lower limits on the redshift based on the assumption that they are hosted by a typical massive elliptical galaxy whose spectrum is diluted by the nonthermal continuum. The observations allow us to unveil the nature of these gamma-ray sources and provide a sanity check of a tool to discover the counterparts of γ-ray emitters/blazars based on their multiwavelength emission.
Lasing action from photonic bound states in continuum
NASA Astrophysics Data System (ADS)
Kodigala, Ashok; Lepetit, Thomas; Gu, Qing; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar
2017-01-01
In 1929, only three years after the advent of quantum mechanics, von Neumann and Wigner showed that Schrödinger’s equation can have bound states above the continuum threshold. These peculiar states, called bound states in the continuum (BICs), manifest themselves as resonances that do not decay. For several decades afterwards the idea lay dormant, regarded primarily as a mathematical curiosity. In 1977, Herrick and Stillinger revived interest in BICs when they suggested that BICs could be observed in semiconductor superlattices. BICs arise naturally from Feshbach’s quantum mechanical theory of resonances, as explained by Friedrich and Wintgen, and are thus more physical than initially realized. Recently, it was realized that BICs are intrinsically a wave phenomenon and are thus not restricted to the realm of quantum mechanics. They have since been shown to occur in many different fields of wave physics including acoustics, microwaves and nanophotonics. However, experimental observations of BICs have been limited to passive systems and the realization of BIC lasers has remained elusive. Here we report, at room temperature, lasing action from an optically pumped BIC cavity. Our results show that the lasing wavelength of the fabricated BIC cavities, each made of an array of cylindrical nanoresonators suspended in air, scales with the radii of the nanoresonators according to the theoretical prediction for the BIC mode. Moreover, lasing action from the designed BIC cavity persists even after scaling down the array to as few as 8-by-8 nanoresonators. BIC lasers open up new avenues in the study of light-matter interaction because they are intrinsically connected to topological charges and represent natural vector beam sources (that is, there are several possible beam shapes), which are highly sought after in the fields of optical trapping, biological sensing and quantum information.
Studies of nonlinear femtosecond pulse propagation in bulk materials
NASA Astrophysics Data System (ADS)
Eaton, Hilary Kaye
2000-10-01
Femtosecond pulse lasers are finding widespread application in a variety of fields including medical research, optical switching and communications, plasma formation, high harmonic generation, and wavepacket formation and control. As the number of applications for femtosecond pulses increases, so does the need to fully understand the linear and nonlinear processes involved in propagating these pulses through materials under various conditions. Recent advances in pulse measurement techniques, such as frequency-resolved optical gating (FROG), allow measurement of the full electric field of the pulse and have made detailed investigations of short- pulse propagation effects feasible. In this thesis, I present detailed experimental studies of my work involving nonlinear propagation of femtosecond pulses in bulk media. Studies of plane-wave propagation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to a useful method of interrogating the nonlinear response of a material. Studies of nonlinear propagation are also performed in a regime where temporal pulse splitting occurs. Experimental results are compared with a three- dimensional nonlinear Schrödinger equation. This comparison fuels the development of a more complete model for pulse splitting. Experiments are also performed at peak input powers above those at which pulse splitting is observed. At these higher intensities, a broadband continuum is generated. This work presents a detailed study of continuum behavior and power loss as well as the first near-field spatial- spectral measurements of the generated continuum light. Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is observed in methanol. Experiments in water confirm that this effect in methanol is indeed real. Possible explanations for the observed effect are discussed and several are experimentally rejected. This thesis applies FROG as a powerful tool for science and not just a useful pulse diagnostic technique. Studies of three-dimensional propagation provide an in-depth understanding of the processes involved in femtosecond pulse splitting. In addition, the experimental investigations of continuum generation and pulse propagation in liquids provide new insights into the possible processes involved and should provide a useful comparison for developing theories.
NASA Technical Reports Server (NTRS)
Pravdo, S. H.; Rodriguez, L. F.; Curiel, S.; Canto, J.; Torrelles, J. M.; Becker, R. H.; Sellgren, K.
1985-01-01
The region in Orion containing HH 1 and HH 2 was observed with the VLA at 20, 6, and 2 cm on several occasions from 1981 to 1984. At lower resolution, four continuum sources were detected. Two of these sources coincide positionally with HH 1 and HH 2. At 6 cm and higher resolution, HH 1 is resolved into at least two components. The emission is probably bremsstrahlung originating in the same region where the visible line emission is produced. This is the first detection of radio continuum from classic Herbig-Haro objects. At a position closely centered between HH 1 and HH 2, an object that can be interpreted as the energy source of the system was detected. The central source spectrum is S(nu) of about nu to the alpha power, where alpha = 0.4 + or - 0.2, suggesting a stellar wind. Finally, the fourth radio continuum source coincides positionally with an H2O maser and is probably excited by an independent star. There is evidence of time variability in its radio flux. No emission was detected from the Cohen-Schwartz (1979) star at the 0.1 mJy level.
IUE observations of two late-type stars Bx Mon (M + pec) and TV Gem (M1 Iab)
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Hobbs, R. W.; Kafatos, M.
1981-01-01
The IUE observations of two late type stars BX Mon and TV Gem that reveal the emission properties in the ultraviolet of subluminous companions are discussed. Analysis of the continuum emission observed from BX Mon suggests the companion, is a middle A III star. High excitation emission lines observed between 1200 A and 2000 A that generally do not typify emission observed in either late M type variables or A type stars are also detected. It is suggested that these strong high excitation lines arise in a large volume of gas heated by nonradiation processes that could be the result of tidal interaction and mass exchange in the binary system. In contrast to stars such as BX Mon, the luminous M1 supergiant TV Gem shows unexpected intense UV continuum throughout the sensitivity range of IUE. The UV spectrum of TV Gem is characterized by intense continuum with broad absorption features detected in the short wavelength range. The analysis shows that the companion could be a B9 or A1 III-IV star. Alternate suggestions are presented for explaining the UV continuum in terms of an accretion disk in association with TV Gem.
Geometry and physical conditions in the stellar wind of AG Carinae
NASA Technical Reports Server (NTRS)
Leitherer, Claus; Allen, Richard; Altner, Bruce; Damineli, Augusto; Drissen, Laurent; Idiart, Thais; Lupie, Olivia; Nota, Antonella; Robert, Carmelle; Schmutz, Werner
1994-01-01
AG Carinae is one of the prototypes of the class of Luminous Blue Variables (LBVs). Since 1990 the star has continuously brightened in its visual continuum. We report on a multi-instrument and -wavelength observing campaign to monitor the current activity phase of AG Car. Ground-based photometry, polarimetry, spectroscopy, and space-ultraviolet spectroscopy and spectropolarimetry have been obtained. From the variability of the polarization at ultraviolet and optical wavelengths we detect significant intrinsic polarization. P(sub int) greater than or equal to 0.5% is a large value for a hot, luminous star, suggesting departure from spherical symmetry in the wind of AG Car. The intrinsic polarization is variable on a timescale of 2 months or less. The measured ultraviolet polarization (intrinsic + interstellar) dropped to 0.5% in 1992 May and returned to 1% in 1992 July. The results are interpreted in terms of a variable outflow with a density enhancement in the equatorial plane. A similar model was suggested for the related object R127 in the Large Magellanic Cloud (LMC). This geometry is reminiscent of the large-scale morphology of the gas nebula and dust 'jet' surrounding AG Car. It is therefore likely that physical conditions close to the stellar surface are responsible for the geometry of the spatially resolved circumstellar material around AG Car. Despite the drastic change of the photospheric conditions, the mass-loss rate did not increase. We find no evidence for a positive correlation between wind density and stellar radius. This makes models that explain the radius increase by opacity effects in the outflow unlikely. The mechanism responsible for the temperature and radius variations is still unknown but most likely has its origin in subphotospheric regions.
Faint Object Camera imaging and spectroscopy of NGC 4151
NASA Technical Reports Server (NTRS)
Boksenberg, A.; Catchpole, R. M.; Macchetto, F.; Albrecht, R.; Barbieri, C.; Blades, J. C.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.
1995-01-01
We describe ultraviolet and optical imaging and spectroscopy within the central few arcseconds of the Seyfert galaxy NGC 4151, obtained with the Faint Object Camera on the Hubble Space Telescope. A narrowband image including (O III) lambda(5007) shows a bright nucleus centered on a complex biconical structure having apparent opening angle approximately 65 deg and axis at a position angle along 65 deg-245 deg; images in bands including Lyman-alpha and C IV lambda(1550) and in the optical continuum near 5500 A, show only the bright nucleus. In an off-nuclear optical long-slit spectrum we find a high and a low radial velocity component within the narrow emission lines. We identify the low-velocity component with the bright, extended, knotty structure within the cones, and the high-velocity component with more confined diffuse emission. Also present are strong continuum emission and broad Balmer emission line components, which we attribute to the extended point spread function arising from the intense nuclear emission. Adopting the geometry pointed out by Pedlar et al. (1993) to explain the observed misalignment of the radio jets and the main optical structure we model an ionizing radiation bicone, originating within a galactic disk, with apex at the active nucleus and axis centered on the extended radio jets. We confirm that through density bounding the gross spatial structure of the emission line region can be reproduced with a wide opening angle that includes the line of sight, consistent with the presence of a simple opaque torus allowing direct view of the nucleus. In particular, our modelling reproduces the observed decrease in position angle with distance from the nucleus, progressing initially from the direction of the extended radio jet, through our optical structure, and on to the extended narrow-line region. We explore the kinematics of the narrow-line low- and high-velocity components on the basis of our spectroscopy and adopted model structure.
A New Compton-thick AGN in our Cosmic Backyard: Unveiling the Buried Nucleus in NGC 1448 with NuSTAR
NASA Astrophysics Data System (ADS)
Annuar, A.; Alexander, D. M.; Gandhi, P.; Lansbury, G. B.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Boorman, P. G.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Farrah, D.; Goulding, A. D.; Hailey, C. J.; Harrison, F. A.; Koss, M. J.; LaMassa, S. M.; Murray, S. S.; Ricci, C.; Rosario, D. J.; Stanley, F.; Stern, D.; Zhang, W.
2017-02-01
NGC 1448 is one of the nearest luminous galaxies (L 8-1000μm > 109 L ⊙) to ours (z = 0.00390), and yet the active galactic nucleus (AGN) it hosts was only recently discovered, in 2009. In this paper, we present an analysis of the nuclear source across three wavebands: mid-infrared (MIR) continuum, optical, and X-rays. We observed the source with the Nuclear Spectroscopic Telescope Array (NuSTAR), and combined these data with archival Chandra data to perform broadband X-ray spectral fitting (≈0.5-40 keV) of the AGN for the first time. Our X-ray spectral analysis reveals that the AGN is buried under a Compton-thick (CT) column of obscuring gas along our line of sight, with a column density of N H(los) ≳ 2.5 × 1024 cm-2. The best-fitting torus models measured an intrinsic 2-10 keV luminosity of L {}2-10,{int} = (3.5-7.6) × 1040 erg s-1, making NGC 1448 one of the lowest luminosity CTAGNs known. In addition to the NuSTAR observation, we also performed optical spectroscopy for the nucleus in this edge-on galaxy using the European Southern Observatory New Technology Telescope. We re-classify the optical nuclear spectrum as a Seyfert on the basis of the Baldwin-Philips-Terlevich diagnostic diagrams, thus identifying the AGN at optical wavelengths for the first time. We also present high spatial resolution MIR observations of NGC 1448 with Gemini/T-ReCS, in which a compact nucleus is clearly detected. The absorption-corrected 2-10 keV luminosity measured from our X-ray spectral analysis agrees with that predicted from the optical [O III]λ5007 Å emission line and the MIR 12 μm continuum, further supporting the CT nature of the AGN.
A New Compton-Thick AGN in Our Cosmic Backyard: Unveiling the Buried Nucleus in NGC 1448 with NuSTAR
NASA Technical Reports Server (NTRS)
Annuar, A.; Alexander, D. M.; Ghandi, P.; Lansbury, G. B.; Asmus, D.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Boorman, P. G.; Brandt, W. N.;
2017-01-01
NGC 1448 is one of the nearest luminous galaxies [L(sub 8) - 1000 micrometers is greater than 10(exp. 9) Solar Luminosity] to ours (z = 0.00390), and yet the active galactic nucleus (AGN) it hosts was only recently discovered, in 2009. In this paper, we present an analysis of the nuclear source across three wavebands: mid-infrared (MIR) continuum, optical, and X-rays. We observed the source with the Nuclear Spectroscopic Telescope Array (NuSTAR), and combined these data with archival Chandra data to perform broadband X-ray spectral fitting ( approx. equals 0.5 - 40 keV) of the AGN for the first time. Our X-ray spectral analysis reveals that the AGN is buried under a Compton-thick (CT) column of obscuring gas along our line of sight, with a column density of N(sub H)(los) approx. greater than 2.5 x 10(exp. 24) cm(exp. -2). The best-fitting torus models measured an intrinsic 2-10 keV luminosity of L(sub 2)-10,int = (3.5 - 7.6) x 10(exp. 40) erg s(exp. -1), making NGC 1448 one of the lowest luminosity CTAGNs known. In addition to the NuSTAR observation, we also performed optical spectroscopy for the nucleus in this edge-on galaxy using the European Southern Observatory New Technology Telescope. We reclassify the optical nuclear spectrum as a Seyfert on the basis of the Baldwin- Philips-Terlevich diagnostic diagrams, thus identifying the AGN at optical wavelengths for the first time. We also present high spatial resolution MIR observations of NGC 1448 with Gemini/T-ReCS, in which a compact nucleus is clearly detected. The absorption-corrected 2-10 keV luminosity measured from our X-ray spectral analysis agrees with that predicted from the optical [O III] Lamda 5007 A emission line and the MIR 12 micrometer continuum, further supporting the CT nature ofthe AGN.
Haro 11: Where is the Lyman Continuum Source?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenan, Ryan P.; Oey, M. S.; Jaskot, Anne E.
2017-10-10
Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyCmore » source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.« less
Focal plane optics in far-infrared and submillimeter astronomy
NASA Astrophysics Data System (ADS)
Hildebrand, R. H.
1985-10-01
The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.
Focal plane optics in far-infrared and submillimeter astronomy
NASA Technical Reports Server (NTRS)
Hildebrand, R. H.
1986-01-01
The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.
Focal plane optics in far-infrared and submillimeter astronomy
NASA Astrophysics Data System (ADS)
Hildebrand, R. H.
1986-02-01
The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.
Focal plane optics in far-infrared and submillimeter astronomy
NASA Technical Reports Server (NTRS)
Hildebrand, R. H.
1985-01-01
The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.
Manipulation of resonant Auger processes with strong optical fields
NASA Astrophysics Data System (ADS)
Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen
2013-05-01
We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.
Model for a pulsed terahertz quantum cascade laser under optical feedback.
Agnew, Gary; Grier, Andrew; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Ikonić, Zoran; Valavanis, Alexander; Dean, Paul; Cooper, Jonathan; Khanna, Suraj P; Lachab, Mohammad; Linfield, Edmund H; Davies, A Giles; Harrison, Paul; Indjin, Dragan; Rakić, Aleksandar D
2016-09-05
Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.
Time-dependent Optical Spectroscopy of GRB 010222: Clues to the Gamma-Ray Burst Environment
NASA Astrophysics Data System (ADS)
Mirabal, N.; Halpern, J. P.; Kulkarni, S. R.; Castro, S.; Bloom, J. S.; Djorgovski, S. G.; Galama, T. J.; Harrison, F. A.; Frail, D. A.; Price, P. A.; Reichart, D. E.; Ebeling, H.; Bunker, A.; Dawson, S.; Dey, A.; Spinrad, H.; Stern, D.
2002-10-01
We present sequential optical spectra of the afterglow of GRB 010222 obtained 1 day apart using the Low-Resolution Imaging Spectrometer (LRIS) and the Echellette Spectrograph and Imager (ESI) on the Keck Telescopes. Three low-ionization absorption systems are spectroscopically identified at z1=1.47688, z2=1.15628, and z3=0.92747. The higher resolution ESI spectrum reveals two distinct components in the highest redshift system at z1a=1.47590 and z1b=1.47688. We interpret the z1b=1.47688 system as an absorption feature of the disk of the host galaxy of GRB 010222. The best-fitted power-law optical continuum and [Zn/Cr] ratio imply low dust content or a local gray dust component near the burst site. In addition, we do not detect strong signatures of vibrationally excited states of H2. If the gamma-ray burst took place in a superbubble or young stellar cluster, there are no outstanding signatures of an ionized absorber either. Analysis of the spectral time dependence at low resolution shows no significant evidence for absorption-line variability. This lack of variability is confronted with time-dependent photoionization simulations designed to apply the observed flux from GRB 010222 to a variety of assumed atomic gas densities and cloud radii. The absence of time dependence in the absorption lines implies that high-density environments are disfavored. In particular, if the GRB environment was dust free, its density was unlikely to exceed nHI=102 cm-3. If depletion of metals onto dust is similar to Galactic values or less than solar abundances are present, then nHI>=2×104 cm-3 is probably ruled out in the immediate vicinity of the burst. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible with the generous financial support of the W. M. Keck Foundation.
Calibration of the High Energy Replicated Optics to Explore the Sun (HEROES) Hard X-ray Telescope
NASA Astrophysics Data System (ADS)
Wilson-Hodge, Colleen A.; Gaskin, Jessica; Christe, Steven; Shih, Albert; Tennant, Allyn; Swartz, Doug; Kilaru, Kiranmayee; Elsner, Ron; Kolodziejczak, Jeff; Ramsey, Brian
On 2013 September 21-22, the High Energy Replicated Optics to Explore the Sun (HEROES) hard X-ray telescope flew as a balloon payload from Ft. Sumner, NM. HEROES observed the Sun, the black hole binary GRS 1915+105, and the Crab Nebula during its 27 h flight. In this paper, we describe laboratory calibration measurements of the HEROES detectors using line and continuum sources and applications of these measurements to define channel to energy (gain) corrections for observed events and to define detector response matrices. We characterize the HEROES X-ray grazing incidence optics using measurements taken in the Stray Light Facility (SLF) in Huntsville, AL, and using ray traces. We describe the application of our calibration measurements to in-flight observations of the Crab Nebula.
Optical spectroscopy of known and suspected Herbig-Haro objects
NASA Technical Reports Server (NTRS)
Cohen, M.; Fuller, G. A.
1985-01-01
Optical spectra of a number of suspected Herbig-Haro objects are presented. From these, the nature of these nebulosities are determined. Several of the nebulae are of very high density, perhaps due to their extreme youth. Extinctions measured toward DG Tau HH and the L1551 IRS 5 optical jet are in each case substantially less than the stellar values. It is suggested that this phenomenon reflects the existence of appreciably thick circumstellar dust disks around these, and two additional, exciting stars. Shock model diagnostics suggest that the emission lines in these Herbig-Haro nebulae arise in modest velocity shocks with sizable preshock densities in several cases. Radial velocities enable lower limits to be placed on the mass loss rates of those stars that have been detected in the radio continuum.
Revisiting the Short-term X-ray Spectral Variability of NGC 4151 with Chandra
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Risaliti, G.; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.
2010-05-01
We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ~200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 × 10-11 erg s-1 cm-2 and 10-10 erg s-1 cm-2 (L 2-10 keV ~ 1.3-2.1 × 1042 erg s-1). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ~ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ~ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ~ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH}˜ 4.6× 10^7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r <~ 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.
The Spectral Variability of the T Tauri Star DF Tauri
NASA Astrophysics Data System (ADS)
Johns-Krull, Christopher M.; Basri, Gibor
1997-01-01
We analyze 117 echelle spectra of the T Tauri star DF Tau, concentrating on variations in the optical continuum veiling and the strong emission lines. Although this star was the inspiration for the original suggestion of magnetospheric accretion in T Tauri stars (TTSs), this hypothesis is only partially supported in our data. We find that variations in the Ca II infrared triplet lines correlate with the veiling variations; there is some evidence that the broad component of the He I line does, too. The narrow component of He I is shown to arise at the stellar surface, but it correlates with the broad component. There is a surprising lack of periodicity in the lines, and it does not occur where expected when seen. The correlation between continuum veiling and the line components expected to be most related to the veiling is poor. There is a great deal of variability in all the lines and line components; a snapshot spectrum is a poor way to characterize the star as a whole. The total Balmer line fluxes are poorly correlated with the veiling, unlike previous results on a large sample of TTSs. Redshifted absorption components are found in the weaker lines but are not common. The strength of the blueshifted absorption feature in Hα is correlated with the veiling, but changes in it perhaps occur before veiling changes by about one day. This time delay supports the idea that the wind originates at some distance from the stellar surface and is related to accretion. Spherically symmetric wind models are unable to reproduce well the relative absorption levels on the blue side of the Hα and Hβ lines simultaneously. Hα does not display the asymmetries expected of magnetospheric accretion, but it is sometimes suggestive of azimuthally asymmetric corotating structures. The line wings indicate that the formation region of the Hα line is dominated by high turbulence. Hβ does show more of the asymmetry expected of magnetospheric accretion. Based on observations obtained at the Lick Observatory operated by the University of California.
Echo Mapping of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Horne, K.
2004-01-01
Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.
Ultrafast nonlinear spectrometer for material characterization
NASA Astrophysics Data System (ADS)
Negres, Raluca Aurelia
2001-11-01
This work describes the use of a broadband spectral source for nonlinear spectroscopy to characterize various materials with potential applications in confocal microscopy, biological sample markers, optical limiting devices and optical switches. The goal is to study the spectrum of nonlinear absorption and the dispersion of nonlinear refraction as well as the dynamics of the nonlinearities by means of femtosecond excite-probe experiments. The principle is quite simple: if a sample is under the influence of a strong fs excitation pulse and a probe pulse beam is incident at the same time, or shortly after (within the decay time of the nonlinearity), then the probe pulse will sense the nonlinearity induced by the excitation. If the probe pulse is broadband, a femtosecond white-light continuum (WLC) in our case, we can monitor the nonlinearity induced over the entire continuum spectrum in one laser ``shot''. The use of femtosecond laser pulses to generate WLC will provide femtosecond time resolution for time-resolved spectroscopy. We built the nonlinear spectrometer and allowed for many degrees of flexibility in terms of choice of wavelengths for pump and probe beams and a dual detection system to cover both visible and infrared spectral ranges. We have the possibility of performing broad band spectral measurements using a spectrometer or selected narrow bandwidth probes incident on Si or Ge photodiodes, for improved S/N ratios. The intrinsic properties of the continuum probe demand a careful characterization of its spatial and temporal profile. Knowledge of the dispersion of the index of refraction in various optical elements, including the sample itself, is also required for a correct analysis of the transient absorption raw data, especially for short time-scale dynamics of nonlinear processes. We tested the system using well-characterized semiconductor samples, and the results came out in excellent agreement with those from previous picosecond Z-scan measurements and theoretical modeling. With confidence, we can now measure various organic dyes with enhanced two-photon and excited-state absorption. Our setup is used to conduct a systematic study on similar compounds with modified molecular structures in order to learn about structure-property relations and draw guidelines for future design work.
The Evolution of NR TrA (Nova TrA 2008) from 2008 through 2017
NASA Astrophysics Data System (ADS)
Walter, Frederick M.; Burwitz, Vadim; Kafka, Stella
2018-06-01
The classical nova NR TrA was discovered as an O-type optically-thick classical nova. There is no evidence that it formed dust. Within four years the envelope became sufficiently thin to reveal an eclipsing accretion disk-dominated system with orbitally-modulated permitted lines of C IV, N V, and O VI. XMM observations reveal a non-eclipsing soft X-ray source and a deeply-eclipsing UV continuum. We will present the first ten years of optical spectral evolution of this system accompanied by ten years of BVRIJHK photometry, with an eye to deciphering the current nature of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, K.; Yoshida, E.; Sugawa, T.
1995-08-01
It is shown for the first time to our knowledge that short-pulse amplification in high-power erbium-doped fiber amplifiers, simultaneously accompanied by stimulated Raman scattering, generates a broadband optical spectrum at high output power (270 mW). At 20 dB down from the peak the continuum extended over 329 nm, from 1427 to 1756 nm. The FWHM bandwidth was 125 nm, centered at 1650 nm. The coherence was measured to be 15 fringes, which corresponds to a 25-{mu}m coherence length. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.
Why P/OF should look for evidences of over-dense structures in solar flare hard X-ray sources
NASA Technical Reports Server (NTRS)
Neidig, D. F.; Kane, S. R.; Love, J. J.; Cliver, E. W.
1986-01-01
White-light and hard X-ray (HXR) observations of two white-light flares (WLFs) show that if the radiative losses in the optical continuum are powered by fast electrons directly heating the WLF source, then the column density constraints imposed by the finite range of the electrons requires that the WLF consist of an over-dense region in the chromosphere, with density exceeding 10 to the 14th power/cu cm. Thus, we recommend that P/OF search for evidences of over-dense structures in HXR images obtained simultaneously with optical observations of flares.
Fast hyper-spectral imaging of cytological samples in the mid-infrared wavelength region
NASA Astrophysics Data System (ADS)
Farries, Mark; Ward, Jon; Lindsay, Ian; Nallala, Jayakrupakar; Moselund, Peter
2017-02-01
A prototype mid-infrared spectral imaging system for rapid assessment of cells for cytological diagnosis is reported. Based on a fibre optic super-continuum source that has large spectral brightness and is coupled in to an acousto-optic tuneable filter that can rapidly scan over a set of wavelengths that are chosen to give a high level of selectivity for a specific skin disease. The system has the potential to collect an image cube of 100 wavelengths and 300k pixels in 2 seconds so that cells on living people could be analysed. The system has been evaluated with colon cells over 2700- 3100 cm-1.
SIZE DEPENDENT MODEL OF HAZARDOUS SUBSTANCES IN Q AQUATIC FOOD CHAIN
A model of toxic substance accumulation is constructed that introduces organism size as an additional independent variable. The model represents an ecological continuum through size dependency; classical compartment analyses are therefore a special case of the continuous model. S...
Quantifying Spatially Integrated Floodplain and Wetland Systems for the Conterminous US
Wetlands interact with other waters across a variable connectivity continuum, from permanent to transient, from fast to slow, and from primarily surface water to exclusively groundwater flows. Floodplain wetlands typically experience fast and frequent surface and near-surface gro...
EXAMINATION OF MODEL PREDICTIONS AT DIFFERENT HORIZONTAL GRID RESOLUTIONS
While fluctuations in meteorological and air quality variables occur on a continuum of spatial scales, the horizontal grid spacing of coupled meteorological and photochemical models sets a lower limit on the spatial scales that they can resolve. However, both computational costs ...
Su, Hui; Kondratko, Piotr; Chuang, Shun L
2006-05-29
We investigate variable optical delay of a microwave modulated optical beam in semiconductor optical amplifier/absorber waveguides with population oscillation (PO) and nearly degenerate four-wave-mixing (NDFWM) effects. An optical delay variable between 0 and 160 ps with a 1.0 GHz bandwidth is achieved in an InGaAsP/InP semiconductor optical amplifier (SOA) and shown to be electrically and optically controllable. An analytical model of optical delay is developed and found to agree well with the experimental data. Based on this model, we obtain design criteria to optimize the delay-bandwidth product of the optical delay in semiconductor optical amplifiers and absorbers.
PAH 8μm Emission as a Diagnostic of HII Region Optical Depth
NASA Astrophysics Data System (ADS)
Oey, M. S.; Lopez-Hernandez, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, Karl D.; Jameson, Katherine; Li, Aigen; Madden, Suzanne C.; Meixner, Margaret; Roman-Duval, Julia; Bot, Caroline; Rubio, Monica; Tielens, A. G. G. M.
2017-01-01
PAHs are easily destroyed by Lyman continuum radiation and so in optically thick Stromgren spheres, they tend to be found only on the periphery of HII regions, rather than in the central volume. We therefore expect that in HII regions that are optically thin to ionizing radiation, PAHs would be destroyed beyond the primary nebular structure. Using data from the Spitzer SAGE survey of the Magellanic Clouds, we test whether 8 μm emission can serve as a diagnostic of optical depth in HII regions. We find that 8 μm emission does provide valuable constraints in the Large Magellanic Cloud, where objects identified as optically thick by their atomic ionization structure have 6 times higher median 8 μm surface brightness than optically thin objects. However, in the Small Magellanic Cloud, this differentiation is not observed. This appears to be caused by extremely low PAH production in this low-metallicity environment, such that any differentiation between optically thick and thin objects is washed out by stochastic variations, likely driven by the interplay between dust production and UV destruction. Thus, PAH emission is sensitive to nebular optical depth only at higher metallicities.
Radio stars observed in the LAMOST spectral survey
NASA Astrophysics Data System (ADS)
Zhang, Li-Yun; Yue, Qiang; Lu, Hong-Peng; Han, Xian-Ming L.; Zhang, Yong; Shi, Jian-Rong; Wang, Yue-Fei; Hou, Yong-Hui; Zi-Huang, Cao
2017-09-01
Radio stars have attracted astronomers’ attention for several decades. To better understand the physics behind stellar radio emissions, it is important to study their optical behaviors. The LAMOST survey provides a large database for researching stellar spectroscopic properties of radio stars. In this work, we concentrate on their spectroscopic properties and infer physical properties from their spectra, such as stellar activity and variability. We mined big data from the LAMOST spectral survey Data Release 2 (DR2), published on 2016 June 30, by cross-matching them with radio stars from FIRST and other surveys. We obtained 783 good stellar spectra with high signal to noise ratio for 659 stars. The criteria for selection were positional coincidence within 1.5‧‧ and LAMOST objects classified as stars. We calculated the equivalent widths (EWs) of the Ca ii H&K, Hδ, Hγ, Hβ, Hα and Ca ii IRT lines by integrating the line profiles. Using the EWs of the Hα line, we detected 147 active stellar spectra of 89 objects having emissions above the Hα continuum. There were also 36 objects with repeated spectra, 28 of which showed chromospheric activity variability. Furthermore, we found 14 radio stars emitting noticeably in the Ca ii IRT lines. The low value of the EW8542/EW8498 ratio for these 14 radio stars possibly alludes to chromospheric plage regions.
Advanced dielectric continuum model of preferential solvation
NASA Astrophysics Data System (ADS)
Basilevsky, Mikhail; Odinokov, Alexey; Nikitina, Ekaterina; Grigoriev, Fedor; Petrov, Nikolai; Alfimov, Mikhail
2009-01-01
A continuum model for solvation effects in binary solvent mixtures is formulated in terms of the density functional theory. The presence of two variables, namely, the dimensionless solvent composition y and the dimensionless total solvent density z, is an essential feature of binary systems. Their coupling, hidden in the structure of the local dielectric permittivity function, is postulated at the phenomenological level. Local equilibrium conditions are derived by a variation in the free energy functional expressed in terms of the composition and density variables. They appear as a pair of coupled equations defining y and z as spatial distributions. We consider the simplest spherically symmetric case of the Born-type ion immersed in the benzene/dimethylsulfoxide (DMSO) solvent mixture. The profiles of y(R ) and z(R ) along the radius R, which measures the distance from the ion center, are found in molecular dynamics (MD) simulations. It is shown that for a given solute ion z(R ) does not depend significantly on the composition variable y. A simplified solution is then obtained by inserting z(R ), found in the MD simulation for the pure DMSO, in the single equation which defines y(R ). In this way composition dependences of the main solvation effects are investigated. The local density augmentation appears as a peak of z(R ) at the ion boundary. It is responsible for the fine solvation effects missing when the ordinary solvation theories, in which z =1, are applied. These phenomena, studied for negative ions, reproduce consistently the simulation results. For positive ions the simulation shows that z ≫1 (z =5-6 at the maximum of the z peak), which means that an extremely dense solvation shell is formed. In such a situation the continuum description fails to be valid within a consistent parametrization.
Wellman, Tristan P.; Poeter, Eileen P.
2006-01-01
Computational limitations and sparse field data often mandate use of continuum representation for modeling hydrologic processes in large‐scale fractured aquifers. Selecting appropriate element size is of primary importance because continuum approximation is not valid for all scales. The traditional approach is to select elements by identifying a single representative elementary scale (RES) for the region of interest. Recent advances indicate RES may be spatially variable, prompting unanswered questions regarding the ability of sparse data to spatially resolve continuum equivalents in fractured aquifers. We address this uncertainty of estimating RES using two techniques. In one technique we employ data‐conditioned realizations generated by sequential Gaussian simulation. For the other we develop a new approach using conditioned random walks and nonparametric bootstrapping (CRWN). We evaluate the effectiveness of each method under three fracture densities, three data sets, and two groups of RES analysis parameters. In sum, 18 separate RES analyses are evaluated, which indicate RES magnitudes may be reasonably bounded using uncertainty analysis, even for limited data sets and complex fracture structure. In addition, we conduct a field study to estimate RES magnitudes and resulting uncertainty for Turkey Creek Basin, a crystalline fractured rock aquifer located 30 km southwest of Denver, Colorado. Analyses indicate RES does not correlate to rock type or local relief in several instances but is generally lower within incised creek valleys and higher along mountain fronts. Results of this study suggest that (1) CRWN is an effective and computationally efficient method to estimate uncertainty, (2) RES predictions are well constrained using uncertainty analysis, and (3) for aquifers such as Turkey Creek Basin, spatial variability of RES is significant and complex.
Constraining Lyman continuum escape using Machine Learning
NASA Astrophysics Data System (ADS)
Giri, Sambit K.; Zackrisson, Erik; Binggeli, Christian; Pelckmans, Kristiaan; Cubo, Rubén; Mellema, Garrelt
2018-05-01
The James Webb Space Telescope (JWST) will observe the rest-frame ultraviolet/optical spectra of galaxies from the epoch of reionization (EoR) in unprecedented detail. While escaping into the intergalactic medium, hydrogen-ionizing (Lyman continuum; LyC) photons from the galaxies will contribute to the bluer end of the UV slope and make nebular emission lines less prominent. We present a method to constrain leakage of the LyC photons using the spectra of high redshift (z >~ 6) galaxies. We simulate JWST/NIRSpec observations of galaxies at z =6-9 by matching the fluxes of galaxies observed in the Frontier Fields observations of galaxy cluster MACS-J0416. Our method predicts the escape fraction fesc with a mean absolute error Δfesc ~ 0.14. The method also predicts the redshifts of the galaxies with an error .
NASA Astrophysics Data System (ADS)
Hewitt, J. D.; Spinka, T. M.; Senin, A. A.; Eden, J. G.
2011-07-01
Photoexcitation of Nd3+ (2H9/2, 4F5/2) states by the broad (˜70 nm FWHM), near-infrared continuum provided by Fe3+ has been observed at 300 K in bulk yttrium aluminum garnet (YAG) crystals doped with trace concentrations (<50 ppm) of Fe, Cr, and Eu. Irradiation of YAG at 248 nm with a KrF laser, which excites the oxygen deficiency center (ODC) in YAG having peak absorption at ˜240 nm, culminates in ODC→Fe3+ excitation transfer and subsequent Fe3+ emission. This internal optical pumping mechanism for rare earth ions is unencumbered by the requirement for donor-acceptor proximity that constrains conventional Förster-Dexter excitation transfer in co-doped crystals.
β decay of He 6 into the α + d continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfutzner, M.; Dominik, W.; Janas, Z.
2015-07-23
Here, the rare β-decay channel of 6He into the α+d continuum was investigated at the REX-ISOLDE facility. Bunches of postaccelerated 6He ions were implanted into the optical time projection chamber (OTPC), where the decays with emission of charged particles were recorded. This novel technique allowed us to extend the low-energy end of the spectrum down to 150 keV in α+d center of mass, corresponding to a deuteron energy of 100 keV. The branching ratio for this process amounts to [2.78±0.07(stat)±0.17(sys)]×10 –6. The shape of the spectrum is found to be in a good agreement with a three-body model, while themore » total intensity is about 20% larger than the predicted one.« less
Deep WFPC2 and Ground-Based Imaging of a Complete Sample of 3C Quasars and Galaxies
NASA Technical Reports Server (NTRS)
Ridgway, Susan E.; Stockton, Alan
1997-01-01
We present the results of an HST and ground-based imaging study of a complete 3C sample of zeta approx. equal to 1 sources, comprising 5 quasars and 5 radio galaxies. We have observed all of the sample in essentially line-free bands at rest-frame 0.33 micrometers with WFPC2 and in rest-frame 1 micrometer images from the ground; we have also observed most of the sample in narrow-band filters centered on [O II]. We resolve continuum structure around all of our quasars in the high-resolution WFPC2 images, and in four of the five ground-based K' images. All of the quasars have some optical continuum structure that is aligned with the radio axis. In at least 3 of these cases, some of this optical structure is directly coincident with a portion of the radio structure, including optical counterparts to radio jets in 3C212 and 3C245 and an optical counterpart to a radio lobe in 3C2. These are most likely due to optical synchrotron radiation, and the radio and optical spectral indices in the northern lobe of 3C2 are consistent with this interpretation. The fact that we see a beamed optical synchotron component in the quasars but not in the radio galaxies complicates both the magnitude and the alignment comparisons. Nonetheless, the total optical and K' flux densities of the quasar hosts are consistent with those of the radio galaxies within the observed dispersion in our sample. The distributions of K' flux densities of both radio galaxies and quasar hosts exhibit similar mean and dispersion to that found for other radio galaxies at this redshift, and the average host galaxy luminosity is equivalent to, or a little fainter than, L*. The formal determination of the alignment in the optical and infrared in the two subsamples yields no significant difference between the radio galaxy and quasar subsamples, and the quasars 3C 196 and 3C 336 have aligned continuum and emission-line structure that is probably not due to beamed optical synchrotron emission. Very blue and/or edge-brightened structures are present in some objects within the probable quasar opening angle; these are possibly the result of illumination effects from the active nucleus, i.e., scattered quasar light or photoionization. In 3C 212, we see an optical object that lies 3 min. beyond the radio lobe, but which looks morphologically quite similar to the radio lobe itself. This object is bright in the infrared and has a steep spectral gradient along its length. A striking, semi-circular arc seen associated with 3C 280 may possibly be a tidal tail from a companion, enhanced in brightness by scattering or photoionization. In the near-infrared, most of the radio galaxies have elliptical morphologies with profiles that are well-fit by de Vaucouleurs r(exp 1/4)-laws and colors that are consistent with an old stellar population. All components around the quasars have optical-infrared colors that are redder than or similar to the colors of their respective nuclei; this is more consistent with a stellar origin for the emission than with a dominant scattering contribution. From the correspondence between the total magnitudes in the galaxies and quasars and the detection of aligned components in the quasars, we conclude that this study provides general support for the unification of FR II radio galaxies and quasars. Some of the objects in the sample (e.g, 3C 212) have properties that may be difficult to explain with our current understanding of the nature of FR II radio sources and the alignment effect.
NASA Astrophysics Data System (ADS)
Ponti, Gabriele
The nature of the soft excess and the presence of the broad Fe lines is still nowadays highly debated because the different absorption/emission models are degenerate. Spectral variability studies have the potential to break this degeneracy. I will present the results of a spectral variability RMS survey of the 36 brightest type 1 Seyfert galaxies observed by XMM-Newton for more than 30 ks. More than 80 as already measured, on longer timescales, with RXTE (Markowitz et al. 2004). About half of the sample show lower variability in the soft energy band, indicating that the emission from the soft excess is more stable than the one of the continuum. While the other sources show a soft excess that is as variable as the continuum. About half of the sample do not show an excess of variability where the warm absorber component imprints its stronger features, suggesting that for these sources the soft excess is not produced by a relativistic absorbing wind. In a few bright and well exposed sources it has been possible to measure an excess of variability at the energy of the broad component of the Fe K line, in agreement with the broad emission line interpretation. For the sources where more than one observation was available the stability of the shape of the RMS spectrum has been investigated. Moreover, it will be presented the results of the computation of the excess variance of all the radio quiet type 1 AGN of the XMM-Newton database. The relations between variability, black hole mass, accretion rate and luminosity are investigated and their scatter measured.
Photodissociation of ultracold diatomic strontium molecules with quantum state control.
McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T
2016-07-07
Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.
ALMA Observations of the Archetypal “Hot Core” That Is Not: Orion-KL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco-Aguilera, M. T.; Zapata, Luis A.; Hirota, Tomoya
We present sensitive high angular resolution (∼0.″1–0.″3) continuum Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the archetypal hot core located in the Orion Kleinmann-Low (KL) region. The observations were made in five different spectral bands (bands 3, 6, 7, 8, and 9) covering a very broad range of frequencies (149–658 GHz). Apart from the well-known millimeter emitting objects located in this region (Orion Source I and BN), we report the first submillimeter detection of three compact continuum sources (ALMA1–3) in the vicinities of the Orion-KL hot molecular core. These three continuum objects have spectral indices between 1.47 and 1.56, andmore » brightness temperatures between 100 and 200 K at 658 GHz, suggesting that we are seeing moderate, optically thick dust emission with possible grain growth. However, as these objects are not associated with warm molecular gas, and some of them are farther out from the molecular core, we thus conclude that they cannot heat the molecular core. This result favors the hypothesis that the hot molecular core in Orion-KL core is heated externally.« less
Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey.
Shi, Chaoyang; Luo, Xiongbiao; Qi, Peng; Li, Tianliang; Song, Shuang; Najdovski, Zoran; Fukuda, Toshio; Ren, Hongliang
2017-08-01
Continuum robots provide inherent structural compliance with high dexterity to access the surgical target sites along tortuous anatomical paths under constrained environments and enable to perform complex and delicate operations through small incisions in minimally invasive surgery. These advantages enable their broad applications with minimal trauma and make challenging clinical procedures possible with miniaturized instrumentation and high curvilinear access capabilities. However, their inherent deformable designs make it difficult to realize 3-D intraoperative real-time shape sensing to accurately model their shape. Solutions to this limitation can lead themselves to further develop closely associated techniques of closed-loop control, path planning, human-robot interaction, and surgical manipulation safety concerns in minimally invasive surgery. Although extensive model-based research that relies on kinematics and mechanics has been performed, accurate shape sensing of continuum robots remains challenging, particularly in cases of unknown and dynamic payloads. This survey investigates the recent advances in alternative emerging techniques for 3-D shape sensing in this field and focuses on the following categories: fiber-optic-sensor-based, electromagnetic-tracking-based, and intraoperative imaging modality-based shape-reconstruction methods. The limitations of existing technologies and prospects of new technologies are also discussed.
Detection of H I absorption in the dwarf galaxy Haro 11
NASA Astrophysics Data System (ADS)
MacHattie, Jeremy A.; Irwin, Judith A.; Madden, Suzanne C.; Cormier, Diane; Rémy-Ruyer, Aurélie
2014-02-01
We present the results of an analysis of archival 21 cm (H I) data of the blue compact dwarf galaxy Haro 11 (ESO 350-IG038). Observations were obtained at the Very Large Array, and the presence of a compact absorption feature near the optical centre of the galaxy has been detected. The central location of the absorption feature coincides with the centre of the continuum background of the galaxy, as well as with the location of knot B. The absorption feature yields an H I mass in the range of 3-10 × 108 M⊙, corresponding to spin temperatures from 91 K to 200 K, respectively. The absence of H I seen in emission places an upper limit of 1.7 × 109 M⊙ on the mass. To our knowledge this is the first example of a dwarf galaxy that shows H I absorption from its own background continuum. The continuum emission from the galaxy is also used to determine star formation rates, namely 6.85 ± 0.05 M⊙ yr-1 (for a stellar mass range of 5 M⊙ < M < 100 M⊙), or 32.8 ± 0.2 M⊙ yr-1 (for an extended range of 0.1 M⊙ < M < 100 M⊙).
Observations of far-infrared fine structure lines: o III88.35 micrometer and oI 63.2 micrometer
NASA Technical Reports Server (NTRS)
Storey, J. W. V.; Watson, D. M.; Townes, C. H.
1979-01-01
Observations of the O III 88.35 micrometer line and the O I63.2 micrometer were made with a far infrared spectrometer. The sources M17, NGC 7538, and W51 were mapped in the O III line with 1 arc minute resolution and the emission is found to be quite widespread. In all cases the peak of the emission coincides with the maximum radio continuum. The far infrared continuum was mapped simultaneously and in M17, NGC 7538, and W51 the continuum peak is found to be distinct from the center of ionization. The O III line was also detected in W3, W49, and in a number of positions in the Orion nebula. Upper limits were obtained on NGS 7027, NGC 6572, DR21, G29.9-0.0 and M82. The 63.2 micrometer O I line was detected in M17, M42, and marginally in DR21. A partial map of M42 in this line shows that most of the emission observed arises from the Trapezium and from the bright optical bar to the southeast.
The Correlated Variations of {\\rm{C}}\\,{\\rm{IV}} Narrow Absorption Lines and Quasar Continuum
NASA Astrophysics Data System (ADS)
Chen, Zhi-Fu; Pang, Ting-Ting; He, Bing; Huang, Yong
2018-06-01
We assemble 207 variable quasars from the Sloan Digital Sky Survey, all with at least 3 observations, to analyze C IV narrow absorption doublets, and obtain 328 C IV narrow absorption line systems. We find that 19 out of 328 C IV narrow absorption line systems were changed by | {{Δ }}{W}rλ 1548| ≥slant 3{σ }{{Δ }{W}rλ 1548} on timescales from 15.9 to 1477 days at rest-frame. Among the 19 obviously variable C IV systems, we find that (1) 14 systems have relative velocities {\\upsilon }r> 0.01c and 4 systems have {\\upsilon }r> 0.1c, where c is the speed of light; (2) 13 systems are accompanied by other variable C IV systems; (3) 9 systems were changed continuously during multiple observations; and (4) 1 system with {\\upsilon }r = 16,862 km s‑1 was enhanced by {{Δ }}{W}rλ 1548=2.7{σ }{{Δ }{W}rλ 1548} in 0.67 day at rest-frame. The variations of absorption lines are inversely correlated with the changes in the ionizing continuum. We also find that large variations of C IV narrow absorption lines are form differently over a short timescale.
Sex Differences and Neurodevelopmental Variables: A Vector Model
ERIC Educational Resources Information Center
Languis, Marlin; Naour, Paul
For the individual, gender difference falls along the feminine-masculine continuum with strong neurodevelopmental influences at various points throughout the lifespan. Neurodevelopmental influences are conceptualized in a vector model of sex difference. Vector attributes, direction and magnitude, are influenced initially by differences in levels…
We examined vertical, longitudinal, and season variation in the abundance, diversity, variability, and assemblage composition of the epibenthic and hyporheic macrobenthos at Elklick Run, a first-through fourth-order stream continuum in the central Appalachian Mountains in West Vi...
The variable stellar wind of Rigel probed at high spatial and spectral resolution
NASA Astrophysics Data System (ADS)
Chesneau, O.; Kaufer, A.; Stahl, O.; Colvinter, C.; Spang, A.; Dessart, L.; Prinja, R.; Chini, R.
2014-06-01
Context. Luminous BA-type supergiants are the brightest stars in the visible that can be observed in distant galaxies and are potentially accurate distance indicators. The impact of the variability of the stellar winds on the distance determination remains poorly understood. Aims: Our aim is to probe the inhomogeneous structures in the stellar wind using spectro-interferometric monitoring. Methods: We present a spatially resolved, high-spectral resolution (R = 12 000) K-band temporal monitoring of the bright supergiant β Orionis (Rigel, B8 Iab) using AMBER at the Very Large Telescope Interferometer (VLTI). Rigel was observed in the Brγ line and its nearby continuum once per month over 3 months in 2006-2007, and 5 months in 2009-2010. These unprecedented observations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signals are evidence of asymmetries that are interpreted as perturbations of the wind. Results: A systematic visibility decrease is observed across the Brγ line indicating that at a radius of about 1.25 R∗ the photospheric absorption is filled by emission from the wind. During the 2006-2007 period the Brγ and likely the continuum forming regions were larger than in the 2009-2010 epoch. Using CMFGEN we infer a mass-loss rate change of about 20% between the two epochs. We also find time variations in the differential visibilities and phases. The 2006-2007 period is characterised by noticeable variations in the differential visibilities in Doppler position and width and by weak variations in differential and closure phase. The 2009-2010 period is much quieter with virtually no detectable variations in the dispersed visibilities but a strong S-shaped signal is observed in differential phase coinciding with a strong ejection event discernible in the optical spectra. The differential phase signal that is sometimes detected is reminiscent of the signal computed from hydrodynamical models of corotating interaction regions. For some epochs the temporal evolution of the signal suggests the rotation of the circumstellar structures. Based on observations collected at the European Southern Observatory (ESO Programmes 078.D-0355 and 084.D-0393) and at the Observatorio Cerro Armazones (OCA) in Chile.Appendices are available in electronic form at http://www.aanda.orgReduced BESO data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A125
Mass Loss from the Nuclei of Active Galaxies
NASA Technical Reports Server (NTRS)
Crenshaw, Michael; Kraemer, Steven B.; George, Ian M.
2003-01-01
Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .
NASA Astrophysics Data System (ADS)
Kim, Ho Sung
2013-12-01
A quantitative method for estimating an expected uncertainty (reliability and validity) in assessment results arising from the relativity between four variables, viz examiner's expertise, examinee's expertise achieved, assessment task difficulty and examinee's performance, was developed for the complex assessment applicable to final year project thesis assessment including peer assessment. A guide map can be generated by the method for finding expected uncertainties prior to the assessment implementation with a given set of variables. It employs a scale for visualisation of expertise levels, derivation of which is based on quantified clarities of mental images for levels of the examiner's expertise and the examinee's expertise achieved. To identify the relevant expertise areas that depend on the complexity in assessment format, a graphical continuum model was developed. The continuum model consists of assessment task, assessment standards and criterion for the transition towards the complex assessment owing to the relativity between implicitness and explicitness and is capable of identifying areas of expertise required for scale development.
Probing the Physics of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Peterson, Bradley M.
2004-01-01
As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.
IUE observations of circumstellar emission from the late-type variable R AQR (M6 + pec)
NASA Technical Reports Server (NTRS)
Hobbs, R. W.; Michalitsianos, A. G.; Kafatos, M.
1981-01-01
The IUE observations of R Aqr (M7 + pec) obtained in low dispersion are discussed with particular reference to circumstellar emission. Strong permitted, semiforbidden, and forbidden emission lines are seen, superimposed on a bright ultraviolet continuum. It is deduced that the strong emission line spectrum that involves C III, C IV, Si III, (0 II) and (0 III) probably arises from a dense compact nebula the size of which is comparable to the orbital radius of the binary system of which R Aqr is the primary star. The low excitation emission lines of Fe II, Mg II, 0 I, and Si II probably a white dwarf, comparable to or somewhat brighter than the Sun, since such a star can produce enough ionizing photons to excite the continuum and emission line spectrum and yet be sufficiently faint as to escape detection by direct observation. The UV continuum is attributed to Balmer recombination from the dense nebula and not to blackbody emission from the hot companion.
Morphologies of Solid Surfaces Produced Far from Equilibrium
1991-03-10
common to all these applications is that thc surface preparation processes used are far from chemical equilibrium. Many of the processes involve an...energetic ion beam, plasma or gas that is used to modify a surface, either by etching or depositing material. The electrical, optical and mechanical...growth, a number of continuum models have been used in the materials science literature, in particular in the context of electron-beam etching of
NASA Astrophysics Data System (ADS)
Kriss, Gerard A.; Agn Storm Team
2015-01-01
The AGN STORM collaboration monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, with observations spanning the hard X-ray to mid-infrared wavebands. The core of this campaign was an intensive HST COS program, which obtained 170 far-ultraviolet spectra at approximately daily intervals, with twice-per-day monitoring of the X-ray, near-UV, and optical bands during much of the same period using Swift. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow associated absorption lines in the UV spectrum of NGC 5548 remain strong. The lower-ionization transitions that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. Their depths over the longer term, however, also respond to the strength of the soft X-ray obscuration, indicating that the soft X-ray obscurer has a significant influence on the ionizing UV continuum that is not directly tracked by the observable UV continuum itself.
Spectral Energy Distribution Fitting of Hetdex Pilot Survey Ly-alpha Emitters in Cosmos and Goods-N
NASA Technical Reports Server (NTRS)
Hagen, Alex; Ciardullo, Robin; Cronwall, Caryl; Acquaviva, Viviana; Bridge, Joanna; Zeimann, Gregory R.; Blanc, Guillermo; Bond, Nicholas; Finkelstein, Steven L.; Song, Mimi;
2014-01-01
We use broadband photometry extending from the rest-frame UV to the near-IR to fit the individual spectral energy distributions of 63 bright (L(Ly-alpha) greater than 10(exp 43) erg s(exp -1) Ly-alpha emitting galaxies (LAEs) in the redshift range 1.9 less than z less than 3.6. We find that these LAEs are quite heterogeneous, with stellar masses that span over three orders of magnitude, from 7.5 greater than logM/solar mass less than 10.5. Moreover, although most LAEs have small amounts of extinction, some high-mass objects have stellar reddenings as large as E(B - V ) is approximately 0.4. Interestingly, in dusty objects the optical depths for Ly-alpha and the UV continuum are always similar, indicating that Lya photons are not undergoing many scatters before escaping their galaxy. In contrast, the ratio of optical depths in low-reddening systems can vary widely, illustrating the diverse nature of the systems. Finally, we show that in the star-formation-rate-log-mass diagram, our LAEs fall above the "main-sequence" defined by z is approximately 3 continuum selected star-forming galaxies. In this respect, they are similar to submillimeter-selected galaxies, although most LAEs have much lower mass.
NASA Astrophysics Data System (ADS)
Komossa, S.; Zhou, H.; Rau, A.; Dopita, M.; Gal-Yam, A.; Greiner, J.; Zuther, J.; Salvato, M.; Xu, D.; Lu, H.; Saxton, R.; Ajello, M.
2009-08-01
The galaxy SDSSJ095209.56+214313.3 (SDSSJ0952+2143 hereafter) showed remarkable emission-line and continuum properties and strong emission-line variability first reported in 2008 (Paper I). The spectral properties and low-energy variability are the consequence of a powerful high-energy flare which was itself not observed directly. Here we report follow-up optical, near-infrared (NIR), mid-infrared (MIR), and X-ray observations of SDSSJ0952+2143. We discuss outburst scenarios in terms of stellar tidal disruption by a supermassive black hole, peculiar variability of an active galactic nucleus (AGN), and a supernova (SN) explosion, and possible links between these scenarios and mechanisms. The optical spectrum of SDSSJ0952+2143 exhibits several peculiarities: an exceptionally high ratio of [Fe VII] transitions over [O III], a dramatic decrease by a factor of 10 of the highest-ionization coronal lines, a very unusual and variable Balmer line profile including a triple-peaked narrow component with two unresolved horns, and a large Balmer decrement. The MIR emission measured with the Spitzer IRS in the narrow 10-20 μm band is extraordinarily luminous and amounts to L 10-20 μm = 3.5 × 1043 erg s-1. The IRS spectrum shows a bump around ~11 μm and an increase toward longer wavelengths, reminiscent of silicate emission. The strong MIR excess over the NIR implies the dominance of relatively cold dust. The pre- and post-flare NIR host galaxy colors indicate a nonactive galaxy. The X-ray luminosity of L x,0.1-10 keV = 1041 erg s-1 measured with Chandra is below that typically observed in AGNs. Similarities of SDSSJ0952+2143 with some extreme SNe suggest the explosion of a SN of Type IIn. However, an extreme accretion event in a low-luminosity AGN or inactive galaxy, especially stellar tidal disruption, remain possibilities, which could potentially produce a very similar emission-line response. If indeed a SN, SDSSJ0952+2143 is one of the most distant X-ray- and MIR-detected SNe known so far, the most MIR luminous, and one of the most X-ray luminous. It is also by far the most luminous (>1040 erg s-1) in high-ionization coronal lines, exceeding previous SNe by at least a factor of 100.
Anomalous resonances of an optical microcavity with a hyperbolic metamaterial core
NASA Astrophysics Data System (ADS)
Travkin, Evgenij; Kiel, Thomas; Sadofev, Sergey; Busch, Kurt; Benson, Oliver; Kalusniak, Sascha
2018-05-01
We embed a hyperbolic metamaterial based on stacked layer pairs of epitaxially grown ZnO/ZnO:Ga in a monolithic optical microcavity, and we investigate the arising unique resonant effects experimentally and theoretically. Unlike traditional metals, the semiconductor-based approach allows us to utilize all three permittivity regions of the hyperbolic metamaterial in the near-infrared spectral range. This configuration gives rise to modes of identical orders appearing at different frequencies, a zeroth-order resonance in an all-positive permittivity region, and a continuum of high-order modes. In addition, an unusual lower cutoff frequency is introduced to the resonator mode spectrum. The observed effects expand the possibilities for customization of optical resonators; in particular, the zeroth-order and high-order modes hold strong potential for the realization of deeply subwavelength cavity sizes.
Coherent ultra-violet to near-infrared generation in silica ridge waveguides
Yoon Oh, Dong; Yang, Ki Youl; Fredrick, Connor; Ycas, Gabriel; Diddams, Scott A.; Vahala, Kerry J.
2017-01-01
Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology. PMID:28067233
Goddard X-ray astronomy contributions to the IAU/COSPAR (1982)
NASA Technical Reports Server (NTRS)
Holt, S. S.; Petre, R.; Shafer, R. A.; Urry, C. M.; Mushotzky, R. F.
1982-01-01
The relation of X-ray flux to both the continuum flux in the optical and radio bands, and to the line emission properties of these objects were studied. The Einstein Observatory, because of increased sensitivity and improved angular resolution, increased substantially the number of known X-ray emitting active galactic nuclei. The Einstein imaging instruments detected morphology in AGN X-ray emission, in particular from jetlike structures in Cen-A, M87, and 3C273. The improved energy resolution and sensitivity of the spectrometers onboard the Observatory provide information on the geometry and ionization structure of the region responsible for the broad optical emission lines in a few AGN's. This information, combined with theoretical modeling and IUE and optical observations, allows the construction of a moderately detailed picture of the broad line region in these objects.
HUBBLE SPACE TELESCOPE AND GROUND-BASED OBSERVATIONS OF V455 ANDROMEDAE POST-OUTBURST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szkody, Paula; Mukadam, Anjum S.; Brown, Justin
2013-09-20
Hubble Space Telescope spectra obtained in 2010 and 2011, 3 and 4 yr after the large amplitude dwarf nova outburst of V455 And, were combined with optical photometry and spectra to study the cooling of the white dwarf, its spin, and possible pulsation periods after the outburst. The modeling of the ultraviolet (UV) spectra shows that the white dwarf temperature remains ∼600 K hotter than its quiescent value at 3 yr post-outburst, and still a few hundred degrees hotter at 4 yr post-outburst. The white dwarf spin at 67.6 s and its second harmonic at 33.8 s are visible inmore » the optical within a month of outburst and are obvious in the later UV observations in the shortest wavelength continuum and the UV emission lines, indicating an origin in high-temperature regions near the accretion curtains. The UV light curves folded on the spin period show a double-humped modulation consistent with two-pole accretion. The optical photometry 2 yr after outburst shows a group of frequencies present at shorter periods (250-263 s) than the periods ascribed to pulsation at quiescence, and these gradually shift toward the quiescent frequencies (300-360 s) as time progresses past outburst. The most surprising result is that the frequencies near this period in the UV data are only prominent in the emission lines, not the UV continuum, implying an origin away from the white dwarf photosphere. Thus, the connection of this group of periods with non-radial pulsations of the white dwarf remains elusive.« less
FROM X-RAY DIPS TO ECLIPSE: WITNESSING DISK REFORMATION IN THE RECURRENT NOVA U Sco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, J.-U.; Talavera, A.; Gonzalez-Riestra, R.
2012-01-20
The tenth recorded outburst of the recurrent eclipsing nova U Sco was observed simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9 after the outburst. Two full passages of the companion in front of the nova ejecta were observed, as was the reformation of the accretion disk. On day 22.9, we observed smooth eclipses in UV and optical but deep dips in the X-ray light curve that disappeared by day 34.9, yielding clean eclipses in all bands. X-ray dips can be caused by clumpy absorbing material that intersects the line of sight while moving along highlymore » elliptical trajectories. Cold material from the companion could explain the absence of dips in UV and optical light. The disappearance of X-ray dips before day 34.9 implies significant progress in the formation of the disk. The X-ray spectra contain photospheric continuum emission plus strong emission lines, but no clear absorption lines. Both continuum and emission lines in the X-ray spectra indicate a temperature increase from day 22.9 to day 34.9. We find clear evidence in the spectra and light curves for Thompson scattering of the photospheric emission from the white dwarf. Photospheric absorption lines can be smeared out during scattering in a plasma of fast electrons. We also find spectral signatures of resonant line scattering that lead to the observation of the strong emission lines. Their dominance could be a general phenomenon in high-inclination systems such as Cal 87.« less
Kovác, Daniel; Malenovský, Zbyněk; Urban, Otmar; Špunda, Vladimír; Kalina, Jiří; Ač, Alexander; Kaplan, Veroslav; Hanuš, Jan
2013-04-01
A dedicated field experiment was conducted to investigate the response of a green reflectance continuum removal-based optical index, called area under the curve normalized to maximal band depth between 511 nm and 557 nm (ANMB511-557), to light-induced transformations in xanthophyll cycle pigments of Norway spruce [Picea abies (L.) Karst] needles. The performance of ANMB511-557 was compared with the photochemical reflectance index (PRI) computed from the same leaf reflectance measurements. Needles of four crown whorls (fifth, eighth, 10th, and 15th counted from the top) were sampled from a 27-year-old spruce tree throughout a cloudy and a sunny day. Needle optical properties were measured together with the composition of the photosynthetic pigments to investigate their influence on both optical indices. Analyses of pigments showed that the needles of the examined whorls varied significantly in chlorophyll content and also in related pigment characteristics, such as the chlorophyll/carotenoid ratio. The investigation of the ANMB511-557 diurnal behaviour revealed that the index is able to follow the dynamic changes in the xanthophyll cycle independently of the actual content of foliar pigments. Nevertheless, ANMB511-557 lost the ability to predict the xanthophyll cycle behaviour during noon on the sunny day, when the needles were exposed to irradiance exceeding 1000 µmol m(-2) s(-1). Despite this, ANMB511-557 rendered a better performance for tracking xanthophyll cycle reactions than PRI. Although declining PRI values generally responded to excessive solar irradiance, they were not able to predict the actual de-epoxidation state in the needles examined.
A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion
NASA Astrophysics Data System (ADS)
Sing, David K.; Fortney, Jonathan J.; Nikolov, Nikolay; Wakeford, Hannah R.; Kataria, Tiffany; Evans, Thomas M.; Aigrain, Suzanne; Ballester, Gilda E.; Burrows, Adam S.; Deming, Drake; Désert, Jean-Michel; Gibson, Neale P.; Henry, Gregory W.; Huitson, Catherine M.; Knutson, Heather A.; Lecavelier Des Etangs, Alain; Pont, Frederic; Showman, Adam P.; Vidal-Madjar, Alfred; Williamson, Michael H.; Wilson, Paul A.
2016-01-01
Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet’s formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.
NASA Astrophysics Data System (ADS)
Nishizawa, N.; Ishida, S.; Kitatsuji, M.; Ohshima, H.; Hasegawa, Y.; Matsushima, M.; Kawabe, T.
2012-02-01
We have been investigating ultrahigh resolution optical coherence tomography (UHR-OCT) imaging of lung tissues using fiber super continuum sources. The high power, low-noise, Gaussian shaped supercontinuum generated with ultrashort pulses and optical fibers at several wavelengths were used as the broadband light sources for UHR-OCT. For the 800 nm wavelength region, the axial resolution was 3.0 um in air and 2.0 um in tissue. Since the lung consists of tiny alveoli which are separated by thin wall, the UHR-OCT is supposed to be effective for lung imaging. The clear images of alveoli of rat were observed with and without index matching effects by saline. In this work, we investigated the UHR-OCT imaging of lung disease model. The lipopolysaccharide (LPS) induced acute lung injury / acute respiratory distress syndrome (ALI/ARDS) model of rat was prepared as the sample with disease and the UHR-OCT imaging of the disease part was demonstrated. The increment of signal intensity by pleural thickening was observed. The accumulation of exudative fluid in alveoli was also observed for two samples. By the comparison with normal lung images, we can obviously show the difference in the ALI/ARDS models. Since the lung consists of alveolar surrounded by capillary vessels, the effect of red-blood cells (RBC) is considered to be important. In this work, ex-vivo UHR-OCT imaging of RBC was demonstrated. Each RBC was able to be observed individually using UHR-OCT. The effect of RBC was estimated with the rat lung perfused with PBS.
A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion.
Sing, David K; Fortney, Jonathan J; Nikolov, Nikolay; Wakeford, Hannah R; Kataria, Tiffany; Evans, Thomas M; Aigrain, Suzanne; Ballester, Gilda E; Burrows, Adam S; Deming, Drake; Désert, Jean-Michel; Gibson, Neale P; Henry, Gregory W; Huitson, Catherine M; Knutson, Heather A; des Etangs, Alain Lecavelier; Pont, Frederic; Showman, Adam P; Vidal-Madjar, Alfred; Williamson, Michael H; Wilson, Paul A
2016-01-07
Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.
NASA Astrophysics Data System (ADS)
Kehrig, C.; Monreal-Ibero, A.; Papaderos, P.; Vílchez, J. M.; Gomes, J. M.; Masegosa, J.; Sánchez, S. F.; Lehnert, M. D.; Cid Fernandes, R.; Bland-Hawthorn, J.; Bomans, D. J.; Marquez, I.; Mast, D.; Aguerri, J. A. L.; López-Sánchez, Á. R.; Marino, R. A.; Pasquali, A.; Perez, I.; Roth, M. M.; Sánchez-Blázquez, P.; Ziegler, B.
2012-04-01
As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745-7300 Å) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1' × 1') covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an "ionization cone" are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first "ionization cone" of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 Å] and have very low excitation, log([Oiii]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([Oiii]λ5007/Hβ, [Nii]λ6584/Hα, [Sii]λ6717, 6731/Hα, [Oi]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the "ionization cone" scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
Traveling waves in a continuum model of 1D schools
NASA Astrophysics Data System (ADS)
Oza, Anand; Kanso, Eva; Shelley, Michael
2017-11-01
We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.
Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum Damage Mechanics Models
NASA Technical Reports Server (NTRS)
Leone, Frank A.; Davila, Carlos G.; Mabson, Gerald E.; Ramnath, Madhavadas; Hyder, Imran
2017-01-01
This paper evaluates the ability of progressive damage analysis (PDA) finite element (FE) models to predict transverse matrix cracks in unidirectional composites. The results of the analyses are compared to closed-form linear elastic fracture mechanics (LEFM) solutions. Matrix cracks in fiber-reinforced composite materials subjected to mode I and mode II loading are studied using continuum damage mechanics and zero-thickness cohesive zone modeling approaches. The FE models used in this study are built parametrically so as to investigate several model input variables and the limits associated with matching the upper-bound LEFM solutions. Specifically, the sensitivity of the PDA FE model results to changes in strength and element size are investigated.
Fabric and connectivity as field descriptors for deformations in granular media
NASA Astrophysics Data System (ADS)
Wan, Richard; Pouragha, Mehdi
2015-01-01
Granular materials involve microphysics across the various scales giving rise to distinct behaviours of geomaterials, such as steady states, plastic limit states, non-associativity of plastic and yield flow, as well as instability of homogeneous deformations through strain localization. Incorporating such micro-scale characteristics is one of the biggest challenges in the constitutive modelling of granular materials, especially when micro-variables may be interdependent. With this motivation, we use two micro-variables such as coordination number and fabric anisotropy computed from tessellation of the granular material to describe its state at the macroscopic level. In order to capture functional dependencies between micro-variables, the correlation between coordination number and fabric anisotropy limits is herein formulated at the particle level rather than on an average sense. This is the essence of the proposed work which investigates the evolutions of coordination number distribution (connectivity) and anisotropy (contact normal) distribution curves with deformation history and their inter-dependencies through discrete element modelling in two dimensions. These results enter as probability distribution functions into homogenization expressions during upscaling to a continuum constitutive model using tessellation as an abstract representation of the granular system. The end product is a micro-mechanically inspired continuum model with both coordination number and fabric anisotropy as underlying micro-variables incorporated into a plasticity flow rule. The derived plastic potential bears striking resemblance to cam-clay or stress-dilatancy-type yield surfaces used in soil mechanics.
Continuum-Kinetic Models and Numerical Methods for Multiphase Applications
NASA Astrophysics Data System (ADS)
Nault, Isaac Michael
This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.
Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment
Mitran, Sorin
2013-01-01
The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale. PMID:23729842
Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitran, Sorin, E-mail: mitran@unc.edu
2013-07-01
The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough,more » upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.« less
Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment
NASA Astrophysics Data System (ADS)
Mitran, Sorin
2013-07-01
The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.
The REX survey as a Tool to Test the Beaming Model for BL Lacs
NASA Astrophysics Data System (ADS)
Caccianiga, A.; della Ceca, R.; Gioia, I. M.; Maccacaro, T.; Wolter, A.
We present the preliminary properties of the BL Lacs discovered in the REX survey (Caccianiga et al. 1998). In particular, we discuss a few sources with optical spectral properties ``intermediate'' between those of BL Lacs and those of elliptical galaxies. These objects could harbour weak (in the optical band) sources of non-thermal continuum in their nuclei and, if confirmed, they could represent the faint tail of the BL Lac population. The existence of such ``weak'' BL Lacs is matter of discussion in recent literature (e.g. Marcha et al. 1996) and could lead to a revision of the defining criteria of a BL Lac and, consequently, of their cosmological and statistical properties.
Optical and near-IR imaging observations of comet Austin 1989c1
NASA Technical Reports Server (NTRS)
Watanabe, J.; Hiromoto, N.; Takami, H.; Aoki, TE.; Nakamura, T.; Takagishi, K.; Hatsukade, I.; Isobe, S.; Sasaki, G.; Sugai, H.
1990-01-01
Near-nucleus imaging observations of comet Austin (1989c1) were carried out by the Japanese CCD imaging team. Six telescopes were used to monitor the time variation of the near-nucleus images in C2, CN, H2O, and Na continuum in the optical region, and in J, H, and K bands in the near-IR region. A featureless, round shape of the comet was revealed in all images. Although some of the jet features are recognized by using an image enhancement technique, the azimuthal difference of the intensity distribution is about 10 percent. The images in the H2O band show complex ion structures near the nucleus.
A (12)CO J = 2-1 map of the disk of Centaurus A: Evidence for large scale heating in the dust lane
NASA Technical Reports Server (NTRS)
Wild, W.; Cameron, M.; Eckart, A.; Genzel, R.; Rothermel, H.; Rydbeck, G.; Wiklind, T.
1993-01-01
Centaurus A (NGC 5128) is a nearby (3 Mpc) elliptical galaxy with a prominent dust lane, extensive radio lobes, and a compact radio continuum source, suggestive of nuclear activity. As a consequence of its peculiar morphology, this merger candidate has been the subject of much attention, particularly at optical wavelengths. Unfortunately the high and patchy extinction in the disk, aggravated by the warped structure of the dust lane, has severely hindered investigations into the properties of the interstellar medium, particularly with regard to the extent of star formation. Here we present a map of the (12)CO J = 2-1 line throughout the dust lane which, when combined with a previously measured (12)CO J = 1-0 map and data on molecular absorption lines observed against the compact non-thermal continuum source, offers insight into the excitation conditions of the molecular gas.
NASA Technical Reports Server (NTRS)
Canfield, R. C.; Ricchiazzi, P. J.
1980-01-01
An approximate probabilistic radiative transfer equation and the statistical equilibrium equations are simultaneously solved for a model hydrogen atom consisting of three bound levels and ionization continuum. The transfer equation for L-alpha, L-beta, H-alpha, and the Lyman continuum is explicitly solved assuming complete redistribution. The accuracy of this approach is tested by comparing source functions and radiative loss rates to values obtained with a method that solves the exact transfer equation. Two recent model solar-flare chromospheres are used for this test. It is shown that for the test atmospheres the probabilistic method gives values of the radiative loss rate that are characteristically good to a factor of 2. The advantage of this probabilistic approach is that it retains a description of the dominant physical processes of radiative transfer in the complete redistribution case, yet it achieves a major reduction in computational requirements.
An Accreting Protoplanet: Confirmation and Characterization of LkCa15b
NASA Astrophysics Data System (ADS)
Follette, Katherine; Close, Laird; Males, Jared; Macintosh, Bruce; Sallum, Stephanie; Eisner, Josh; Kratter, Kaitlin M.; Morzinski, Katie; Hinz, Phil; Weinberger, Alycia; Rodigas, Timothy J.; Skemer, Andrew; Bailey, Vanessa; Vaz, Amali; Defrere, Denis; spalding, eckhart; Tuthill, Peter
2015-12-01
We present a visible light adaptive optics direct imaging detection of a faint point source separated by just 93 milliarcseconds (~15 AU) from the young star LkCa 15. Using Magellan AO's visible light camera in Simultaneous Differential Imaging (SDI) mode, we imaged the star at Hydrogen alpha and in the neighboring continuum as part of the Giant Accreting Protoplanet Survey (GAPplanetS) in November 2015. The continuum images provide a sensitive and simultaneous probe of PSF residuals and instrumental artifacts, allowing us to isolate H-alpha accretion luminosity from the LkCa 15b protoplanet, which lies well inside of the LkCa15 transition disk gap. This detection, combined with a nearly simultaneous near-infrared detection with the Large Binocular Telescope, provides an unprecedented glimpse at a planetary system during epoch of planet formation. [Nature result in press. Please embargo until released
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albo, Asaf, E-mail: asafalbo@gmail.com; Hu, Qing; Reno, John L.
The mechanisms that limit the temperature performance of GaAs/Al{sub 0.15}GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding,more » we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. This result is a strong evidence for the effective suppression of the aforementioned leakage channel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albo, Asaf; Hu, Qing; Reno, John L.
The mechanisms that limit the temperature performance of GaAs/Al 0.15GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding,more » we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. Furthermore, this result is a strong evidence for the effective suppression of the aforementioned leakage channel.« less
The Global Implications of the Hard X-ray Excess in Type 1 AGN
NASA Astrophysics Data System (ADS)
Tatum, Malachi; Turner, T. J.; Miller, L.; Reeves, J. N.
2012-09-01
Suzaku observations of 1H 0419-577 and PDS 456 revealed a marked 'hard excess' of flux above 10 keV, likely due to the presence of a Compton-thick absorber covering a large fraction of the continuum source. The discovery is intriguing, given the clear view to the optical BLR in type 1 objects. These results motivated an exploratory study of the hard excess phenomenon in the local type 1 AGN population, using the Swift Burst Alert Telescope (BAT). We selected radio quiet type 1-1.9 AGN from the 58-month BAT catalog. The hardness of the X-ray spectrum, combined with measurements of the equivalent width of Fe Ka emission suggest that type 1 X-ray spectra are shaped by an ensemble of Compton-thick clouds, partially covering the continuum. I discuss our methodology, the observational findings & possible location of the Compton-thick gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ruilin; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Jia, Jieshu
2016-08-15
This paper reports a novel coaxial gridded hollow discharge during operation at low pressure (20 Pa–80 Pa) in an argon atmosphere. A homogeneous hollow discharge was observed under different conditions, and the excitation mechanism and the discharge parameters for the hollow cathode plasma were examined at length. An optical emission spectrometry (OES) method, with a special focus on absolute continuum intensity method, was employed to measure the plasma parameters. The Langmuir probe measurement (LPM) was used to verify the OES results. Both provided electron density values (n{sub e}) in the order of 10{sup 16} m{sup −3} for different plasma settings. Taken together, themore » results show that the OES method is an effective approach to diagnosing the similar plasma, especially when the LPM is hardly operated.« less
Predicting Student Success from Non-Cognitive Variables.
ERIC Educational Resources Information Center
Blumberg, Phyllis
In order to identify the relationship among social support networks, depression, life events, and student progress in medical school, 96 students completed a questionnaire. The results indicated good social support, a high number of recent life events, slight depression and a continuum of not quite passing to doing extremely well in medical…
The flaring activity of Markarian 421 during April 2000
NASA Astrophysics Data System (ADS)
Fegan, D. J.; VERITAS Collaboration
2001-08-01
Evidence for correlated TeV γ and X-ray flaring of the extreme blazar Mrk421 during April 2000 is presented and discussed. The remarkably persistent TeV flare of April 30th 2000 (40 σ significance), exhibiting structure over almost six hours of continuous observation, is analysed in detail. 1 Extreme BL Lac objects The most extreme members of the Active Galactic Nucleus (AGN) family are BL Lac objects and optically violently variable (OVV) quasars, collectively known as blazars. These objects are dominated by the presence of relativistic jets. For jets fortuitously aligned with an observers line of sight, emission may exhibit dramatic variability over very short time scales, in turn implying remarkably compact emission regions. For blazars, the Spectral Energy Distribution (SED) is dominated by non-thermal continuum emission, extending from radio to TeV gamma rays. The broadband nature of the blazar emission offers unique insights into energetic physical processes at work in a very compact region, close to the base of the jet and near the underlying central engine, most likely a supermassive black hole. BL Lacs are very effectively characterized on the basis of their SED shape. X-ray and radio flux limited surveys apear to display a bimodal distribution of properties, with LBL (Low-energy peaked, or "Red" BL Lacs) having synchrotron peaks in the IR-optical bands, and HBL (High-energy peaked, or "Blue" BL Lacs) in the UV to soft X-ray band. Recent comprehensive surveys such as DXRBS, REX and RGB have extended, by almost two orders of magnitude, the range of observable synchrotron peak frequencies. For blazar class objects, broadband emission confirms that the synchrotron peak may span the entire IR Xray range, thus accounting for the multi-frequency emission properties of this class of object. Mrk421, Mrk501, 1ES2344 and 1H1426 all exhibit broadband emission properties, high
Spectroscopic Peculiarity of the Herbig Be Star HD 259431
NASA Astrophysics Data System (ADS)
Pogodin, M. A.; Pavlovskij, S. E.; Drake, N. A.; Beskrovnaya, N. G.; Kozlova, O. V.; Alekseev, I. Yu.; Borges Fernandes, M.; Pereira, C. B.; Valyavin, G.
2017-06-01
High-resolution spectra of the Herbig Be star HD 259431 obtained in 2010-2016 at three observatories (Crimean AO, ESO in Chile, and OAN SPN in Mexico) are analysed. The object demonstrates a very rich emission line profile spectrum. The bulk of the lines exhibit double-peaked emission profiles and originate in the gaseous disk. The atmospheric lines are unusually shallow, and majority of them are distorted by the circumstellar (CS) contribution. Moreover, we have revealed that they are overlapped with an additional continuum emission. Using the observed ratio of the equivalent widths of two He I λ 4009 and 4026 lines, we estimated the spectral type of the object as B5 V. We also constructed the spectral energy distribution of the additional continuum using wide wings of the atmospheric Hβ-Hɛ lines free of the CS contribution. The continuum corresponds to the blue part of the black body spectrum. The Hβ - Hɛ Balmer emission lines show very variable profiles looking as either of P Cyg-type or a double-peaked emission line with a depression of the red wing. We found the period of this variability P = 2.630d and interpreted it as a sign of a rotating magnetosphere of the star with the magnetic axis inclined to the rotation axis. At different phases of rotation, the observer can see either an accretion flow at high magnetic latitudes or a wind zone at lower latitudes. We also estimated the inclination of the rotation axis i = 52°±1°.
Computational aspects of the continuum quaternionic wave functions for hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morais, J., E-mail: joao.pedro.morais@ua.pt
Over the past few years considerable attention has been given to the role played by the Hydrogen Continuum Wave Functions (HCWFs) in quantum theory. The HCWFs arise via the method of separation of variables for the time-independent Schrödinger equation in spherical coordinates. The HCWFs are composed of products of a radial part involving associated Laguerre polynomials multiplied by exponential factors and an angular part that is the spherical harmonics. In the present paper we introduce the continuum wave functions for hydrogen within quaternionic analysis ((R)QHCWFs), a result which is not available in the existing literature. In particular, the underlying functionsmore » are of three real variables and take on either values in the reduced and full quaternions (identified, respectively, with R{sup 3} and R{sup 4}). We prove that the (R)QHCWFs are orthonormal to one another. The representation of these functions in terms of the HCWFs are explicitly given, from which several recurrence formulae for fast computer implementations can be derived. A summary of fundamental properties and further computation of the hydrogen-like atom transforms of the (R)QHCWFs are also discussed. We address all the above and explore some basic facts of the arising quaternionic function theory. As an application, we provide the reader with plot simulations that demonstrate the effectiveness of our approach. (R)QHCWFs are new in the literature and have some consequences that are now under investigation.« less
Optical/Infrared properties of Be stars in X-ray Binary systems
NASA Astrophysics Data System (ADS)
Naik, Sachindra
2018-04-01
Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.
Optical observables in stars with non-stationary atmospheres. [fireballs and cepheid models
NASA Technical Reports Server (NTRS)
Hillendahl, R. W.
1980-01-01
Experience gained by use of Cepheid modeling codes to predict the dimensional and photometric behavior of nuclear fireballs is used as a means of validating various computational techniques used in the Cepheid codes. Predicted results from Cepheid models are compared with observations of the continuum and lines in an effort to demonstrate that the atmospheric phenomena in Cepheids are quite complex but that they can be quantitatively modeled.
NASA Technical Reports Server (NTRS)
Ayres, T. R.; Shine, R. A.; Linsky, J. L.
1975-01-01
Existing high resolution stellar profiles of the Ca II and Mg II resonance lines suggest a possible width-luminosity correlation of the K1 minimum features. It is shown that such a correlation can be simply understood if the continuum optical depth of the stellar temperature minimum is relatively independent of surface gravity as suggested by three stars studied in detail.
Optical spectroscopy of V404 Cyg during its latest outburst
NASA Astrophysics Data System (ADS)
Somogyi, Peter
2016-01-01
Low resolution spectra were obtained during the current outburst (announced in ATel #8453) of the microquasar V404 Cyg. Ten 600 sec exposures were obtained on 2015 Dec. 31 (JD 2457388.202 - 0.27) with a 250 mm Newtonian reflector using an LHires III spectrograph with 150 line/mm grating (R ~ 500) spanning 4500-7500A with the combined S/N ~ 10 (continuum at 6000A; calibration used the standard HD192640).
Bacterial Biogeography across the Amazon River-Ocean Continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitionalmore » assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.« less
Bacterial Biogeography across the Amazon River-Ocean Continuum.
Doherty, Mary; Yager, Patricia L; Moran, Mary Ann; Coles, Victoria J; Fortunato, Caroline S; Krusche, Alex V; Medeiros, Patricia M; Payet, Jérôme P; Richey, Jeffrey E; Satinsky, Brandon M; Sawakuchi, Henrique O; Ward, Nicholas D; Crump, Byron C
2017-01-01
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.
The dimensionality of alcohol use disorders and alcohol consumption in a cross-national perspective
Borges, Guilherme; Ye, Yu; Bond, Jason; Cherpitel, Cheryl J.; Cremonte, Mariana; Moskalewicz, Jacek; Swiatkiewicz, Grazyna; Rubio-Stipec, Maritza
2009-01-01
Aims To replicate the finding that there is a single dimension trait in alcohol use disorders and to test whether usual 5+ drinks for men and/4+ drinks for women and other measures of alcohol consumption help to improve alcohol use disorder criteria in a series of diverse patients from Emergency Departments (EDs) in four countries. Design Cross-sectional surveys of patient 18 and older that reflected consecutive arrival at the ED. The Composite International Diagnostic Interview Core was used to obtain a diagnosis of DSM-IV alcohol dependence and alcohol abuse. Quantity and frequency of drinking and drunkenness as well as usual number of drinks consumed during the last year. Setting Participants were 5,195 injured and non-injured patients attending 7 EDs in 4 countries, Argentina, Mexico, Poland the U.S., (between 1995-2001). Findings Using exploratory factor analyses alcohol use disorders can be described as a single, unidimensional continuum without any clear cut distinction between the criterions for dependence and abuse in all sites. Results from item response theory analyses showed that the current DSM-IV criterions tap people in the middle-upper end of the alcohol use disorder continuum. Alcohol consumption (amount and frequency of use) can be used in all EDs with the current DSM-IV diagnostic criterions to help tap the middle-lower part of this continuum. Even though some specific diagnostic criterions and some alcohol consumption variables showed differential item function across sites, test response curves were invariant for ED sites and their inclusion would not impact the final (total) performance of the diagnostic system. Conclusions DSM-IV abuse and dependence form a unidimensional continuum in ED patients regardless of country of survey. Alcohol consumption variables, if added, would help to tap patients with more moderate severity. DSM diagnostic system for alcohol use disorders showed invariance and performed extremely well in these samples. PMID:20078482
Bacterial Biogeography across the Amazon River-Ocean Continuum
Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; ...
2017-05-23
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitionalmore » assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.« less
Bacterial Biogeography across the Amazon River-Ocean Continuum
Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; Coles, Victoria J.; Fortunato, Caroline S.; Krusche, Alex V.; Medeiros, Patricia M.; Payet, Jérôme P.; Richey, Jeffrey E.; Satinsky, Brandon M.; Sawakuchi, Henrique O.; Ward, Nicholas D.; Crump, Byron C.
2017-01-01
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum. PMID:28588561
Exploring the engines of molecular outflows. Radio continuum and H_2_O maser observations.
NASA Astrophysics Data System (ADS)
Tofani, G.; Felli, M.; Taylor, G. B.; Hunter, T. R.
1995-09-01
We present A-configuration VLA observations of the 22GHz H_2_O maser line and 8.4GHz continuum emission of 22 selected CO bipolar outflows associated with water masers. These observations allow us to study the region within 10^4^AU of the engine powering the outflow. The positions of the maser spots are compared with those of ultra-compact (UC) continuum sources found in our observations, with IRAS data and with data from the literature on the molecular outflows. Weak unresolved continuum sources are found in several cases associated with the maser. Most probably they represent the ionized envelope surrounding the young stellar object (YSO) which powers the maser and the outflow. These weak radio continuum sources are not necessarily associated with the IRAS sources, which are more representative of the global emission from the star forming region. A comparison of the velocity pattern of the CO outflow with those of the maser spots detected with the VLA is also made. Asymmetries in the H_2_O velocities are found on opposite sides of the YSO, suggesting that the outflow acceleration begins from the YSO itself. In a few cases we find evidence for two outflows in different evolutionary stages. The H_2_O masers in these sources are always found at the centre of the younger outflow. The degree of variability of each maser is derived from single dish observations obtained with the Medicina radiotelescope before and after the VLA observations. Velocity drifts of some features are interpreted as acceleration of the maser.
Rajput, Lalit; Banik, Manas; Yarava, Jayasubba Reddy; Joseph, Sumy; Pandey, Manoj Kumar
2017-01-01
There has been significant recent interest in differentiating multicomponent solid forms, such as salts and cocrystals, and, where appropriate, in determining the position of the proton in the X—H⋯A—Y X −⋯H—A +—Y continuum in these systems, owing to the direct relationship of this property to the clinical, regulatory and legal requirements for an active pharmaceutical ingredient (API). In the present study, solid forms of simple cocrystals/salts were investigated by high-field (700 MHz) solid-state NMR (ssNMR) using samples with naturally abundant 15N nuclei. Four model compounds in a series of prototypical salt/cocrystal/continuum systems exhibiting {PyN⋯H—O—}/{PyN+—H⋯O−} hydrogen bonds (Py is pyridine) were selected and prepared. The crystal structures were determined at both low and room temperature using X-ray diffraction. The H-atom positions were determined by measuring the 15N—1H distances through 15N-1H dipolar interactions using two-dimensional inversely proton-detected cross polarization with variable contact-time (invCP-VC) 1H→15N→1H experiments at ultrafast (νR ≥ 60–70 kHz) magic angle spinning (MAS) frequency. It is observed that this method is sensitive enough to determine the proton position even in a continuum where an ambiguity of terminology for the solid form often arises. This work, while carried out on simple systems, has implications in the pharmaceutical industry where the salt/cocrystal/continuum condition of APIs is considered seriously. PMID:28875033
Rajput, Lalit; Banik, Manas; Yarava, Jayasubba Reddy; Joseph, Sumy; Pandey, Manoj Kumar; Nishiyama, Yusuke; Desiraju, Gautam R
2017-07-01
There has been significant recent interest in differentiating multicomponent solid forms, such as salts and cocrystals, and, where appropriate, in determining the position of the proton in the X -H⋯ A - Y X - ⋯H- A + - Y continuum in these systems, owing to the direct relationship of this property to the clinical, regulatory and legal requirements for an active pharmaceutical ingredient (API). In the present study, solid forms of simple cocrystals/salts were investigated by high-field (700 MHz) solid-state NMR (ssNMR) using samples with naturally abundant 15 N nuclei. Four model compounds in a series of prototypical salt/cocrystal/continuum systems exhibiting {PyN⋯H-O-}/{PyN + -H⋯O - } hydrogen bonds (Py is pyridine) were selected and prepared. The crystal structures were determined at both low and room temperature using X-ray diffraction. The H-atom positions were determined by measuring the 15 N- 1 H distances through 15 N- 1 H dipolar interactions using two-dimensional inversely proton-detected cross polarization with variable contact-time (invCP-VC) 1 H→ 15 N→ 1 H experiments at ultrafast (ν R ≥ 60-70 kHz) magic angle spinning (MAS) frequency. It is observed that this method is sensitive enough to determine the proton position even in a continuum where an ambiguity of terminology for the solid form often arises. This work, while carried out on simple systems, has implications in the pharmaceutical industry where the salt/cocrystal/continuum condition of APIs is considered seriously.
Wang, Mingwu; Lu, Ake Tzu-Hui; Varma, Rohit; Schuman, Joel S; Greenfield, David S; Huang, David
2014-03-01
To improve the diagnosis of glaucoma by combining time-domain optical coherence tomography (TD-OCT) measurements of the optic disc, circumpapillary retinal nerve fiber layer (RNFL), and macular retinal thickness. Ninety-six age-matched normal and 96 perimetric glaucoma participants were included in this observational, cross-sectional study. Or-logic, support vector machine, relevance vector machine, and linear discrimination function were used to analyze the performances of combined TD-OCT diagnostic variables. The area under the receiver-operating curve (AROC) was used to evaluate the diagnostic accuracy and to compare the diagnostic performance of single and combined anatomic variables. The best RNFL thickness variables were the inferior (AROC=0.900), overall (AROC=0.892), and superior quadrants (AROC=0.850). The best optic disc variables were horizontal integrated rim width (AROC=0.909), vertical integrated rim area (AROC=0.908), and cup/disc vertical ratio (AROC=0.890). All macular retinal thickness variables had AROCs of 0.829 or less. Combining the top 3 RNFL and optic disc variables in optimizing glaucoma diagnosis, support vector machine had the highest AROC, 0.954, followed by or-logic (AROC=0.946), linear discrimination function (AROC=0.946), and relevance vector machine (AROC=0.943). All combination diagnostic variables had significantly larger AROCs than any single diagnostic variable. There are no significant differences among the combination diagnostic indices. With TD-OCT, RNFL and optic disc variables had better diagnostic accuracy than macular retinal variables. Combining top RNFL and optic disc variables significantly improved diagnostic performance. Clinically, or-logic classification was the most practical analytical tool with sufficient accuracy to diagnose early glaucoma.
The Lyman continuum escape fraction of low mass star-forming galaxies at z~1.
NASA Astrophysics Data System (ADS)
Rutkowski, Michael J.; Scarlata, Claudia; Haardt, Francesco; Siana, Brian D.; Rafelski, Marc; Henry, Alaina L.; Hayes, Matthew; Salvato, Mara; Pahl, Anthony; Mehta, Vihang; Beck, Melanie; Malkan, Matthew Arnold; Teplitz, Harry I.
2016-01-01
Star-forming galaxies (SFGs) in the high redshift universe (z>6) are believed to ionize neutral hydrogen in the intergalactic medium during the epoch of reionization. We tested this assumption by studying likely analogs of these SFGs in archival HST grism spectroscopy with GALEX UV and ground-based optical images at the redshift range in which we can directly measure the rest-frame Lyman continuum (λ<912Å, LyC) emission. We selected ~1400 SFGs for study on the presence of strong Hα emission and strongly selected against those SFGs whose GALEX FUV photometry could be contaminated by low redshift interlopers along the line of sight to produce a sample of ~600 z~1 SFGs. We made no unambiguous detection of escaping Lyman continuum radiation in individual galaxies in this sample, and stacked the individual non-detections in order to constrain the absolute Lyman continuum escape fraction, fesc<2% (3σ). We sub-divided this sample and stacked SFGs to measure upper limits to fesc with respect to stellar mass,luminosity and relative orientation. For z~1 high Hα equivalent width (EW>200Å) SFGs, we found for the first time an upper limit to fesc<9%. We discuss the implications of these limits for the ionizing emissivity of high redshift SFGs during the epoch of reionization. We conclude that reionization by SFGs is only marginally consistent with independent Planck observations of the CMB electron scattering opacity unless the LyC escape fraction of SFGs increases with redshift and an unobserved population of faint (MUV<-13 AB) SFGs contributes significantly to the UV background.
CO and Dust Properties in the TW Hya Disk from High-resolution ALMA Observations
NASA Astrophysics Data System (ADS)
Huang, Jane; Andrews, Sean M.; Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.; Bai, Xuening; Birnstiel, Til; Carpenter, John; Hughes, A. Meredith; Isella, Andrea; Pérez, Laura M.; Ricci, Luca; Zhu, Zhaohuan
2018-01-01
We analyze high angular resolution ALMA observations of the TW Hya disk to place constraints on the CO and dust properties. We present new, sensitive observations of the 12CO J = 3 ‑ 2 line at a spatial resolution of 8 au (0.″14). The CO emission exhibits a bright inner core, a shoulder at r ≈ 70 au, and a prominent break in slope at r ≈ 90 au. Radiative transfer modeling is used to demonstrate that the emission morphology can be reasonably reproduced with a 12CO column density profile featuring a steep decrease at r ≈ 15 au and a secondary bump peaking at r ≈ 70 au. Similar features have been identified in observations of rarer CO isotopologues, which trace heights closer to the midplane. Substructure in the underlying gas distribution or radially varying CO depletion that affects much of the disk’s vertical extent may explain the shared emission features of the main CO isotopologues. We also combine archival 1.3 mm and 870 μm continuum observations to produce a spectral index map at a spatial resolution of 2 au. The spectral index rises sharply at the continuum emission gaps at radii of 25, 41, and 47 au. This behavior suggests that the grains within the gaps are no larger than a few millimeters. Outside the continuum gaps, the low spectral index values of α ≈ 2 indicate either that grains up to centimeter size are present or that the bright continuum rings are marginally optically thick at millimeter wavelengths.
NASA Astrophysics Data System (ADS)
Hogerheijde, Michiel R.; Sandell, Göran
2000-05-01
Theoretical models of star formation make predictions about the density and velocity structure of the envelopes surrounding isolated, low-mass young stars. This paper tests such models through high-quality submillimeter continuum imaging of four embedded young stellar objects in Taurus and previously obtained molecular-line data. Observations carried out with the Submillimeter Continuum Bolometer Array on the James Clerk Maxwell Telescope at 850 and 450 μm of L1489 IRS, L1535 IRS, L1527 IRS, and TMC 1 reveal ~2000 AU elongated structures embedded in extended envelopes. The density distribution in these envelopes is equally well fitted by a radial power-law of index p=1.0-2.0 or with a collapse model such as that of Shu. This inside-out collapse model predicts 13CO, C18O, HCO+, and H13CO+ line profiles that closely match observed spectra toward three of our four sources. This shows that the inside-out collapse model offers a good description of YSO envelopes, but also that reliable constraints on its parameters require independent measurements of the density and the velocity structure, e.g., through continuum and line observations. For the remaining source, L1489 IRS, we find that a model consisting of a 2000 AU radius, rotating, disklike structure better describes the data. Possibly, this source is in transition between the embedded class I and the optically revealed T Tauri phases. The spectral index of the dust emissivity decreases from β=1.5-2.0 in the extended envelope to 1.0+/-0.2 in the central peaks, indicating grain growth or high optical depth on small scales. The observations of L1527 IRS reveal warm (>~30 K) material outlining, and presumably heated by, its bipolar outflow. This material comprises <~0.2 Msolar, comparable to the amount of swept-up CO but only 10% of the total envelope mass. Two apparently starless cores are found at ~10,000 AU from L1489 IRS and L1535 IRS. They are cold, 10-15 K, contain 0.5-3.0 Msolar, and have flat density distributions characterized by a Gaussian of ~10,000 AU FWHM. The proximity of these cores shows that star formation in truly isolated cores is rare even in Taurus.
NASA Astrophysics Data System (ADS)
Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Burnett, T. H.; Davenport, James R. A.; Ivezić, Željko; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott
2012-11-01
We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales \\hat{\\sigma }. Imposing cuts on minimum τ and \\hat{\\sigma } allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E >= 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other γ-ray blazars and is likely to be the γ-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ~3 years in the rest frame of the jet, in contrast with the ~320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.
The unique, optically-dominated quasar jet of PKS 1421-490
NASA Astrophysics Data System (ADS)
Gelbord, J. M.; Marshall, H. L.; Worrall, D. M.; Birkinshaw, M.; Lovell, J. E. J.; Ojha, R.; Godfrey, L.; Schwartz, D. A.; Perlman, E. S.; Georganopoulos, M.; Murphy, D. W.; Jauncey, D. L.
2004-12-01
The unique, optically-dominated quasar jet of PKS 1421-490 We report the discovery of extremely strong optical and X-ray emission associated with a knot in the radio jet of PKS 1421-490. The SDSS g' = 17.8 magnitude makes this the second-brightest optical jet known. The jet-to-core flux ratio in the X-ray band is unusually large (3.7), and the optical flux ratio ( ˜300) is unprecedented. The broad-band spectrum of the knot is flat from the radio through the optical bands, and has a similar slope with a lower normalization in the X-ray band. This emission is difficult to interpret without resorting to extreme model parameters or physically unlikely scenarios (flat electron distributions, non-equipartition magnetic fields, huge Doppler factors, etc.). We discuss several alternative models for the radio-to-X-ray continuum, including pure synchrotron, synchrotron plus inverse Compton scattering of cosmic microwave background photons, and a decelerating jet. JMG was supported under Chandra grant GO4-5124X to MIT from the CXC. HLM was supported under NASA contract SAO SV1-61010 for the Chandra X-Ray Center (CXC).
Fluctuations of the intergalactic ionization field at redshift z ~ 2
NASA Astrophysics Data System (ADS)
Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Hagen, H.-J.; Tytler, D.
2013-04-01
Aims: To probe the spectral energy distribution (SED) of the ionizing background radiation at z ≲ 2 and to specify the sources contributing to the intergalactic radiation field. Methods: The spectrum of a bright quasar HS 1103+6416 (zem = 2.19) contains five successive metal-line absorption systems at zabs = 1.1923, 1.7193, 1.8873, 1.8916, and 1.9410. The systems are optically thin and reveal multiple lines of different metal ions with the ionization potentials lying in the extreme ultraviolet (EUV) range (~1 Ryd to ~0.2 keV). For each system, the EUV SED of the underlying ionization field is reconstructed by means of a special technique developed for solving the inverse problem in spectroscopy. For the zabs = 1.8916 system, the analysis also involves the He I resonance lines of the Lyman series and the He iλ504 Å continuum, which are seen for the first time in any cosmic object except the Sun. Results: From one system to another, the SED of the ionizing continuum changes significantly, indicating that the intergalactic ionization field at z ≲ 2 fluctuates at the scale of at least Δz ~ 0.004. This is consistent with Δz ≲ 0.01 estimated from He II and H I Lyman-α forest measurements between the redshifts 2 and 3. A radiation intensity break by approximately an order of magnitude at E = 4 Ryd in SEDs restored for the zabs = 1.1923, 1.8873, 1.8916, and 1.9410 systems points to quasars as the main sources of the ionizing radiation. The SED variability is mostly caused by a small number of objects contributing at any given redshift to the ionizing background; at scales Δz ≳ 0.05, the influence of local radiation sources becomes significant. A remarkable SED restored for the zabs = 1.7193 system, with a sharp break shifted to E ~ 3.5 Ryd and a subsequent intensity decrease by ~1.5 dex, indicates a source with comparable inputs of both hard (active galactic nuclei, AGN) and soft (stellar) radiation components. Such a continuum can be emitted by (ultra) luminous infrared galaxies, many of which reveal both a strong AGN activity and intense star formation in the circumnuclear regions.
The continuum of hydroclimate variability in western North America during the last millennium
Ault, Toby R.; Cole, Julia E.; Overpeck, Jonathan T.; Pederson, Gregory T.; St. George, Scott; Otto-Bliesner, Bette; Woodhouse, Connie A.; Deser, Clara
2013-01-01
The distribution of climatic variance across the frequency spectrum has substantial importance for anticipating how climate will evolve in the future. Here we estimate power spectra and power laws (ß) from instrumental, proxy, and climate model data to characterize the hydroclimate continuum in western North America (WNA). We test the significance of our estimates of spectral densities and ß against the null hypothesis that they reflect solely the effects of local (non-climate) sources of autocorrelation at the monthly timescale. Although tree-ring based hydroclimate reconstructions are generally consistent with this null hypothesis, values of ß calculated from long-moisture sensitive chronologies (as opposed to reconstructions), and other types of hydroclimate proxies, exceed null expectations. We therefore argue that there is more low-frequency variability in hydroclimate than monthly autocorrelation alone can generate. Coupled model results archived as part of the Climate Model Intercomparison Project 5 (CMIP5) are consistent with the null hypothesis and appear unable to generate variance in hydroclimate commensurate with paleoclimate records. Consequently, at decadal to multidecadal timescales there is more variability in instrumental and proxy data than in the models, suggesting that the risk of prolonged droughts under climate change may be underestimated by CMIP5 simulations of the future.
On the nature of the high-energy rollover in 1H 0419-577
NASA Astrophysics Data System (ADS)
Turner, T. J.; Reeves, J. N.; Braito, V.; Costa, M.
2018-05-01
A NuSTAR/Swift observation of the luminous Seyfert 1 galaxy 1H 0419-577 taken during 2015 reveals one of the most extreme high-energy cut-offs observed to date from an AGN - an origin due to thermal Comptonization would imply a remarkably low coronal temperature kT ˜ 15 keV. The low-energy peak of the spectrum in the hard X-ray NuSTAR band, which peaks before the expected onset of a Compton hump, rules out strong reflection as the origin of the hard excess in this AGN. We show the origin of the high-energy rollover is likely due to a combination of both thermal Comptonization and an intrinsically steeper continuum, which is modified by absorption at lower energies. Furthermore, modelling the broad-band XUV continuum shape as a colour-corrected accretion disc, requires the presence of a variable warm absorber to explain all flux and spectral states of the source, consistent with the previous work on this AGN. While absorber variations produce marked spectral variability in this AGN, consideration of all flux states allows us to isolate a colourless component of variability that may arise from changes in the inner accretion flow, typically at around 10 rg.
The early ultraviolet, optical, and radio evolution of the soft X-ray transient GRO J0422+32
NASA Technical Reports Server (NTRS)
Shrader, C. R.; Wagner, R. Mark; Hjellming, R. M.; Han, X. H.; Starrfield, S. G.
1994-01-01
We have monitored the evolution of the transient X-ray source GRO J0422+32 from approximately 2 weeks postdiscovery into its early decline phase at ultraviolet, optical, and radio wavelengths. Optical and ultraviolet spectra exhibit numerous, but relatively weak, high-excitation emission lines such as those arising from He II, N III, N V, and C IV superposed on an intrinsically blue continuum. High-resolution optical spectroscopy reveals line profiles which are double peaked, and in the case of the higher order Balmer lines, superposed on a broad absorption profile. The early outburst optical-ultraviolet continuum energy distribution is well represented by a two power-law fit with a break at approximately equal 4000 A. Radio observations with the Very Large Array (VLA) reveal a flat-spectrum source, slowly increasing in intensity at the earliest epochs observed, followed by an approximate power-law decay light curve with an index of -1. Light curves for each wavelength domain are presented and discussed. Notable are the multiple secondary outbursts seen in the optical more than 1 year postdiscovery, and spectral changes associated with secondary rises seen in the radio and UV. We find that the ultraviolet and optical characteristics of GRO J0422+32 as well as its radio evolution, are similar to other recent well-observed soft X-ray transients (also called X-ray novae) such as Cen X-4, A0620-00 (V616 Mon), and Nova Muscae 1991 (GS 1124-683), suggesting that GRO J0422+32 is also a member of that subclass of low-mass X-ray binaries. We present definitive astrometric determination of the source position, and place an upper limit of R approximately equals 20 from our analysis of the Palomar Observatory Sky Survey (POSS). Additionally, we derive distinct values for color excess from analysis of the optical (E(B-V) = 0.23) and ultraviolet (E(B-V) = 0.4) data, suggesting an intrinsic magnitude of 19-19.5 for the progenitor if it is mid-K dwarf. This leads to a likely range of 2.4-3.0 kpc for the source distance, which is consistent with our separate estimate of 2.4 +/- 0.4 kpc based on measurement of the NaD interstellar line profile. Adopting 2.4 kpc and E(B-V) = 0.23, the outburst absolute magnitude was M approximately equals 0.0, which is a typical value for this class of objects.
An Optics Free Spectrometer for the Extreme Ultraviolet
NASA Technical Reports Server (NTRS)
Judge, D. L.; Daybell, M. D.; Hoffman, J. R.; Gruntman, M. A.; Ogawa, H. S.; Samson, J. A. R.
1994-01-01
The optics-free spectrometer is a photon spectrometer. It provides the photon spectrum of a broadband source by converting photons of energy E into electrons of energy E', according to the Einstein relation, E' = E - Ei. E, is the ionization threshold of the gas target of interest (any of the rare gases are suitable) and E is the incoming photon energy. As is evident from the above equation, only a single order spectrum is produced throughout the energy range between the first and second ionization potentials of the rare gas used. Photons with energy above the second ionization potential produce two groups of electrons, but they are readily distinguished from each other. This feature makes this device extremely useful for determining the true spectrum of a continuum source or a many line source. The principle of operation and the laboratory results obtained with a representative configuration of the optics-free spectrometer are presented.
Nonlinear optics of fibre event horizons.
Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G
2014-09-17
The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.
The role of environment in the observed Fundamental Plane of radio Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Shabala, Stanislav S.
2018-05-01
The optical Fundamental Plane of black hole activity relates radio continuum luminosity of Active Galactic Nuclei to [O III] luminosity and black hole mass. We examine the environments of low redshift (z < 0.2) radio-selected AGN, quantified through galaxy clustering, and find that halo mass provides similar mass scalings to black hole mass in the Fundamental Plane relations. AGN properties are strongly environment-dependent: massive haloes are more likely to host radiatively inefficient (low-excitation) radio AGN, as well as a higher fraction of radio luminous, extended sources. These AGN populations have different radio - optical luminosity scaling relations, and the observed mass scalings in the parent AGN sample are built up by combining populations preferentially residing in different environments. Accounting for environment-driven selection effects, the optical Fundamental Plane of supermassive black holes is likely to be mass-independent, as predicted by models.
Optical sensors based on photonic crystal: a new route
NASA Astrophysics Data System (ADS)
Romano, S.; Torino, S.; Coppola, G.; Cabrini, S.; Mocella, V.
2017-05-01
The realization of miniaturized devices able to accumulate a higher number of information in a smallest volume is a challenge of the technological development. This trend increases the request of high sensitivity and selectivity sensors which can be integrated in microsystems. In this landscape, optical sensors based on photonic crystal technology can be an appealing solution. Here, a new refractive index sensor device, based on the bound states in the continuum (BIC) resonance shift excited in a photonic crystal membrane, is presented. A microfluidic cell was used to control the injection of fluids with different refractive indices over the photonic crystal surface. The shift of very high Q-factor resonances excited into the photonic crystal open cavity was monitored as a function of the refractive index n of the test liquid. The excellent stability we found and the minimal, loss-free optical equipment requirement, provide a new route for achieving high performance in sensing applications.
Optical signatures of bulk and solutions of KC{sub 8} and KC{sub 24}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tristant, Damien; LPCNO, UMR-5215 CNRS, INSA, Université Fédérale de Toulouse-Midi-Pyrénées, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse; Wang, Yu
2015-07-28
We first performed an analysis of the shape of the Raman features of potassium-intercalated graphite at stage 1 (KC{sub 8} GIC) and 2 (KC{sub 24} GIC), respectively. By varying the excitation energy from ultraviolet to infrared, we observed a sign change of the Fano coupling factor below and above the optical transition related to the shift of the Fermi level which was determined from first principle calculations. This behavior is explained by a sign change in the Raman scattering amplitude of the electronic continuum. The GICs were then dissolved in two different solvents (N-Methyl-2-pyrrolidone and tetrahydrofuran), and the absorbance ofmore » the graphenide solutions obtained was measured in the UV range. Two peaks were observed which correspond to the maximum of the computed imaginary part of the optical index.« less
Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J O
2016-05-21
The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars.
Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J. O.
2016-01-01
The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars. PMID:27346978