Long-period variability of oxygen dissolved in Black Sea waters
NASA Astrophysics Data System (ADS)
Polonsky, A. B.; Kotolypova, A. A.
2017-09-01
Using an archival database from the Institute of Natural and Technical Systems, the low-frequency variability of oxygen dissolved in the deep-water and northwestern parts of the Black Sea for the period of 1955-2004 is analyzed. The upper mixed layer (UML) is characterized by quasi-periodic variability in the dissolved oxygen concentration in the interdecadal scale. Deeper, a long-term decrease in the oxygen concentration is recorded.
Wesolowski, Edwin A.
1996-01-01
Two separate studies to simulate the effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, have been completed. In the first study, the Red River at Fargo Water-Quality Model was calibrated and verified for icefree conditions. In the second study, the Red River at Fargo Ice-Cover Water-Quality Model was verified for ice-cover conditions.To better understand and apply the Red River at Fargo Water-Quality Model and the Red River at Fargo Ice-Cover Water-Quality Model, the uncertainty associated with simulated constituent concentrations and property values was analyzed and quantified using the Enhanced Stream Water Quality Model-Uncertainty Analysis. The Monte Carlo simulation and first-order error analysis methods were used to analyze the uncertainty in simulated values for six constituents and properties at sites 5, 10, and 14 (upstream to downstream order). The constituents and properties analyzed for uncertainty are specific conductance, total organic nitrogen (reported as nitrogen), total ammonia (reported as nitrogen), total nitrite plus nitrate (reported as nitrogen), 5-day carbonaceous biochemical oxygen demand for ice-cover conditions and ultimate carbonaceous biochemical oxygen demand for ice-free conditions, and dissolved oxygen. Results are given in detail for both the ice-cover and ice-free conditions for specific conductance, total ammonia, and dissolved oxygen.The sensitivity and uncertainty of the simulated constituent concentrations and property values to input variables differ substantially between ice-cover and ice-free conditions. During ice-cover conditions, simulated specific-conductance values are most sensitive to the headwatersource specific-conductance values upstream of site 10 and the point-source specific-conductance values downstream of site 10. These headwater-source and point-source specific-conductance values also are the key sources of uncertainty. Simulated total ammonia concentrations are most sensitive to the point-source total ammonia concentrations at all three sites. Other input variables that contribute substantially to the variability of simulated total ammonia concentrations are the headwater-source total ammonia and the instream reaction coefficient for biological decay of total ammonia to total nitrite. Simulated dissolved-oxygen concentrations at all three sites are most sensitive to headwater-source dissolved-oxygen concentration. This input variable is the key source of variability for simulated dissolved-oxygen concentrations at sites 5 and 10. Headwatersource and point-source dissolved-oxygen concentrations are the key sources of variability for simulated dissolved-oxygen concentrations at site 14.During ice-free conditions, simulated specific-conductance values at all three sites are most sensitive to the headwater-source specific-conductance values. Headwater-source specificconductance values also are the key source of uncertainty. The input variables to which total ammonia and dissolved oxygen are most sensitive vary from site to site and may or may not correspond to the input variables that contribute the most to the variability. The input variables that contribute the most to the variability of simulated total ammonia concentrations are pointsource total ammonia, instream reaction coefficient for biological decay of total ammonia to total nitrite, and Manning's roughness coefficient. The input variables that contribute the most to the variability of simulated dissolved-oxygen concentrations are reaeration rate, sediment oxygen demand rate, and headwater-source algae as chlorophyll a.
Rocha, R R A; Thomaz, S M; Carvalho, P; Gomes, L C
2009-06-01
The need for prediction is widely recognized in limnology. In this study, data from 25 lakes of the Upper Paraná River floodplain were used to build models to predict chlorophyll-a and dissolved oxygen concentrations. Akaike's information criterion (AIC) was used as a criterion for model selection. Models were validated with independent data obtained in the same lakes in 2001. Predictor variables that significantly explained chlorophyll-a concentration were pH, electrical conductivity, total seston (positive correlation) and nitrate (negative correlation). This model explained 52% of chlorophyll variability. Variables that significantly explained dissolved oxygen concentration were pH, lake area and nitrate (all positive correlations); water temperature and electrical conductivity were negatively correlated with oxygen. This model explained 54% of oxygen variability. Validation with independent data showed that both models had the potential to predict algal biomass and dissolved oxygen concentration in these lakes. These findings suggest that multiple regression models are valuable and practical tools for understanding the dynamics of ecosystems and that predictive limnology may still be considered a powerful approach in aquatic ecology.
Single-cell measurement of red blood cell oxygen affinity.
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan
2015-08-11
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.
Oxygen Transport: A Simple Model for Study and Examination.
ERIC Educational Resources Information Center
Gaar, Kermit A., Jr.
1985-01-01
Describes an oxygen transport model computer program (written in Applesoft BASIC) which uses such variables as amount of time lapse from beginning of the simulation, arterial blood oxygen concentration, alveolar oxygen pressure, and venous blood oxygen concentration and pressure. Includes information on obtaining the program and its documentation.…
Single-cell measurement of red blood cell oxygen affinity
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan
2015-01-01
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973
Naftz, D.L.; Schuster, P.F.; Reddy, M.M.
1994-01-01
One hundred samples were collected from the surface of the Upper Fremont Glacier at equally spaced intervals defined by an 8100m2 snow grid to asesss the significance of lateral variability in major-ion concentrations and del oxygen-18 values. Comparison of the observed variability of each chemical constituent to the variability expected by measurement error indicated substantial lateral variability with the surface-snow layer. Results of the nested ANOVA indicate most of the variance for every constituent is in the values grouped at the two smaller geographic scales (between 506m2 and within 506m2 sections). The variance data from the snow grid were used to develop equations to evaluate the significance of both positive and negative concentration/value peaks of nitrate and del oxygen-18 with depth, in a 160m ice core. Values of del oxygen-18 in the section from 110-150m below the surface consistently vary outside the expected limits and possibly represents cooler temperatures during the Little Ice Age from about 1810 to 1725 A.D. -from Authors
Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne
2015-08-19
This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors.
Oxygen Partial Pressure and Oxygen Concentration Flammability: Can They Be Correlated?
NASA Technical Reports Server (NTRS)
Harper, Susana A.; Juarez, Alfredo; Perez, Horacio, III; Hirsch, David B.; Beeson, Harold D.
2016-01-01
NASA possesses a large quantity of flammability data performed in ISS airlock (30% Oxygen 526mmHg) and ISS cabin (24.1% Oxygen 760 mmHg) conditions. As new programs develop, other oxygen and pressure conditions emerge. In an effort to apply existing data, the question arises: Do equivalent oxygen partial pressures perform similarly with respect to flammability? This paper evaluates how material flammability performance is impacted from both the Maximum Oxygen Concentration (MOC) and Maximum Total Pressures (MTP) perspectives. From these studies, oxygen partial pressures can be compared for both the MOC and MTP methods to determine the role of partial pressure in material flammability. This evaluation also assesses the influence of other variables on flammability performance. The findings presented in this paper suggest flammability is more dependent on oxygen concentration than equivalent partial pressure.
Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2005
Hoilman, Gene R.; Lindenberg, Mary K.; Wood, Tamara M.
2008-01-01
During June-October 2005, water quality data were collected from Upper Klamath and Agency Lakes in Oregon, and meteorological data were collected around and within Upper Klamath Lake. Data recorded at two continuous water quality monitors in Agency Lake showed similar temperature patterns throughout the field season, but data recorded at the northern site showed more day-to-day variability for dissolved oxygen concentration and saturation after late June and more day-to-day variability for pH and specific conductance values after mid-July. Data recorded from the northern and southern parts of Agency Lake showed more comparable day-to-day variability in dissolved oxygen concentrations and pH from September through the end of the monitoring period. For Upper Klamath Lake, seasonal (late July through early August) lows of dissolved oxygen concentrations and saturation were coincident with a seasonal low of pH values and seasonal highs of ammonia and orthophosphate concentrations, specific conductance values, and water temperatures. Patterns in these parameters, excluding water temperature, were associated with bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae in Upper Klamath Lake. In Upper Klamath Lake, water temperature in excess of 28 degrees Celsius (a high stress threshold for Upper Klamath Lake suckers) was recorded only once at one site during the field season. Large areas of Upper Klamath Lake had periods of dissolved oxygen concentration of less than 4 milligrams per liter and pH value greater than 9.7, but these conditions were not persistent throughout days at most sites. Dissolved oxygen concentrations in Upper Klamath Lake on time scales of days and months appeared to be influenced, in part, by bathymetry and prevailing current flow patterns. Diel patterns of water column stratification were evident, even at the deepest sites. This diel pattern of stratification was attributable to diel wind speed patterns and the shallow nature of most of Upper Klamath Lake. Timing of the daily extreme values of dissolved oxygen concentration, pH, and water temperature was less distinct with increased water column depth. Chlorophyll a concentrations varied spatially and temporally throughout Upper Klamath Lake. Location greatly affected algal concentrations, in turn affecting nutrient and dissolved oxygen concentrations - some of the highest chlorophyll a concentrations were associated with the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations. The occurrence of the low dissolved oxygen and high un-ionized ammonia concentrations coincided with a decline in algae resulting from cell death, as measured by concentrations of chlorophyll a. Dissolved oxygen production rates in experiments were as high as 1.47 milligrams of oxygen per liter per hour, and consumption rates were as much as -0.73 milligrams of oxygen per liter per hour. Dissolved oxygen consumption rates measured in this study were comparable to those measured in a 2002 Upper Klamath Lake study, and a higher rate of dissolved oxygen consumption was recorded in dark bottles positioned higher in the water column. Data, though inconclusive, indicated that a decreasing trend of dissolved oxygen productivity through July could have contributed to the decreasing dissolved oxygen concentrations and percent saturation recorded in Upper Klamath Lake during this time. Phytoplankton self-shading was evident from a general inverse relation between depth of photic zone and chlorophyll a concentrations. This shading caused net dissolved oxygen consumption during daylight hours in lower parts of the water column that would otherwise have been in the photic zone. Meteorological data collected in and around Upper Klamath Lake showed that winds were likely to come from a broad range of westerly directions in the northern one-third of the lake, but tended to come from a narrow range of northwesterly directions
Heylman, Christopher M; Santoso, Sharon; Krebs, Melissa D; Saidel, Gerald M; Alsberg, Eben; Muschler, George F
2014-04-01
We have developed a mathematical model that allows simulation of oxygen distribution in a bone defect as a tool to explore the likely effects of local changes in cell concentration, defect size or geometry, local oxygen delivery with oxygen-generating biomaterials (OGBs), and changes in the rate of oxygen consumption by cells within a defect. Experimental data for the oxygen release rate from an OGB and the oxygen consumption rate of a transplanted cell population are incorporated into the model. With these data, model simulations allow prediction of spatiotemporal oxygen concentration within a given defect and the sensitivity of oxygen tension to changes in critical variables. This information may help to minimize the number of experiments in animal models that determine the optimal combinations of cells, scaffolds, and OGBs in the design of current and future bone regeneration strategies. Bone marrow-derived nucleated cell data suggest that oxygen consumption is dependent on oxygen concentration. OGB oxygen release is shown to be a time-dependent function that must be measured for accurate simulation. Simulations quantify the dependency of oxygen gradients in an avascular defect on cell concentration, cell oxygen consumption rate, OGB oxygen generation rate, and OGB geometry.
Cotter, John J; O'Gara, James P; Casey, Eoin
2009-08-01
Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the plates are incubated. These data indicate that depletion of dissolved oxygen during growth of bacterial biofilm cultures in 96-well plates may significantly influence biofilm production. Furthermore higher inoculum cell concentrations are associated with more rapid consumption of dissolved oxygen and higher levels of S. epidermidis biofilm production. Our data reveal that oxygen depletion during bacterial growth in 96-well plates may significantly influence biofilm production and should be considered in the interpretation of experimental data using this biofilm model.
Yen, Steven T.; Liu, Shiping; Kolpin, Dana W.
1996-01-01
A nonnormal and heteroscedastic Tobit model is used to determine the primary factors that affect nitrate concentrations in near-surface aquifers, using data from the U.S. Geological Survey collected in 1991. Both normality and homoscedasticity of errors are rejected, justifying the use of a nonnormal and heteroscedastic model. The following factors are found to have significant impacts on nitrate concentrations in groundwater: well screen interval, depth to top of aquifers, percentages of urban residential, forest land, and pasture within 3.2 km, dissolved oxygen concentration level, and presence of a chemical facility and feedlot. The effects of explanatory variables on nitrate concentration are explored further by calculating elasticities. Dissolved oxygen concentration level has more notable effects on nitrate concentrations in groundwater than other variables.
Optoacoustic Monitoring of Physiologic Variables
Esenaliev, Rinat O.
2017-01-01
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro, in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy. PMID:29311964
Optoacoustic Monitoring of Physiologic Variables.
Esenaliev, Rinat O
2017-01-01
Optoacoustic (photoacoustic) technique is a novel diagnostic platform that can be used for noninvasive measurements of physiologic variables, functional imaging, and hemodynamic monitoring. This technique is based on generation and time-resolved detection of optoacoustic (thermoelastic) waves generated in tissue by short optical pulses. This provides probing of tissues and individual blood vessels with high optical contrast and ultrasound spatial resolution. Because the optoacoustic waves carry information on tissue optical and thermophysical properties, detection, and analysis of the optoacoustic waves allow for measurements of physiologic variables with high accuracy and specificity. We proposed to use the optoacoustic technique for monitoring of a number of important physiologic variables including temperature, thermal coagulation, freezing, concentration of molecular dyes, nanoparticles, oxygenation, and hemoglobin concentration. In this review we present origin of contrast and high spatial resolution in these measurements performed with optoacoustic systems developed and built by our group. We summarize data obtained in vitro , in experimental animals, and in humans on monitoring of these physiologic variables. Our data indicate that the optoacoustic technology may be used for monitoring of cerebral blood oxygenation in patients with traumatic brain injury and in neonatal patients, central venous oxygenation monitoring, total hemoglobin concentration monitoring, hematoma detection and characterization, monitoring of temperature, and coagulation and freezing boundaries during thermotherapy.
Oxygen in the deep-sea: The challenge of maintaining uptake rates in a changing ocean
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2011-12-01
Although focused on recently, ocean acidification is not the only effect of anthropogenic CO2 emissions on the ocean. Ocean warming will reduce dissolved oxygen concentrations and at the hypoxic limit for a given species this can pose challenges to marine life. The limit is traditionally reported simply as the static mass concentration property [O2]; here we treat it as a dynamic gas exchange problem for the animal analogous to gas exchange at the sea surface. The diffusive limit and its relationship to water velocity is critical for the earliest stages of marine life (eggs, embryos), but the effect is present for all animals at all stages of life. We calculate the external limiting O2 conditions for several representative metabolic rates and their relationship to flow of the bulk fluid under different environmental conditions. Ocean O2 concentrations decline by ≈ 14 μmol kg-1 for a 2 °C rise in temperature. At standard 1000 m depth conditions in the Pacific, flow over the surface would have to increase by ≈ 60% from 2.0 to 3.2 cm s-1 to compensate for this change. The functions derived allow new calculations of depth profiles of limiting O2 concentrations, as well as maximal diffusively sustainable metabolic oxygen consumption rates at various places around the world. Our treatment shows that there is a large variability in the global ocean in terms of facilitating aerobic life. This variability is greater than the variability of the oxygen concentration alone. It becomes clear that temperature and pressure dependencies of diffusion and partial pressure create a region typically around 1000 m depth where a maximal [O2] is needed to sustain a given metabolic rate. This zone of greatest physical constriction on the diffusive transport in the boundary layer is broadly consistent with the oxygen minimum zone, i.e., the zone of least oxygen concentration supply, resulting in a pronounced minimum of maximal diffusively sustainable metabolic oxygen consumption rates. This least-favorable zone for aerobic respiration is bound to expand with further ocean warming.
NASA Astrophysics Data System (ADS)
Gallardo, María de los Ángeles; González López, Andrés E.; Ramos, Marcel; Mujica, Armando; Muñoz, Praxedes; Sellanes, Javier; Yannicelli, Beatriz
2017-06-01
Pleuroncodes monodon (Crustacea: Munididae) supports one of the main trawling fisheries over the continental shelf off Chile between 25°S and 37°S within the upper boundary of the oxygen minimum zone (OMZ). Although the reproductive cycle of P. monodon has been described, the relationship between this key biological process and the variability of the OMZ has not been comprehensibly addressed neither for P. monodon nor for other OMZ resident species. In this study a set of 14 quasi-monthly oceanographic cruises carried out between June 2010 and November 2011 were conducted over the continental shelf off Coquimbo (30°S) to investigate the temporal variability of: i) dissolved oxygen concentration, temperature and chlorophyll-a at relevant depths ii) the presence and proportion of occurrence of P. monodon ovigerous females and juveniles from benthic trawls; iii) the presence of different stage larvae in the plankton, and iv) similar biological data for other species from the OMZ and shallower depths crustaceans. During summer months oxygen levels and bottom temperature were lower than in winter, while chlorophyll-a concentration was maximum in summer coinciding with an active (but not maximum) upwelling season. P. monodon maximum egg carrying occurred in winter during periods of increased oxygenation. Egg carrying females were never found at depths where oxygen concentration was below 0.5 ml L-1, while over 50% of the autumn and spring cohorts of juveniles occurred at oxygen concentrations below that level. The depth range occupied by ovigerous females was more restricted than the rest of the population and their depth of occurrence followed the variability of the upper OMZ. The larval release period of OMZ resident species extends over late winter and spring, and its main peak precedes that of coastal species (spring) and the spring-summer chlorophyll-a maximum. We propose that for OMZ resident species, brood carrying during warmer and more oxygenated conditions in the adult benthic environment, might favor embryonic development, so OMZ seasonal variability could be acting as a selective pressure to synchronize reproductive periods.
Michel, Julien; Albertin, Warren; Jourdes, Michael; Le Floch, Alexandra; Giordanengo, Thomas; Mourey, Nicolas; Teissedre, Pierre-Louis
2016-08-01
During wine aging in barrels, antioxidant molecules from wood, such as ellagitannins, are solubilized and react with wine molecules and oxygen. However, their concentrations are highly variable. Oxygen is an important factor, as it plays a role in wine parameters and organoleptic perceptions. Five barrel modalities were used; three polyphenol indices (IP), classified using the NIRS procedure, and three grain qualities. Barrels were equipped with windows to measure the oxygen using luminescence technology. The ellagitannin concentrations in the wine and its organoleptic properties were monitored. Oxygen concentrations decreased quickly during the first 8days of aging and this phenomenon was significantly more marked in barrels with a higher IP and medium grain. The ellagitannin concentrations were believed to be correlated with wood classification and oxygen consumption. Furthermore, the organoleptic properties were significantly impacted, as the wine with the lowest ellagitannin level was described as less astringent, bitter, woody, and smoky/toasty. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study of oxygen gas production phenomenon during stand and discharge in silver-zinc batteries
NASA Technical Reports Server (NTRS)
1974-01-01
Standard production procedures for manufacturing silver zinc batteries are evaluated and modified to reduce oxygen generation during open circuit stand and discharge. Production predictions of several variable combinations using analysis models are listed for minimum gassing, with emphasis on the concentration of potassium hydroxide in plate formation. A recommendation for work optimizing the variables involved in plate processing is included.
Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K
2016-01-01
The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (< 5% O2). Dinitrosyl iron complexes with glutathione (the pharmaceutical drug "Oxacom") exerted an antioxidant effect, regardless of the value of the partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.
Chakraborty, Parthasarathi; Chakraborty, Sucharita; Jayachandran, Saranya; Madan, Ritu; Sarkar, Arindam; Linsy, P; Nath, B Nagender
2016-10-01
This study describes the effect of varying bottom-water oxygen concentration on geochemical fractionation (operational speciation) of Cu and Pb in the underneath sediments across the oxygen minimum zone (Arabian Sea) in the west coast of India. Both, Cu and Pb were redistributed among the different binding phases of the sediments with changing dissolved oxygen level (from oxic to hypoxic and close to suboxic) in the bottom water. The average lability of Cu-sediment complexes gradually decreased (i.e., stability increased) with the decreasing dissolved oxygen concentrations of the bottom water. Decreasing bottom-water oxygen concentration increased Cu association with sedimentary organic matter. However, Pb association with Fe/Mn-oxyhydroxide phases in the sediments gradually decreased with the decreasing dissolved oxygen concentration of the overlying bottom water (due to dissolution of Fe/Mn oxyhydroxide phase). The lability of Pb-sediment complexes increased with the decreasing bottom-water oxygen concentration. This study suggests that bottom-water oxygen concentration is one of the key factors governing stability and lability of Cu and Pb complexes in the underneath sediment. Sedimentary organic matter and Fe/Mn oxyhydroxide binding phases were the major hosting phases for Cu and Pb respectively in the study area. Increasing lability of Pb-complexes in bottom sediments may lead to positive benthic fluxes of Pb at low oxygen environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Correlation Between Foraminifera Phanerozoic Body Size Record versus Carbon Dioxide and Oxygen
NASA Astrophysics Data System (ADS)
Vo, N.; Seixas, G.; Payne, J.
2012-12-01
Body sizes are crucial in determining organisms' niches and their survival in the environment. Whether body sizes are affected by environmental and/or biological variables has been an intriguing question to many paleobiology researchers for decades. The environment of an ecosystem can greatly impact its organisms; therefore, in this study, I attempt to identify possible factors that affect the body sizes of foraminifera by comparing their test volumes with oxygen and carbon dioxide concentrations through time. To obtain data for my graphs, I measured the body sizes of foraminifera recorded in the Ellis and Messina catalogue of foraminifera. Visual analysis of my graphs indicates that there is a positive correlation between their body sizes and oxygen concentrations from 400 to 200 mya. From 200 mya onward, mean body size remains relatively constant while maximum body size increases with increases in oxygen concentration. Previous work has shown that benthic foraminifera require little oxygen to survive. My results support this discovery, and add to it by indicating that benthic foraminifera may survive with little oxygen, but flourish most when there are high concentrations of oxygen. My results also show that there is a complicated relationship between the body sizes of foraminifera and carbon dioxide. Oxygen is required for respiration, and high concentrations of oxygen create a better living environment for foraminifera. The effect of oxygen concentrations on foraminifera can be extended to other organisms that need oxygen for respiration.
Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.
2012-01-01
The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531
TRANSIENT BIOGEOCHEMICAL CYCLING AND SEDIMENT OXYGEN DEMAND
Through this research, the effects of variable sediment accumulation and oxygen concentration on SOD and soluble chemical fluxes will be quantified. This study will enable correct estimates of “diffuser-induced” SOD to be made that will facilitate appropriate desig...
NASA Astrophysics Data System (ADS)
Balbín, R.; López-Jurado, J. L.; Aparicio-González, A.; Serra, M.
2014-10-01
Oceanographic data obtained between 2001 and 2011 by the Spanish Institute of Oceanography (IEO, Spain) have been used to characterise the spatial distribution and the temporal variability of the dissolved oxygen around the Balearic Islands (Mediterranean Sea). The study area includes most of the Western Mediterranean Sea, from the Alboran Sea to Cape Creus, at the border between France and Spain. Dissolved oxygen (DO) at the water surface is found to be in a state of equilibrium exchange with the atmosphere. In the spring and summer a subsurface oxygen supersaturation is observed due to the biological activity, above the subsurface fluorescence maximum. Minimum observed values of dissolved oxygen are related to the Levantine Intermediate Waters (LIW). An unusual minimum of dissolved oxygen concentrations was also recorded in the Alboran Sea Oxygen Minimum Zone. The Western Mediterranean Deep Waters (WMDW) and the Western Intermediate Waters (WIW) show higher values of dissolved oxygen than the Levantine Intermediate Waters due to their more recent formation. Using these dissolved oxygen concentrations it is possible to show that the Western Intermediate Waters move southwards across the Ibiza Channel and the deep water circulates around the Balearic Islands. It has also been possible to characterise the seasonal evolution of the different water masses and their dissolved oxygen content in a station in the Algerian sub-basin.
Solubility of oxygen in a seawater medium in equilibrium with a high-pressure oxy-helium atmosphere.
Taylor, C D
1979-06-01
The molar oxygen concentration in a seawater medium in equilibrium with a high-pressure oxygen-helium atmosphere was measured directly in pressurized subsamples, using a modified version of the Winkler oxygen analysis. At a partial pressure of oxygen of 1 atm or less, its concentration in the aqueous phase was adequately described by Henry's Law at total pressures up to 600 atm. This phenomenon, which permits a straightforward determination of dissolved oxygen within hyperbaric systems, resulted from pressure-induced compensatory alterations in the Henry's Law variables rather than from a true obedience to the Ideal Gas Law. If the partial pressure of a gas contributes significantly to the hydrostatic pressure, Henry's Law is no longer adequate for determining its solubility within the compressed medium.
The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012-2013
NASA Astrophysics Data System (ADS)
Damerell, Gillian M.; Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan
2016-05-01
This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre-scale water mass changes. Below ˜150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode-1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ˜415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700-900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques.
NASA Astrophysics Data System (ADS)
Sharaf El Din, Essam; Zhang, Yun
2017-10-01
Traditional surface water quality assessment is costly, labor intensive, and time consuming; however, remote sensing has the potential to assess surface water quality because of its spatiotemporal consistency. Therefore, estimating concentrations of surface water quality parameters (SWQPs) from satellite imagery is essential. Remote sensing estimation of nonoptical SWQPs, such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), and dissolved oxygen (DO), has not yet been performed because they are less likely to affect signals measured by satellite sensors. However, concentrations of nonoptical variables may be correlated with optical variables, such as turbidity and total suspended sediments, which do affect the reflected radiation. In this context, an indirect relationship between satellite multispectral data and COD, BOD, and DO can be assumed. Therefore, this research attempts to develop an integrated Landsat 8 band ratios and stepwise regression to estimate concentrations of both optical and nonoptical SWQPs. Compared with previous studies, a significant correlation between Landsat 8 surface reflectance and concentrations of SWQPs was achieved and the obtained coefficient of determination (R2)>0.85. These findings demonstrated the possibility of using our technique to develop models to estimate concentrations of SWQPs and to generate spatiotemporal maps of SWQPs from Landsat 8 imagery.
A multidisciplinary glider survey of an open ocean dead-zone eddy
NASA Astrophysics Data System (ADS)
Karstensen, Johannes; Schütte, Florian; Pietri, Alice; Krahmann, Gerd; Fiedler, Björn; Löscher, Carolin; Grundle, Damian; Hauss, Helena; Körtzinger, Arne; Testor, Pierre; Viera, Nuno
2016-04-01
The physical (temperature, salinity) and biogeochemical (oxygen, nitrate, chlorophyll fluorescence, turbidity) structure of an anticyclonic modewater eddy, hosting an open ocean dead zone, is investigated using observational data sampled in high temporal and spatial resolution with autonomous gliders in March and April 2014. The core of the eddy is identified in the glider data as a volume of fresher (on isopycnals) water in the depth range from the mixed layer base (about 70m) to about 200m depth. The width is about 80km. The core aligns well with the 40 μmolkg-1 oxygen contour. From two surveys about 1 month apart, changes in the minimal oxygen concentrations (below 5μmolkg-1) are observed that indicate that small scale processes are in operation. Several scales of coherent variability of physical and biogeochemical variable are identified - from a few meters to the mesoscale. One of the gliders carried an autonomous Nitrate (N) sensor and the data is used to analyse the possible nitrogen pathways within the eddy. Also the highest N is accompanied by lowest oxygen concentrations, the AOU:N ratio reveals a preferred oxygen cycling per N.
Experimental exposure of rats to methylene chloride at varying controlled barometric altitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lillquist, D.R.
1990-01-01
This study investigated combined effects of three methylene chloride (MC) volume/volume concentrations (0,50, and 500 ppm) at three controlled barometric altitudes (760, 640, and 560 torr). This provided a three by three study design. For each scenario, three altitude acclimated (6 days) adult male rats were studied for eight hours in a nose-only inhalation chamber. Blood (0.35 mL) was drawn from the cannulated left carotid artery of each rat at 0, 0.5, 1, 2, 4, and 8 hours and hematocrit, pO[sub 2], pCO[sub 2], pH , total hemoglobin (Hb) and carboxyhemoglobin (CHb) were measured. Time, MC concentration and altitude hadmore » significant effects on CHb production. CHb increased with increasing MC concentration over time. Increased barometric altitude (reduced partial pressure of MC vapor at altitude for equal ppm concentrations) resulted in lower blood CHb levels. A statistical model was derived to explain variation in CHb levels for these three independent variables (r = 0.983). The data were applied to an equation assessing the impact of altitude, MC concentration and time on the potential oxygen carrying capacity (POCC) of blood. The POCC of HB in the blood was calculated using blood Hb, CHb levels, Hb oxygen saturation (based on the blood pO[sub 2] and the oxygen dissociation curve for rats), and oxygen binding potential of Hb. It was determined for the altitudes and MC concentrations used, polycythemia associated with increased altitude had a greater impact on POCC than decreased pO[sub 2]. A regression equation was derived modeling variation in POCC of blood for the three independent variables (r = 0.995). This study demonstrated that altitude affects airborne ppm MC concentrations. This ultimately impacts CHb levels and oxygen carrying capacity of the blood. These finding indicate that occupationally acceptable ppm MC exposure levels at altitude do need barometric pressure correction.« less
Effect of Spacecraft Environmental Variables on the Flammability of Fire Resistant Fabrics
NASA Astrophysics Data System (ADS)
Osorio, A. F.; Fernandez-Pello, C.; Takahashi, S.; Rodriguez, J.; Urban, D. L.; Ruff, G.
2012-01-01
Fire resistant fabrics are used for firefighter, racecar drivers as well as astronaut suits. However, their fire resistant characteristics depend on the environment conditions and require study. Particularly important is the response of these fabrics to elevated oxygen concentration environments and radiant heat from a source such as an adjacent fire. In this work, experiments using two fire resistant fabrics were conducted to study the effect of oxygen concentration, external radiant flux and oxidizer flow velocity in concurrent flame spread. Results show that for a given fabric the minimum oxygen concentration for flame spread depends strongly on the magnitude of the external radiant flux. At increased oxygen concentrations the external radiant flux required for flame spread decreases. Oxidizer flow velocity influences the external radiant flux only when the convective heat flux from the flame has similar values to the external radiant flux. The results of this work provide further understanding of the flammability characteristics of fire resistant fabrics in environments similar to those of future spacecrafts.
Hydrographic Variability off the Coast of Oman
NASA Astrophysics Data System (ADS)
Belabbassi, L.; Dimarco, S. F.; Jochens, A. E.; Al Gheilani, H.; Wang, Z.
2010-12-01
Data from hydrographic transects made in 2001 and 2002 and between 2007 and 2009 were obtained from the Oman Ministry of Fisheries Wealth. Property-depth plots of temperature, salinity, and dissolved oxygen were produced for all transects and in all months for which data were available. These were analyzed for temporal and spatial variability. For all transects, there exist large variability on various timescales, with strong spatial variability. Two common features that are seen in the hydrographic data sets are the Persian Gulf Water (PGW) and a layer of continuous low oxygen concentrations in the lower part of the water column. Plots of salinity produced for transects located in the northern part of the Gulf of Oman show a one-unit increase in salinity of the water at the bottom of deepest station during the months of August and September as compared to the other months. Similarly, cross-shelf contour plots of temperature shows an increase in water temperature near the bottom station during the months of August and September. These indicate the presence of the PGW outflow in the northern part of the Gulf of Oman. For dissolved oxygen distributions, hydrographic transects that did not extend far offshore show monthly differences in the presence of water with low oxygen concentrations. For transects that do extend far offshore and also show a layer of low oxygen water throughout the year, there is generally a monthly difference on whether this water is found close to the surface or deeper in the water column. The variability seen in the data could only be explained by comparing these data to data collected from the real time cable ocean observing system installed by Lighthouse R &D Enterprise in the Oman Sea and the Arabian Sea in 2005. The analysis of these data reveal that the variability observed is related to processes such as ocean conditions, monsoonal cycle, and extreme weather events.
Biogeochemical modelling of dissolved oxygen in a changing ocean.
Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha
2017-09-13
Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of p CO 2 -sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a p CO 2 -sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).
Biogeochemical modelling of dissolved oxygen in a changing ocean
NASA Astrophysics Data System (ADS)
Andrews, Oliver; Buitenhuis, Erik; Le Quéré, Corinne; Suntharalingam, Parvadha
2017-08-01
Secular decreases in dissolved oxygen concentration have been observed within the tropical oxygen minimum zones (OMZs) and at mid- to high latitudes over the last approximately 50 years. Earth system model projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models are, however, unable to consistently reproduce the observed trends and variability of recent decades, particularly within the established tropical OMZs. Here, we conduct a series of targeted hindcast model simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is entrained into ocean oxygen response patterns due to model parametrization of pCO2-sensitive C : N ratios in carbon fixation and imposed atmospheric forcing data. Inclusion of a pCO2-sensitive C : N ratio drives historical oxygen depletion within the ocean interior due to increased organic carbon export and subsequent remineralization. Atmospheric forcing is shown to influence simulated interannual variability in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
NASA Astrophysics Data System (ADS)
Schmidt, Jacob B.; Sands, Brian L.; Kulatilaka, Waruna D.; Roy, Sukesh; Scofield, James; Gord, James R.
2015-06-01
Femtosecond, two-photon-absorption laser-induced-fluorescence (fs-TALIF) spectroscopy is employed to measure space- and time-resolved atomic-oxygen distributions in a nanosecond, repetitively pulsed, externally grounded, atmospheric-pressure plasma jet flowing helium with a variable oxygen admixture. The high-peak-intensity, low-average-energy femtosecond pulses result in increased TALIF signal with reduced photolytic inferences. This allows 2D imaging of absolute atomic-oxygen number densities ranging from 5.8 × 1015 to 2.0 × 1012cm-3 using a cooled CCD with an external intensifier. Xenon is used for signal and imaging-system calibrations to quantify the atomic-oxygen fluorescence signal. Initial results highlight a transition in discharge morphology from annular to filamentary, corresponding with a change in plasma chemistry from ozone to atomic oxygen production, as the concentration of oxygen in the feed gas is changed at a fixed voltage-pulse-repetition rate. In this configuration, significant concentrations of reactive oxygen species may be remotely generated by sustaining an active discharge beyond the confines of the dielectric capillary, which may benefit applications that require large concentrations of reactive oxygen species such as material processing or biomedical devices.
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Abdul, Wares MD.; Ohtsu, Mizuki; Nakano, Kazuya; Haneishi, Hideaki
2018-02-01
We propose a method to estimate transcutaneous bilirubin, hemoglobin, and melanin based on the diffuse reflectance spectroscopy. In the proposed method, the Monte Carlo simulation-based multiple regression analysis for an absorbance spectrum in the visible wavelength region (460-590 nm) is used to specify the concentrations of bilirubin (Cbil), oxygenated hemoglobin (Coh), deoxygenated hemoglobin (Cdh), and melanin (Cm). Using the absorbance spectrum calculated from the measured diffuse reflectance spectrum as a response variable and the extinction coefficients of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Total hemoglobin concentration (Cth) and tissue oxygen saturation (StO2) are simply calculated from the oxygenated hemoglobin and deoxygenated hemoglobin. In vivo animal experiments with bile duct ligation in rats demonstrated that the estimated Cbil is increased after ligation of bile duct and reaches to around 20 mg/dl at 72 h after the onset of the ligation, which corresponds to the reference value of Cbil measured by a commercially available transcutaneous bilirubin meter. We also performed in vivo experiments with rats while varying the fraction of inspired oxygen (FiO2). Coh and Cdh decreased and increased, respectively, as FiO2 decreased. Consequently, StO2 was dramatically decreased. The results in this study indicate potential of the method for simultaneous evaluation of multiple chromophores in skin tissue.
The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012–2013
Heywood, Karen J.; Thompson, Andrew F.; Binetti, Umberto; Kaiser, Jan
2016-01-01
Abstract This study presents the characterization of variability in temperature, salinity and oxygen concentration, including the vertical structure of the variability, in the upper 1000 m of the ocean over a full year in the northeast Atlantic. Continuously profiling ocean gliders with vertical resolution between 0.5 and 1 m provide more information on temporal variability throughout the water column than time series from moorings with sensors at a limited number of fixed depths. The heat, salt and dissolved oxygen content are quantified at each depth. While the near surface heat content is consistent with the net surface heat flux, heat content of the deeper layers is driven by gyre‐scale water mass changes. Below ∼150m, heat and salt content display intraseasonal variability which has not been resolved by previous studies. A mode‐1 baroclinic internal tide is detected as a peak in the power spectra of water mass properties. The depth of minimum variability is at ∼415m for both temperature and salinity, but this is a depth of high variability for oxygen concentration. The deep variability is dominated by the intermittent appearance of Mediterranean Water, which shows evidence of filamentation. Susceptibility to salt fingering occurs throughout much of the water column for much of the year. Between about 700–900 m, the water column is susceptible to diffusive layering, particularly when Mediterranean Water is present. This unique ability to resolve both high vertical and temporal variability highlights the importance of intraseasonal variability in upper ocean heat and salt content, variations that may be aliased by traditional observing techniques. PMID:27840785
NASA Astrophysics Data System (ADS)
Heddam, Salim; Kisi, Ozgur
2018-04-01
In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.
VOCs in shallow groundwater in new residential/commercial areas of the United States
Squillace, P.J.; Moran, M.J.; Price, C.V.
2004-01-01
The quality of shallow groundwater in urban areas was investigated by sampling 518 monitoring wells between 1996 and 2002 as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Well networks were installed primarily in new residential/commercial areas less than about 30 years old (17 studies) and in small towns (2 studies) by randomly locating as many as 30 monitoring wells in each study area. The median well depth was 10 m. Based on samples with age-date information, almost all groundwater was recharged after 1950. Samples were analyzed for 53 volatile organic compounds (VOCs). Concentrations ranged from about 0.001 to 1000 ??g/L (median 0.04), with less than 1% of the samples exceeding a Maximum Contamination Level or Drinking Water Advisory established by the U.S. Environmental Protection Agency. Using uncensored concentration data, at least one VOC was detected in 88% of the samples, and at least two VOCs were detected in 69% of the samples. Chloroform, toluene, and perchloroethene were the three most frequently detected VOCs. Dissolved oxygen concentration, estimated recharge index, and land-use were significant variables in logistic regression models that explained the presence of the commonly detected VOCs. Dissolved oxygen concentration was the most important explanatory variable in logistic regression models for 6 of the 14 most frequently detected VOCs. Bromodichloromethane, chloroform, and 1,1,1-trichloroethane had a positive correlation with dissolved oxygen; in contrast, dichloroethane, benzene, and toluene had a negative correlation with dissolved oxygen.
Oxygen diffusion: an enzyme-controlled variable parameter.
Erdmann, Wilhelm; Kunke, Stefan
2014-01-01
Previous oxygen microelectrode studies have shown that the oxygen diffusion coefficient (DO₂) increases during extracellular PO₂ decreases, while intracellular PO₂ remained unchanged and thus cell function (spike activity of neurons). Oxygen dependency of complex multicellular organisms requires a stable and adequate oxygen supply to the cells, while toxic concentrations have to be avoided. Oxygen brought to the tissue by convection diffuses through the intercellular and cell membranes, which are potential barriers to diffusion. In gerbil brain cortex, PO₂ and DO₂ were measured by membrane-covered and by bare gold microelectrodes, as were also spike potentials. Moderate respiratory hypoxia was followed by a primary sharp drop of tissue PO₂ that recovered to higher values concomitant with an increase of DO₂. A drop in intracellular PO₂ recovered immediately. Studies on the abdominal ganglion of aplysia californica showed similar results.Heterogeneity is a feature of both normal oxygen supply to tissue and supply due to a wide range of disturbances in oxygen supply. Oxygen diffusion through membranes is variable thereby ensuring adequate intracellular PO₂. Cell-derived glucosamine oxidase seems to regulate the polymerization/depolymerisation ratio of membrane mucopolysaccharides and thus oxygen diffusion.Variability of oxygen diffusion is a decisive parameter for regulating the supply/demand ratio of oxygen supply to the cell; this occurs in highly developed animals as well as in species of a less sophisticated nature. Autoregulation of oxygen diffusion is as important as the distribution/perfusion ratio of the capillary meshwork and as the oxygen extraction ratio in relation to oxygen consumption of the cell. Oxygen diffusion resistance is the cellular protection against luxury oxygen supply (which can result in toxic oxidative species leading to mutagenesis).
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa
2011-08-01
In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.
Role of hemoglobin and capillarization for oxygen delivery and extraction in muscular exercise.
Saltin, B; Kiens, B; Savard, G; Pedersen, P K
1986-01-01
Through the years the role of the various links in the transport of oxygen in the human body has been discussed extensively, and especially whether one of these links could be singled out as limiting oxygen uptake during exercise. In his thesis work Lars Hermansen dealt with several of these variables related to oxygen transport and uptake. Two of these were the hemoglobin concentration of the blood (Hb) and skeletal muscle capillarization. These are the focus of this article. It can be demonstrated that variation in arterial oxygen content due to different Hb concentrations is fully compensated for at the level of the muscle, i.e. the amount of oxygen delivered to contracting muscles is adjusted by a variation in the blood flow so that it is the same regardless of Hb concentration in the range of 118-172 g X l-1. At the systemic level, with a large fraction of the muscle exercising, this causes an increase in submaximal heart rate and a lowering in maximal oxygen uptake in people with low as compared to normal or high Hb concentration. The primary significance of an enlarged capillary network in the muscle does not appear to be for accommodating a larger flow, but rather to allow for a long enough mean transit time and large enough surface area for optimal exchange of gases, substrates and metabolites.
Karrasch, Nicole M; Hubbell, John A E; Aarnes, Turi K; Bednarski, Richard M; Lerche, Phillip
2015-04-01
This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia.
Karrasch, Nicole M.; Hubbell, John A.E.; Aarnes, Turi K.; Bednarski, Richard M.; Lerche, Phillip
2015-01-01
This study compared cardiorespiratory variables in dorsally recumbent horses anesthetized with guaifenesin-ketamine-xylazine and spontaneously breathing 50% or maximal (> 90%) oxygen (O2) concentrations. Twelve healthy mares were randomly assigned to breathe 50% or maximal O2 concentrations. Horses were sedated with xylazine, induced to recumbency with ketamine-diazepam, and anesthesia was maintained with guaifenesin-ketamine-xylazine to effect. Heart rate, arterial blood pressures, respiratory rate, lithium dilution cardiac output (CO), inspired and expired O2 and carbon dioxide partial pressures, and tidal volume were measured. Arterial and mixed-venous blood samples were collected prior to sedation (baseline), during 30 minutes of anesthesia, 10 minutes after disconnection from O2, and 30 minutes after standing. Shunt fraction, O2 delivery, and alveolar-arterial O2 partial pressures difference [P(A-a)O2] were calculated. Recovery times were recorded. There were no significant differences between groups in cardiorespiratory parameters or in P(A-a)O2 at baseline or 30 minutes after standing. Oxygen partial pressure difference in the 50% group was significantly less than in the maximal O2 group during anesthesia. PMID:25829559
NASA Astrophysics Data System (ADS)
Schmidt, M.; Eggert, A.
2016-02-01
The Angola Gyre and the Northern Benguela Upwelling System are two major oxygen minimum zones (OMZ) of different kind connected by the system of African Eastern Boundary Currents. We discuss results from a 3-dimensional coupled biogeochemical model covering both oxygen-deficient systems. The biogeochemical model component comprises trophic levels up to zooplankton. Physiological properties of organisms are parameterized from field data gained mainly in the course of the project "Geochemistry and Ecology of the Namibian Upwelling System" (GENUS). The challenge of the modelling effort is the different nature of both systems. The Angola Gyre, located in a "shadow zone" of the tropical Atlantic, has a low productivity and little ventilation, hence a long residence time of water masses. In the northern Benguela Upwelling System, trade winds drive an intermittent, but permanent nutrient supply into the euphotic zone which fuels a high coastal productivity, large particle export and high oxygen consumption from dissimilatory processes. In addition to the local processes, oxygen-deficient water formed in the Angola Gyre is one of the source water masses of the poleward undercurrent, which feeds oxygen depleted water into the Benguela system. In order to simulate the oxygen distribution in the Benguela system, both physical transport as well as local biological processes need to be carefully adjusted in the model. The focus of the analysis is on the time scale and the relative contribution of the different oxygen related processes to the oxygen budgets in both the oxygen minimum zones. Although these are very different in both the OMZ, the model is found as suitable to produce oxygen minimum zones comparable with observations in the Benguela and the Angola Gyre as well. Variability of the oxygen concentration in the Angola Gyre depends strongly on organismic oxygen consumption, whereas the variability of the oxygen concentration on the Namibian shelf is governed mostly by pole-ward advection of tropical water masses.
Piloted Ignition to Flaming in Smoldering Fire-Retarded Polyurethane Foam
NASA Technical Reports Server (NTRS)
Putzeys, O.; Fernandez-Pello, A. C.; Urban, D. L.
2007-01-01
Experimental results are presented on the piloted transition from smoldering to flaming in the fire-retarded polyurethane foam Pyrell . The samples are small rectangular blocks with a square cross section, vertically placed in the wall of a vertical wind tunnel. Three of the vertical sample sides are insulated and the fourth side is exposed to an upward oxidizer flow of variable oxygen concentration and to a variable radiant heat flux. The gases emitted from the smoldering reaction pass upwards through a pilot, which consists of a coiled resistance heating wire. In order to compensate for the solid-phase and gas-phase effects of the fire retardants on the piloted transition from smoldering to flaming in Pyrell, it was necessary to assist the process by increasing the power supplied to the smolder igniter and the pilot (compared to that used for non-fire retarded foam). The experiments indicate that the piloted transition from smoldering to flaming occurs when the gaseous mixture at the pilot passes the lean flammability limit. It was found that increasing the oxygen concentration or the external heat flux increases the likelihood of a piloted transition from smoldering to flaming, and generally decreases the time delay to transition. The piloted transition to flaming is observed in oxygen concentrations of 23% and above in both low-density and high-density Pyrell. Comparisons with previous experiments show that the piloted transition from smoldering to flaming is possible under a wider range of external conditions (i.e. lower oxygen concentration) than the spontaneous transition from smoldering to flaming. The results show that the fire retardants in Pyrell are very effective in preventing the piloted transition to flaming in normal air, but Pyrell is susceptible to smoldering and the piloted transition to flaming in oxygen-enriched environments. Therefore, precautions should be taken in the design of applications of Pyrell in oxygen-enriched environments to reduce to the risk of a piloted transition to flaming.
NASA Astrophysics Data System (ADS)
Martens, Christopher S.; Mendlovitz, Howard P.; Seim, Harvey; Lapham, Laura; D'Emidio, Marco
2016-07-01
Within months of the BP Macondo Wellhead blowout, elevated methane concentrations within the water column revealed a significant retention of light hydrocarbons in deep waters plus corresponding dissolved oxygen (DO) deficits. However, chemical plume tracking efforts were hindered by a lack of in situ monitoring capabilities. Here, we describe results from in situ time-series, lander-based investigations of physical and biogeochemical processes controlling dissolved oxygen, and methane at Mississippi Canyon lease block 118 ( 18 km from the oil spill) conducted shortly after the blowout through April 2012. Multiple sensor arrays plus open-cylinder flux chambers (;chimneys;) deployed from a benthic lander collected oxygen, methane, pressure, and current speed and direction data within one meter of the seafloor. The ROVARD lander system was deployed for an initial 21-day test experiment (9/13/2010-10/04/2010) at 882 m depth before a longer 160-day deployment (10/24/2011-4/01/2012) at 884 m depth. Temporal variability in current directions and velocities and water temperatures revealed strong influences of bathymetrically steered currents and overlying along-shelf flows on local and regional water transport processes. DO concentrations and temperature were inversely correlated as a result of water mass mixing processes. Flux chamber measurements during the 160-day deployment revealed total oxygen utilization (TOU) averaging 11.6 mmol/m2 day. Chimney DO concentrations measured during the 21-day deployment exhibited quasi-daily variations apparently resulting from an interaction between near inertial waves and the steep topography of an elevated scarp immediately adjacent to the 21-day deployment site that modulated currents at the top of the chimney. Variability in dissolved methane concentrations suggested significant temporal variability in gas release from nearby hydrocarbon seeps and/or delivery by local water transport processes. Free-vehicle (lander) monitoring over time scales of months to years utilizing in situ sensors can provide an understanding of processes controlling water transport, respiration and the fate and impacts of accidental and natural gas and oil releases.
Yücel, Mustafa; Beaton, Alexander D.; Dengler, Marcus; Mowlem, Matthew C.; Sohl, Frank; Sommer, Stefan
2015-01-01
Microfluidics, or lab-on-a-chip (LOC) is a promising technology that allows the development of miniaturized chemical sensors. In contrast to the surging interest in biomedical sciences, the utilization of LOC sensors in aquatic sciences is still in infancy but a wider use of such sensors could mitigate the undersampling problem of ocean biogeochemical processes. Here we describe the first underwater test of a novel LOC sensor to obtain in situ calibrated time-series (up to 40 h) of nitrate+nitrite (ΣNOx) and nitrite on the seafloor of the Mauritanian oxygen minimum zone, offshore Western Africa. Initial tests showed that the sensor successfully reproduced water column (160 m) nutrient profiles. Lander deployments at 50, 100 and 170 m depth indicated that the biogeochemical variability was high over the Mauritanian shelf: The 50 m site had the lowest ΣNOx concentration, with 15.2 to 23.4 μM (median=18.3 μM); while at the 100 site ΣNOx varied between 21.0 and 30.1 μM over 40 hours (median = 25.1μM). The 170 m site had the highest median ΣNOx level (25.8 μM) with less variability (22.8 to 27.7 μM). At the 50 m site, nitrite concentration decreased fivefold from 1 to 0.2 μM in just 30 hours accompanied by decreasing oxygen and increasing nitrate concentrations. Taken together with the time series of oxygen, temperature, pressure and current velocities, we propose that the episodic intrusion of deeper waters via cross-shelf transport leads to intrusion of nitrate-rich, but oxygen-poor waters to shallower locations, with consequences for benthic nitrogen cycling. This first validation of an LOC sensor at elevated water depths revealed that when deployed for longer periods and as a part of a sensor network, LOC technology has the potential to contribute to the understanding of the benthic biogeochemical dynamics. PMID:26161958
Automated Routines for Calculating Whole-Stream Metabolism: Theoretical Background and User's Guide
Bales, Jerad D.; Nardi, Mark R.
2007-01-01
In order to standardize methods and facilitate rapid calculation and archival of stream-metabolism variables, the Stream Metabolism Program was developed to calculate gross primary production, net ecosystem production, respiration, and selected other variables from continuous measurements of dissolved-oxygen concentration, water temperature, and other user-supplied information. Methods for calculating metabolism from continuous measurements of dissolved-oxygen concentration and water temperature are fairly well known, but a standard set of procedures and computation software for all aspects of the calculations were not available previously. The Stream Metabolism Program addresses this deficiency with a stand-alone executable computer program written in Visual Basic.NET?, which runs in the Microsoft Windows? environment. All equations and assumptions used in the development of the software are documented in this report. Detailed guidance on application of the software is presented, along with a summary of the data required to use the software. Data from either a single station or paired (upstream, downstream) stations can be used with the software to calculate metabolism variables.
Landon, Matthew K.; Burton, Carmen A.; Davis, Tracy A.; Belitz, Kenneth; Johnson, Tyler D.
2014-01-01
The variables affecting the occurrence of hydrocarbons in aquifers used for public supply in California were assessed based on statistical evaluation of three large statewide datasets; gasoline oxygenates also were analyzed for comparison with hydrocarbons. Benzene is the most frequently detected (1.7%) compound among 17 hydrocarbons analyzed at generally low concentrations (median detected concentration 0.024 μg/l) in groundwater used for public supply in California; methyl tert-butyl ether (MTBE) is the most frequently detected (5.8%) compound among seven oxygenates analyzed (median detected concentration 0.1 μg/l). At aquifer depths used for public supply, hydrocarbons and MTBE rarely co-occur and are generally related to different variables; in shallower groundwater, co-occurrence is more frequent and there are similar relations to the density or proximity of potential sources. Benzene concentrations are most strongly correlated with reducing conditions, regardless of groundwater age and depth. Multiple lines of evidence indicate that benzene and other hydrocarbons detected in old, deep, and/or brackish groundwater result from geogenic sources of oil and gas. However, in recently recharged (since ~1950), generally shallower groundwater, higher concentrations and detection frequencies of benzene and hydrocarbons were associated with a greater proportion of commercial land use surrounding the well, likely reflecting effects of anthropogenic sources, particularly in combination with reducing conditions.
Spatio-temporal variation in stream water chemistry in a tropical urban watershed
A. Ramirez; K.G. Rosas; A.E. Lugo; O.M. Ramos-Gonzalez
2014-01-01
Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial...
Improving industrial full-scale production of baker's yeast by optimizing aeration control.
Blanco, Carlos A; Rayo, Julia; Giralda, José M
2008-01-01
This work analyzes the control of optimum dissolved oxygen of an industrial fed-batch procedure in which baker's yeast (Saccharomyces cerevisiae) is grown under aerobic conditions. Sugar oxidative metabolism was controlled by monitoring aeration, molasses flows, and yeast concentration in the propagator along the later stage of the propagation, and keeping pH and temperature under controlled conditions. A large number of fed-batch growth experiments were performed in the tank for a period of 16 h, for each of the 3 manufactured commercial products. For optimization and control of cultivations, the growth and metabolite formation were quantified through measurement of specific growth and ethanol concentration. Data were adjusted to a model of multiple lineal regression, and correlations representing dissolved oxygen as a function of aeration, molasses, yeast concentration in the broth, temperature, and pH were obtained. The actual influence of each variable was consistent with the mathematical model, further justified by significant levels of each variable, and optimum aeration profile during the yeast propagation.
Living with a large reduction in permited loading by using a hydrograph-controlled release scheme
Conrads, P.A.; Martello, W.P.; Sullins, N.R.
2003-01-01
The Total Maximum Daily Load (TMDL) for ammonia and biochemical oxygen demand for the Pee Dee, Waccamaw, and Atlantic Intracoastal Waterway system near Myrtle Beach, South Carolina, mandated a 60-percent reduction in point-source loading. For waters with a naturally low background dissolved-oxygen concentrations, South Carolina anti-degradation rules in the water-quality regulations allows a permitted discharger a reduction of dissolved oxygen of 0.1 milligrams per liter (mg/L). This is known as the "0.1 rule." Permitted dischargers within this region of the State operate under the "0.1 rule" and cannot cause a cumulative impact greater than 0.1 mg/L on dissolved-oxygen concentrations. For municipal water-reclamation facilities to serve the rapidly growing resort and retirement community near Myrtle Beach, a variable loading scheme was developed to allow dischargers to utilize increased assimilative capacity during higher streamflow conditions while still meeting the requirements of a recently established TMDL. As part of the TMDL development, an extensive real-time data-collection network was established in the lower Waccamaw and Pee Dee River watershed where continuous measurements of streamflow, water level, dissolved oxygen, temperature, and specific conductance are collected. In addition, the dynamic BRANCH/BLTM models were calibrated and validated to simulate the water quality and tidal dynamics of the system. The assimilative capacities for various streamflows were also analyzed. The variable-loading scheme established total loadings for three streamflow levels. Model simulations show the results from the additional loading to be less than a 0.1 mg/L reduction in dissolved oxygen. As part of the loading scheme, the real-time network was redesigned to monitor streamflow entering the study area and water-quality conditions in the location of dissolved-oxygen "sags." The study reveals how one group of permit holders used a variable-loading scheme to implement restrictive permit limits without experiencing prohibitive capital expenditures or initiating a lengthy appeals process.
Ecosystem attributes related to tidal wetland effects on water quality.
Findlay, S; Fischer, D
2013-01-01
Biogeochemical functioning of ecosystems is central to nutrient cycling, carbon balance, and several ecosystem services, yet it is not always clear why levels of function might vary among systems. Wetlands are widely recognized for their ability to alter concentrations of solutes and particles as water moves through them, but we have only general expectations for what attributes of wetlands are linked to variability in these processes. We examined changes in several water quality variables (dissolved oxygen, dissolved organic carbon, nutrients, and suspended particles) to ascertain which constituents are influenced during tidal exchange with a range of 17 tidal freshwater wetlands along the Hudson River, New York, USA. Many of the constituents showed significant differences among wetlands or between flooding and ebbing tidal concentrations, indicating wetland-mediated effects. For dissolved oxygen, the presence of even small proportional cover by submerged aquatic vegetation increased the concentration of dissolved oxygen in water returned to the main channel following a daytime tidal exchange. Nitrate concentrations showed consistent declines during ebbing tides, but the magnitude of decline varied greatly among sites. The proportional cover by graminoid-dominated high intertidal vegetation accounted for over 40% of the variation in nitrate decline. Knowing which water-quality alterations are associated with which attributes helps suggest underlying mechanisms and identifies what functions might be susceptible to change as sea level rise or salinity intrusion drives shifts in wetland vegetation cover.
Environmental Benefits of Restoring Sediment Continuity to the Kansas River
2016-06-01
CHL CHETN-XIV-50 June 2016 12 Bonner, T. H., and G. R. Wilde. 2002. Effects of turbidity on prey consumption by prairie stream fishes ...increased turbidity can also impact heat distribution and cause increased temperature variability. High biological oxygen demand related to algae...populations can drastically reduce dissolved oxygen concentrations, leading to an increased risk of fish kills (Miranda et al. 2001). Fish species
Spatial variability of E. coli in an urban salt-wedge estuary.
Jovanovic, Dusan; Coleman, Rhys; Deletic, Ana; McCarthy, David
2017-01-15
This study investigated the spatial variability of a common faecal indicator organism, Escherichia coli, in an urban salt-wedge estuary in Melbourne, Australia. Data were collected through comprehensive depth profiling in the water column at four sites and included measurements of temperature, salinity, pH, dissolved oxygen, turbidity, and E. coli concentrations. Vertical variability of E. coli was closely related to the salt-wedge dynamics; in the presence of a salt-wedge, there was a significant decrease in E. coli concentrations with depth. Transverse variability was low and was most likely dwarfed by the analytical uncertainties of E. coli measurements. Longitudinal variability was also low, potentially reflecting minimal die-off, settling, and additional inputs entering along the estuary. These results were supported by a simple mixing model that predicted E. coli concentrations based on salinity measurements. Additionally, an assessment of a sentinel monitoring station suggested routine monitoring locations may produce conservative estimates of E. coli concentrations in stratified estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Largier, J. L.
2013-12-01
Coastal fog reduces available light levels that in turn reduce rates of photosynthesis and oxygen production. This effect can be seen in perturbations of the day-night production-respiration cycle that leads to increase and decrease in dissolved oxygen in shallow-water habitats. In well stratified coastal lagoons, a lower layer may be isolated from the atmosphere so that small changes in photosynthetically active radiation (PAR) are evident in perturbations of the typical day-night cycle of oxygen concentration. This effect is observed in the summertime, mouth-closed Salmon Creek Estuary, located in Sonoma County (California). Sub-diurnal fluctuations in dissolved oxygen in Salmon Creek Estuary correlate with deviations from the clear-sky diurnal cycle in PAR. Similar effects are observed in other estuaries and the process by which fog controls photosynthesis can be expected to occur throughout coastal California, although the effect may not be easily observable in data collected from open waters where mixing and bloom dynamics are likely to dominate temporal variability in biogenic properties like dissolved oxygen.
Kisch-Wedel, H; Bernreuter, P; Kemming, G; Albert, M; Zwissler, B
2009-09-01
A new technique was validated in vivo in reflectance pulse oximetry for measuring low oxygen saturations. Two pairs of light emitter/detector diodes allow for estimation of light attenuation (LA) in tissue, which is assumed to be responsible for the inaccuracy of pulse oximetry at less than 70 % arterial oxygen saturation. For validation, 17 newborn piglets were desaturated stepwise from 21 % to 1.25 % inspiratory oxygen concentration during general anesthesia, and arterial oxygen saturation was measured with the reflectance pulse oximeter adjusted for LA in tissue, with a standard transmission pulse oximeter and a hemoximeter. LA in tissue could be quantified and was different between snout and foreleg (probability level (p) < 0.05). At arterial oxygen saturations above 70 %, the bias between the methods was at 0 %-1 % and the variability 4 %-5 %. From 2 % to 100 % arterial oxygen saturation, the reflectance pulse oximeter estimated oxyhemoglobin saturation more accurately than a conventional transmission pulse oximeter (p < 0.05). At low oxygen saturations below 70 %, the bias and variability of the reflectance pulse oximeter calibration were closer to the hemoximeter measurements than the transmission pulse oximeter (p < 0.05). The variability of the reflectance pulse oximeter was slightly lower than the traditional oximeter by taking into account the LA in tissue (9 % versus 11 % -15 %, ns), and thus, the quality of the individual calibration lines improved (correlation coefficient, p < 0.05).
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Ferkul, Paul V.; Bhattacharjee, Subrata; Miller, Fletcher J.; Fernandez-Pello, Carlos; Link, Shmuel; T'ien, James S.; Wichman, Indrek
2015-01-01
For the first time on ISS, BASS-II utilized MSG working volume dilution with gaseous nitrogen (N2). We developed a perfectly stirred reactor model to determine the N2 flow time and flow rate to obtain the desired reduced oxygen concentration in the working volume for each test. We calibrated the model with CSA-CP oxygen readings offset using the Mass Constituents Analyzer reading of the ISS ambient atmosphere data for that day. This worked out extremely well for operations, and added a new vital variable, ambient oxygen level, to our test matrices. The main variables tested in BASS-II were ambient oxygen concentration, ventilation flow velocity, and fuel type, thickness, and geometry. BASS-II also utilized the on-board CSA-CP for oxygen and carbon monoxide readings, and the CDM for carbon dioxide readings before and after each test. Readings from these sensors allow us to evaluate the completeness of the combustion. The oxygen and carbon dioxide readings before and after each test were analyzed and compared very well to stoichiometric ratios for a one step gas-phase reaction. The CO versus CO2 followed a linear trend for some datasets, but not for all the different geometries of fuel and flow tested. Lastly, we calculated the heat release rates during each test from the oxygen consumption and burn times, using the constant 13.1 kJ of heat released per gram of oxygen consumed. The results showed that the majority of the tests had heat release rates well below 100 Watts.
NASA Technical Reports Server (NTRS)
Shepherd, G. G.; Thuillier, G.; Solheim, B. H.; Chandra, S.; Cogger, L. L.; Duboin, M. L.; Evans, W. F. J.; Gattinger, R. L.; Gault, W. A.; Herse, M.
1993-01-01
WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, began atmospheric observations on September 28, 1991 and since then has been collecting data on winds, temperatures and emissions rates from atomic, molecular and ionized oxygen species, as well as hydroxyl. The validation of winds and temperatures is not yet complete, and scientific interpretation has barely begun, but the dominant characteristic of these data so far is the remarkable structure in the emission rate from the excited species produced by the recombination of atomic oxygen. The latitudinal and temporal variability has been noted before by many others. In this preliminary report on WINDII results we draw attention to the dramatic longitudinal variations of planetary wave character in atomic oxygen concentration, as reflected in the OI 557.7 nm emission, and to similar variations seen in the Meine1 hydroxyl band emission.
Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.
2014-01-01
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364
Climate and Anthropogenic Controls of Coastal Deoxygenation on Interannual to Centennial Timescales
NASA Astrophysics Data System (ADS)
Wang, Yi; Hendy, Ingrid; Napier, Tiffany J.
2017-11-01
Understanding dissolved oxygen variability in the ocean is limited by the short duration of direct measurements; however, sedimentary oxidation-reduction reactions can provide context for modern observations. Here we use bulk sediment redox-sensitive metal enrichment factors (MoEF, ReEF, and UEF) and scanning X-ray fluorescence records to examine annual-scale sedimentary oxygen concentrations in the Santa Barbara Basin from the Industrial Revolution (Common Era 1850) to present. Enrichments are linked to measured bottom water oxygen concentrations after 1986. We reveal gradual intensification of the coastal oxygen minimum zone (OMZ) on the southern California margin coinciding with the twentieth century anthropogenic warming trend that leads to reduced oxygen solubility and greater stratification. High-frequency interannual oscillations become more prominent over the last three decades. These are attributed to local "flushing events" triggered by the transition from El Niño to La Niña conditions, which further amplify changes in the extratropical southern Californian OMZ.
Kanazawa, H; Hirata, K; Yoshikawa, J
2003-07-01
We have previously shown that angiotensin converting enzyme (ACE) DD genotype is associated with exaggerated pulmonary hypertension and disturbance of tissue oxygenation during exercise in patients with chronic obstructive pulmonary disease (COPD). A pilot study was designed to examine the effects of captopril on these exercise related variables in COPD patients categorised according to ACE gene polymorphisms. Thirty six patients with COPD (II=13, ID=11, DD=12) received oral captopril (25 mg) or placebo in a randomised, double blind, crossover manner and underwent right heart catheterisation with exercise. Mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance (PVR), and lactate concentration after exercise with both placebo and captopril were higher in patients with the DD genotype than in those with the II or ID genotypes. In contrast, mixed venous oxygen tension (PvO(2)) was lower in patients with the DD genotype than in those with the other genotypes. Moreover, mPAP, PVR, and lactate concentration after exercise were lower in the captopril group than in the placebo group in patients with the II or ID genotype, but not in those with the DD genotype. PvO(2) after exercise was higher with captopril than with placebo in patients with the II genotype, but not in those with the other genotypes. These findings suggest that pulmonary haemodynamic variables and state of tissue oxygenation during exercise are dependent on ACE genotypes, and that captopril administration effectively influences these exercise related variables. Although the sample size in this pilot study was limited, it is likely that the improvement in exercise related variables in COPD patients with the II genotype is relatively sensitive to captopril.
Kainerstorfer, Jana M.; Polizzotto, Mark N.; Uldrick, Thomas S.; Rahman, Rafa; Hassan, Moinuddin; Najafizadeh, Laleh; Ardeshirpour, Yasaman; Wyvill, Kathleen M.; Aleman, Karen; Smith, Paul D.; Yarchoan, Robert; Gandjbakhche, Amir H.
2013-01-01
Diffuse multi-spectral imaging has been evaluated as a potential non-invasive marker of tumor response. Multi-spectral images of Kaposi sarcoma skin lesions were taken over the course of treatment, and blood volume and oxygenation concentration maps were obtained through principal component analysis (PCA) of the data. These images were compared with clinical and pathological responses determined by conventional means. We demonstrate that cutaneous lesions have increased blood volume concentration and that changes in this parameter are a reliable indicator of treatment efficacy, differentiating responders and non-responders. Blood volume decreased by at least 20% in all lesions that responded by clinical criteria and increased in the two lesions that did not respond clinically. Responses as assessed by multi-spectral imaging also generally correlated with overall patient clinical response assessment, were often detectable earlier in the course of therapy, and are less subject to observer variability than conventional clinical assessment. Tissue oxygenation was more variable, with lesions often showing decreased oxygenation in the center surrounded by a zone of increased oxygenation. This technique could potentially be a clinically useful supplement to existing response assessment in KS, providing an early, quantitative, and non-invasive marker of treatment effect. PMID:24386302
Mn/Ca intra- and inter-test variability in the benthic foraminifer Ammonia tepida
NASA Astrophysics Data System (ADS)
Petersen, Jassin; Barras, Christine; Bézos, Antoine; La, Carole; de Nooijer, Lennart J.; Meysman, Filip J. R.; Mouret, Aurélia; Slomp, Caroline P.; Jorissen, Frans J.
2018-01-01
The adaptation of some benthic foraminiferal species to low-oxygen conditions provides the prospect of using the chemical composition of their tests as proxies for bottom water oxygenation. Manganese may be particularly suitable as such a geochemical proxy because this redox element is soluble in reduced form (Mn2+) and hence can be incorporated into benthic foraminiferal tests under low-oxygen conditions. Therefore, intra- and inter-test differences in foraminiferal Mn/Ca ratios may hold important information about short-term variability in pore water Mn2+ concentrations and sediment redox conditions. Here, we studied Mn/Ca intra- and inter-test variability in living individuals of the shallow infaunal foraminifer Ammonia tepida sampled in Lake Grevelingen (the Netherlands) in three different months of 2012. The deeper parts of this lake are characterized by seasonal hypoxia/anoxia with associated shifts in microbial activity and sediment geochemistry, leading to seasonal Mn2+ accumulation in the pore water. Earlier laboratory experiments with similar seawater Mn2+ concentrations as encountered in the pore waters of Lake Grevelingen suggest that intra-test variability due to ontogenetic trends (i.e. size-related effects) and/or other vital effects occurring during calcification in A. tepida (11-25 % relative SD, RSD) is responsible for part of the observed variability in Mn/Ca. Our present results show that the seasonally highly dynamic environmental conditions in the study area lead to a strongly increased Mn/Ca intra- and inter-test variability (average of 45 % RSD). Within single specimens, both increasing and decreasing trends in Mn/Ca ratios with size are observed. Our results suggest that the variability in successive single-chamber Mn/Ca ratios reflects the temporal variability in pore water Mn2+. Additionally, active or passive migration of the foraminifera in the surface sediment may explain part of the observed Mn/Ca variability.
Statham, P J; Connelly, D P; German, C R; Brand, T; Overnell, J O; Bulukin, E; Millard, N; McPhail, S; Pebody, M; Perrett, J; Squire, M; Stevenson, P; Webb, A
2005-12-15
Loch Etive is a fjordic system on the west coast of Scotland. The deep waters of the upper basin are periodically isolated, and during these periods oxygen is lost through benthic respiration and concentrations of dissolved manganese increase. In April 2000 the autonomous underwater vehicle (AUV) Autosub was fitted with an in situ dissolved manganese analyzer and was used to study the spatial variability of this element together with oxygen, salinity, and temperature throughout the basin. Six along-loch transects were completed at either constant height above the seafloor or at constant depth below the surface. The ca. 4000 in situ 10-s-average dissolved Mn (Mnd) data points obtained provide a new quasi-synoptic and highly detailed view of the distribution of manganese in this fjordic environment not possible using conventional (water bottle) sampling. There is substantial variability in concentrations (<25 to >600 nM) and distributions of Mnd. Surface waters are characteristically low in Mnd reflecting mixing of riverine and marine end-member waters, both of which are low in Mnd. The deeper waters are enriched in Mnd, and as the water column always contains some oxygen, this must reflect primarily benthic inputs of reduced dissolved Mn. However, this enrichment of Mnd is spatially very variable, presumably as a result of variability in release of Mn coupled with mixing of water in the loch and removal processes. This work demonstrates how AUVs coupled with chemical sensors can reveal substantial small-scale variability of distributions of chemical species in coastal environments that would not be resolved by conventional sampling approaches. Such information is essential if we are to improve our understanding of the nature and significance of the underlying processes leading to this variability.
Investigating the impact of oxygen concentration and blood flow variation on photodynamic therapy
NASA Astrophysics Data System (ADS)
Penjweini, Rozhin; Kim, Michele M.; Finlay, Jarod C.; Zhu, Timothy C.
2016-03-01
Type II photodynamic therapy (PDT) is used for cancer treatment based on the combined action of a photosensitizer, a special wavelength of light, oxygen (3O2) and generation of singlet oxygen (1O2). Intra-patient and inter-patient variability of oxygen concentration ([3O2]) before and after the treatment as well as photosensitizer concentration and hemodynamic parameters such as blood flow during PDT has been reported. Simulation of these variations is valuable, as it would be a means for the rapid assessment of treatment effect. A mathematical model has been previously developed to incorporate the diffusion equation for light transport in tissue and the macroscopic kinetic equations for simulation of [3O2], photosensitizers in ground and triplet states and concentration of the reacted singlet oxygen ([1O₂]rx) during PDT. In this study, the finite-element based calculation of the macroscopic kinetic equations is done for 2-(1- Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH)-mediated PDT by incorporating the information of the photosensitizer photochemical parameters as well as the tissue optical properties, photosensitizer concentration, initial oxygen concentration ([3O2]0), blood flow changes and Φ that have been measured in mice bearing radiation-induced fibrosarcoma (RIF) tumors. Then, [1O2]rx calculated by using the measured [3O2] during the PDT is compared with [1O2]rx calculated based on the simulated [3O₂]; both calculations showed a reasonably good agreement. Moreover, the impacts of the blood flow changes and [3O2]0 on [1O2]rx have been investigated, which showed no pronounced effect of the blood flow changes on the long-term 1O2 generation. When [3O2]0 becomes limiting, small changes in [3O₂] have large effects on [1O2]rx.
Ryberg, Karen R.
2006-01-01
This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the Bureau of Reclamation, U.S. Department of the Interior, to estimate water-quality constituent concentrations in the Red River of the North at Fargo, North Dakota. Regression analysis of water-quality data collected in 2003-05 was used to estimate concentrations and loads for alkalinity, dissolved solids, sulfate, chloride, total nitrite plus nitrate, total nitrogen, total phosphorus, and suspended sediment. The explanatory variables examined for regression relation were continuously monitored physical properties of water-streamflow, specific conductance, pH, water temperature, turbidity, and dissolved oxygen. For the conditions observed in 2003-05, streamflow was a significant explanatory variable for all estimated constituents except dissolved solids. pH, water temperature, and dissolved oxygen were not statistically significant explanatory variables for any of the constituents in this study. Specific conductance was a significant explanatory variable for alkalinity, dissolved solids, sulfate, and chloride. Turbidity was a significant explanatory variable for total phosphorus and suspended sediment. For the nutrients, total nitrite plus nitrate, total nitrogen, and total phosphorus, cosine and sine functions of time also were used to explain the seasonality in constituent concentrations. The regression equations were evaluated using common measures of variability, including R2, or the proportion of variability in the estimated constituent explained by the regression equation. R2 values ranged from 0.703 for total nitrogen concentration to 0.990 for dissolved-solids concentration. The regression equations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.1 for dissolved solids to 35.2 for total nitrite plus nitrate. Regression equations also were used to estimate daily constituent loads. Load estimates can be used by water-quality managers for comparison of current water-quality conditions to water-quality standards expressed as total maximum daily loads (TMDLs). TMDLs are a measure of the maximum amount of chemical constituents that a water body can receive and still meet established water-quality standards. The peak loads generally occurred in June and July when streamflow also peaked.
Shellenbarger, Gregory; Schoellhamer, David H.; Morgan, Tara L.; Takekawa, John Y.; Athearn, Nicole D.; Henderson, Kathleen D.
2008-01-01
Initial restoration of former salt evaporation ponds under the South Bay Salt Pond Restoration Project in San Francisco Bay included the changing of water-flow patterns and the monitoring of water quality of discharge waters from the ponds. Low dissolved oxygen (DO) concentrations became evident in discharge waters when the ponds first were opened in 2004. This was a concern, because of the potential for low-DO pond discharge to decrease the DO concentrations in the sloughs that receive water from the ponds. However, as of summer 2007, only limited point-measurements of DO concentrations had been made in the receiving sloughs adjacent to the discharge ponds. In this report, we describe two short studies aimed at understanding the natural variability of slough DO and the effect of pond discharge on the DO concentrations in the sloughs. Pond A3W (a discharge pond) and the adjacent Guadalupe Slough were instrumented in August and September 2007 to measure DO, temperature, conductivity, and pH. In addition, Mowry and Newark Sloughs were instrumented during the August study to document DO variability in nearby sloughs that were unaffected by pond discharge. The results showed that natural tidal variability in the slough appeared to dominate and control the slough DO concentrations. Water-quality parameters between Guadalupe Slough and Mowry and Newark Sloughs could not be directly compared because deployment locations were different distances from the bay. Pond-discharge water was identified in Guadalupe Slough using the deployed instruments, but, counter to the previous assumption, the pond discharge, at times, increased DO concentrations in the slough. The effects of altering the volume of pond discharge were overwhelmed by natural spring-neap tidal variability in the slough. This work represents a preliminary investigation by the U.S. Geological Survey of the effects of pond discharge on adjacent sloughs, and the results will be used in designing a comprehensive DO study to determine normal variability for this region.
NASA Astrophysics Data System (ADS)
Holden, Joseph; Turner, Ed; Baird, Andy; Beadle, Jeannie; Billett, Mike; Brown, Lee; Chapman, Pippa; Dinsmore, Kerry; Dooling, Gemma; Grayson, Richard; Moody, Catherine; Gee, Clare
2017-04-01
We have previously shown that marine influence is an important factor controlling regional variability of pool water chemistry in blanket peatlands. Here we examine within-site controls on pool water chemistry. We surveyed natural and artificial (restoration sites) bog pools at blanket peatland sites in northern Scotland and Sweden. DOC, pH, conductivity, dissolved oxygen, temperature, cations, anions and absorbance spectra from 220-750nm were sampled. We sampled changes over time but also conducted intensive spatial surveys within individual pools and between pools on the same sampling days at individual study sites. Artificial pools had significantly greater DOC concentrations and different spectral absorbance characteristics when compared to natural pools at all sites studied. Within-pool variability in water chemistry tended to be small, even for very large pools ( 400 m2), except where pools had a layer of loose, mobile detritus on their beds. In these instances rapid changes took place between the overlying water column and the mobile sediment layer wherein dissolved oxygen concentrations dropped from values of around 12-10 mg/L to values less than 0.5 mg/L over just 2-3 cm of the depth profile. Such strong contrasts were not observed for pools which had a hard peat floor and which lacked a significant detritus layer. Strong diurnal turnover occurred within the pools on summer days, including within small, shallow pools (e.g. < 30 cm deep, 1 m2 area). For many pools on these summer days there was an evening spike in dissolved oxygen concentrations which originated at the surface and was then cycled downwards as the pool surface waters cooled. Slope location was a significant control on several pool water chemistry variables including pH and DOC concentration with accumulation (higher concentrations) in pools that were located further downslope in both natural and artificial pool systems. These processes have important implications for our interpretation of water chemistry and gas flux data from pool systems, how we design our sampling strategies and how we upscale results.
Feasibility of electrokinetic oxygen supply for soil bioremediation purposes.
Mena Ramírez, E; Villaseñor Camacho, J; Rodrigo Rodrigo, M A; Cañizares Cañizares, P
2014-12-01
This paper studies the possibility of providing oxygen to a soil by an electrokinetic technique, so that the method could be used in future aerobic polluted soil bioremediation treatments. The oxygen was generated from the anodic reaction of water electrolysis and transported to the soil in a laboratory-scale electrokinetic cell. Two variables were tested: the soil texture and the voltage gradient. The technique was tested in two artificial soils (clay and sand) and later in a real silty soil, and three voltage gradients were used: 0.0 (control), 0.5, and 1.0 V cm(-1). It was observed that these two variables strongly influenced the results. Oxygen transport into the soil was only available in the silty and sandy soils by oxygen diffusion, obtaining high dissolved oxygen concentrations, between 4 and 9 mg L(-1), useful for possible aerobic biodegradation processes, while transport was not possible in fine-grained soils such as clay. Electro-osmotic flow did not contribute to the transport of oxygen, and an increase in voltage gradients produced higher oxygen transfer rates. However, only a minimum fraction of the electrolytically generated oxygen was efficiently used, and the maximum oxygen transport rate observed, approximately 1.4 mgO2 L(-1)d(-1), was rather low, so this technique could be only tested in slow in-situ biostimulation processes for organics removal from polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Cawley, James D.; Eckel, Andrew J.
2003-01-01
The oxidation model simulates the oxidation of the reinforcing carbon fibers within a ceramic matrix composite material containing as-fabricated microcracks. The physics-based oxidation model uses theoretically and experimentally determined variables as input for the model. The model simulates the ingress of oxygen through microcracks into a two-dimensional plane within the composite material. Model input includes temperature, oxygen concentration, the reaction rate constant, the diffusion coefficient, and the crack opening width as a function of the mechanical and thermal loads. The model is run in an iterative process for a two-dimensional grid system in which oxygen diffuses through the porous and cracked regions of the material and reacts with carbon in short time steps. The model allows the local oxygen concentrations and carbon volumes from the edge to the interior of the composite to be determined over time. Oxidation damage predicted by the model was compared with that observed from microstructural analysis of experimentally tested composite material to validate the model for two temperatures of interest. When the model is run for low-temperature conditions, the kinetics are reaction controlled. Carbon and oxygen reactions occur relatively slowly. Therefore, oxygen can bypass the carbon near the outer edge and diffuse into the interior so that it saturates the entire composite at relatively high concentrations. The kinetics are limited by the reaction rate between carbon and oxygen. This results in an interior that has high local concentrations of oxygen and a similar amount of consumed carbon throughout the cross section. When the model is run for high-temperature conditions, the kinetics are diffusion controlled. Carbon and oxygen reactions occur very quickly. The carbon consumes oxygen as soon as it is supplied. The kinetics are limited by the relatively slow rate at which oxygen is supplied in comparison to the relatively fast rate at which carbon and oxygen reactions occur. This results in a sharp gradient in oxygen concentration from the edge where it is supplied to the nearest source of carbon, which is where the oxygen is quickly consumed. A moving reaction front is seen in which the outlaying carbon is consumed before the next inner layer of carbon begins to react.
Measures of net oxidant concentration in seawater
NASA Astrophysics Data System (ADS)
Jackson, George A.; Williams, Peter M.
1988-02-01
Dissolved oxygen deficits in the ocean have been used as a measure of the organic matter oxidized in a volume of water. Such organic matter is usually assumed to be predominantly settled particles. Using dissolved oxygen concentration in this way has two problems: first, it does not differentiate between oxidant consumed by the pool of dissolved organic matter present near the ocean surface and oxidant consumed by organic matter contained by falling particles; second, it does not account for other oxidant sources, such as nitrate, which can be as important to organic matter decay as oxygen in low-oxygen water, such as off Peru or in the Southern California submarine basins. New parameters provide better measures of the net oxidant concentration in a water parcel. One such, NetOx, is changed only by gaseous exchange with the atmosphere, exchange with the benthos, or the production or consumption of sinking particles. A simplified version of NetOx, NetOx = [O2] + 1.25[NO3-] - [TOC], where TOC (total organic carbon), the dissolved organic carbon (DOC) plus the suspended particulate organic carbon (POC), provides an index based on the usually dominant variables. Calculation of NetOx and a second property, NetOC ([O2] - [TOC]), for data from GEOSECS and ourselves in the Atlantic and Pacific oceans using property-property graphs show differences from those from oxygen deficits alone. Comparison of NetOx and NetOC concentrations at high and low latitudes of the Pacific Ocean shows the difference in surface water oxidant concentrations is even larger than the difference in oxygen concentration. Vertical particle fluxes off Peru calculated from NetOx gradients are much greater than those calculated from oxygen gradients. The potential value of NetOx and NetOC as parameters to understand particle fluxes implies that determination of TOC should be a routine part of hydrographic measurements.
2017-01-01
The magnitude of diffusive carbon dioxide (CO2) and methane (CH4) emission from man-made reservoirs is uncertain because the spatial variability generally is not well-represented. Here, we examine the spatial variability and its drivers for partial pressure, gas-exchange velocity (k), and diffusive flux of CO2 and CH4 in three tropical reservoirs using spatially resolved measurements of both gas concentrations and k. We observed high spatial variability in CO2 and CH4 concentrations and flux within all three reservoirs, with river inflow areas generally displaying elevated CH4 concentrations. Conversely, areas close to the dam are generally characterized by low concentrations and are therefore not likely to be representative for the whole system. A large share (44–83%) of the within-reservoir variability of gas concentration was explained by dissolved oxygen, pH, chlorophyll, water depth, and within-reservoir location. High spatial variability in k was observed, and kCH4 was persistently higher (on average, 2.5 times more) than kCO2. Not accounting for the within-reservoir variability in concentrations and k may lead to up to 80% underestimation of whole-system diffusive emission of CO2 and CH4. Our findings provide valuable information on how to develop field-sampling strategies to reliably capture the spatial heterogeneity of diffusive carbon fluxes from reservoirs. PMID:29257874
Kontoudakis, Nikolaos; Guo, Anque; Scollary, Geoffrey R; Clark, Andrew C
2017-08-15
Solid-phase extraction has previously been used to fractionate copper and iron into hydrophobic, cationic and residual forms. This study showed the change in fractionated copper and iron in Chardonnay wines with 1-year of bottle aging under variable oxygen and protein concentrations. Wines containing protein in low oxygen conditions induced a decrease (20-50%) in total copper and increased the proportion of the hydrophobic copper fraction, associated with copper(I) sulfide. In contrast, protein stabilised wines showed a lower proportion of the hydrophobic copper fraction after 1-year of aging. In oxidative storage conditions, the total iron decreased by 60% when at high concentration, and the concentration of the residual fraction of both copper and iron increased. The results show that oxidative storage increases the most oxidative catalytic form of the metal, whilst changes during reductive storage depend on the extent of protein stabilisation of the wine. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cisternas-Novoa, C.; Le Moigne, F. A. C.; Roa, J.; Wagner, H.; Engel, A.
2016-02-01
The downward flux of organic matter (OM) from the euphotic zone is critical to understand the biogeochemistry cycles in the ocean. Local changes in stratification, nutrient inputs, community structure and oxygen concentrations potentially affect the magnitude of OM flux. The Baltic Sea is a unique environment with strong natural gradients of primary productivity, nutrients and O2 concentrations. The genuine effect of oxygen minimum deficiency on the fate of sinking OM and the efficiency of the biologic carbon pump has yet to be clarified. Previous work suggested that under oxygen deficiency, nitrogen rich amino acids are preferentially utilized causing nitrogen loss from the water column (van Mooy et al., 2002, Kalvelage et al 2013). Here, we investigate how different oxygen conditions and surface productivity affect sinking particles flux and particles composition in the central Baltic Sea. Sinking OM was collected in June 2015 using surface-tethered free-drifting traps in the Gotland and Landsort deeps. Sinking particles were collected for a period of 48 and 24 hours at four depths from below the mixed layer and down to hypoxic deep waters (40, 60, 110 and 180 m). Fluxes of POC, PON, POP and amino acids were estimated. We will discuss the effect of low oxygen levels on the biological carbon pump associated with fluxes of OM and sinking particles.
NASA Astrophysics Data System (ADS)
Steinle, Lea; Maltby, Johanna; Treude, Tina; Kock, Annette; Bange, Hermann W.; Engbersen, Nadine; Zopfi, Jakob; Lehmann, Moritz F.; Niemann, Helge
2017-03-01
Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from which it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter, reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the south-western Baltic Sea (Eckernförde Bay). We found that MOx rates generally increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol L-1 d-1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 2.4-19.0 times more methane was oxidized than emitted to the atmosphere, whereas about the same amount was consumed and emitted during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2-220 µmol L-1 revealed a submicromolar oxygen optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidized methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results underscore the importance of MOx in mitigating methane emission from coastal waters and indicate an organism-level adaptation of the water column methanotrophs to hypoxic conditions.
NASA Astrophysics Data System (ADS)
Netburn, Amanda N.; Anthony Koslow, J.
2015-10-01
Climate change-induced ocean deoxygenation is expected to exacerbate hypoxic conditions in mesopelagic waters off the coast of southern California, with potentially deleterious effects for the resident fauna. In order to understand the possible impacts that the oxygen minimum zone expansion will have on these animals, we investigated the response of the depth of the deep scattering layer (i.e., upper and lower boundaries) to natural variations in midwater oxygen concentrations, light levels, and temperature over time and space in the southern California Current Ecosystem. We found that the depth of the lower boundary of the deep scattering layer (DSL) is most strongly correlated with dissolved oxygen concentration, and irradiance and oxygen concentration are the key variables determining the upper boundary. Based on our correlations and published estimates of annual rates of change to irradiance level and hypoxic boundary, we estimated the corresponding annual rate of change of DSL depths. If past trends continue, the upper boundary is expected to shoal at a faster rate than the lower boundary, effectively widening the DSL under climate change scenarios. These results have important implications for the future of pelagic ecosystems, as a change to the distribution of mesopelagic animals could affect pelagic food webs as well as biogeochemical cycles.
Climate change hampers endangered species through intensified moisture-related plant stresses
NASA Astrophysics Data System (ADS)
(Ruud) Bartholomeus, R. P.; (Flip) Witte, J. P. M.; (Peter) van Bodegom, P. M.; (Jos) van Dam, J. C.; (Rien) Aerts, R.
2010-05-01
With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. The first physiological process inhibited at high soil moisture contents is plant root respiration, i.e. oxygen consumption in the roots, which responds to increased temperatures. High soil moisture contents hamper oxygen transport from the atmosphere, through the soil - where part of the oxygen additionally disappears by soil microbial oxygen consumption - and to the root cells. Reduced respiration negatively affects the energy supply to plant metabolism. Plant transpiration, which responds to increased temperatures and atmospheric CO2-concentrations, is the first physiological process that will be inhibited by low soil moisture contents, negatively affecting both photosynthesis and cooling. As both the supply and demand of oxygen and water depend strongly on the prevailing meteorological conditions, both oxygen and water stress were calculated dynamically in time to capture climate change effects. We demonstrate that increased rainfall variability in interaction with predicted changes in temperature and CO2, affects soil moisture conditions and plant oxygen and water demands such, that both oxygen stress and water stress will intensify due to climate change. Moreover, these stresses will increasingly coincide, causing variable stress conditions. These variable stress conditions were found to decrease future habitat suitability, especially for plant species that are presently endangered. The future existence of such species is thus at risk by climate change, which has direct implications for policies to maintain endangered species, as applied by international nature management organisations (e.g. IUCN). Our integrated mechanistic analysis of two stresses combined, which has never been done so far, reveals large impacts of climate change on species extinctions and thereby on biodiversity.
NASA Astrophysics Data System (ADS)
Momou, Kouassi Julien; Akoua-Koffi, Chantal; Traoré, Karim Sory; Akré, Djako Sosthène; Dosso, Mireille
2017-07-01
The aim of this study was to assess the variability of the content of nutrients, oxidizable organic and particulate matters in raw sewage and the lagoon on the effect of rainfall. Then evaluate the impact of these changes in the concentration of enteroviruses (EVs) in waters. The sewage samples were collected at nine sampling points along the channel, which flows, into a tropical lagoon in Yopougon. Physical-chemical parameters (5-day Biochemical Oxygen Demand, Chemical Oxygen Demand, Suspended Particulate Matter, Total Phosphorus, Orthophosphate, Total Kjeldahl Nitrogen and Nitrate) as well as the concentration of EV in these waters were determined. The average numbers of EV isolated from the outlet of the channel were 9.06 × 104 PFU 100 ml-1. Consequently, EV was present in 55.55 and 33.33 % of the samples in the 2 brackish lagoon collection sites. The effect of rainfall on viral load at the both sewage and brackish lagoon environments is significant correlate (two-way ANOVA, P < 0.05). Furthermore, in lagoon environment, nutrients (Orthophosphate, Total Phosphorus), 5-day Biochemical Oxygen Demand, Chemical Oxygen Demand and Suspended Particulate Matter were significant correlated with EVs loads ( P < 0.05 by Pearson test). The overall results highlight the problem of sewage discharge into the lagoon and correlation between viral loads and water quality parameters in sewage and lagoon.
One year of Seaglider dissolved oxygen concentration profiles at the PAP site
NASA Astrophysics Data System (ADS)
Binetti, Umberto; Kaiser, Jan; Heywood, Karen; Damerell, Gillian; Rumyantseva, Anna
2015-04-01
Oxygen is one of the most important variables measured in oceanography, influenced both by physical and biological factors. During the OSMOSIS project, 7 Seagliders were used in 3 subsequent missions to measure a multidisciplinary suite of parameters at high frequency in the top 1000 m of the water column for one year, from September 2012 to September 2013. The gliders were deployed at the PAP time series station (nominally at 49° N 16.5° W) and surveyed the area following a butterfly-shaped path. Oxygen concentration was measured by Aanderaa optodes and calibrated using ship CTD O2 profiles during 5 deployment and recovery cruises, which were in turn calibrated by Winkler titration of discrete samples. The oxygen-rich mixed layer deepens in fall and winter and gets richer in oxygen when the temperature decreases. The spring bloom did not happen as expected, but instead the presence of a series of small blooms was measured throughout spring and early summer. During the summer the mixed layer become very shallow and oxygen concentrations decreased. A Deep Oxygen Maximum (DOM) developed along with a deep chlorophyll maximum during the summer and was located just below the mixed layer . At this depth, phytoplankton had favourable light and nutrient conditions to grow and produce oxygen, which was not subject to immediate outgassing. The oxygen concentration in the DOM was not constant, but decreased, then increased again until the end of the mission. Intrusions of oxygen rich water are also visible throughout the mission. These are probably due to mesoscale events through the horizontal transport of oxygen and/or nutrients that can enhance productivity, particularly at the edge of the fronts. We calculate net community production (NCP) by analysing the variation in oxygen with time. Two methods have been proposed. The classical oxygen budget method assumes that changes in oxygen are due to the sum of air-sea flux, isopycnal advection, diapycnal mixing and NCP. ERA-Interim provides climatological data to calculate air-sea gas exchange fluxes based on wind-speed parameterisations of the gas exchange coefficient. The second method exploits the high frequency of the measurements to determine the increment of oxygen over time during daylight hours to measure NCP. Together with the O2 concentration decrease during the night (due to community respiration), this method also allows us to derive gross oxygen production rates. The results of these two methods are compared.
Macroscopic singlet oxygen model incorporating photobleaching as an input parameter
NASA Astrophysics Data System (ADS)
Kim, Michele M.; Finlay, Jarod C.; Zhu, Timothy C.
2015-03-01
A macroscopic singlet oxygen model for photodynamic therapy (PDT) has been used extensively to calculate the reacted singlet oxygen concentration for various photosensitizers. The four photophysical parameters (ξ, σ, β, δ) and threshold singlet oxygen dose ([1O2]r,sh) can be found for various drugs and drug-light intervals using a fitting algorithm. The input parameters for this model include the fluence, photosensitizer concentration, optical properties, and necrosis radius. An additional input variable of photobleaching was implemented in this study to optimize the results. Photobleaching was measured by using the pre-PDT and post-PDT sensitizer concentrations. Using the RIF model of murine fibrosarcoma, mice were treated with a linear source with fluence rates from 12 - 150 mW/cm and total fluences from 24 - 135 J/cm. The two main drugs investigated were benzoporphyrin derivative monoacid ring A (BPD) and 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH). Previously published photophysical parameters were fine-tuned and verified using photobleaching as the additional fitting parameter. Furthermore, photobleaching can be used as an indicator of the robustness of the model for the particular mouse experiment by comparing the experimental and model-calculated photobleaching ratio.
Guerrini, G; Morabito, A; Samaja, M
2000-10-01
The aim is to determine if a single measurement of blood 2,3-diphosphoglycerate combined with gas analysis (pH, PCO2, PO2 and saturation) can identify the cause of an altered blood-oxygen affinity: the presence of an abnormal haemoglobin or a red cell disorder. The population (n=94) was divided into healthy controls (A, n=14), carriers of red cell disorders (B, n=72) and carriers of high oxygen affinity haemoglobins (C, n=8). Those variables were measured both in samples equilibrated at selected PCO2 and PO2 and in venous blood. In the univariable approach applied to equilibrated samples, we correctly identified C subjects in 93.6% or 96.8% of the cases depending on the selected variable, the standard P50 (PO2 at which 50% of haemoglobin is oxygenated) or a composite variable calculated from the above measurements. After introducing the haemoglobin concentration as a further discriminating variable, the A and B subjects were correctly identified in 91.9% or 94.2% of the cases, respectively. These figures become 93.0% or 86.1%, and 93.7% or 94.9% of the cases when using direct readings from venous blood, thereby avoiding the blood equilibration step. This test is feasible also in blood samples stored at 4 degrees C for 48 h, or at room temperature for 8 h.
A review of factors influencing the availability of dissolved oxygen to incubating salmonid embryos
NASA Astrophysics Data System (ADS)
Greig, S. M.; Sear, D. A.; Carling, P. A.
2007-01-01
Previous investigations into factors influencing incubation success of salmonid progeny have largely been limited to the development of empirical relationships between characteristics of the incubation environment and survival to emergence. It is suggested that adopting a process-based approach to assessing incubation success aids identification of the precise causes of embryonic mortalities, and provides a robust framework for developing and implementing managerial responses.Identifying oxygen availability within the incubation environment as a limiting factor, a comprehensive review of trends in embryonic respiration, and processes influencing the flux of oxygenated water through gravel riverbeds is provided. The availability of oxygen to incubating salmonid embryos is dependent on the exchange of oxygenated water with the riverbed, and the ability of the riverbed gravel medium to transport this water at a rate and concentration appropriate to support embryonic respiratory requirements. Embryonic respiratory trends indicate that oxygen consumption varies with stage of development, ambient water temperature and oxygen availability. The flux of oxygenated water through the incubation environment is controlled by a complex interaction of intragravel and extragravel processes and factors. The processes driving the exchange of channel water with gravel riverbeds include bed topography, bed permeability, and surface roughness effects. The flux of oxygenated water through riverbed gravels is controlled by gravel permeability, coupling of surface-subsurface flow and oxygen demands imposed by materials infiltrating riverbed gravels. Temporally and spatially variable inputs of groundwater can also influence the oxygen concentration of interstitial water. Copyright
NASA Astrophysics Data System (ADS)
Claret, M.; Galbraith, E. D.; Palter, J. B.; Gilbert, D.; Bianchi, D.; Dunne, J. P.
2016-02-01
The regional signature of anthropogenic climate change on the atmosphere and upper ocean is often difficult to discern from observational timeseries, dominated as they are by decadal climate variability. Here we argue that a long-term decline of dissolved oxygen concentrations observed in the Gulf of S. Lawrence (GoSL) is consistent with anthropogenic climate change. Oxygen concentrations in the GoSL have declined markedly since 1930 due primarily to an increase of oxygen-poor North Atlantic Central Waters relative to Labrador Current Waters (Gilbert et al. 2005). We compare these observations to a climate warming simulation using a very high-resolution global coupled ocean-atmospheric climate model. The numerical model (CM2.6), developed by the Geophysical Fluid Dynamics Laboratory, is strongly eddying and includes a biogeochemical module with dissolved oxygen. The warming scenario shows that oxygen in the GoSL decreases and it is associated to changes in western boundary currents and wind patterns in the North Atlantic. We speculate that the large-scale changes behind the simulated decrease in GoSL oxygen have also been at play in the real world over the past century, although they are difficult to resolve in noisy atmospheric data.
Garza-López, Paul Misael; Suárez-Vergel, Gerardo; Hamdan-Partida, Aida; Loera, Octavio
2015-04-01
The entomopathogenic fungus Beauveria bassiana is widely used in pest biocontrol strategies. We evaluated both the antioxidant response mediated by compatible solutes, trehalose or mannitol, and the expression of related genes using oxygen pulses at three oxygen concentrations in solid state culture (SSC): normal atmosphere (21% O2), low oxygen (16% O2) and enriched oxygen (26% O2). Trehalose concentration decreased 75% after atmospheric modifications in the cultures, whereas mannitol synthesis was three-fold higher under the 16% O2 pulses relative to normal atmosphere (100 and 30 μg mannitol mg(-1) biomass, respectively). Confirming this result, expression of the mpd gene, coding for mannitol-1-P dehydrogenase (MPD), increased up to 1.4 times after O2 pulses. The expression of the bbrgs1 gene, encoding a regulatory G protein related to conidiation, was analysed to explain previously reported differences in conidial production. Surprisingly, expression of bbrgs1 decreased after atmospheric modification. Finally, principal component analysis (PCA) indicated that 83.39% of the variability in the data could be explained by two components. This analysis corroborated the positive correlation between mannitol concentration and mpd gene expression, as well as the negative correlation between conidial production and bbrgs1 gene expression. This study contributes to understanding of antioxidant and molecular response of B. bassiana induced under oxidant conditions. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Rasul, M G; Islam, Mir Sujaul; Yunus, Rosli Bin Mohd; Mokhtar, Mazlin Bin; Alam, Lubna; Yahaya, F M
2017-12-01
The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.
Habitat, not resource availability, limits consumer production in lake ecosystems
Craig, Nicola; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.
2015-01-01
Food web productivity in lakes can be limited by dissolved organic carbon (DOC), which reduces fish production by limiting the abundance of their zoobenthic prey. We demonstrate that in a set of 10 small, north temperate lakes spanning a wide DOC gradient, these negative effects of high DOC concentrations on zoobenthos production are driven primarily by availability of warm, well-oxygenated habitat, rather than by light limitation of benthic primary production as previously proposed. There was no significant effect of benthic primary production on zoobenthos production after controlling for oxygen, even though stable isotope analysis indicated that zoobenthos do use this resource. Mean whole-lake zoobenthos production was lower in high-DOC lakes with reduced availability of oxygenated habitat, as was fish biomass. These insights improve understanding of lake food webs and inform management in the face of spatial variability and ongoing temporal change in lake DOC concentrations.
NASA Technical Reports Server (NTRS)
Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.
2004-01-01
Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30 x 30 x 10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/sq m. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.
NASA Technical Reports Server (NTRS)
Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.
2004-01-01
Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30x30x10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/m2. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.
Pellerin, Brian A.; Downing, Bryan D.; Kendall, Carol; Dahlgren, Randy A.; Kraus, Tamara E.C.; Saraceno, John Franco; Spencer, Robert G. M.; Bergamaschi, Brian A.
2009-01-01
1. We investigated diurnal nitrate (NO3−) concentration variability in the San Joaquin River using an in situ optical NO3− sensor and discrete sampling during a 5‐day summer period characterized by high algal productivity. Dual NO3− isotopes (δ15NNO3 and δ18ONO3) and dissolved oxygen isotopes (δ18ODO) were measured over 2 days to assess NO3− sources and biogeochemical controls over diurnal time‐scales.2. Concerted temporal patterns of dissolved oxygen (DO) concentrations and δ18ODOwere consistent with photosynthesis, respiration and atmospheric O2 exchange, providing evidence of diurnal biological processes independent of river discharge.3. Surface water NO3− concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5‐day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of δ15NNO3 and δ18ONO3isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3− variability in the San Joaquin River during the study. The lack of a clear explanation for NO3− variability likely reflects a combination of riverine biological processes and time‐varying physical transport of NO3− from upstream agricultural drains to the mainstem San Joaquin River.4. The application of an in situ optical NO3− sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.
Wilding, Thomas K; Brown, Edmund; Collier, Kevin J
2012-10-01
Tidal streams are ecologically important components of lotic network, and we identify dissolved oxygen (DO) depletion as a potentially important stressor in freshwater tidal streams of northern New Zealand. Other studies have examined temporal DO variability within rivers and we build on this by examining variability between streams as a basis for regional-scale predictors of risk for DO stress. Diel DO variability in these streams was driven by: (1) photosynthesis by aquatic plants and community respiration which produced DO maxima in the afternoon and minima early morning (range, 0.6-4.7 g/m(3)) as a product of the solar cycle and (2) tidal variability as a product of the lunar cycle, including saline intrusions with variable DO concentrations plus a small residual effect on freshwater DO for low-velocity streams. The lowest DO concentrations were observed during March (early autumn) when water temperatures and macrophyte biomass were high. Spatial comparisons indicated that low-gradient tidal streams were at greater risk of DO depletions harmful to aquatic life. Tidal influence was stronger in low-gradient streams, which typically drain more developed catchments, have lower reaeration potential and offer conditions more suitable for aquatic plant proliferation. Combined, these characteristics supported a simple method based on the extent of low-gradient channel for identifying coastal streams at risk of DO depletion. High-risk streams can then be targeted for riparian planting, nutrient limits and water allocation controls to reduce potential ecological stress.
NASA Astrophysics Data System (ADS)
Rigaud, Sylvain; Deflandre, Bruno; Grenz, Christian; Pozzato, Lara; Cesbron, Florian; Meulé, Samuel; Bonin, Patricia; Michotey, Valérie; Mirleau, Pascal; Mirleau, Fatma; Knoery, Joel; Zuberer, Frédéric; Guillemain, Dorian; Marguerite, Sébatien; Mayot, Nicolas; Faure, Vincent; Grisel, Raphael; Radakovitch, Olivier
2017-04-01
The desoxygenation of the water column in coastal areas, refered as coastal hypoxia, is currently a growing phenomenon still particularly complex to predict. This is mainly due to the fact that the biogeochemical response of the benthic ecosystem to the variation of the oxygen contents in the water column remains poorly understood. Dissolved oxygen concentration is a key parameter controling the benthic micro- and macro-community as well as the biogeochemical reactions occuring in the surface sediment. More particularly, the variation over variable time scales (from hour to years) of the oxygen deficit may induce different pathways for biogeochemical processes such as the oxydation of freshly deposited organic matter and nutrients and metals recycling. This results in variable chemical fluxes at the sediment-water interface, that may in turn, support the eutrophication and desoxygenation of the aquatic system. Our study focus on the Berre lagoon, an eutrophicated mediterranean lagoon impacted by hypoxia events in the water column. Three stations, closely located but impacted by contrasted temporal variation of oxygen deficit in the water column were selected: one station with rare oxygen deficit and with functionnal macrofauna community, one station with almost permanent oxygen deficit and no macrofauna community and one intermediate station with seasonnal oxygen deficit and degraded macrofauna community. Each station was surveyed once during a same field survey while the intermediate station was surveyed seasonnaly. For each campaign, we report vertical profiles of the main chemical components (oxygen, nutrients, metals) along the water-column/sediment continuum, with an increased vertical resolution in the benthic zone using a multi-tool approach (high vertical resolution suprabenthic water sampler and microsensors profiler). In addition, total chemical fluxes at the sediment-water interface was obtained using benthic chambers. This dataset was used to evaluate the influence, of the oxygen concentrations (and its short and long-term variations) in the water column on the nature and location of the main biogeochemical reactions occuring in the benthic zone and the resulting fluxes at the sediment-water interface.
NASA Astrophysics Data System (ADS)
Davis, J. A.; Smith, R. L.; Bohlke, J. K.; Jemison, N.; Xiang, H.; Repert, D. A.; Yuan, X.; Williams, K. H.
2015-12-01
The occurrence of naturally reduced zones is common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. Such reduced zones are usually heterogeneously dispersed in these aquifers and characterized by high concentrations of organic carbon, reduced mineral phases, and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases found in association with these reducing zones, although there is little understanding of the relative importance of various potential oxidants. Four field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO, wherein groundwater associated with the naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in such field systems if supplied to the naturally reduced zones. Dissolved Fe(II) concentrations decreased to the detection limit, but increases in sulfate could not be detected due to high background concentrations. Changes in nitrogen species concentrations were variable. The results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS), rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table. Seasonal variations of the water table at the Rifle, CO site may play an important role in introducing oxygen into the system. Although oxygen was introduced directly to the naturally reduced zones in these experiments, delivery of oxidants to the system may also be controlled by other oxidative pathways in which oxygen plays an indirect role.
Temporal variation in pelagic food chain length in response to environmental change
Ruiz-Cooley, Rocio I.; Gerrodette, Tim; Fiedler, Paul C.; Chivers, Susan J.; Danil, Kerri; Ballance, Lisa T.
2017-01-01
Climate variability alters nitrogen cycling, primary productivity, and dissolved oxygen concentration in marine ecosystems. We examined the role of this variability (as measured by six variables) on food chain length (FCL) in the California Current (CC) by reconstructing a time series of amino acid–specific δ15N values derived from common dolphins, an apex pelagic predator, and using two FCL proxies. Strong declines in FCL were observed after the 1997–1999 El Niño Southern Oscillation (ENSO) event. Bayesian models revealed longer FCLs under intermediate conditions for surface temperature, chlorophyll concentration, multivariate ENSO index, and total plankton volume but not for hypoxic depth and nitrate concentration. Our results challenge the prevalent paradigm that suggested long-term stability in the food web structure in the CC and, instead, reveal that pelagic food webs respond strongly to disturbances associated with ENSO events, local oceanography, and ongoing changes in climate. PMID:29057322
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Huajun; Dong, Yongqi; Cherukara, Matthew J.
Memristive devices are an emerging technology that enables both rich interdisciplinary science and novel device functionalities, such as nonvolatile memories and nanoionics-based synaptic electronics. Recent work has shown that the reproducibility and variability of the devices depend sensitively on the defect structures created during electroforming as well as their continued evolution under dynamic electric fields. However, a fundamental principle guiding the material design of defect structures is still lacking due to the difficulty in understanding dynamic defect behavior under different resistance states. Here, we unravel the existence of threshold behavior by studying model, single-crystal devices: resistive switching requires that themore » pristine oxygen vacancy concentration reside near a critical value. Theoretical calculations show that the threshold oxygen vacancy concentration lies at the boundary for both electronic and atomic phase transitions. Through operando, multimodal X-ray imaging, we show that field tuning of the local oxygen vacancy concentration below or above the threshold value is responsible for switching between different electrical states. These results provide a general strategy for designing functional defect structures around threshold concentrations to create dynamic, field-controlled phases for memristive devices.« less
NASA Astrophysics Data System (ADS)
Molz, F. J.; Faybishenko, B.; Jenkins, E. W.
2012-12-01
Mass and energy fluxes within the soil-plant-atmosphere continuum are highly coupled and inherently nonlinear. The main focus of this presentation is to demonstrate the results of numerical modeling of a system of 4 coupled, nonlinear ordinary differential equations (ODEs), which are used to describe the long-term, rhizosphere processes of soil microbial dynamics, including the competition between nitrogen-fixing bacteria and those unable to fix nitrogen, along with substrate concentration (nutrient supply) and oxygen concentration. Modeling results demonstrate the synchronized patterns of temporal oscillations of competing microbial populations, which are affected by carbon and oxygen concentrations. The temporal dynamics and amplitude of the root exudation process serve as a driving force for microbial and geochemical phenomena, and lead to the development of the Gompetzian dynamics, synchronized oscillations, and phase-space attractors of microbial populations and carbon and oxygen concentrations. The nonlinear dynamic analysis of time series concentrations from the solution of the ODEs was used to identify several types of phase-space attractors, which appear to be dependent on the parameters of the exudation function and Monod kinetic parameters. This phase space analysis was conducted by means of assessing the global and local embedding dimensions, correlation time, capacity and correlation dimensions, and Lyapunov exponents of the calculated model variables defining the phase space. Such results can be used for planning experimental and theoretical studies of biogeochemical processes in the fields of plant nutrition, phyto- and bio-remediation, and other ecological areas.
NASA Technical Reports Server (NTRS)
Medard, E.; Martin, A. M.; Righter, K.; Malouta, A.; Lee, C.-T.
2017-01-01
Most siderophile element concentrations in planetary mantles can be explained by metal/ silicate equilibration at high temperature and pressure during core formation. Highly siderophile elements (HSE = Au, Re, and the Pt-group elements), however, usually have higher mantle abundances than predicted by partitioning models, suggesting that their concentrations have been set by late accretion of material that did not equilibrate with the core. The partitioning of HSE at the low oxygen fugacities relevant for core formation is however poorly constrained due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variables like temperature, pressure, and oxygen fugacity. To better understand the relative roles of metal/silicate partitioning and late accretion, we performed a self-consistent set of experiments that parameterizes the influence of oxygen fugacity, temperature and melt composition on the partitioning of Pt, one of the HSE, between metal and silicate melts. The major outcome of this project is the fact that Pt dissolves in an anionic form in silicate melts, causing a dependence of partitioning on oxygen fugacity opposite to that reported in previous studies.
Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments
NASA Astrophysics Data System (ADS)
Sawicka, Joanna E.; Brüchert, Volker
2017-01-01
Marine methane emissions originate largely from near-shore coastal systems, but emission estimates are often not based on temporally well-resolved data or sufficient understanding of the variability of methane consumption and production processes in the underlying sediment. The objectives of our investigation were to explore the effects of seasonal temperature, changes in benthic oxygen concentration, and historical eutrophication on sediment methane concentrations and benthic fluxes at two type localities for open-water coastal versus eutrophic, estuarine sediment in the Baltic Sea. Benthic fluxes of methane and oxygen and sediment pore-water concentrations of dissolved sulfate, methane, and 35S-sulfate reduction rates were obtained over a 12-month period from April 2012 to April 2013. Benthic methane fluxes varied by factors of 5 and 12 at the offshore coastal site and the eutrophic estuarine station, respectively, ranging from 0.1 mmol m-2 d-1 in winter at an open coastal site to 2.6 mmol m-2 d-1 in late summer in the inner eutrophic estuary. Total oxygen uptake (TOU) and 35S-sulfate reduction rates (SRRs) correlated with methane fluxes showing low rates in the winter and high rates in the summer. The highest pore-water methane concentrations also varied by factors of 6 and 10 over the sampling period with the lowest values in the winter and highest values in late summer-early autumn. The highest pore-water methane concentrations were 5.7 mM a few centimeters below the sediment surface, but they never exceeded the in situ saturation concentration. Of the total sulfate reduction, 21-24 % was coupled to anaerobic methane oxidation, lowering methane concentrations below the sediment surface far below the saturation concentration. The data imply that bubble emission likely plays no or only a minor role in methane emissions in these sediments. The changes in pore-water methane concentrations over the observation period were too large to be explained by temporal changes in methane formation and methane oxidation rates due to temperature alone. Additional factors such as regional and local hydrostatic pressure changes and coastal submarine groundwater flow may also affect the vertical and lateral transport of methane.
Characterization of the intra-annual variability in the Oxygen Minimum Zone (OMZ) off Peru
NASA Astrophysics Data System (ADS)
Paulmier, A.; Campos, F.; Dewitte, B.; Garcon, V.; Illig, S.; Carrasco, E.; Depretz de Gesincourt, O.; Grelet, J.; Ledesma, J. A.; Maes, C.; Montes, I.; Oschlies, A.; Quispe, J.; Scouarnec, L.
2016-02-01
The Oxygen Minimum Zones (OMZs) are oceanic deoxygenated layers between 50 and 1000 meters depth, which impact climate and ecosystems at both local and global scales. In particular, associated with the most productive upwelling system (10% of the world fisheries), the OMZ off Peru has the shallowest and most intense core with the lowest O2 concentration. Little is known on O2 variability at hourly to intra-seasonal timescales in this region. Thanks to the first long term subsurface mooring deployed off Lima (12°02'S, 77°40'W) at 30 nm from the coast, this study investigates the OMZ variability. The mooring consists in an instrumented line including sensors of pressure, temperature, salinity and oxygen located at 5 depths (30, 50, 75, 145 and 160 meters below the surface) with an acquisition frequency of 15 minutes during 14 months from January 5th , 2013 until February 21th, 2014. These data collected in the framework of the trans-disciplinary AMOP project (Activity of investigation dedicated to Oxygen Minimum Zone of the eastern Pacific) allow documenting the dynamics of both the oxycline and core and of their physical forcing (e.g. waves, wind). Three main regimes of variability are reported: sub-daily (< 1 day), sub-monthly (1-30 days) and sub-seasonal (30-90 days), which corresponds to distinct physical mechanisms. Preliminary results from a high-resolution coupled model platform are presented, which serve as material for the interpretation of the data.
Long-term development of hypolimnetic oxygen depletion rates in the large Lake Constance.
Rhodes, Justin; Hetzenauer, Harald; Frassl, Marieke A; Rothhaupt, Karl-Otto; Rinke, Karsten
2017-09-01
This study investigates over 30 years of dissolved oxygen dynamics in the deep interior of Lake Constance (max. depth: 250 m). This lake supplies approximately four million people with drinking water and has undergone strong re-oligotrophication over the past decades. We calculated depth-specific annual oxygen depletion rates (ODRs) during the period of stratification and found that 50% of the observed variability in ODR was already explained by a simple separation into a sediment- and volume-related oxygen consumption. Adding a linear factor for water depth further improved the model indicating that oxygen depletion increased substantially along the depth. Two other factors turned out to significantly influence ODR: total phosphorus as a proxy for the lake's trophic state and mean oxygen concentration in the respective depth layer. Our analysis points to the importance of nutrient reductions as effective management measures to improve and protect the oxygen status of such large and deep lakes.
Endothelial Cell and Platelet Bioenergetics: Effect of Glucose and Nutrient Composition
Fink, Brian D.; Herlein, Judy A.; O’Malley, Yunxia; Sivitz, William I.
2012-01-01
It has been suggested that cells that are independent of insulin for glucose uptake, when exposed to high glucose or other nutrient concentrations, manifest enhanced mitochondrial substrate oxidation with consequent enhanced potential and generation of reactive oxygen species (ROS); a paradigm that could predispose to vascular complications of diabetes. Here we exposed bovine aortic endothelial (BAE) cells and human platelets to variable glucose and fatty acid concentrations. We then examined oxygen consumption and acidification rates using recently available technology in the form of an extracellular oxygen and proton flux analyzer. Acute or overnight exposure of confluent BAE cells to glucose concentrations from 5.5 to 25 mM did not enhance or change the rate of oxygen consumption (OCR) under basal conditions, during ATP synthesis, or under uncoupled conditions. Glucose also did not alter OCR in sub-confluent cells, in cells exposed to low serum, or in cells treated with added pyruvate. Likewise, overnight exposure to fatty acids of varying saturation had no such effects. Overnight exposure of BAE cells to low glucose concentration decreased maximal uncoupled respiration, but not basal or ATP related oxygen consumption. Labeled glucose oxidation to CO2 increased, but only marginally after high glucose exposure while oleate oxidation to CO2 decreased. Overnight exposure to linolenic acid, but not oleic or linoleic acid increased extracellular acidification consistent with enhanced glycolytic metabolism. We were unable to detect an increase in production of reactive oxygen species (ROS) from BAE cells exposed to high medium glucose. Like BAE cells, exposure of human platelets to glucose did not increase oxygen consumption. As opposed to BAE cells, platelet mitochondria demonstrate less respiratory reserve capacity (beyond that needed for basal metabolism). Our data do not support the concept that exposure to high glucose or fatty acids accelerates mitochondrial oxidative metabolism in endothelial cells or platelets. PMID:22745753
NASA Astrophysics Data System (ADS)
Caulle, C.; Mojtahid, M.; Gooday, A. J.; Jorissen, F. J.; Kitazato, H.
2015-08-01
Rose-Bengal-stained foraminiferal assemblages (> 150 μm) were analysed along a five-station bathymetric transect across the core and the lower part of the oxygen minimum zone (OMZ) on the Indian margin of the Arabian Sea. Sediment cores were collected using the manned submersible Shinkai 6500 during the RV Yokosuka cruise YK08-11 in the post-monsoon season (October 2008) at water depths ranging from 535 to 2000 m, along a gradient from almost anoxic to well-oxygenated (0.3 to 108 μM) bottom waters. Stained benthic foraminifera were investigated from two different size fractions (150-300 μm and > 300 μm). Stained foraminiferal densities were very high in the core of the OMZ (at 535 and 649 m) and decreased at deeper sites. The faunas (> 150 μm) were dominated (40-80 %) by non-calcareous taxa at all stations. These were mainly species of Reophax and Lagenammina but also included delicate monothalamous taxa (organic-walled "allogromiids", agglutinated saccamminids, psammosphaerids and tubular forms). These new data from the Indian margin are compared to previous studies from the Murray Ridge, the Pakistan margin and the Oman margin. The fact that similar species were found at sites with comparable bottom-water oxygen concentrations but with very different surface water productivity suggests that, within the strongly developed Arabian Sea OMZ, bottom-water oxygen concentration, and not the organic flux to the sea floor, is the main factor controlling the species composition of the foraminiferal communities. Several foraminiferal species (e.g. Praeglobobulimina sp. 1, Ammodiscus sp. 1, Bolivina aff. dilatata) were confined to the core of the OMZ. These species are presently known only from the Arabian Sea. Because of their association with extremely low oxygen concentrations, these species may be good markers for very low oxygen concentrations, and could be used to reconstruct past OMZ variability in the Arabian Sea.
Thermal transport in tantalum oxide films for memristive applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landon, Colin D.; Wilke, Rudeger H. T.; Brumbach, Michael T.
2015-07-13
The thermal conductivity of amorphous TaO{sub x} memristive films having variable oxygen content is measured using time domain thermoreflectance. Thermal transport is described by a two-part model where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. The vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaO{sub x} switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically by field-induced charge state migration.
NASA Astrophysics Data System (ADS)
Loubere, Paul
1994-10-01
An electronic supplement of this material may be obtained on adiskette or Anonymous FTP from KOSMOS.AGU.ORG. (LOGIN toAGU's FTP account using ANONYMOUS as the usemame andGUEST as the password. Go to the right directory by typing CDAPEND. Type LS to see what files are available. Type GET and thename of the file to get it. Finally, type EXIT to leave the system.)(Paper 94PA01624, Quantitative estimation of surface oceanproductivity and bottom water concentration using benthicforaminifera, by P. Loubere). Diskette may be ordered from AmericanGeophysical Union, 2000 Florida Avenue, N.W., Washington, DC20009; $15.00. Payment must accompany order.Quantitative estimation of surface ocean productivity and bottom water oxygen concentration with benthic foraminifera was attempted using 70 samples from equatorial and North Pacific surface sediments. These samples come from a well defined depth range in the ocean, between 2200 and 3200 m, so that depth related factors do not interfere with the estimation. Samples were selected so that foraminifera were well preserved in the sediments and temperature and salinity were nearly uniform (T = 1.5° C; S = 34.6‰). The sample set was also assembled so as to minimize the correlation often seen between surface ocean productivity and bottom water oxygen values (r² = 0.23 for prediction purposes in this case). This procedure reduced the chances of spurious results due to correlations between the environmental variables. The samples encompass a range of productivities from about 25 to >300 gC m-2 yr-1, and a bottom water oxygen range from 1.8 to 3.5 ml/L. Benthic foraminiferal assemblages were quantified using the >62 µm fraction of the sediments and 46 taxon categories. MANOVA multivariate regression was used to project the faunal matrix onto the two environmental dimensions using published values for productivity and bottom water oxygen to calibrate this operation. The success of this regression was measured with the multivariate r² which was 0.98 for the productivity dimension and 0.96 for the oxygen dimension. These high coefficients indicate that both environmental variables are strongly imbedded in the faunal data matrix. Analysis of the beta regression coefficients shows that the environmental signals are carried by groups of taxa which are consistent with previous work characterizing benthic foraminiferal responses to productivity and bottom water oxygen. The results of this study suggest that benthic foraminiferal assemblages can be used for quantitative reconstruction of surface ocean productivity and bottom water oxygen concentrations if suitable surface sediment calibration data sets are developed and appropriate means for detecting no-analog samples are found.
Review: Oxygen and trophoblast biology — A source of controversy
Tuuli, M.G.; Longtine, M.S.; Nelson, D.M.
2013-01-01
Oxygen is necessary for life yet too much or too little oxygen is toxic to cells. The oxygen tension in the maternal plasma bathing placental villi is <20 mm Hg until 10–12 weeks’ gestation, rising to 40–80 mmHg and remaining in this range throughout the second and third trimesters. Maldevelopment of the maternal spiral arteries in the first trimester predisposes to placental dysfunction and sub-optimal pregnancy outcomes in the second half of pregnancy. Although low oxygen at the site of early placental development is the norm, controversy is intense when investigators interpret how defective transformation of spiral arteries leads to placental dysfunction during the second and third trimesters. Moreover, debate rages as to what oxygen concentrations should be considered normal and abnormal for use in vitro to model villous responses in vivo. The placenta may be injured in the second half of pregnancy by hypoxia, but recent evidence shows that ischemia with reoxygenation and mechanical damage due to high flow contributes to the placental dysfunction of diverse pregnancy disorders. We overview normal and pathologic development of the placenta, consider variables that influence experiments in vitro, and discuss the hotly debated question of what in vitro oxygen percentage reflects the normal and abnormal oxygen concentrations that occur in vivo. We then describe our studies that show cultured villous trophoblasts undergo apoptosis and autophagy with phenotype-related differences in response to hypoxia. PMID:21216006
Kirk, Timothy V; Marques, Marco Pc; Radhakrishnan, Anand N Pallipurath; Szita, Nicolas
2016-03-01
Microbioreactors have emerged as a new tool for early bioprocess development. The technology has advanced rapidly in the last decade and obtaining real-time quantitative data of process variables is nowadays state of the art. In addition, control over process variables has also been achieved. The aim of this study was to build a microbioreactor capable of controlling dissolved oxygen (DO) concentrations and to determine oxygen uptake rate in real time. An oscillating jet driven, membrane-aerated microbioreactor was developed without comprising any moving parts. Mixing times of ∼7 s, and k L a values of ∼170 h -1 were achieved. DO control was achieved by varying the duty cycle of a solenoid microvalve, which changed the gas mixture in the reactor incubator chamber. The microbioreactor supported Saccharomyces cerevisiae growth over 30 h and cell densities of 6.7 g dcw L -1 . Oxygen uptake rates of ∼34 mmol L -1 h -1 were achieved. The results highlight the potential of DO-controlled microbioreactors to obtain real-time information on oxygen uptake rate, and by extension on cellular metabolism for a variety of cell types over a broad range of processing conditions. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Zaqoot, Hossam Adel; Ansari, Abdul Khalique; Unar, Mukhtiar Ali; Khan, Shaukat Hyat
2009-01-01
Artificial Neural Networks (ANNs) are flexible tools which are being used increasingly to predict and forecast water resources variables. The human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. The presence of dissolved oxygen is essential for the survival of most organisms in the water bodies. This paper is concerned with the use of ANNs - Multilayer Perceptron (MLP) and Radial Basis Function neural networks for predicting the next fortnight's dissolved oxygen concentrations in the Mediterranean Sea water along Gaza. MLP and Radial Basis Function (RBF) neural networks are trained and developed with reference to five important oceanographic variables including water temperature, wind velocity, turbidity, pH and conductivity. These variables are considered as inputs of the network. The data sets used in this study consist of four years and collected from nine locations along Gaza coast. The network performance has been tested with different data sets and the results show satisfactory performance. Prediction results prove that neural network approach has good adaptability and extensive applicability for modelling the dissolved oxygen in the Mediterranean Sea along Gaza. We hope that the established model will help in assisting the local authorities in developing plans and policies to reduce the pollution along Gaza coastal waters to acceptable levels.
Feifarek, D J; Shappell, N W; Schoenfuss, H L
2018-01-01
Laboratory exposures indicate that estrogens and their mimics can cause endocrine disruption in male fishes, yet while studies of resident fish populations in estrogen-polluted waters support these findings, biomarker expression associated with field versus laboratory exposure to estrogenic endocrine disruptors (EDs) often differ dramatically. Two of the environmental parameters often found to vary in dynamic aquatic ecosystems were chosen (dissolved oxygen [DO] and sodium chloride concentrations) to assess their potential impact on ED exposure. In separate experiments, male fathead minnows (Pimephales promelas) were exposed to estrone (E1) a natural ED, under either two concentrations of DO, or two concentrations of sodium chloride, in a laboratory flow-through system. Morphological and hematological parameters were assessed. While vitellogenin concentrations were elevated with exposure to estrone (29 to 390ng/L), the effect on other indices were variable. Estrone exposure altered SSC, blood glucose, hematocrit, and hepatic and gonado-somatic index in 1 of 4 experiments, while it decreased body condition factor in 3 of 4 experiments. At the concentrations tested, no main effect differences (P<0.05) were found associated with DO or sodium chloride treatments, except in one experiment low DO resulted in a decrease in secondary sex characteristic score (SSC). The combination of DO or sodium chloride and E1 altered blood glucose in one experiment each. These results indicate the variability of fathead minnow response to estrone, even within the confines of controlled laboratory conditions. Published by Elsevier B.V.
Decline in global oceanic oxygen content during the past five decades.
Schmidtko, Sunke; Stramma, Lothar; Visbeck, Martin
2017-02-15
Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (10 12 mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (10 15 mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.
Kalaiyezhini, D; Ramachandran, K B
2015-01-01
In this study, the kinetics of poly-3-hydroxybutyrate (PHB) biosynthesis from glycerol by Paracoccus denitrificans DSMZ 413 were explored in a batch bioreactor. Effects of inorganic and organic nitrogen source, carbon to nitrogen ratio, and other process variables such as pH, aeration, and initial glycerol concentration on PHB production were investigated in a 2.5-L bioreactor. Yeast extract was found to be the best nitrogen source compared to several organic nitrogen sources tested. At pH 6, specific growth rate, product formation rate, and accumulation of PHB within the cell were maximum. Specific growth rate increased with increase in oxygen transfer rate, but moderate oxygen transfer rate promoted PHB production. High glycerol concentration inhibited specific product formation rate but not growth. High initial carbon/nitrogen (C/N) ratio favored PHB accumulation and its productivity. At a C/N ratio of 21.4 (mol mol(-1)), 10.7 g L(-1) of PHB corresponding to 72% of cell dry weight was attained.
NASA Astrophysics Data System (ADS)
Marcantonio, F.; Loveley, M.; Wisler, M.; Hostak, R.; Hertzberg, J. E.; Schmidt, M. W.; Lyle, M. W.
2017-12-01
Storage of respired carbon in the deep ocean may play a significant role in lowering atmospheric CO2 concentrations by about 80 ppm during the last glacial maximum compared to pre-industrial times. The cause of this sequestration and the subsequent release of the deep respired carbon pool at the last termination remains elusive. Within the last glacial period, on millennial timescales, the relationship between the CO2 cycle and any waxing and waning of a deep respired pool also remains unclear. To further our understanding of the millennial variability in the storage of a deep-ocean respired carbon pool during the last glacial, we measure authigenic uranium and 230Th-derived non-lithogenic barium fluxes (xsBa flux) in two high-sedimentation-rate cores from the Panama Basin of the Eastern Equatorial Pacific (EEP) (8JC, 6° 14.0' N, 86° 02.6' W; 1993 m water depth; 17JC 00° 10.8' S, 85° 52.0' W; 2846 m water depth). Sediment authigenic U concentrations are controlled by the redox state of sediments which, in turn, is a function of the rain of organic material from the surface ocean and the oxygen content of bottom waters. At both 8JC and 17JC, the mismatch between xsBa fluxes, a proxy for the reconstruction of oceanic productivity, and authigenic uranium concentrations suggests that the primary control of the latter values is changes in bottom water oxygenation. Peak authigenic uranium concentrations occur during glacial periods MIS 2, 3, and 4, respectively, and are two to three times higher than those during interglacial periods, MIS 1 and 5. EEP bottom waters were likely suboxic during times of the last glacial period when atmospheric CO2 concentrations were at their lowest concentrations. In addition, the pattern of increased deep-water oxygenation during times of higher CO2 during the last glacial is similar to that reported in a study of authigenic U in sediments from the Antarctic Zone of the Southern Ocean (Jaccard et al., 2016). We suggest that a respired carbon pool existed within a large swath of the abyssal Southern and Pacific Oceans throughout the entire last glacial cycle, and that this respired carbon was periodically released through increased ventilation of deep ocean waters. Jaccard et al. (2016) Nature 530, 207-210.
Modeling Variable Phanerozoic Oxygen Effects on Physiology and Evolution.
Graham, Jeffrey B; Jew, Corey J; Wegner, Nicholas C
2016-01-01
Geochemical approximation of Earth's atmospheric O2 level over geologic time prompts hypotheses linking hyper- and hypoxic atmospheres to transformative events in the evolutionary history of the biosphere. Such correlations, however, remain problematic due to the relative imprecision of the timing and scope of oxygen change and the looseness of its overlay on the chronology of key biotic events such as radiations, evolutionary innovation, and extinctions. There are nevertheless general attributions of atmospheric oxygen concentration to key evolutionary changes among groups having a primary dependence upon oxygen diffusion for respiration. These include the occurrence of Devonian hypoxia and the accentuation of air-breathing dependence leading to the origin of vertebrate terrestriality, the occurrence of Carboniferous-Permian hyperoxia and the major radiation of early tetrapods and the origins of insect flight and gigantism, and the Mid-Late Permian oxygen decline accompanying the Permian extinction. However, because of variability between and error within different atmospheric models, there is little basis for postulating correlations outside the Late Paleozoic. Other problems arising in the correlation of paleo-oxygen with significant biological events include tendencies to ignore the role of blood pigment affinity modulation in maintaining homeostasis, the slow rates of O2 change that would have allowed for adaptation, and significant respiratory and circulatory modifications that can and do occur without changes in atmospheric oxygen. The purpose of this paper is thus to refocus thinking about basic questions central to the biological and physiological implications of O2 change over geological time.
Camilli, Richard; Duryea, Anthony N
2009-07-01
The TETHYS mass spectrometer is intended for long-term in situ observation of dissolved gases and volatile organic compounds in aquatic environments. Its design maintains excellent low mass range sensitivity and stability during long-term operations, enabling characterization of low-frequency variability in many trace dissolved gases. Results are presented from laboratory trials and a 300-h in situ trial in a shallow marine embayment in Massachusetts, U.S.A. This time series consists of over 15000 sample measurements and represents the longest continuous record made by an in situ mass spectrometer in an aquatic environment. These measurements possess sufficient sampling density and duration to apply frequency analysis techniques for study of temporal variability in dissolved gases. Results reveal correlations with specific environmental periodicities. Numerical methods are presented for converting mass spectrometer ion peak ratios to absolute-scale dissolved gas concentrations across wide temperature regimes irrespective of ambient pressure, during vertical water column profiles in a hypoxic deep marine basin off the coast of California, U.S.A. Dissolved oxygen concentration values obtained with the TETHYS instrument indicate close correlation with polarographic oxygen sensor data across the entire depth range. These methods and technology enable observation of aquatic environmental chemical distributions and dynamics at appropriate scales of resolution.
Experimental design data for the biosynthesis of citric acid using Central Composite Design method.
Kola, Anand Kishore; Mekala, Mallaiah; Goli, Venkat Reddy
2017-06-01
In the present investigation, we report that statistical design and optimization of significant variables for the microbial production of citric acid from sucrose in presence of filamentous fungi A. niger NCIM 705. Various combinations of experiments were designed with Central Composite Design (CCD) of Response Surface Methodology (RSM) for the production of citric acid as a function of six variables. The variables are; initial sucrose concentration, initial pH of medium, fermentation temperature, incubation time, stirrer rotational speed, and oxygen flow rate. From experimental data, a statistical model for this process has been developed. The optimum conditions reported in the present article are initial concentration of sucrose of 163.6 g/L, initial pH of medium 5.26, stirrer rotational speed of 247.78 rpm, incubation time of 8.18 days, fermentation temperature of 30.06 °C and flow rate of oxygen of 1.35 lpm. Under optimum conditions the predicted maximum citric acid is 86.42 g/L. The experimental validation carried out under the optimal values and reported citric acid to be 82.0 g/L. The model is able to represent the experimental data and the agreement between the model and experimental data is good.
Küpper, Hendrik; Ferimazova, Naila; Šetlík, Ivan; Berman-Frank, Ilana
2004-01-01
We investigated interactions between photosynthesis and nitrogen fixation in the non-heterocystous marine cyanobacterium Trichodesmium IMS101 at the single-cell level by two-dimensional (imaging) microscopic measurements of chlorophyll fluorescence kinetics. Nitrogen fixation was closely associated with the appearance of cells with high basic fluorescence yield (F0), termed bright cells. In cultures aerated with normal air, both nitrogen fixation and bright cells appeared in the middle of the light phase. In cultures aerated with 5% oxygen, both processes occurred at a low level throughout most of the day. Under 50% oxygen, nitrogen fixation commenced at the beginning of the light phase but declined soon afterwards. Rapid reversible switches between fluorescence levels were observed, which indicated that the elevated F0 of the bright cells originates from reversible uncoupling of the photosystem II (PSII) antenna from the PSII reaction center. Two physiologically distinct types of bright cells were observed. Type I had about double F0 compared to the normal F0 in the dark phase and a PSII activity, measured as variable fluorescence (Fv = Fm − F0), similar to normal non-diazotrophic cells. Correlation of type I cells with nitrogen fixation, oxygen concentration, and light suggests that this physiological state is connected to an up-regulation of the Mehler reaction, resulting in oxygen consumption despite functional PSII. Type II cells had more than three times the normal F0 and hardly any PSII activity measurable by variable fluorescence. They did not occur under low-oxygen concentrations, but appeared under high-oxygen levels outside the diazotrophic period, suggesting that this state represents a reaction to oxidative stress not necessarily connected to nitrogen fixation. In addition to the two high-fluorescence states, cells were observed to reversibly enter a low-fluorescence state. This occurred mainly after a cell went through its bright phase and may represent a fluorescence-quenching recovery phase. PMID:15299119
Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.
Jaccard, Samuel L; Galbraith, Eric D; Martínez-García, Alfredo; Anderson, Robert F
2016-02-11
No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial-interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting--at least in part--a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration.
Li, Tong; Piltz, Bastian; Podola, Björn; Dron, Anthony; de Beer, Dirk; Melkonian, Michael
2016-05-01
In the present study depth profiles of light, oxygen, pH and photosynthetic performance in an artificial biofilm of the green alga Halochlorella rubescens in a porous substrate photobioreactor (PSBR) were recorded with microsensors. Biofilms were exposed to different light intensities (50-1,000 μmol photons m(-2) s(-1) ) and CO2 levels (0.04-5% v/v in air). The distribution of photosynthetically active radiation showed almost identical trends for different surface irradiances, namely: a relatively fast drop to a depth of about 250 µm, (to 5% of the incident), followed by a slower decrease. Light penetrated into the biofilm deeper than the Lambert-Beer Law predicted, which may be attributed to forward scattering of light, thus improving the overall light availability. Oxygen concentration profiles showed maxima at a depth between 50 and 150 μm, depending on the incident light intensity. A very fast gas exchange was observed at the biofilm surface. The highest oxygen concentration of 3.2 mM was measured with 1,000 μmol photons m(-2) s(-1) and 5% supplementary CO2. Photosynthetic productivity increased with light intensity and/or CO2 concentration and was always highest at the biofilm surface; the stimulating effect of elevated CO2 concentration in the gas phase on photosynthesis was enhanced by higher light intensities. The dissolved inorganic carbon concentration profiles suggest that the availability of the dissolved free CO2 has the strongest impact on photosynthetic productivity. The results suggest that dark respiration could explain previously observed decrease in growth rate over cultivation time in this type of PSBR. Our results represent a basis for understanding the complex dynamics of environmental variables and metabolic processes in artificial phototrophic biofilms exposed to a gas phase and can be used to improve the design and operational parameters of PSBRs. © 2015 Wiley Periodicals, Inc.
Modeling oxygen depletion forced by acetate discharge in the coastal waters of the North Sea
NASA Astrophysics Data System (ADS)
Ilinskaya, Alisa; Yakushev, Evgeny; Nøst, Ole-Anders; Pakhomova, Svetlana
2017-04-01
Consequences of discharge of acetate produced during the production of X-ray contrast agents in the coastal waters of the Norwegian coast of the North Sea were analyzed with a set of mathematical models. The baseline seasonal variability of temperature, salinity, advection and turbulence were calculated with the Finite Volume Community Ocean Model (FVCOM) applied to the Southern coast of Norway. These data were used to force a vertical 2-Dimensional Benthic-Pelagic transport model (2DBP) coupled via Framework for Aquatic Biogeochemical Models (FABM) with a biogeochemical model OxyDep, considering phytoplankton, heterotrophs, nutrient, dissolved organic matter, particulate organic matter, and dissolved oxygen (DO). Acetate was considered as a chemical oxygen depletion substrate leading to the decrease of oxygen concentrations. We simulated seasonal variability at a 10 km long vertical transect with a spatial resolution of 50 m horizontally and approximately 2 m vertically. These calculations reproduced local minimum in the vertical DO distributions in 2 km distance from the discharge point, that corresponded to the observations. We conducted numerical experiments on the effects of doubling of the acetate discharge and on formation of acetate complexes.
Vertical Variability of Anoxia Along the Northern Omani Shelf.
NASA Astrophysics Data System (ADS)
Queste, B. Y.; Piontkovski, S.; Heywood, K. J.
2016-02-01
Three autonomous underwater gliders were deployed along a 80 km transect extending from Muscat out into the Gulf during both monsoons and the intermonsoon season as part of a project funded by ONR Global and the UK NERC. The gliders surveyed the top 1000m across the continental shelf, the steep continental slope, and the Sea of Oman while measuring temperature, salinity, oxygen, chlorophyll a fluorescence, optical backscatter, photosyntheticall active radiation and providing estimates of depth-averaged currents and up/downwelling. The data show the depth of the surface oxycline varying by 50m across the transect as a function of mixed layer depth. Below, we observed high variability, on the order of days, in the oxygen profile with the boundary of the suboxic zone (< 6 µmol.kg-1) varying by up to 250m. This upper boundary was determined by the volume of the Persian Gulf Water (PGW) outflow which travels along the shelf edge. Below 400m, oxygen concentrations reached levels below 1 µmol.kg-1. The physical drivers of PGW transport therefore double, or reduce by half, the available habitat for macrofauna. The across-shelf transect allowed estimation of along-slope transport and variability of the PGW, identified by its higher salinity, temperature, optical backscatter and oxygen content. The structure and volume of the outflow was highly variable. During peak outflow, the core extended beyond the glider transect. During periods of minimal flow, it was constrained to 10km beyond the shelf break. PGW was also present in mesoscale eddies beyond the shelf break.
What controls the variability of oxygen in the subpolar North Pacific?
NASA Astrophysics Data System (ADS)
Takano, Yohei
Dissolved oxygen is a widely observed chemical quantity in the oceans along with temperature and salinity. Changes in the dissolved oxygen have been observed over the world oceans. Observed oxygen in the Ocean Station Papa (OSP, 50°N, 145°W) in the Gulf of Alaska exhibits strong variability over interannual and decadal timescales, however, the mechanisms driving the observed variability are not yet fully understood. Furthermore, irregular sampling frequency and relatively short record length make it difficult to detect a low-frequency variability. Motivated by these observations, we investigate the mechanisms driving the low-frequency variability of oxygen in the subpolar North Pacific. The specific purposes of this study are (1) to evaluate the robustness of the observed low-frequency variability of dissolved oxygen and (2) to determine the mechanisms driving the observed variability using statistical data analysis and numerical simulations. To evaluate the robustness of the low-frequency variability, we conducted spectral analyses on the observed oxygen at OSP. To address the irregular sampling frequency we randomly sub-sampled the raw data to form 500 ensemble members with a regular time interval, and then performed spectral analyses. The resulting power spectrum of oxygen exhibits a robust low-frequency variability and a statistically significant spectral peak is identified at a timescale of 15--20 years. The wintertime oceanic barotropic streamfunction is significantly correlated with the observed oxygen anomaly at OSP with a north-south dipole structure over the North Pacific. We hypothesize that the observed low-frequency variability is primarily driven by the variability of large-scale ocean circulation in the North Pacific. To test this hypothesis, we simulate the three-dimensional distribution of oxygen anomaly between 1952 to 2001 using data-constrained circulation fields. The simulated oxygen anomaly shows an outstanding variability in the Gulf of Alaska, showing that this region is a hotspot of oxygen fluctuation. Anomalous advection acting on the climatological mean oxygen gradient is the source of oxygen variability in this simulation. Empirical Orthogonal Function (EOF) analyses of the simulated oxygen show that the two dominant modes of the oxygen anomaly explains more than 50% of oxygen variance over the North Pacific, that are closely related to the dominant modes of climate variability in the North Pacific (Pacific Decadal Oscillation and North Pacific Oscillation). Our results imply the important link between large-scale climate fluctuations, ocean circulation and biogeochemical tracers in the North Pacific.
NASA Astrophysics Data System (ADS)
Kõuts, Mariliis; Raudsepp, Urmas; Maljutenko, Ilja
2017-04-01
In coastal areas, especially estuaries, spatial distribution and seasonal cycling of chemical and biological variables is largely determined by local biogeochemical processes and water transport of different properties. In tidal estuaries, however, biogeochemical processes are affected by tides as frequent water exchange alters nutrient and oxygen concentrations. In wide and deep non-tidal estuary-type marginal seas spatial distribution and seasonal cycling are determined by the mixture of water transport and local biogeochemistry. The Baltic Sea is a stratified water basin where halocline divides the water column into two parts: upper layer, which is horizontally uniform in terms of distribution of chemical and biological parameters, and has clear seasonal cycle; and bottom part, where nutrient and oxygen dynamics is more complex. There water transport and sediment-water interface fluxes play a major role. Our prime focus is the Gulf of Finland in the Baltic Sea. It is a wide, non-tidal and stratified sub-basin known for its high nutrient concentrations and severe oxygen deficiency in summer. We modelled the Baltic Sea (including Gulf of Finland) using ERGOM, a biogeochemical model coupled with circulation model GETM. Seasonal cycling and water circulation were observed with a 40-year simulation from 1966 to 2006. Our results show that in shallow areas above halocline the seasonal cycle of phytoplankton, nutrients and oxygen concentrations is uniform in space. Water circulation does not create inhomogeneous distribution pattern of biogeochemical parameters and their seasonal cycle. The circulation in the Gulf of Finland is strongly modulated by the seasonality of estuarine transport. Below the halocline saline low-oxygen and nutrient-rich water is transported from the open Baltic Proper to the Gulf of Finland in spring and early summer. This results in the highest nutrient concentrations and the poorest oxygen conditions by the end of August. In the shallow area nutrients have high concentrations in March-April before the spring bloom of diatoms starts. Low oxygen and nutrient concentrations are observed at the end of August. There is a qualitative difference of nutrient dynamics between shallow and deep layers but quantification of the role of transport and local biogeochemical processes is still challenging.
Gas Contamination In Plasma-Arc-Welded Aluminum
NASA Technical Reports Server (NTRS)
Mcclure, John C.; Torres, Martin R.; Gurevitch, Alan C.; Newman, Robert A.
1992-01-01
Document describes experimental investigation on visible and tactile effects of gaseous contaminants in variable-polarity plasma arc (VPPA) welding of 2219 T-87 aluminum alloy. Contaminant gases (nitrogen, methane, oxygen, and hydrogen) introduced in argon arc and in helium shield gas in various controlled concentrations. Report represents results of experiments in form of photographs of fronts, backs, polished cross sections, and etched cross sections of welds made with various contaminants at various concentrations. Provides detailed discussion of conditions under which welds made.
Zielińska, Magdalena; Bernat, Katarzyna; Cydzik-Kwiatkowska, Agnieszka; Sobolewska, Joanna; Wojnowska-Baryła, Irena
2012-01-01
The impact of the organic carbon to nitrogen ratio (chemical oxygen demand (COD)/N) in wastewater and dissolved oxygen (DO) concentration on carbon and nitrogen removal efficiency, and total bacteria and ammonia-oxidizing bacteria (AOB) communities in activated sludge in constantly aerated sequencing batch reactors (SBRs) was determined. At DO of 0.5 and 1.5 mg O2/L during the aeration phase, the efficiency of ammonia oxidation exceeded 90%, with nitrates as the main product. Nitrification and denitrification achieved under the same operating conditions suggested the simultaneous course of these processes. The most effective nitrogen elimination (above 50%) was obtained at the COD/N ratio of 6.8 and DO of 0.5 mg O2/L. Total bacterial diversity was similar in all experimental series, however, for both COD/N ratios of 6.8 and 0.7, higher values were observed at DO of 0.5 mg O2/L. The diversity and abundance of AOB were higher in the reactors with the COD/N ratio of 0.7 in comparison with the reactors with the COD/N of 6.8. For both COD/N ratios applied, the AOB population was not affected by oxygen concentration. Amplicons with sequences indicating membership of the genus Nitrosospira were the determinants of variable technological conditions.
NASA Astrophysics Data System (ADS)
Cheng, Ran; Shang, Yu; Wang, Siqi; Evans, Joyce M.; Rayapati, Abner; Randall, David C.; Yu, Guoqiang
2014-01-01
Significant drops in arterial blood pressure and cerebral hemodynamics have been previously observed during vasovagal syncope (VVS). Continuous and simultaneous monitoring of these physiological variables during VVS is rare, but critical for determining which variable is the most sensitive parameter to predict VVS. The present study used a novel custom-designed diffuse correlation spectroscopy flow-oximeter and a finger plethysmograph to simultaneously monitor relative changes of cerebral blood flow (rCBF), cerebral oxygenation (i.e., oxygenated/deoxygenated/total hemoglobin concentration: r[HbO2]/r[Hb]/rTHC), and mean arterial pressure (rMAP) during 70 deg head-up tilt (HUT) in 14 healthy adults. Six subjects developed presyncope during HUT. Two-stage physiological responses during HUT were observed in the presyncopal group: slow and small changes in measured variables (i.e., Stage I), followed by rapid and dramatic decreases in rMAP, rCBF, r[HbO2], and rTHC (i.e., Stage II). Compared to other physiological variables, rCBF reached its breakpoint between the two stages earliest and had the largest decrease (76±8%) during presyncope. Our results suggest that rCBF has the best sensitivity for the assessment of VVS. Most importantly, a threshold of ˜50% rCBF decline completely separated the subjects from those without presyncope, suggesting its potential for predicting VVS.
NASA Astrophysics Data System (ADS)
Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.
2014-12-01
Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several dairies in the San Joaquin Valley. Median percent contribution of nitrate to wells from fertilizer, manure, and septic waste generally match the expected source based on land use patterns, with some exceptions.
Thermal transport in tantalum oxide films for memristive applications
Landon, Colin Donald; Wilke, Rudeger H. T.; Brumbach, Michael T.; ...
2015-07-15
The thermal conductivity of amorphous TaO x memristive films having variable oxygen content is measured using time domain thermoreflectance. Furthermore, the thermal transport is described by a two-partmodel where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. Additionally, the vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaO x switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically bymore » field-induced charge state migration.« less
Markfort, Corey D; Hondzo, Miki
2009-01-01
Dissolved oxygen (DO) is probably the most important parameter related to water quality and biological habitat in aquatic environments. In situ DO sensors are some of the most valuable tools used by scientists and engineers for the evaluation of water quality in aquatic ecosystems. Presently, we cannot accurately measure DO concentrations under variable temperature and pressure conditions. Pressure and temperature influence polarographic and optical type DO sensors compared to the standard Winkler titration method. This study combines laboratory and field experiments to compare and quantify the accuracy and performance of commercially available macro and micro Clark-type oxygen sensors as well as optical sensing technology to the Winkler method under changing pressure and temperature conditions. Field measurements at various lake depths revealed sensor response time up to 11 min due to changes in water temperature, pressure, and DO concentration. Investigators should account for transient response in DO sensors before measurements are collected at a given location. We have developed an effective model to predict the transient response time for Clark-type oxygen sensors. The proposed procedure increases the accuracy of DO data collected in situ for profiling applications.
Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan
2013-12-01
An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.
Influence of oxygen availability on the activities of ammonia-oxidizing archaea.
Qin, Wei; Meinhardt, Kelley A; Moffett, James W; Devol, Allan H; Virginia Armbrust, E; Ingalls, Anitra E; Stahl, David A
2017-06-01
Recent studies point to the importance of oxygen (O 2 ) in controlling the distribution and activity of marine ammonia-oxidizing archaea (AOA), one of the most abundant prokaryotes in the ocean. The AOA are associated with regions of low O 2 tension in oceanic oxygen minimum zones (OMZs), and O 2 availability is suggested to influence their production of the ozone-depleting greenhouse gas nitrous oxide (N 2 O). We show that marine AOA available in pure culture sustain high ammonia oxidation activity at low μM O 2 concentrations, characteristic of suboxic regions of OMZs (<10 µM O 2 ), and that atmospheric concentrations of O 2 may inhibit the growth of some environmental populations. We quantify the increasing N 2 O production by marine AOA with decreasing O 2 tensions, consistent with the plausibility of an AOA contribution to the accumulation of N 2 O at the oxic-anoxic redox boundaries of OMZs. Variable sensitivity to peroxide also suggests that endogenous or exogenous reactive oxygen species are of importance in determining the environmental distribution of some populations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Caulle, C.; Mojtahid, M.; Gooday, A. J.; Jorissen, F. J.; Kitazato, H.
2015-02-01
Rose Bengal stained foraminiferal assemblages were analysed along a five-station bathymetric transect across the core and the lower part of the oxygen minimum zone (OMZ) on the Indian margin of the Arabian Sea. Sediment cores were collected using the manned submersible Shinkai 6500 during RV Yokosuka cruise YK08-11 in the post-monsoon season (October 2008) at water depths ranging from 535 to 2000 m, along a gradient from almost anoxic to well-oxygenated (0.3 to 108 μM) bottom waters. Stained foraminiferal densities were very high in the OMZ core (535 m) and decreased with depth. The faunas were dominated (40-80%) by non-calcareous taxa at all stations. These were mainly species of Reophax and Lagenammina but also included delicate monothalamous taxa (organic-walled "allogromiids", agglutinated saccamminids, psammosphaerids and tubular forms). These new data from the Indian margin are compared to previous studies from the Murray Ridge, the Pakistan margin and the Oman margin. The fact that similar species were found at sites with comparable bottom-water oxygen concentrations but with very different surface water productivity suggests that, within the strongly developed Arabian Sea OMZ, bottom-water oxygen concentration, and not the organic flux to the sea floor, is the main factor controlling the species composition of the foraminiferal communities. Several foraminiferal species (e.g. Praeglobobulimina sp. 1, Ammodiscus sp. 1, Bolivina aff. dilatata) were confined to the core of the OMZ and are presently known only from the Arabian Sea. Because of their association with extremely low-oxygen concentration, these species may prove to be good indicators of past OMZ variability in the Arabian Sea.
NASA Astrophysics Data System (ADS)
Koester, M.; Paffenhofer, G. A.
2016-02-01
The goal of our study was to study the intraspecies physiological diversity of different life stages of the pelagic tunicate Dolioletta gegenbauri (Tunicata, Thaliacea) that occur intermittently in high abundances on the shelf off the southeastern US. The complex life cycle of this species starts with solitary oozooids that develop to nurses with colonies of feeding trophozooids and phorozooids. As the latter mature they produce clusters of gonozooids. As oxygen consumption is a good physiological indicator for metabolic expenditures, we quantified the oxygen consumption of different zooids of D. gegenbauri (nurses, phorozooids and gonozooids) at environmental conditions. Oxygen consumption rates were determined from changes in oxygen concentration that were monitored non-invasively and continuously by an innovative sensor system in time-series-experiments. Specific oxygen consumption rates varied considerably and were related to moving activity, feeding behaviour, biomass, and growth of different life stages of doliolids. The results of our study will advance our understanding of variability in oxygen consumption of different stages of doliolid development due to their specific ecological role.
NASA Technical Reports Server (NTRS)
Buehler, K.
1986-01-01
High-purity oxygen produced from breathing air or from propellantgrade oxygen in oxygen-concentrating cell. Operating economics of concentrator attractive: Energy consumption about 4 Wh per liter of oxygen, slightly lower than conventional electrochemical oxygen extractors.
1973-09-01
stations in the last three sampling periods of this project to supplement the regular I infaunal sampling schedule. Salinity , dissolved oxygen, water...summer. Salinity was quite variable but tended to be * highest in late summer (range 0.1 — 10 O/~~~~~~ )~~~ Dissolved oxygen, being an inverse...function of both salinity and temperature, dropped in summer. Concentrations in the 2—3 mg/l range were not unusual. The physical data collected in
Oxygen isotope constraints on the sulfur cycle over the past 10 million years.
Turchyn, Alexandra V; Schrag, Daniel P
2004-03-26
Oxygen isotopes in marine sulfate (delta18O(SO4)) measured in marine barite show variability over the past 10 million years, including a 5 per mil decrease during the Plio-Pleistocene, with near-constant values during the Miocene that are slightly enriched over the modern ocean. A numerical model suggests that sea level fluctuations during Plio-Pleistocene glacial cycles affected the sulfur cycle by reducing the area of continental shelves and increasing the oxidative weathering of pyrite. The data also require that sulfate concentrations were 10 to 20% lower in the late Miocene than today.
NASA Astrophysics Data System (ADS)
Bartholomeus, R.; Witte, J.; van Bodegom, P.; Dam, J. V.; Aerts, R.
2010-12-01
With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. As both the supply and demand of oxygen and water depend strongly on the prevailing meteorological conditions, both oxygen and water stress were calculated dynamically in time to capture climate change effects. We demonstrate that increased rainfall variability in interaction with predicted changes in temperature and CO2, affects soil moisture conditions and plant oxygen and water demands such, that both oxygen stress and water stress will intensify due to climate change. Moreover, these stresses will increasingly coincide, causing variable stress conditions. These variable stress conditions were found to decrease future habitat suitability, especially for plant species that are presently endangered. The future existence of such species is thus at risk by climate change, which has direct implications for policies to maintain endangered species, as applied by international nature management organisations (e.g. IUCN). Our integrated mechanistic analysis of two stresses combined, which has never been done so far, reveals large impacts of climate change on species extinctions and thereby on biodiversity.
Increased sediment oxygen flux in lakes and reservoirs: The impact of hypolimnetic oxygenation
NASA Astrophysics Data System (ADS)
Bierlein, Kevin A.; Rezvani, Maryam; Socolofsky, Scott A.; Bryant, Lee D.; Wüest, Alfred; Little, John C.
2017-06-01
Hypolimnetic oxygenation is an increasingly common lake management strategy for mitigating hypoxia/anoxia and associated deleterious effects on water quality. A common effect of oxygenation is increased oxygen consumption in the hypolimnion and predicting the magnitude of this increase is the crux of effective oxygenation system design. Simultaneous measurements of sediment oxygen flux (JO2) and turbulence in the bottom boundary layer of two oxygenated lakes were used to investigate the impact of oxygenation on JO2. Oxygenation increased JO2 in both lakes by increasing the bulk oxygen concentration, which in turn steepens the diffusive gradient across the diffusive boundary layer. At high flow rates, the diffusive boundary layer thickness decreased as well. A transect along one of the lakes showed JO2 to be spatially quite variable, with near-field and far-field JO2 differing by a factor of 4. Using these in situ measurements, physical models of interfacial flux were compared to microprofile-derived JO2 to determine which models adequately predict JO2 in oxygenated lakes. Models based on friction velocity, turbulence dissipation rate, and the integral scale of turbulence agreed with microprofile-derived JO2 in both lakes. These models could potentially be used to predict oxygenation-induced oxygen flux and improve oxygenation system design methods for a broad range of reservoir systems.
Oden, Timothy D.; Asquith, William H.; Milburn, Matthew S.
2009-01-01
In December 2005, the U.S. Geological Survey in cooperation with the City of Houston, Texas, began collecting discrete water-quality samples for nutrients, total organic carbon, bacteria (total coliform and Escherichia coli), atrazine, and suspended sediment at two U.S. Geological Survey streamflow-gaging stations upstream from Lake Houston near Houston (08068500 Spring Creek near Spring, Texas, and 08070200 East Fork San Jacinto River near New Caney, Texas). The data from the discrete water-quality samples collected during 2005-07, in conjunction with monitored real-time data already being collected - physical properties (specific conductance, pH, water temperature, turbidity, and dissolved oxygen), streamflow, and rainfall - were used to develop regression models for predicting water-quality constituent concentrations for inflows to Lake Houston. Rainfall data were obtained from a rain gage monitored by Harris County Homeland Security and Emergency Management and colocated with the Spring Creek station. The leaps and bounds algorithm was used to find the best subsets of possible regression models (minimum residual sum of squares for a given number of variables). The potential explanatory or predictive variables included discharge (streamflow), specific conductance, pH, water temperature, turbidity, dissolved oxygen, rainfall, and time (to account for seasonal variations inherent in some water-quality data). The response variables at each site were nitrite plus nitrate nitrogen, total phosphorus, organic carbon, Escherichia coli, atrazine, and suspended sediment. The explanatory variables provide easily measured quantities as a means to estimate concentrations of the various constituents under investigation, with accompanying estimates of measurement uncertainty. Each regression equation can be used to estimate concentrations of a given constituent in real time. In conjunction with estimated concentrations, constituent loads were estimated by multiplying the estimated concentration by the corresponding streamflow and applying the appropriate conversion factor. By computing loads from estimated constituent concentrations, a continuous record of estimated loads can be available for comparison to total maximum daily loads. The regression equations presented in this report are site specific to the Spring Creek and East Fork San Jacinto River streamflow-gaging stations; however, the methods that were developed and documented could be applied to other tributaries to Lake Houston for estimating real-time water-quality data for streams entering Lake Houston.
Heddam, Salim; Kisi, Ozgur
2017-07-01
In this paper, several extreme learning machine (ELM) models, including standard extreme learning machine with sigmoid activation function (S-ELM), extreme learning machine with radial basis activation function (R-ELM), online sequential extreme learning machine (OS-ELM), and optimally pruned extreme learning machine (OP-ELM), are newly applied for predicting dissolved oxygen concentration with and without water quality variables as predictors. Firstly, using data from eight United States Geological Survey (USGS) stations located in different rivers basins, USA, the S-ELM, R-ELM, OS-ELM, and OP-ELM were compared against the measured dissolved oxygen (DO) using four water quality variables, water temperature, specific conductance, turbidity, and pH, as predictors. For each station, we used data measured at an hourly time step for a period of 4 years. The dataset was divided into a training set (70%) and a validation set (30%). We selected several combinations of the water quality variables as inputs for each ELM model and six different scenarios were compared. Secondly, an attempt was made to predict DO concentration without water quality variables. To achieve this goal, we used the year numbers, 2008, 2009, etc., month numbers from (1) to (12), day numbers from (1) to (31) and hour numbers from (00:00) to (24:00) as predictors. Thirdly, the best ELM models were trained using validation dataset and tested with the training dataset. The performances of the four ELM models were evaluated using four statistical indices: the coefficient of correlation (R), the Nash-Sutcliffe efficiency (NSE), the root mean squared error (RMSE), and the mean absolute error (MAE). Results obtained from the eight stations indicated that: (i) the best results were obtained by the S-ELM, R-ELM, OS-ELM, and OP-ELM models having four water quality variables as predictors; (ii) out of eight stations, the OP-ELM performed better than the other three ELM models at seven stations while the R-ELM performed the best at one station. The OS-ELM models performed the worst and provided the lowest accuracy; (iii) for predicting DO without water quality variables, the R-ELM performed the best at seven stations followed by the S-ELM in the second place and the OP-ELM performed the worst with low accuracy; (iv) for the final application where training ELM models with validation dataset and testing with training dataset, the OP-ELM provided the best accuracy using water quality variables and the R-ELM performed the best at all eight stations without water quality variables. Fourthly, and finally, we compared the results obtained from different ELM models with those obtained using multiple linear regression (MLR) and multilayer perceptron neural network (MLPNN). Results obtained using MLPNN and MLR models reveal that: (i) using water quality variables as predictors, the MLR performed the worst and provided the lowest accuracy in all stations; (ii) MLPNN was ranked in the second place at two stations, in the third place at four stations, and finally, in the fourth place at two stations, (iii) for predicting DO without water quality variables, MLPNN is ranked in the second place at five stations, and ranked in the third, fourth, and fifth places in the remaining three stations, while MLR was ranked in the last place with very low accuracy at all stations. Overall, the results suggest that the ELM is more effective than the MLPNN and MLR for modelling DO concentration in river ecosystems.
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Wynveen, R. A.; Hallick, T. M.
1976-01-01
Regenerative processes for the revitalization of spacecraft atmospheres require an Oxygen Reclamation System (ORS) for the collection of carbon dioxide and water vapor and the recovery of oxygen from these metabolic products. Three life support subsystems uniquely qualified to form such an ORS are an Electrochemical CO2 Depolarized Concentrator (EDC), a CO2 Reduction Subsystem (BRS) and a Water Electrolysis Subsystem (WES). A program to develop and test the interface hardware and control concepts necessary for integrated operation of a four man capacity EDC with a four man capacity BRS was successfully completed. The control concept implemented proved successful in operating the EDC with the BRS for both constant CO2 loading as well as variable CO2 loading, based on a repetitive mission profile of the Space Station Prototype (SSP).
Durham, Bart W; Porter, Lucy; Webb, Allie; Thomas, Joshua
2016-12-01
This study investigated patterns of Escherichia coli in urban lakes in Lubbock, Texas. Specific objectives were to (1) document seasonal patterns in abundance of E. coli over a 3-year period, (2) identify environmental factors, including effects of migratory geese and artificial aeration devices that may influence E. coli abundance, and (3) determine if E. coli abundance over time was similar for individual lakes. Water samples were collected monthly for 36 months from six lakes, three of which contained artificial aeration devices (fountains). Regression models were constructed to determine which environmental variables most influence E. coli abundance in summer and winter seasons. Escherichia coli is present in the lakes of Lubbock, Texas year-round and typically exceeds established bacterial thresholds for recreational waters. Models most frequently contained pH and dissolved oxygen as predictor variables and explained from 17.4% to 92.4% of total variation in E. coli. Lakes with fountains had a higher oxygen concentration during summer and contained consistently less E. coli. We conclude that solar irradiation in synergy with pH and dissolved oxygen is the primary control mechanism for E. coli in study lakes, and that fountains help control abundance of fecal bacteria within these systems.
A compendium of geochemical information from the Saanich Inlet water column
NASA Astrophysics Data System (ADS)
Torres-Beltrán, Mónica; Hawley, Alyse K.; Capelle, David; Zaikova, Elena; Walsh, David A.; Mueller, Andreas; Scofield, Melanie; Payne, Chris; Pakhomova, Larysa; Kheirandish, Sam; Finke, Jan; Bhatia, Maya; Shevchuk, Olena; Gies, Esther A.; Fairley, Diane; Michiels, Céline; Suttle, Curtis A.; Whitney, Frank; Crowe, Sean A.; Tortell, Philippe D.; Hallam, Steven J.
2017-10-01
Extensive and expanding oxygen minimum zones (OMZs) exist at variable depths in coastal and open ocean waters. As oxygen levels decline, nutrients and energy are increasingly diverted away from higher trophic levels into microbial community metabolism, resulting in fixed nitrogen loss and production of climate active trace gases including nitrous oxide and methane. While ocean deoxygenation has been reported on a global scale, our understanding of OMZ biology and geochemistry is limited by a lack of time-resolved data sets. Here, we present a historical dataset of oxygen concentrations spanning fifty years and nine years of monthly geochemical time series observations in Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia, Canada that undergoes recurring changes in water column oxygenation status. This compendium provides a unique geochemical framework for evaluating long-term trends in biogeochemical cycling in OMZ waters.
Dries, Jan
2016-01-01
On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the 'nitrate knee' in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.
Mahler, Barbara J.; Bourgeais, Renan
2013-01-01
Karst aquifers and springs provide the dissolved oxygen critical for survival of endemic stygophiles worldwide, but little is known about fluctuations of dissolved oxygen concentrations (DO) and factors that control those concentrations. We investigated temporal variation in DO at Barton Springs, Austin, Texas, USA. During 2006–2012, DO fluctuated by as much as a factor of 2, and at some periods decreased to concentrations that adversely affect the Barton Springs salamander (Eurycea sorosum) (≤4.4 mg/L), a federally listed endangered species endemic to Barton Springs. DO was lowest (≤4.4 mg/L) when discharge was low (≤1 m3/s) and spring water temperature was >21 °C, although not at a maximum; the minimum DO recorded was 4.0 mg/L. Relatively low DO (3/s) and maximum T (22.2 °C). A four-segment linear regression model with daily data for discharge and spring water temperature as explanatory variables provided an excellent fit for mean daily DO (Nash–Sutcliffe coefficient for the validation period of 0.90). DO also fluctuated at short-term timescales in response to storms, and DO measured at 15-min intervals could be simulated with a combination of discharge, spring temperature, and specific conductance as explanatory variables. On the basis of the daily-data regression model, we hypothesize that more frequent low DO corresponding to salamander mortality could result from (i) lower discharge from Barton Springs resulting from increased groundwater withdrawals or decreased recharge as a result of climate change, and (or) (ii) higher groundwater temperature as a result of climate change.
Field observation of diurnal dissolved oxygen fluctuations in shallow groundwater.
Schilling, Keith E; Jacobson, Peter
2015-01-01
Dissolved oxygen (DO) concentrations influence many biogeochemical processes in groundwater systems but studies of temporal variability in DO are lacking. In this study, we used an optical DO probe to measure rapid changes in concentration due to plant-groundwater interaction at an alluvial aquifer field site in Iowa. Diurnal DO concentrations were observed during mid- to late-summer when soil conditions were dry, fluctuating approximately 0.2 to 0.3 mg/L on a daily basis. DO fluctuations in groundwater were out-of-phase with diurnal water table fluctuations, increasing during the day and decreasing at night. DO consumption at night is likely due to increased soil autotrophic and heterotrophic respiration linked with patterns of carbon supply derived from daytime photosynthetic activity, and consistent with available literature on diurnal soil respiration patterns. Although more work is needed to quantify specific processes, our results indicate the potential usefulness of the new optical DO technology to reveal insights regarding many ecohydrological processes. © 2014, National Ground Water Association.
Maness, Niels; McGlynn, William
2017-01-01
This research evaluated blackberries grown in Oklahoma and wines produced using a modified traditional Korean technique employing relatively oxygen-permeable earthenware fermentation vessels. The fermentation variables were temperature (21.6°C versus 26.6°C) and yeast inoculation versus wild fermentation. Wild fermented wines had higher total phenolic concentration than yeast fermented wines. Overall, wines had a relatively high concentration of anthocyanin (85–320 mg L−1 malvidin-3-monoglucoside) and antioxidant capacity (9776–37845 µmol Trolox equivalent g−1). “Natchez” berries had a higher anthocyanin concentration than “Triple Crown” berries. Higher fermentation temperature at the start of the winemaking process followed by the use of lower fermentation/storage temperature for aging wine samples maximized phenolic compound extraction/retention. The Korean winemaking technique used in this study produced blackberry wines that were excellent sources of polyphenolic compounds as well as being high in antioxidant capacity as measured by the Oxygen Radical Absorbance Capacity (ORAC) test. PMID:28713820
Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation
NASA Technical Reports Server (NTRS)
Willey, Ronald J.
1993-01-01
Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.
Salinity and hypoxia in the Baltic Sea since A.D. 1500
NASA Astrophysics Data System (ADS)
Hansson, Daniel; Gustafsson, Erik
2011-03-01
Over the past century, large salinity variability and deteriorating oxygen conditions have been observed in the Baltic Sea. These long-term changes were investigated in the central Baltic Sea using an ocean climate model with meteorological forcing based on seasonal temperature and pressure reconstructions covering the period 1500-1995. The results indicate that the salinity has slowly increased by 0.5 salinity units since 1500, peaking in the middle eighteenth century. Oxygen concentration is negatively correlated with salinity in the major part of the water column, indicating improved ventilation during a fresher state of the Baltic Sea. It is suggested that anoxic conditions have occurred in the deep water several times per century since 1500. However, since the middle twentieth century, increased oxygen consumption that is most likely the effect of anthropogenic nutrient release has resulted in a persistent oxygen deficiency in the water below 125 m. Within the limitations of our model formulation we suggest that the contemporary severe oxygen conditions are unprecedented since 1500.
NASA Astrophysics Data System (ADS)
Capet, A.; Beckers, J.-M.; Grégoire, M.
2012-12-01
The Black Sea north-western shelf (NWS) is a~shallow eutrophic area in which seasonal stratification of the water column isolates bottom waters from the atmosphere and prevents ventilation to compensate for the large consumption of oxygen, due to respiration in the bottom waters and in the sediments. A 3-D coupled physical biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS at different temporal scales from seasonal to interannual (1981-2009) and to differentiate the driving factors (climatic versus eutrophication) of hypoxic conditions in bottom waters. Model skills are evaluated by comparison with 14 500 in-situ oxygen measurements available in the NOAA World Ocean Database and the Black Sea Commission data. The choice of skill metrics and data subselections orientate the validation procedure towards specific aspects of the oxygen dynamics, and prove the model's ability to resolve the seasonal cycle and interannual variability of oxygen concentration as well as the spatial location of the oxygen depleted waters and the specific threshold of hypoxia. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS, receiving large inputs of nutrients from the Danube, Dniestr and Dniepr rivers, and extends, during the years of severe hypoxia, towards the Romanian Bay of Constanta. In order to explain the interannual variability of bottom hypoxia and to disentangle its drivers, a statistical model (multiple linear regression) is proposed using the long time series of model results as input variables. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate related variables. The use of four predictors allows to reproduce 78% of hypoxia interannual variability: the annual nitrate discharge (N), the sea surface temperature in the month preceding stratification (T), the amount of semi-labile organic matter in the sediments (C) and the duration of the stratification (D). Eutrophication (N, C) and climate (T, D) predictors explain a similar amount of variability (~35%) when considered separately. A typical timescale of 9.3 yr is found to describe the inertia of sediments in the recovering process after eutrophication. From this analysis, we find that under standard conditions (i.e. average atmospheric conditions, sediments in equilibrium with river discharges), the intensity of hypoxia can be linked to the level of nitrate discharge through a non-linear equation (power law). Bottom hypoxia does not affect the whole Black Sea NWS but rather exhibits an important spatial variability. This heterogeneous distribution, in addition to the seasonal fluctuations, complicates the monitoring of bottom hypoxia leading to contradictory conclusions when the interpretation is done from different sets of data. We find that it was the case after 1995 when the recovery process was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses the urging need of a dedicated monitoring effort in the NWS of the Black Sea focused on the areas and the period of the year concerned by recurrent hypoxic events.
NASA Astrophysics Data System (ADS)
Capet, Arthur; Beckers, Jean-Marie; Grégoire, Marilaure
2013-04-01
The Black Sea North-western shelf (NWS) is a shallow eutrophic area in which seasonal stratification of the water column isolates bottom waters from the atmosphere and prevents ventilation to compensate for the large consumption of oxygen, due to respiration in the bottom waters and in the sediments. A 3D coupled physical biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS at different temporal scales from seasonal to interannual (1981-2009) and to differentiate the driving factors (climatic versus eutrophication) of hypoxic conditions in bottom waters. Model skills are evaluated by comparison with 14500 in-situ oxygen measurements available in the NOAA World Ocean Database and the Black Sea Commission data. The choice of skill metrics and data subselections orientate the validation procedure towards specific aspects of the oxygen dynamics, and prove the model's ability to resolve the seasonal cycle and interannual variability of oxygen concentration as well as the spatial location of the oxygen depleted waters and the specific threshold of hypoxia. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS, receiving large inputs of nutrients from the Danube, Dniestr and Dniepr rivers, and extends, during the years of severe hypoxia, towards the Romanian Bay of Constanta. In order to explain the interannual variability of bottom hypoxia and to disentangle its drivers, a statistical model (multiple linear regression) is proposed using the long time series of model results as input variables. This statistical model gives a general relationships that links the intensity of hypoxia to eutrophication and climate related variables. The use of four predictors allows to reproduce 78% of hypoxia interannual variability: the annual nitrate discharge (N), the sea surface temperature in the month preceding stratification (T ), the amount of semi-labile organic matter in the sediments (C) and the duration of the stratification (D). Eutrophication (N,C) and climate (T ,D) predictors explain a similar amount of variability (~ 35%) when considered separately. A typical timescale of 9.3 years is found to describe the inertia of sediments in the recovering process after eutrophication. From this analysis, we find that under standard conditions (i.e. average atmospheric conditions, sediments in equilibrium with river discharges), the intensity of hypoxia can be linked to the level of nitrate discharge through a non-linear equation (power law). Bottom hypoxia does not affect the whole Black Sea NWS but rather exhibits an important spatial variability. This heterogeneous distribution, in addition to the seasonal fluctuations, complicates the monitoring of bottom hypoxia leading to contradictory conclusions when the interpretation is done from different sets of data. We find that it was the case after 1995 when the recovery process was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses out the urging need of a dedicated monitoring effort in the NWS of the Black Sea focused on the areas and the period of the year concerned by recurrent hypoxic events.
NASA Astrophysics Data System (ADS)
Keating-Bitonti, C.; Payne, J.
2016-02-01
Patterns in the sizes and shapes of marine organisms often occur across latitude and water depth gradients as a function of metabolic constraints dictated by the physical environment. However, the environmental factors that maintain these gradients in morphology remain incompletely understood because several oceanographic variables of biological importance are intimately correlated, such as temperature, dissolved oxygen concentration, particulate organic carbon (POC) flux, and carbonate saturation. Benthic foraminifera, a diverse group of single-celled protists that occur in nearly all marine environments, provide an ideal opportunity to test statistically among the various hypothesized environmental controls on cell morphology. Here, we use over 7,000 occurrences of 541 species of recent benthic foraminifera that span more than 60 degrees of latitude and 1,600 meters of water depth around the North American continental margin to assess the relative contributions of temperature, oxygen availability, carbonate saturation, and POC flux on their size and volume-to-surface area ratio in the modern ocean. Seawater temperature and dissolved oxygen concentrations best predict both measures of benthic foraminiferal cell morphology from the North American continental margin. These same variables also explain morphological variations from the Pacific continental margin in isolation, but dissolved oxygen is absent from the best model for the Atlantic. Because our results concur with predictions from first principles of cell physiology, we interpret these findings to reflect the physiological selective pressures on cell morphology as determined by the physical environment. Moreover, these findings suggest that warming waters and the expansion of hypoxic zones associated with anthropogenic-induced climate change are more likely to impact benthic foraminiferal communities than changes in primary productivity or ocean acidification.
Upper ocean O2 trends: 1958-2015
NASA Astrophysics Data System (ADS)
Ito, Takamitsu; Minobe, Shoshiro; Long, Matthew C.; Deutsch, Curtis
2017-05-01
Historic observations of dissolved oxygen (O2) in the ocean are analyzed to quantify multidecadal trends and variability from 1958 to 2015. Additional quality control is applied, and the resultant oxygen anomaly field is used to quantify upper ocean O2 trends at global and hemispheric scales. A widespread negative O2 trend is beginning to emerge from the envelope of interannual variability. Ocean reanalysis data are used to evaluate relationships with changes in ocean heat content (OHC) and oxygen solubility (O2,sat). Global O2 decline is evident after the 1980s, accompanied by an increase in global OHC. The global upper ocean O2 inventory (0-1000 m) changed at the rate of -243 ± 124 T mol O2 per decade. Further, the O2 inventory is negatively correlated with the OHC (r = -0.86; 0-1000 m) and the regression coefficient of O2 to OHC is approximately -8.2 ± 0.66 nmol O2 J-1, on the same order of magnitude as the simulated O2-heat relationship typically found in ocean climate models. Variability and trends in the observed upper ocean O2 concentration are dominated by the apparent oxygen utilization component with relatively small contributions from O2,sat. This indicates that changing ocean circulation, mixing, and/or biochemical processes, rather than the direct thermally induced solubility effects, are the primary drivers for the observed O2 changes. The spatial patterns of the multidecadal trend include regions of enhanced ocean deoxygenation including the subpolar North Pacific, eastern boundary upwelling systems, and tropical oxygen minimum zones. Further studies are warranted to understand and attribute the global O2 trends and their regional expressions.
Oxygen concentration inside a functioning photosynthetic cell.
Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei
2014-05-06
The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Oxygen Concentration Inside a Functioning Photosynthetic Cell
Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei
2014-01-01
The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth’s atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. PMID:24806920
Manganese oxide particles as cytoprotective, oxygen generating agents.
Tootoonchi, Mohammad Hossein; Hashempour, Mazdak; Blackwelder, Patricia L; Fraker, Christopher A
2017-09-01
Cell culture and cellular transplant therapies are adversely affected by oxidative species and radicals. Herein, we present the production of bioactive manganese oxide nanoparticles for the purpose of radical scavenging and cytoprotection. Manganese comprises the core active structure of somatic enzymes that perform the same function, in vivo. Formulated nanoparticles were characterized structurally and surveyed for maximal activity (superoxide scavenging, hydrogen peroxide scavenging with resultant oxygen generation) and minimal cytotoxicity (48-h direct exposure to titrated manganese oxide concentrations). Cytoprotective capacity was tested using cell exposure to hydrogen peroxide in the presence or absence of the nanoparticles. Several ideal compounds were manufactured and utilized that showed complete disproportionation of superoxide produced by the xanthine/xanthine oxidase reaction. Further, the nanoparticles showed catalase-like activity by completely converting hydrogen peroxide into the corresponding concentration of oxygen. Finally, the particles protected cells (murine β-cell insulinoma) against insult from hydrogen peroxide exposure. Based on these observed properties, these particles could be utilized to combat oxidative stress and inflammatory response in a variety of cell therapy applications. Maintaining viability once cells have been removed from their physiological niche, e.g. culture and transplant, demands proper control of critical variables such as oxygenation and removal of harmful substances e.g. reactive oxygen species. Limited catalysts can transform reactive oxygen species into molecular oxygen and, thereby, have the potential to maintain cell viability and function. Among these are manganese oxide particles which are the subject of this study. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Pakkanen, Soile Ae; Raekallio, Marja R; Mykkänen, Anna K; Salla, Kati M; de Vries, Annemarie; Vuorilehto, Lauri; Scheinin, Mika; Vainio, Outi M
2015-09-01
To investigate MK-467 as part of premedication in horses anaesthetized with isoflurane. Experimental, crossover study with a 14 day wash-out period. Seven healthy horses. The horses received either detomidine (20 μg kg(-1) IV) and butorphanol (20 μg kg(-1) IV) alone (DET) or with MK-467 (200 μg kg(-1) IV; DET + MK) as premedication. Anaesthesia was induced with ketamine (2.2 mg kg(-1) ) and midazolam (0.06 mg kg(-1) ) IV and maintained with isoflurane. Heart rate (HR), mean arterial pressure (MAP), end-tidal isoflurane concentration, end-tidal carbon dioxide tension, central venous pressure, fraction of inspired oxygen (FiO2 ) and cardiac output were recorded. Blood samples were taken for blood gas analysis and to determine plasma drug concentrations. The cardiac index (CI), systemic vascular resistance (SVR), ratio of arterial oxygen tension to inspired oxygen (Pa O2 /FiO2 ) and tissue oxygen delivery (DO2 ) were calculated. Repeated measures anova was applied for HR, CI, MAP, SVR, lactate and blood gas variables. The Student's t-test was used for pairwise comparisons of drug concentrations, induction times and the amount of dobutamine administered. Significance was set at p < 0.05. The induction time was shorter, reduction in MAP was detected, more dobutamine was given and HR and CI were higher after DET+MK, while SVR was higher with DET. Arterial oxygen tension and Pa O2 /FiO2 (40 minutes after induction), DO2 and venous partial pressure of oxygen (40 and 60 minutes after induction) were higher with DET+MK. Plasma detomidine concentrations were reduced in the group receiving MK-467. After DET+MK, the area under the plasma concentration time curve of butorphanol was smaller. MK-467 enhances cardiac function and tissue oxygen delivery in horses sedated with detomidine before isoflurane anaesthesia. This finding could improve patient safety in the perioperative period. The dosage of MK-467 needs to be investigated to minimise the effect of MK-467 on MAP. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.
Dissolved oxygen transfer to sediments by sweep and eject motions in aquatic environments
O'Connor, B.L.; Hondzo, Miki
2008-01-01
Dissolved oxygen (DO) concentrations were quantified near the sediment-water interface to evaluate DO transfer to sediments in a laboratory recirculating flume and open channel under varying fluid-flow conditions. DO concentration fluctuations were observed within the diffusive sublayer, as defined by the time-averaged DO concentration gradient near the sediment-water interface. Evaluation of the DO concentration fluctuations along with detailed fluid-flow characterizations were used to quantify quasi-periodic sweep and eject motions (bursting events) near the sediments. Bursting events dominated the Reynolds shear stresses responsible for momentum and mass fluctuations near the sediment bed. Two independent methods for detecting bursting events using DO concentration and velocity data produced consistent results. The average time between bursting events was scaled with wall variables and was incorporated into a similarity model to describe the dimensionless mass transfer coefficient (Sherwood number, Sh) in terms of the Reynolds number, Re, and Schmidt number, Sc, which described transport in the flow. The scaling of bursting events was employed with the similarity model to quantify DO transfer to sediments and results showed a high degree of agreement with experimental data. ?? 2008, by the American Society of Limnology and Oceanography, Inc.
Nitrogen removal from wastewater by an aerated subsurface-flow constructed wetland in cold climates.
Redmond, Eric D; Just, Craig L; Parkin, Gene F
2014-04-01
The objective of this study was to assess the role of cyclic aeration, vegetation, and temperature on nitrogen removal by subsurface-flow engineered wetlands. Aeration was shown to enhance total nitrogen and ammonia removal and to enhance removal of carbonaceous biochemical oxygen demand, chemical oxygen demand, and phosphorus. Effluent ammonia and total nitrogen concentrations were significantly lower in aerated wetland cells when compared with unaerated cells. There was no significant difference in nitrogen removal between planted and unplanted cells. Effluent total nitrogen concentrations ranged from 9 to 12 mg N/L in the aerated cells and from 23 to 24 mg N/L in unaerated cells. Effluent ammonia concentrations ranged from 3 to 7 mg N/L in aerated wetland cells and from 22 to 23 mg N/L in unaerated cells. For the conditions tested, temperature had only a minimal effect on effluent ammonia or total nitrogen concentrations. The tanks-in-series and the PkC models predicted the general trends in effluent ammonia and total nitrogen concentrations, but did not do well predicting short-term variability. Rate coefficients for aerated systems were 2 to 10 times greater than those for unaerated systems.
Marron, Donna C.; Blanchard, Stephen F.
1995-01-01
Data on water velocity, temperature, specific con- ductance, pH, dissolved oxygen concentration, chlorophyll concentration, suspended sediment con- centration, fecal-coliform counts, and the percen- tage of suspended sediment finer than 62 micrometers ranged up to 21 percent; and cross-section coefficients of variation of the concentrations of suspended sediment, fecal coliform, and chlorophyll ranged from 7 to 115 percent. Midchannel measure- ments of temperature, specific conductance, and pH were within 5 percent of mean cross-sectional values of these properties at the eight sampling sites, most of which appear well mixed because of the effect of dams and reservoirs. Measurements of the concentration of dissolved oxygen at various cross- section locations and at variable sampling depths are required to obtain a representative value of this constituent at these sites. The large varia- bility of concentrations of chlorophyll and suspended sediment, and fecal-coliform counts at the eight sampling sites indicates that composite rather than midchannel or mean values of these constituents are likely to be most representative of the channel cross section.
Baldwin, Austin K.; Graczyk, David J.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher
2012-01-01
The models to estimate chloride concentrations all used specific conductance as the explanatory variable, except for the model for the Little Menomonee River near Freistadt, which used both specific conductance and turbidity as explanatory variables. Adjusted R2 values for the chloride models ranged from 0.74 to 0.97. Models to estimate total suspended solids and total phosphorus used turbidity as the only explanatory variable. Adjusted R2 values ranged from 0.77 to 0.94 for the total suspended solids models and from 0.55 to 0.75 for the total phosphorus models. Models to estimate indicator bacteria used water temperature and turbidity as the explanatory variables, with adjusted R2 values from 0.54 to 0.69 for Escherichia coli bacteria models and from 0.54 to 0.74 for fecal coliform bacteria models. Dissolved oxygen was not used in any of the final models. These models may help managers measure the effects of land-use changes and improvement projects, establish total maximum daily loads, estimate important water-quality indicators such as bacteria concentrations, and enable informed decision making in the future.
Variability of dissolved oxygen over the last millennium and the 21st century in CESM
NASA Astrophysics Data System (ADS)
Hameau, Angélique; Joos, Fortunat; Mignot, Juliette; Keller, Kathrin
2017-04-01
The earth system models simulate a depletion of the oxygen content in the ocean under global warming conditions (Cocco et al. 2012, Frölicher et al. 2009). The response to external forcing and mechanism underlying this evolution are not completely understood. Physical and biogeochemical processes are involved and tangled up to each other leading to a decrease of the global mean concentration of O2 in the ocean with the increase of the ocean temperature. This result is supported by experimental and observational studies in Atlantic and Pacific oceans (Stramma et al. 2008, Brandt et al. 2010). Here, we study the evolution of dissolved oxygen in a climate simulation of the Community Earth System Model (CESM) covering the last millennium and the 21st century. This long period allows us to identify the natural variability of the climate in this system, and therefore analyse the time of emergence (ToE) of the anthropogenic signal under the RCP8.5 scenario. Based on Keller et al. 2014, the time of emergence is defined as the point in time when the trend signal reaches twice the standard deviation of the signal during the preindustrial period (1000 years). The ToE of oxygen and of temperature present an offset. We show that the anthropogenic emissions are seen in a first hand by the oxygen and only then by the temperature. We also look at the OMZ response. The oxygen minimum zones result from a combination of weak ventilation and sustained respiration by the microorgamisms. With a global decrease of the oceanic oxygen content, the OMZ may therefore expand impacting the environment of marine species. But this statement is questioned by Deutsch et al 2014, who relates the variations of Pacific OMZ to the variations of the tropical Walker circulation. The CESM climate model predicts an expansion of the oxygen low zones and the emergence of new ones over the last century. Magnitude and timescales of these responses will be discussed and compared to natural variability.
NASA Technical Reports Server (NTRS)
Gilkey, Kelly M.; Olson, Sandra L.
2015-01-01
An oxygen concentrator is needed to provide enriched oxygen in support of medical contingency operations for future exploration human spaceflight programs. It would provide continuous oxygen to an ill or injured crew member in a closed cabin environment. Oxygen concentration technology is being pursued to concentrate oxygen from the ambient environment so oxygen as a consumable resource can be reduced. Because oxygen is a critical resource in manned spaceflight, using an oxygen concentrator to pull oxygen out of the ambient environment instead of using compressed oxygen can provide better optimization of resources. The overall goal of this project is to develop an oxygen concentrator module that minimizes the hardware mass, volume, and power footprint while still performing at the required clinical capabilities. Should a medical event occur that requires patient oxygenation, the release of 100 percent oxygen into a small closed cabin environment can rapidly raise oxygen levels to the vehicles fire limit. The use of an oxygen concentrator to enrich oxygen from the ambient air and concentrate it to the point where it can be used for medical purposes means no oxygen is needed from the ultra-high purity (99.5+% O2) oxygen reserve tanks. By not adding oxygen from compressed tanks to the cabin environment, oxygen levels can be kept below the vehicle fire limit thereby extending the duration of care provided to an oxygenated patient without environmental control system intervention to keep the cabin oxygen levels below the fire limits. The oxygen concentrator will be a Food and Drug Administration (FDA) clearable device. A demonstration unit for the International Space Station (ISS) is planned to verify the technology and provide oxygen capability. For the ISS, the demonstration unit should not exceed 10 kg (approximately 22 lb), which is the soft stowage mass limit for launch on resupply vehicles for the ISS. The unit's size should allow for transport within the spacecraft to an ill crewmember. The user interface needs to be designed for ease of use by the local care provider and with consideration to the limited amount of training available to the astronaut corps for medical equipment and procedures.
Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel P. Molloy
2004-02-24
The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.
Perils of categorical thinking: "Oxic/anoxic" conceptual model in environmental remediation
Bradley, Paul M.
2012-01-01
Given ambient atmospheric oxygen concentrations of about 21 percent (by volume), the lower limit for reliable quantitation of dissolved oxygen concentrations in groundwater samples is in the range of 0.1–0.5 mg/L. Frameworks for assessing in situ redox condition are often applied using a simple two-category (oxic/anoxic) model of oxygen condition. The "oxic" category defines the environmental range in which dissolved oxygen concentrations are clearly expected to impact contaminant biodegradation, either by supporting aerobic biodegradation of electron-donor contaminants like petroleum hydrocarbons or by inhibiting anaerobic biodegradation of electron-acceptor contaminants like chloroethenes. The tendency to label the second category "anoxic" leads to an invalid assumption that oxygen is insignificant when, in fact, the dissolved oxygen concentration is less than detection but otherwise unknown. Expressing dissolved oxygen concentrations as numbers of molecules per volume, dissolved oxygen concentrations that fall below the 0.1 mg/L field detection limit range from 1 to 1017 molecules/L. In light of recent demonstrations of substantial oxygen-linked biodegradation of chloroethene contaminants at dissolved oxygen concentrations well below the 0.1–0.5 mg/L field detection limit, characterizing "less than detection" oxygen concentrations as "insignificant" is invalid.
Oxygen concentrators for the delivery of supplemental oxygen in remote high-altitude areas.
Litch, J A; Bishop, R A
2000-01-01
Oxygen concentrators are a relatively new technology for the delivery of supplemental oxygen. Readily available for domicile use in modern countries, these machines have proved reliable. The application of oxygen concentrators for the supply of medical oxygen in remote high-altitude settings has important cost-saving and supply implications. In our experience at a remote hospital at 3,900 m in the Nepal Himalayas, oxygen concentrators constitute an effective and affordable means to supply medical oxygen. Using an air compressor and 2 zeolite chambers, the machine traps nitrogen from room air compressed to 4 atm, thus concentrating oxygen in the expressed gas. At delivery flow rates of 2 to 5 liters per minute, oxygen concentrations greater than 80% can be maintained. An electric power requirement of less than 400 W can be provided from a variety of sources, including a small gasoline generator, a solar or wind power system with battery store, or a domestic or commercial power source. At our facility, a cost savings of 75% for supplemental oxygen was found in favor of the oxygen concentrator over cylinders (0.17 US cents per liter vs 0.79 US cents per liter).
Niu, Ying-mei; Hao, Feng-tong; Xue, Chang-jiang; Xia, Yu-jing; Zhou, Shuo; Lu, Qing-sheng; Liu, Jian-zhong; Zhang, Peng
2011-03-01
To study therapeutic effects by using different oxygen therapies in rats with acute carbon dioxide poisoning, to select the best oxygen therapy technology for patients with acute carbon dioxide poisoning on the spot. Sixty healthy male Sprague-Dawley rats were randomized into normal control group, carbon dioxide exposure group, hyperbaric oxygen treatment group (pressure 2 ATA, FiO(2)100%), high concentration of atmospheric oxygen treatment group (FiO(2)50%), low concentration of atmospheric oxygen treatment group (FiO(2)33%). After treated with different oxygen in rats with acute carbon dioxide poisoning, arterial pH, PO2 and PCO2 of rats were detected, in addition observe pathological changes of lung tissue and brain tissue. The arterial pH (7.31 ± 0.06) and PO2 [(68.50 ± 15.02) mm Hg] of carbon dioxide exposure group were lower than those of control group [pH (7.42 ± 0.02) and PO2 (92.83 ± 8.27) mm Hg], PCO2 [(71.66 ± 12.10) mm Hg] was higher than that of control group [(48.25 ± 2.59) mm Hg] (P < 0.05); the arterial pH (hyperbaric oxygen treatment group 7.37 ± 0.02, high concentration of atmospheric oxygen treatment group 7.39 ± 0.03, low concentration of atmospheric oxygen treatment group 7.38 ± 0.02) and PO2 of oxygen treatment groups [hyperbaric oxygen treatment group, high concentration of atmospheric oxygen treatment group, low concentration of atmospheric oxygen treatment group were (82.25 ± 12.98), (84.75 ± 11.24), (83.75 ± 16.77) mm Hg, respectively] were higher than that of carbon dioxide exposure group, PCO2 [hyperbaric oxygen treatment group, high concentration of atmospheric oxygen treatment group, low concentration of atmospheric oxygen treatment group were (52.25 ± 4.95), (51.75 ± 4.82), (52.66 ± 5.61) mm Hg, respectively] was lower than that of carbon dioxide exposure group (P < 0.05); there was no significant difference of the arterial pH, PO2 and PCO2 between oxygen treatment groups and control group (P > 0.05); there was no significant difference of the arterial pH, PO2 and PCO2 among oxygen treatment groups (P > 0.05). There was large area of bleeding of lungs in rats with carbon dioxide poisoning, the bleeding of lungs in rats with high concentration of atmospheric oxygen treatment and low concentration of atmospheric oxygen treatment was better than the rats with carbon dioxide poisoning, there was no abnormal appearance of lungs in rats with hyperbaric oxygen treatment. The light microscope observation showed that there were diffuse bleeding and exudation of lungs in rats with carbon dioxide poisoning, the bleeding and exudation of lungs in rats with high concentration of atmospheric oxygen treatment and low concentration of atmospheric oxygen treatment were better than the rats with carbon dioxide poisoning, there were only minor bleeding and exudation of lungs in rats with hyperbaric oxygen treatment. There was no difference of brain in anatomy and microscopy among all groups, there were no significant bleeding, edema, cell degeneration and necrosis. Lung pathology in acute carbon dioxide poisoning rats with hyperbaric oxygen treatment is better than the rats with high concentration of atmospheric oxygen treatment and low concentration of atmospheric oxygen treatment, there is no significant difference of effect between high concentration of atmospheric oxygen treatment group and low concentration of atmospheric oxygen treatment group, however, the results of blood gas analysis and lung pathology than the exposure group improved, so qualified medical unit for hyperbaric oxygen therapy as soon as possible, hyperbaric oxygen treatment facilities in the absence of circumstances, the emergency treatment of early oxygen is also a good measure.
77 FR 4219 - FAA-Approved Portable Oxygen Concentrators; Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
...-1343; Amdt. No. 121-358] FAA-Approved Portable Oxygen Concentrators; Technical Amendment AGENCY... amending regulations relating to operating rules for FAA approved portable oxygen concentrators (POC... Certain Portable Oxygen Concentrator Devices Onboard Aircraft'' (70 FR 40156). SFAR 106 permits passengers...
Madsen, H; Ditzel, J
1983-03-01
In order to evaluate the possible underlying factors for the increase in red cell 2,3-diphosphoglycerate content observed in late diabetic pregnancy, its relationship with serum unconjugated oestriol, human placental lactogen, haemoglobin and hydrogen ion concentrations was investigated in 42 pregnant diabetic women. A significant correlation was found between red cell 2,3-diphosphoglycerate and serum unconjugated oestriol (r = 0.54, p less than 0.001), whereas no correlation was present between 2,3-diphosphoglycerate and the following variables: arterial pH, haemoglobin concentration and human placental lactogen. The content of 2,3-diphosphoglycerate correlated significantly with haemoglobin-oxygen affinity expressed as P50 at pH 7.4 (r = 0.34, p less than 0.05). The results of this study indicate that serum unconjugated oestriol may participate in the regulation of red cell 2,3-diphosphoglycerate content and thereby of the maternal blood oxygen release to the fetus.
NASA Astrophysics Data System (ADS)
Yoon, Seok-Hyun; Randall, Clive A.; Hur, Kang-Heon
2010-09-01
The difference in the resistance degradation behavior was investigated between fixed valence acceptor (Mg) and the variable valence acceptor (Mn)-doped BaTiO3 ceramics with an increase of each acceptor concentration. Coarse-grained specimens with uniform grain sizes and different acceptor concentrations were prepared. In the case of Mg-doped BaTiO3, the time to degradation systematically decreased with the increase in Mg concentration. In contrast, there is a systematically increased time to degradation with the increase in Mn concentration in Mn-doped BaTiO3. The fast degradation by the increase in Mg concentration directly corresponded to an increase in the Warburg impedance and ionic transference number (tion) associated with an increase in oxygen vacancy concentration ([VO••]). On the other hand, no distinct Warburg impedance or ionic conduction contribution could be observed with the increase in Mn concentration. It is supposed that the increase in [VO••] is negligible in spite of the increase in acceptor Mn concentration, when it is compared to Mg-doped BaTiO3. The much lower [VO••] and more dominant electron/hole trapping effect due to multivalence nature of Mn are supposed to cause such a contrary degradation behavior between Mg and Mn-doped BaTiO3. Reoxidation in a slightly reducing atmosphere (N2) showed better resistance to degradation behavior than in a oxidizing air atmosphere in both Mg and Mn-doped BaTiO3, which is anticipated to be an increase in the electron/hole trapping sites. All these behaviors could be explained by the low temperature defect chemical model that shows difference in the defect structure between Mg and Mn-doped BaTiO3, and its dependence on the oxygen partial pressure (pO2) during reoxidation and cooling. Not only the [VO••], but also the density of electron/hole trap sites, are believed to be crucial in controlling resistance degradation.
Costache, T A; Acién Fernández, F Gabriel; Morales, M M; Fernández-Sevilla, J M; Stamatin, I; Molina, E
2013-09-01
In this paper, the influence of culture conditions (irradiance, temperature, pH, and dissolved oxygen) on the photosynthesis rate of Scenedesmus almeriensis cultures is analyzed. Short-run experiments were performed to study cell response to variations in culture conditions, which take place in changing environments such as outdoor photobioreactors. Experiments were performed by subjecting diluted samples of cells to different levels of irradiance, temperature, pH, and dissolved oxygen concentration. Results demonstrate the existence of photoinhibition phenomena at irradiances higher than 1,000 μE/m(2) s; in addition to reduced photosynthesis rates at inadequate temperatures or pH-the optimal values being 35 °C and 8, respectively. Moreover, photosynthesis rate reduction at dissolved oxygen concentrations above 20 mg/l is demonstrated. Data have been used to develop an integrated model based on considering the simultaneous influence of irradiance, temperature, pH, and dissolved oxygen. The model fits the experimental results in the range of culture conditions tested, and it was validated using data obtained by the simultaneous variation of two of the modified variables. Furthermore, the model fits experimental results obtained from an outdoor culture of S. almeriensis performed in an open raceway reactor. Results demonstrate that photosynthetic efficiency is modified as a function of culture conditions, and can be used to determine the proximity of culture conditions to optimal values. Optimal conditions found (T = 35 °C, pH = 8, dissolved oxygen concentration <20 mg/l) allows to maximize the use of light by the cells. The developed model is a powerful tool for the optimal design and management of microalgae-based processes, especially outdoors, where the cultures are subject to daily culture condition variations.
Svedenhag, J; Sjödin, B
1984-10-01
Physiological characteristics of elite runners from different racing events were studied. Twenty-seven middle- and long-distance runners and two 400-m runners belonging to the Swedish national team in track and field were divided, according to their distance preferences, into six groups from 400 m up to the marathon. The maximal oxygen uptake (VO2 max, ml X kg-1 X min-1) on the treadmill was higher the longer the main distance except for the marathon runners (e.g., 800-1500-m group, 72.1; 5000-10,000-m group, 78.7 ml X kg-1 X min-1). Running economy evaluated from oxygen uptake measurements at 15 km/h (VO2 15) and 20 km/h (VO2 20) did not differ significantly between the groups even though VO2 15 tended to be lower in the long-distance runners. The running velocity corresponding to a blood lactate concentration of 4 mmol/l (vHla 4.0) differed markedly between the groups with the highest value (5.61 m/s) in the 5000-10,000-m group. The oxygen uptake (VO2) at vHla 4.0 in percentage of VO2 max did not differ significantly between the groups. The blood lactate concentration after exhaustion (VO2 max test) was lower in the long-distance runners. In summary, the present study demonstrates differences in physiological characteristics of elite runners specializing in different racing events. The two single (but certainly inter-related) variables in which this was most clearly seen were the maximal oxygen uptake (ml X kg-1 X min-1) and the running velocity corresponding to a blood lactate concentration of 4 mmol/l.
Transition from Forward Smoldering to Flaming in Small Polyurethane Foam Samples
NASA Technical Reports Server (NTRS)
Bar-Ilan, A.; Putzeys, O.; Rein, G.; Fernandez-Pello, A. C.
2004-01-01
Experimental observations are presented of the effect of the flow velocity and oxygen concentration, and of a thermal radiant flux, on the transition from smoldering to flaming in forward smoldering of small samples of polyurethane foam with a gas/solid interface. The experiments are part of a project studying the transition from smolder to flaming under conditions encountered in spacecraft facilities, i.e., microgravity, low velocity variable oxygen concentration flows. Because the microgravity experiments are planned for the International Space Station, the foam samples had to be limited in size for safety and launch mass reasons. The feasible sample size is too small for smolder to self propagate because of heat losses to the surrounding environment. Thus, the smolder propagation and the transition to flaming had to be assisted by reducing the heat losses to the surroundings and increasing the oxygen concentration. The experiments are conducted with small parallelepiped samples vertically placed in a wind tunnel. Three of the sample lateral-sides are maintained at elevated temperature and the fourth side is exposed to an upward flow and to a radiant flux. It is found that decreasing the flow velocity and increasing its oxygen concentration, and/or increasing the radiant flux enhances the transition to flaming, and reduces the delay time to transition. Limiting external ambient conditions for the transition to flaming are reported for the present experimental set-up. The results show that smolder propagation and the transition to flaming can occur in relatively small fuel samples if the external conditions are appropriate. The results also indicate that transition to flaming occurs in the char left behind by the smolder reaction, and it has the characteristics of a gas-phase ignition induced by the smolder reaction, which acts as the source of both gaseous fuel and heat.
NASA Technical Reports Server (NTRS)
Hirsch, David; Williams, Jim; Beeson, Harold
2006-01-01
Spacecraft materials selection is based on an upward flammability test conducted in a quiescent environment in the highest-expected oxygen-concentration environment. However, NASA s advanced space exploration program is anticipating using various habitable environments. Because limited data is available to support current program requirements, a different test logic is suggested to address these expanded atmospheric environments through the determination of materials self-extinguishment limits. This paper provides additional pressure effects data on oxygen concentration and partial pressure self-extinguishment limits under quiescent conditions. For the range of total pressures tested, the oxygen concentration and oxygen partial pressure flammability thresholds show a near linear function of total pressure. The oxygen concentration/oxygen partial pressure flammability thresholds depend on the total pressure and appear to increase with increasing oxygen concentration (and oxygen partial pressure). For the Constellation Program, the flammability threshold information will allow NASA to identify materials with increased flammability risk because of oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats.
Amkhanitskaya, L I; Nikolaeva, G V; Sokolova, N A
2015-07-01
We demonstrated that the vitreous body of one-month-old rabbits becomes a "reservoir" for storage and accumulation of oxygen after exposure to additional oxygenation of the organism (O2 concentrations in inspired gas mixture were 40, 60, 85, and 99%). The higher was O2 concentration in inspired mixture, the higher was oxygen saturation of the blood and vitreous body. O2 concentration of 40% was relatively safe for eye tissues. O2 concentration >60% induced oxygen accumulation in the vitreous body, which can be a provoking factor for the development of oxygen-induced pathologies.
Crawford, Charles G.; Wangsness, David J.
1993-01-01
The City of Indianapolis has constructed state-of-the-art advanced municipal wastewater-treatment systems to enlarge and upgrade the existing secondary-treatment processes at its Belmont and Southport treatment plants. These new advanced-wastewater-treatment plants became operational in 1983. A nonparametric statistical procedure--a modified form of the Wilcoxon-Mann-Whitney rank-sum test--was used to test for trends in time-series water-quality data from four sites on the White River and from the Belmont and Southport wastewater-treatment plants. Time-series data representative of pre-advanced- (1978-1980) and post-advanced- (1983--86) wastewater-treatment conditions were tested for trends, and the results indicate substantial changes in water quality of treated effluent and of the White River downstream from Indianapolis after implementation of advanced wastewater treatment. Water quality from 1981 through 1982 was highly variable due to plant construction. Therefore, this time period was excluded from the analysis. Water quality at sample sites located upstream from the wastewater-treatment plants was relatively constant during the period of study (1978-86). Analysis of data from the two plants and downstream from the plants indicates statistically significant decreasing trends in effluent concentrations of total ammonia, 5-day biochemical-oxygen demand, fecal-coliform bacteria, total phosphate, and total solids at all sites where sufficient data were available for testing. Because of in-plant nitrification, increases in nitrate concentration were statistically significant in the two plants and in the White River. The decrease in ammonia concentrations and 5-day biochemical-oxygen demand in the White River resulted in a statistically significant increasing trend in dissolved-oxygen concentration in the river because of reduced oxygen demand for nitrification and biochemical oxidation processes. Following implementation of advanced wastewater treatment, the number of river-quality samples that failed to meet the water-quality standards for ammonia and dissolved oxygen that apply to the White River decreased substantially.
Ji, Xiaoliang; Shang, Xu; Dahlgren, Randy A; Zhang, Minghua
2017-07-01
Accurate quantification of dissolved oxygen (DO) is critically important for managing water resources and controlling pollution. Artificial intelligence (AI) models have been successfully applied for modeling DO content in aquatic ecosystems with limited data. However, the efficacy of these AI models in predicting DO levels in the hypoxic river systems having multiple pollution sources and complicated pollutants behaviors is unclear. Given this dilemma, we developed a promising AI model, known as support vector machine (SVM), to predict the DO concentration in a hypoxic river in southeastern China. Four different calibration models, specifically, multiple linear regression, back propagation neural network, general regression neural network, and SVM, were established, and their prediction accuracy was systemically investigated and compared. A total of 11 hydro-chemical variables were used as model inputs. These variables were measured bimonthly at eight sampling sites along the rural-suburban-urban portion of Wen-Rui Tang River from 2004 to 2008. The performances of the established models were assessed through the mean square error (MSE), determination coefficient (R 2 ), and Nash-Sutcliffe (NS) model efficiency. The results indicated that the SVM model was superior to other models in predicting DO concentration in Wen-Rui Tang River. For SVM, the MSE, R 2 , and NS values for the testing subset were 0.9416 mg/L, 0.8646, and 0.8763, respectively. Sensitivity analysis showed that ammonium-nitrogen was the most significant input variable of the proposal SVM model. Overall, these results demonstrated that the proposed SVM model can efficiently predict water quality, especially for highly impaired and hypoxic river systems.
Sediment oxygen demand in eastern Kansas streams, 2014 and 2015
Foster, Guy M.; King, Lindsey R.; Graham, Jennifer L.
2016-08-29
Dissolved oxygen concentrations in streams are affected by physical, chemical, and biological factors in the water column and streambed, and are an important factor for the survival of aquatic organisms. Sediment oxygen demand (SOD) rates in Kansas streams are not well understood. During 2014 and 2015, the U.S. Geological Survey, in cooperation with the Kansas Department of Health and Environment, measured SOD at eight stream sites in eastern Kansas to quantify SOD rates and variability with respect to season, land use, and bottom-sediment characteristics. Sediment oxygen demand rates (SODT) ranged from 0.01 to 3.15 grams per square meter per day at the ambient temperature of the measurements. The summer mean SOD rate was 3.0-times larger than the late fall mean rate, likely because of increased biological activity at warm water temperatures. Given the substantial amount of variability in SOD rates possible within sites, heterogeneity of substrate type is an important consideration when designing SOD studies and interpreting the results. Sediment oxygen demand in eastern Kansas streams was correlated with land use and streambed-sediment characteristics, though the strength of relations varied seasonally. The small number of study sites precluded a more detailed analysis. The effect of basin land use and streambed sediment characteristics on SOD is currently (2016) not well understood, and there may be many contributing factors including basin influences on water quality that affect biogeochemical cycles and the biological communities supported by the stream.
Effect of blood viscosity on oxygen transport in residual stenosed artery following angioplasty.
Kwon, Ohwon; Krishnamoorthy, Mahesh; Cho, Young I; Sankovic, John M; Banerjee, Rupak K
2008-02-01
The effect of blood viscosity on oxygen transport in a stenosed coronary artery during the postangioplasty scenario is studied. In addition to incorporating varying blood viscosity using different hematocrit (Hct) concentrations, oxygen consumption by the avascular wall and its supply from vasa vasorum, nonlinear oxygen binding capacity of the hemoglobin, and basal to hyperemic flow rate changes are included in the calculation of oxygen transport in both the lumen and the avascular wall. The results of this study show that oxygen transport in the postangioplasty residual stenosed artery is affected by non-Newtonian shear-thinning property of the blood viscosity having variable Hct concentration. As Hct increases from 25% to 65%, the diminished recirculation zone for the increased Hct causes the commencement of pO(2) decrease to shift radially outward by approximately 20% from the center of the artery for the basal flow, but by approximately 10% for the hyperemic flow at the end of the diverging section. Oxygen concentration increases from a minimum value at the core of the recirculation zone to over 90 mm Hg before the lumen-wall interface at the diverging section for the hyperemic flow, which is attributed to increased shear rate and thinner lumen boundary layer for the hyperemic flow, and below 90 mm Hg for the basal flow. As Hct increases from 25% to 65%, the average of pO(2,min) beyond the diverging section drops by approximately 25% for the basal flow, whereas it increases by approximately 15% for the hyperemic flow. Thus, current results with the moderate stenosed artery indicate that reducing Hct might be favorable in terms of increasing O(2) flux and pO(2,min), in the medial region of the wall for the basal flow, while higher Hct is advantageous for the hyperemic flow beyond the diverging section. The results of this study not only provide significant details of oxygen transport under varying pathophysiologic blood conditions such as unusually high blood viscosity and flow rate, but might also be extended to offer implications for drug therapy related to blood-thinning medication and for blood transfusion and hemorrhage.
Overview of groundwater quality in the Piceance Basin, western Colorado, 1946--2009
Thomas, J.C.; McMahon, P.B.
2013-01-01
Groundwater-quality data from public and private sources for the period 1946 to 2009 were compiled and put into a common data repository for the Piceance Basin. The data repository is available on the web at http://rmgsc.cr.usgs.gov/cwqdr/Piceance/index.shtml. A subset of groundwater-quality data from the repository was compiled, reviewed, and checked for quality assurance for this report. The resulting dataset consists of the most recently collected sample from 1,545 wells, 1,007 (65 percent) of which were domestic wells. From those samples, the following constituents were selected for presentation in this report: dissolved oxygen, dissolved solids, pH, major ions (chloride, sulfate, fluoride), trace elements (arsenic, barium, iron, manganese, selenium), nitrate, benzene, toluene, ethylbenzene, xylene, methane, and the stable isotopic compositions of water and methane. Some portion of recharge to most of the wells for which data were available was derived from precipitation (most likely snowmelt), as indicated by δ2H [H2O] and δ18O[H2O] values that plot along the Global Meteoric Water Line and near the values for snow samples collected in the study area. Ninety-three percent of the samples were oxic, on the basis of concentrations of dissolved oxygen that were greater than or equal to 0.5 milligrams per liter. Concentration data were compared with primary and secondary drinking-water standards established by the U.S. Environmental Protection Agency. Constituents that exceeded the primary standards were arsenic (13 percent), selenium (9.2 percent), fluoride (8.4 percent), barium (4.1 percent), nitrate (1.6 percent), and benzene (0.6 percent). Concentrations of toluene, xylenes, and ethylbenzene did not exceed standards in any samples. Constituents that exceeded the secondary standard were dissolved solids (72 percent), sulfate (37 percent), manganese (21 percent), iron (16 percent), and chloride (10 percent). Drinking-water standards have not been established for methane, which was detected in 24 percent of samples. Methane concentrations were greater than or equal to 1 milligram per liter in 8.5 percent of samples. Methane isotopic data for samples collected primarily from domestic wells in Garfield County indicate that methane in samples with relative high methane concentrations were derived from both biogenic and thermogenic sources. Many of the constituents that exceeded standards, such as arsenic, fluoride, iron, and manganese, were derived from rock and sediment in aquifers. Elevated nitrate concentrations were most likely derived from human sources such as fertilizer and human or animal waste. Information about the geologic unit or aquifer in which a well was completed generally was not provided by data sources. However, limited data indicate that Quaternary deposits in Garfield and Mesa Counties, the Wasatch Formation in Garfield County, and the Green River Formation in Rio Blanco County had some of the highest median concentrations of selected constituents. Variations in concentration with depth could not be evaluated because of the general lack of well-depth and water-level data. Concentrations of several important constituents, such as arsenic, manganese, methane, and nitrate, were related to concentrations of dissolved oxygen. Concentrations of arsenic, manganese, and methane were significantly higher in groundwater with low dissolved-oxygen concentrations than in groundwater with high dissolved-oxygen concentrations. In contrast, concentrations of nitrate were significantly higher in groundwater with high dissolved-oxygen concentrations than in groundwater with low dissolved-oxygen concentrations. These results indicate that measurements of dissolved oxygen may be a useful indicator of groundwater vulnerability to some human-derived contaminants and enrichment from some natural constituents. Assessing such a large and diverse dataset as the one available through the repository poses unique challenges for reporting on groundwater quality in the study area. The repository contains data from several studies that differed widely in purpose and scope. In addition to this variability in available data, gaps exist spatially, temporally, and analytically in the repository. For example, groundwater-quality data in the repository were not evenly distributed throughout the study area. Several key water-quality constituents or indicators, such as dissolved oxygen, were underrepresented in the repository. Ancillary information, such as well depth, depth to water, and the geologic unit or aquifer in which a well was completed, was missing for more than 50 percent of samples. Future monitoring could avoid several limitations of the repository by making relatively minor changes to sample- collection and data-reporting protocols. Field measurements for dissolved oxygen could be added to sampling protocols, for example. Information on well construction and the geologic unit or aquifer in which a well was completed should be part of the water-quality dataset. Such changes would increase the comparability of data from different monitoring programs and also add value to each program individually and to that of the regional dataset as a whole. Other changes to monitoring programs could require greater resources, such as sampling for a basic set of constituents that is relevant to major water-quality issues in the regional study area. Creation of such a dataset for the regional study area would help to provide the kinds of information needed to characterize background conditions and the spatial and temporal variability in constituent concentrations associated with those conditions. Without such information, it is difficult to identify departures from background that might be associated with human activities.
Ren, Si-Hua; He, Yu-Xin; Ma, Yi-Ran; Jin, Jing-Chun; Kang, Dan
2016-02-01
To investigate the effects of oxygen concentration and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and to analyzed the relationship among the oxygen concentration, ROS and the biological characteristics of mouse HSC through simulation of oxygen environment experienced by PB HSC during transplantation. The detection of reactive oxygen species (ROS), in vitro amplification, directional differentiation (BFU-E, CFU-GM, CFU-Mix), homing of adhesion molecules (CXCR4, CD44, VLA4, VLA5, P-selectin), migration rate, CFU-S of NOD/SCID mice irradiated with sublethal dose were performed to study the effect of oxgen concentration and reactive oxygen species on the biological characteristics of mouse BM-HSC and the relationship among them. The oxygen concentrations lower than normal oxygen concentration (especially hypoxic oxygen environment) could reduce ROS level and amplify more Lin(-) c-kit(+) Sca-1(+) BM HSC, which was more helpful to the growth of various colonies (BFU-E, CFU-GM, CFU-Mix) and to maintain the migratory ability of HSC, thus promoting CFU-S growth significantly after the transplantation of HSC in NOD/SCID mice irradiated by a sublethal dose. BM HSC exposed to oxygen environments of normal, inconstant oxygen level and strenuously thanging of oxygen concentration could result in higher level of ROS, at the same time, the above-mentioned features and functional indicators were relatively lower. The ROS levels of BM HSC in PB HSCT are closely related to the concentrations and stability of oxygen surrounding the cells. High oxygen concentration results in an high level of ROS, which is not helpful to maintain the biological characteristics of BM HSC. Before transplantation and in vitro amplification, the application of antioxidancs and constant oxygen level environments may be beneficial for transplantation of BMMSC.
Shoults-Wilson, W. A.; Peterson, J.T.; Unrine, J.M.; Rickard, J.; Black, M.C.
2009-01-01
In the present study, specimens of the invasive clam, Corbicula fluminea, were collected above and below possible sources of potentially toxic trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the Altamaha River system (Georgia, USA). Bioaccumulation of these elements was quantified, along with environmental (water and sediment) concentrations. Hierarchical linear models were used to account for variability in tissue concentrations related to environmental (site water chemistry and sediment characteristics) and individual (growth metrics) variables while identifying the strongest relations between these variables and trace element accumulation. The present study found significantly elevated concentrations of Cd, Cu, and Hg downstream of the outfall of kaolin-processing facilities, Zn downstream of a tire cording facility, and Cr downstream of both a nuclear power plant and a paper pulp mill. Models of the present study indicated that variation in trace element accumulation was linked to distance upstream from the estuary, dissolved oxygen, percentage of silt and clay in the sediment, elemental concentrations in sediment, shell length, and bivalve condition index. By explicitly modeling environmental variability, the Hierarchical linear modeling procedure allowed the identification of sites showing increased accumulation of trace elements that may have been caused by human activity. Hierarchical linear modeling is a useful tool for accounting for environmental and individual sources of variation in bioaccumulation studies. ?? 2009 SETAC.
Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean
NASA Astrophysics Data System (ADS)
Ward, Bess B.; Tuit, Caroline B.; Jayakumar, Amal; Rich, Jeremy J.; Moffett, James; Naqvi, S. Wajih A.
2008-12-01
Incubation experiments under trace metal clean conditions and ambient oxygen concentrations were used to investigate the response of microbial assemblages in oxygen minimum zones (OMZs) to additions of organic carbon and copper, two factors that might be expected to limit denitrification in the ocean. In the OMZs of the Eastern Tropical North and South Pacific, denitrification appeared to be limited by organic carbon; exponential cell growth and rapid nitrate and nitrite depletion occurred upon the addition of small amounts of carbon, but copper had no effect. In the OMZ of the Arabian Sea, neither carbon nor copper appeared to be limiting. We hypothesize that denitrification is variable in time and space in the OMZs in ways that may be predictable based on links to the episodic supply of organic substrates from overlying productive surface waters.
NASA Astrophysics Data System (ADS)
Li, Xuechun; Li, Dian; Wang, Younian
2016-09-01
A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).
The Effect of Changes in the Hadley Circulation on Oceanic Oxygen Minimum Zones
NASA Astrophysics Data System (ADS)
De La Cruz Tello, G.; Ummenhofer, C.; Karnauskas, K. B.
2014-12-01
Recent research argued that the Hadley circulation (HC) is composed of three regional cells located at the eastern edges of the ocean basins, rather than a single, globe-encircling cell as the classic textbook view suggests. The HC is expected to expand in concert with global warming, which means that the dry regions beneath the descending branches of the HC are projected to become even drier. Changes in the HC are thus likely to impact freshwater resources on land, as well as the underlying ocean in the subtropics. The eastern edges of ocean basins are characterized by oxygen minimum zones (OMZs), which are regions of very low oxygen concentrations. They affect marine life, as many animals cannot handle the stress caused by such conditions. OMZs have expanded and shoaled in the last 50 years, and they are expected to continue to do so as global climate changes. The purpose of this research is to find links between the projected changes in OMZs and the HC. The National Center for Atmospheric Research (NCAR) Community Earth System Model 1.0 (CESM), Representative Concentration Pathways 8.5 (RCP8.5) experiment with a resolution of 0.9 by 1.25 degrees, which formed part of the Coupled Model Intercomparison Project phase 5 (CMIP5), was used for this analysis. Meridional winds and oceanic oxygen concentrations were the primarily analyzed variables. Latitudinal ocean oxygen slices demonstrate the OMZs' location along the eastern edges of ocean basins. Meridional winds overlayed with oxygen concentration are consistent with the idea that surface meridional 'Hadleywise flow' (i.e., towards the equator at the surface and towards the poles aloft) and OMZs are linked through changes in upwelling. Area-averaged time series spanning the historical period through to the end of the 21st century with RCP8.5 confirm that future changes in OMZs and the HC may be connected. Further research could lead to improved understanding of the factors that drive changes in both, which could help anticipate and mitigate the consequences discussed previously.
Pericellular oxygen concentration of cultured primary human trophoblasts
Chen, Baosheng; Longtine, Mark S.; Nelson, D. Michael
2012-01-01
Introduction Oxygen is pivotal in placental development and function. In vitro culture of human trophoblasts provides a useful model to study this phenomenon, but a hotly debated issue is whether or not the oxygen tension of the culture conditions mimics in vivo conditions. We tested the hypothesis that ambient oxygen tensions in culture reflect the pericellular oxygen levels. Methods We used a microelectrode oxygen sensor to measure the concentration of dissolved oxygen in the culture medium equilibrated with 21%, 8% or <0.5% oxygen. Results The concentration of oxygen in medium without cells resembled that in the ambient atmosphere. The oxygen concentration present in medium bathing trophoblasts was remarkably dependent on the depth within the medium where sampling occurred, and the oxygen concentration within the overlying atmosphere was not reflected in medium immediately adjacent to the cells. Indeed, the pericellular oxygen concentration was in a range that most would consider severe hypoxia, at ≤ 0.6% oxygen or about 4.6 mm Hg, when the overlying atmosphere was 21% oxygen. Conclusions We conclude that culture conditions of 21% oxygen are unable to replicate the pO2 of 40–60 mm Hg commonly attributed to the maternal blood in the intervillous space in the second and third trimesters of pregnancy. We further surmise that oxygen atmospheres in culture conditions between 0.5% and 21% provide different oxygen fluxes in the immediate pericellular environment yet can still yield insights into the responses of human trophoblast to different oxygen conditions. PMID:23211472
Influence of oxygen concentration on ethylene removal using dielectric barrier discharge
NASA Astrophysics Data System (ADS)
Takahashi, Katsuyuki; Motodate, Takuma; Takaki, Koichi; Koide, Shoji
2018-01-01
Ethylene gas is decomposed using a dielectric barrier discharge plasma reactor for long-period preservation of fruits and vegetables. The oxygen concentration in ambient gas is varied from 2 to 20% to simulate the fruit and vegetable transport container. The experimental results show that the efficiency of ethylene gas decomposition increases with decreasing oxygen concentration. The reactions of ethylene molecules with ozone are analyzed by Fourier transform infrared spectrometry. The analysis results show that the oxidization process by ozone is later than that by oxygen atoms. The amount of oxygen atoms that contribute to ethylene removal increases with decreasing oxygen concentration because the reaction between oxygen radicals and oxygen molecules is suppressed at low oxygen concentrations. Ozone is completely removed and the energy efficiency of C2H4 removal is increased using manganese dioxide as a catalyst.
MO-G-BRF-06: Radiotherapy and Prompt Oxygen Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kissick, M; Campos, D; Adamson, E
Purpose: Adaptive radiotherapy requires a knowledge of the changing local tumor oxygen concentrations for times on the order of the treatment time, a time scale far shorter than cell death and proliferation. This knowledge will be needed to guide hypofractionated radiotherapy. Methods: A diffuse optical probe system was developed to spatially average over the whole interior of athymic Sprague Dawley nude mouse xenografts of human head and neck cancers. The blood volume and hemoglobin saturation was measured in real time. The quantities were measured with spectral fitting before and after 10 Gy of radiation is applied. An MRI BOLD scanmore » is acquired before and after 10 Gy that measures regional changes in R2* which is inversely proportional to oxygen availability. Simulations were performed to fit the blood oxygen dynamics and infer changes in hypoxia within the tumor. Results: The optical probe measured nearly constant blood volume and a significant drop in hemoglobin saturation of about 30% after 10 Gy over the time scale of less than 30 minutes. The averaged R2* within the tumor volume increased by 15% after the 10 Gy dose, which is consistent with the optical results. The simulations and experiments support likely dynamic metabolic changes and/or fast vasoconstrictive signals are occurring that change the oxygen concentrations significantly, but not cell death or proliferation. Conclusion: Significant oxygen changes were observed to occur within 30 minutes, coinciding with the treatment time scale. This dynamic is very important for patient specific adaptive therapy. For hypofractionated therapy, the local instantaneous oxygen content is likely the most important variable to control. The invention of a bedside device for the purpose of measuring the instantaneous response to large radiation doses would be an important step to future improvements in outcome.« less
Study on the laser irradiation characteristics of NEPE propellant in different oxygen concentrations
NASA Astrophysics Data System (ADS)
Xiang, Hengsheng; Chen, Xiong; Zhou, Changsheng
2016-01-01
The ignition and combustion characteristics of nitrate ester plasticized polyether (NEPE) propellant in different oxygen concentrations ambient gases were studied by the application of CO2 laser, infrared thermometer and high speed camera. The flame intensity data of the propellant was collected by the photodiode; propellant flame temperature was measured by infrared thermometer. The experimental results show that the time which NEPE propellant spend to be stable combustion will get shorter with the increase of oxygen concentration; the flame peak temperature measured by infrared thermometer increases with the increase of oxygen concentration when the oxygen concentration is less than 30% by volume, then decreases with the increase of oxygen concentration.
Delzer, Gregory C.; Ivahnenko, Tamara
2003-01-01
The large-scale use of the gasoline oxygenate methyl tert-butyl ether (MTBE), and its high solubility, low soil adsorption, and low biodegradability, has resulted in its detection in ground water and surface water in many places throughout the United States. Studies by numerous researchers, as well as many State and local environmental agencies, have discovered high levels of MTBE in soils and ground water at leaking underground gasoline-storage-tank sites and frequent occurrence of low to intermediate levels of MTBE in reservoirs used for both public water supply and recreational boating.In response to these findings, the American Water Works Association Research Foundation sponsored an investigation of MTBE and other volatile organic compounds (VOCs) in the Nation's sources of drinking water. The goal of the investigation was to provide additional information on the frequency of occurrence, concentration, and temporal variability of MTBE and other VOCs in source water used by community water systems (CWSs). The investigation was completed in two stages: (1) reviews of available literature and (2) the collection of new data. Two surveys were associated with the collection of new data. The first, termed the Random Survey, employed a statistically stratified design for sampling source water from 954 randomly selected CWSs. The second, which is the focus of this report, is termed the Focused Survey, which included samples collected from 134 CWS source waters, including ground water, reservoirs, lakes, rivers, and streams, that were suspected or known to contain MTBE. The general intent of the Focused Survey was to compare results with the Random Survey and provide an improved understanding of the occurrence, concentration, temporal variability, and anthropogenic factors associated with frequently detected VOCs. Each sample collected was analyzed for 66 VOCs, including MTBE and three other ether gasoline oxygenates (hereafter termed gasoline oxygenates). As part of the Focused Survey, 451 source-water samples and 744 field quality-control (QC) samples were collected from 78 ground-water, 39 reservoir and (or) lake, and 17 river and (or) stream source waters at fixed intervals for a period of 1 year.Using a common assessment level of 0.2 μg/L (micrograms per liter) (2.0 μg/L for methyl ethyl ketone), 37 of the 66 VOCs analyzed were detected in both surveys. However, VOCs, especially MTBE and other gasoline oxygenates, were detected more frequently in the Focused Survey than in the Random Survey. MTBE was detected in 55.5 percent of the CWSs sampled in the Focused Survey and in 8.7 percent of those sampled in the Random Survey. Little difference in occurrence, however, was observed for trihalomethanes (THMs), which were detected in 16.4 and 14.8 percent of Focused Survey and Random Survey CWSs, respectively. This may indicate a pervasive occurrence of THMs in several source-water types, regardless of CWS size or geographic location.Using data at or above the method detection limit to assess temporal variability and anthropogenic factors associated with frequent detection of select VOCs, concentrations in the Focused Survey in ground-water, reservoir, and river source waters were typically less than 1 μg/L. Also, at a 95-percent confidence interval, no statistically significant differences were observed in comparing concentrations in the first and second ground-water sample. A weak seasonal pattern was observed in samples collected from reservoirs and lakes where gasoline oxygenates and other gasoline compounds were detected more frequently during spring and summer, presumedly a result of increased use of motorized watercraft during these seasons. In contrast, seasonal patterns were not observed in samples collected from rivers and streams. The lack of seasonal differences in river and stream source waters sampled may indicate a common and continuous source of contamination.The most frequently detected VOC (MTBE) and the two most frequently occurring subgroups of VOCs (gasoline oxygenates and THMs) detected in CWS source waters were further characterized to evaluate some anthropogenic factors that may better explain their frequent occurrence. Gasoline oxygenates were detected in 73.9 percent of all CWSs sampled. The concentration of gasoline oxygenates was slightly correlated with watercraft use on reservoirs inside MTBE high-use areas (r2=0.3783) but not outside of these areas (r2=0.0242). In general, the concentration of gasoline oxygenates increased as watercraft use increased. THMs were detected in 47.8 percent of the CWSs supplied by surface water. The frequent occurrence of THMs in reservoir source waters was determined to be an artifact of disinfection and the recycling of chlorinated water to these reservoirs. All CWSs with frequent occurrence of THMs served by a reservoir indicated that chlorine was added to waters for various reasons and that the chlorinated water was then released back to,or upstream of, the reservoir or lake that was sampled.
Deportment and management of metals produced during combustion of CCA-treated timbers.
Rogers, Joseph M; Stewart, Mary; Petrie, James G; Haynes, Brian S
2007-01-31
Experiments were conducted to study CCA-treated wood combustion over a range of temperature and oxygen concentrations with a view to understanding the factors affecting energy and metals recovery from waste treated timber. CCA-treated wood was burned in a furnace at temperatures from 400 to 940 degrees C and oxygen concentrations between 5 and 21%. The ash and condensed volatiles were digested for total concentrations of metals and subjected to leaching tests to determine the stabilized concentrations of metals. Arsenic volatilisation increased with increasing furnace temperature whereas the copper and chromium reported mainly to the ash product. The effect of oxygen concentration was weak although it appeared that more arsenic volatilises at higher oxygen concentrations. However, a larger proportion of the arsenic in the ash generated at lower oxygen concentrations is solubilised during leaching tests, with the result that the concentration of stabilized arsenic in the ash is relatively unaffected by oxygen concentration.
Rasmussen, Teresa; Gatotho, Jackline
2014-01-01
The population of Johnson County, Kansas increased by about 24 percent between 2000 and 2012, making it one of the most rapidly developing areas of Kansas. The U.S. Geological Survey, in cooperation with the Johnson County Stormwater Management Program, began a comprehensive study of Johnson County streams in 2002 to evaluate and monitor changes in stream quality. The purpose of this report is to describe water-quality variability and constituent transport for streams representing the five largest watersheds in Johnson County, Kansas during 2003 through 2011. The watersheds ranged in urban development from 98.3 percent urban (Indian Creek) to 16.7 percent urban (Kill Creek). Water-quality conditions are quantified among the watersheds of similar size (50.1 square miles to 65.7 square miles) using continuous, in-stream measurements, and using regression models developed from continuous and discrete data. These data are used to quantify variability in concentrations and loads during changing streamflow and seasonal conditions, describe differences among sites, and assess water quality relative to water-quality standards and stream management goals. Water quality varied relative to streamflow conditions, urbanization in the upstream watershed, and contributions from wastewater treatment facilities and storm runoff. Generally, as percent impervious surface (a measure of urbanization) increased, streamflow yield increased. Water temperature of Indian Creek, the most urban site which is also downstream from wastewater facility discharges, was higher than the other sites about 50 percent of the time, particularly during winter months. Dissolved oxygen concentrations were less than the Kansas Department of Health and Environment minimum criterion of 5 milligrams per liter about 15 percent of the time at the Indian Creek site. Dissolved oxygen concentrations were less than the criterion about 10 percent of the time at the rural Blue River and Kill Creek sites, and less than 5 percent of the time at the other sites. Low dissolved oxygen at all sites generally coincided with lowest streamflow and warmer water temperatures. Hourly dissolved oxygen concentrations less than 5 milligrams per liter were measured at all sites every year, indicating that even under normal climate conditions in non-urban watersheds such as Kill Creek, dissolved oxygen concentrations may not meet State aquatic-life criterion. Specific conductance was nearly always highest in Indian and Mill Creeks, which were the most urban streams with the largest upstream discharges from wastewater treatment facilities. The largest chloride concentrations and variability were recorded at urban sites and during winter. Each winter during the study period, chloride concentrations in the most urban site, Indian Creek, exceeded the U.S. Environmental Protection Agency-recommended criterion of 230 milligrams per liter for at least 10 consecutive days. The U.S. Environmental Protection Agency-recommended ecoregion criterion for turbidity was exceeded 30 (Indian Creek) to 50 (Blue River) percent of the time. The highest average annual streamflow-weighted suspendedsediment concentration during the study period was in Mill Creek, which has undergone rapid development that likely contributed to higher sediment concentrations. One of the largest suspended-sediment load events in Indian Creek was recorded in early May 2007 when about 25 percent of the total annual sediment load was transported during a period of about 2.25 days. A simultaneous load event was recorded in Kill Creek, when about 75 percent of the total annual sediment load was transported. Sediment yields generally increased as percent impervious surface increased. Computed hourly total nitrogen and total phosphorus concentrations and yields and streamflow-weighted concentrations generally were largest in Indian and Mill Creeks. Annual percent contribution of total nitrogen in the Blue River from wastewater treatment facility discharges ranged from 19 percent in 2010 to 60 percent in 2006. Annual percent contribution of total nitrogen in Indian Creek from wastewater treatment facility discharges ranged from 35 percent in 2010 to 93 percent in 2006. The largest percent nutrient contributions from wastewater discharges coincided with the smallest annual precipitation and streamflow volume, resulting in less contribution originating from runoff. Fecal indicator bacteria Escherichia coli density at the urban Indian Creek site was usually the largest of the five monitoring sites, with an annual median density that consistently exceeded the State primary contact criterion value but was less than the secondary contact criterion. Less than 1 percent of the total annual bacteria load in the Blue River and Indian Creek originated from wastewater discharges, except during 2006 when about 6 percent of the Indian Creek load originated from wastewater. Continuous water-quality monitoring provides a foundation for comprehensive evaluation and understanding of variability and loading characteristics in streams in Johnson County. Because several directly measured parameters are strongly correlated with particular constituents of interest, regression models provide a valuable tool for evaluating variability and loading on the basis of computed continuous data. Continuous data are particularly useful for characterizing nonpoint-source contributions from stormwater runoff. Transmission of continuous data in real-time makes it possible to rapidly detect and respond to potential environmental concerns. As monitoring technologies continue to improve, so does the ability to monitor additional constituents of interest, with smaller measurement error, and at lower operational cost. Continuous water-quality data including model information and computed concentrations and loads during the study period are available at http://nrtwq.usgs.gov/ks/.
Batt, Ryan D.; Carpenter, Stephen R.; Cole, Jonathan J.; Pace, Michael L.; Johnson, Robert A.
2013-01-01
Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems. PMID:24101479
Batt, Ryan D; Carpenter, Stephen R; Cole, Jonathan J; Pace, Michael L; Johnson, Robert A
2013-10-22
Environmental sensor networks are developing rapidly to assess changes in ecosystems and their services. Some ecosystem changes involve thresholds, and theory suggests that statistical indicators of changing resilience can be detected near thresholds. We examined the capacity of environmental sensors to assess resilience during an experimentally induced transition in a whole-lake manipulation. A trophic cascade was induced in a planktivore-dominated lake by slowly adding piscivorous bass, whereas a nearby bass-dominated lake remained unmanipulated and served as a reference ecosystem during the 4-y experiment. In both the manipulated and reference lakes, automated sensors were used to measure variables related to ecosystem metabolism (dissolved oxygen, pH, and chlorophyll-a concentration) and to estimate gross primary production, respiration, and net ecosystem production. Thresholds were detected in some automated measurements more than a year before the completion of the transition to piscivore dominance. Directly measured variables (dissolved oxygen, pH, and chlorophyll-a concentration) related to ecosystem metabolism were better indicators of the approaching threshold than were the estimates of rates (gross primary production, respiration, and net ecosystem production); this difference was likely a result of the larger uncertainties in the derived rate estimates. Thus, relatively simple characteristics of ecosystems that were observed directly by the sensors were superior indicators of changing resilience. Models linked to thresholds in variables that are directly observed by sensor networks may provide unique opportunities for evaluating resilience in complex ecosystems.
NASA Astrophysics Data System (ADS)
Tang, Baojun; Riisgård, Hans Ulrik
2018-03-01
The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.
Morace, Jennifer L.
2007-01-01
Growth and decomposition of dense blooms of Aphanizomenon flos-aquae in Upper Klamath Lake frequently cause extreme water-quality conditions that have led to critical fishery concerns for the region, including the listing of two species of endemic suckers as endangered. The Bureau of Reclamation has asked the U.S. Geological Survey (USGS) to examine water-quality data collected by the Klamath Tribes for relations with lake level. This analysis evaluates a 17-year dataset (1990-2006) and updates a previous USGS analysis of a 5-year dataset (1990-94). Both univariate hypothesis testing and multivariable analyses evaluated using an information-theoretic approach revealed the same results-no one overarching factor emerged from the data. No single factor could be relegated from consideration either. The lack of statistically significant, strong correlations between water-quality conditions, lake level, and climatic factors does not necessarily show that these factors do not influence water-quality conditions; it is more likely that these conditions work in conjunction with each other to affect water quality. A few different conclusions could be drawn from the larger dataset than from the smaller dataset examined in 1996, but for the most part, the outcome was the same. Using an observational dataset that may not capture all variation in water-quality conditions (samples were collected on a two-week interval) and that has a limited range of conditions for evaluation (confined to the operation of lake) may have confounded the exploration of explanatory factors. In the end, all years experienced some variation in poor water-quality conditions, either in timing of occurrence of the poor conditions or in their duration. The dataset of 17 years simply provided 17 different patterns of lake level, cumulative degree-days, timing of the bloom onset, and poor water-quality conditions, with no overriding causal factor emerging from the variations. Water-quality conditions were evaluated for their potential to be harmful to the endangered sucker species on the basis of high-stress thresholds-water temperature values greater than 28 degrees Celsius, dissolved-oxygen concentrations less than 4 milligrams per liter, and pH values greater than 9.7. Few water temperatures were greater than 28 degrees Celsius, and dissolved-oxygen concentrations less than 4 milligrams per liter generally were recorded in mid to late summer. In contrast, high pH values were more frequent, occurring earlier in the season and parallel with growth in the algal bloom. The 10 hypotheses relating water-quality variables, lake level, and climatic factors from the earlier USGS study were tested in this analysis for the larger 1990-2006 dataset. These hypotheses proposed relations between lake level and chlorophyll-a, pH, dissolved oxygen, total phosphorus, and water temperature. As in the previous study, no evidence was found in the larger dataset for any of these relations based on a seasonal (May-October) distribution. When analyzing only the June data, the previous 5-year study did find evidence for three hypotheses relating lake level to the onset of the bloom, chlorophyll-a concentrations, and the frequency of high pH values in June. These hypotheses were not supported by the 1990-2006 dataset, but the two hypotheses related to cumulative degree-days from the previous study were: chlorophyll-a concentrations were lower and onset of the algal bloom was delayed when spring air temperatures were cooler. Other relations between water-quality variables and cumulative degree-days were not significant. In an attempt to identify interrelations among variables not detected by univariate analysis, multiple regressions were performed between lakewide measures of low dissolved-oxygen concentrations or high pH values in July and August and six physical and biological variables (peak chlorophyll-a concentrations, degree-days, water temperature, median October-May discharg
Striped bass, temperature, and dissolved oxygen: a speculative hypothesis for environmental risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coutant, C.C.
1985-01-01
Striped bass Morone saxatilis has a paradoxical record of distribution and abundance, including population declines in coastal waters and variable success of freshwater introductions. This record is analyzed for consistency with a hypothesis that striped bass are squeezed between their thermal and dissolved oxygen preferences or requirements. A commonality among diverse field and laboratory observations supports an inherent thermal niche for the species that changes to lower temperatures as fish age. This shift can cause local conditions, especially warm surface strata and deoxygenated deep water, to be incompatible with the success of large fish. Crowding due to temperature preferences alonemore » or coupled with avoidance of low oxygen concentrations can lead to pathology and overfishing, which may contribute to population declines. Through a mixture of evidence and conjecture, the thermal niche-dissolved oxygen hypothesis is proposed as a unified perspective of the habitat requirements of the species that can aid in its study and management. 139 references, 12 figures.« less
Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.
2001-01-01
The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.
NASA Astrophysics Data System (ADS)
Gooré Bi, Eustache; Monette, Frédéric; Gasperi, Johnny
2015-04-01
Urban rainfall runoff has been a topic of increasing importance over the past years, a result of both the increase in impervious land area arising from constant urban growth and the effects of climate change on urban drainage. The main goal of the present study is to assess and analyze the correlations between rainfall variables and common indicators of urban water quality, namely event mean concentrations (EMCs) and event fluxes (EFs), in order to identify and explain the impacts of each of the main rainfall variables on the generation process of urban pollutants during wet periods. To perform this analysis, runoff from eight summer rainfall events that resulted in combined sewer overflow (CSO) was sampled simultaneously from two distinct catchment areas in order to quantify discharges at the respective outfalls. Pearson statistical analysis of total suspended solids (TSS), chemical oxygen demand (COD), carbonaceous biochemical oxygen demand at 5 days (CBOD5), total phosphorus (Ptot) and total kedjal nitrogen (N-TKN) showed significant correlations (ρ = 0.05) between dry antecedent time (DAT) and EMCs on one hand, and between total rainfall (TR) and the volume discharged (VD) during EFs, on the other. These results show that individual rainfall variables strongly affect either EMCs or EFs and are good predictors to consider when selecting variables for statistical modeling of urban runoff quality. The results also show that in a combined sewer network, there is a linear relationship between TSS event fluxes and COD, CBOD5, Ptot, and N-TKN event fluxes; this explains 97% of the variability of these pollutants which adsorb onto TSS during wet weather, which therefore act as tracers. Consequently, the technological solution selected for TSS removal will also lead to a reduction of these pollutants. Given the huge volumes involved, urban runoffs contribute substantially to pollutant levels in receiving water bodies, a situation which, in a climate change context, may get much worse as a result of more frequent, shorter, but more intense rainfall events.
Seasonal changes in the diurnal in-stream nitrate concentration oscillations
NASA Astrophysics Data System (ADS)
Rusjan, S.; Mikoš, M.
2009-04-01
A variability of seasonal changes in the diurnal in-stream NO3-N concentration oscillations was studied through high-frequency measurements of the stream-water's physical, chemical parameters (in-stream NO3-N concentration, water temperature, dissolved oxygen, pH) and hydrometeorological variables (stream discharge, solar radiation) under hydrologically stable conditions. The study was carried out in 2006, within the 42 km2 forested Padež stream watershed in the southwestern part of Slovenia, which is characterized by distinctive hydrogeological settings (flysch) and climate conditions (transitional area between the Mediterranean and continental climate). Fine temporal resolution of the data measured at 15 minute intervals enabled the identification of the main driving factors responsible for the seasonal variability in the diurnal pattern of the streamwater NO3-N concentrations vs. seasonal and diurnal behavior of meteorological and other water chemistry constituents. Seasonal variability of the shifts in daily maximum (up to 6 hours) and minimum NO3-N concentrations (between 1 and 3 hours) and changes in the amplitude of the daily NO3-N concentration oscillations (in order of 0.1-0.3 mg/l-N) offer supplementary evidence of the in-stream NO3-N processing by photoautotrophs. A wavelet analysis was further used to acquire clear, de-noised NO3-N concentration signals on which models in the form of Fourier series were build, reaching R2 values between 0.73 and 0.94. The models can be used to simulate the in-stream NO3-N oscillating signal in order to obtain more accurate assessment of the NO3-N exports from the forested watershed in different seasonal settings, undisturbed by the changing hydrological conditions.
Seasonal Changes in diurnal in-Stream Nitrate Concentration Oscillations
NASA Astrophysics Data System (ADS)
Rusjan, Simon; Mikoš, Matjaž; Mitja, Brilly; Vidmar, Andrej
2010-05-01
A variability of seasonal changes in the diurnal in-stream NO3-N concentration oscillations was studied through high-frequency measurements of the stream-water's physical, chemical parameters (in-stream NO3-N concentration, water temperature, dissolved oxygen, pH) and hydrometeorological variables (stream discharge, solar radiation) under hydrologically stable conditions. The study was carried out in 2006, within the 42 km2 forested Padež stream watershed in the southwestern part of Slovenia, which is characterized by distinctive hydrogeological settings (flysch) and climate conditions (transitional area between the Mediterranean and continental climate). Fine temporal resolution of the data measured at 15 minute intervals enabled the identification of the main driving factors responsible for the seasonal variability in the diurnal pattern of the streamwater NO3-N concentrations vs. seasonal and diurnal behavior of meteorological and other water chemistry constituents. Seasonal variability of the shifts in daily maximum (up to 6 hours) and minimum NO3-N concentrations (between 1 and 3 hours) and changes in the amplitude of the daily NO3-N concentration oscillations (in order of 0.1-0.3 mg/l-N) offer supplementary evidence of the in-stream NO3-N processing by photoautotrophs. A wavelet analysis was further used to acquire clear, de-noised NO3-N concentration signals on which models in the form of Fourier series were build, reaching R2 values between 0.73 and 0.94. The models can be used to simulate the in-stream NO3-N oscillating signal in order to obtain more accurate assessment of the NO3-N exports from the forested watershed in different seasonal settings, undisturbed by the changing hydrological conditions.
Changes in Chesapeake Bay Hypoxia over the Past Century
NASA Astrophysics Data System (ADS)
Friedrichs, M. A.; Kaufman, D. E.; Najjar, R.; Tian, H.; Zhang, B.; Yao, Y.
2016-02-01
The Chesapeake Bay, one of the world's largest estuaries, is among the many coastal systems where hypoxia is a major concern and where dissolved oxygen thus represents a critical factor in determining the health of the Bay's ecosystem. Over the past century, the population of the Chesapeake Bay region has almost quadrupled, greatly modifying land cover and management practices within the watershed. Simultaneously, the Chesapeake Bay has been experiencing a high degree of climate change, including increases in temperature, precipitation, and precipitation intensity. Together, these changes have resulted in significantly increased riverine nutrient inputs to the Bay. In order to examine how interdecadal changes in riverine nitrogen input affects biogeochemical cycling and dissolved oxygen concentrations in Chesapeake Bay, a land-estuarine-ocean biogeochemical modeling system has been developed for this region. Riverine inputs of nitrogen to the Bay are computed from a terrestrial ecosystem model (the Dynamic Land Ecosystem Model; DLEM) that resolves riverine discharge variability on scales of days to years. This temporally varying discharge is then used as input to the estuarine-carbon-biogeochemical model embedded in the Regional Modeling System (ROMS), which provides estimates of the oxygen concentrations and nitrogen fluxes within the Bay as well as advective exports from the Bay to the adjacent Mid-Atlantic Bight shelf. Simulation results from this linked modeling system for the present (early 2000s) have been extensively evaluated with in situ and remotely sensed data. Longer-term simulations are used to isolate the effect of increased riverine nitrogen loading on dissolved oxygen concentrations and biogeochemical cycling within the Chesapeake Bay.
Xu, Zuxin; Xiong, Lijun; Li, Huaizheng; Liao, Zhengliang; Yin, Hailong; Wu, Jun; Xu, Jin; Chen, Hao
2017-04-01
For storm drainages inappropriately connected with sewage, wet weather discharge is a major factor that adversely affects receiving waters. A study of the wet weather influences of rainfall-discharge variables on storm drainages connected with sewage was conducted in the downtown Shanghai area (374 ha). Two indicators, event mean concentration (EMC) and event pollutant load per unit area (EPL), were used to describe the pollution discharge during 20 rain events. The study showed that the total rainfall and discharge volume were important factors that affect the EMCs and EPLs of the chemical oxygen demand, total phosphorus, and especially those of NH 4 + -N. The pollutant concentrations at the beginning of the discharge and the discharge period were also major factors that influence the EMCs of these three pollutants. Regression relationships between the rainfall-discharge variables and discharge volume/ EPLs (R 2 = 0.824-0.981) were stronger than the relationships between the rainfall-discharge variables and EMCs. These regression equations can be considered reliable in the system, with a relative validation error of less than ±10% for the discharge volume, and less than ±20% for the EPLs. The results presented in this paper provide guidance for effectively controlling pollution in similar storm drainages.
Modeling the formation of iron sulfide scales using thermodynamic simulation software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderko, A.; Shuler, P.J.
1998-12-31
A program has been developed for generating stability diagrams that concisely represent the thermodynamic state of multicomponent, multiphase aqueous systems in wide ranges of temperature and component concentrations. The diagrams are based on a thermodynamic model that combines the Helgeson-Kirkham-Flowers equation of state for standard-state properties with a solutions nonideality model based on the activity coefficient expressions developed by Bromley and Pitzer. The diagrams offer a flexible choice of independent variables, which include component concentrations in addition to the potential and pH. The stability diagrams are used to predict the conditions that favor the formation of stable and metastable ironmore » sulfide species, which are commonly deposited under oil field-related conditions. First, the diagrams have been applied to establish a sequence of transformations that iron sulfides undergo as they age. The predicted transformation sequences take into account environmental variables (e.g., hydrogen sulfide concentration, oxygen availability, etc.). The predictions are in agreement with experimental data on iron sulfide formation at the iron/solution interface and in bulk solution. The understanding of iron sulfide transformation sequences makes it possible to simulate experimental studies of H{sub 2}S/CO{sub 2} corrosion in the presence or absence of oxygen. A comparison with laboratory corrosion rate data under gas pipeline conditions indicates that the magnitude of corrosion rates can be correlated with the predicted stability of metastable iron sulfide phases.« less
Graczyk, David J.; Lillie, Richard A.; Schlesser, Roger A.; Mason, John W.; Lyons, John D.; Kerr, Roger A.; Graczyk, David J.
1993-01-01
Low concentrations of dissolved oxygen constituted the most detrimental water-quality problem affecting smallmouth bass populations. Dissolved-oxygen concentrations were occasionally less than 3 milligrams per liter, a dissolved-oxygen concentration that may be detrimental to early-life stages of smallmouth bass in the streams; however, smallmouth bass were apparently able to withstand these low dissolved-oxygen concentrations and seem to have survived in some situations when dissolved-oxygen concentration decreased to1 milligram per liter.
Hemoglobin Function in Stored Blood.
1977-12-31
reverse aide if neceseary and Identify by block number) Blood preservation, Red Cell Function, 2,3- Diphosphoglycerate , Adenine, Inosine, Methylene Blue...2,3-DPG, pH, and glucose levels of whole blood and packed cells studied in CPD-adenine with the following variables: pH, glucose concentrations...aimed directly at maintaining red cell 2,3-DPG levels during blood storage in order for transfused blood to deliver oxygen to the tissues immediately
NASA Astrophysics Data System (ADS)
Klaessens, John H. G. M.; van Os, Sandra H. G.; Hopman, Jeroen C. W.; Liem, K. D.; van de Bor, Margot; Thijssen, Johan M.
2004-07-01
Goal: To investigate the influence of skin on the accuracy and precision of regional cerebral oxygenation measurements using CW-NIRS and to reduce the inter individual variability of NIRS measurements by normalization with data from an extra wavelength. Method: Three piglets (7.8-9.3 kg) were anesthetized, paralyzed and mechanically ventilated. Receiving optodes were placed over the left and right hemisphere (C3, C4 EEG placement code) and one emitting optode on Cz position (optode distance=1.8cm). Optical densities (OD) were measured for 3 wavelengths (767, 850, 905 nm) (OXYMON) during stable normoxic, mild and deep hypoxemic conditions (SaO2=100%, 80% and 60%) of one minute in each region. This was repeated 3 times: all optodes with skin (condition 1); one receiving optode directly on the skull (2); emitting and also receiving optode on the skull (3). The absolute cO2Hb, cHHb, ctHb concentrations (μmol/L) were calculated from the OD's and changes with respect to the SaO2=100% condition were estimated. Because ODs varied over a large range, the light intensity was externally attenuated to adapt to the range of the spectrophotometer. The data were then corrected for these attenuation effects and for pathlength changes caused by skin removal using the OD at the independent wavelength (λ=975nm). Results: Removal of the skin resulted in an increase of the absorption values (average 0.25 OD in condition 2 and 0.42 OD in condition 3 with respect to condition 1). The change from normoxic to medium, and to deep hypoxic conditions produced a decrease of cO2Hb (-15, and -29 μmol/L, respectively), an increase in cHHb (+16, and +35 μmol/L) and in ctHb (+1, and +5 μmol/L). Total skin removal yielded an extra change in cO2Hb (-5, -1 μmol/L), cHHb (+8, +9 μmol/L), and ctHb (+3, +8 μmol /L). The coefficient of variability of the absolute concentration changes was considerably decreased by the normalization of densities by the density obtained at 795 nm. Conclusion: Skin and subcutaneous layers influence the regional oxygenation measurements but the estimated concentration changes are dominated by changes of the oxygenation levels in the brain. Inter individual variability can be considerably reduced by the normalization.
Ransom, Katherine M.; Nolan, Bernard T.; Traum, Jonathan A.; Faunt, Claudia; Bell, Andrew M.; Gronberg, Jo Ann M.; Wheeler, David C.; Zamora, Celia; Jurgens, Bryant; Schwarz, Gregory E.; Belitz, Kenneth; Eberts, Sandra; Kourakos, George; Harter, Thomas
2017-01-01
Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50 ppb and probability of dissolved oxygen concentration to be below 0.5 ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971–2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative impact on nitrate predictions. Three-dimensional visualization indicates that nitrate predictions depend on the probability of anoxic conditions and other factors, and that nitrate predictions generally decreased with increasing groundwater age.
Ebbert, J.C.
2002-01-01
The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by photosynthesis and respiration. The upper limit on oxygen demand caused by the scour of anoxic bed sediment and subsequent oxidation of reduced iron and manganese is less than 1 mg/L. The actual demand, if any, is probably negligible.In August and September 2001, concentrations of dissolved oxygen in the lower Puyallup River did not fall below the water-quality standard of 8 mg/L, except at high tide when the saline water from Commencement Bay reached the monitor at river mile 2.9. The minimum concentration of dissolved oxygen (7.6 mg/L) observed at river mile 2.9 coincided with the maximum value of specific conductance. Because the dissolved-oxygen standard for marine water is 6.0 mg/L, the standard was not violated at river mile 2.9. The concentration of dissolved oxygen at river mile 1.8 in the White River dropped below the water-quality standard on two occasions in August 2001. The minimum concentration of 7.8 mg/L occurred on August 23, and a concentration of 7.9 mg/L was recorded on August 13. Because there was some uncertainty in the monitoring record for those days, it cannot be stated with certainty that the actual concentration of dissolved oxygen in the river dropped below 8 mg/L. However, at other times when the quality of the monitoring record was good, concentrations as low as 8.2 mg/L were observed at river mile 1.8 in the White River.
Goldstein, R.M.; Stauffer, J.C.; Larson, P.R.; Lorenz, D.L.
1996-01-01
Within the instream habitat data set, measures of habitat volume (channel width and depth) and habitat diversity were most significant in explaining the variability of the fish communities. The amount of nonagricultural land and riparian zone integrity from the terrestrial habitat data set were also useful in explaining fish community composition. Variability of mean monthly discharge and the frequency of high and low discharge events during the three years prior to fish sampling were the most influential of the hydrologic variables.The first two axes of the canonical correspondence analysis accounted for 43.3 percent of the variation in the fish community and 52.5 percent of the variation in the environmental-species relation. Water-quality indicators such as the percent of fine material in suspended sediment, minimum dissolved oxygen concentrations, minimum concentrations of dissolved organic carbon, and the range of concentrations of major ions and nutrients were the variables that were most important in the canonical correspondence analysis of water-quality data with fish. No single environmental variable or data set appeared to be more important than another in explaining variation in the fish community. The environmental factors affecting the fish communities of the Red River of the North are interrelated. For the most part, instream environmental conditions (instream habitat, hydrology, and water chemistry) appear to be more important in explaining variability in fish community composition than factors related to the agricultural nature of the basin.
A Theoretical Basis for the Transition to Denitrification at Nanomolar Oxygen Concentrations
NASA Astrophysics Data System (ADS)
Zakem, E.; Follows, M. J.
2016-02-01
Current climate change is likely to expand the size and intensity of marine oxygen minimum zones. How will this affect denitrification rates? Current global biogeochemical models typically prescribe a critical oxygen concentration below which anaerobic activity occurs, rather than resolve the underlying microbial processes. Here, we explore the dynamics of an idealized, simulated anoxic zone in which multiple prokaryotic metabolisms are resolved mechanistically, defined by redox chemistry and biophysical constraints. We first ask, what controls the critical oxygen concentration governing the favorability of aerobic or anaerobic respiration? The predicted threshold oxygen concentration varies as a function of the environment as well as of cell physiology, and lies within the nanomolar range. The model thus provides a theoretical underpinning for the recent observations of nanomolar oxygen concentrations in oxygen minimum zones. In the context of an idealized, two-dimensional intensified upwelling simulation, we also predict denitrification at oxygen concentrations orders of magnitude higher due to physical mixing, reconciling observations of denitrification over a similar range and demonstrating a decoupling of denitrification from the local oxygen concentration. In a sensitivity study with the idealized ocean model, we comment upon the relationship between the volume of anoxic waters and total denitrification.
Oxygen concentrators performance with nitrous oxide at 50:50 volume.
Moll, Jorge Ronaldo; Vieira, Joaquim Edson; Gozzani, Judymara Lauzi; Mathias, Lígia Andrade Silva Telles
2014-01-01
Few investigations have addressed the safety of oxygen from concentrators for use in anesthesia in association with nitrous oxide. This study evaluated the percent of oxygen from a concentrator in association with nitrous oxide in a semi-closed rebreathing circuit. Adult patients undergoing low risk surgery were randomly allocated into two groups, receiving a fresh gas flow of oxygen from concentrators (O293) or of oxygen from concentrators and nitrous oxide (O293N2O). The fraction of inspired oxygen and the percentage of oxygen from fresh gas flow were measured every 10 min. The ratio of FiO2/oxygen concentration delivered was compared at various time intervals and between the groups. Thirty patients were studied in each group. There was no difference in oxygen from concentrators over time for both groups, but there was a significant improvement in the FiO2 (p<0.001) for O293 group while a significant decline (p<0.001) for O293N2O. The FiO2/oxygen ratio varied in both groups, reaching a plateau in the O293 group. Pulse oximetry did not fall below 98.5% in either group. The FiO2 in the mixture of O293 and nitrous oxide fell during the observation period although oxygen saturation was higher than 98.5% throughout the study. Concentrators can be considered a stable source of oxygen for use during short anesthetic procedures, either pure or in association with nitrous oxide at 50:50 volume. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Pozzo, Joffrey; Fournier, Pauline; Delmas, Clément; Vervueren, Paul-Louis; Roncalli, Jérôme; Elbaz, Meyer; Galinier, Michel; Lairez, Olivier
2017-02-01
Functional status is one of the main concerns in the management of heart failure (HF). Recently, the FAIR-HF and CONFIRM-HF trials showed that correcting anaemia using intravenous iron supplementation improved functional variables in patients with absolute or relative iron deficiency. Relative iron deficiency is supposed to be a marker of HF severity, as ferritin concentration increases with advanced stages of HF, but little is known about the impact of absolute iron deficiency (AID). To study the impact of AID on functional variables and survival in patients with chronic systolic HF. One hundred and thirty-eight non-anaemic patients with chronic systolic HF were included retrospectively. Patients were divided into two groups according to iron status: the AID group, defined by a ferritin concentration<100μg/L and the non-AID group, defined by a ferritin concentration≥100μg/L. Functional, morphological and biological variables were collected, and survival was assessed. Patients in the AID group had a poorer 6-minute walking test (342 vs. 387m; P=0.03) and poorer peak exercise oxygen consumption (13.8 vs. 16.0mL/min/kg; P=0.01). By multivariable analysis, ferritin<100μg/L was associated with impaired capacity of effort, assessed by peak exercise oxygen consumption. By multivariable analysis, there was no difference in total mortality between groups, with a mean follow-up of 5.1±1.1 years. The poorer functional evaluations in iron-deficient patients previously reported are not caused by the merging of two different populations (i.e. patients with absolute or relative iron deficiency). Our study has confirmed that non-anaemic HF patients with AID have poorer peak oxygen consumption. However, AID has no impact on the survival of these patients. Copyright © 2017. Published by Elsevier Masson SAS.
Ma, Yi-Ran; Ren, Si-Hua; He, Yu-Xin; Wang, Lin-Lin; Jin, Li; Hao, Yi-Wen
2012-10-01
This study purposed to investigate the effects of different oxygen concentrations and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and their possible mechanisms through simulating oxygen environment to which the peripheral blood HSC are subjected in peripheral blood HSCT. The proliferation ability, cell cycle, directed differentiation ability, ROS level and hematopoietic reconstitution ability of Lin(-)c-kit(+)Sca-1(+) BMHSC were detected by using in vitro amplification test, directional differentiation test, cell cycle analysis, ROS assay and transplantation of Lin(-)c-kit(+)Sca-1(+) HSC from sublethally irradiated mice respectively. The results showed that oxygen concentrations lower than normal oxygen concentration, especially in hypoxic oxygen environment, could reduce ROS generation and amplify more primitive CD34(+)AC133(+) HSC and active CD34(+) HSC, and maintain more stem cells in the G(0)/G(1) phase, which is more helpful to the growth of CFU-S and viability of mice. At the same time, BMHSC exposed to normal oxygen level or inconstant and greatly changed oxygen concentrations could produce a high level of ROS, and the above-mentioned features and functional indicators are relatively low. It is concluded that ROS levels of HSC in BMHSCT are closely related with the oxygen concentration surrounding the cells and its stability. Low oxygen concentration and antioxidant intervention are helpful to transplantation of BMHSC.
Brightbill, Robin A.; Koerkle, Edward H.
2003-01-01
The Clean Water Action Plan of 1998 provides a blueprint for federal agencies to work with states, tribes, and other stakeholders to protect and restore the Nation's water resources. The plan includes an initiative that addresses the nutrient-enrichment problem of lakes and streams across the United States. The U.S. Environmental Protection Agency (USEPA) is working to set nutrient criteria by nationwide nutrient ecoregions that are an aggregation of the Omernik level III ecoregions. Because low levels of nutrients are necessary for healthy streams and elevated concentrations can cause algal blooms that deplete available oxygen and kill off aquatic organisms, criteria levels are to be set, in part, using the relation between chlorophyll a and concentrations of total nitrogen and total phosphorus.Data from Pennsylvania and West Virginia, collected between 1990 and 1998, were analyzed for relations between chlorophyll a, nutrients, and other explanatory variables. Both phytoplankton and periphyton chlorophyll a concentrations from lakes and streams were analyzed separately within each of the USEPA nutrient ecoregions located within the boundaries of the two states. These four nutrient ecoregions are VII (Mostly Glaciated Dairy), VIII (Nutrient Poor, Largely Glaciated Upper Midwest and Northeast), IX (Southeastern Temperate Forested Plains and Hills), and XI (Central and Eastern Forested Uplands).Phytoplankton chlorophyll a concentrations in lakes were related to total nitrogen, total phosphorus, Secchi depth, concentration of dissolved oxygen, pH, water temperature, and specific conductivity. In nutrient ecoregion VII, nutrients were not significant predictors of chlorophyll a concentrations. Total nitrogen, Secchi depth, and pH were significantly related to phytoplankton chlorophyll a concentrations in nutrient ecoregion IX. Lake periphyton chlorophyll a concentrations from nutrient ecoregion XI were related to total phosphorus rather than total nitrogen, Secchi depth, and pH. In all cases, Secchi depth was inversely related to the chlorophyll a concentrations in a lake. Nutrient ecoregion VIII had too few samples for any type of analysis.Streams within the different nutrient ecoregions had many variables that were significantly related to periphyton chlorophyll a concentrations. These variables consisted of total nitrogen, total phosphorus, drainage area, percent forest cover, several macroinvertebrate indices, pH, basin slope, total residue, total suspended solids, and water temperature. Nutrients were not significantly related to periphyton chlorophyll a in streams within nutrient ecoregions VII or IX but were in nutrient ecoregion XI. Drainage area, percent forest cover, and several invertebrate indices were significant variables in nutrient ecoregion VII. Percent forest cover and several invertebrate indices had a negative relation with chlorophyll a concentrations in these streams. Percent forest cover and basin slope had a negative effect on periphyton in nutrient ecoregion IX streams. Light availability was more critical to periphyton growth in streams than nutrients.Ecoregion XI had enough samples to do seasonal analyses. Summer-season periphyton chlorophyll a concentrations in nutrient ecoregion XI streams were positively related to total phosphorus and drainage area but negatively related to percent forest cover. Summer-season phytoplankton in streams was related to different variables within the same nutrient ecoregion. Both total nitrogen and total phosphorus were positively related with chlorophyll a concentrations as well as basin slope, total residue, and total suspended solids but negatively related to pH. The winter stream phytoplankton chlorophyll a concentrations were related to water temperature only.
Plant-mediated Sediment Oxygenation in Coastal Wetlands
NASA Astrophysics Data System (ADS)
Koop-Jakobsen, K.
2016-02-01
Belowground sediment oxygenation by wetland plants is an important mechanism controlling many microbial processes and chemical fluxes in coastal wetlands. Although transport of oxygen via the arenthyma tissue and subsequent oxygen loss across root surfaces is well-documented for Spartina grasses, only few studies have measured the oxygenation of sediment surrounding roots and rhizomes. In this study, the degree of sediment oxygenation in Spartina anglica rhizospheres was assessed in situ using a novel multifiber optode system inserting 100 oxygen sensing fiber optodes directly into the rhizosphere. Two closely located, but morphologically different, S. anglica populations growing in permeable sandy sediment and tidal flat deposit, respectively, were investigated. No oxygen was detected inside the rhizospheres at any depth in either location indicating that plant-mediated sediment oxygenation in S. anglica had a limited impact on the bulk anoxic sediment. This was substantiated by planar optode studies showing that sediment oxygenation was confined to the immediate vicinity of the root tips of adventitious root and root hairs stretching only up to 1.5mm away from the roots surface in permeable sandy sediment and 0.4mm in tidal flat deposit, which had a substantially higher oxygen demand. This contrasts previous studies estimating that more than half of the S. anglica rhizosphere volume may be oxygenated, and thereby suggests a high variability in the degree of sediment oxygenation among different S. anglica populations. Furthermore, there may be a significant difference in the degree of sediment oxygenation among different Spartina species; our recent in situ investigation of oxygen profiles in a Spartina alterniflora-dominated marsh suggested that oxygen leakage here may keep the bulk sediment at low oxygen concentration ranging from 0.5-4μM.
NASA Astrophysics Data System (ADS)
von Siebenthal, K.; Keel, M.; Dietz, V.; Fauchere, J. C.; Martin, X.; Wolf, Martin; Duc, G.; Bucher, H. U.
1996-10-01
Near-infrared spectrophotometry (NIRS) is a noninvasive method for measuring oxygenated and deoxygenated hemoglobin in the neonatal brain. Using oxygen as a tracer, it is possible to calculate cerebral blood flow (cbf) and hemoglobin concentration (cHbc), which corresponds to cerebral blood volume, by inducing small changes in arterial oxygen saturation. Variability of tcpO2 is considered to be associated with severe retinopathy of prematurity (ROP). A preliminary analysis without control found a 51 percent incidence of ROP in infants subjected to NIRS measurements whereas among infants who were not exposed to oxygen changes, only 29 percent developed ROP. A controlled study with matched pairs was performed. Thirty-nine premature newborns who had received NIRS recordings were matched with 39 out of 172 infants who had not received NIRS. Using this controlled study design there was no difference in the incidence and severity of ROP between the two groups. The conclusions are that: 1) small changes in oxygen saturation of 3 to 10 percent to measure cbf and cHbc did not increase the incidence or the degree of severity of ROP. 2) A controlled study design is important. Analyses of uncontrolled data would have led to the conclusion that oxygen changes as used with NIRS increase the risk of ROP.
NASA Astrophysics Data System (ADS)
Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.
2011-03-01
Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.
NASA Astrophysics Data System (ADS)
Spassov, D.; Paskaleva, A.; Fröhlich, K.; Ivanov, Tz
2017-01-01
The influence of the oxygen content in the dielectric layer and the effect of the bottom electrode on the resistive switching in Au/Pt/TaOx/TiN and Au/Pt/TaOx/Ta structures have been studied. The sputtered TaOx layers have been prepared by using oxygen concentrations of 10 or 7% O 2 in the Ar+O2 working ambient as well as by a gradual variation of the O2 content in the deposition process from 5 to 10%. Two deposition regimes for TiN electrodes have been investigated: reactive sputtering of Ti target in Ar+N2 ambient, and sputtering of TiN target in pure Ar. Bipolar resistive switching behavior is observed in all examined structures. It is demonstrated that the resistive switching effect is affected by the oxygen content in the working ambient as well as by the type and the deposition conditions of the bottom electrodes. Most stable effect, with ON/OFF ratio above 100 is obtained in TaOx deposited with variable O2 content in the ambient. The obtained switching voltage between the high resistive and low resistive state (SET) is about -1.5 V and the reverse changeover (RESET) is ∼2 V. A well pronounced resistive switching is achieved with reactively sputtered TiN while for the other bottom electrodes the effect is negligible.
Olsson, Richard; Carlsson, Per-Ola
2011-01-01
OBJECTIVE The blood perfusion of pancreatic islets is highly variable and tightly regulated by the blood glucose concentration. Thus, oxygen levels are considered crucial for islet metabolism and function. Although islet oxygenation has been extensively studied in vitro, little is known about it in vivo. The current study aimed to investigate the oxygenation of the endocrine pancreas in vivo. RESEARCH DESIGN AND METHODS The reductive metabolism of 2-nitroimidazoles, such as pimonidazole, has previously been extensively used in studies of oxygen metabolism both in vitro and in vivo. At tissue oxygen levels <10 mmHg, pimonidazole accumulates intracellularly and may thereafter be detected by means of immunohistochemistry. Islet oxygenation was investigated in normal, 60% partially pancreatectomized, as well as whole-pancreas–transplanted rats. Moreover, leucine-dependent protein biosynthesis was performed using autoradiography to correlate islet oxygenation with metabolic activity. RESULTS In vivo, 20–25% of all islets in normal rats showed low oxygenation (pO2 <10 mmHg). Changes in the islet mass, by means of whole-pancreas transplantation, doubled the fraction of low-oxygenated islets in the endogenous pancreas of transplanted animals, whereas this fraction almost completely disappeared after a 60% partial pancreatectomy. Moreover, oxygenation was related to metabolism, since well-oxygenated islets in vivo had 50% higher leucine-dependent protein biosynthesis, which includes (pro)insulin biosynthesis. CONCLUSIONS The current study suggests a novel subpopulation of dormant low-oxygenated islets, which seems to constitute a functional reserve of endocrine cells. This study establishes a novel perspective on the use of the endocrine pancreas in glucose homeostasis. PMID:21788581
Water Masses in the Eastern Mediterranean Sea: An Analysis of Measured Isotopic Oxygen
NASA Astrophysics Data System (ADS)
de Ruggiero, Paola; Zanchettin, Davide; Bensi, Manuel; Hainbucher, Dagmar; Stenni, Barbara; Pierini, Stefano; Rubino, Angelo
2018-04-01
We investigate aspects of the water mass structure of the Adriatic and Ionian basins (Eastern Mediterranean Sea) and their interdecadal variability through statistical analyses focused on δ18Ο measurements carried out in 1985, 1990, and 2011. In particular, the more recent δ18Ο measurements extend throughout the entire water column and constitute, to the best of our knowledge, the largest synoptic dataset encompassing different sub-basins of the Mediterranean Sea. We study the statistical linkages between temperature, salinity, dissolved oxygen and δ18Ο. We find that δ18Ο is largely independent from the other parameters, and it can be used to trace major water masses that are typically found in the basins, including the Adriatic Dense Water, the Levantine Intermediate Water, and the Cretan Intermediate and Dense Waters. Finally, we explore the possibility of using δ18Ο concentration as a proxy for dominant modes of large-scale oceanic variability in the Mediterranean Sea.
NASA Technical Reports Server (NTRS)
Bailey, Edward; Drake, Michael J.
2004-01-01
The distinctive pattern of element concentrations in the upper mantle provides essential evidence in our attempts to understand the accretion and differentiation of the Earth (e.g., Drake and Righter, 2002; Jones and Drake, 1986; Righter et al., 1997; Wanke 1981). Core formation is best investigated through use of metal/silicate partition coefficients for siderophile elements. The variables influencing partition coefficients are temperature, pressure, the major element compositions of the silicate and metal phases, and oxygen fugacity. Examples of studies investigating the effects of these variables on partitioning behavior are: composition of the metal phase by Capobianco et al. (1999) and Righter et al. (1997); silicate melt composition by Watson (1976), Walter and Thibault (1995), Hillgren et al. (1996), Jana and Walker (1997), and Jaeger and Drake (2000); and oxygen fugacity by Capobianco et al. (1999), and Walter and Thibault (1995). Here we address the relative influences of silicate melt composition, pressure and temperature.
Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations
NASA Astrophysics Data System (ADS)
Hosny, Neveen A.; Lee, David A.; Knight, Martin M.
2012-01-01
Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)3]2+, was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)3]2+ characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.
Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.
Hosny, Neveen A; Lee, David A; Knight, Martin M
2012-01-01
Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.
Scales and sources of pH and dissolved oxygen variability in a shallow, upwelling-driven ecosystem
NASA Astrophysics Data System (ADS)
Tanner, C. A.; Martz, T.; Levin, L. A.
2011-12-01
In the coastal zone extreme variability in carbonate chemistry and oxygen is driven by fluctuations in temperature, salinity, air-sea gas exchange, mixing processes, and biology. This variability appears to be magnified in upwelling-driven ecosystems where low oxygen and low pH waters intrude into shallow depths. The oxygen and carbon chemistry signal can be further confounded by highly productive ecosystems such as kelp beds where photosynthesis and respiration consume and release significant amounts of dissolved inorganic carbon and oxygen. This variability poses a challenge for scientists assessing the impacts of climate change on nearshore ecosystems. We deployed physical & biogeochemical sensors in order to observe these processes in situ. The "SeapHOx" instruments used in this study consist of a modified Honeywell Durafet° ISFET pH sensor, an Aanderra Optode Oxygen sensor, and a SBE-37 conductivity, temperature, pressure sensor. The instruments were deployed on and around the La Jolla Kelp Forest at a variety of depths. Our goals were to (a) characterize the link between pH and oxygen and identify the magnitude of pH and oxygen variability over a range of intra-annual time scales and (b) investigate spatial patterns of pH and oxygen variability associated with depth, proximity to shore, and presence of kelp. Results thus far reveal a strong relationship between oxygen and pH. Temporal variability is greatest at the semidiurnal frequency where pH (at 7 m) can range up to 0.3 units and oxygen can change 50% over 6 h. Diurnal variability is a combination of the diurnal tidal component and diel cycles of production and respiration. Event-scale dynamics associated with upwelling can maintain pH and oxygen below 7.8 units and 200 μmol kg-1, respectively, for multiple days. Frequent current reversals drive changes in the observed oxygen and pH variability. When alongshore currents are flowing southward, driven by upwelling-favorable winds, the magnitude of semidiurnal pH variability increases 5-fold relative to the magnitude of change during northward alongshore. Applying an empirically-determined alkalinity relationship, we conclude that changes in the carbonate chemistry parameters are largely driven by changes in total carbon. On small spatial scales, cross-shore differences exist in mean oxygen and pH but differences in alongshore mean oxygen and pH at a given depth appears to be negligible. Cross-shore differences can equate to a 0.05 pH unit decrease and 25 μmol kg-1 oxygen decrease over 1 km at a given depth. Strong spatial variability in pH and oxygen conditions exist over vertical gradients in the kelp forest, with mean pH at the surface (7m) being 0.2 pH units greater than at the bottom (17m) and mean oxygen being 104 μmol kg-1 greater. The observed range of pH (7.55-8.22) observed in this shallow environment during the course of a year is greater than open ocean predictions for a global mean pH reduction of 0.2-0.3 units predicted by the year 2100. These results suggest that organisms on exposed upwelling coasts may be adapted to a range of pH conditions and highlight the need for scientists to consider biological response to varying scales of pH change in order to develop more realistic predictions of the impacts of climate change for the coastal zone.
Osmotic phenomena in application for hyperbaric oxygen treatment.
Babchin, A; Levich, E; Melamed M D, Y; Sivashinsky, G
2011-03-01
Hyperbaric oxygen (HBO) treatment defines the medical procedure when the patient inhales pure oxygen at elevated pressure conditions. Many diseases and all injuries are associated with a lack of oxygen in tissues, known as hypoxia. HBO provides an effective method for fast oxygen delivery in medical practice. The exact mechanism of the oxygen transport under HBO conditions is not fully identified. The objective of this article is to extend the colloid and surface science basis for the oxygen transport in HBO conditions beyond the molecular diffusion transport mechanism. At a pressure in the hyperbaric chamber of two atmospheres, the partial pressure of oxygen in the blood plasma increases 10 times. The sharp increase of oxygen concentration in the blood plasma creates a considerable concentration gradient between the oxygen dissolved in the plasma and in the tissue. The concentration gradient of oxygen as a non-electrolyte solute causes an osmotic flow of blood plasma with dissolved oxygen. In other words, the molecular diffusion transport of oxygen is supplemented by the convective diffusion raised due to the osmotic flow, accelerating the oxygen delivery from blood to tissue. A non steady state equation for non-electrolyte osmosis is solved asymptotically. The solution clearly demonstrates two modes of osmotic flow: normal osmosis, directed from lower to higher solute concentrations, and anomalous osmosis, directed from higher to lower solute concentrations. The fast delivery of oxygen from blood to tissue is explained on the basis of the strong molecular interaction between the oxygen and the tissue, causing an influx of oxygen into the tissue by convective diffusion in the anomalous osmosis process. The transport of the second gas, nitrogen, dissolved in the blood plasma, is also taken into the consideration. As the patient does not inhale nitrogen during HBO treatment, but exhales it along with oxygen and carbon dioxide, the concentration of nitrogen in blood plasma drops and the nitrogen concentration gradient becomes directed from blood to tissue. On the assumption of weak interaction between the inert nitrogen and the human tissue, normal osmosis for the nitrogen transport takes place. Thus, the directions of anomalous osmotic flow caused by the oxygen concentration gradient coincide with the directions of normal osmotic flow, caused by the nitrogen concentration gradient. This leads to the conclusion that the presence of nitrogen in the human body promotes the oxygen delivery under HBO conditions, rendering the overall success of the hyperbaric oxygen treatment procedure. 2010 Elsevier B.V. All rights reserved.
Within-session responses to high-intensity interval training in spinal cord injury.
Astorino, Todd Anthony; Thum, Jacob S
2018-02-01
Completion of high-intensity interval training (HIIT) increases maximal oxygen uptake and health status, yet its feasibility in persons with spinal cord injury is unknown. To compare changes in cardiorespiratory and metabolic variables between two interval training regimes and moderate intensity exercise. Nine adults with spinal cord injury (duration = 6.8 ± 6.2 year) initially underwent determination of peak oxygen uptake. During subsequent sessions, they completed moderate intensity exercise, HIIT, or sprint interval training. Oxygen uptake, heart rate, and blood lactate concentration were measured. Oxygen uptake and heart rate increased (p < 0.05) during both interval training sessions and were similar (p > 0.05) to moderate intensity exercise. Peak oxygen uptake and heart rate were higher (p < 0.05) with HIIT (90% peak oxygen uptake and 99% peak heart rate) and sprint interval training (80% peak oxygen uptake and 96% peak heart rate) versus moderate intensity exercise. Despite a higher intensity and peak cardiorespiratory strain, all participants preferred interval training versus moderate exercise. Examining long-term efficacy and feasibility of interval training in this population is merited, considering that exercise intensity is recognized as the most important variable factor of exercise programming to optimize maximal oxygen uptake. Implications for Rehabilitation Spinal cord injury (SCI) reduces locomotion which impairs voluntary physical activity, typically resulting in a reduction in peak oxygen uptake and enhanced chronic disease risk. In various able-bodied populations, completion of high-intensity interval training (HIIT) has been consistently reported to improve cardiorespiratory fitness and other health-related outcomes, although its efficacy in persons with SCI is poorly understood. Data from this study in 9 men and women with SCI show similar changes in oxygen uptake and heart in response to HIIT compared to a prolonged bout of aerobic exercise, although peak values were higher in response to HIIT. Due to the higher peak metabolic strain induced by HIIT as well as universal preference for this modality versus aerobic exercise as reported in this study, further work testing utility of HIIT in this population is merited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, A., E-mail: amitknp@postech.ac.kr, E-mail: amit.knp02@gmail.com, E-mail: hwanghs@postech.ac.kr; Song, J.; Hwang, H., E-mail: amitknp@postech.ac.kr, E-mail: amit.knp02@gmail.com, E-mail: hwanghs@postech.ac.kr
In order to obtain reliable multilevel cell (MLC) characteristics, resistance controllability between the different resistance levels is required especially in resistive random access memory (RRAM), which is prone to resistance variability mainly due to its intrinsic random nature of defect generation and filament formation. In this study, we have thoroughly investigated the multilevel resistance variability in a TaO{sub x}-based nanoscale (<30 nm) RRAM operated in MLC mode. It is found that the resistance variability not only depends on the conductive filament size but also is a strong function of oxygen vacancy concentration in it. Based on the gained insights through experimentalmore » observations and simulation, it is suggested that forming thinner but denser conductive filament may greatly improve the temporal resistance variability even at low operation current despite the inherent stochastic nature of resistance switching process.« less
Uquillas, E; Dart, C M; Perkins, N R; Dart, A J
2018-01-01
To compare the effects of two concentrations of oxygen delivered to the anaesthetic breathing circuit on oxygenation in mechanically ventilated horses anaesthetised with isoflurane and positioned in dorsal or lateral recumbency. Selected respiratory parameters and blood lactate were measured and oxygenation indices calculated, before and during general anaesthesia, in 24 laterally or dorsally recumbent horses. Horses were randomly assigned to receive 100% or 60% oxygen during anaesthesia. All horses were anaesthetised using the same protocol and intermittent positive pressure ventilation (IPPV) was commenced immediately following anaesthetic induction and endotracheal intubation. Arterial blood gas analysis was performed and oxygenation indices calculated before premedication, immediately after induction, at 10 and 45 min after the commencement of mechanical ventilation, and in recovery. During anaesthesia, the arterial partial pressure of oxygen was adequate in all horses, regardless of position of recumbency or the concentration of oxygen provided. At 10 and 45 min after commencing IPPV, the arterial partial pressure of oxygen was lower in horses in dorsal recumbency compared with those in lateral recumbency, irrespective of the concentration of oxygen supplied. Based on oxygenation indices, pulmonary function during general anaesthesia in horses placed in dorsal recumbency was more compromised than in horses in lateral recumbency, irrespective of the concentration of oxygen provided. During general anaesthesia, using oxygen at a concentration of 60% instead of 100% maintains adequate arterial oxygenation in horses in dorsal or lateral recumbency. However, it will not reduce pulmonary function abnormalities induced by anaesthesia and recumbency. © 2017 Australian Veterinary Association.
Saiki, M.K.; Monda, D.P.; Bellerud, B.L.
1999-01-01
Resource managers hypothesize that occasional fish kills during summer-early fall in Upper Klamath Lake, Oregon, may be linked to unfavorable water quality conditions created by massive algal blooms. In a preliminary effort to address this concern, short-term (96-h-long) laboratory tests were conducted with larval and juvenile Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers to determine the upper median lethal concentrations (LC50s; also referred to as median tolerance limits) for pH, un-ionized ammonia, and water temperature, and the lower LC50s for dissolved oxygen. The mean LC50s varied among species and life stages as follows: for pH, 10.30-10.39; for un-ionized ammonia, 0.48-1.06 mg litre-1; for temperature, 30.35-31.82??C; and for dissolved oxygen, 1.34-2.10 mg litre-1. Comparisons of 95% confidence limits indicated that, on average, the 96-h LC50s were not significantly different from those computed for shorter exposure times (i.e., 24 h, 48 h, and 72 h). According to two-way analysis of variance, LC50s for the four water quality variables did not vary significantly (p > 0.05) between fish species. However, LC50s for pH (exposure times of 24 h and 48 h) and dissolved oxygen (exposure times of 48 h, 72 h, and 96 h) differed significantly (p ??? 0.05) between life stages, whereas LC50s for un-ionized ammonia and water temperature did not exhibit significant differences. In general, larvae were more sensitive than juveniles to high pH and low dissolved oxygen concentrations. When compared to ambient water quality conditions in Upper Klamath Lake, our results strongly suggest that near-anoxic conditions associated with the senescence phase of algal blooms are most likely to cause high mortalities of larval and juvenile suckers.
Lee, Michael T.; Asquith, William H.; Oden, Timothy D.
2012-01-01
In December 2005, the U.S. Geological Survey (USGS), in cooperation with the City of Houston, Texas, began collecting discrete water-quality samples for nutrients, total organic carbon, bacteria (Escherichia coli and total coliform), atrazine, and suspended sediment at two USGS streamflow-gaging stations that represent watersheds contributing to Lake Houston (08068500 Spring Creek near Spring, Tex., and 08070200 East Fork San Jacinto River near New Caney, Tex.). Data from the discrete water-quality samples collected during 2005–9, in conjunction with continuously monitored real-time data that included streamflow and other physical water-quality properties (specific conductance, pH, water temperature, turbidity, and dissolved oxygen), were used to develop regression models for the estimation of concentrations of water-quality constituents of substantial source watersheds to Lake Houston. The potential explanatory variables included discharge (streamflow), specific conductance, pH, water temperature, turbidity, dissolved oxygen, and time (to account for seasonal variations inherent in some water-quality data). The response variables (the selected constituents) at each site were nitrite plus nitrate nitrogen, total phosphorus, total organic carbon, E. coli, atrazine, and suspended sediment. The explanatory variables provide easily measured quantities to serve as potential surrogate variables to estimate concentrations of the selected constituents through statistical regression. Statistical regression also facilitates accompanying estimates of uncertainty in the form of prediction intervals. Each regression model potentially can be used to estimate concentrations of a given constituent in real time. Among other regression diagnostics, the diagnostics used as indicators of general model reliability and reported herein include the adjusted R-squared, the residual standard error, residual plots, and p-values. Adjusted R-squared values for the Spring Creek models ranged from .582–.922 (dimensionless). The residual standard errors ranged from .073–.447 (base-10 logarithm). Adjusted R-squared values for the East Fork San Jacinto River models ranged from .253–.853 (dimensionless). The residual standard errors ranged from .076–.388 (base-10 logarithm). In conjunction with estimated concentrations, constituent loads can be estimated by multiplying the estimated concentration by the corresponding streamflow and by applying the appropriate conversion factor. The regression models presented in this report are site specific, that is, they are specific to the Spring Creek and East Fork San Jacinto River streamflow-gaging stations; however, the general methods that were developed and documented could be applied to most perennial streams for the purpose of estimating real-time water quality data.
NASA Astrophysics Data System (ADS)
Geng, Xiaolong; Boufadel, Michel C.; Lee, Kenneth; Abrams, Stewart; Suidan, Makram
2015-05-01
The aerobic biodegradation of oil in tidally influenced beaches was investigated numerically in this work using realistic beach and tide conditions. A numerical model BIOMARUN, coupling a multiple-Monod kinetic model BIOB to a density-dependent variably saturated groundwater flow model 2-D MARUN, was used to simulate the biodegradation of low-solubility hydrocarbon and transport processes of associated solute species (i.e., oxygen and nitrogen) in a tidally influenced beach environment. It was found that different limiting factors affect different portions of the beach. In the upper intertidal zone, where the inland incoming nutrient concentration was large (1.2 mg N/L), oil biodegradation occurred deeper in the beach (i.e., 0.3 m below the surface). In the midintertidal zone, a reversal was noted where the biodegradation was fast at shallow locations (i.e., 0.1 m below the surface), and it was due to the decrease of oxygen with depth due to consumption, which made oxygen the limiting factor for biodegradation. Oxygen concentration in the midintertidal zone exhibited two peaks as a function of time. One peak was associated with the high tide, when dissolved oxygen laden seawater filled the beach and a second oxygen peak was observed during low tides, and it was due to pore oxygen replenishment from the atmosphere. The effect of the capillary fringe (CF) height was investigated, and it was found that there is an optimal CF for the maximum biodegradation of oil in the beach. Too large a CF (i.e., very fine material) would attenuate oxygen replenishment (either from seawater or the atmosphere), while too small a CF (i.e., very coarse material) would reduce the interaction between microorganisms and oil in the upper intertidal zone due to rapid reduction in the soil moisture at low tide. This article was corrected on 22 JUN 2015. See the end of the full text for details.
Spaeder, Michael C; Klugman, Darren; Skurow-Todd, Kami; Glass, Penny; Jonas, Richard A; Donofrio, Mary T
2017-03-01
To evaluate the value of perioperative cerebral near-infrared spectroscopy monitoring using variability analysis in the prediction of neurodevelopmental outcomes in neonates undergoing surgery for congenital heart disease. Retrospective cohort study. Urban, academic, tertiary-care children's hospital. Neonates undergoing surgery with cardiopulmonary bypass for congenital heart disease. Perioperative monitoring of continuous cerebral tissue oxygenation index by near-infrared spectroscopy and subsequent neurodevelopmental testing at 6, 15, and 21 months of age. We developed a new measure, cerebral tissue oxygenation index variability, using the root mean of successive squared differences of averaged 1-minute cerebral tissue oxygenation index values for both the intraoperative and first 24-hours postoperative phases of monitoring. There were 62 neonates who underwent cerebral tissue oxygenation index monitoring during surgery for congenital heart disease and 44 underwent subsequent neurodevelopmental testing (12 did not survive until testing and six were lost to follow-up). Among the 44 monitored patients who underwent neurodevelopmental testing, 20 (45%) had abnormal neurodevelopmental indices. Patients with abnormal neurodevelopmental indices had lower postoperative cerebral tissue oxygenation index variability when compared with patients with normal indices (p = 0.01). Adjusting for class of congenital heart disease and duration of deep hypothermic circulatory arrest, lower postoperative cerebral tissue oxygenation index variability was associated with poor neurodevelopmental outcome (p = 0.02). We found reduced postoperative cerebral tissue oxygenation index variability in neonatal survivors of congenital heart disease surgery with poor neurodevelopmental outcomes. We hypothesize that reduced cerebral tissue oxygenation index variability may be a surrogate for impaired cerebral metabolic autoregulation in the immediate postoperative period. Further research is needed to investigate clinical implications of this finding and opportunities for using this measure to drive therapeutic interventions.
Habitat Parameters for Oxygen Minimum Zone Copepods from the Eastern Tropical North Pacific
NASA Astrophysics Data System (ADS)
Wishner, K. F.; Outram, D.; Grassian, B.
2016-02-01
Oxygen minimum zones (OMZs) affect zooplankton distributions and may be expanding in worldwide spatial and vertical extent from climate change. We studied zooplankton (especially copepod) distributions in the Eastern Tropical North Pacific (ETNP) OMZ, using day-night vertically-stratified MOCNESS tows (0-1000m). Habitat parameters (temperature, oxygen, depth) were defined for abundant copepod species and groups. Zooplankton layers, with a unique suite of species, occurred at upper and lower OMZ oxyclines. At the mesopelagic lower oxycline, there was a layer with a characteristic species assemblage and a sharp 10X biomass increase compared to nearby depths. The lower oxycline layer occurred within a narrow very low oxygen concentration (2µM). At two stations with different OMZ vertical extents, the lower oxycline layer depth changed with OMZ thickness, remaining at the same oxygen concentration but different temperature. Life history habitat (diapause depth, temperature) of the copepod Eucalanus inermis was also affected. In the upper water column at the two stations, large diel vertical migrators (fish, euphausiids) descended to taxon-specific daytime depths in the mid OMZ, regardless of oxygen level, but copepod species distributions showed more variability and sensitivity to habitat parameters. We predict that, with moderate OMZ expansion, the lower oxycline community will likely shift depth, thus re-distributing midwater biomass, species, and processes. In the upper water column, large vertical migrator distributions may be less affected, while smaller taxa (copepods) will likely be sensitive to habitat changes. At some point, the ability to withstand these changes may be exceeded for particular taxa, with consequences for assemblages, trophic webs, and export. In keeping with the session theme, we hope to compare our oceanic findings with others' results from coastal hypoxic situations.
Tuna, Ayca Tas; Akkoyun, Ibrahim; Darcin, Sevtap; Palabiyik, Onur
2016-01-01
Laparoscopic surgery has become a popular surgical tool when compared to traditional open surgery. There are limited data on pediatric patients regarding whether pneumoperitoneum affects cerebral oxygenation although end-tidal CO2 concentration remains normal. Therefore, this study was designed to evaluate the changes of cerebral oxygen saturation using near-infrared spectroscope during laparoscopic surgery in children. The study comprised forty children who were scheduled for laparoscopic (Group L, n=20) or open (Group O, n=20) appendectomy. Hemodynamic variables, right and left regional cerebral oxygen saturation (RrSO2 and LrSO2), fraction of inspired oxygen, end-tidal carbon dioxide pressure (PETCO2), peak inspiratory pressure (Ppeak), respiratory minute volume, inspiratory and end-tidal concentrations of sevoflurane and body temperature were recorded. All parameters were recorded after anesthesia induction and before start of surgery (T0, baseline), 15min after start of surgery (T1), 30min after start of surgery (T2), 45min after start of surgery (T3), 60min after start of surgery (T4) and end of the surgery (T5). There were progressive decreases in both RrSO2 and LrSO2 levels in both groups, which were not statistically significant at T1, T2, T3, T4. The RrSO2 levels of Group L at T5 were significantly lower than that of Group O. One patient in Group L had an rSO2 value <80% of the baseline value. Carbon dioxide insufflation during pneumoperitoneum in pediatric patients may not affect cerebral oxygenation under laparoscopic surgery. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Tuna, Ayca Tas; Akkoyun, Ibrahim; Darcin, Sevtap; Palabiyik, Onur
2016-01-01
Laparoscopic surgery has become a popular surgical tool when compared to traditional open surgery. There are limited data on pediatric patients regarding whether pneumoperitoneum affects cerebral oxygenation although end-tidal CO2 concentration remains normal. Therefore, this study was designed to evaluate the changes of cerebral oxygen saturation using near-infrared spectroscope during laparoscopic surgery in children. The study comprised forty children who were scheduled for laparoscopic (Group L, n=20) or open (Group O, n=20) appendectomy. Hemodynamic variables, right and left regional cerebral oxygen saturation (RrSO2 and LrSO2), fraction of inspired oxygen, end-tidal carbon dioxide pressure (PETCO2), peak inspiratory pressure (Ppeak), respiratory minute volume, inspiratory and end-tidal concentrations of sevoflurane and body temperature were recorded. All parameters were recorded after anesthesia induction and before start of surgery (T0, baseline), 15min after start of surgery (T1), 30min after start of surgery (T2), 45min after start of surgery (T3), 60min after start of surgery (T4) and end of the surgery (T5). There were progressive decreases in both RrSO2 and LrSO2 levels in both groups, which were not statistically significant at T1, T2, T3, T4. The RrSO2 levels of Group L at T5 were significantly lower than that of Group O. One patient in Group L had an rSO2 value <80% of the baseline value. Carbon dioxide insufflation during pneumoperitoneum in pediatric patients may not affect cerebral oxygenation under laparoscopic surgery. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedersen, T.F.; Shimmield, G.B.; Price, N.B.
1992-01-01
The impingement of oxygen minima on continental margins is widely thought to promote the accumulation of sedimentary facies enriched in well-preserved organic matter. It is shown here, however, that such a relationship does not clearly apply to the productive Oman Margin in the Arabian Sea, which hosts one of the most severe oxygen minima in the oceans. Measurements made on the 0-1 cm depth interval from fourteen box cores collected from the outer shelf-upper continental slope area off Oman show that (1) deposited organic matter is overwhelmingly of marine origin, (2) there is no significant correlation between the abundance ofmore » sedimentary organic carbon (C{sub org}) and the bottom-water O{sub 2} concentration, (3) there is no relation between the sedimentary C{sub org}:N ratio and bottom-water O{sub 2}, and (4) there is no correlation between the hydrogen index (HI) of the organic matter and bottom water oxygen. There are, however, significant correlations between the C{sub org}:N ratio and the I:C{sub org}, Cr:Al, and Zr:Al ratios, as well as between the C{sub org}:N ratio and the hydrogen index. Overall, these data suggest that the bottom water oxygen concentration has little effect in governing either the distribution of the degree of preservation of organic matter on this margin. Thus, the generally high but spatially variable C{sub org} content of the sediments on the Oman Margin may not reflect the occurrence of an oxygen minimum but instead be the result of a high settling flux of organic matter, supported by monsoon-driven upwelling, and post-depositional redistribution of the organic material by hydrodynamic influences.« less
Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I
2011-08-01
Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to ongoing global climate shifts.
Influence of dissolved oxygen concentration on the pharmacokinetics of alcohol in humans.
Baek, In-hwan; Lee, Byung-yo; Kwon, Kwang-il
2010-05-01
Ethanol oxidation by the microsomal ethanol oxidizing system requires oxygen for alcohol metabolism, and a higher oxygen uptake increases the rate of ethanol oxidation. We investigated the effect of dissolved oxygen on the pharmacokinetics of alcohol in healthy humans (n = 49). The concentrations of dissolved oxygen were 8, 20, and 25 ppm in alcoholic drinks of 240 and 360 ml (19.5% v/v). Blood alcohol concentrations (BACs) were determined by converting breath alcohol concentrations. Breath samples were collected every 30 min when the BAC was higher than 0.015%, 20 min at BAC < or =0.015%, 10 min at BAC < or =0.010%, and 5 min at BAC < or =0.006%. The high dissolved oxygen groups (20, 25 ppm) descended to 0.000% and 0.050% BAC faster than the normal dissolved oxygen groups (8 ppm; p < 0.05). In analyzing pharmacokinetic parameters, AUC(inf) and K(el) of the high oxygen groups were lower than in the normal oxygen group, while C(max) and T(max) were not significantly affected. In a Monte Carlo simulation, the lognormal distribution of mean values of AUC(inf) and t(1/2) was expected to be reduced in the high oxygen group compared to the normal oxygen group. In conclusion, elevated dissolved oxygen concentrations in alcoholic drinks accelerate the metabolism and elimination of alcohol. Thus, enhanced dissolved oxygen concentrations in alcohol may have a role to play in reducing alcohol-related side effects and accidents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheard, Michael A., E-mail: msheard@chla.usc.edu; Ghent, Matthew V., E-mail: mattghent@gmail.com; Cabral, Daniel J., E-mail: dcabral14@gmail.com
2015-05-15
Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival,more » expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.« less
A 99 percent purity molecular sieve oxygen generator
NASA Technical Reports Server (NTRS)
Miller, G. W.
1991-01-01
Molecular sieve oxygen generating systems (MSOGS) have become the accepted method for the production of breathable oxygen on military aircraft. These systems separate oxygen for aircraft engine bleed air by application of pressure swing adsorption (PSA) technology. Oxygen is concentrated by preferential adsorption in nitrogen in a zeolite molecular sieve. However, the inability of current zeolite molecular sieves to discriminate between oxygen and argon results in an oxygen purity limitations of 93-95 percent (both oxygen and argon concentrate). The goal was to develop a new PSA process capable of exceeding the present oxygen purity limitations. A novel molecular sieve oxygen concentrator was developed which is capable of generating oxygen concentrations of up to 99.7 percent directly from air. The process is comprised of four absorbent beds, two containing a zeolite molecular sieve and two containing a carbon molecular sieve. This new process may find use in aircraft and medical breathing systems, and industrial air separation systems. The commercial potential of the process is currently being evaluated.
NASA Astrophysics Data System (ADS)
Petrov, Andrey; Prough, Donald S.; Petrov, Irene Y.; Petrov, Yuriy; Deyo, Donald J.; Henkel, Sheryl N.; Seeton, Roger; Esenaliev, Rinat O.
2013-03-01
Monitoring of cerebral venous oxygenation is useful to facilitate management of patients with severe or moderate traumatic brain injury (TBI). Prompt recognition of low cerebral venous oxygenation is a key to avoiding secondary brain injury associated with brain hypoxia. In specialized clinical research centers, jugular venous bulb catheters have been used for cerebral venous oxygenation monitoring and have demonstrated that oxygen saturation < 50% (normal range is 55-75%) correlates with poor clinical outcome. We developed an optoacoustic technique for noninvasive monitoring of cerebral venous oxygenation. Recently, we designed and built a novel, medical grade optoacoustic system operating in the near-infrared spectral range for continuous, real-time oxygenation monitoring in the superior sagittal sinus (SSS), a large central cerebral vein. In this work, we designed and built a novel SSS optoacoustic probe and developed a new algorithm for SSS oxygenation measurement. The SSS signals were measured in healthy volunteers during voluntary hyperventilation, which induced changes in SSS oxygenation. Simultaneously, we measured exhaled carbon dioxide concentration (EtCO2) using capnography. Good temporal correlation between decreases in optoacoustically measured SSS oxygenation and decreases in EtCO2 was obtained. Decreases in EtCO2 from normal values (35-45 mmHg) to 20-25 mmHg resulted in SSS oxygenation decreases by 3-10%. Intersubject variability of the responses may relate to nonspecific brain activation associated with voluntary hyperventilation. The obtained data demonstrate the capability of the optoacoustic system to detect in real time minor changes in the SSS blood oxygenation.
NASA Astrophysics Data System (ADS)
Fish, C.; Hill, T. M.; Davis, C. V.; Lipski, D.; Jahncke, J.
2017-12-01
Elucidating both surface and bottom water ecosystem impacts of temperature change, acidification, and food web disruption are needed to understand anthropogenic processes in the ocean. The Applied California Current Ecosystem Studies (ACCESS) partnership surveys the California Current within the Greater Farallones and Cordell Bank National Marine Sanctuaries three times annually, sampling water column hydrography and discrete water samples from 0 m and 200 m depth at five stations along three primary transects. The transects span the continental shelf with stations as close as 13 km from the coastline to 65 km. This time series extends from 2004 to 2017, integrating information on climate, productivity, zooplankton abundance, oxygenation, and carbonate chemistry. We focus on the interpretation of the 2012-2017 carbonate chemistry data and present both long term trends over the duration of the time series as well as shorter term variability (e.g., ENSO, `warm blob' conditions) to investigate the region's changing oceanographic conditions. For example, we document oscillations in carbonate chemistry, oxygenation, and foraminiferal abundance in concert with interannual oceanographic variability and seasonal (upwelling) cycles. We concentrate on results from near Cordell Bank that potentially impact deep sea coral ecosystems.
Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen
2016-11-22
The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La 3+ donor-doped, Fe 3+ acceptor-doped and La 3+ /Fe 3+ -co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.
Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen
2016-01-01
The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT. PMID:28774067
Composition of commercial media used for human embryo culture.
Morbeck, Dean E; Krisher, Rebecca L; Herrick, Jason R; Baumann, Nikola A; Matern, Dietrich; Moyer, Thomas
2014-09-01
To determine the composition of commercially available culture media and test whether differences in composition are biologically relevant in a murine model. Experimental laboratory study. University-based laboratory. Cryopreserved hybrid mouse one-cell embryos were used in experiments. Amino acid, organic acid, ions, and metal content were determined for two different lots of media from Cook, In Vitro Care, Origio, Sage, Vitrolife, Irvine CSC, and Global. To determine whether differences in the composition of these media are biologically relevant, mouse one-cell embryos were thawed and cultured for 120 hours in each culture media at 5% and 20% oxygen in the presence or absence of protein in an EmbryoScope time-lapse incubator. The compositions of seven culture media were analyzed for concentrations of 39 individual amino acids, organic acids, ions, and elements. Blastocyst rates and cell cycle timings were calculated at 96 hours of culture, and the experiments were repeated in triplicate. Of the 39 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium were present in variable concentrations, likely reflecting differences in the interpretation of animal studies. Essential trace elements, such as copper and zinc, were not detected. Mouse embryos failed to develop in one culture medium and were differentially affected by oxygen in two other media. Culture media composition varies widely, with differences in pyruvate, lactate, and amino acids especially notable. Blastocyst development was culture media dependent and showed an interaction with oxygen concentration and presence of protein. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Rules for use of portable oxygen... portable oxygen concentrator systems on board aircraft Section 1. Applicability—This rule prescribes special operating rules for the use of portable oxygen concentrator units on board civil aircraft. This...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Rules for use of portable oxygen... portable oxygen concentrator systems on board aircraft Section 1. Applicability—This rule prescribes special operating rules for the use of portable oxygen concentrator units on board civil aircraft. This...
Electrosynthesis of hydrogen peroxide via the reduction of oxygen assisted by power ultrasound.
González-García, José; Banks, Craig E; Sljukić, Biljana; Compton, Richard G
2007-04-01
The electrosynthesis of hydrogen peroxide using the oxygen reduction reaction has been studied in the absence and presence of power ultrasound in a non-optimized sono-electrochemical flow reactor (20 cm cathodic compartment length with 6.5 cm inner diameter) with reticulated vitreous glassy carbon electrode (30 x 40 x 10 mm, 10 ppi, 7 cm(2)cm(-3)) as the cathode. The effect of several electrochemical operational variables (pH, volumetric flow, potential) and of the sono-electrochemical parameters (ultrasound amplitude and horn-to-electrode distance) on the cumulative concentration of hydrogen peroxide and current efficiency of the electrosynthesis process have been explored. The application of power ultrasound was found to increase both the cumulative concentration of hydrogen peroxide and the current efficiency. The application of ultrasound is therefore a promising approach to the increased efficiency of production of hydrogen peroxide by electrosynthesis, even in the solutions of lower pH (<12). The results demonstrate the feasibility of at-site-of-use green synthesis of hydrogen peroxide.
Goldberg, M S; Giannetti, N; Burnett, R T; Mayo, N E; Valois, M-F; Brophy, J M
2008-10-01
Recent studies suggest that persons with congestive heart failure (CHF) may be at higher risk for short-term effects of air pollution. This daily diary panel study in Montreal, Quebec, was carried out to determine whether oxygen saturation and pulse rate were associated with selected personal factors, weather conditions and air pollution. Thirty-one subjects with CHF participated in this study in 2002 and 2003. Over a 2-month period, the investigators measured their oxygen saturation, pulse rate, weight and temperature each morning and recorded these and other data in a daily diary. Air pollution and weather conditions were obtained from fixed-site monitoring stations. The study made use of mixed regression models, adjusting for within-subject serial correlation and temporal trends, to determine the association between oxygen saturation and pulse rate and personal and environmental variables. Depending on the model, we accounted for the effects of a variety of personal variables (eg, body temperature, salt consumption) as well as nitrogen dioxide (NO2), ozone, maximum temperature and change in barometric pressure at 8:00 from the previous day. In multivariable analyses, the study found that oxygen saturation was reduced when subjects reported that they were ill, consumed salt, or drank liquids on the previous day and had higher body temperatures on the concurrent day (only the latter was statistically significant). Relative humidity and decreased atmospheric pressure from the previous day were associated with oxygen saturation. In univariate analyses, there was negative associations with concentrations of fine particulates, ozone, and sulphur dioxide (SO2), but only SO2 was significant after adjustment for the effects of weather. For pulse rate, no associations were found for the personal variables and in univariate analyses the study found positive associations with NO(2), fine particulates (aerodynamic diameter of 2.5 microm or under, PM(2.5)), SO2, and maximum temperature, although only the latter two were significant after adjustment for environmental effects. The findings from the present investigation suggest that personal and environmental conditions affect intermediate physiological parameters that may affect the health of CHF patients.
NASA Technical Reports Server (NTRS)
Jahnke, L. L.; Nichols, P. D.
1986-01-01
The sterol and fatty acid concentrations for M. capsulatus grown in fed-batch cultures over a wide range of oxygen tensions (0.1-10.6 percent) and at a constant methane level are evaluated. The analyses reveal that the biomass decreases as oxygen levels are lowered; the sterol concentration increases when the oxygen range is between 0.5-1.1 percent and decreases when the oxygen range is below 0.5 percent; and the amount of monounsaturated C16 decreases and the concentration of cyclopropane fatty acids increases after oxygen is reduced. It is noted that growth and membrane synthesis occur at low oxygen concentrations and that the synthesis of membrane lipids responds to growth conditions.
Microdistribution of oxygen in silicon
NASA Technical Reports Server (NTRS)
Murgai, A.; Chi, J. Y.; Gatos, H. C.
1980-01-01
The microdistribution of oxygen in Czochralskii-grown, p-type silicon crystals was determined by using the SEM in the EBIC mode in conjunction with spreading resistance measurements. When the conductivity remained p-type, bands of contrast were observed in the EBIC image which corresponded to maxima in resistivity. When at the oxygen concentration maxima the oxygen donor concentration exceeded the p-type dopant concentration, an inversion of the conductivity occurred. It resulted in the formation of p-n junctions in a striated configuration and the local inversion of the EBIC image contrast. By heat-treating silicon at 1000 C prior to the activation of oxygen donors, some silicon-oxygen micro-precipitates were observed in the EBIC image within the striated oxygen concentration maxima.
NASA Technical Reports Server (NTRS)
Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David
2010-01-01
Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.
Oxygen Effect on the Properties of Epitaxial (110) La0.7Sr0.3MnO3 by Defect Engineering.
Rasic, Daniel; Sachan, Ritesh; Temizer, Namik K; Prater, John; Narayan, Jagdish
2018-06-20
The multiferroic properties of mixed valence perovskites such as lanthanum strontium manganese oxide (La 0.7 Sr 0.3 MnO 3 ) (LSMO) demonstrate a unique dependence on oxygen concentration, thickness, strain, and orientation. To better understand the role of each variable, a systematic study has been performed. In this study, epitaxial growth of LSMO (110) thin films with thicknesses ∼15 nm are reported on epitaxial magnesium oxide (111) buffered Al 2 O 3 (0001) substrates. Four LSMO films with changing oxygen concentration have been investigated. The oxygen content in the films was controlled by varying the oxygen partial pressure from 1 × 10 -4 to 1 × 10 -1 Torr during deposition and subsequent cooldown. X-ray diffraction established the out-of-plane and in-plane plane matching to be (111) MgO ∥ (0001) Al 2 O 3 and ⟨11̅0⟩ MgO ∥ ⟨101̅0⟩ Al 2 O 3 for the buffer layer with the substrate, and an out-of-plane lattice matching of (110) LSMO ∥ (111) MgO for the LSMO layer. For the case of the LSMO growth on MgO, a novel growth mode has been demonstrated, showing that three in-plane matching variants are present: (i) ⟨11̅0⟩ LSMO ∥ ⟨11̅0⟩ MgO , (ii) ⟨11̅0⟩ LSMO ∥ ⟨101̅⟩ MgO , and (iii) ⟨11̅0⟩ LSMO ∥ ⟨01̅1⟩ MgO . The atomic resolution scanning transmission electron microscopy (STEM) images were taken of the interfaces that showed a thin, ∼2 monolayer intermixed phase while high-angle annular dark field (HAADF) cross-section images revealed 4/5 plane matching between the film and the buffer and similar domain sizes between different samples. Magnetic properties were measured for all films and the gradual decrease in saturation magnetization is reported with decreasing oxygen partial pressure during growth. A systematic increase in the interplanar spacing was observed by X-ray diffraction of the films with lower oxygen concentration, indicating the decrease in the lattice constant in the plane due to the point defects. Samples demonstrated an insulating behavior for samples grown under low oxygen partial pressure and semiconducting behavior for the highest oxygen partial pressures. Magnetotransport measurements showed ∼36.2% decrease in electrical resistivity with an applied magnetic field of 10 T at 50 K and ∼1.3% at room temperature for the highly oxygenated sample.
Yuan, Fenglin; Zhang, Yanwen; Weber, William J.
2015-05-19
In this paper, molecular dynamics simulations and molecular static calculations have been used to systematically study oxygen vacancy transport in undoped nonstoichiometric ceria. A strong oxygen diffusivity enhancement appears in the vacancy concentration range of 2–4% over the temperature range from 1000 to 2000 K. An Arrhenius ion diffusion mechanism by vacancy hopping along the (100) direction is unambiguously identified, and an increasing trend of both the oxygen migration barrier and the prefactor with increasing vacancy concentration is observed. Within the framework of classical diffusion theory, a weak concentration dependence of the prefactor in oxygen vacancy migration is shown tomore » be crucial for explaining the unusual fast oxygen ion migration in the low concentration range and consequently the appearance of a maximum in oxygen diffusivity. Finally, a representative (100) direction interaction model is constructed to identify long-range vacancy–vacancy interaction as the structural origin of the positive correlation between oxygen migration barrier and vacancy concentration.« less
Krishna Rao, Dasari V; Ramu, Chatadi T; Rao, Joginapally V; Narasu, Mangamoori L; Bhujanga Rao, Adibhatla Kali S
2008-09-01
The impact of different levels of agitation speed, carbondioxide and dissolved oxygen concentration on the key parameters and production of rhG-CSF in Escherichia coli BL21(DE3)PLysS were studied. Lower carbondioxide concentrations as well as higher agitation speeds and dissolved oxygen concentrations led to reduction in the acetate concentrations, and enhanced the cell growth, but inhibited plasmid stability and rhG-CSF expression. Similarly, higher carbondioxide concentrations and lower agitation speeds as well as dissolved oxygen concentrations led to enhanced acetate concentrations, but inhibited the cell growth and protein expression. To address the bottlenecks, a two-stage agitation control strategy (strategy-1) and two-stage dissolved oxygen control strategy (strategy-2) were employed to establish the physiological and metabolic conditions, so as to improve the expression of rhG-CSF. By adopting strategy-1 the yields were improved 1.4-fold over constant speed of 550 rpm, 1.1-fold over constant dissolved oxygen of 45%, respectively. Similarly, using strategy-2 the yields were improved 1.6-fold over constant speed of 550 rpm, 1.3-fold over constant dissolved oxygen of 45%, respectively.
The Effects of Oxygen Concentration on Benthic Foraminiferal Growth and Size
NASA Astrophysics Data System (ADS)
Ng, B.; Keating-Bitonti, C.; Payne, J.
2015-12-01
Many organisms use oxygen through cellular respiration in order to gain energy. For this reason, oxygen has a significant influence on organism size and growth. The amount of oxygen an organism needs depends on its metabolic demand, which is partially a function organism size (i.e., mass). The Santa Monica Basin (SMB) is an oxygen minimum zone located off the southern coast of California that maintains a steep oxygen gradient and is thus an ideal location for conducting research on how oxygen influences organism size. Here we use benthic foraminifera, widespread single-celled protists that produce shells (tests), to study the controls of oxygen on organism size. Because cell mass and cell volume are correlated, we study trends in the log test volume of four abundant species from SMB: Uvigerina peregrina, Bolivina spissa, B. argentea, Loxostomum pseudobeyrichi. These foraminifera make multi-chambered tests, thus we also count the number of chambers per specimen in order to further assess their growth under varying oxygen concentrations. We analyzed the data using quantile regressions to determine trends in not only median values of the log test volume and number of chambers as a function of oxygen concentrations, but also in the 10th, 25th, 75th, and 90th percentiles because oxygen availability often constrains the maximum and minimum size of organisms. Our results show a positive correlation between oxygen concentration and the maximum log test volumes of L. pseudobeyrichi and B. argentea, supporting our hypothesis. However, we observed a negative correlation between oxygen concentration and the maximum percentiles of log test volume in U. peregrina. Nevertheless, U. peregrina still displays a positive correlation between chamber number and oxygen concentrations in line with our hypothesis. The preponderance of trends supporting a direct correlation between log test volume or chamber number and oxygen concentration suggest that oxygen limits the maximum obtainable size of benthic foraminifera through its effects on test volume or chamber growth. This study is important because it holds a glimpse into how changes in oxygen levels can affect organisms given current fluctuations in oxygen level around the world due to man-made climate change.
Combustion characteristics of fine- and micro-pulverized coal in the mixture of O{sub 2}/CO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiangyong Huang; Xiumin Jiang; Xiangxin Han
The effects of oxygen concentration, particle size, and heating rate on the coal combustion characteristics under an O{sub 2}/CO{sub 2} atmosphere were investigated. The results indicated that the oxygen concentration played the most important role. As the oxygen concentration increases, the ignition and burnout temperatures decrease and the comprehensive combustion property index S increases. Moreover, the improvement of the oxygen concentration intensified the effects of the other factors. The ignition mechanism changes from hetero-homogeneous type to homogeneous type as the oxygen concentration increases. The ignition and burnout temperatures decrease slightly as the mean particle size decreases, and the index Smore » increases measurably as the mean particle size decreases. The heating rate has different effects on the ignition temperature, burnout temperature, and index S at different oxygen concentrations. 19 refs., 9 figs., 2 tabs.« less
Co-regulation of Primary Mouse Hepatocyte Viability and Function by Oxygen and Matrix
Buck, Lorenna D.; Inman, S. Walker; Rusyn, Ivan; Griffith, Linda G.
2014-01-01
Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed 2 methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound. PMID:24222008
1972-01-01
daily dissolved oxygen concentration above 5 mg/l, assuming there are normal seasonal and daily variations above this concentration, (2) dissovled oxygen ... Oxygen Concentrations: Surface oxygen determinations were made at each col- lecting station at monthly intervals. Determinations were done using a...Yellow Springs Oxygen Analyzer Model 54. G. Phosphorus and nitrogen determinations : Water samples for chemical analysis were collected at the surface
Electric discharge for treatment of trace contaminants
NASA Technical Reports Server (NTRS)
Flamm, D. L.; Wydeven, T. J. (Inventor)
1978-01-01
A radio frequency glow discharge reactor is described for removing trace oxidizable contaminants from an oxygen bearing atmosphere. The reaction chamber is defined by an inner metal electrode facing a dielectric backed by an outer conductive electrode. In one embodiment, a conductive liquid forms the conductor of an outer electrode and cools the dielectric. A resonator coupled to a variable radio frequency source generates the high voltages for creating a glow discharge in the chamber at a predetermined pressure whereby the trace contaminants are oxidized into a few simple non-toxic products that may be easily recovered. The corresponding process for removal of trace contaminants from an oxygen-bearing atmosphere with high efficiency independent of the concentration level is also disclosed.
The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria
Maisch, Tim; Baier, Jürgen; Franz, Barbara; Maier, Max; Landthaler, Michael; Szeimies, Rolf-Markus; Bäumler, Wolfgang
2007-01-01
New antibacterial strategies are required in view of the increasing resistance of bacteria to antibiotics. One promising technique involves the photodynamic inactivation of bacteria. Upon exposure to light, a photosensitizer in bacteria can generate singlet oxygen, which oxidizes proteins or lipids, leading to bacteria death. To elucidate the oxidative processes that occur during killing of bacteria, Staphylococcus aureus was incubated with a standard photosensitizer, and the generation and decay of singlet oxygen was detected directly by its luminescence at 1,270 nm. At low bacterial concentrations, the time-resolved luminescence of singlet oxygen showed a decay time of 6 ± 2 μs, which is an intermediate time for singlet oxygen decay in phospholipids of membranes (14 ± 2 μs) and in the surrounding water (3.5 ± 0.5 μs). Obviously, at low bacterial concentrations, singlet oxygen had sufficient access to water outside of S. aureus by diffusion. Thus, singlet oxygen seems to be generated in the outer cell wall areas or in adjacent cytoplasmic membranes of S. aureus. In addition, the detection of singlet oxygen luminescence can be used as a sensor of intracellular oxygen concentration. When singlet oxygen luminescence was measured at higher bacterial concentrations, the decay time increased significantly, up to ≈40 μs, because of oxygen depletion at these concentrations. This observation is an important indicator that oxygen supply is a crucial factor in the efficacy of photodynamic inactivation of bacteria, and will be of particular significance should this approach be used against multiresistant bacteria. PMID:17431036
Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century
Mora, Camilo; Wei, Chih-Lin; Rollo, Audrey; Amaro, Teresa; Baco, Amy R.; Billett, David; Bopp, Laurent; Chen, Qi; Collier, Mark; Danovaro, Roberto; Gooday, Andrew J.; Grupe, Benjamin M.; Halloran, Paul R.; Ingels, Jeroen; Jones, Daniel O. B.; Levin, Lisa A.; Nakano, Hideyuki; Norling, Karl; Ramirez-Llodra, Eva; Rex, Michael; Ruhl, Henry A.; Smith, Craig R.; Sweetman, Andrew K.; Thurber, Andrew R.; Tjiputra, Jerry F.; Usseglio, Paolo; Watling, Les; Wu, Tongwen; Yasuhara, Moriaki
2013-01-01
Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions. PMID:24143135
Anderson, R.Y.; Linsley, B.K.; Gardner, J.V.
1990-01-01
Upper Pleistocene marine sediments along the upper continental slope off northern and central California contain alternations of varved and bioturbated sediments and associated changes in biota and sediment composition. These alternations can be related to conditions that accompany El Nin??o and anti-El Nin??o (ENSO) circulation. Anti-El Nin??o conditions are characterized by increased upwelling and productivity and by low concentrations of dissolved oxygen in the oxygen minimum zone that resulted in varve preservation. El Nin??o conditions are characterized by little or no upwelling, low productivity, and higher concentrations of dissolved oxygen that resulted in zones of bioturbation. Alternations of varves and zones of bioturbation, that range from decades to millennia, occur through the upper Pleistocene section. The inferred long-term alternations in El Nin??o and anti-El Nin??o conditions appear to be a re-expression of ENSO's primary 3-7 year cycle. Decadal to millennial cycles of productivity associated with El Nin??o and anti-El Nin??o conditions may have served as a "carbon pump" and transferred atmospheric CO2 to the marine reservoir. Changes in sediment composition and organisms associated with El Nin??o or anti-El Nin??o conditions can be related to both seasonal and ENSO phenomena. Expression of these changes at lower-than-ENSO frequencies may be partly explained by adding the effects of seasonal variability to effects produced by a self-oscillating ENSO system. However, deterministic mechanisms, including solar modulation of ENSO, may also contribute to long-term alternations of El Nin??o and anti-El Nin??o conditions. ?? 1990.
Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes
NASA Astrophysics Data System (ADS)
Fink, Gabriel; Wessels, Martin; Wüest, Alfred
2016-09-01
Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.
Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century.
Mora, Camilo; Wei, Chih-Lin; Rollo, Audrey; Amaro, Teresa; Baco, Amy R; Billett, David; Bopp, Laurent; Chen, Qi; Collier, Mark; Danovaro, Roberto; Gooday, Andrew J; Grupe, Benjamin M; Halloran, Paul R; Ingels, Jeroen; Jones, Daniel O B; Levin, Lisa A; Nakano, Hideyuki; Norling, Karl; Ramirez-Llodra, Eva; Rex, Michael; Ruhl, Henry A; Smith, Craig R; Sweetman, Andrew K; Thurber, Andrew R; Tjiputra, Jerry F; Usseglio, Paolo; Watling, Les; Wu, Tongwen; Yasuhara, Moriaki
2013-10-01
Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.
Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain
Yabusaki, Steven B.; Wilkins, Michael J.; Fang, Yilin; ...
2017-02-20
Three-dimensional variably saturated flow and multicomponent biogeochemical reactive transport modeling, based on published and newly generated data, is used to better understand the interplay of hydrology, geochemistry, and biology controlling the cycling of carbon, nitrogen, oxygen, iron, sulfur, and uranium in a shallow floodplain. In this system, aerobic respiration generally maintains anoxic groundwater below an oxic vadose zone until seasonal snowmelt-driven water table peaking transports dissolved oxygen (DO) and nitrate from the vadose zone into the alluvial aquifer. The response to this perturbation is localized due to distinct physico-biogeochemical environments and relatively long time scales for transport through the floodplainmore » aquifer and vadose zone. Naturally reduced zones (NRZs) containing sediments higher in organic matter, iron sulfides, and non-crystalline U(IV) rapidly consume DO and nitrate to maintain anoxic conditions, yielding Fe(II) from FeS oxidative dissolution, nitrite from denitrification, and U(VI) from nitrite-promoted U(IV) oxidation. Redox cycling is a key factor for sustaining the observed aquifer behaviors despite continuous oxygen influx and the annual hydrologically induced oxidation event. Furthermore, depth-dependent activity of fermenters, aerobes, nitrate reducers, sulfate reducers, and chemolithoautotrophs (e.g., oxidizing Fe(II), S compounds, and ammonium) is linked to the presence of DO, which has higher concentrations near the water table.« less
Wehmeyer, Loren L.; Wagner, Chad R.
2011-01-01
The relation between dam releases and dissolved-oxygen concentration, saturation and deficit, downstream from Roanoke Rapids Dam in North Carolina was evaluated from 2005 to 2009. Dissolved-oxygen data collected at four water-quality monitoring stations downstream from Roanoke Rapids Dam were used to determine if any statistical relations or discernible quantitative or qualitative patterns linked Roanoke River in-stream dissolved-oxygen levels to hydropower peaking at Roanoke Rapids Dam. Unregulated tributaries that inundate and drain portions of the Roanoke River flood plain are crucial in relation to in-stream dissolved oxygen. Hydropower peaking from 2005 to 2009 both inundated and drained portions of the flood plain independently of large storms. The effects of these changes in flow on dissolved-oxygen dynamics are difficult to isolate, however, because of (1) the variable travel time for water to move down the 112-mile reach of the Roanoke River from Roanoke Rapids Dam to Jamesville, North Carolina, and (2) the range of in-situ conditions, particularly inundation history and water temperature, in the flood plain. Statistical testing was conducted on the travel-time-adjusted hourly data measured at each of the four water-quality stations between May and November 2005-2009 when the weekly mean flow was 5,000-12,000 cubic feet per second (a range when Roanoke Rapids Dam operations likely affect tributary and flood-plain water levels). Results of this statistical testing indicate that at the 99-percent confidence interval dissolved-oxygen levels downstream from Roanoke Rapids Dam were lower during peaking weeks than during non-peaking weeks in three of the five years and higher in one of the five years; no data were available for weeks with peaking in 2007. For the four years of statistically significant differences in dissolved oxygen between peaking and non-peaking weeks, three of the years had statistically signficant differences in water temperature. Years with higher water temperature during peaking had lower dissolved oxygen during peaking. Only 2009 had no constistent statistically significant water-temperature difference at all sites, and dissolved-oxygen levels downstream from Roanoke Rapids Dam during peaking weeks that year were lower than during non-peaking weeks. Between 2005 and 2009, daily mean dissolved-oxygen concentrations below the State standard occurred during only 1 of the 17 (6 percent) peaking weeks, with no occurrence of instantaneous dissolved-oxygen concentrations below the State standard. This occurrence was during a 9-day period in July 2005 when the daily maximum air temperatures approached or exceeded 100 degrees Fahrenheit, and the draining of the flood plains from peaking operations was followed by consecutive days of low flows.
The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity.
El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E; Riboulleau, Armelle; Rollion Bard, Claire; Macchiarelli, Roberto; Ngombi Pemba, Lauriss; Hammarlund, Emma; Meunier, Alain; Moubiya Mouele, Idalina; Benzerara, Karim; Bernard, Sylvain; Boulvais, Philippe; Chaussidon, Marc; Cesari, Christian; Fontaine, Claude; Chi-Fru, Ernest; Garcia Ruiz, Juan Manuel; Gauthier-Lafaye, François; Mazurier, Arnaud; Pierson-Wickmann, Anne Catherine; Rouxel, Olivier; Trentesaux, Alain; Vecoli, Marco; Versteegh, Gerard J M; White, Lee; Whitehouse, Martin; Bekker, Andrey
2014-01-01
The Paleoproterozoic Era witnessed crucial steps in the evolution of Earth's surface environments following the first appreciable rise of free atmospheric oxygen concentrations ∼2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rod-shaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.
Clark, Timothy Darren; Hinch, S G; Taylor, B D; Frappell, P B; Farrell, A P
2009-07-01
Upon reaching sexual maturity, several species of male salmonids possess a relative ventricular mass (rM(V)) that may be up to 90% larger than females. This can increase maximum cardiac stroke volume and power output, which may be beneficial to increasing the oxygen transport capacity of male salmonids during the spawning period. It may be further hypothesized, therefore, that other variables within the circulatory oxygen transport cascade, such as blood oxygen-carrying capacity and heart rate, are similarly enhanced in reproductively mature male salmonids. To test this idea, the present study measured a range of circulatory oxygen transport variables in wild male and female sockeye salmon (Oncorhynchus nerka) during their spawning period, following a 150 km migration from the ocean. The rM(V) of male fish was 13% greater than females. Conversely, the haemoglobin concentration ([Hb]) of female fish was 19% higher than males, indicative of a greater blood oxygen-carrying capacity (138 vs. 116 ml O2 l(-1), respectively). Surgically implanted physiological data loggers revealed a similar range in heart rate for both sexes on the spawning ground (20-80 beats min(-1) at 10 degrees C), with a tendency for male fish to spend a greater percentage of time (64%) than females (49%) at heart rates above 50 beats min(-1). Male fish on average consumed significantly more oxygen than females during a 13-h respirometry period. However, routine oxygen consumption rates (.)MO2 ranged between 1.5 and 8.5 mg min(-1) kg(-1) for both sexes, which implies that males did not inherently possess markedly higher routine aerobic energy demands, and suggests that the higher [Hb] of female fish may compensate for the smaller rM(V). These findings reject the hypothesis that all aspects of the circulatory oxygen transport cascade are inherently superior in male sockeye salmon. Instead, it is suggested that any differences in (.)MO2 between sexually mature male and female sockeye salmon can likely be attributed to activity levels.
Bergstra, A; van Dijk, R B; Hillege, H L; Lie, K I; Mook, G A
1995-05-01
This study was performed because of observed differences between dye dilution cardiac output and the Fick cardiac output, calculated from estimated oxygen consumption according to LaFarge and Miettinen, and to find a better formula for assumed oxygen consumption. In 250 patients who underwent left and right heart catheterization, the oxygen consumption VO2 (ml.min-1) was calculated using Fick's principle. Either pulmonary or systemic flow, as measured by dye dilution, was used in combination with the concordant arteriovenous oxygen concentration difference. In 130 patients, who matched the age of the LaFarge and Miettinen population, the obtained values of oxygen consumption VO2(dd) were compared with the estimated oxygen consumption values VO2(lfm), found using the LaFarge and Miettinen formulae. The VO2(lfm) was significantly lower than VO2(dd); -21.8 +/- 29.3 ml.min-1 (mean +/- SD), P < 0.001, 95% confidence interval (95% CI) -26.9 to -16.7, limits of agreement (LA) -80.4 to 36.9. A new regression formula for the assumed oxygen consumption VO2(ass) was derived in 250 patients by stepwise multiple regression analysis. The VO2(dd) was used as a dependent variable, and body surface area BSA (m2). Sex (0 for female, 1 for male), Age (years), Heart rate (min-1) and the presence of a left to right shunt as independent variables. The best fitting formula is expressed as: VO2(ass) = (157.3 x BSA + 10.0 x Sex - 10.5 x In Age + 4.8) ml.min-1, where ln Age = the natural logarithm of the age. This formula was validated prospectively in 60 patients. A non-significant difference between VO2(ass) and VO2(dd) was found; mean 2.0 +/- 23.4 ml.min-1, P = 0.771, 95% Cl = -4.0 to +8.0, LA -44.7 to +48.7. In conclusion, assumed oxygen consumption values, using our new formula, are in better agreement with the actual values than those found according to LaFarge and Miettinen's formulae.
Response of Benthic Foraminiferal Size to Oxygen Concentration in Antarctic Sediment Cores
NASA Astrophysics Data System (ADS)
Guo, D.; Keating-Bitonti, C.; Payne, J.
2014-12-01
Oxygen availability is important for biological reactions and the demand of oxygen is determined by the size of the organism. Few marine organisms can tolerate low oxygen conditions, but benthic foraminifera, a group of amoeboid protists that are highly sensitive to environmental factors, are known to live in these conditions. Benthic foraminifera may be able to live in oxygen stressed environments by changing the size and shape of their test. Low oxygen concentrations should favor smaller, thinner-shelled, flattened test morphologies. We hypothesize that the volume-to-surface area ratio of benthic foraminifera will decrease with decreasing dissolved oxygen concentrations. To test this hypothesis, we picked two calcareous species (Epistominella exigua and Cassulinoides porrectus) and one agglutinated species (Portatrochammina antarctica) from three sediment cores collected from Explorer's Cove, Antarctica. Starting at the sediment-water interface, each core spans approximately 5-8 cm of depth. Profiles of dissolved oxygen concentrations were measured at the time of collection. At specific depths within the cores, we measured the three dimensions of picked foraminiferal tests using NIS-Elements. We calculated the volume and surface area of the tests assuming the shape of the foraminifers was an ellipsoid. The size trends of E. exigua confirm our hypothesis that the test volume-to-surface area ratios correlate positively with dissolved oxygen concentrations (p-value < 0.001). However, the size trends of the other species refute our hypothesis: P. antarctica shows no correlation and C. porrectus shows a negative correlation (p-value < 0.001) to dissolved oxygen concentrations. Thus, our results show that the change in size in response to variations in dissolved oxygen concentrations is species dependent. Moreover, we find that calcareous species are more sensitive to oxygen fluctuations than agglutinated species.
Glossosoma nigrior (Trichoptera: Glossosomatidae) respiration in moving fluid.
Morris, Mark W L; Hondzo, Miki
2013-08-15
Laboratory measurements of dissolved oxygen (DO) uptake by Glossosoma nigrior Banks were conducted in a sealed, recirculating flume under variable fluid flow velocities. Measurements were performed in similar water temperatures, DO concentrations and fluid flow velocities to field conditions in the stream where the larvae were obtained. Total oxygen uptake by both cased larvae and corresponding cases without larvae were quantified. An increased fluid flow velocity corresponded to an increased larval DO uptake rate. Oxygen uptake by the larval cases alone was not as sensitive to changes in the Peclet (Pe) number, the dimensionless ratio of advective to diffusive DO transport, as uptake by larvae themselves. The flux of DO to larvae and their cases was up to seven times larger in a moving fluid in comparison to non-moving fluid conditions in the proximity of larvae for 0
Metabolism of Nitrogen Oxides in Ammonia-Oxidizing Bacteria
NASA Astrophysics Data System (ADS)
Kozlowski, J.; Stein, L. Y.
2014-12-01
Ammonia-oxidizing bacteria (AOB) are key microorganisms in the transformation of nitrogen intermediates in most all environments. Until recently there was very little work done to elucidate the physiology of ammonia-oxidizing bacteria cultivated from variable trophic state environments. With a greater variety of ammonia-oxidizers now in pure culture the importance of comparative physiological and genomic analysis is crucial. Nearly all known physiology of ammonia-oxidizing bacteria lies within the Nitrosomonas genus with Nitrosomonas europaea strain ATCC 19718 as the model. To more broadly characterize and understand the nature of obligate ammonia chemolithotrophy and the contribution of AOB to production of nitrogen oxides, Nitrosomonas spp. and Nitrosospira spp. isolated from variable trophic states and with sequenced genomes, were utilized. Instantaneous ammonia- and hydroxylamine-oxidation kinetics as a function of oxygen and substrate concentration were measured using an oxygen micro-sensor. The pathway intermediates nitric oxide and nitrous oxide were measured in real time using substrate-specific micro-sensors to elucidate whether production of these molecules is stoichiometric with rates of substrate oxidation. Genomic inventory was compared among the strains to identify specific pathways and modules to explain physiological differences in kinetic rates and production of N-oxide intermediates as a condition of their adaptation to different ammonium concentrations. This work provides knowledge of how nitrogen metabolism is differentially controlled in AOB that are adapted to different concentrations of ammonium. Overall, this work will provide further insight into the control of ammonia oxidizing chemolithotrophy across representatives of the Nitrosomonas and Nitrosospira genus, which can then be applied to examine additional genome-sequenced AOB isolates.
Lopes, T.J.; Fossum, K.D.; Phillips, J.V.; Monical, J.E.
1995-01-01
Stormwater and streamflow in the Phoenix, Arizona, area were monitored to determine the physical, chemical, and microbial characteristics of storm- water from areas having different land uses; to describe the characteristics of streamflow in a river that receives urban stormwater; and to estimate constituent loads in stormwater from unmonitored areas in Maricopa County, Arizona. Land use affects urban stormwater chemistry mostly because the percentage of impervious area controls the suspended-solids concentrations and varies with the type of land use. Urban activities also seem to concentrate cadmium, lead, and zinc in sediments. Urban stormwater had larger concentrations of chemical oxygen demand and biological oxygen demand, oil and grease, and higher counts of fecal bacteria than streamflow and could degrade the quality of the Salt River. Most regression equations for estimating constituent loads require three explanatory variables (total rainfall, drainage area, and per- centage of impervious area) and had standard errors that were from 65 to 266 percent. Localized areas that appear to contribute a large proportion of the constituent loads typically have 40 percent or more impervious area and are associated with industrial, commercial, and high-density residential land uses. The use of the mean value of the event-mean constituent concentrations measured in stormwater may be the best way of estimating constituent concentrations.
NASA Technical Reports Server (NTRS)
Smith, Sarah
2009-01-01
Extensive test data exist on the ignitability of nonmetallic materials in pure oxygen, but these characteristics are not as well understood for lesser oxygen concentrations. In this study, autogenous ignition temperature testing and pneumatic impact testing were used to better understand the effects of oxygen concentration on ignition of nonmetallic materials. Tests were performed using oxygen concentrations of 21, 34, 45, and 100 %. The following materials were tested: PTFE Teflon(Registered Trademark), Buna-N, Silicone, Zytel(Registered Trademark) 42, Viton(registered Trademark) A, and Vespel(Registered Trademark) SP-21.
Ibaraki, Masanobu; Shinohara, Yuki; Nakamura, Kazuhiro; Miura, Shuichi; Kinoshita, Fumiko; Kinoshita, Toshibumi
2010-07-01
Regional cerebral blood flow (CBF) and oxygen metabolism can be measured by positron emission tomography (PET) with (15)O-labeled compounds. Hemoglobin (Hb) concentration of blood, a primary determinant of arterial oxygen content (C(a)O(2)), influences cerebral circulation. We investigated interindividual variations of CBF, cerebral blood volume (CBV), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO(2)) in relation to Hb concentration in healthy human volunteers (n=17) and in patients with unilateral steno-occlusive disease (n=44). For the patients, data obtained only from the contralateral hemisphere (normal side) were analyzed. The CBF and OEF were inversely correlated with Hb concentration, but CMRO(2) was independent of Hb concentration. Oxygen delivery defined as a product of C(a)O(2) and CBF (C(a)O(2) CBF) increased with a rise of Hb concentration. The analysis with a simple oxygen model showed that oxygen diffusion parameter (L) was constant over the range of Hb concentration, indicating that a homeostatic mechanism controlling CBF is necessary to maintain CMRO(2). The current findings provide important knowledge to understand the control mechanism of cerebral circulation and to interpret the (15)O PET data in clinical practice.
Sheard, Michael A; Ghent, Matthew V; Cabral, Daniel J; Lee, Joanne C; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q; Kang, Min H; Sposto, Richard; Asgharzadeh, Shahab; Reynolds, C Patrick
2015-05-15
Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. Copyright © 2015. Published by Elsevier Inc.
Oxygenation decreases elastin secretion from rat ductus arteriosus smooth muscle cells.
Kawakami, Shoji; Minamisawa, Susumu
2015-08-01
The ductus arteriosus (DA), a fetal arterial connection between the main pulmonary artery and the descending aorta, normally closes immediately after birth. The oxygen concentration in the blood rises after birth, and in the DA this increase in oxygen concentration causes functional closure, which is induced by smooth muscle contraction. Previous studies have demonstrated that hypoxia and/or oxygenation affect vascular remodeling of various vessels. Therefore, we hypothesized that the rise in oxygen concentration would affect the vascular structure of the DA due to production of proteins secreted from DA smooth muscle cells (SMC). Liquid chromatography-tandem mass spectrometry was used to comprehensively investigate the secreted proteins in the supernatant of rat DA SMC harvested under hypoxic conditions (1% oxygen) or under normoxic conditions (21% oxygen). We found that the rise in oxygen concentration reduced the secretion of elastin from DA SMC. On reverse transcription-polymerase chain reaction, the expression of elastin mRNA was not significantly changed in DA SMC from hypoxic to normoxic conditions. Given that elastin forms internal elastic lamina and elastic fibers in the vascular muscle layers, and that a rise in oxygen concentration reduced the secretion of elastin, this suggests that the rise in blood oxygen concentration after birth reduces the secretion of elastin, and therefore may play a role in DA structural remodeling after birth. © 2015 Japan Pediatric Society.
NASA Astrophysics Data System (ADS)
Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.
2010-01-01
A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.
Morvannou, Ania; Choubert, Jean-Marc; Vanclooster, Marnik; Molle, Pascal
2011-10-15
We developed an original method to measure nitrification rates at different depths of a vertical flow constructed wetland (VFCW) with variable contents of organic matter (sludge, colonized gravel). The method was adapted for organic matter sampled in constructed wetland (sludge, colonized gravel) operated under partially saturated conditions and is based on respirometric principles. Measurements were performed on a reactor, containing a mixture of organic matter (sludge, colonized gravel) mixed with a bulking agent (wood), on which an ammonium-containing liquid was applied. The oxygen demand was determined from analysing oxygen concentration of the gas passing through the reactor with an on-line analyzer equipped with a paramagnetic detector. Within this paper we present the overall methodology, the factors influencing the measurement (sample volume, nature and concentration of the applied liquid, number of successive applications), and the robustness of the method. The combination of this new method with a mass balance approach also allowed determining the concentration and maximum growth rate of the autotrophic biomass in different layers of a VFCW. These latter parameters are essential inputs for the VFCW plant modelling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Temporal variability of dissolved iron species in the mesopelagic zone at Ocean Station PAPA
NASA Astrophysics Data System (ADS)
Schallenberg, Christina; Ross, Andrew R. S.; Davidson, Ashley B.; Stewart, Gillian M.; Cullen, Jay T.
2017-08-01
Deposition of atmospheric aerosols to the surface ocean is considered an important mechanism for the supply of iron (Fe) to remote ocean regions, but direct observations of the oceanic response to aerosol deposition are sparse. In the high nutrient, low chlorophyll (HNLC) subarctic Pacific Ocean we observed a dissolved Fe and Fe(II) anomaly at depth that is best explained as the result of aerosol deposition from Siberian forest fires in May 2012. Interestingly, there was no evidence of enhanced dFe concentrations in surface waters, nor was there a detectable phytoplankton bloom in response to the suspected aerosol deposition. Dissolved Fe (dFe) and Fe(II) showed the strongest enhancement in the subsurface oxygen deficient zone (ODZ), where oxygen concentrations <50 μmol kg-1 are prevalent. In the upper 200 m, dFe concentrations were at or below historic background levels, consistent with a short residence time of aerosol particles in surface waters and possible scavenging loss of dFe. Aerosol toxicity and/or dominance of particle scavenging over dissolution of Fe in the upper water column may have contributed to the lack of a strong phytoplankton response.
Neonatal isoerythrolysis in horse foals and a mule foal: 18 cases (1988-2003).
Boyle, Ashley G; Magdesian, K Gary; Ruby, Rebecca E
2005-10-15
To assess data regarding clinical features, clinicopathologic and blood gas variables, and outcome from horse and mule foals with confirmed neonatal isoerythrolysis (NI). Retrospective case series. 17 horse and 1 mule foals. Medical records of foals (< 14 days old) with NI were reviewed. Information collected included signalment; clinical examination findings; results of hematologic, serum and plasma biochemical, and venous blood gas analyses and urinalysis; treatments; and outcome. Data from 17 horse foals and 1 mule foal with NI (mean age, 71 hours) were evaluated. Many foals had high serum indirect and direct bilirubin concentrations and sorbitol dehydrogenase activity. Whole blood immunoglobulin concentrations were < 400 mg/dL in 4 of 15 foals. Fresh whole blood transfusions were administered to 10 of 18 foals. Among the blood factors implicated in 11 foals, one (Dg) had not previously been associated with NI. Of 10 foals that received blood transfusions, 7 had significant improvements in Hct and hemoglobin concentration and 2 had significant improvements in central venous oxygen tension. Fifteen foals survived to discharge. Data suggest that blood factor Dg may be associated with NI in foals. Liver disease may be concurrent with NI in foals, and NI can develop in foals with inadequate passive transfer of colostral antibodies. Whole blood transfusions were successful at increasing oxygen-carrying capacity and improving peripheral tissue oxygenation in NI-affected foals. With appropriate treatment, the prognosis for foals with NI is good.
Rubio; Fernandez; Perez; Camacho; Grima
1999-01-05
A model is developed for prediction of axial concentration profiles of dissolved oxygen and carbon dioxide in tubular photobioreactors used for culturing microalgae. Experimental data are used to verify the model for continuous outdoor culture of Porphyridium cruentum grown in a 200-L reactor with 100-m long tubular solar receiver. The culture was carried out at a dilution rate of 0.05 h-1 applied only during a 10-h daylight period. The quasi-steady state biomass concentration achieved was 3.0 g. L-1, corresponding to a biomass productivity of 1.5 g. L-1. d-1. The model could predict the dissolved oxygen level in both gas disengagement zone of the reactor and at the end of the loop, the exhaust gas composition, the amount of carbon dioxide injected, and the pH of the culture at each hour. In predicting the various parameters, the model took into account the length of the solar receiver tube, the rate of photosynthesis, the velocity of flow, the degree of mixing, and gas-liquid mass transfer. Because the model simulated the system behavior as a function of tube length and operational variables (superficial gas velocity in the riser, composition of carbon dioxide in the gas injected in the solar receiver and its injection rate), it could potentially be applied to rational design and scale-up of photobioreactors. Copyright 1999 John Wiley & Sons, Inc.
The application of vacuum redistillation of patchouli oil to improve patchouli alcohol compound
NASA Astrophysics Data System (ADS)
Asnawi, T. M.; Alam, P. N.; Husin, H.; Zaki, M.
2018-04-01
Patchouli oil produced by traditional distillation of patchouli leaves and stems by farmers in Aceh still has low patchouli alcohol compound. In order to increase patchouli alcohol concentration, vacuum redistillation process using packed column was introduced. This research was conducted to fractionate terpene (alpha-copinene) from oxygenated hydrocarbon (patchouli alcohol) compound. The operation condition was conducted at two variables that was dependent variable and independent variable. The dependent variable was the 30 cm height distillation packed column, by using raschig ring with 8 mm x 8 mm dimension. And the independent variable was operating temperature 130 °C and 140 °C., vacuum pressure 143,61 mbar, 121,60 mbar and 88,59 mbar and operation time 2 hours, 3 hours and 5 hours. Total of treatments applied in this works were 3 x 3 x 3 or equal to 27 treatments. Patchouli oil used in this research was obtained from Desa Teladan-Lembah Seulawah, Aceh Province. The initial patchouli alcohol compound which analyzed with GC-MS contained 16,02% before treatment applied. After vacuum redistillation process treatment applied patchouli oil concentration increase up to 34,67%. Physico-chemical test of patchouli oil after vacuum redistillation is in accordance with SNI 06-23852006 standard.
Skolimowski, Maciej; Nielsen, Martin Weiss; Emnéus, Jenny; Molin, Søren; Taboryski, Rafael; Sternberg, Claus; Dufva, Martin; Geschke, Oliver
2010-08-21
A microfluidic chip for generation of gradients of dissolved oxygen was designed, fabricated and tested. The novel way of active oxygen depletion through a gas permeable membrane was applied. Numerical simulations for generation of O(2) gradients were correlated with measured oxygen concentrations. The developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in medium with different oxygen concentrations. The results showed that attachment of Pseudomonas aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can be used for studies requiring controlled oxygen levels and for future studies of microaerobic and anaerobic conditions.
Schmidt, A.R.; Stamer, J.K.
1987-01-01
Water quality and processes that affect the dissolved-oxygen concentration in a 45.9 mile reach of the Sangamon River from Decatur to Riverton, Illinois, were determined from data collected during low-flow periods in the summer of 1982. Relations among dissolved oxygen, water discharge, biochemical oxygen demand, ammonia and nitrite plus nitrate concentrations, and photosynthetic-oxygen production were simulated using a one-dimensional, steady-state computer model. Average dissolved oxygen concentrations ranged from 8.0 milligrams per liter at the upstream end of the study reach at Decatur to 5.2 milligrams per liter 12.2 miles downstream. Ammonia concentrations ranged from 45 milligrams per liter at the mouth of Stevens Creek (2.6 miles downstream from Decatur) to 0.03 milligram per liter at the downstream end of the study reach. Un-ionized ammonia concentrations exceeded the maximum concentration specified in the State water quality standard (0.04 milligram per liter) throughout most of the study reach. Model simulations indicated that oxidation of ammonia to form nitrite plus nitrate was the most significant process leading to low dissolved oxygen concentrations in the river. (USGS)
Oxygen delivery using neonatal self-inflating bags without reservoirs.
Sugiura, Takahiro; Urushibata, Rei; Komatsu, Kenji; Shioda, Tsutomu; Ota, Tatsuki; Sato, Megumi; Okubo, Yumiko; Fukuoka, Tetsuya; Hosono, Shigeharu; Tamura, Masanori
2017-02-01
Guidelines recommend avoiding excessive oxygen during neonatal resuscitation. Recent studies have suggested that oxygen titration can be achieved using a self-inflating bag, but data on the effectiveness of resuscitators used in neonatal ventilation are scarce, The aim of this study was therefore to determine the amount of oxygen delivered using several brands of neonatal self-inflating resuscitation bags without reservoirs under different conditions with regard to oxygen flow rate, ventilation rate (VR), peak inspiratory pressure (PIP) range, and test lung compliance. Oxygen concentration was measured under a variety of conditions. Combinations of oxygen flow rate (10, 5.0, 3.0 and 1.0 L/min), VR (40, 60 inflations/min), PIP range (20-25 cmH 2 O, 35-40 cmH 2 O), and test lung compliance (0.6, 1.0, 3.0, and 5.0 mL/cmH 2 O) were examined using six kinds of self-inflating bag. Delivered oxygen concentration varied widely (30.1-96.7%) and had a significant positive correlation with gas flow rate in all of the bags. Delivered oxygen concentration was also negatively correlated with PIP in all of the bags and with VR in some of them. Test lung compliance did not affect delivered oxygen concentration. The use of neonatal resuscitation self-inflating bags without reservoirs resulted in different delivered oxygen concentrations depending on gas flow rate, VR, PIP, and manufacturer, but not on lung compliance. This suggests that targeted oxygen concentrations could be delivered, even in lungs with decreased compliance, during resuscitation. © 2016 Japan Pediatric Society.
Co-regulation of primary mouse hepatocyte viability and function by oxygen and matrix.
Buck, Lorenna D; Inman, S Walker; Rusyn, Ivan; Griffith, Linda G
2014-05-01
Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed two methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth, and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound. © 2014 Wiley Periodicals, Inc.
Interindividual Responses of Appetite to Acute Exercise: A Replicated Crossover Study.
Goltz, Fernanda R; Thackray, Alice E; King, James A; Dorling, James L; Atkinson, Greg; Stensel, David J
2018-04-01
Acute exercise transiently suppresses appetite, which coincides with alterations in appetite-regulatory hormone concentrations. Individual variability in these responses is suspected, but replicated trials are needed to quantify them robustly. We examined the reproducibility of appetite and appetite-regulatory hormone responses to acute exercise and quantified the individual differences in responses. Fifteen healthy, recreationally active men completed two control (60-min resting) and two exercise (60-min fasted treadmill running at 70% peak oxygen uptake) conditions in randomized sequences. Perceived appetite and circulating concentrations of acylated ghrelin and total peptide YY (PYY) were measured immediately before and after the interventions. Interindividual differences were explored by correlating the two sets of response differences between exercise and control conditions. Within-participant covariate-adjusted linear mixed models were used to quantify participant-condition interactions. Compared with control, exercise suppressed mean acylated ghrelin concentrations and appetite perceptions (all ES = 0.62-1.47, P < 0.001) and elevated total PYY concentrations (ES = 1.49, P < 0.001). For all variables, the standard deviation of the change scores was substantially greater in the exercise versus control conditions. Moderate-to-large positive correlations were observed between the two sets of control-adjusted exercise responses for all variables (r = 0.54-0.82, P ≤ 0.036). After adjusting for baseline measurements, participant-condition interactions were present for all variables (P ≤ 0.053). Our replicated crossover study allowed, for the first time, the interaction between participant and acute exercise response in appetite parameters to be quantified. Even after adjustment for individual baseline measurements, participants demonstrated individual differences in perceived appetite and hormone responses to acute exercise bouts beyond any random within-subject variability over time.
How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells
NASA Astrophysics Data System (ADS)
Oh, Jun-Seok; Strudwick, Xanthe; Short, Robert D.; Ogawa, Kotaro; Hatta, Akimitsu; Furuta, Hiroshi; Gaur, Nishtha; Hong, Sung-Ha; Cowin, Allison J.; Fukuhara, Hideo; Inoue, Keiji; Ito, Masafumi; Charles, Christine; Boswell, Roderick W.; Bradley, James W.; Graves, David B.; Szili, Endre J.
2016-11-01
The effect of oxidation, oxygenation, and de-oxygenation arising from He gas jet and He plasma jet treatments on the viability of skin cells cultured in vitro has been investigated. He gas jet treatment de-oxygenated cell culture medium in a process referred to as "sparging." He plasma jet treatments oxidized, as well as oxygenated or de-oxygenated cell culture medium depending on the dissolved oxygen concentration at the time of treatment. He gas and plasma jets were shown to have beneficial or deleterious effects on skin cells depending on the concentration of dissolved oxygen and other oxidative molecules at the time of treatment. Different combinations of treatments with He gas and plasma jets can be used to modulate the concentrations of dissolved oxygen and other oxidative molecules to influence cell viability. This study highlights the importance of a priori knowledge of the concentration of dissolved oxygen at the time of plasma jet treatment, given the potential for significant impact on the biological or medical outcome. Monitoring and controlling the dynamic changes in dissolved oxygen is essential in order to develop effective strategies for the use of cold atmospheric plasma jets in biology and medicine.
Faude, Oliver; Hecksteden, Anne; Hammes, Daniel; Schumacher, Franck; Besenius, Eric; Sperlich, Billy; Meyer, Tim
2017-02-01
The maximal lactate steady-state (MLSS) is frequently assessed for prescribing endurance exercise intensity. Knowledge of the intra-individual variability of the MLSS is important for practical application. To date, little is known about the reliability of time-to-exhaustion and physiological responses to exercise at MLSS. Twenty-one healthy men (age, 25.2 (SD 3.3) years; height, 1.83 (0.06) m; body mass, 78.9 (8.9) kg; maximal oxygen uptake, 57.1 (10.7) mL·min -1 ·kg -1 ) performed 1 incremental exercise test, and 2 constant-load tests to determine MLSS intensity. Subsequently, 2 open-end constant-load tests (MLSS 1 and 2) at MLSS intensity (3.0 (0.7) W·kg -1 , 76% (10%) maximal oxygen uptake) were carried out. During the tests, blood lactate concentrations, heart rate, ratings of perceived exertion (RPE), variables of gas exchange, and core body temperature were determined. Time-to-exhaustion was 50.8 (14.0) and 48.2 (16.7) min in MLSS 1 and 2 (mean change: -2.6 (95% confidence interval: -7.8, 2.6)), respectively. The coefficient of variation (CV) was high for time-to-exhaustion (24.6%) and for mean (4.8 (1.2) mmol·L -1 ) and end (5.4 (1.7) mmol·L -1 ) blood lactate concentrations (15.7% and 19.3%). The CV of mean exercise values for all other parameters ranged from 1.4% (core temperature) to 8.3% (ventilation). At termination, the CVs ranged from 0.8% (RPE) to 11.8% (breathing frequency). The low reliability of time-to-exhaustion and blood lactate concentration at MLSS indicates that the precise individual intensity prescription may be challenging. Moreover, the obtained data may serve as reference to allow for the separation of intervention effects from random variation in our sample.
Enzymatic glucose sensor compensation for variations in ambient oxygen concentration
NASA Astrophysics Data System (ADS)
Collier, Bradley B.; McShane, Michael J.
2013-02-01
Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in "smart materials" for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases.
Fluorescence lifetime imaging of oxygen in dental biofilm
NASA Astrophysics Data System (ADS)
Gerritsen, Hans C.; de Grauw, Cees J.
2000-12-01
Dental biofilm consists of micro-colonies of bacteria embedded in a matrix of polysaccharides and salivary proteins. pH and oxygen concentration are of great importance in dental biofilm. Both can be measured using fluorescence techniques. The imaging of dental biofilm is complicated by the thickness of the biofilms that can be up to several hundred micrometers thick. Here, we employed a combination of two-photon excitation microscopy with fluorescence lifetime imaging to quantify the oxygen concentration in dental biofilm. Collisional quenching of fluorescent probes by molecular oxygen leads to a reduction of the fluorescence lifetime of the probe. We employed this mechanism to measure the oxygen concentration distribution in dental biofilm by means of fluorescence lifetime imaging. Here, TRIS Ruthenium chloride hydrate was used as an oxygen probe. A calibration procedure on buffers was use to measure the lifetime response of this Ruthenium probe. The results are in agreement with the Stern-Volmer equation. A linear relation was found between the ratio of the unquenched and the quenched lifetime and the oxygen concentration. The biofilm fluorescence lifetime imaging results show a strong oxygen gradient at the buffer - biofilm interface and the average oxygen concentration in the biofilm amounted to 50 μM.
Determination of Time Required for Materials Exposed to Oxygen to Return to Reduced Flammability
NASA Technical Reports Server (NTRS)
Harper, Susana; Hirsch, David; Smith, Sarah
2009-01-01
Increased material flammability due to exposure to high oxygen concentrations is a concern from both a safety and operational perspective. Localized, high oxygen concentrations can occur when exiting a higher oxygen concentration environment due to material saturation, as well as oxygen entrapment between barrier materials. Understanding of oxygen diffusion and permeation and its correlation to flammability risks can reduce the likelihood of fires while improving procedures as NASA moves to longer missions with increased extravehicular activities in both spacecraft and off-Earth habitats. This paper examines the time required for common spacecraft materials exposed to oxygen to return to reduced flammability after removal from the increased oxygen concentration environment. Specifically, NASA-STD-6001A maximum oxygen concentration testing and ASTM F-1927 permeability testing were performed on Nomex 4 HT90-40, Tiburon 5 Surgical Drape, Cotton, Extravehicular Mobility Unit (EMU) Liquid-Cooled Ventilation Garment, EMU Thermal Comfort Undergarment, EMU Mosite Foam with Spandex Covering, Advanced Crew Escape Suit (ACES) Outer Cross-section, ACES Liquid Cooled Garment (LCG), ACES O2 Hose Material, Minicel 6 Polyethylene Foam, Minicel Polyethylene Foam with Nomex Covering, Pyrell Polyurethane Foam, and Zotek 7 F-30 Foam.
NASA Astrophysics Data System (ADS)
Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Engelund Holm, Peter; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter
2015-04-01
Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen concentrations. Inelastic water demands, fixed water allocation curtailment costs and fixed wastewater treatment costs (before and after use) are estimated for the water users (agriculture, industry and domestic). If the BOD concentration exceeds a given user pollution thresh-old, the user will need to pay for pre-treatment of the water before use. Similarly, treatment of the return flow can reduce the BOD load to the river. A traditional SDP approach is used to solve one-step-ahead sub-problems for all combinations of discrete reservoir storage, Markov Chain inflow clas-ses and monthly time steps. Pollution concentration nodes are introduced for each user group and untreated return flow from the users contribute to increased BOD concentrations in the river. The pollutant concentrations in each node depend on multiple decision variables (allocation and wastewater treatment) rendering the objective function non-linear. Therefore, the pollution concen-tration decisions are outsourced to a genetic algorithm, which calls a linear program to determine the remainder of the decision variables. This hybrid formulation keeps the optimization problem computationally feasible and represents a flexible and customizable method. The method has been applied to the Ziya River basin, an economic hotspot located on the North China Plain in Northern China. The basin is subject to severe water scarcity, and the rivers are heavily polluted with wastewater and nutrients from diffuse sources. The coupled hydro-economic optimiza-tion model can be used to assess costs of meeting additional constraints such as minimum water qual-ity or to economically prioritize investments in waste water treatment facilities based on economic criteria.
Atomic Oxygen Durability of Second Surface Silver Microsheet Glass Concentrators
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.; Mroz, Thaddeus S.
1996-01-01
Second surface silver microsheet glass concentrators are being developed for potential use in future solar dynamic space power systems. Traditional concentrators are aluminum honeycomb sandwich composites with either aluminum or graphite epoxy face sheets, where a reflective aluminum layer is deposited onto an organic leveling layer on the face sheet. To protect the underlying layers, a SiO2 layer is applied on top of the aluminum reflective layer. These concentrators may be vulnerable to atomic oxygen degradation due to possible atomic oxygen attack of the organic layers at defect sites in the protective and reflective coatings. A second surface microsheet glass concentrator would be inherently more atomic oxygen durable than these first surface concentrators. In addition, a second surface microsheet glass concentrator design provides a smooth optical surface and allows for silver to be used as a reflective layer, which would improve the reflectivity of the concentrator and the performance of the system. A potential threat to the performance of second surface microsheet glass concentrators is atomic oxygen attack of the underlying silver at seams and edges or at micrometeoroid and debris (MMD) impacts sites. Second surface silver microsheet glass concentrator samples were fabricated and tested for atomic oxygen durability. The samples were iteratively exposed to an atomic oxygen environment in a plasma asher. Samples were evaluated for potential degradation at fabrication seams, simulated MMD impact sites, and edges. Optical microscopy was used to evaluate atomic oxygen degradation. Reflectance was obtained for an impacted sample prior to and after atomic oxygen exposure. After an initial atomic oxygen exposure to an effective fluence of approx. 1 x 10(exp 21) atoms/cm(exp 2), oxidation of the silver at defect sites and edges was observed. Exposure to an additional approx. 1 x 10(exp 21) atoms/cm(exp 2) caused no observed increase in oxidation. Oxidation at an impact site caused negligible changes in reflectance. In all cases oxidation was found to be confined to the vicinity of the seams, impact sites, edges or defect sites. Asher to in-space atomic oxygen correlation issues will be addressed.
Haag, K.H.; Garcia, Rene; Jarrett, G.L.; Porter, S.D.
1995-01-01
The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water-Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of water-quality constituents including metals and trace elements, nutrients, sediments, pesticides, dissolved oxygen, and fecal-coliform bacteria. Oil-production activities were the source of barium, bromide, chloride, magnesium, and sodium in several watersheds. High concentrations of aluminum, iron, and zinc were related to surface mining in the Eastern Coal Field Region. High concentrations of lead and zinc occurred in streambed sediments in urban areas, whereas concentrations of arsenic, strontium, and uranium were associated with natural geologic sources. Concentrations of phosphorus were significantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, most of the stream nitrogen load was attributable to wastewater-treatment-plant effluent. Average suspended-sediment concentrations were positively correlated with discharge. There was a downward trend in suspended-sediment concentrations downstream in the Kentucky River main stem during the study. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organophosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, and lindane were found in streambed-sediment samples. Dissolved-oxygen concentrations were sometimes below the minimum concentration needed to sustain aquatic life. At some sites, high concentrations of fecal-indicator bacteria were found and water samples did not meet sanitary water-quality criteria.
Using fluorescence to augment the efficacy of photodynamic therapy
NASA Astrophysics Data System (ADS)
Dickey, Dwayne J.; Liu, Weiyang; Naicker, Selvaraj; Woo, Thomas; Moore, Ronald B.; Tulip, John
2006-09-01
Photodynamic Therapy (PDT) is a relatively novel oncological treatment modality, in which a patient is administered a photosensitive drug, called a photosensitizer. After allowing sufficient time for biodistribution, the cancerous area is irradiated with light of the appropriate wavelength, activating the photosensitizer to produce highly reactive singlet oxygen, which produces a highly localized cell kill. The efficacy of PDT is determined by a) the intensity of the light b) the local concentration of the photosensitizer, and c) the availability of oxygen. However, with the clinical application of PDT, the patient is simply administered a body mass dependent quantity of photosensitizer, and then the target area is administered a prescribed amount of radiant energy (joules per cubic centimetre). For treatment of superficial malignancies, PDT has many successes; however, interstitial PDT (PDT of solid, internal malignancies) has inconsistent outcomes mostly due to the inability to predict, calculate or measure the variables that affect PDT: the radiation dose, oxygen concentration, and the photosensitizer concentration. We have developed sophisticated methods to determine the behaviour of light in homogeneous biological tissues. Tissue oxygen levels can be replenished by fractionating the light dose - allowing areas of your target tissue to go through a "dark" cycle during PDT. However, to date, there has not been an accurate method of determining tissue photosensitizer concentrations in-vivo. We are researching the efficacy of a novel hypocrellin derivative, SL-052. Like other photosensitizers available, SL-052 shows strong therapeutic photodynamic activity when irradiated by 635 nm light. Like most photosensitizers, SL-052 exhibits fluorescent activity, but SL-052 also shows strong fluorescent emission at 725nm when excited by 635 nm. The intensity of the fluorescent emission can been correlated with the local concentration of the photosenstizer. However, many clinically available photosensitizers require that fluorescence is excited using a wavelength of light much shorter than the therapeutic wavelength. This characteristic allows us to monitor the availability of the photosensitizer during PDT and to correlate the outcome of PDT to the observed fluorescence. In this paper, we monitor the temporal distribution of SL-052 in the Dunning R3327-AT cell line grown on the flank of a Fisher Copenhangen rats.
Cation and Vacancy Disorder in U 1-yNd yO 2.00-X Alloys
Barabash, Rozaliya I.; Voit, Stewart L.; Aidhy, Dilpuneet S.; ...
2015-09-14
In this study, the intermixing and clustering of U/Nd, O, and vacancies were studied by both laboratory and synchrotron-based x-ray diffraction in U 1-yNd yO 2-X alloys. It was found that an increased holding time at the high experimental temperature during initial alloy preparation results in a lower disorder of the Nd distribution in the alloys. Adjustment of the oxygen concentration in the U 1-yNd yO 2-X alloys with different Nd concentrations was accompanied by the formation of vacancies on the oxygen sublattice and a nanocrystalline component. The lattice parameters in the U 1-yNd yO 2-X alloys were also foundmore » to deviate significantly from Vegard's law when the Nd concentration was high (53%) and decreased with increasing oxygen concentration. Such changes indicate the formation of large vacancy concentrations during oxygen adjustment at these high temperatures. Finally, the change in the vacancy concentration after the oxygen adjustment was estimated relative to Nd concentration and oxygen stoichiometry.« less
Von Guerard, Paul; Weiss, W.B.
1995-01-01
The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110 to 1,400 micrograms per liter. The data for 30 storms representing rainfall runoff from 5 drainage basins were used to develop single-storm local-regression models. The response variables, storm-runoff loads, volume, and event-mean concentrations were modeled using explanatory variables for climatic, physical, and land-use characteristics. The r2 for models that use ordinary least-squares regression ranged from 0.57 to 0.86 for storm-runoff loads and volume and from 0.25 to 0.63 for storm-runoff event-mean concentrations. Except for cadmium, standard errors of estimate ranged from 43 to 115 percent for storm- runoff loads and volume and from 35 to 66 percent for storm-runoff event-mean concentrations. Eleven of the 30 concentrations collected during rainfall runoff for total-recoverable cadmium were censored (less than) concentrations. Ordinary least-squares regression should not be used with censored data; however, censored data can be included with uncensored data using tobit regression. Standard errors of estimate for storm-runoff load and event-mean concentration for total-recoverable cadmium, computed using tobit regression, are 247 and 171 percent. Estimates from single-storm regional-regression models, developed from the Nationwide Urban Runoff Program data base, were compared with observed storm-runoff loads, volume, and event-mean concentrations determined from samples collected in the study area. Single-storm regional-regression models tended to overestimate storm-runoff loads, volume, and event-mean con-centrations. Therefore, single-storm local- and regional-regression models were combined using model-adjustment procedures to take advantage of the strengths of both models while minimizing the deficiencies of each model. Procedures were used to develop single-stormregression equations that were adjusted using local data and estimates from single-storm regional-regression equations. Single-storm regression models developed using model- adjustment proce
Neves, Paulo César Fagundes; de Campos Vieira Abib, Simone; Neves, Rogério Fagundes; Pircchio, Oronzo; Saad, Karen Ruggeri; Saad, Paulo Fernandes; Simões, Ricardo Santos; Moreira, Marcia Bento; de Souza Laurino, Cristiano Frota
2013-01-01
OBJECTIVES: The purpose is to study the effects of hyperbaric oxygen therapy and autologous platelet concentrates in healing the fibula bone of rabbits after induced fractures. METHODS: A total of 128 male New Zealand albino rabbits, between 6–8 months old, were subjected to a total osteotomy of the proximal portion of the right fibula. After surgery, the animals were divided into four groups (n = 32 each): control group, in which animals were subjected to osteotomy; autologous platelet concentrate group, in which animals were subjected to osteotomy and autologous platelet concentrate applied at the fracture site; hyperbaric oxygen group, in which animals were subjected to osteotomy and 9 consecutive daily hyperbaric oxygen therapy sessions; and autologous platelet concentrate and hyperbaric oxygen group, in which animals were subjected to osteotomy, autologous platelet concentrate applied at the fracture site, and 9 consecutive daily hyperbaric oxygen therapy sessions. Each group was divided into 4 subgroups according to a pre-determined euthanasia time points: 2, 4, 6, and 8 weeks postoperative. After euthanasia at a specific time point, the fibula containing the osseous callus was prepared histologically and stained with hematoxylin and eosin or picrosirius red. RESULTS: Autologous platelet concentrates and hyperbaric oxygen therapy, applied together or separately, increased the rate of bone healing compared with the control group. CONCLUSION: Hyperbaric oxygen therapy and autologous platelet concentrate combined increased the rate of bone healing in this experimental model. PMID:24141841
Villa-Gomez, D K; Pakshirajan, K; Maestro, R; Mushi, S; Lens, P N L
2015-07-01
The individual and combined effect of the pH, chemical oxygen demand (COD) and SO4 (2-) concentration, metal to sulfide (M/S(2-)) ratio and hydraulic retention time (HRT) on the biological sulfate reduction (SR) process was evaluated in an inverse fluidized bed reactor by factorial design analysis (FDA) and response surface analysis (RSA). The regression-based model of the FDA described the experimental results well and revealed that the most significant variable affecting the process was the pH. The combined effect of the pH and HRT was barely observable, while the pH and COD concentration positive effect (up to 7 and 3 gCOD/L, respectively) enhanced the SR process. Contrary, the individual COD concentration effect only enhanced the COD removal efficiency, suggesting changes in the microbial pathway. The RSA showed that the M/S(2-) ratio determined whether the inhibition mechanism to the SR process was due to the presence of free metals or precipitated metal sulfides.
NASA Astrophysics Data System (ADS)
Greco, A.; Strock, K.; Edwards, B. R.
2017-12-01
Fourteen lakes were sampled in the southern and western area of Iceland in June of 2017. The southern systems, within the Eastern Volcanic Zone, have minimal soil development and active volcanoes that produce ash input to lakes. Lakes in the Western Volcanic Zone were more diverse and located in older bedrock with more extensively weathered soil. Physical variables (temperature, oxygen concentration, and water clarity), chemical variables (pH, conductivity, dissolved and total nitrogen and phosphorus concentrations, and dissolved organic carbon concentration), and biological variables (algal biomass) were compared across the lakes sampled in these geographic regions. There was a large range in lake characteristics, including five to eighteen times higher algal biomass in the southern systems that experience active ash input to lakes. The lakes located in the Eastern Volcanic Zone also had higher conductivity and lower pH, especially in systems receiving substantial geothermal input. These results were analyzed in the context of more extensive lake sampling efforts across Iceland (46 lakes) to determine defining characteristics of lakes in each region and to identify variables that drive heterogeneous patterns in physical, chemical, and biological lake features within each region. Coastal systems, characterized by high conductivity, and glacially-fed systems, characterized by high iron concentrations, were unique from lakes in all other regions. Clustering and principal component analyses revealed that lake type (plateau, valley, spring-fed, and direct-runoff) was not the primary factor explaining variability in lake chemistry outside of the coastal and glacial lake types. Instead, lakes differentiated along a gradient of iron concentration and total nitrogen concentration. The physical and chemical properties of subarctic lakes are especially susceptible to both natural and human-induced environmental impacts. However, relatively little is known about the contemporary physical and chemical properties of Icelandic lakes, despite their abundance and importance as freshwater resources. Here we report an analysis of the physical, chemical, and biological characteristics of a set of subarctic lakes and use spatial Information to infer controls on lake heterogeneity within and across regions.
Pendino, Juan Carlos; Hess, Leonardo; Beltrame, Sergio; Castillo, Gonzalo Aldamiz-Echevarría; Trujillo, John
2017-01-01
This prospective study aimed to characterize the changes in blood lactate concentration and blood oxygen saturation in patients during the immediate postoperative period of cardiac surgery with extracorporeal circulation. Blood samples were collected from 35 patients in a rapid and random order from the arterial line and from the proximal and distal port of a pulmonary artery catheter. The results showed no statistically significant differences between the blood oxygen saturation in the right atrium (72% ± 0.11%) and the blood oxygen saturation in the pulmonary artery (71% ± 0.08%). The blood lactate concentration in the right atrium was 1.7mmol/L ± 0.5mmol/L, and the blood lactate concentration in the pulmonary artery was 1.6mmol/L ± 0.5mmol/L (p < 0.0005). The difference between the blood lactate concentration in the right atrium and the blood lactate concentration in the pulmonary artery might be a consequence of the low blood lactate concentration in the blood from the coronary sinus, as it constitutes an important substrate for the myocardium during this period. The lack of differences between the blood oxygen saturation in the right atrium and the percentage of blood oxygen saturation in the pulmonary artery suggests a lower oxygen extraction by the myocardium given a lower oxygen consumption.
Kung, Theodore A; Kong, Sarah W; Aliu, Oluseyi; Azizi, Jahan; Kai, Salim; Cederna, Paul S
2016-02-01
To investigate the isolated and combined effects of vacuum suctioning and strategic drape tenting on oxygen concentration in an experimental setting. Experimental. Clinical simulation center of a university-affiliated hospital. Mannequin simulation of a patient undergoing facial surgery under sedation anesthesia. Supplemental oxygen was delivered via nasal cannula. Vacuum suctioning and strategic drape tenting. The experimental trials entailed measuring oxygen concentration around the nasal cannula continuously either in the presence or absence of a standard operating room vacuum suction system and strategic tenting of surgical drapes. The primary outcome was the time required for oxygen concentration to reach 21%. In the control group (without suction or strategic tenting), a mean time of 180 seconds elapsed until the measured oxygen concentration reached 21% after cessation of oxygen delivery. Use of a vacuum suction device alone (110 seconds; P < .01) or in combination with strategic tenting (110 seconds; P < .01) significantly reduced this time. No significant benefit was seen when tenting was used alone (160 seconds; P < .30). Use of a vacuum suction device during surgery will lower local oxygen concentration, and this in turn may decrease the risk of operating room fires. Although strategic tenting of surgical drapes has a theoretical benefit to decreasing the pooling of oxygen around the surgical site, further investigation is necessary before its routine use is recommended. Copyright © 2016 Elsevier Inc. All rights reserved.
Assessing the depth of isoflurane anaesthesia during cardiopulmonary bypass.
Ng, Ka Ting; Alston, R Peter; Just, George; McKenzie, Chris
2018-03-01
Bispectral index (BIS) and monitoring of end-tidal concentration may be associated with a reduction in the incidence of awareness during volatile-based general anaesthesia. An analogue of end-tidal concentration during cardiopulmonary bypass (CPB) is measuring exhausted isoflurane concentration from the oxygenator as an estimate to blood and, so, brain concentration. The aim of this study was to determine the relationships between oxygenator exhaust and blood concentrations of isoflurane and the BIS score during CPB when administering isoflurane into the sweep gas supply to the oxygenator. Seventeen patients undergoing elective cardiac surgery using CPB and isoflurane with BIS monitoring were recruited in a single-centre university hospital. Isoflurane gas was delivered via a calibrated vaporiser at the beginning of anaesthetic induction. Radial arterial blood samples were collected after the initiation of CPB and before aortic cross-clamping, which were analysed for isoflurane by gas chromatography and mass spectrometry. The BIS score and the concentration of exhausted isoflurane from the oxygenator membrane, as measured by an anaesthetic gas analyser, were recorded at the time of blood sampling. The mean duration of anaesthetic induction to arterial blood sampling was 90 min (95%CI: 80,100). On CPB, the median BIS was 39 (range, 7-43) and the mean oxygenator exhaust isoflurane concentration was 1.24 ± 0.21%. No significant correlation was demonstrated between BIS with arterial isoflurane concentration (r=-0.19, p=0.47) or oxygenator exhaust isoflurane concentration (r=0.07, p=0.80). Mixed-venous blood temperature was moderately correlated to BIS (r=0.50, p=0.04). Oxygenator exhaust isoflurane concentration was moderately, positively correlated with its arterial concentration (r=0.64, p<0.01). In conclusion, in patients undergoing heart surgery with CPB, the findings of this study indicate that, whilst oxygenator exhaust concentrations were significantly associated with arterial concentrations of isoflurane, neither had any association with the BIS scores, whereas body temperature has moderate positive correlation.
Bordes, Julien; Erwan d'Aranda; Savoie, Pierre-Henry; Montcriol, Ambroise; Goutorbe, Philippe; Kaiser, Eric
2014-09-01
Management of critically ill patients in austere environments is a logistic challenge. Availability of oxygen cylinders for the mechanically ventilated patient may be difficult in such a context. A solution is to use a ventilator able to function with an oxygen concentrator. We tested the SeQual Integra™ (SeQual, San Diego, CA) 10-OM oxygen concentrator paired with the Pulmonetic System(®) LTV 1000 ventilator (Pulmonetic Systems, Minneapolis, MN) and evaluated the delivered fraction of inspired oxygen (FiO2) across a range of minute volumes and combinations of ventilator settings. Two LTV 1000 ventilators were tested. The ventilators were attached to a test lung and FiO2 was measured by a gas analyzer. Continuous-flow oxygen was generated by the OC from 0.5 L/min to 10 L/min and injected into the oxygen inlet port of the LTV 1000. Several combinations of ventilator settings were evaluated to determine the factors affecting the delivered FiO2. The LTV 1000 ventilator is a turbine ventilator that is able to deliver high FiO2 when functioning with an oxygen concentrator. However, modifications of the ventilator settings such as increase in minute ventilation affect delivered FiO2 even if oxygen flow is constant on the oxygen concentrator. The ability of an oxygen concentrator to deliver high FiO2 when used with a turbine ventilator makes this method of oxygen delivery a viable alternative to cylinders in austere environments when used with a turbine ventilator. However, FiO2 has to be monitored continuously because delivered FiO2 decreases when minute ventilation is increased. Copyright © 2014 Elsevier Inc. All rights reserved.
Xiao, Wenjin; Shinohara, Marie; Komori, Kikuo; Sakai, Yasuyuki; Matsui, Hitoshi; Osada, Tomoharu
2014-01-01
Oxygen supply is a critical issue in the optimization of in vitro hepatocyte microenvironments. Although several strategies have been developed to balance complex oxygen requirements, these techniques are not able to accurately meet the cellular oxygen demand. Indeed, neither the actual oxygen concentration encountered by cells nor the cellular oxygen consumption rates (OCR) was assessed. The aim of this study is to define appropriate oxygen conditions at the cell level that could accurately match the OCR and allow hepatocytes to maintain liver specific functions in a normoxic environment. Matrigel overlaid rat hepatocytes were cultured on the polydimethylsiloxane (PDMS) membranes under either atmospheric oxygen concentration [20%-O2 (+)] or physiological oxygen concentrations [10%-O2 (+), 5%-O2 (+)], respectively, to investigate the effects of various oxygen concentrations on the efficient functioning of hepatocytes. In parallel, the gas-impermeable cultures (polystyrene) with PDMS membrane inserts were used as the control groups [PS-O2 (-)]. The results indicated that the hepatocytes under 10%-O2 (+) exhibited improved survival and maintenance of metabolic activities and functional polarization. The dramatic elevation of cellular OCR up to the in vivo liver rate proposed a normoxic environment for hepatocytes, especially when comparing with PS-O2 (-) cultures, in which the cells generally tolerated hypoxia. Additionally, the expression levels of 84 drug-metabolism genes were the closest to physiological levels. In conclusion, this study clearly shows the benefit of long-term culture of hepatocytes at physiological oxygen concentration, and indicates on an oxygen-permeable membrane system to provide a simple method for in vitro studies. © 2014 American Institute of Chemical Engineers.
Climate change threatens endangered plant species by stronger and interacting water-related stresses
NASA Astrophysics Data System (ADS)
Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien
2011-12-01
Atmospheric CO2-concentration, temperature and rainfall variability are all expected to increase in the near future. The resulting increased dynamics of soil moisture contents, together with increased plant physiological demands for both oxygen and water, will lead to an increased occurrence of wet and dry extremes of plant stresses, i.e., of oxygen and drought stress, respectively, alone and in interaction. The use of indirect environmental variables in previous studies and a focus on individual stresses rather than their combined effects has hampered understanding of the causal impact of climate change on plant species composition through changes in abiotic site conditions. Here, we use process-based simulations of oxygen and drought stresses in conjunction with a downscaled national version of IPCC scenarios in order to show that these stresses will increase (on average by ˜20% at sites where both stresses occur) in a warmer and more variable future (2050) climate. These two types of stresses will increasingly coincide, i.e. both stresses will occur more often (but not at the same time) within a single vegetation plot. We further show that this increased coincidence of water-related stresses will negatively affect the future occurrence of currently endangered plant species (causing a reduction of ˜16%), while apparently no such decrease will occur among common species. Individual stresses did not appear to affect the occurrence of endangered plant species. Consequently, our study demonstrates that species that are already threatened under the current climate will suffer most from the effects of climate change.
Decreased precision contributes to the hypoxic thermoregulatory response in lizards.
Cadena, Viviana; Tattersall, Glenn J
2009-01-01
The decrease in body temperature (T(b)) observed in most vertebrate classes in response to hypoxia has been attributed to a regulated decrease in set-point, protecting organs against tissue death due to oxygen depletion. Hypoxia, however, imparts particular challenges to metabolic function which may, in turn, affect thermoregulation. In ectotherms, where thermoregulation is mainly behavioural, stressors that influence the propensity to move and respond to temperature gradients are expected to have an impact on thermoregulatory control. Using low oxygen as a potent stressor, we evaluated the variability and level of thermoregulation of inland bearded dragons. To examine the source of thermoregulatory variability, we studied their behaviour in an electronically controlled temperature-choice shuttle box, a constant temperature dual-choice shuttle box, and a linear thermal gradient. A significant increase in the size of the T(b) range was observed at the lowest oxygen concentration (4% O(2)), reflecting a decrease in thermoregulatory precision in the temperature-choice shuttle box. This was also accompanied by a drop of approximately 2-4 degrees C in T(b), the drop being greatest in situations where T(b) must be actively defended. Situations that force the lizards to continually choose temperatures, rather than passively remain at a given temperature, lead to an increase in the variability in the manifested T(b), which is further exaggerated in hypoxia. This study reveals that a decrease in thermoregulatory precision caused by a diminished propensity to move or effect appropriate thermoregulatory responses may be a contributing component in the lowering of selected body temperatures observed in many hypoxic ectotherms.
... 85-95% pure oxygen. The concentrator runs on electricity or a battery. A concentrator for home usually ... systems deliver 100% oxygen, and do not require electricity. A small canister can be filled from the ...
Sando, Steven K.; Sether, Bradley A.
1993-01-01
Physical-properties were measured and water-quality, plankton, and bottom-material samples were collected at 10 sites in Devils Lake and East Devils Lake during September 1988 through October 1990 to study water-quality variability and water-quality and plankton relations in Devils Lake and East Devils Lake. Physical properties measured include specific conductance, pH, water temperature, dissolved-oxygen concentration, water transparency, and light transmission. Water-quality samples were analyzed for concentrations of major ions, selected nutrients, and selected trace elements. Plankton samples were examined for identification and enumeration of phytoplankton and zooplankton species, and bottom-material samples were analyzed for concentrations of selected nutrients. Data-collection procedures are discussed and the data are presented in tabular form.
NASA Astrophysics Data System (ADS)
Flores-McLaughlin, John
During human spaceflight missions, controlled variation of atmospheric pressure and oxygen concentration from a sea-level based normal to hyperoxic levels may occur as part of operational procedure. This activity is of interest because it provides the relevant radiation exposure and dynamic oxygen concentration parameters that may lead to varying radiation sensitivity in the skin and other organs. Tumor hypoxia has been indicated as a primary factor in the decrease in efficacy of radiation therapy. These oxygen concentration effects have been largely demonstrated with low-LET radiations and to a lesser degree with high-LET primary radiations such as protons and heavy ions common in space exposure. In order to analyze the variation of oxygen concentration in human skin from spaceflight activities, a mathematical model of oxygen transport through the human cardiorespiratory system with pulmonary and cutaneous intake was implemented. Oxygen concentration was simulated at the various skin layers, from dermis to epidermis. Skin surface radiation doses and spectra from relatively high flux Solar Particle Events (SPEs) were calculated by the PHITS radiation transport code over a range of spacecraft and spacesuit thicknesses in terms of aluminum equivalence. A series of anatomical skin and shielding thicknesses were chosen to encompass the scope of radiation exposure levels as indicated by existing NASA skin phantom studies. To model the influence of oxygen with radiation exposure, microdosimetric oxygen fixation simulations were implemented using the Monte-Carlo-Damage-Simulation (MCDS) code. From these outputs, occurrence of DNA double strand breaks (DSBs) and relative biological effect (RBE) from radiation exposure with oxygen concentration dependence was established and correlated to spaceflight activities. It was determined that minimal but observable oxygen concentration transients occur in skin during environmental oxygen changes in spaceflight. The most significant transients occurred in the thickest epidermal layers with relatively high amounts of diffusion. Accordingly, these thickest epidermal layers also showed the greatest spaceflight induced transients of RBE relative to sea-level based atmosphere exposures.
VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS
The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...
Küster, Eberhard; Altenburger, Rolf
2008-12-01
Environmental samples such as groundwater, sediment pore water, native or freeze dried sediments may be difficult to analyze for toxic effects with organismic aquatic bioassays. These samples might evoke low oxygen concentration or oxygen depletion during the test. The toxicity assessment could thus be confounded by low oxygen concentrations. The acute zebrafish embryo assay was used to analyze the influence of oxygen deficit on the embryonic development in the first 48 h post fertilization. Embryos were exposed to varying oxygen concentrations ranging from <30 to >80% oxygen saturation of water. A clear concentration dependent retardation of fish embryo development was observed. Because of a retarded development toxic thresholds of environmental samples which might include substances slowing down the development will be altered. For the purpose of identification of critical contaminants in complex environmental samples, it is proposed to actively aerate environmental samples which are likely to be oxygen depleted during the duration of the zebrafish embryo bioassay. 2008 Wiley Periodicals, Inc.
Corrosion behaviour of stainless steels in flowing LBE at low and high oxygen concentration
NASA Astrophysics Data System (ADS)
Aiello, A.; Azzati, M.; Benamati, G.; Gessi, A.; Long, B.; Scaddozzo, G.
2004-11-01
The corrosion behaviours of austenitic steel AISI 316L and martensitic steel T91 were investigated in flowing lead-bismuth eutectic (LBE) at 400 °C. The tests were performed in the LECOR and CHEOPE III loops, which stood for the low oxygen concentration and high oxygen concentration in LBE, respectively. The results obtained shows that steels were affected by dissolution at the condition of low oxygen concentration ( C[O 2] = 10 -8-10 -10 wt%) and were oxidized at the condition of high oxygen concentration ( C[O 2] = 10 -5-10 -6 wt%). The oxide layers detected are able to protect the steels from dissolution in LBE. Under the test condition adopted, the austenitic steel behaved more resistant to corrosion induced by LBE than the martensitic steel.
NASA Astrophysics Data System (ADS)
Yantidewi, M.; Muntini, M. S.; Deta, U. A.; Lestari, N. A.
2018-03-01
Limited fossil fuels nowadays trigger the development of alternative energy, one of which is biogas. Biogas is one type of bioenergy in the form of fermented gases of organic materials such as animal waste. The components of gases present in biogas and affect the biogas production are various, such as methane and oxygen. The biogas utilization will be more optimal if both gases concentration (in this case is methane and oxygen concentration) can be monitored. Therefore, this research focused on designing the monitoring system of methane and oxygen concentration in biogas production in real-time. The results showed that the instrument system was capable of monitoring and recording the data of gases (methane and oxygen) concentration in biogas production in every second.
Drescher, U; Koschate, J; Thieschäfer, L; Schneider, S; Hoffmann, U
2018-06-22
The aim of the study was to test whether or not the arteriovenous oxygen concentration difference (avDO 2 ) kinetics at the pulmonary (avDO 2 pulm) and muscle (avDO 2 musc) levels is significantly different during dynamic exercise. A re-analysis involving six publications dealing with kinetic analysis was utilized with an overall sample size of 69 participants. All studies comprised an identical pseudorandom binary sequence work rate (WR) protocol-WR changes between 30 and 80 W-to analyze the kinetic responses of pulmonary ([Formula: see text]) and muscle ([Formula: see text]) oxygen uptake kinetics as well as those of avDO 2 pulm and avDO 2 musc. A significant difference between [Formula: see text] (0.395 ± 0.079) and [Formula: see text] kinetics (0.330 ± 0.078) was observed (p < 0.001), where the variables showed a significant relationship (r SP = 0.744, p < 0.001). There were no significant differences between avDO 2 musc (0.446 ± 0.077) and avDO 2 pulm kinetics (0.451 ± 0.075), which are highly correlated (r = 0.929, p < 0.001). It is suggested that neither avDO 2 pulm nor avDO 2 musc kinetic responses seem to be responsible for the differences between estimated [Formula: see text] and measured [Formula: see text] kinetics. Obviously, the conflation of avDO 2 and perfusion ([Formula: see text] ) at different points in time and at different physiological levels drive potential differences in [Formula: see text] and [Formula: see text] kinetics. Therefore, [Formula: see text] should, in general, be considered whenever oxygen uptake kinetics are analyzed or discussed.
NASA Astrophysics Data System (ADS)
Tagklis, Filippos; Bracco, Annalisa; Ito, Takamitsu
2017-04-01
Centennial trends of oxygen in the upper 700 m of the North Atlantic Ocean are investigated in Earth System Models (ESMs) included in the Coupled Model Intercomparison Project Phase 5. The focus is on the subpolar region, which is key for the oceanic uptake of oxygen and carbon dioxide. Historical simulations covering the twentieth century and projections for the twenty-first century under the Representative Concentration Pathway 8.5 scenario are investigated. Although the representation of convective activity differs among the models in space and strength, and most models have a cold bias south of Greenland resulting from a poor representation of the pathway of the North Atlantic Current, the observed climatological distribution of dissolved O2 averaged for the recent past period (1975-2005) is generally well captured. By the end of the 21st century, all models predict an increase in depth-integrated temperature of 2-3oC, a consequent solubility decrease, a weakening of the vertical mass transport, a decrease in nutrient supply into the euphotic layer, and a spatially variable change in apparent oxygen utilization (AOU). Despite an overall tendency of the North Atlantic to lose oxygen by the end of twenty-first century, patchy regions of O2 increase are observed in a subset of models. This regional resistance to deoxygenation is explained by the weakening of the North Atlantic Current that causes a regional solubility increase exceeding the effect of increasing stratification. Our results imply that potential shifts in the North Atlantic Current play a crucial role in the future projection of the regional oxygen concentration in the warming climate.
The oxygen concentrator is a suitable alternative to oxygen cylinders in Nepal.
Shrestha, Bisharad M; Singh, Birendra B; Gautam, Madhav P; Chand, Man B
2002-01-01
To review the efficacy and reliability of oxygen concentrators used over the last six years in Nepal. The apparatus used was a DeVilbiss(R) oxygen concentrator that provided O(2) for anesthesia supplemented with compressed air to drive a Penlon Manley Multivent Ventilator(R). It remains difficult to supply oxygen in cylinders to peripheral hospitals in Nepal due to lack of proper roads. We conducted a retrospective analysis of a sample of 378 cases anesthetized at the Bir Hospital and at a private hospital in Kathmandu from April through October 1999. The Bain circuit or its modification was used in adults, and Bain or Ayre's T piece in children. High flows from the oxygen concentrator used with the Bain and Ayre's T-circuits were reduced to 2 L/min, delivered through the halothane vaporizer, supplemented by room air in the modified Bain circuit. Positive pressure ventilation was provided with an Ambubag, Oxford Inflating Bellows or Penlon Manley Multivent Ventilator. Blood pressure, electrocardiogram, FiO(2) and SpO(2) were monitored in all cases. Surgery included urologic, general surgery, obstetrics and gynecological procedures, neurosurgery and closed mitral valvotomy. Age ranged from six months to 78 yr. The anesthetic time lasted from 45 min to 12 hr. The FiO(2) ranged from 0.5 to 0.6 in the Bain and Ayre's T circuits, and from 0.34 to 0.40 in the modified Bain circuit with a flow of oxygen of 2 L/min from the concentrator. With regular maintenance and servicing done locally, the oxygen concentrator can be used safely in adults and children. Use of the oxygen concentrator is a suitable alternative to oxygen cylinders in the developing world.
Heaney, Liam G; McAllister, Denise; MacMahon, Joseph
1999-01-01
Objectives To determine the level of oxygen cylinder use at which it becomes more cost effective to provide oxygen by concentrator at home in Northern Ireland, and to examine potential cost savings if cylinder use above this level had been replaced by concentrator in 1996. Design Cost minimisation analysis. Setting Area health boards in Northern Ireland. Main outcome measures Cost effective cut off point for switch to provision of oxygen from cylinder to concentrator. Potential maximum and minimum savings in Northern Ireland (sensitivity analysis) owing to switch to more cost effective strategy on the basis of provision of cylinders in 1996. Results In Northern Ireland it is currently cost effective to provide oxygen by concentrator when the patient is using three or more cylinders per month independent of the duration of the prescription. More widespread use of concentrators at this level of provision is likely to lead to a cost saving. Conclusions The Drug Tariff prescribing guidelines, advocating that provision of oxygen by concentrator becomes cheaper when 21 cylinders are being used per month—are currently inaccurate in Northern Ireland. Regional health authorities should review their current arrangements for provision of oxygen at home and perform a cost analysis to determine at what level it becomes more cost effective to provide oxygen by concentrator. Key messagesThe current Drug Tariff prescribing guidelines are not cost effective for provision of oxygen at home in Northern IrelandIndividual prescriptions detailing frequency of usage and delivery costs should be recordedA switch to a more cost effective strategy is likely to result in a cost savingRegional health authorities should examinecurrent arrangements for provision of oxygen at home and should perform cost analyses PMID:10390453
Peters, N.E.; Buell, G.R.; Frick, E.A.
1997-01-01
Nutrient concentrations from the early 1970s through 1995 were evaluated at several sites along the Chattahoochee River and its tributaries near Atlanta, to determine general patterns and processes controlling nutrient concentrations in the river. A spatial analysis was conducted on data collected in 1994 and 1995 from an intensive nutrient study of the Chattahoochee River and its tributaries by the Georgia Department of Natural Resources, Environmental Protection Division. The 1994-1995 data show step increases in ammonium (NH4-N), nitrite plus nitrate (NO2 + NO3-N), and total-phosphorus (Tot-P) concentrations in the river. The step increases occur downstream of two wastewater treatment facilities (WWTFs) and Peachtree Creek, a small tributary inflow with degraded water quality draining a predominantly urban and industrial area. Median NO2 + NO3-N and Tot-P concentrations in the mainstem increase downstream of these inputs from 0.5 to 1 mg 1-1 and from 0.04 to 0.13 mg 1-1, respectively. NH4-N concentrations were typically low with 95% of the 2575 observations less than 0.2 mg 1-1 throughout the river system, except some high values (>1 mg 1-1) in some tributaries, particularly near the central part of Atlanta. High NH4-N concentrations are attributed to sewage discharge as they also are associated with high biological oxygen demand and faecal coliform bacteria concentrations. Nutrient concentrations vary temporally. An assessment of four sites, two mainstem and two tributaries, from 1970 to 1995 indicates a progressive increase and variability in NO2 + NO3-N concentrations during the period. The progressive increase in NO2 + NO3-N concentrations and their variability is similar to that reported for surface waters throughout the world and for which increased fertilizer usage has been attributed. Tot-P concentrations increase at mainstem sites through the middle to late 1980s and decrease markedly thereafter, due to improvements to WWTFs and a 1990 phosphate detergent ban. NH4-N concentrations, although less pronounced than Tot-P, display a similar decrease from the late 1980s to 1995 at the four sites. Tot-P concentration variability has increased at the tributary sites since 1993, although recent concentrations, on average, are the lowest since 1970 at each of the four sites.
Simulation of an enzyme-based glucose sensor
NASA Astrophysics Data System (ADS)
Sha, Xianzheng; Jablecki, Michael; Gough, David A.
2001-09-01
An important biosensor application is the continuous monitoring blood or tissue fluid glucose concentration in people with diabetes. Our research focuses on the development of a glucose sensor based on potentiostatic oxygen electrodes and immobilized glucose oxidase for long- term application as an implant in tissues. As the sensor signal depends on many design variables, a trial-and-error approach to sensor optimization can be time-consuming. Here, the properties of an implantable glucose sensor are optimized by a systematic computational simulation approach.
Vacancy identification in Co+ doped rutile TiO2 crystal with positron annihilation spectroscopy
NASA Astrophysics Data System (ADS)
Qin, X. B.; Zhang, P.; Liang, L. H.; Zhao, B. Z.; Yu, R. S.; Wang, B. Y.; Wu, W. M.
2011-01-01
Co-doped rutile TiO2 films were synthesized by ion implantation. Variable energy positron annihilation Doppler broadening spectroscopy and coincidence Doppler broadening measurements were performed for identification of the vacancies. A newly formed type of vacancy can be concluded by the S-W plot and the CDB results indicated that the oxygen vacancy (VO) complex Ti-Co-VO and/or Ti-VO are formed with Co ions implantation and the vacancy concentration is increased with increase of dopant dose.
Wang, Lin; Acosta, Miguel A.; Leach, Jennie B.; Carrier, Rebecca L.
2013-01-01
Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems. PMID:23443975
Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L
2013-04-21
Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.
Methane oxidation and formation of EPS in compost: effect of oxygen concentration.
Wilshusen, J H; Hettiaratchi, J P A; De Visscher, A; Saint-Fort, R
2004-05-01
Oxygen concentration plays an important role in the regulation of methane oxidation and the microbial ecology of methanotrophs. However, this effect is still poorly quantified in soil and compost ecosystems. The effect of oxygen on the formation of exopolymeric substances (EPS) is as yet unknown. We studied the effect of oxygen on the evolution of methanotrophic activity. At both high and low oxygen concentrations, peak activity was observed twice within a period of 6 months. Phospholipid fatty acid analysis showed that there was a shift from type I to type II methanotrophs during this period. At high oxygen concentration, EPS production was about 250% of the amount at low oxygen concentration. It is hypothesized that EPS serves as a carbon cycling mechanism for type I methanotrophs when inorganic nitrogen is limiting. Simultaneously, EPS stimulates nitrogenase activity in type II methanotrophs by creating oxygen-depleted zones. The kinetic results were incorporated in a simulation model for gas transport and methane oxidation in a passively aerated biofilter. Comparison between the model and experimental data showed that, besides acting as a micro-scale diffusion barrier, EPS can act as a barrier to macro-scale diffusion, reducing the performance of such biofilters.
Variable range hopping in ZnO films
NASA Astrophysics Data System (ADS)
Ali, Nasir; Ghosh, Subhasis
2018-04-01
We report the variable range hopping in ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. It has been found that Mott variable range hopping dominant over Efros variable range hopping in all ZnO films. It also has been found that hopping distance and energy increases with increasing oxygen partial pressure.
NASA Technical Reports Server (NTRS)
Zhao, J.; Seehra, M. S.
1991-01-01
The recently observed variations of the transition temperature (T sub c) with oxygen content in the Bi based (2212) and (2223) superconductors are analyzed in terms of p+, the hole concentration per CuO2 sheet. This analysis shows that in this system, T sub c increases with p+ initially, reaching maxima at p+ = 0.2 approx. 0.3, followed by monotonic decrease of T sub c with p+. The forms of these variations are similar to those observed in the La(2-x)Sr(x)CuO4 and YBa2Cu3Oy systems, suggesting that p+ may be an important variable governing superconductivity in the cuprate superconductors.
Lumb, Andrew B; Nair, Sindhu
2010-03-01
Breathing increased fractional oxygen concentration (FiO2) is recommended for the treatment of tissue ischaemia. The theoretical benefits of increasing FiO2 on tissue oxygenation were evaluated using standard physiological equations. Assuming constant oxygen consumption by tissues throughout the length of a capillary, the oxygen content at 20 arbitrary points along a capillary was calculated. Using mathematical representations of the haemoglobin dissociation curve and an iterative approach to include the dissolved oxygen component of oxygen content, the oxygen partial pressure (PO2) profile along a capillary was estimated. High FiO2 concentrations cause large increases in PO2 at the arteriolar end of capillaries but these large PO2 values, caused by the extra dissolved oxygen, rapidly decline along the capillary. At the venular end of the capillary (the area of tissue most likely to be hypoxic), breathing oxygen causes only a modest improvement in PO2. Increasing FiO2 to treat tissue hypoxia has clear benefits, but a multimodal approach to management is required.
Wang, Lei; Liu, Wenming; Wang, Yaolei; Wang, Jian-chun; Tu, Qin; Liu, Rui; Wang, Jinyi
2013-02-21
Recent microfluidic advancements in oxygen gradients have greatly promoted controllable oxygen-sensitive cellular investigations at microscale resolution. However, multi-gradient integration in a single microfluidic device for tissue-mimicking cell investigation is not yet well established. In this study, we describe a method that can generate oxygen and chemical concentration gradients in a single microfluidic device via the formation of an oxygen gradient in a chamber and a chemical concentration gradient between adjacent chambers. The oxygen gradient dynamics were systematically investigated, and were quantitatively controlled using simple exchange between the aerial oxygen and the oxygen-free conditions in the gas-permeable polydimethylsiloxane channel. Meanwhile, the chemical gradient dynamics was generated using a special channel-branched device. For potential medical applications of the established oxygen and chemical concentration gradients, a tumor cell therapy assessment was performed using two antitumor drugs (tirapazamine and bleomycin) and two tumor cell lines (human lung adenocarcinoma A549 cells and human cervical carcinoma HeLa cells). The results of the proof-of-concept experiment indicate the dose-dependent antitumor effect of the drugs and hypoxia-induced cytotoxicity of tirapazamine. We demonstrate that the integration of oxygen and chemical concentration gradients in a single device can be applied to investigating oxygen- and chemical-sensitive cell events, which can also be valuable in the development of multi-gradient generating procedures and specific drug screening.
De Lanois, Jeanne L.; Green, W. Reed
2011-01-01
Dissolved oxygen is a critical constituent in reservoirs and lakes because it is essential for metabolism by all aerobic aquatic organisms. In general, hypolimnetic temperature and dissolved-oxygen concentrations vary from summer to summer in reservoirs, more so than in natural lakes, largely in response to the magnitude of flow into and release out of the water body. Because eutrophication is often defined as the acceleration of biological productivity resulting from increased nutrient and organic loading, hypolimnetic oxygen consumption rates or deficits often provide a useful tool in analyzing temporal changes in water quality. This report updates a previous report that evaluated hypolimnetic dissolved-oxygen dynamics for a 21-year record (1974-94) in Beaver, Table Rock, Bull Shoals, and Norfork Lakes, as well as analyzed the record for Greers Ferry Lake. Beginning in 1974, vertical profiles of temperature and dissolved-oxygen concentrations generally were collected monthly from March through December at sites near the dam of each reservoir. The rate of change in the amount of dissolved oxygen present below a given depth at the beginning and end of the thermal stratification period is referred to as the areal hypolimnetic oxygen deficit. Areal hypolimnetic oxygen deficit was normalized for each reservoir based on seasonal flushing rate between April 15 and October 31 to adjust for wet year and dry year variability. Annual cycles in thermal stratification within Beaver, Table Rock, Bull Shoals, Norfork, and Greers Ferry Lakes exhibited typical monomictic (one extended turnover period per year) characteristics. Flow dynamics drive reservoir processes and need to be considered when analyzing areal hypolimnetic oxygen deficit rates. A nonparametric, locally weighted scatter plot smooth line describes the relation between areal hypolimnetic oxygen deficit and seasonal flushing rates, without assuming linearity or normality of the residuals. The results in this report are consistent with earlier findings that oxygen deficit rates and flushing-rate adjusted areal hypolimnetic oxygen deficit in Beaver and Table Rock Lakes were decreasing between 1974 and 1994. The additional data (1995-2008) demonstrate that the decline in flushing-rate adjusted areal hypolimnetic oxygen deficit in Beaver Lake has continued, whereas that in Table Rock Lake has flattened out in recent years. The additional data demonstrate the flushing-rate adjusted areal hypolimnetic oxygen deficit in Bull Shoals and Norfork Lakes have declined since 1995 (improved water quality), which was not indicated in earlier studies, while Greers Ferry Lake showed little net change over the period of record. Given the amount of data (35 years) for these reservoirs, developing an equation or model to predict areal hypolimnetic oxygen deficit and, therefore, areal hypolimnetic oxygen content, on any given day during future stratification seasons may be useful for reservoir managers.
Nitzschke, R; Wilgusch, J; Kersten, J F; Trepte, C J; Haas, S A; Reuter, D A; Goetz, A E; Goepfert, M S
2013-06-01
It is unclear what factors affect the uptake of sevoflurane administered through the membrane oxygenator during cardiopulmonary bypass (CPB) and whether this can be monitored via the oxygenator exhaust gas. Stable delivery of sevoflurane was administered to 30 elective cardiac surgery patients at 1.8 vol% (inspiratory) via the anaesthetic circuit and ventilator. During CPB, sevoflurane was administered in the oxygenator fresh gas supply (Compactflo Evolution™; Sorin Group, Milano, Italy). Sevoflurane plasma concentration (SPC) was measured using gas chromatography. Changes were correlated with bispectral index (BIS), patient temperature, haematocrit, plasma albumin concentration, oxygenator fresh gas flow, and the sevoflurane concentration in the oxygenator exhaust at predefined time points. The mean SPC pre-bypass was 54.9 µg ml(-1) [95% confidence interval (CI): 50.6-59.1]. SPC decreased to 43.2 µg ml(-1) (95% CI: 40.3-46.1; P<0.001) after initiation of CPB, and was lower still during rewarming and weaning from bypass, 39.4 µg ml(-1) (95% CI: 36.6-42.3; P<0.001). BIS did not exceed a value of 55. SPCs were higher during hypothermia (P<0.001) and with an increase in oxygenator fresh gas flow (P=0.015), and lower with haemodilution (P=0.027). No correlation was found between SPC and the concentration of sevoflurane in the oxygenator exhaust gas (r=-0.04; 95% CI: -0.18 to 0.09; P=0.53). The uptake of sevoflurane delivered via the membrane oxygenator during CPB seems to be affected by hypothermia, haemodilution, and changes in the oxygenator fresh gas supply flow. Measuring the concentration of sevoflurane in the exhaust from the oxygenator is not useful for monitoring sevoflurane administration during bypass.
Feaster, Toby D.; Conrads, Paul
2000-01-01
In May 1996, the U.S. Geological Survey entered into a cooperative agreement with the Kershaw County Water and Sewer Authority to characterize and simulate the water quality in the Wateree River, South Carolina. Longitudinal profiling of dissolved-oxygen concentrations during the spring and summer of 1996 revealed dissolved-oxygen minimums occurring upstream from the point-source discharges. The mean dissolved-oxygen decrease upstream from the effluent discharges was 2.0 milligrams per liter, and the decrease downstream from the effluent discharges was 0.2 milligram per liter. Several theories were investigated to obtain an improved understanding of the dissolved-oxygen dynamics in the upper Wateree River. Data suggest that the dissolved-oxygen concentration decrease is associated with elevated levels of oxygen-consuming nutrients and metals that are flowing into the Wateree River from Lake Wateree. Analysis of long-term streamflow and water-quality data collected at two U.S. Geological Survey gaging stations suggests that no strong correlation exists between streamflow and dissolved-oxygen concentrations in the Wateree River. However, a strong negative correlation does exist between dissolved-oxygen concentrations and water temperature. Analysis of data from six South Carolina Department of Health and Environmental Control monitoring stations for 1980.95 revealed decreasing trends in ammonia nitrogen at all stations where data were available and decreasing trends in 5-day biochemical oxygen demand at three river stations. The influence of various hydrologic and point-source loading conditions on dissolved-oxygen concentrations in the Wateree River were determined by using results from water-quality simulations by the Branched Lagrangian Transport Model. The effects of five tributaries and four point-source discharges were included in the model. Data collected during two synoptic water-quality samplings on June 23.25 and August 11.13, 1997, were used to calibrate and validate the Branched Lagrangian Transport Model. The data include dye-tracer concentrations collected at six locations, stream-reaeration data collected at four locations, and water-quality and water-temperature data collected at nine locations. Hydraulic data for the Branched Lagrangian Transport Model were simulated by using the U.S. Geological Survey BRANCH one-dimensional, unsteady-flow model. Data that were used to calibrate and validate the BRANCH model included time-series of water-level and streamflow data at three locations. The domain of the hydraulic model and the transport model was a 57.3- and 43.5-mile reach of the river, respectively. A sensitivity analysis of the simulated dissolved-oxygen concentrations to model coefficients and data inputs indicated that the simulated dissolved-oxygen concentrations were most sensitive to changes in the boundary concentration inputs of water temperature and dissolved oxygen followed by sensitivity to the change in streamflow. A 35-percent increase in streamflow resulted in a negative normalized sensitivity index, indicating a decrease in dissolved-oxygen concentrations. The simulated dissolved-oxygen concentrations showed no significant sensitivity to changes in model input rate kinetics. To demonstrate the utility of the Branched Lagrangian Transport Model of the Wateree River, the model was used to simulate several hydrologic and water-quality scenarios to evaluate the effects on simulated dissolved-oxygen concentrations. The first scenario compared the 24-hour mean dissolved-oxygen concentrations for August 13, 1997, as simulated during the model validation, with simulations using two different streamflow patterns. The mean streamflow for August 13, 1997, was 2,000 cubic feet per second. Simulations were run using mean streamflows of 1,000 and 1,400 cubic feet per second while keeping the water-quality boundary conditions the same as were used during the validation simulations. When compared t
40 CFR 60.2975 - What equations must I use?
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 60.2975 What equations must I use? (a) Percent oxygen. Adjust all pollutant concentrations to 7 percent oxygen using equation 1 of this section. ER16DE05.000 Where: Cadj = pollutant concentration adjusted to 7 percent oxygen Cmeas = pollutant concentration measured on a dry basis (20.9-7) = 20.9...
Production of recombinant protein by a novel oxygen-induced system in Escherichia coli.
Baez, Antonino; Majdalani, Nadim; Shiloach, Joseph
2014-04-07
The SoxRS regulon of E. coli is activated in response to elevated dissolved oxygen concentration likely to protect the bacteria from possible oxygen damage. The soxS expression can be increased up to 16 fold, making it a possible candidate for recombinant protein expression. Compared with the existing induction approaches, oxygen induction is advantageous because it does not involve addition or depletion of growth factors or nutrients, addition of chemical inducers or temperature changes that can affect growth and metabolism of the producing bacteria. It also does not affect the composition of the growth medium simplifying the recovery and purification processes. The soxS promoter was cloned into the commercial pGFPmut3.1 plasmid creating pAB49, an expression vector that can be induced by increasing oxygen concentration. The efficiency and the regulatory properties of the soxS promoter were characterized by measuring the GFP expression when the culture dissolved oxygen concentration was increased from 30% to 300% air saturation. The expression level of recombinant GFP was proportional to the oxygen concentration, demonstrating that pAB49 is a controllable expression vector. A possible harmful effect of elevated oxygen concentration on the recombinant product was found to be negligible by determining the protein-carbonyl content and its specific fluorescence. By performing high density growth in modified LB medium, the cells were induced by increasing the oxygen concentration. After 3 hours at 300% air saturation, GFP fluorescence reached 109000 FU (494 mg of GFP/L), representing 3.4% of total protein, and the cell concentration reached 29.1 g/L (DW). Induction of recombinant protein expression by increasing the dissolved oxygen concentration was found to be a simple and efficient alternative expression strategy that excludes the use of chemical, nutrient or thermal inducers that have a potential negative effect on cell growth or the product recovery.
NASA Astrophysics Data System (ADS)
Fennel, Katja; Hu, Jiatang; Laurent, Arnaud; Marta-Almeida, Martinho; Hetland, Robert
2013-02-01
Every summer, a large area (15,000 km2 on average) over the Texas-Louisiana shelf in the northern Gulf of Mexico turns hypoxic due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Interannual variability in the size of the hypoxic zone is large. The 2008 Action Plan put forth by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, an alliance of multiple state and federal agencies and tribes, calls for a reduction of the size of the hypoxic zone through nutrient management in the watershed. Comprehensive models help build mechanistic understanding of the processes underlying hypoxia formation and variability and are thus indispensable tools for devising efficient nutrient reduction strategies and for building reasonable expectations as to what responses can be expected for a given nutrient reduction. Here we present such a model, evaluate its hypoxia simulations against monitoring observations, and assess the sensitivity of the hypoxia simulations to model resolution, variations in sediment oxygen consumption, and choice of physical horizontal boundary conditions. We find that hypoxia simulations on the shelf are very sensitive to the parameterization of sediment oxygen consumption, a result of the fact that hypoxic conditions are restricted to a relatively thin layer above the bottom over most of the shelf. We show that the strength of vertical stratification is an important predictor of dissolved oxygen concentration in bottom waters and that modification of physical horizontal boundary conditions can have a large effect on hypoxia simulations because it can affect stratification strength.
Jew, Corey J; Wegner, Nicholas C; Yanagitsuru, Yuzo; Tresguerres, Martin; Graham, Jeffrey B
2013-08-01
The Japanese mudskipper (Periophthalmus modestus), an amphibious fish that possesses many respiratory and locomotive specializations for sojourns onto land, was used as a model to study how changing atmospheric oxygen concentrations during the middle and late Paleozoic Era (400-250 million years ago) may have influenced the emergence and subsequent radiation of the first tetrapods. The effects of different atmospheric oxygen concentrations (hyperoxia = 35%, normoxia = 21%, and hypoxia = 7% O2) on terrestrial performance were tested during exercise on a terrestrial treadmill and during recovery from exhaustive exercise. Endurance and elevated post-exercise oxygen consumption (EPOC; the immediate O2 debt repaid post-exercise) correlated with atmospheric oxygen concentration indicating that when additional oxygen is available P. modestus can increase oxygen utilization both during and following exercise. The time required post-exercise for mudskippers to return to a resting metabolic rate did not differ between treatments. However, in normoxia, oxygen consumption increased above hyperoxic values 13-20 h post-exercise suggesting a delayed repayment of the incurred oxygen debt. Finally, following exercise, ventilatory movements associated with buccopharyngeal aerial respiration returned to their rest-like pattern more quickly at higher concentrations of oxygen. Taken together, the results of this study show that P. modestus can exercise longer and recover quicker under higher oxygen concentrations. Similarities between P. modestus and early tetrapods suggest that increasing atmospheric oxygen levels during the middle and late Paleozoic allowed for elevated aerobic capacity and improved terrestrial performance, and likely led to an accelerated diversification and expansion of vertebrate life into the terrestrial biosphere.
Direct Regularized Estimation of Retinal Vascular Oxygen Tension Based on an Experimental Model
Yildirim, Isa; Ansari, Rashid; Yetik, I. Samil; Shahidi, Mahnaz
2014-01-01
Phosphorescence lifetime imaging is commonly used to generate oxygen tension maps of retinal blood vessels by classical least squares (LS) estimation method. A spatial regularization method was later proposed and provided improved results. However, both methods obtain oxygen tension values from the estimates of intermediate variables, and do not yield an optimum estimate of oxygen tension values, due to their nonlinear dependence on the ratio of intermediate variables. In this paper, we provide an improved solution by devising a regularized direct least squares (RDLS) method that exploits available knowledge in studies that provide models of oxygen tension in retinal arteries and veins, unlike the earlier regularized LS approach where knowledge about intermediate variables is limited. The performance of the proposed RDLS method is evaluated by investigating and comparing the bias, variance, oxygen tension maps, 1-D profiles of arterial oxygen tension, and mean absolute error with those of earlier methods, and its superior performance both quantitatively and qualitatively is demonstrated. PMID:23732915
Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications
Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.
1997-01-01
An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.
Using Multi-media Modeling to Investigate Conditions Leading to Harmful Algal Blooms
NASA Astrophysics Data System (ADS)
Garcia, V.; Nowakowski, C.; Astitha, M.; Vlahos, P.; Cooter, E. J.; Tang, C.
2017-12-01
Lake Erie is the twelfth largest lake in the world and provides drinking water to over 11 million people in the United States. 22,720 square miles of varying landcover (e.g., urban, agriculture) drain directly into Lake Erie. Harmful algal blooms (HABs) have historically been an issue in Lake Erie, with events peaking in the late 1960's to early 1970's. Several studies have shown that these events were the result of excess phosphorus draining predominantly into the western portion of the lake from agricultural practices occurring in the surrounding watersheds. Phosphorus controls led to recovery of the lake by 1990, but since the mid-1990's, there has been a resurgence of HAB events, with the largest event on record occurring in 2015. We used linked and coupled physical models to examine relationships among environmental variables across multiple sources and pathways. Because these models link emission sources with meteorology and the pollutant concentrations found in the environment, they shed new light on the complex interactions of these chemicals and chemical mixtures. We used the broad range of variables available from these models, representing meteorology, hydrology, atmospheric processes, landscape characteristics, and agriculture management practices, to examine relationships with available dissolved oxygen and chlorophyll α concentrations measured in Lake Erie. We found that inorganic nitrogen (N) fertilizer applied to crops and atmospheric N deposition were the strongest nutrient loading predictors of dissolved oxygen and chlorophyll α concentrations measured in Lake Erie. Further, we were able to examine the relationships of oxidized and reduced forms of N deposition, and dry and wet N deposition. The results of this analysis will be presented at the conference.
Marijić, Vlatka Filipović; Perić, Mirela Sertić; Kepčija, Renata Matoničkin; Dragun, Zrinka; Kovarik, Ivana; Gulin, Vesna; Erk, Marijana
2016-01-01
The present study was undertaken to obtain a better understanding of the seasonal variability of total dissolved metal/metalloid levels and physicochemical parameters within small- to medium-size freshwater ecosystems in temperate climate region. The research was conducted in four seasons in the Sutla River, medium-size polluted, and the Črnomerec Stream, small-size unpolluted watercourse in Croatia. In the Sutla River, characterized by the rural/industrial catchment, physicochemical parameters and total dissolved metal concentrations of 21 trace and 4 macro elements were analysed downstream of the point source of pollution, the glass production facility, indicating for the first time their variability across four seasons. Based on dissolved oxygen, total dissolved solids, nutrient concentrations, conductivity and total chemical oxygen demand, quality status of the Sutla River was good, but moderate to poor during summer, what was additionally confirmed by the highest levels of the most of 25 measured metals/metalloids in summer. Comparison with the reference small-size watercourse, the Črnomerec Stream, indicated significant anthropogenic impact on the Sutla River, most evident for Fe, Mn, Mo, Ni, Pb, Rb and Tl levels (3-70-fold higher in the Sutla River across all seasons). Generally, presented results indicated significant decrease of the water quality in the anthropogenically impacted small- to medium-size watercourses in summer, regarding physicochemical water parameters and total dissolved metal/metalloid concentrations, and pointed to significant seasonality of these parameters. Confirmed seasonality of river ecological status indicates that seasonal assessment represents a prerequisite for proper classification of the water quality in small- to medium-size temperate rivers.
Gutiérrez, M C; Siles, J A; Diz, J; Chica, A F; Martín, M A
2017-01-01
The composting process of six different compostable substrates and one of these with the addition of bacterial inoculums carried out in a dynamic respirometer was evaluated. Despite the heterogeneity of the compostable substrates, cumulative oxygen demand (OD, mgO 2 kgVS) was fitted adequately to an exponential regression growing until reaching a maximum in all cases. According to the kinetic constant of the reaction (K) values obtained, the wastes that degraded more slowly were those containing lignocellulosic material (green wastes) or less biodegradable wastes (sewage sludge). The odor emissions generated during the composting processes were also fitted in all cases to a Gaussian regression with R 2 values within the range 0.8-0.9. The model was validated representing real odor concentration near the maximum value against predicted odor concentration of each substrate, (R 2 =0.9314; 95% prediction interval). The variables of maximum odor concentration (ou E /m 3 ) and the time (h) at which the maximum was reached were also evaluated statistically using ANOVA and a post-hoc Tukey test taking the substrate as a factor, which allowed homogeneous groups to be obtained according to one or both of these variables. The maximum oxygen consumption rate or organic matter degradation during composting was directly related to the maximum odor emission generation rate (R 2 =0.9024, 95% confidence interval) when only the organic wastes with a low content in lignocellulosic materials and no inoculated waste (HRIO) were considered. Finally, the composting of OFMSW would produce a higher odor impact than the other substrates if this process was carried out without odor control or open systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reum, Jonathan C P; Alin, Simone R; Feely, Richard A; Newton, Jan; Warner, Mark; McElhany, Paul
2014-01-01
Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.
Reum, Jonathan C. P.; Alin, Simone R.; Feely, Richard A.; Newton, Jan; Warner, Mark; McElhany, Paul
2014-01-01
Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008–2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems. PMID:24586915
Bayesian Monte Carlo and Maximum Likelihood Approach for ...
Model uncertainty estimation and risk assessment is essential to environmental management and informed decision making on pollution mitigation strategies. In this study, we apply a probabilistic methodology, which combines Bayesian Monte Carlo simulation and Maximum Likelihood estimation (BMCML) to calibrate a lake oxygen recovery model. We first derive an analytical solution of the differential equation governing lake-averaged oxygen dynamics as a function of time-variable wind speed. Statistical inferences on model parameters and predictive uncertainty are then drawn by Bayesian conditioning of the analytical solution on observed daily wind speed and oxygen concentration data obtained from an earlier study during two recovery periods on a eutrophic lake in upper state New York. The model is calibrated using oxygen recovery data for one year and statistical inferences were validated using recovery data for another year. Compared with essentially two-step, regression and optimization approach, the BMCML results are more comprehensive and performed relatively better in predicting the observed temporal dissolved oxygen levels (DO) in the lake. BMCML also produced comparable calibration and validation results with those obtained using popular Markov Chain Monte Carlo technique (MCMC) and is computationally simpler and easier to implement than the MCMC. Next, using the calibrated model, we derive an optimal relationship between liquid film-transfer coefficien
Evaluation of a Stirling Solar Dynamic System for Lunar Oxygen Production
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Wong, Wayne A.
2006-01-01
An evaluation of a solar concentrator-based system for producing oxygen from the lunar regolith was performed. The system utilizes a solar concentrator mirror to provide thermal energy for the oxygen production process as well as thermal energy to power a Stirling heat engine for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The oxygen production method utilized in the analysis was the hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process rate effected the oxygen production rate.
Abay, T Y; Kyriacou, P A
2018-06-01
Photoplethysmography (PPG) is an optical technique that measures blood volume variations. The main application of dual-wavelength PPG is pulse oximetry, in which the arterial oxygen saturation (SpO[Formula: see text]) is calculated noninvasively. However, the PPG waveform contains other significant physiological information that can be used in conjunction to SpO[Formula: see text] for the assessment of oxygenation and blood volumes changes. This paper investigates the use of near infrared spectroscopy (NIRS) processing techniques for extracting relative concentration changes of oxygenated ([Formula: see text]HbO[Formula: see text]), reduced ([Formula: see text]HHb) and total haemoglobin ([Formula: see text]tHb) from dual-wavelength PPG signals during intermittent pressure-increasing vascular occlusions. A reflectance PPG sensor was attached on the left forearm of nineteen (n = 19) volunteers, along with a reference NIRS sensor positioned on the same forearm, above the left brachioradialis. The investigation protocol consisted of seven intermittent and pressure-increasing vascular occlusions. Relative changes in haemoglobin concentrations were obtained by applying the modified Beer-Lambert law to PPG signals, while oxygenation changes were estimated by the difference between red and infrared attenuations of DC PPGs (A[Formula: see text] = [Formula: see text]A[Formula: see text] - [Formula: see text]A[Formula: see text]) and by the conventional SpO[Formula: see text]. The [Formula: see text]HbO[Formula: see text], [Formula: see text]HHb, [Formula: see text]tHb from the PPG signals indicated significant changes in perfusion induced by either partial and complete occlusions (p < 0.05). The trends in the variables extracted from PPG showed good correlation with the same parameters measured by the reference NIRS monitor. Bland and Altman analysis of agreement between PPG and NIRS showed underestimation of the magnitude of changes by the PPG. A[Formula: see text] indicated significant changes for occlusion pressures exceeding 20 mmHg (p < 0.05) and correlation with tissue oxygenation changes measured by NIRS, while SpO[Formula: see text] had significant changes after 40 mmHg (p < 0.05). Relative changes in haemoglobin concentrations can be estimated from PPG signals and they showed a good level of accuracy in the detection of perfusion and oxygenation changes induced by different degrees of intermittent vascular occlusions. These results can open up to new applications of the PPG waveform in the detection of blood volumes and oxygenation changes.
Kortianou, E A; Louvaris, Z; Vasilopoulou, M; Nasis, I; Kaltsakas, G; Koulouris, N G; Vogiatzis, I
2013-12-01
We investigated whether activity monitoring reliably reflects variations in oxygen transport and utilization during walking in COPD patients. Forty-two patients (14 in each GOLD stage II, III and IV) performed an incremental treadmill protocol to the limit of tolerance. Breath-by-breath gas exchange, central hemodynamic variables and activity monitoring were simultaneously recorded. Physiological variables and accelerometer outputs rose linearly with walking speeds. Strong correlations (r[interquartile range, IQR]) were found between treadmill walking intensity (WI: range 0.8-2.0 ms(-2)) and oxygen consumption (0.95 [IQR 0.87-0.97]), (range 7.6-15.5 ml kg(-1)min(-1)); minute ventilation (0.95 [IQR 0.86-0.98]), (range 20-37 l min(-1)); cardiac output (0.89 [IQR 0.73-0.94]), (range 6.8-11.5 l min(-1)) and arteriovenous oxygen concentration difference (0.84 [IQR 0.76-0.90]), (range 7.7-12.1 ml O2100 ml(-1)). Correlations between WI and gas exchange or central hemodynamic parameters were not different across GOLD stages. In conclusion, central hemodynamic, respiratory and muscle metabolic variations during incremental treadmill exercise are tightly associated to changes in walking intensity as recorded by accelerometry across GOLD stages II to IV. Interestingly, the magnitude of these associations is not different across GOLD stages. Copyright © 2013 Elsevier B.V. All rights reserved.
Modeling oxygen transport in human placental terminal villi.
Gill, J S; Salafia, C M; Grebenkov, D; Vvedensky, D D
2011-12-21
Oxygen transport from maternal blood to fetal blood is a primary function of the placenta. Quantifying the effectiveness of this exchange remains key in identifying healthy placentas because of the great variability in capillary number, caliber and position within the villus-even in placentas deemed clinically "normal". By considering villous membrane to capillary membrane transport, stationary oxygen diffusion can be numerically solved in terminal villi represented by digital photomicrographs. We aim to provide a method to determine whether and if so to what extent diffusional screening may operate in placental villi. Segmented digital photomicrographs of terminal villi from the Pregnancy, Infection and Nutrition study in North Carolina 2002 are used as a geometric basis for solving the stationary diffusion equation. Constant maternal villous oxygen concentration and perfect fetal capillary membrane absorption are assumed. System efficiency is defined as the ratio of oxygen flux into a villus and the sum of the capillary areas contained within. Diffusion screening is quantified by comparing numerical and theoretical maximum oxygen fluxes. A strong link between various measures of villous oxygen transport efficiency and the number of capillaries within a villus is established. The strength of diffusional screening is also related to the number of capillaries within a villus. Our measures of diffusional efficiency are shown to decrease as a function of the number of capillaries per villus. This low efficiency, high capillary number relationship supports our hypothesis that diffusional screening is present in this system. Oxygen transport per capillary is reduced when multiple capillaries compete for diffusing oxygen. A complete picture of oxygen fluxes, capillary and villus areas is obtainable and presents an opportunity for future work. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sunarsih; Sasongko, Dwi P.; Sutrisno
2018-02-01
This paper describes a mathematical model for the dissolved oxygen distribution in the plane of a facultative pond with a certain depth. The purpose of this paper is to determine the variation of dissolved oxygen concentration in facultative ponds. The 3-dimensional advection-diffusion equation is solved using the finite difference method Forward Time Central Space (FTCS). Numerical results show that the aerator greatly affects the occurrence of oxygen concentration variations in the facultative pond in the certain depth. The concentration of dissolved oxygen decreases as the depth of the pond increases.
Methods and apparatuses for deoxygenating pyrolysis oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baird, Lance Awender; Brandvold, Timothy A.; Frey, Stanley Joseph
Methods and apparatuses are provided for deoxygenating pyrolysis oil. A method includes contacting a pyrolysis oil with a deoxygenation catalyst in a first reactor at deoxygenation conditions to produce a first reactor effluent. The first reactor effluent has a first oxygen concentration and a first hydrogen concentration, based on hydrocarbons in the first reactor effluent, and the first reactor effluent includes an aromatic compound. The first reactor effluent is contacted with a dehydrogenation catalyst in a second reactor at conditions that deoxygenate the first reactor effluent while preserving the aromatic compound to produce a second reactor effluent. The second reactormore » effluent has a second oxygen concentration lower than the first oxygen concentration and a second hydrogen concentration that is equal to or lower than the first hydrogen concentration, where the second oxygen concentration and the second hydrogen concentration are based on the hydrocarbons in the second reactor effluent.« less
Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006
Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.
2008-01-01
The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of Upper Klamath Lake revealed few differences in water quality dynamics. Median daily temperatures were higher in nearshore areas, and dissolved oxygen concentrations were periodically higher as well during periods of high AFA bloom. Differences between the two areas in water quality conditions potentially harmful to fish were not statistically significant (p < 0.05). Chlorophyll a concentrations varied temporally and spatially throughout Upper Klamath Lake. Chlorophyll a concentrations indicated an algal bloom in late June and early July that was followed by an algae bloom decline in late July and early August and a subsequent recovery in mid-August. Sites in the deepest part of the lake, where some of the highest chlorophyll a concentrations were observed, were the same sites where the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations were recorded during the bloom decline, indicating cell senescence. Total phosphorus concentrations limited the initial algal bloom in late June and early July. The rate of net dissolved oxygen production (that is, production in excess of community respiration) and consumption (due to community respiration) in the lake water column as measured in light and dark bottles, respectively, ranged from 2.79 to -2.14 milligrams of oxygen per liter per hour. Net production rate generally correlated positively with chlorophyll a concentration, except episodically at a few sites where high chlorophyll a concentrations resulted in self-shading that inhibited photosynthesis. The depth of photic zone was inversely correlated with chlorophyll a concentration. Calculations of a 24-hour change in dissolved oxygen concentration indicated that oxygen-consuming processes predominated at the deep trench sites and oxygen-producing processes predominated at the shallow sites. In addition, calculations of the 24-hour change in dissolved oxygen indicate that oxygen-consuming processes in the water column di
Formate-induced inhibition of the water-oxidizing complex of photosystem II studied by EPR.
Feyziev, Y M; Yoneda, D; Yoshii, T; Katsuta, N; Kawamori, A; Watanabe, Y
2000-04-04
The effects of various formate concentrations on both the donor and the acceptor sides in oxygen-evolving PS II membranes (BBY particles) were examined. EPR, oxygen evolution and variable chlorophyll fluorescence have been observed. It was found that formate inhibits the formation of the S(2) state multiline signal concomitant with stimulation of the Q(A)(-)Fe(2+) signal at g = 1.82. The decrease and the increase in intensities of the multiline and Q(A)(-)Fe(2+) signals, respectively, had a linear relation for formate concentrations between 5 and 500 mM. The g = 4.1 signal formation measured in the absence of methanol was not inhibited by formate up to 250 mM in the buffer. In the presence of 3% methanol the g = 4.1 signal evolved as formate concentration increased. The evolved signal could be ascribed to the inhibited centers. Oxygen evolution measured in the presence of an electron acceptor, phenyl-p-benzoquinone, was also inhibited by formate proportionally to the decrease in the multiline signal intensity. The inhibition seemed to be due to a retarded electron transfer from the water-oxidizing complex to Y(Z)(+), which was observed in the decay kinetics of the Y(Z)(+) signal induced by illumination above 250 K. These results show that formate induces inhibition of water oxidation reactions as well as electron transfer on the PS II acceptor side. The inhibition effects of formate in PS II were found to be reversible, indicating no destructive effect on the reaction center induced by formate.
Uegaki, Ryuichi; Kawano, Kazuo; Ohsawa, Ryo; Kimura, Toshiyuki; Yamamura, Kohji
2017-06-21
We investigated the effects of different silage storing conditions on the oxygen concentration in the silo and fermentation quality of rice (Oryza sativa L.). Forage rice was ensiled in bottles (with or without space at the bottlemouth, with solid or pinhole cap, and with oxygen scavenger, ethanol transpiration agent, oxygen scavenger and ethanol transpiration agent, or no adjuvant) and stored for 57 days. The oxygen concentration decreased with the addition of the oxygen scavenger and increased with that of the ethanol transpiration agent. The oxygen scavenger facilitated silage fermentation and fungus generation, whereas the ethanol transpiration agent suppressed silage fermentation and fungus generation. However, the combined use of the oxygen scavenger and ethanol transpiration agent facilitated silage fermentation and also suppressed fungus generation. Overall, this study revealed the negative effects of oxygen on the internal silo and the positive effects of the combined use of the oxygen scavenger and ethanol transpiration agent on silage fermentation quality.
Polf, Jerimy C; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam
2013-01-01
The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured using a high-purity germanium detector, and the absolute detection efficiency of the detector, average beam current, and delivered dose distribution were also measured. Changes to the total PG emission from 12C (4.44 MeV) and 16O (6.13 MeV) per incident proton and per Gray of absorbed dose were characterized as a function of carbon and oxygen concentration in the sample. The intensity of the 4.44 MeV PG emission per incident proton was found to be nearly constant for all samples regardless of their carbon concentration. However, we found that the 6.13 MeV PG emission increased linearly with the total amount (in grams) of oxygen irradiated in the sample. From the measured PG data, we determined that 1.64 × 107 oxygen PGs were emitted per gram of oxygen irradiated per Gray of absorbed dose delivered with a 48 MeV proton beam. These results indicate that the 6.13 MeV PG emission from 16O is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that it is possible to determine the concentration of oxygen within tissues irradiated with proton beams by measuring 16O PG emission. PMID:23920051
40 CFR 60.2690 - How do I conduct the initial and annual performance test?
Code of Federal Regulations, 2010 CFR
2010-07-01
... part must be used for gas composition analysis, including measurement of oxygen concentration. Method... concentrations, except for opacity, must be adjusted to 7 percent oxygen using Equation 1 of this section: Cadj = Cmeas (20.9−7)/(20.9−%O2)(Eq. 1) Where: Cadj = pollutant concentration adjusted to 7 percent oxygen...
Savidge, William B; Brink, Jonathan; Blanton, Jackson O
2016-12-01
Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.
NASA Astrophysics Data System (ADS)
Savidge, William B.; Brink, Jonathan; Blanton, Jackson O.
2016-12-01
Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.
Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation.
Barilla, Jiří; Lokajíček, Miloš; Pisaková, Hana; Simr, Pavel
2013-03-01
Mathematical analytical model of the processes running in individual radical clusters during the chemical phase (under the presence of radiomodifiers) proposed by us earlier has been further developed and improved. It has been applied to the data presented by Blok and Loman characterizing the oxygen effect in SSB and DSB formation (in water solution and at low-LET radiation) also in the region of very small oxygen concentrations, which cannot be studied with the help of experiments done with living cells. In this new analysis the values of all reaction rates and diffusion parameters known from literature have been made use of. The great increase of SSB and DSB at zero oxygen concentration may follow from the fact that at small oxygen concentrations the oxygen absorbs other radicals while at higher concentrations the formation of oxygen radicals prevails. It explains the double oxygen effect found already earlier by Ewing. The model may be easily extended to include also the effects of other radiomodifiers present in medium during irradiation.
The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Dever, Therese M.; Quinn, William F.
1990-01-01
Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.
Effect of oxygen on dislocation multiplication in silicon crystals
NASA Astrophysics Data System (ADS)
Fukushima, Wataru; Harada, Hirofumi; Miyamura, Yoshiji; Imai, Masato; Nakano, Satoshi; Kakimoto, Koichi
2018-03-01
This paper aims to clarify the effect of oxygen on dislocation multiplication in silicon single crystals grown by the Czochralski and floating zone methods using numerical analysis. The analysis is based on the Alexander-Haasen-Sumino model and involves oxygen diffusion from the bulk to the dislocation cores during the annealing process in a furnace. The results show that after the annealing process, the dislocation density in silicon single crystals decreases as a function of oxygen concentration. This decrease can be explained by considering the unlocking stress caused by interstitial oxygen atoms. When the oxygen concentration is 7.5 × 1017 cm-3, the total stress is about 2 MPa and the unlocking stress is less than 1 MPa. As the oxygen concentration increases, the unlocking stress also increases; however, the dislocation velocity decreases.
ssDNA damage dependence from singlet oxygen concentration at photodynamic interaction
NASA Astrophysics Data System (ADS)
Klimenko, V. V.; Kaydanov, N. E.; Emelyanov, A. K.; Bogdanov, A. A.
2017-11-01
Single stranded DNA damage at photodynamic treatment with Radachlorin photosensitizer was investigated. Chemical trap method was used to evaluate generation of singlet oxygen in water solution. Interaction of singlet oxygen with ssDNA resulted into decrease of the replication activity of ssDNA. DNA stopped replicating during PCR at irradiation doses greater than 15 J/cm2 and concentration of photosensitizer [PS] = 3.8 μM. The dependence of replication activity of ssDNA on generated singlet oxygen concentration was identified.
System Design Verification for Closed Loop Control of Oxygenation With Concentrator Integration.
Gangidine, Matthew M; Blakeman, Thomas C; Branson, Richard D; Johannigman, Jay A
2016-05-01
Addition of an oxygen concentrator into a control loop furthers previous work in autonomous control of oxygenation. Software integrates concentrator and ventilator function from a single control point, ensuring maximum efficiency by placing a pulse of oxygen at the beginning of the breath. We sought to verify this system. In a test lung, fraction of inspired oxygen (FIO2) levels and additional data were monitored. Tests were run across a range of clinically relevant ventilator settings in volume control mode, for both continuous flow and pulse dose flow oxygenation. Results showed the oxygen concentrator could maintain maximum pulse output (192 mL) up to 16 breaths per minute. Functionality was verified across ranges of tidal volumes and respiratory rates, with and without positive end-expiratory pressure, in continuous flow and pulse dose modes. For a representative test at respiratory rate 16 breaths per minute, tidal volume 550 mL, without positive end-expiratory pressure, pulse dose oxygenation delivered peak FIO2 of 76.83 ± 1.41%, and continuous flow 47.81 ± 0.08%; pulse dose flow provided a higher FIO2 at all tested setting combinations compared to continuous flow (p < 0.001). These tests verify a system that provides closed loop control of oxygenation while integrating time-coordinated pulse-doses from an oxygen concentrator. This allows the most efficient use of resources in austere environments. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.
Solar Energy Systems for Lunar Oxygen Generation
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.
2010-01-01
An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.
Effect of oxygen concentration in ZDP containing oils on surface composition and wear
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Ferrante, J.
1983-01-01
A pin-on-disk wear study was performed with the lubricants dibutyl sebacate (DBS) and mineral oil (MO) with and without 1 weight percent zinc-dialkyl-dithiophospatee (ZDP) as an additive. The pin was annealed pure iron and the disk was M-2 tool steel. The selected load and speed guaranteed boundary lubrication. The ambient atmospheric oxygen concentration in an oxygen-nitrogen mixture was varied from 0 percent to 20 percent in order to examine its relationship to ZDP effectiveness. Auger electron spectroscopy combined with argon ion bombardment (depth profiling) was used to determine surface elemental composition on the pin when tested in DBS with and without ZDP. The ambient atmosphere was found to cause large variations in wear rate and surface composition. With MO, ZDP reduced wear under all conditions, but had little advantage over oxides formed at 20 percent oxygen atmosphere. With DBS, ZDP reduced wear at 0 percent oxygen, but gave varied results at other oxygen concentrations. Depth profiling revealed sulfuide formation at 0 percent oxygen and probably sulfates at 20 percent oxygen. The results are significant because varied oxygen concentrations can occur under actual lubricating conditions in practical machinery.
NASA Astrophysics Data System (ADS)
Wu, Ruixiang; Chen, Ruiyun; Zhou, Haitao; Qin, Yaqiang; Zhang, Guofeng; Qin, Chengbing; Gao, Yan; Gao, Yajun; Xiao, Liantuan; Jia, Suotang
2018-01-01
We present a sensitive method for detection of ultra-low oxygen concentrations based on the fluorescence blinking dynamics of single molecules. The relationship between the oxygen concentration and the fraction of time spent in the off-state, stemming from the population and depopulation of triplet states and radical cationic states, can be fitted with a two-site quenching model in the Stern-Volmer plot. The oxygen sensitivity is up to 43.42 kPa-1 in the oxygen partial pressure region as low as 0.01-0.25 kPa, which is seven times higher than that of the fluorescence intensity indicator. This method avoids the limitation of the sharp and non-ignorable fluctuations that occur during the measurement of fluorescence intensity, providing potential applications in the field of low oxygen-concentration monitoring in life science and industry.
The Antioxidants Changes in Ornamental Flowers during Development and Senescence
Cavaiuolo, Marina; Cocetta, Giacomo; Ferrante, Antonio
2013-01-01
The concentration of antioxidant compounds is constitutive and variable from species to species and is also variable considering the development of the plant tissue. In this review, we take into consideration the antioxidant changes and the physiological, biochemical and molecular factors that are able to modulate the accumulation of antioxidant compounds in ornamental flowers during the whole development process until the senescence. Many ornamental flowers are natural sources of very important bioactive compounds with benefit to the human health and their possible role as dietary components has been reported. The most part of antioxidants are flower pigments such as carotenoids and polyphenols, often present in higher concentration compared with the most common fruits and vegetables. The antioxidants content changes during development and during senescence many biochemical systems and molecular mechanisms are activated to counteract the increase of reactive oxygen species and free radicals. There is a tight correlation between antioxidants and senescence processes and this aspect is detailed and appropriately discussed. PMID:26784342
Cao, Yongfeng; Zhang, Chaosheng; Rong, Hongwei; Zheng, Guilin; Zhao, Limin
2017-01-01
The effect of dissolved oxygen concentration (DO) on simultaneous nitrification and denitrification was studied in a moving bed sequencing batch reactor (MBSBR) by microelectrode measurements and by real-time PCR. In this system, the biofilm grew on polyurethane foam carriers used to treat municipal sewage at five DO concentrations (1.5, 2.5, 3.5, 4.5 and 5.5 mg/L). The results indicated that the MBSBR exhibited good removal of chemical oxygen demand (92.43%) and nitrogen (83.73%) when DO concentration was 2.5 mg/L. Increasing the oxygen concentration in the reactor was inhibitory to denitrification. Microelectrode measurements showed that the thickness of oxygen penetration increased from 1.2 to 2.6 mm when the DO concentration (from 1.5 mg/L to 5.5 mg/L) in the system increased. Oxygen diffusion was not significantly limited by the boundary layer surrounding the carrier and had the largest slope when DO concentration was 2.5 mg/L. The real-time PCR analysis indicated that the amount of the ammonia-oxidizing bacteria and nitrite-oxidizing bacteria increased slowly as DO concentration increased. The proportions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, as a percentage of the total bacteria, were low with average values of 0.063% and 0.67%, respectively. When the DO concentration was 2.5 mg/L, oxygen diffusion was optimal and ensured the optimal bacterial community structure and activity; under these conditions, the MBSBR was efficient for total inorganic nitrogen removal. Changing the DO concentration could alter the aerobic zone and the bacterial community structure in the biofilm, directly influencing the simultaneous nitrification and denitrification activity in MBSBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Heng; Cheng, Weicong; Chen, Yuren; Yu, Liuqian; Gong, Wenping
2018-06-01
Coastal embayments located downwind of large rivers under an upwelling-favorable wind are prone to develop low-oxygen or hypoxic conditions in their bottom water. One such embayment is Mirs Bay, off the Guangdong coast, which is affected by upwelling and the Pearl River Estuary (PRE) plume during summer. The relative importance of physical and biochemical processes on the interannual variability of hypoxia in Mirs Bay and its adjacent waters was investigated using statistical analyses of monthly hydrographic and water quality monitoring data from 2001 to 2015. The results reveal that the southwesterly wind duration and the PRE river discharge together explain 49% of the interannual variability in the size of the hypoxic area, whereas inclusion of the nutrient concentrations inside Mirs Bay and phytoplankton on the shelf explains 75% of the interannual variability in the size of the hypoxic area. This finding suggests that the interannual variability of hypoxia in Mirs Bay is regulated by coupled physical and biochemical processes. Increase of the hypoxic area under a longer-lasting southwesterly wind is caused by increased stratification, extended bottom water residence time, and onshore transport of a low-oxygen water mass induced by stable upwelling. In contrast, a reduction in the size of the hypoxic area may be attributed to a decrease in the surface water residence time of the particulate organic matter outside Mirs Bay due to increased discharge from the PRE. The results also show that the effects of allochthonous particulate organic matter outside Mirs Bay on bottom hypoxia cannot be neglected.
Fire feedbacks over geological time and the evolution of atmospheric oxygen concentration
NASA Astrophysics Data System (ADS)
Mills, B.; Belcher, C.; Lenton, T. M.
2017-12-01
During the 4.5 billion year history of the Earth, the concentration of oxygen in the atmosphere has risen from trace levels to today's 21%. Yet over the last 400 million years, O2 concentration appears to have remained within a relatively narrow range (around 15% - 30%), despite dramatic changes in the nature of global biogeochemical cycling. This stability has been crucial for continued animal evolution, and is thought to have arisen through feedbacks between oxygen, wildfire and plant productivity: the strong oxygen- dependence of fire initiation and spread means that global photosynthetic primary productivity is suppressed when oxygen levels are high, and enhanced when levels are low. We present biogeochemical modelling of the long term carbon and oxygen cycles, which aims to capture the operation of the wildfire feedback alongside other key processes. We find that wildfire can effectively stabilize long term oxygen concentrations, but that the nature of this feedback has changed as plant evolution has provided different fuels. Specifically, the evolution of early angiosperms during the Cretaceous period provided new understory fuels that more easily facilitated crown and canopy fires. Adding these dynamics to our model produces a more stable system over long timescales, and the model predicts that oxygen concentration has declined towards the present day - a prediction that is supported by other independent estimates.
Balancing the Risks and Benefits of Oxygen Therapy in Critically III Adults
Mutlu, Gökhan M.
2013-01-01
Oxygen therapy is an integral part of the treatment of critically ill patients. Maintenance of adequate oxygen delivery to vital organs often requires the administration of supplemental oxygen, sometimes at high concentrations. Although oxygen therapy is lifesaving, it may be associated with deleterious effects when administered for prolonged periods at high concentrations. Here, we review the recent advances in our understanding of the molecular responses to hypoxia and high levels of oxygen and review the current guidelines for oxygen therapy in critically ill patients. PMID:23546490
Klein, Robert J; Fischer, Daniel A; Lenhart, Joseph L
2008-08-05
The process of implanting oxygen in polystyrene (PS) via exposure to ultraviolet-ozone (UV-O) was systematically investigated using the characterization technique of near-edge X-ray absorption fine structure (NEXAFS). Samples of PS exposed to UV-O for 10-300 s and washed with isopropanol were analyzed using the carbon and oxygen K-edge NEXAFS partial electron yields, using various retarding bias voltages to depth-profile the oxygen penetration into the surface. Evaluation of reference polymers provided a scale to quantify the oxygen concentration implanted by UV-O treatment. We find that ozone initially reacts with the double bonds on the phenyl rings, forming carbonyl groups, but within 1 min of exposure, the ratio of double to single oxygen bonds stabilizes at a lower value. Oxygen penetrates the film with relative ease, creating a fairly uniform distribution of oxygen within at least the first 4 nm (the effective depth probed by NEXAFS here). Before oxygen accumulates in large concentrations, however, it preferentially degrades the uppermost layer of the film by removing oxygenated low-molecular-weight oligomers. The failure to accumulate high concentrations of oxygen is seen in the nearly constant carbon edge jump, the low concentration of oxygen even at 5 min exposure (58% of that in poly(4-acetoxystyrene), the polymer with the most similarities to UV-O-treated PS), and the relatively high contact angles. At 5 min exposure the oxygen concentration contains ca. 7 atomic % oxygen. The oxygen species that are implanted consist predominantly of single O-C bonds and double O=C bonds but also include a small fraction of O-H. UV-O treatment leads a plateau after 2 min exposure in the water contact angle hysteresis, at a value of 67 +/- 2 degrees , due primarily to chemical heterogeneity. Annealing above T(g) allows oxygenated species to move short distances away from the surface but not diffuse further than 1-2 nm.
Meteorological drivers of hypolimnetic anoxia in a eutrophic, north temperate lake
Snortheim, Craig A.; Hanson, Paul C.; McMahon, Katherine D.; Read, Jordan S.; Carey, Cayelan C.; Dugan, Hilary
2017-01-01
Oxygen concentration is both an indicator and driver of water quality in lakes. Decreases in oxygen concentration leads to altered ecosystem function as well as harmful consequences for aquatic biota, such as fishes. The responses of oxygen dynamics in lakes to climate-related drivers, such as temperature and wind speed, are well documented for lake surface waters. However, much less is known about how the oxic environment of bottom waters, especially the timing and magnitude of anoxia in eutrophic lakes, responds to changes in climate drivers. Understanding how important ecosystem states, such as hypolimnetic anoxia, may respond to differing climate scenarios requires a model that couples physical-biological conditions and sufficiently captures the density stratification that leads to strong oxygen gradients. Here, we analyzed the effects of changes in three important meteorological drivers (air temperature, wind speed, and relative humidity) on hypolimnetic anoxia in a eutrophic, north temperate lake using the anoxic factor as an index that captures both the temporal and spatial extent of anoxia. Air temperature and relative humidity were found to have a positive correlation with anoxic factor, while wind speed had a negative correlation. Air temperature was found to have the greatest potential impact of the three drivers on the anoxic factor, followed by wind speed and then relative humidity. Across the scenarios of climate variability, variation in the simulated anoxic factor was primarily due to changes in the timing of onset and decay of stratification. Given the potential for future changes in climate, especially increases in air temperature, this study provides important insight into how these changes will alter lake water quality.
Hoseini, Mohammad; Nabizadeh, Ramin; Nazmara, Shahrokh; Safari, Gholam Hossein
2013-12-20
The widespread use of trichloroethylene (TCE) and its frequent release into the environment has caused many environmental and health problems. In this study the degradation of TCE at different micromolar concentrations was investigated in a stainless steel reactor with various concentrations of H2O2 and TiO2 at different oxygen pressures and three different pHs. To examine the synergistic effect of under pressure oxygen on TCE degradation, the concentrations of H2O2 and TiO2 as well as pH were first optimized, and then the experiments were performed under optimal conditions. Gas chromatography with a flame ionization detector (FID) was used to measure TCE concentrations. Results showed that the percentage of TCE degradation without pressurized oxygen was low and it increased with increasing pressure of oxygen at all initial concentrations of TCE. The degradation percentages without oxygen pressure were 48.27%, 51.22%, 58.13% and 64.33% for TCE concentrations of 3000, 1500, 300 and 150 μg/L respectively. At an oxygen pressure of 2.5 atmospheres (atm) the percent degradation of TCE reached 84.85%, 89.14%, 93.13% and 94.99% respectively for the aforementioned TCE concentrations. The results of this study show that the application of dissolved oxygen under pressure increases the efficiency of the H2O2/TiO2 process on the degradation of TCE and can be used along with other oxidants as an effective method for the removal of this compound from aqueous solutions.
2013-01-01
Background The widespread use of trichloroethylene (TCE) and its frequent release into the environment has caused many environmental and health problems. In this study the degradation of TCE at different micromolar concentrations was investigated in a stainless steel reactor with various concentrations of H2O2 and TiO2 at different oxygen pressures and three different pHs. Methods To examine the synergistic effect of under pressure oxygen on TCE degradation, the concentrations of H2O2 and TiO2 as well as pH were first optimized, and then the experiments were performed under optimal conditions. Gas chromatography with a flame ionization detector (FID) was used to measure TCE concentrations. Results Results showed that the percentage of TCE degradation without pressurized oxygen was low and it increased with increasing pressure of oxygen at all initial concentrations of TCE. The degradation percentages without oxygen pressure were 48.27%, 51.22%, 58.13% and 64.33% for TCE concentrations of 3000, 1500, 300 and 150 μg/L respectively. At an oxygen pressure of 2.5 atmospheres (atm) the percent degradation of TCE reached 84.85%, 89.14%, 93.13% and 94.99% respectively for the aforementioned TCE concentrations. Conclusions The results of this study show that the application of dissolved oxygen under pressure increases the efficiency of the H2O2/TiO2 process on the degradation of TCE and can be used along with other oxidants as an effective method for the removal of this compound from aqueous solutions. PMID:24359702
Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds.
Acosta, Miguel A; Ymele-Leki, Patrick; Kostov, Yordan V; Leach, Jennie B
2009-06-01
We present the development and characterization of fluorescent oxygen-sensing microparticles designed for measuring oxygen concentration in microenvironments existing within standard cell culture and transparent three-dimensional (3D) cell scaffolds. The microparticle synthesis employs poly(dimethylsiloxane) to encapsulate silica gel particles bound with an oxygen-sensitive luminophore as well as a reference or normalization fluorophore that is insensitive to oxygen. We developed a rapid, automated and non-invasive sensor analysis method based on fluorescence microscopy to measure oxygen concentration in a hydrogel scaffold. We demonstrate that the microparticles are non-cytotoxic and that their response is comparable to that of a traditional dissolved oxygen meter. Microparticle size (5-40 microm) was selected for microscale-mapping of oxygen concentration to allow measurements local to individual cells. Two methods of calibration were evaluated and revealed that the sensor system enables characterization of a range of hypoxic to hyperoxic conditions relevant to cell and tissue biology (i.e., pO(2) 10-160 mmHg). The calibration analysis also revealed that the microparticles have a high fraction of quenched luminophore (0.90+/-0.02), indicating that the reported approach provides significant advantages for sensor performance. This study thus reports a versatile oxygen-sensing technology that enables future correlations of local oxygen concentration with individual cell response in cultured engineered tissues.
Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments
NASA Astrophysics Data System (ADS)
Hu, Wei-Chieh; Lin, Ta-Hui
2016-04-01
In this study, carbon nanotubes (CNTs) were synthesized using ethanol diffusion flames in a stagnation-flow system composed of an upper oxidizer duct and a lower liquid pool. In the experiments, a gaseous mixture of oxygen and nitrogen flowed from the upper oxidizer duct, and then impinged onto the vertically aligned ethanol pool to generate a planar and steady diffusion flame in a deficient oxygen environment. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. The effect of low oxygen concentration on the formation of CNTs was explored. The oxygen concentration significantly influenced the flame environment and thus the synthesized carbon products. Lowering the oxygen concentration increased the yield, diameter, and uniformity of CNTs. The optimal operating conditions for CNT synthesis were an oxygen concentration in the range of 15%-19%, a flame temperature in the range of 460 °C-870 °C, and a sampling position of 0.5-1 mm below the upper edge of the blue flame front. It is noteworthy that the concentration gradient of C2 species and CO governed the CNT growth directly. CNTs were successfully fabricated in regions with uniform C2 species and CO distributions.
Oxygen concentration sensor for an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, T.; Okada, Y.; Mieno, T.
1988-09-29
This patent describes an oxygen concentration sensor, comprising: an oxygen ion conductive solid electrolyte member forming a gas diffusion restricted region into which a measuring gas is introduced; a pair of electrodes sandwiching the solid electrolyte member; pump current supply means applying a pump voltage to the pair of electrodes through a current detection element to generate a pump current; and a heater element connected to the solid electrolyte member for heating the solid electrolyte member for heating the solid electrolyte member when a heater current is supplied from a heater current source; wherein the oxygen concentration sensor detects anmore » oxygen concentration in the measuring gas in terms of a current value of the pump current supplied through the current detection element and controls oxygen concentration in the gas diffusion restricted region by conducting oxygen ions through the solid electrolyte member in accordance to the flow of the pump current; and wherein the current detection element is connected to the electrode of the pair of electrodes facing the gas diffusion restricted region for insuring that the current value is representative of the pump current and possible leakage current from the heater current.« less
Fossum, Kenneth D.; O'Day, Christie M.; Wilson, Barbara J.; Monical, Jim E.
2001-01-01
Stormwater and streamflow in Maricopa County were monitored to (1) describe the physical, chemical, and toxicity characteristics of stormwater from areas having different land uses, (2) describe the physical, chemical, and toxicity characteristics of streamflow from areas that receive urban stormwater, and (3) estimate constituent loads in stormwater. Urban stormwater and streamflow had similar ranges in most constituent concentrations. The mean concentration of dissolved solids in urban stormwater was lower than in streamflow from the Salt River and Indian Bend Wash. Urban stormwater, however, had a greater chemical oxygen demand and higher concentrations of most nutrients. Mean seasonal loads and mean annual loads of 11 constituents and volumes of runoff were estimated for municipalities in the metropolitan Phoenix area, Arizona, by adjusting regional regression equations of loads. This adjustment procedure uses the original regional regression equation and additional explanatory variables that were not included in the original equation. The adjusted equations had standard errors that ranged from 161 to 196 percent. The large standard errors of the prediction result from the large variability of the constituent concentration data used in the regression analysis. Adjustment procedures produced unsatisfactory results for nine of the regressions?suspended solids, dissolved solids, total phosphorus, dissolved phosphorus, total recoverable cadmium, total recoverable copper, total recoverable lead, total recoverable zinc, and storm runoff. These equations had no consistent direction of bias and no other additional explanatory variables correlated with the observed loads. A stepwise-multiple regression or a three-variable regression (total storm rainfall, drainage area, and impervious area) and local data were used to develop local regression equations for these nine constituents. These equations had standard errors from 15 to 183 percent.
NASA Astrophysics Data System (ADS)
Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien
2008-10-01
SummaryEffects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil ( ϕgas_min) at which oxygen stress occurs. First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, ϕgas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale). We analyzed the validity of constant critical values to represent oxygen stress in terms of ϕgas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake). The simulations showed that ϕgas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, ϕgas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress. We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for ϕgas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.
Rodriguez, G Y; Valverde-Ramírez, M; Mendes, C E; Béttega, R; Badino, A C
2015-11-01
Global variables play a key role in evaluation of the performance of pneumatic bioreactors and provide criteria to assist in system selection and design. The purpose of this work was to use experimental data and computational fluid dynamics (CFD) simulations to determine the global performance parameters gas holdup ([Formula: see text]) and volumetric oxygen transfer coefficient (k L a), and conduct an analysis of liquid circulation velocity, for three different geometries of pneumatic bioreactors: bubble column, concentric-tube airlift, and split tube airlift. All the systems had 5 L working volumes and two Newtonian fluids of different viscosities were used in the experiments: distilled water and 10 cP glycerol solution. Considering the high oxygen demand in certain types of aerobic fermentations, the assays were carried out at high flow rates. In the present study, the performances of three pneumatic bioreactors with different geometries and operating with two different Newtonian fluids were compared. A new CFD modeling procedure was implemented, and the simulation results were compared with the experimental data. The findings indicated that the concentric-tube airlift design was the best choice in terms of both gas holdup and volumetric oxygen transfer coefficient. The CFD results for gas holdup were consistent with the experimental data, and indicated that k L a was strongly influenced by bubble diameter and shape.
Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China.
Wen, Xiaohu; Fang, Jing; Diao, Meina; Zhang, Chuanqi
2013-05-01
Identification and quantification of dissolved oxygen (DO) profiles of river is one of the primary concerns for water resources managers. In this research, an artificial neural network (ANN) was developed to simulate the DO concentrations in the Heihe River, Northwestern China. A three-layer back-propagation ANN was used with the Bayesian regularization training algorithm. The input variables of the neural network were pH, electrical conductivity, chloride (Cl(-)), calcium (Ca(2+)), total alkalinity, total hardness, nitrate nitrogen (NO3-N), and ammonical nitrogen (NH4-N). The ANN structure with 14 hidden neurons obtained the best selection. By making comparison between the results of the ANN model and the measured data on the basis of correlation coefficient (r) and root mean square error (RMSE), a good model-fitting DO values indicated the effectiveness of neural network model. It is found that the coefficient of correlation (r) values for the training, validation, and test sets were 0.9654, 0.9841, and 0.9680, respectively, and the respective values of RMSE for the training, validation, and test sets were 0.4272, 0.3667, and 0.4570, respectively. Sensitivity analysis was used to determine the influence of input variables on the dependent variable. The most effective inputs were determined as pH, NO3-N, NH4-N, and Ca(2+). Cl(-) was found to be least effective variables on the proposed model. The identified ANN model can be used to simulate the water quality parameters.
Welter, Michael; Fredrich, Thierry; Rinneberg, Herbert; Rieger, Heiko
2016-01-01
We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation were carried out for ninety tumor and associated normal vessel networks starting from various assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the extra-vascular partial oxygen pressure distribution can be related to various tumor compartments characterized by varying capillary densities and blood flow characteristics. The reported higher average hemoglobin concentration of tumors is explained by growth and dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consumption in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are above normal. Such tumors are likely associated with high tumor blood flow caused by high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be achieved by reducing tumor vessel radii during growth by a randomly selected factor, simulating compression caused by intra-tumoral solid stress due to proliferation of cells and extracellular matrix. Since compression of blood vessels will impede chemotherapy we conclude that tumors with oxy- to total hemoglobin concentration below normal are less likely to respond to chemotherapy. Such behavior was recently reported for neo-adjuvant chemotherapy of locally advanced breast tumors.
Welter, Michael; Fredrich, Thierry; Rinneberg, Herbert; Rieger, Heiko
2016-01-01
We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation were carried out for ninety tumor and associated normal vessel networks starting from various assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the extra-vascular partial oxygen pressure distribution can be related to various tumor compartments characterized by varying capillary densities and blood flow characteristics. The reported higher average hemoglobin concentration of tumors is explained by growth and dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consumption in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are above normal. Such tumors are likely associated with high tumor blood flow caused by high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be achieved by reducing tumor vessel radii during growth by a randomly selected factor, simulating compression caused by intra-tumoral solid stress due to proliferation of cells and extracellular matrix. Since compression of blood vessels will impede chemotherapy we conclude that tumors with oxy- to total hemoglobin concentration below normal are less likely to respond to chemotherapy. Such behavior was recently reported for neo-adjuvant chemotherapy of locally advanced breast tumors. PMID:27547939
Interannual variability of Dissolved Oxygen values around the Balearic Islands
NASA Astrophysics Data System (ADS)
Balbín, R.; Aparicio, A.; López-Jurado, J. L.; Flexas, M. M.
2012-04-01
Periodic movements of the trawl fishing fleet at Mallorca Island suggest a seasonal variability of the demersal resources, associated with hydrodynamic variability. The area where these commercial fisheries operate extends from the north to the southeast of Mallorca channel, between Mallorca and Ibiza Islands. It is thus affected by the different hydrodynamic conditions of the two sub-basins of the western Mediterranean (the Balearic and the Algerian sub-basins), with different geomorphologic and hydrodynamic characteristics. To characterize this hydrodynamic variability, hydrographic data collected around the Balearic Islands since 2001 with CTDs were analized [1]. Hydrographic parameters were processed according to the standard protocols. Dissolved oxygen (DO) was calibrated onboard using the winkler method. Temperature and salinity were used to characterize the different water masses. At the Western Mediterranean, the maximum values of DO in the water column are observed in the sur- face waters during winter (> 6.0 ml /l), when these water in contact with the atmosphere absorb large amount of oxygen, favored by low winter temperatures and notable turbulence. Later in the spring, the gradual increase of temperature, and the beginning of stratification and biological activity, lead to a decrease of oxygen concentration mainly in surface waters. During summer, these values continue to reduce in the surface mixed layer. Below it, and due to the biological activity, an increase is observed, giving rise to the absolute maximum of this parameter (> 6.5 ml /l). During autumn, the atmospheric forcing breaks the stratification producing a homogenization of surface water. At this moment, DO shows intermediate values. Below the surface waters, about 200 m, a relative maximum corresponding to the seasonal Winter Intermediate Waters (WIW) can be observed. Intermediate waters, between 400 and 600 m, reveal an oxygen minimum (4.0 ml /l) associated to the Levantine Intermediate Waters (LIW) and underneath, the Western Mediterranean Deep Waters (WMDW) show a slight increase of these values (> 4.5 ml /l). Interannual variability of DO at the Balearic and the Algerian sub-basins and in the different water masses will be presented. A systematic difference (> 0.10 ml/l) is observed at intermediate and deep waters between the oxygen con- tent in the Balearic and Algerian sub-basins. This could be explained in terms of the longer path these water masses have to cover around the Mallorca and Menorca Islands, which implies a longer residence time and consumption as a result of respiration and decay of organic matter. During some campaigns minimum DO values (≈ 3.8 ml/l) were found in this area which are smaller that the values usually reported for the Mediterranean [2, 3, 4]. Different possible causes as the influence of the Easter Mediterranean Transient, the reported increase of surface temperature or just the interannual variability, will be discussed. [1] J. L. López-Jurado, J. M. García-Lafuente, L. Cano, et al., Oceanologica acta, vol. 18, no. 2, 1995. [2] T. Packard, H. Minas, B. Coste, R. Martinez, M. Bonin, J. Gostan, P. Garfield, J. Christensen, Q. Dortch, M. Minas, et al., Deep Sea Research Part A. Oceanographic Research Papers, vol. 35, no. 7, 1988. [3] B. Manca, M. Burca, A. Giorgetti, C. Coatanoan, M. Garcia,and A. Iona, Journal of marine systems, vol. 48, no. 1-4, 2004. [4] A. Miller, "Mediterranean sea atlas of temperature, salinity, and oxygen. profiles and data from cruises of RV Atlantis and RV Chain," tech. rep., Woods Hole Oceanographic Institution, Massachusetts, 1970.
Xu, Xiong; Yu, Jianying; Xue, Lihui; Zhang, Canlin; Zha, Yagang; Gu, Yi
2017-01-01
Tri-block copolymer styrene–butadiene (SBS) is extensively applied in bituminous highway construction due to its high elasticity and excellent weather resistance. With the extension of time, tri-block structural SBS automatically degrades into bi-block structural SB- with some terminal oxygen-containing groups under the comprehensive effects of light, heat, oxygen, etc. In this paper, the effects of aging temperature, aging time and oxygen concentration on the molecular structure of thermo-oxidative aged SBS were mainly investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and the correlation between oxygen-containing groups and thermal properties (TG–DTG) was further discussed. The FTIR and XPS results show that rapid decomposition of SBS will occur with increments of aging temperature, aging time and oxygen concentration, and a large number of oxygen-containing groups such as –OH, C=O, –COOH, etc. will be formed during thermo-oxidative aging. In short-term aging, changes in aging temperature and oxygen concentration have a significant impact on the structural damage of SBS. However, in long-term aging, it has no further effect on the molecular structure of SBS or on increasing oxygen concentration. The TG and DTG results indicate that the concentration of substances with low molecular weight gradually increases with the improvement of the degree of aging of the SBS, while the initial decomposition rate increases at the beginning of thermal weightlessness and the decomposition rate slows down in comparison with neat SBS. From the relation between the XPS and TG results, it can be seen that the initial thermal stability of SBS rapidly reduces as the relative concentration of the oxygen-containing groups accumulates around 3%, while the maximum decomposition temperature slowly decreases when the relative concentration of the oxygen-containing groups is more than 3%, due to the difficult damage to strong bonds on the molecular structure of aged SBS. PMID:28773124
Xu, Xiong; Yu, Jianying; Xue, Lihui; Zhang, Canlin; Zha, Yagang; Gu, Yi
2017-07-07
Tri-block copolymer styrene-butadiene (SBS) is extensively applied in bituminous highway construction due to its high elasticity and excellent weather resistance. With the extension of time, tri-block structural SBS automatically degrades into bi-block structural SB- with some terminal oxygen-containing groups under the comprehensive effects of light, heat, oxygen, etc. In this paper, the effects of aging temperature, aging time and oxygen concentration on the molecular structure of thermo-oxidative aged SBS were mainly investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), and the correlation between oxygen-containing groups and thermal properties (TG-DTG) was further discussed. The FTIR and XPS results show that rapid decomposition of SBS will occur with increments of aging temperature, aging time and oxygen concentration, and a large number of oxygen-containing groups such as -OH, C=O, -COOH, etc. will be formed during thermo-oxidative aging. In short-term aging, changes in aging temperature and oxygen concentration have a significant impact on the structural damage of SBS. However, in long-term aging, it has no further effect on the molecular structure of SBS or on increasing oxygen concentration. The TG and DTG results indicate that the concentration of substances with low molecular weight gradually increases with the improvement of the degree of aging of the SBS, while the initial decomposition rate increases at the beginning of thermal weightlessness and the decomposition rate slows down in comparison with neat SBS. From the relation between the XPS and TG results, it can be seen that the initial thermal stability of SBS rapidly reduces as the relative concentration of the oxygen-containing groups accumulates around 3%, while the maximum decomposition temperature slowly decreases when the relative concentration of the oxygen-containing groups is more than 3%, due to the difficult damage to strong bonds on the molecular structure of aged SBS.
NASA Astrophysics Data System (ADS)
Xu, Xiaorong; Zhu, Wen; Padival, Vikram; Xia, Mengna; Cheng, Xuefeng; Bush, Robin; Christenson, Linda; Chan, Tim; Doherty, Tim; Iatridis, Angelo
2003-07-01
Photonify"s tissue spectrometer uses Near-Infrared Spectroscopy for real-time, noninvasive measurement of hemoglobin concentration and oxygen saturation [SO2] of biological tissues. The technology was validated by a series of ex vivo and animal studies. In the ex vivo experiment, a close loop blood circulation system was built, precisely controlling the oxygen saturation and the hemoglobin concentration of a liquid phantom. Photonify"s tissue spectrometer was placed on the surface of the liquid phantom for real time measurement and compared with a gas analyzer, considered the gold standard to measure oxygen saturation and hemoglobin concentration. In the animal experiment, the right hind limb of each dog accepted onto the study was surgically removed. The limb was kept viable by connecting the femoral vein and artery to a blood-primed extracorporeal circuit. Different concentrations of hemoglobin were obtained by adding designated amount of saline solution into the perfusion circuit. Photonify"s tissue spectrometers measured oxygen saturation and hemoglobin concentration at various locations on the limb and compared with gas analyzer results. The test results demonstrated that Photonify"s tissue spectrometers were able to detect the relative changes in tissue oxygen saturation and hemoglobin concentration with a high linear correlation compared to the gas analyzer
Effect of reactor loading on atomic oxygen concentration as measured by NO chemiluminescence
NASA Technical Reports Server (NTRS)
Lerner, N. R.
1989-01-01
It has previously been observed that the etch rate of polyethylene samples in the afterglow of an RF discharge in oxygen increases with reactor loading. This enhancement of the etch rate is attributed to reactive gas phase products of the polymer etching. In the present work, emission spectroscopy is employed to examine the species present in the gas phase during etching of polyethylene. In particular, the concentration of atomic oxygen downstream from the polyethylene samples is studied as a function of the reactor loading. It is found that the concentration of atomic oxygen increases as the reactor loading is increased. The increase of etch rate with increased reactor loading is attributed to the increase of atomic oxygen concentration in the vicinity of the sample.
40 CFR 60.2125 - How do I conduct the initial and annual performance test?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., including measurement of oxygen concentration. Method 3A or 3B of appendix A of this part must be used... percent oxygen using Equation 1 of this section: Cadj = Cmeas (20.9-7)/(20.9-%O2)(Eq. 1) Where: Cadj = pollutant concentration adjusted to 7 percent oxygen; Cmeas = pollutant concentration measured on a dry...
Correlation of Oxygenated Hemoglobin Concentration and Psychophysical Amount on Speech Recognition
NASA Astrophysics Data System (ADS)
Nozawa, Akio; Ide, Hideto
The subjective understanding on oral language understanding task is quantitatively evaluated by the fluctuation of oxygenated hemoglobin concentration measured by the near-infrared spectroscopy. The English listening comprehension test wihch consists of two difficulty level was executed by 4 subjects during the measurement. A significant correlation was found between the subjective understanding and the fluctuation of oxygenated hemoglobin concentration.
Pyroelectric response of perovskite heterostructures incorporating conductive oxide electrodes
NASA Astrophysics Data System (ADS)
Tipton, Charles Wesley, IV
2000-10-01
The use of imaging technologies has become pervasive in many applications as the demand for situational awareness information has increased over the last decade. No better example of the integration of these technologies can be found than that of infrared or thermal imaging. This dissertation, in the field of thermal imaging, has been motivated by the desire to advance the technology of uncooled, thin-film pyroelectric sensors and focuses on the materials and structures from which the detector elements will be built. This work provides a detailed study of the pyroelectric response of the La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O (LPL) structure. The LPL structure was chosen based on the needs of thin film detectors, the unique properties of the conductive oxide La-Sr-Co-O (LSCO), and the broad applicability of the Pb-La-Zr-Ti-O (PLZT) material system. Epitaxial heterostructures were grown by pulsed laser deposition on single-crystal oxide substrates. Using the oxygen pressure during cooling and heating of the LSCO layer as a key variable, we have been able to produce structures that have a pronounced internal field in the as-grown state. In these capacitors, where the bottom electrode has a large concentration of oxygen vacancies, we have discovered very large pyroelectric responses that are 10 to 30 times larger than expected of PLZT-based pyroelectric materials (typical values are 20 to 40 nCcm-2K -1). The enhanced pyroelectric responses are very repeatable, stable over time, and distinctly different from responses attributed to thermally stimulated currents. Detailed positron annihilation spectroscopy measurements reveal that there is indeed an oxygen concentration gradient across the capacitor. Based on the results of this study, I will present an analysis of the enhanced pyroelectric response. Although the enhanced response has been correlated with high concentrations of oxygen vacancies in the PLZT film and LSCO electrodes, the mechanism by which the large pyroelectric currents are generated is not yet known. It is likely, however, that a sub-lattice of oxygen and lead vacancies forms the enhanced dipoles and that due to the highly defective nature of the lattice, has a large effective pyroelectric coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu.
2014-12-28
We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, whichmore » depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.« less
Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review
Truscott, T. George
2018-01-01
We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration. PMID:29301252
Magma Ocean Depth and Oxygen Fugacity in the Early Earth--Implications for Biochemistry.
Righter, Kevin
2015-09-01
A large class of elements, referred to as the siderophile (iron-loving) elements, in the Earth's mantle can be explained by an early deep magma ocean on the early Earth in which the mantle equilibrated with metallic liquid (core liquid). This stage would have affected the distribution of some of the classic volatile elements that are also essential ingredients for life and biochemistry - H, C, S, and N. Estimates are made of the H, C, S, and N contents of Earth's early mantle after core formation, considering the effects of variable temperature, pressure, oxygen fugacity, and composition on their partitioning. Assessment is made of whether additional, exogenous, sources are required to explain the observed mantle concentrations, and areas are identified where additional data and experimentation would lead to an improved understanding of this phase of Earth's history.
Hebisz, Rafał; Hebisz, Paulina; Zatoń, Marek; Michalik, Kamil
2017-04-01
In the literature, the exercise capacity of cyclists is typically assessed using incremental and endurance exercise tests. The aim of the present study was to confirm whether peak oxygen uptake (V̇O 2peak ) attained in a sprint interval testing protocol correlates with cycling performance, and whether it corresponds to maximal oxygen uptake (V̇O 2max ) determined by an incremental testing protocol. A sample of 28 trained mountain bike cyclists executed 3 performance tests: (i) incremental testing protocol (ITP) in which the participant cycled to volitional exhaustion, (ii) sprint interval testing protocol (SITP) composed of four 30 s maximal intensity cycling bouts interspersed with 90 s recovery periods, (iii) competition in a simulated mountain biking race. Oxygen uptake, pulmonary ventilation, work, and power output were measured during the ITP and SITP with postexercise blood lactate and hydrogen ion concentrations collected. Race times were recorded. No significant inter-individual differences were observed in regards to any of the ITP-associated variables. However, 9 individuals presented significantly increased oxygen uptake, pulmonary ventilation, and work output in the SITP compared with the remaining cyclists. In addition, in this group of 9 cyclists, oxygen uptake in SITP was significantly higher than in ITP. After the simulated race, this group of 9 cyclists achieved significantly better competition times (99.5 ± 5.2 min) than the other cyclists (110.5 ± 6.7 min). We conclude that mountain bike cyclists who demonstrate higher peak oxygen uptake in a sprint interval testing protocol than maximal oxygen uptake attained in an incremental testing protocol demonstrate superior competitive performance.
NASA Astrophysics Data System (ADS)
Brennan, Catherine E.; Blanchard, Hannah; Fennel, Katja
2014-05-01
We surveyed the literature in order to compile reported oxygen, temperature, salinity and depth preferences and thresholds of important marine species found in the Gulf of St. Lawrence and the Scotian Shelf regions of the northwest North Atlantic. We determined species importance based on the existence of a commercial fishery, a threatened or at risk status, or by meeting the following criteria: bycatch, baitfish, invasive, vagrant, important for ecosystem energy transfer, and predators and prey of the above species. Using the dataset compiled for the 53 regional fishes and macroinvertebrates, we rank species (including for different lifestages) by their maximum thermal limit, as well as by the lowest oxygen concentration tolerated before negative impacts (e.g. physiological stress), 50% mortality or 100% mortality are experienced. Additionally, we compare these thresholds to observed marine deoxygenation trends at multiple sites, and observed surface warming trends. This results in an assessment of which regional species are most vulnerable to future warming and oxygen depletion, and a first-order estimate of the consequences of thermal and oxygen stress on a highly productive marine shelf. If regional multi-decadal oxygen and temperature trends continue through the 21st century, many species will lose favorable oxygen conditions, experience oxygen-stress, or disappear due to insufficient oxygen. Future warming can additionally displace vulnerable species, though we note that large natural variability in environmental conditions may amplify or dampen the effects of anthropogenic surface warming trends. This dataset may be combined with regional ocean model predictions to map future species distributions.
Sousa, Claudia; Valev, Dimitar; Vermuë, Marian H; Wijffels, Rene H
2013-08-01
In tubular photobioreactors micro-algae continuously experience dynamically changing oxygen and light conditions when circulating from the solar receiver to the dark degasser. These changes in oxygen concentration and light were simulated in a CSTR using sub-saturating light intensity. Elongation of the residence time in the solar receiver from 30 to 300 min was also investigated. Specific growth rates measured at constant low oxygen concentration PO2=0.21 bar were; 1.14 ± 0.06 day(-1) using continuous light 0.80 ± 0.16 day(-1) with 30 min light and 1.09 ± 0.05 day(-1) with 300 min light. The effect of dynamically changing oxygen concentrations from PO2=0.21 to 0.63 bar followed by degassing resulted in similar specific growth rates. The exposure of the algae cells to dark periods in the degasser has a bigger negative impact than the temporary exposure to accumulating oxygen concentrations in the solar receiver. This shows that considerable energy savings for degassing are possible. Copyright © 2013 Elsevier Ltd. All rights reserved.
Geng, Xiaolong; Boufadel, Michel C; Wrenn, Brian
2013-04-01
The biodegradation of heptadecane in five sand columns was modeled using a multiplicative Monod approach. Each column contained 1.0 kg of sand and 2 g of heptadecane, and was supplied with an artificial seawater solution containing nutrients at a flow rate that resulted in unsaturated flow through the column. All nutrients were provided in excess with the exception of nitrate whose influent concentration was 0.1, 0.5, 1.0, 2.5, or 5.0 mg N/L. The experiment was run around 912 h until no measurable oxygen consumption or CO2 production was observed. The residual mass of heptadecane was measured at the end of the experiments and the biodegradation was monitored based on oxygen consumption and CO2 production. Biodegradation kinetic parameters were estimated by fitting the model to experimental data of oxygen, CO2, and residual mass of heptadecane obtained from the two columns having influent nitrate-N concentration of 0.5 and 2.5 mg/L. Noting that the oxygen and CO2 measurements leveled off at around 450 h, we fitted the model to these data for that range. The estimated parameters fell in within the range reported in the literature. In particular, the half-saturation constant for nitrate utilization, [Formula: see text], was estimated to be 0.45 mg N/L, and the yield coefficient was found to be 0.15 mg biomass/mg heptadecane. Using these values, the rest of experimental data from the five columns was predicted, and the model agreed with the observations. There were some consistent discrepancies at large times between the model simulation and observed data in the cases with higher nitrate concentration. One plausible explanation for these differences could be limitation of biodegradation by reduction of the heptadecane-water interfacial area in these columns while the model uses a constant interfacial area.
Olyphant, Greg A.; Whitman, Richard L.
2004-01-01
Data on hydrometeorological conditions and E. coli concentration were simultaneously collected on 57 occasions during the summer of 2000 at 63rd Street Beach, Chicago, Illinois. The data were used to identify and calibrate a statistical regression model aimed at predicting when the bacterial concentration of the beach water was above or below the level considered safe for full body contact. A wide range of hydrological, meteorological, and water quality variables were evaluated as possible predictive variables. These included wind speed and direction, incoming solar radiation (insolation), various time frames of rainfall, air temperature, lake stage and wave height, and water temperature, specific conductance, dissolved oxygen, pH, and turbidity. The best-fit model combined real-time measurements of wind direction and speed (onshore component of resultant wind vector), rainfall, insolation, lake stage, water temperature and turbidity to predict the geometric mean E.coliconcentration in the swimming zone of the beach. The model, which contained both additive and multiplicative (interaction) terms, accounted for 71% of the observed variability in the log E. coliconcentrations. A comparison between model predictions of when the beach should be closed and when the actualbacterial concentrations were above or below the 235 cfu 100 ml-1 threshold value, indicated that the model accurately predicted openingsversus closures 88% of the time.
Wilson, Jesse M.; Severson, Rodney; Beman, J. Michael
2014-01-01
Community respiration (CR) of organic material to carbon dioxide plays a fundamental role in ecosystems and ocean biogeochemical cycles, as it dictates the amount of production available to higher trophic levels and for export to the deep ocean. Yet how CR varies across large oceanographic gradients is not well-known: CR is measured infrequently and cannot be easily sensed from space. We used continuous oxygen measurements collected by autonomous gliders to quantify surface CR rates across the Pacific Ocean. CR rates were calculated from changes in apparent oxygen utilization and six different estimates of oxygen flux based on wind speed. CR showed substantial spatial variation: rates were lowest in ocean gyres (mean of 6.93 mmol m−3 d−1±8.0 mmol m−3 d−1 standard deviation in the North Pacific Subtropical Gyre) and were more rapid and more variable near the equator (8.69 mmol m−3 d−1±7.32 mmol m−3 d−1 between 10°N and 10°S) and near shore (e.g., 5.62 mmol m−3 d−1±45.6 mmol m−3 d−1 between the coast of California and 124°W, and 17.0 mmol m−3 d−1±13.9 mmol m−3 d−1 between 156°E and the Australian coast). We examined how CR varied with coincident measurements of temperature, turbidity, and chlorophyll concentrations (a proxy for phytoplankton biomass), and found that CR was weakly related to different explanatory variables across the Pacific, but more strongly related to particular variables in different biogeographical areas. Our results indicate that CR is not a simple linear function of chlorophyll or temperature, and that at the scale of the Pacific, the coupling between primary production, ocean warming, and CR is complex and variable. We suggest that this stems from substantial spatial variation in CR captured by high-resolution autonomous measurements. PMID:25048960
Wilson, Jesse M; Severson, Rodney; Beman, J Michael
2014-01-01
Community respiration (CR) of organic material to carbon dioxide plays a fundamental role in ecosystems and ocean biogeochemical cycles, as it dictates the amount of production available to higher trophic levels and for export to the deep ocean. Yet how CR varies across large oceanographic gradients is not well-known: CR is measured infrequently and cannot be easily sensed from space. We used continuous oxygen measurements collected by autonomous gliders to quantify surface CR rates across the Pacific Ocean. CR rates were calculated from changes in apparent oxygen utilization and six different estimates of oxygen flux based on wind speed. CR showed substantial spatial variation: rates were lowest in ocean gyres (mean of 6.93 mmol m(-3) d(-1)±8.0 mmol m(-3) d(-1) standard deviation in the North Pacific Subtropical Gyre) and were more rapid and more variable near the equator (8.69 mmol m(-3) d(-1)±7.32 mmol m(-3) d(-1) between 10°N and 10°S) and near shore (e.g., 5.62 mmol m(-3) d(-1)±45.6 mmol m(-3) d(-1) between the coast of California and 124°W, and 17.0 mmol m(-3) d(-1)±13.9 mmol m(-3) d(-1) between 156°E and the Australian coast). We examined how CR varied with coincident measurements of temperature, turbidity, and chlorophyll concentrations (a proxy for phytoplankton biomass), and found that CR was weakly related to different explanatory variables across the Pacific, but more strongly related to particular variables in different biogeographical areas. Our results indicate that CR is not a simple linear function of chlorophyll or temperature, and that at the scale of the Pacific, the coupling between primary production, ocean warming, and CR is complex and variable. We suggest that this stems from substantial spatial variation in CR captured by high-resolution autonomous measurements.
Bobo, Linda L.; Eikenberry, Stephen E.
1982-01-01
Few data are available for evaluating water-quality and other hydrologic properties in and around surface coal mines, particularly in areas where material having a high potential for acid-production is selectively buried. This report contains hydrologic data collected in an active coal mining area in Clay and Vigo Counties, Indiana, from September 1977 through February 1980. Methods of sampling and analysis used in collecting the data also are summarized. The data include field and laboratory measurements of water at 41 wells and 24 stream sites. Variables measured in the field include water temperature, specific conductance, pH, Eh, dissolved oxygen, ground-water levels, and streamflow; and in the laboratory, concentrations of major ions, alkalinity, hardness, trace elementsl, organic carbon, phosphorus, and dissolved solids. Other variables measured in the laboratory include ferrous iron concentration of water samples from selected wells, percent sulfur by weight and the potential acidity of core samples of reclaimed cast overburden, concentrations of elements absorbed on streambed materials, concentrations and particle size of suspended sediment in water, and populations and Shannon diversity indices of phytoplankton in water. Dissolved-solids concentrations and pH of ground water ranged from 173 to 5,130 milligrams per liter and from 6.1 to 8.9, respectively, and of surface water, from 120 to 4,100 milligrams per liter and from 6.1 to 8.8 respectively.
Durango-Usuga, Paula; Guzmán-Duque, Fernando; Mosteo, Rosa; Vazquez, Mario V; Peñuela, Gustavo; Torres-Palma, Ricardo A
2010-07-15
An experimental design methodology was applied to evaluate the decolourization of crystal violet (CV) dye by electrocoagulation using iron or aluminium electrodes. The effects and interactions of four parameters, initial pH (3-9), current density (6-28 A m(-2)), substrate concentration (50-200 mg L(-1)) and supporting electrolyte concentration (284-1420 mg L(-1) of Na(2)SO(4)), were optimized and evaluated. Although the results using iron anodes were better than for aluminium, the effects and interactions of the studied parameters were quite similar. With a confidence level of 95%, initial pH and supporting electrolyte concentration showed limited effects on the removal rate of CV, whereas current density, pollutant concentration and the interaction of both were significant. Reduced models taking into account significant variables and interactions between variables have shown good correlations with the experimental results. Under optimal conditions, almost complete removal of CV and chemical oxygen demand were obtained after electrocoagulation for 5 and 30 min, using iron and aluminium electrodes, respectively. These results indicate that electrocoagulation with iron anodes is a rapid, economical and effective alternative to the complete removal of CV in waters. Evolutions of pH and residual iron or aluminium concentrations in solution are also discussed. 2010 Elsevier B.V. All rights reserved.
Potter, Michelle; Badder, Luned; Hoade, Yvette; Johnston, Iain G; Morten, Karl J
2016-01-01
The metabolic properties of cancer cells have been widely accepted as a hallmark of cancer for a number of years and have shown to be of critical importance in tumour development. It is generally accepted that tumour cells exhibit a more glycolytic phenotype than normal cells. In this study, we investigate the bioenergetic phenotype of two widely used cancer cell lines, RD and U87MG, by monitoring intracellular oxygen concentrations using phosphorescent Pt-porphyrin based intracellular probes. Our study demonstrates that cancer cell lines do not always exhibit an exclusively glycolytic phenotype. RD demonstrates a reliance on oxidative phosphorylation whilst U87MG display a more glycolytic phenotype. Using the intracellular oxygen sensing probe we generate an immediate readout of intracellular oxygen levels, with the glycolytic lines reflecting the oxygen concentration of the environment, and cells with an oxidative phenotype having significantly lower levels of intracellular oxygen. Inhibition of oxygen consumption in lines with high oxygen consumption increases intracellular oxygen levels towards environmental levels. We conclude that the use of intracellular oxygen probes provides a quantitative assessment of intracellular oxygen levels, allowing the manipulation of cellular bioenergetics to be studied in real time.
NASA Astrophysics Data System (ADS)
Kurita, Naoyuki; Nakatsuka, Takeshi; Ohnishi, Keiko; Mitsutani, Takumi; Kumagai, Tomo'omi
2016-10-01
We present a unique proxy for reconstructing the interannual variability of summer precipitation associated with the quasi-stationary front (Baiu front) in central Japan. The rainfall from the Baiu front has a relatively lower oxygen isotopic composition than other types of nonfrontal precipitation. The variability in the oxygen isotopes in summer rainfall is closely related to the Baiu frontal activity. In this study we used a mechanistic tree ring isotope model to reconstruct a 106 year long oxygen isotopic composition of precipitation during the early rainy season (June) based on the oxygen isotopic compositions of the annual rings of Chamaecyparis obtusa Endl trees from central Japan. The year-to-year variations of the isotopes over the most recent 25 years are associated with several teleconnection patterns that often lead to the Baiu precipitation anomalies in central Japan (such as the Pacific-Japan (PJ) pattern, Silk Road pattern, and wave train pattern along the polar jet). Yet none of these external forcing mechanisms apply further back in time. From the 1950s to 1980s, the interannual isotopic variability is predominantly related to local factors such as anomalous intensification/weakening of the Bonin High. Before the 1950s, the variability of the oxygen isotopic composition of precipitation is mainly associated with a wave train pattern along the polar jet. The isotopic variability is predominantly linked to the PJ pattern, while the PJ index is correlated with El Niño-Southern Oscillation. These findings suggest that the teleconnection patterns influencing Baiu precipitation variability vary according to interdecadal time scales during the twentieth century.
Logarithmic sensing in Bacillus subtilis aerotaxis.
Menolascina, Filippo; Rusconi, Roberto; Fernandez, Vicente I; Smriga, Steven; Aminzare, Zahra; Sontag, Eduardo D; Stocker, Roman
2017-01-01
Aerotaxis, the directed migration along oxygen gradients, allows many microorganisms to locate favorable oxygen concentrations. Despite oxygen's fundamental role for life, even key aspects of aerotaxis remain poorly understood. In Bacillus subtilis, for example, there is conflicting evidence of whether migration occurs to the maximal oxygen concentration available or to an optimal intermediate one, and how aerotaxis can be maintained over a broad range of conditions. Using precisely controlled oxygen gradients in a microfluidic device, spanning the full spectrum of conditions from quasi-anoxic to oxic (60 n mol/l-1 m mol/l), we resolved B. subtilis' 'oxygen preference conundrum' by demonstrating consistent migration towards maximum oxygen concentrations ('monotonic aerotaxis'). Surprisingly, the strength of aerotaxis was largely unchanged over three decades in oxygen concentration (131 n mol/l-196 μ mol/l). We discovered that in this range B. subtilis responds to the logarithm of the oxygen concentration gradient, a rescaling strategy called 'log-sensing' that affords organisms high sensitivity over a wide range of conditions. In these experiments, high-throughput single-cell imaging yielded the best signal-to-noise ratio of any microbial taxis study to date, enabling the robust identification of the first mathematical model for aerotaxis among a broad class of alternative models. The model passed the stringent test of predicting the transient aerotactic response despite being developed on steady-state data, and quantitatively captures both monotonic aerotaxis and log-sensing. Taken together, these results shed new light on the oxygen-seeking capabilities of B. subtilis and provide a blueprint for the quantitative investigation of the many other forms of microbial taxis.
Kim, Michele M.; Penjweini, Rozhin; Gemmell, Nathan R.; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S.; Hadfield, Robert H.; Wilson, Brian C.; Zhu, Timothy C.
2016-01-01
Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT—light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([3O2])—to calculate the amount of reacted singlet oxygen ([1O2]rx), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime (τΔ and τt), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [1O2]rx was compared to SOED-calculated [1O2]rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [1O2]rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula. PMID:27929427
Kim, Michele M; Penjweini, Rozhin; Gemmell, Nathan R; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S; Hadfield, Robert H; Wilson, Brian C; Zhu, Timothy C
2016-12-06
Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT-light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([³ O ₂])-to calculate the amount of reacted singlet oxygen ([¹ O ₂] rx ), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime ( τ Δ and τ t ), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [¹ O ₂] rx was compared to SOED-calculated [¹ O ₂] rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [¹ O ₂] rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula.
NASA Astrophysics Data System (ADS)
Ehn, Andreas; Jonsson, Malin; Johansson, Olof; Aldén, Marcus; Bood, Joakim
2013-01-01
Fluorescence lifetimes of toluene as a function of oxygen concentration in toluene/nitrogen/oxygen mixtures have been measured at room temperature using picosecond-laser excitation of the S1-S0 transition at 266 nm. The data satisfy the Stern-Volmer relation with high accuracy, providing an updated value of the Stern-Volmer slope. A newly developed fluorescence lifetime imaging scheme, called Dual Imaging with Modeling Evaluation (DIME), is evaluated and successfully demonstrated for quantitative oxygen concentration imaging in toluene-seeded O2/N2 gas mixtures.
NASA Astrophysics Data System (ADS)
Ehn, Andreas; Jonsson, Malin; Johansson, Olof; Aldén, Marcus; Bood, Joakim
2012-12-01
Fluorescence lifetimes of toluene as a function of oxygen concentration in toluene/nitrogen/oxygen mixtures have been measured at room temperature using picosecond-laser excitation of the S1-S0 transition at 266 nm. The data satisfy the Stern-Volmer relation with high accuracy, providing an updated value of the Stern-Volmer slope. A newly developed fluorescence lifetime imaging scheme, called Dual Imaging with Modeling Evaluation (DIME), is evaluated and successfully demonstrated for quantitative oxygen concentration imaging in toluene-seeded O2/N2 gas mixtures.
Oxygen-vacancy behavior in La2-xSrxCuO4-y by positron annihilation and oxygen diffusion
NASA Astrophysics Data System (ADS)
Smedskjaer, L. C.; Routbort, J. L.; Flandermeyer, B. K.; Rothman, S. J.; Legnini, D. G.; Baker, J. E.
1987-09-01
Oxygen-diffusion and positron-annihilation results for La2-xSrxCuO4-y compounds are reported. A qualitative explanation of the observed results is given on the basis of a model in which the oxygen-vacancy concentration in La2-xSrxCuO4-y is determined by Sr2+ ion clustering on the La sublattice. This model also leads to a maximum in the Cu3+ ion concentration as a function of the Sr2+ ion concentration.
THE EFFECTS OF VARIATIONS IN THE CONCENTRATION OF OXYGEN AND OF GLUCOSE ON DARK ADAPTATION
McFarland, R. A.; Forbes, W. H.
1940-01-01
In this study we have analyzed the effects of variations in the concentrations of oxygen and of blood sugar on light sensitivity; i.e. dark adaptation. The experiments were carried out in an air-conditioned light-proof chamber where the concentrations of oxygen could be changed by dilution with nitrogen or by inhaling oxygen from a cylinder. The blood sugar was lowered by the injection of insulin and raised by the ingestion of glucose. The dark adaptation curves were plotted from data secured with an apparatus built according to specifications outlined by Hecht and Shlaer. During each experiment, observations were first made in normal air with the subject under basal conditions followed by one, and in most instances two, periods under the desired experimental conditions involving either anoxia or hyper- or hypoglycemia or variations in both the oxygen tension and blood sugar at the same time. 1. Dark adaptation curves were plotted (threshold against time) in normal air and compared with those obtained while inhaling lowered concentrations of oxygen. A decrease in sensitivity was observed with lowered oxygen tensions. Both the rod and cone portions of the curves were influenced in a similar way. These effects were counteracted by inhaling oxygen, the final rod thresholds returning to about the level of the normal base line in air or even below it within 2 to 3 minutes. The impairment was greatest for those with a poorer tolerance for low O2. Both the inter- and intra-individual variability in thresholds increased significantly at the highest altitude. 2. In a second series of tests control curves were obtained in normal air. Then while each subject remained dark adapted, the concentrations of oxygen were gradually decreased. The regeneration of visual purple was apparently complete during the 40 minutes of dark adaptation, yet in each case the thresholds continued to rise in direct proportion to the degree of anoxia. The inhalation of oxygen from a cylinder quickly counteracted the effects for the thresholds returned to the original control level within 2 to 3 minutes. 3. In experiments where the blood sugar was raised by the ingestion of glucose in normal air, no significant changes in the thresholds were observed except when the blood sugar was rapidly falling toward the end of the glucose tolerance tests. However, when glucose was ingested at the end of an experiment in low oxygen, while the subject remained dark adapted, the effects of the anoxia were largely counteracted within 6 to 8 minutes. 4. The influence of low blood sugar on light sensitivity was then studied by injecting insulin. The thresholds were raised as soon as the effects of the insulin produced a fall in the blood sugar. When the subjects inhaled oxygen the thresholds were lowered. Then when the oxygen was withdrawn so that the subject was breathing normal air, the thresholds rose again within 1 to 2 minutes. Finally, if the blood sugar was raised by ingesting glucose, the average threshold fell to the original control level or even below it. 5. The combined effects of low oxygen and low blood sugar on light sensitivity were studied in one subject (W. F.). These effects appeared to be greater than when a similar degree of anoxia or hypoglycemia was brought about separately. 6. In a series of experiments on ten subjects the dark adaptation curves were obtained both in the basal state and after a normal breakfast. In nine of the ten subjects, the food increased the sensitivity of the subjects to light. 7. The experiments reported above lend support to the hypothesis that both anoxia and hypoglycemia produce their effects on light sensitivity in essentially the same way; namely, by slowing the oxidative processes. Consequently the effects of anoxia may be ameliorated by giving glucose and the effects of hypoglycemia by inhaling oxygen. In our opinion, the changes may be attributed directly to the effects on the nervous tissue of the visual mechanism and the brain rather than on the photochemical processes of the retina. PMID:19873200
NASA Astrophysics Data System (ADS)
Liao, Yibo; Shou, Lu; Tang, Yanbin; Zeng, Jiangning; Gao, Aigen; Chen, Quanzhen; Yan, Xiaojun
2017-05-01
To assess the effects of hypoxia, macrobenthic communities along an estuarine gradient of the Changjiang estuary and adjacent continental shelf were analyzed. This revealed spatial variations in the communities and relationships with environmental variables during periods of reduced dissolved oxygen (DO) concentration in summer. Statistical analyses revealed significant differences in macrobenthic community composition among the three zones: estuarine zone (EZ), mildly hypoxic zone (MHZ) in the continental shelf, and normoxic zone (NZ) in the continental shelf (Global R =0.206, P =0.002). Pairwise tests showed that the macrobenthic community composition of the EZ was significantly different from the MHZ (pairwise test R =0.305, P =0.001) and the NZ (pairwise test R =0.259, P =0.001). There was no significant difference in macrobenthic communities between the MHZ and the NZ (pairwise test R =0.062, P =0.114). The taxa included small and typically opportunistic polychaetes, which made the greatest contribution to the dissimilarity between the zones. The effects of mild hypoxia on the macrobenthic communities are a result not only of reduced DO concentration but also of differences in environmental variables such as temperature, salinity, and nutrient concentrations caused by stratification.
Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices.
Guyot, Sylvain; Marnet, Nathalie; Sanoner, Philippe; Drilleau, Jean-François
2003-10-08
Five French cider apple varieties were compared on the basis of their detailed polyphenol profile in the cortex and in the juices. Among the factors studied, variety was the most important variability factor in fruits, whereas polyphenol profiles showed an overall stability from one year to another, and a limited decrease of polyphenol concentration was observed during the starch regression period of fruit maturation. In juices, procyanidins remained the preponderant polyphenol class with concentrations up to 2.4 g/L even in centrifuged juices. Compared to the fruits, the average degree of polymerization of procyanidins was significantly reduced in the juice. Centrifugation of the crude juice had only minor effects on the polyphenol composition. For one variety, highly polymerized procyanidins with average degrees of polymerization of 25 were shown to be soluble in the centrifuged juice at a concentration of close to 1.2 g/L. Oxygenation of the juices during processing resulted in a significant decrease of all classes of native polyphenols. Catechins and procyanidins were particularly affected by oxidation, whereas caffeoylquinic acid was partly preserved. The transfer of polyphenols after pressing was maximal for dihydrochalcones and minimal for procyanidins with extraction yield values close to 80 and 30%, respectively.
NASA Astrophysics Data System (ADS)
Black, A. E.; Baranow, N.; Amdur, S.; Cook, M. S.
2017-12-01
Ocean circulation and biological productivity play an important role in the climate system through their contribution to global heat transport and air-sea exchange of CO2. Oceanic oxygen concentration provides insight to ocean circulation and biological productivity. Sediment laminations provide a valuable proxy for local oceanic oxygen concentration. Many sediment cores from the Pacific Ocean are laminated from the last deglaciation, but previous studies have not provided an in-depth examination of laminations over many glacial and interglacial (G/IG) cycles. Typically, studies to date that consider bioturbation as a proxy for oxygen concentration have only considered one sediment core from a site, leaving ambiguity as to whether laminations faithfully record local oxygen levels. With sediment cores from three different holes (A, C, D) on the northern Bering Slope from IODP site U1345 (1008m), we investigate how faithfully laminations record oxygen concentration. We assign a bioturbation index from 1 to 4 for 1-cm intervals for the cores from each of the three holes and align the holes based on physical properties data. We find that the bioturbation is relatively consistent (within one bioturbation unit) between holes, suggesting that laminations may be a faithful, if not perfect, proxy for local oxygen concentration. After examining laminations from a complete hole, representing over 500,000 years, there seems to be no consistent pattern of laminations during the past five glacial cycles, suggesting there is no consistent pattern to oxygen concentration during glacial periods in the northern Bering Slope. Thus, hypotheses on ocean circulation and productivity in the northern Bering Sea from the last deglaciation may not apply to previous G/IG cycles.
Irby, Katherine; Swearingen, Christopher; Byrnes, Jonathan; Bryant, Joshua; Prodhan, Parthak; Fiser, Richard
2014-05-01
Investigate whether anti-Factor Xa levels are associated with the need for change of circuit/membrane oxygenator secondary to thrombus formation in pediatric patients. Retrospective single institution study. Retrospective record review of 62 pediatric patients supported with extracorporeal membrane oxygenation from 2009 to 2011. Data on standard demographic characteristics, indications for extracorporeal membrane oxygenation, duration of extracorporeal membrane oxygenation, activated clotting time measurements, anti-Factor Xa measurements, and heparin infusion rate were collected. Generalized linear models were used to associate anti-Factor Xa concentrations and need for change of either entire circuit/membrane oxygenator secondary to thrombus formation. Sixty-two patients met study inclusion criteria. No-circuit change was required in 45 of 62 patients. Of 62 patients, 17 required change of circuit/membrane oxygenator due to thrombus formation. Multivariate analysis of daily anti-Factor Xa measurements throughout duration of extracorporeal membrane oxygenation support estimated a mean anti-Factor Xa concentration of 0.20 IU/mL (95% CI, 0.16, 0.24) in no-complete-circuit group that was significantly higher than the estimated concentration of 0.13 IU/mL (95% CI, 0.12, 0.14) in complete-circuit group (p = 0.001). A 0.01 IU/mL decrease in anti-Factor Xa increased odds of need for circuit/membrane oxygenator change by 5% (odds ratio = 1.105; 95% CI, 1.00, 1.10; p = 0.044). Based on the observed anti-Factor Xa concentrations, complete-circuit group had 41% increased odds for requiring circuit/membrane oxygenator change compared with no-complete-circuit group (odds ratio = 1.41; 95% CI, 1.01, 1.96; p = 0.044). Mean daily activated clotting time measurement (p = 0.192) was not different between groups, but mean daily heparin infusion rate (p < 0.001) was significantly different between the two groups. Higher anti-Factor Xa concentrations were associated with freedom from circuit/membrane oxygenator change due to thrombus formation in pediatric patients during extracorporeal membrane oxygenation support. Activated clotting time measurements did not differ significantly between groups with or without circuit/membrane oxygenator change. This is the first study to link anti-Factor Xa concentrations with a clinically relevant measure of thrombosis in pediatric patients during extracorporeal membrane oxygenation support. Further prospective study is warranted.
DuBois, P Mason; Shea, Tanner K; Claunch, Natalie M; Taylor, Emily N
2017-08-01
Thermal tolerance is an important variable in predictive models about the effects of global climate change on species distributions, yet the physiological mechanisms responsible for reduced performance at high temperatures in air-breathing vertebrates are not clear. We conducted an experiment to examine how oxygen affects three variables exhibited by ectotherms as they heat-gaping threshold, panting threshold, and loss of righting response (the latter indicating the critical thermal maximum)-in two lizard species along an elevational (and therefore environmental oxygen partial pressure) gradient. Oxygen partial pressure did not impact these variables in either species. We also exposed lizards at each elevation to severely hypoxic gas to evaluate their responses to hypoxia. Severely low oxygen partial pressure treatments significantly reduced the gaping threshold, panting threshold, and critical thermal maximum. Further, under these extreme hypoxic conditions, these variables were strongly and positively related to partial pressure of oxygen. In an elevation where both species overlapped, the thermal tolerance of the high elevation species was less affected by hypoxia than that of the low elevation species, suggesting the high elevation species may be adapted to lower oxygen partial pressures. In the high elevation species, female lizards had higher thermal tolerance than males. Our data suggest that oxygen impacts the thermal tolerance of lizards, but only under severely hypoxic conditions, possibly as a result of hypoxia-induced anapyrexia. Copyright © 2017. Published by Elsevier Ltd.
Peters, James G.; Wilber, W.G.; Crawford, Charles G.; Girardi, F.P.
1979-01-01
A digital computer model calibrated to observe stream conditions was used to evaluate water quality in West Fork Blue River, Washington County, IN. Instream dissolved-oxygen concentration averaged 96.5% of saturation at selected sites on West Fork Blue River during two 24-hour summer surveys. This high dissolved-oxygen concentration reflects small carbonaceous and nitrogenous waste loads; adequate dilution of waste by the stream; and natural reaeration. Nonpoint source waste loads accounted for an average of 53.2% of the total carbonaceous biochemical-oxygen demand and 90.2% of the nitrogenous biochemical-oxygen demand. Waste-load assimilation was studiedfor critical summer and winter low flows. Natural streamflow for these conditions was zero, so no benefit from dilution was provided. The projected stream reaeration capacity was not sufficient to maintain the minimum daily dissolved-oxygen concentration (5 milligrams per liter) in the stream with current waste-discharge restrictions. During winter low flow, ammonia toxicity, rather than dissolved-oxygen concentration, was the limiting water-quality criterion downstream from the Salem wastewater-treatment facility. (USGS)
NASA Astrophysics Data System (ADS)
DiMarco, S. F.; Knap, A. H.; Wang, Z.; Walpert, J.; Dreger, K.
2016-02-01
The northwestern Gulf of Mexico is host to a myriad of physical and biochemical processes, which govern the exchange and transport of material and volume between the coastal and offshore environments. We report on five G2 Slocum glider deployments in the northwestern Gulf during the spring and summer of 2015. The gliders were deployed in shallow (20 m) and deep (greater than 1000 m) water for a total of about 200 days. During this time, the gliders encountered a variety of environmental conditions that impact the circulation, biology, chemistry of the shelf and slope. The shallow gliders encountered coastal waters influenced by extensive flooding in terrestrial Texas that vertically stratified the water-column and was coincident with sub-pycnocline low dissolved oxygen concentration, at times below the hypoxic threshold of 2 mg/L, and elevated CDOM concentrations. These gliders also reveal high spatial variability with bottom boundary oxygen and biomass scales on the order of a few kilometers. The deep gliders were tasked to investigate shelf/slope exchange at two locations 94W and 91W. The western glider encountered a mature mesoscale circulation eddy that was actively weakening. The eastern glider simultaneously encountered a freshly separated Loop Current eddy. The vertical structure of hydrographic and dissolved oxygen parameters shows significant and distinguishable variability in each feature. The vertical structure of both features show significant departures from that which is expected based on sea surface height determined from satellite altimetry. Additionally, glider observations are compared to operational high-resolution regional numerical model output. These observations emphasize the importance of direct observations over satellite-derived products for applications that include upper ocean heat content for hurricane intensification and vertical mixing and ventilation of the oceanic interior.
Drag coefficient Variability and Thermospheric models
NASA Astrophysics Data System (ADS)
Moe, Kenneth
Satellite drag coefficients depend upon a variety of factors: The shape of the satellite, its altitude, the eccentricity of its orbit, the temperature and mean molecular mass of the ambient atmosphere, and the time in the sunspot cycle. At altitudes where the mean free path of the atmospheric molecules is large compared to the dimensions of the satellite, the drag coefficients can be determined from the theory of free-molecule flow. The dependence on altitude is caused by the concentration of atomic oxygen which plays an important role by its ability to adsorb on the satellite surface and thereby affect the energy loss of molecules striking the surface. The eccentricity of the orbit determines the satellite velocity at perigee, and therefore the energy of the incident molecules relative to the energy of adsorption of atomic oxygen atoms on the surface. The temperature of the ambient atmosphere determines the extent to which the random thermal motion of the molecules influences the momentum transfer to the satellite. The time in the sunspot cycle affects the ambient temperature as well as the concentration of atomic oxygen at a particular altitude. Tables and graphs will be used to illustrate the variability of drag coefficients. Before there were any measurements of gas-surface interactions in orbit, Izakov and Cook independently made an excellent estimate that the drag coefficient of satellites of compact shape would be 2.2. That numerical value, independent of altitude, was used by Jacchia to construct his model from the early measurements of satellite drag. Consequently, there is an altitude dependent bias in the model. From the sparce orbital experiments that have been done, we know that the molecules which strike satellite surfaces rebound in a diffuse angular distribution with an energy loss given by the energy accommodation coefficient. As more evidence accumulates on the energy loss, more realistic drag coefficients are being calculated. These improved drag coefficients help evaluate the biases in present models. Moreover, they make possible the derivation of accurate densities from accelerometer measurements.
NASA Astrophysics Data System (ADS)
Magill, C. R.; Rosenmeier, M. F.; Cavallari, B. J.; Curtis, J. H.; Weiss, H.
2005-12-01
Middle and late Holocene geochemical records from the Limnes depression, a small sinkhole located within the Akrotiri Peninsula, Crete, document centennial and millennial-scale climate variability within the central Mediterranean region. The oldest sediments of the basin consist largely of fibrous plant macrofossils and organic matter and likely indicate lake filling and expansion of wetland vegetation beginning ~5700 radiocarbon years before present (14C-yrs B.P.) (4550 B.C.). The basal peat layers grade into predominantly open water and less shallow lacustrine deposits by 4500 14C-yrs B.P (3200 B.C.). Continuous open water sedimentation within the Limnes core is interrupted by a number of distinct lag deposits and peaty deposits centered at 3700, 1600, and 350 14C-yrs B.P (2100 B.C., 500 A.D., and 1500 A.D.) indicating periods of significantly lowered lake level or perhaps lake desiccation. These ages coincide roughly with oxygen isotope (δ18O) minima measured in biogenic carbonates (ostracod shells) and support the inference for low lake stage. Trace element (Ca, Mg, and Sr) concentrations in ostracod shells from the Limnes core parallel the oxygen isotope record, suggesting that the data reflect basin hydrology rather than changes in the isotopic composition of rainfall. Furthermore, covariance in both δ18O and Mg concentrations eliminate temperature as a control on the oxygen isotope record. Sediments from the basin also contain aragonite remains of the green alga Chara and isotope analysis of the calcite may record additional paleoenvironmental information. The paleoclimate history inferred from the Limnes record correlates temporally (albeit tenuously) to previous paleoenvironmental data that document abrupt onset of arid conditions in the eastern Mediterranean and western Asia ca. 2200 B.C. Moreover, stratigraphic and geochemical evidence of low lake level (drying) within the Limnes basin at 2100 B.C. may correspond to the termination of the Early Minoan II (Early Bronze Age) culture.
Fluorescent microparticles for sensing cell microenvironment oxygen levels within 3D scaffolds
Acosta, Miguel A.; Ymele-Leki, Patrick; Kostov, Yordan V.; Leach, Jennie B.
2010-01-01
We present the development and characterization of fluorescent oxygen-sensing microparticles designed for measuring oxygen concentration in microenvironments existing within standard cell culture and transparent three-dimensional (3D) cell scaffolds. The microparticle synthesis employs poly(dimethylsiloxane) to encapsulate silica gel particles bound with an oxygen-sensitive luminophore as well as a reference or normalization fluorophore that is insensitive to oxygen. We developed a rapid, automated and non-invasive sensor analysis method based on fluorescence microscopy to measure oxygen concentration in a hydrogel scaffold. We demonstrate that the microparticles are non-cytotoxic and that their response is comparable to that of a traditional dissolved oxygen meter. Microparticle size (5–40 μm) was selected for microscale-mapping of oxygen concentration to allow measurements local to individual cells. Two methods of calibration were evaluated and revealed that the sensor system enables characterization of a range of hypoxic to hyperoxic conditions relevant to cell and tissue biology (i.e., pO2 10–160 mm Hg). The calibration analysis also revealed that the microparticles have a high fraction of quenched luminophore (0.90 ± 0.02), indicating that the reported approach provides significant advantages for sensor performance. This study thus reports a versatile oxygen-sensing technology that enables future correlations of local oxygen concentration with individual cell response in cultured engineered tissues. PMID:19285719
Bunel, Vincent; Shoukri, Amr; Choin, Frederic; Roblin, Serge; Smith, Cindy; Similowski, Thomas; Morélot-Panzini, Capucine; Gonzalez, Jesus
2016-12-01
Bunel, Vincent, Amr Shoukri, Frederic Choin, Serge Roblin, Cindy Smith, Thomas Similowski, Capucine Morélot-Panzini, and Jésus Gonzalez. Bench evaluation of four portable oxygen concentrators under different conditions representing altitudes of 2438, 4200, and 8000 m. High Alt Med Biol. 17:370-374, 2016.-Air travel is responsible for a reduction of the partial pressure of oxygen (O 2 ) as a result of the decreased barometric pressure. This hypobaric hypoxia can be dangerous for passengers with respiratory diseases, requiring initiation or intensification of oxygen therapy during the flight. In-flight oxygen therapy can be provided by portable oxygen concentrators, which are less expensive and more practical than oxygen cylinders, but no study has evaluated their capacity to concentrate oxygen under simulated flight conditions. We tested four portable oxygen concentrators during a bench test study. The O 2 concentrations (FO 2 ) produced were measured under three different conditions: in room air at sea level, under hypoxia due to a reduction of the partial pressure of O 2 (normobaric hypoxia, which can be performed routinely), and under hypoxia due to a reduction of atmospheric pressure (hypobaric hypoxia, using a chamber manufactured by Airbus Defence and Space). The FO 2 obtained under conditions of hypobaric hypoxia (chamber) was lower than that measured in room air (0.92 [0.89-0.92] vs. 0.93 [0.92-0.94], p = 0.029), but only one portable oxygen concentrator was unable to maintain an FO 2 ≥ 0.90 (0.89 [0.89-0.89]). In contrast, under conditions of normobaric hypoxia (tent) simulating an altitude of 2438 m, none of the apparatuses tested was able to achieve an FO 2 greater than 0.76. (0.75 [0.75-0.76] vs. 0.93 [0.92-0.94], p = 0.029). Almost all portable oxygen concentrators were able to generate a sufficient quantity of O 2 at simulated altitudes of 2438 m and can therefore be used in the aircraft cabin. Unfortunately, verification of the reliability and efficacy of these devices in a patient would require a nonroutinely available technology, and no preflight test can currently be performed by using simple techniques such as hypobaric hypoxia.
Sulfide-Inhibition of Mitochondrial Respiration at Very Low Oxygen Concentrations
Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E
2014-01-01
Our aim was to study the capacity of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the capacity of the pathway metabolizing and eliminating sulfide, which is linked to the mitochondrial respiratory chain and therefore operates under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide’s inhibition of cellular respiration would be dependent of the oxygen concentration in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5 – 1 × 106 cells in 2 ml of continuously stirred respiration medium at 37°C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73 ± 0.05 μM, 3.1 ± 0.2 μM, and 6.2 ± 0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3; 3.5] and 11.7 [6.2;21.2] min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6[15.5;28.1] min (coupled) and 35.9[27.4;59.2] min (uncoupled), as well as 42.4 [27.5;42.4] min (coupled) and 51.5 [46.4;51.7] min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results suggest that elimination of sulfide in these cells is limited by oxygen availability when approaching the anoxic condition. This property may contribute to the physiological role of sulfide as an oxygen sensor. PMID:24963794
Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London
NASA Astrophysics Data System (ADS)
Young, D. E.; Allan, J. D.; Williams, P. I.; Green, D. C.; Flynn, M. J.; Harrison, R. M.; Yin, J.; Gallagher, M. W.; Coe, H.
2014-07-01
For the first time, the behaviour of non-refractory inorganic and organic submicron particulate through an entire annual cycle is investigated using measurements from an Aerodyne compact time-of-flight aerosol mass spectrometer (cToF-AMS) located at a UK urban background site in North Kensington, London. We show secondary aerosols account for a significant fraction of the submicron aerosol burden and that high concentration events are governed by different factors depending on season. Furthermore, we demonstrate that on an annual basis there is no variability in the extent of secondary organic aerosol (SOA) oxidation, as defined by the oxygen content, irrespective of amount. This result is surprising given the changes in precursor emissions and contributions as well as photochemical activity throughout the year; however it may make the characterisation of SOA in urban environments more straightforward than previously supposed. Organic species, nitrate, sulphate, ammonium, and chloride were measured during 2012 with average concentrations (±one standard deviation) of 4.32 (±4.42), 2.74 (±5.00), 1.39 (±1.34), 1.30 (±1.52) and 0.15 (±0.24) μg m-3, contributing 43, 28, 14, 13 and 2% to the total submicron mass, respectively. Components of the organic aerosol fraction are determined using positive matrix factorisation (PMF) where five factors are identified and attributed as hydrocarbon-like OA (HOA), cooking OA (COA), solid fuel OA (SFOA), type 1 oxygenated OA (OOA1), and type 2 oxygenated OA (OOA2). OOA1 and OOA2 represent more and less oxygenated OA with average concentrations of 1.27 (±1.49) and 0.14 (±0.29) μg m-3, respectively, where OOA1 dominates the SOA fraction (90%). Diurnal, monthly, and seasonal trends are observed in all organic and inorganic species, due to meteorological conditions, specific nature of the aerosols, and availability of precursors. Regional and transboundary pollution as well as other individual pollution events influence London's total submicron aerosol burden. High concentrations of non-refractory submicron aerosols in London are governed by particulate emissions in winter, especially nitrate and SFOA, whereas SOA formation drives the high concentrations during the summer. The findings from this work could have significant implications for modelling of urban air pollution as well as for the effects of atmospheric aerosols on health and climate.
Molecular oxygen detection in low pressure flames using cavity ring-down spectroscopy
NASA Astrophysics Data System (ADS)
Goldman, A.; Rahinov, I.; Cheskis, S.
2006-03-01
Cavity ring down spectroscopy is used for measurement of the concentration profiles of oxygen in the low pressure (30 Torr) methane/nitrogen/oxygen flames. Three different equivalence ratios are used: 0.8, 1.0 and 1.17. Molecular oxygen concentration is monitored via rotational spectrum of b1 Σ g +←X3 Σ g - (v‧=0-v‧‧=0) transition, also known as atmospheric A band, located near 750 nm. The P(15)P(15) line is used for concentration measurements. The sensitivity reached is 2.2×10-8 cm-1. The concentration profiles are in a good agreement with the ones calculated using GRI-3.0 mechanism.
40 CFR 1065.665 - THCE and NMHCE determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
... non-oxygenated hydrocarbons, alcohols, and aldehydes. x NOTHC = The sum of the C1-equivalent... this into a C1-equivalent molar concentration. Add these C1-equivalent molar concentrations to the molar concentration of non-oxygenated total hydrocarbon (NOTHC). The result is the molar concentration...
NASA Astrophysics Data System (ADS)
Lui, E. W.; Palanisamy, S.; Dargusch, M. S.; Xia, K.
2017-12-01
The oxide dissolution and oxygen diffusion during annealing of Ti-6Al-4V solid-state recycled from machining chips by equal-channel angular pressing (ECAP) have been investigated using nanoindentation and numerical modeling. The hardness profile from nanoindentation was converted into the oxygen concentration distribution using the Fleisher and Friedel model. An iterative fitting method was then employed to revise the ideal model proposed previously, leading to correct predictions of the oxide dissolution times and oxygen concentration profiles and verifying nanoindentation as an effective method to measure local oxygen concentrations. Recrystallization started at the prior oxide boundaries where local strains were high from the severe plastic deformation incurred in the ECAP recycling process, forming a band of ultrafine grains whose growth was retarded by solute dragging thanks to high oxygen concentrations. The recrystallized fine-grained region would advance with time to eventually replace the lamellar structure formed during ECAP.
Levi, S; Hybel, A-M; Bjerg, P L; Albrechtsen, H-J
2014-03-01
In order to investigate aerobic degradation potential for the herbicides bentazone, mecoprop and dichlorprop, anaerobic groundwater samples from two monitoring and three drinking water wells near a drinking water abstraction field in Nybølle, Denmark, were screened for their degradation potential for the herbicides. In the presence of oxygen (14)C-labelled bentazone and mecoprop were removed significantly from the two monitoring wells' groundwater samples. Oxygen was added to microcosms in order to investigate whether different oxygen concentrations stimulate the biodegradation of the three herbicides in microcosms using groundwater and sandy aquifer materials. To maintain a certain oxygen concentration this level was measured from the outside of the bottles with a fibre oxygen meter using oxygen-sensitive luminescent sensor foil mounted inside the microcosm, to which supplementary oxygen was added. The highest oxygen concentrations (corresponding to 4-11 mg L(-1)) stimulated degradation (a 14-27% increase for mecoprop, 3-9% for dichlorprop and 15-20% for bentazone) over an experimental period of 200 days. Oxygen was required to biodegrade the herbicides, since no degradation was observed under anaerobic conditions. This is the first time bentazone degradation has been observed in aquifer material at low oxygen concentrations (2 mg L(-1)). The sediment had substantial oxygen consumption (0.92-1.45O2 g(-1)dw over 200 days) and oxygen was depleted rapidly in most incubations soon after its addition, which might be due to the oxidation of organic matter and other reduced species such as Fe(2+), S(2-) and Mn in sediment before the biodegradation of herbicides takes place. This study suggests that oxygen enhancement around a drinking water abstraction field could stimulate the bioremediation of diffuse source contamination. Copyright © 2013. Published by Elsevier B.V.
Microdistribution of oxygen in silicon and its effects on electronic properties
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Mao, B. Y.; Nauka, K.; Lagowski, J.
1982-01-01
The effects of interstitial oxygen on the electrical characteristics of Czochralski-grown silicon crystals were investigated for the first time on a microscale. It was found that the generation of thermal donors is not a direct function of the oxygen concentration. It was further found that the minority carrier life-time decreases with increasing oxygen concentration, on a microscale in as-grown crystals. It was thus shown, again for the first time, that oxygen in as grown crystals is not electronically inert as generally believed. Preannealing at 1200 C commonly employed in device fabrication, was found to suppress the donor generation at 450 C and to decrease the deep level concentrations.
Association of intraoperative tissue oxygenation with suspected risk factors for tissue hypoxia.
Spruit, R J; Schwarte, L A; Hakenberg, O W; Scheeren, T W L
2013-10-01
Tissue hypoxia may cause organ dysfunction, but not much is known about tissue oxygenation in the intraoperative setting. We studied microcirculatory tissue oxygen saturation (StO₂) to determine representative values for anesthetized patients undergoing urological surgery and to test the hypothesis that StO₂ is associated with known perioperative risk factors for morbidity and mortality, conventionally monitored variables, and hypotension requiring norepinephrine. Using near-infrared spectroscopy, we measured StO₂ on the thenar eminence in 160 patients undergoing open urological surgery under general anesthesia (FiO2 0.35-0.4), and calculated its correlations with age, risk level for general perioperative complications and mortality (high if age ≥70 and procedure is radical cystectomy), mean arterial pressure (MAP), hemoglobin concentration (Hb), central venous oxygen saturation (ScvO₂), and norepinephrine use. The time averaged StO₂ was 86 ± 6 % (mean ± SD). In the multivariate analysis, Hb [standardized coefficient (SC) 0.21, p = 0.003], ScvO₂ (SC 0.53, p < 0.001) and high risk level (SC 0.06, p = 0.03) were significant independent variables correlated with StO₂. SStO₂ was partly dependent on MAP only when this was below 65 mmHg (lowest MAP SC 0.20, p = 0.006, MAP area under the curve <65 mmHg SC 0.03, p = 0.02). Finally, StO₂ was slightly lower in patients requiring norepinephrine (85 ± 6 vs. 89 ± 6 %, p = 0.001). Intraoperative StO₂ in urological patients was comparable to that of healthy volunteers breathing room air as reported in the literature and correlated with known perioperative risk factors. Further research should investigate its association with outcome and the effect of interventions aimed at optimizing StO₂.
Karlsen, A.W.; Cronin, T. M.; Ishmans, S.E.; Willard, D.A.; Kerhin, R.; Holmes, C.W.; Marot, M.
2000-01-01
Environmentally sensitive benthic foraminifera (protists) from Chesapeake Bay were used as bioindicators to estimate the timing and degree of changes in dissolved oxygen (DO) over the past five centuries. Living foraminifers from 19 surface samples and fossil assemblages from 11 sediment cores dated by 210Pb, 137Cs, 14C, and pollen stratigraphy were analyzed from the tidal portions of the Patuxent, Potomac, and Choptank Rivers and the main channel of the Chesapeake Bay. Ammonia parkinsoniana, a facultative anaerobe tolerant of periodic anoxic conditions, comprises an average of 74% of modern Chesapeake foraminiferal assemblages (DO = 0.47 and 1.72 ml l-1) compared to 0% to 15% of assemblages collected in the 1960s. Paleoecological analyses show that A. parkinsoniana was absent prior to the late 17th century, increased to 10-25% relative frequency between approximately 1670-1720 and 1810-1900, and became the dominant (60-90%) benthic foraminiferal species in channel environments beginning in the early 1970s. Since the 1970s, deformed tests of A. parkinsoniana occur in all cores (10-20% of Ammonia), suggesting unprecedented stressful benthic conditions. These cores indicate that prior to the late 17th century, there was limited oxygen depletion. During the past 200 years, decadal scale variability in oxygen depletion has occurred, as dysoxic (DO = 0.1-1.0 ml l-1), perhaps short-term anoxic (DO < 0.1 ml l-1) conditions developed. The most extensive (spatially and temporally) anoxlc conditions were reached during the 1970s. Over decadal timescales, DO variability seems to be linked closely to climatological factors influencing river discharge; the unprecedented anoxia since the early 1970s is attributed mainly to high freshwater flow and to an increase in nutrient concentrations from the watershed.
Barcelona, M J; Xie, G
2001-08-15
Permeable reactive barriers (PRB) are being used to engineer favorable field conditions for in-situ remediation efforts. Two redox adjustment barriers were installed to facilitate a 10-month research effort on the fate and transport of MTBE (methyl tert-butyl ether) at a site called the Michigan Integrated Remediation Technology Laboratory (MIRTL). Thirty kilograms of whey were injected as a slurry into an unconfined aquifer to establish an upgradient reductive zone to reduce O2 concentration in the vicinity of a contaminant injection source. To minimize the impact of contaminant release, 363 kg of oxygen release compound (ORC) were placed in the aquifer as a downgradient oxidative barrier. Dissolved oxygen and other chemical species were monitored in the field to evaluate the effectiveness of this technology. A transient one-dimensional advective-dispersive-reaction (ADR) model was proposed to simulate the dissolved oxygen transport. The equations were solved with commonly encountered PRB initial and constant/variable boundary conditions. No similar previous solution was found in the literature. The in-situ lifetimes, based on variable source loading, were estimated to be 1,661 and 514 days for the whey barrier and ORC barrier, respectively. Estimates based on either maximum O2 consumption/production or measured O2 curves were found to under- or overestimate the lifetime of the barriers. The pseudo-first-order rate constant of whey depletion was estimated to be 0.303/d with a dissolution rate of 0.04/d. The oxygen release rate constant in the ORC barrier was estimated to be 0.03/d. This paper provides a means to design and predict the performance of reactive redox barriers, especially when only limited field data are available.
Cerium Anomalies in Fossil Fish Teeth Reveal Changes in Bottom Water Oxygenation
NASA Astrophysics Data System (ADS)
Chun, C. O.; Scher, H. D.; Delaney, M. L.
2007-12-01
Shale-normalized rare earths and yttrium (REY) concentrations of fossil fish teeth in deep sea sediments display prominent negative cerium (Ce) anomalies and positive yttrium (Y) anomalies. These features are ultimately inherited from seawater and strongly indicate that fossil fish teeth preserve a seawater REY signature. In seawater, Ce+3 is oxidized to Ce+4, and Ce becomes depleted relative to the other REY's as it partitions into other phases (e.g., ferromanganese oxyhydroxides). The magnitude of Ce depletion in a water mass is thus related to its oxygen content. We hypothesize that changes in the oxygenation of bottom waters may be revealed by examining downcore variability in the magnitude of the Ce anomaly of fossil fish teeth. To test this hypothesis, REY concentrations were measured on samples of cleaned fossil fish teeth recovered from the late Paleogene to early Eocene sections of Ocean Drilling Program (ODP) Sites 1262 and 1263 (lower and upper Walvis Ridge, ODP Leg 208, South Atlantic Ocean). These sites are vertically offset (early Eocene paleodepths were 3700 and 1700 meters, respectively) and have been extensively studied to characterize the oceanic response to the Paleocene/Eocene Thermal Maximum (PETM). Manganese enrichment factors (Mn EF) determined from total digestions of samples from these sites reveal abrupt changes in the oxygenation of bottom waters across the PETM interval. Mn EF's decrease to crustal values (~1) during the PETM, which reflects the reduction of Mn oxides as bottom water oxygen levels were depleted. Mn EF's begin to increase to 6-8 during the 'recovery phase' following the PETM. The Ce anomaly for these samples, Ce/Ce*, was calculated according to the geometric approach reported by Lawrence et al. (2006, Aquatic Geochemistry 12, 39-72), where Ce* represents an interpolation of the expected shale-normalized Ce concentration from near neighbors. In this notation, when Ce/Ce* = 1 no Ce anomaly is present. At upper Walvis Ridge downcore Ce anomalies show a distinct excursion from pre-PETM values between 0.7-0.8 to values ~1.0 during the PETM event. The values return to pre-excursion levels during the recovery phase following the PETM. The results of this study closely follow the evolution of Mn EF's at Walvis Ridge sites. The smallest Ce anomalies (i.e., Ce/Ce* = 1) coincide with Mn EF's of 1, which provide independent evidence for low oxygen levels in the bottom waters bathing these locations. These results confirm the hypothesis that Ce anomalies in fossil fish teeth can be used to assess changes in the oxygenation of bottom waters.
NASA Technical Reports Server (NTRS)
Maahs, H. G.
1975-01-01
The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.
Lin, Chi-Wen; Wu, Chih-Hung; Guo, Pei-Yu; Chang, Shih-Hsien
2017-12-15
Both a low concentration of dissolved oxygen and the toxicity of a high concentration of BTEX inhibit the bioremediation of BTEX in groundwater. A novel method of preparing encapsulated oxygen-releasing beads (encap-ORBs) for the biodegradation of BTEX in groundwater was developed. Experimental results show that the integrality and oxygen-releasing capacity of encap-ORBs exceeded those of ORBs. The use of polyvinyl alcohol (PVA) with high M.W. to prepare encap-ORBs improved their integrality. The encap-ORBs effectively released oxygen for 128 days. High concentration of BTEX (480 mg L -1 ) inhibited the biodegradation by the free cells. Immobilization of degraders in the encap-ORB alleviated the inhibition. Scanning electron microscope analysis reveals that the BTEX degraders grew on the surface of encap-ORB after bioremediation. The above results indicate that the encap-ORBs were effective in the bioremediation of BTEX at high concentration in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Beltrame, T; Hughson, R L
2017-05-01
What is the central question of this study? The pulmonary oxygen uptake (pV̇O2) data used to study the muscle aerobic system dynamics during moderate-exercise transitions is classically described as a mono-exponential function controlled by a complex interaction of the oxygen delivery-utilization balance. This elevated complexity complicates the acquisition of relevant information regarding aerobic system dynamics based on pV̇O2 data during a varying exercise stimulus. What is the main finding and its importance? The elevated complexity of pV̇O2 dynamics is a consequence of a multiple-order interaction between muscle oxygen uptake and circulatory distortion. Our findings challenge the use of a first-order function to study the influences of the oxygen delivery-utilization balance over the pV̇O2 dynamics. The assumption of aerobic system linearity implies that the pulmonary oxygen uptake (pV̇O2) dynamics during exercise transitions present a first-order characteristic. The main objective of this study was to test the linearity of the oxygen delivery-utilization balance during random moderate exercise. The cardiac output (Q̇) and deoxygenated haemoglobin concentration ([HHb]) were measured to infer the central and local O 2 availability, respectively. Thirteen healthy men performed two consecutive pseudorandom binary sequence cycling exercises followed by an incremental protocol. The system input and the outputs pV̇O2, [HHb] and Q̇ were submitted to frequency-domain analysis. The linearity of the variables was tested by computing the ability of the response at a specific frequency to predict the response at another frequency. The predictability levels were assessed by the coefficient of determination. In a first-order system, a participant who presents faster dynamics at a specific frequency should also present faster dynamics at any other frequency. All experimentally obtained variables (pV̇O2, [HHb] and Q̇) presented a certainly degree of non-linearity. The local O 2 availability, evaluated by the ratio pV̇O2/[HHb], presented the most irregular behaviour. The overall [HHb] kinetics were faster than pV̇O2 and Q̇ kinetics. In conclusion, the oxygen delivery-utilization balance behaved as a non-linear phenomenon. Therefore, the elevated complexity of the pulmonary oxygen uptake dynamics is governed by a complex multiple-order interaction between the oxygen delivery and utilization systems. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Miller, Mark W; Elliott, Matt; DeArmond, Jon; Kinyua, Maureen; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B
2017-06-01
The pursuit of fully autotrophic nitrogen removal via the anaerobic ammonium oxidation (anammox) pathway has led to an increased interest in carbon removal technologies, particularly the A-stage of the adsorption/bio-oxidation (A/B) process. The high-rate operation of the A-stage and lack of automatic process control often results in wide variations of chemical oxygen demand (COD) removal that can ultimately impact nitrogen removal in the downstream B-stage process. This study evaluated the use dissolved oxygen (DO) and mixed liquor suspended solids (MLSS) based automatic control strategies through the use of in situ on-line sensors in the A-stage of an A/B pilot study. The objective of using these control strategies was to reduce the variability of COD removal by the A-stage and thus the variability of the effluent C/N. The use of cascade DO control in the A-stage did not impact COD removal at the conditions tested in this study, likely because the bulk DO concentration (>0.5 mg/L) was maintained above the half saturation coefficient of heterotrophic organisms for DO. MLSS-based solids retention time (SRT) control, where MLSS was used as a surrogate for SRT, did not significantly reduce the effluent C/N variability but it was able to reduce COD removal variation in the A-stage by 90%.
[Delivery room resuscitation with room air and oxygen in newborns. State of art, recommendations].
Lauterbach, Ryszard; Musialik-Swietlińska, Ewa; Swietliński, Janusz; Pawlik, Dorota; Bober, Klaudiusz
2008-01-01
The authors present and discuss the current data, concerning delivery room resuscitation with oxygen and room air in neonates. On the ground of the results obtained from literature and the Polish National Survey on Paediatric and Neonatal Intensive Care, 2007/2008 issue, the authors give the following proposals regarding optimal oxygen treatment: 1. there is a need for optimizing tissue oxygenation in order to prevent injury caused by radical oxygen species; 2. newborn resuscitation should be monitored by measuring the haemoglobin saturation - the values above 90%, found in resuscitated newborn within the first minutes of life may be dangerous and cause tissue injury; 3. starting the resuscitation with oxygen concentration lower than 40% and adjusting it according to the effects of the procedure - the less mature infant the lower oxygen concentration at the beginning of resuscitation; 4. heart rate >100/min and SatO2Hb between 70-80% within the first minutes of life should not be an indication for increasing oxygen concentration.
Oxygen dynamics in photosynthetic membranes.
NASA Astrophysics Data System (ADS)
Savikhin, Sergei; Kihara, Shigeharu
2008-03-01
Production of oxygen by oxygenic photosynthetic organisms is expected to raise oxygen concentration within their photosynthetic membranes above normal aerobic values. These raised levels of oxygen may affect function of many proteins within photosynthetic cells. However, experiments on proteins in vitro are usually performed in aerobic (or anaerobic) conditions since the oxygen content of a membrane is not known. Using theory of diffusion and measured oxygen production rates we estimated the excess levels of oxygen in functioning photosynthetic cells. We show that for an individual photosynthetic cell suspended in water oxygen level is essentially the same as that for a non-photosynthetic sell. These data suggest that oxygen protection mechanisms may have evolved after the development of oxygenic photosynthesis in primitive bacteria and was driven by the overall rise of oxygen concentration in the atmosphere. Substantially higher levels of oxygen are estimated to occur in closely packed colonies of photosynthetic bacteria and in green leafs.
Increasing dissolved-oxygen disrupts iron homeostasis in production cultures of Escherichia coli.
Baez, Antonino; Shiloach, Joseph
2017-01-01
The damaging effect of high oxygen concentration on growth of Escherichia coli is well established. Over-oxygenation increases the intracellular concentration of reactive oxygen species (ROS), causing the destruction of the [4Fe-4S] cluster of dehydratases and limiting the biosynthesis of both branched-chain amino acids and nicotinamide adenine dinucleotide. A key enzyme that reduces the damaging effect of superoxide is superoxide dismutase (SOD). Its transcriptional regulation is controlled by global transcription regulators that respond to changes in oxygen and iron concentrations and pH. Production of biological compounds from E. coli is currently achieved using cultures grown to high cell densities which require oxygen-enriched air supply. It is, therefore, important to study the effect of over-oxygenation on E. coli metabolism and the bacterial protecting mechanism. The effect of over-oxygenation on the superoxide dismutase regulation system was evaluated in cultures grown in a bioreactor by increasing the oxygen concentration from 30 to 300 % air saturation. Following the change in the dissolved oxygen (DO), the expression of sodC, the periplasmic CuZn-containing SOD, and sodA, the cytosolic Mn-containing SOD, was higher in all the tested strains, while the expression of the sodB, the cytosolic Fe-containing SOD, was lower. The down-regulation of the sodB was found to be related to the activation of the small RNA RyhB. It was revealed that iron homeostasis, in particular ferric iron, was involved in the RyhB activation and in sodB regulation but not in sodA. Supplementation of amino acids to the culture medium reduced the intracellular ROS accumulation and reduced the activation of both SodA and SodC following the increase in the oxygen concentration. The study provides evidence that at conditions of over-oxygenation, sodA and sodC are strongly regulated by the amount of ROS, in particular superoxide; and sodB is regulated by iron availability through the small RNA RyhB. In addition, information on the impact of NADH, presence of amino acids and type of iron on SOD regulation, and consequently, on the ROS concentration is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerlöf, Jakob H., E-mail: Jakob@radfys.gu.se; Kindblom, Jon; Bernhardt, Peter
2014-09-15
Purpose: To construct a Monte Carlo (MC)-based simulation model for analyzing the dependence of tumor oxygen distribution on different variables related to tumor vasculature [blood velocity, vessel-to-vessel proximity (vessel proximity), and inflowing oxygen partial pressure (pO{sub 2})]. Methods: A voxel-based tissue model containing parallel capillaries with square cross-sections (sides of 10 μm) was constructed. Green's function was used for diffusion calculations and Michaelis-Menten's kinetics to manage oxygen consumption. The model was tuned to approximately reproduce the oxygenational status of a renal carcinoma; the depth oxygenation curves (DOC) were fitted with an analytical expression to facilitate rapid MC simulations of tumormore » oxygen distribution. DOCs were simulated with three variables at three settings each (blood velocity, vessel proximity, and inflowing pO{sub 2}), which resulted in 27 combinations of conditions. To create a model that simulated variable oxygen distributions, the oxygen tension at a specific point was randomly sampled with trilinear interpolation in the dataset from the first simulation. Six correlations between blood velocity, vessel proximity, and inflowing pO{sub 2} were hypothesized. Variable models with correlated parameters were compared to each other and to a nonvariable, DOC-based model to evaluate the differences in simulated oxygen distributions and tumor radiosensitivities for different tumor sizes. Results: For tumors with radii ranging from 5 to 30 mm, the nonvariable DOC model tended to generate normal or log-normal oxygen distributions, with a cut-off at zero. The pO{sub 2} distributions simulated with the six-variable DOC models were quite different from the distributions generated with the nonvariable DOC model; in the former case the variable models simulated oxygen distributions that were more similar to in vivo results found in the literature. For larger tumors, the oxygen distributions became truncated in the lower end, due to anoxia, but smaller tumors showed undisturbed oxygen distributions. The six different models with correlated parameters generated three classes of oxygen distributions. The first was a hypothetical, negative covariance between vessel proximity and pO{sub 2} (VPO-C scenario); the second was a hypothetical positive covariance between vessel proximity and pO{sub 2} (VPO+C scenario); and the third was the hypothesis of no correlation between vessel proximity and pO{sub 2} (UP scenario). The VPO-C scenario produced a distinctly different oxygen distribution than the two other scenarios. The shape of the VPO-C scenario was similar to that of the nonvariable DOC model, and the larger the tumor, the greater the similarity between the two models. For all simulations, the mean oxygen tension decreased and the hypoxic fraction increased with tumor size. The absorbed dose required for definitive tumor control was highest for the VPO+C scenario, followed by the UP and VPO-C scenarios. Conclusions: A novel MC algorithm was presented which simulated oxygen distributions and radiation response for various biological parameter values. The analysis showed that the VPO-C scenario generated a clearly different oxygen distribution from the VPO+C scenario; the former exhibited a lower hypoxic fraction and higher radiosensitivity. In future studies, this modeling approach might be valuable for qualitative analyses of factors that affect oxygen distribution as well as analyses of specific experimental and clinical situations.« less
Lagerlöf, Jakob H; Kindblom, Jon; Bernhardt, Peter
2014-09-01
To construct a Monte Carlo (MC)-based simulation model for analyzing the dependence of tumor oxygen distribution on different variables related to tumor vasculature [blood velocity, vessel-to-vessel proximity (vessel proximity), and inflowing oxygen partial pressure (pO2)]. A voxel-based tissue model containing parallel capillaries with square cross-sections (sides of 10 μm) was constructed. Green's function was used for diffusion calculations and Michaelis-Menten's kinetics to manage oxygen consumption. The model was tuned to approximately reproduce the oxygenational status of a renal carcinoma; the depth oxygenation curves (DOC) were fitted with an analytical expression to facilitate rapid MC simulations of tumor oxygen distribution. DOCs were simulated with three variables at three settings each (blood velocity, vessel proximity, and inflowing pO2), which resulted in 27 combinations of conditions. To create a model that simulated variable oxygen distributions, the oxygen tension at a specific point was randomly sampled with trilinear interpolation in the dataset from the first simulation. Six correlations between blood velocity, vessel proximity, and inflowing pO2 were hypothesized. Variable models with correlated parameters were compared to each other and to a nonvariable, DOC-based model to evaluate the differences in simulated oxygen distributions and tumor radiosensitivities for different tumor sizes. For tumors with radii ranging from 5 to 30 mm, the nonvariable DOC model tended to generate normal or log-normal oxygen distributions, with a cut-off at zero. The pO2 distributions simulated with the six-variable DOC models were quite different from the distributions generated with the nonvariable DOC model; in the former case the variable models simulated oxygen distributions that were more similar to in vivo results found in the literature. For larger tumors, the oxygen distributions became truncated in the lower end, due to anoxia, but smaller tumors showed undisturbed oxygen distributions. The six different models with correlated parameters generated three classes of oxygen distributions. The first was a hypothetical, negative covariance between vessel proximity and pO2 (VPO-C scenario); the second was a hypothetical positive covariance between vessel proximity and pO2 (VPO+C scenario); and the third was the hypothesis of no correlation between vessel proximity and pO2 (UP scenario). The VPO-C scenario produced a distinctly different oxygen distribution than the two other scenarios. The shape of the VPO-C scenario was similar to that of the nonvariable DOC model, and the larger the tumor, the greater the similarity between the two models. For all simulations, the mean oxygen tension decreased and the hypoxic fraction increased with tumor size. The absorbed dose required for definitive tumor control was highest for the VPO+C scenario, followed by the UP and VPO-C scenarios. A novel MC algorithm was presented which simulated oxygen distributions and radiation response for various biological parameter values. The analysis showed that the VPO-C scenario generated a clearly different oxygen distribution from the VPO+C scenario; the former exhibited a lower hypoxic fraction and higher radiosensitivity. In future studies, this modeling approach might be valuable for qualitative analyses of factors that affect oxygen distribution as well as analyses of specific experimental and clinical situations.
Watershed Influences on Residence Time and Oxygen Reduction Rates in an Agricultural Landscape
NASA Astrophysics Data System (ADS)
Shope, C. L.; Tesoriero, A. J.
2015-12-01
Agricultural use of synthetic fertilizers and animal manure has led to increased crop production, but also elevated nitrogen concentrations in groundwater, resulting in impaired water quality. Groundwater oxygen concentrations are a key indicator of potential biogeochemical processes, which control water/aquifer interactions and contaminant transport. The U.S. Geological Survey's National Water-Quality Assessment Program has a long-history of studying nutrient transport and processing across the United States and the Glacial Aquifer system in particular. A series of groundwater well networks in Eastern Wisconsin is being used to evaluate the distribution of redox reaction rates over a range of scales with a focus on dissolved O2 reduction rates. An analysis of these multi-scale networks elucidates the influence of explanatory variables (i.e.: soil type, land use classification) on reduction rates and redox reactions throughout the Fox-Wolf-Peshtigo watersheds. Multiple tracers including dissolved gasses, tritium, helium, chlorofluorocarbons, sulfur hexafluoride, and carbon-14 were used to estimate groundwater ages (0.8 to 61.2 yr) at over 300 locations. Our results indicate O2 reduction rates along a flowpath study area (1.2 km2) of 0.15 mg O2 L-1 yr-1 (0.12 to 0.18 mg O2 L-1 yr-1) up to 0.41 mg O2 L-1 yr-1 (0.23 to 0.89 mg O2 L-1 yr-1) for a larger scale land use study area (3,300 km2). Preliminary explanatory variables that can be used to describe the variability in reduction rates include soil type (hydrologic group, bulk density) and chemical concentrations (nitrite plus nitrate, silica). The median residence time expected to reach suboxic conditions (≤ 0.4 mg O2 L-1) for the flowpath and the land use study areas was 66 and 25 yr, respectively. These results can be used to elucidate and differentiate the impact of residence time on groundwater quality vulnerability and sustainability in agricultural regions without complex flow models.
Flow experience and the mobilization of attentional resources.
de Sampaio Barros, Marcelo Felipe; Araújo-Moreira, Fernando M; Trevelin, Luis Carlos; Radel, Rémi
2018-05-07
The present study attempts to better identify the neurophysiological changes occurring during flow experience and how this can be related to the mobilization of attentional resources. Self-reports of flow (using a flow feelings scale) and attention (using thought probes), autonomic activity (heart rate, heart rate variability, and breathing rate), and cerebral oxygenation (using near-infrared spectroscopy) in two regions of the frontoparietal attention network (right lateral frontal cortex and right inferior parietal lobe) were measured during the practice of two simple video games (Tetris and Pong) played at different difficulty conditions (easy, optimal, hard, or self-selected). Our results indicated that an optimal level of difficulty, compared with an easy or hard level of difficulty led to greater flow feelings and a higher concentration of oxygenated hemoglobin in the regions of the frontoparietal network. The self-selected, named autonomy condition did not lead to more flow feelings than the optimal condition; however, the autonomy condition led to greater sympathetic activity (reduced heart rate variability and greater breathing rate) and higher activation of the frontoparietal regions. Our study suggests that flow feelings are highly connected to the mobilization of attentional resources, and all the more in a condition that promotes individuals' choice and autonomy.
Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy.
McMonnies, Charles
This review examines the role of oxidative stress in damage to cells of the trabecular meshwork and associated impaired aqueous drainage as well as damage to retinal ganglion cells and associated visual field losses. Consideration is given to the interaction between vascular and mechanical explanations for pathological changes in glaucoma. For example, elevated intraocular pressure (IOP) forces may contribute to ischaemia but there is increasing evidence that altered blood flow in a wider sense is also involved. Both vascular and mechanical theories are involved through fluctuations in intraocular pressure and dysregulation of blood flow. Retinal function is very sensitive to changes in haemoglobin oxygen concentration and the associated variations in the production of reactive oxygen species. Reperfusion injury and production of reactive oxygen species occurs when IOP is elevated or blood pressure is low and beyond the capacity for blood flow autoregulation to maintain appropriate oxygen concentration. Activities such as those associated with postural changes, muscular effort, eye wiping and rubbing which cause IOP fluctuation, may have significant vascular, mechanical, reperfusion and oxidative stress consequences. Hyperbaric oxygen therapy exposes the eye to increased oxygen concentration and the risk of oxidative damage in susceptible individuals. However, oxygen concentration in aqueous humour, and the risk of damage to trabecular meshwork cells may be greater if hyperbaric oxygen is delivered by a hood which exposes the anterior ocular surface to higher than normal oxygen levels. Oronasal mask delivery of hyperbaric oxygen therapy appears to be indicated in these cases. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.
Hydroponic system for the treatment of anaerobic liquid.
Krishnasamy, K; Nair, J; Bäuml, B
2012-01-01
The effluent from anaerobic digestion process has high concentrations of nutrients, particularly nitrogen, essential for plant growth but is not suitable for direct disposal or application due to high chemical oxygen demand (COD), low dissolved oxygen (DO), odour issues and is potentially phytotoxic. This research explored the optimum conditions of anaerobic effluent for application and dilutions of the effluent required to obtain better plant growth. A small-scale hydroponic system was constructed in a glasshouse to test different concentrations of anaerobic effluent against a commercial hydroponic medium as the control for the growth of silverbeet. It was found that the survival of silverbeet was negatively affected at 50% concentration due to low DO and NH(4) toxicity. The concentration of 20% anaerobic liquid was found to be the most efficient with highest foliage yield and plant growth. The hydroponic system with 20% concentrated effluent had better utilisation of nutrients for plant growth and a COD reduction of 95% was achieved during the 50-day growth period. This preliminary evaluation revealed that the growth and development of silverbeet was significantly lower in anaerobic effluent compared with a commercial hydroponic plant growth solution. The nutrient quality of anaerobic effluent could be highly variable with the process and the waste material used and dilution may depend on the nutrient content of the effluent. It is recommended that, a pre-treatment of the effluent to increase DO and reduce ammonium content is required before plant application, and simple dilution by itself is not suitable for optimum plant growth in a hydroponic system.
NASA Astrophysics Data System (ADS)
Mukherjee, Subrata; Singla, Vyoma; Pandithurai, Govindan; Safai, P. D.; Meena, G. S.; Dani, K. K.; Anil Kumar, V.
2018-05-01
This manuscript reports the seasonal variation of chemically speciated sub-micron aerosol particles (diameter < 1 μm). An Aerosol Chemical Speciation Monitor (ACSM) was used to measure the mass concentration of non-refractory particulate matter (NR-PM1) at a high-altitude site in the Western Ghats, India from March 2016 to February 2017. The mass concentration of NR-PM1 averaged at 7.5 ± 6.5 μgm-3, with major contributions from organics (59%) and sulfates (23%). Positive matrix factorization (PMF) was applied on the measured mass spectra of organic aerosol (OA) to derive the sources distinctive of each season (Summer, Monsoon, Post-Monsoon and Winter). The four OA factors (two primary OA and two oxygenated OA) resolved during summer, post-monsoon and winter season. However, only one oxygenated factor resolved during monsoon and contributed only 20% to the total OA. The factors associated with primary emissions dominated during the monsoon, whereas factors related to secondary formation dominated in other three seasons. During summer, an isoprene derived SOA - IEPOX-OA (isoprene-epoxydiol OA) contributed ∼17% to the total OA. Cluster and concentration weighted trajectory (CWT) analyses were performed to identify the possible source regions of NR-PM1 mass concentration observed at the receptor site. The analysis identifies Central India as the potential source region of transported aerosol during post-monsoon and winter season. Our study suggests that contributions from both local sources and regional transport are important in governing mass concentration of PM1 over Mahabaleshwar.
Chapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand
Delzer, Gregory C.; McKenzie, Stuart W.
1999-01-01
The presence of a sufficient concentration of dissolved oxygen is critical to maintaining the aquatic life and aesthetic quality of streams and lakes. Determinng how organic matter affects the concentration of dissolved oxygen (DO) in a stream or lake is integral to water-quality management. The decay of organic matter in water is measured as biochemical or chemical oxygen demand. This report describes the field protocols used by U.S. Geological Survey (USGS) personnel to determine the five-day test for biochemical oxygen demand.
Oxygen-induced recombination centers in as-grown Czochralski silicon crystals
NASA Technical Reports Server (NTRS)
Nauka, K.; Gatos, H. C.; Lagowski, J.
1983-01-01
Simultaneous quantitative microprofiles of the interstitial oxygen concentration and of the excess carrier lifetime are obtained in Czochralski-grown Si crystals employing double laser absorption scanning. It is found that oxygen concentration maxima and minima along the crystal growth direction coincide with lifetime minima and maxima, respectively. Another finding is that the magnitude of oxygen-induced lifetime changes increases dramatically in going from the center to the periphery of the crystal. The findings discussed imply that 'as-grown' oxygen precipitates figure in lifetime-limiting processes.
Germanium diffusion with vapor-phase GeAs and oxygen co-incorporation in GaAs
NASA Astrophysics Data System (ADS)
Wang, Wei-Fu; Cheng, Kai-Yuan; Hsieh, Kuang-Chien
2018-01-01
Vapor-phase germanium diffusion has been demonstrated in Zn-doped and semi-insulating GaAs in sealed ampoules with GeAs powders and excess arsenic. Secondary-ion-mass spectroscopy (SIMS) profiles indicate the presence of unintentional co-incorporation of oxygen in high densities (>1017/cm3) along with diffused germanium donors whose concentration (>>1018/cm3) determined by electro-chemical capacitance-voltage (ECV) profiler shows significant compensation near the surface. The source of oxygen mainly originates from the GeAs powder which contains Ge-O surface oxides. Variable-temperature photoluminescence (PL) shows that in GeAs-diffused samples, a broad peak ranging from 0.86-1.38 eV with the peak position around 1.1 eV predominates at low temperatures while the near band-edge luminescence quenches. The broad band is attributed to the GeGa-VGa self-activated (SA) centers possibly associated with nearby oxygen-related defect complex, and its luminescence persists up to 400 K. The configurational-coordinate modeling finds that the SA defect complex has a thermal activation energy of 150-180 meV and a vibrational energy 26.8 meV. The presence of oxygen does not much affect the SA emission intensity but may have influenced the peak position, vibration frequency and activation energy as compared to other common donor-VGa defects in GaAs.
Johnson, M L; Halvorson, H R; Ackers, G K
1976-11-30
Resolution of the linkage functions between oxygenation and subunit association-dissociation equilibria in human hemoglobin into the constituent microscopic terms has been explored by numerical simulation and least-squares analysis. The correlation properties between parameters has been studied using several choices of parameter sets in order to optimize resolution. It is found that, with currently available levels of experimental precision and ranges of variables, neither linkage function can provide sufficient resolution of all the desired energy terms. The most difficult quantities to resolve always include the dimer-tetramer association constant for unliganded hemoglobin and the oxygen binding constants to alphabeta dimers. A feasible experimental strategy for overcoming these difficulties lies in independent determination of the dimer-tetramer association constants for unliganded and fully oxygenated hemoglobin. These constants, in combination with the median lignad concentration, provide an estimate of the energy for total oxygenation of tetramers which is essentially independent of the other constituent energies. It is shown that if these separately determinable parameters are fixed, the remaining terms may be estimated to good accuracy using data which represents either linkage function. In general it is desirable to combine information from both types of experimental quantities. A previous paper (Mills, F.C., Johnson, M.L., and Ackers, G.K. (1976), Biochemestry, 15, the preceding paper in this issue) describes the experimental implementation of this strategy.
Welsch, C; Augustin, P; Allyn, J; Massias, L; Montravers, P; Allou, N
2015-02-01
Venovenous extracorporeal membrane oxygenation (ECMO) is increasingly used in patients with respiratory failure who fail conventional treatment. Postoperative pneumonia is the most common infection after lung transplantation (40%). Imipenem is frequently used for empirical treatment of nosocomial pneumonia in the intensive care unit. Nevertheless, few data are available on the impact of ECMO on pharmacokinetics, and no data on imipenem dosing during ECMO. Currently, no guidelines exist for antibiotic dosing during ECMO support. We report the cases of 2 patients supported with venovenous ECMO for refractory acute respiratory distress syndrome following single lung transplantation for pulmonary fibrosis, treated empirically with 1 g of imipenem intravenously every 6 h. Enterobacter cloacae was isolated from the respiratory sample of Patient 1 and Klebsiella pneumoniae was isolated from the respiratory sample of Patient 2. Minimum inhibitory concentrations of the 2 isolated strains were 0.125 and 0.25 mg/L, respectively. Both patients were still alive on day 28. This is the first report, to our knowledge, of imipenem concentrations in lung transplantation patients supported with ECMO. This study confirms high variability in imipenem trough concentrations in patients on ECMO and with preserved renal function. An elevated dosing regimen (4 g/24 h) is more likely to optimize drug exposure, and therapeutic drug monitoring is recommended, where available. Population pharmacokinetic studies are indicated to develop evidence-based dosing guidelines for ECMO patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Cao, Jiashun; Oleyiblo, Oloche James; Xue, Zhaoxia; Otache, Y. Martins; Feng, Qian
2015-07-01
Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification , the maximum growth rate of heterotrophs (µH), the rate constant for stored polyphosphates in PAOs ( q pp), and the hydrolysis rate constant ( k h)) were adjusted. Whereas three BioWin parameters (aerobic decay rate ( b H), heterotrophic dissolved oxygen (DO) half saturation ( K OA), and Y P/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.
Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2012-10-01
Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and higher partial pressure due to higher temperatures might slightly overcompensate for oxygen concentration decreases due to decreases in solubility.
Aride, P H R; Oliveira, A M; Batista, R B; Ferreira, M S; Pantoja-Lima, J; Ladislau, D S; Castro, P D S; Oliveira, A T
2018-05-01
The physiological responses of juvenile tambaqui (Colossoma macropomum) fed commercial feed supplemented with different concentrations of camu camu (Myrciaria dubia) were evaluated. The design was completely randomized, with treatments arranged in a factorial design with three proportions of camu camu (15%, 30% and 45%) and a control treatment (100% commercial diet), with four replicates per treatment. A total of 96 tambaqui specimens were used, with a mean initial weight of 11.69 ± 2.68 g and a mean length of 7.06 ± 0.44 cm. After 30 days, hematological parameters, metabolic variables, growth and fish swimming performance were evaluated. The different proportions of camu camu in the diet did not cause significant changes to the tambaqui's hematological parameters during the feeding period, except for hemoglobin (Hb) concentration and mean corpuscular hemoglobin concentration (MCHC) after the 30th day, and hematocrit (Ht) after the swimming stress test, which increased significantly (p < 0.05). The significant increases in metabolic variables, such as cortisol, glucose, proteins and triglycerides, and in hematologic variables after the Ucrit test reflect, respectively, biochemical adaptations for maintenance of the energy mobilization process and a regulatory necessity in tissue oxygen demand during intense exercise. Fish fed 15% and 30% camu camu gained the most weight and achieved the best swimming performance, respectively. The results for camu camu concentrations above 30% suggest a saturation of its intrinsic properties in the diet at this level and a loss of nutrients from the commercial feed replaced by the fruit, reducing productive performance and nutritional assimilation.
Nishiyama, Tomoki
2016-01-01
The purpose of this study was to compare cardiac sympathetic and parasympathetic balance using heart rate variability (HRV) during induction of anaesthesia between sevoflurane and isoflurane in combination with nitrous oxide. 40 individuals aged from 30 to 60 years, scheduled for general anaesthesia were equally divided into sevoflurane or isoflurane groups. After 100% oxygen inhalation for a few minutes, anaesthesia was induced with nitrous oxide 3 L min-1, oxygen 3 L min-1 and sevoflurane or isoflurane. Sevoflurane or isoflurane concentration was increased by 0.5% every 2 to 3 breaths until 5% was attained for sevoflurane, or 3% for isoflurane. Vecuronium was administered to facilitate tracheal intubation. After intubation, sevoflurane was set to 2% while isoflurane was set to 1% with nitrous oxide with oxygen (1:1) for 5 min. Both sevoflurane and isoflurane provoked a decrease in blood pressure, total power, the low frequency component (LF), and high frequency component (HF) of HRV. Although the heart rate increased during isoflurane anaesthesia, it decreased under sevoflurane. The power of LF and HF also decreased in both groups. LF was higher in the isoflurane group while HF was higher in the sevoflurane group. The LF/HF ratio increased transiently in the isoflurane group, but decreased in the sevoflurane group. Anaesthesia induction with isoflurane-nitrous oxide transiently increased cardiac sympathetic activity, while sevoflurane-nitrous oxide decreased both cardiac sympathetic and parasympathetic activities. The balance of cardiac parasympathetic/sympathetic activity was higher in sevoflurane anaesthesia.
Li, Gang; Liu, Jiaxing; Diao, Zenghui; Jiang, Xin; Li, Jiajun; Ke, Zhixin; Shen, Pingping; Ren, Lijuan; Huang, Liangmin; Tan, Yehui
2018-01-01
Estuarine oxygen depletion is one of the worldwide problems, which is caused by the freshwater-input-derived severe stratification and high nutrients loading. In this study we presented the horizontal and vertical distributions of dissolved oxygen (DO) in the Pearl River estuary, together with temperature, salinity, chlorophyll a concentration and heterotrophic bacteria abundance obtained from two cruises during the summer (wet) and winter (dry) periods of 2015. In surface water, the DO level in the summer period was lower and varied greater, as compared to the winter period. The DO remained unsaturated in the summer period if salinity is <12 and saturated if salinity is >12; while in the winter period it remained saturated throughout the estuary. In subsurface (>5m) water, the DO level varied from 0.71 to 6.65mgL -1 and from 6.58 to 8.20mgL -1 in the summer and winter periods, respectively. Particularly, we observed an area of ~1500km 2 low DO zone in the subsurface water with a threshold of 4mgDOL -1 during this summer period, that located at the fresh- and saline-water intersection where is characterized with severe stratification and high heterotrophic bacteria abundance. In addition, our results indicate that spatial DO variability in surface water was contributed differently by biological and physio-chemical variables in the summer and winter periods, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Further developments in oxidation of methane traces with radiofrequency discharge
NASA Technical Reports Server (NTRS)
Flamm, D. L.; Wydeven, T. J.
1977-01-01
The radiofrequency discharge, previously shown to oxidize trace levels of methane in oxygen, was studied with contaminated air at 50, 600, and 760 torr. As with oxygen, the concentration of methane traces could be reduced by several orders of magnitude, and no organic reaction products were detected in the effluent; however, substantial concentrations of NOx (0.1-6%) were formed during treatment. The concentration of NOx was decreased by using a large diameter electrode. There is evidence that the process will oxidize N2 and NO as well as organic impurities in oxygen or oxygen/inert gas atmospheres.
Low Oxygen and Ocean Acidification on the Vancouver Island Shelf
NASA Astrophysics Data System (ADS)
Bianucci, L.; Denman, K.
2008-12-01
In the recent years hypoxic events have been observed along the west coast of North America (off Oregon and California). Although a common cause of coastal hypoxia is usually anthropogenic eutrophication, in these upwelling regions the advection of oxygen-depleted waters from offshore is a key mechanism. Moreover, the high productivity typical of these margins generates a large flux of sinking particular organic matter. The remineralization of this matter below the euphotic zone produces an elevated consumption of oxygen. When concentrations become lower than certain threshold, hypoxia leads to a major change in the ecosystem and the affected areas are called 'dead zones'. Furthermore, the two processes that drive oxygen levels down (physical upwelling and biological demand) also increase dissolved inorganic carbon in the shelf, which leads to a pH reduction. Ocean acidification and hypoxia can severely affect ecosystems, and the links between these phenomena have not been explored. This presentation will discuss a model study of the carbon and oxygen coupling on the Vancouver Island shelf, with focus on the connection between acidification and hypoxia. Moreover, the role of biology versus physics will be investigated. This region comprises the northern end of the wind-driven upwelling margin off western North America, where low oxygen events have not been extensively studied. However, the proximity to an Oxygen Minimum Zone offshore and the observed decline of oxygen in the Northeast Pacific turns this shelf into a potential candidate to suffer from low-oxygen events. The model used is the Regional Ocean Modeling System (ROMS) in a quasi-2D configuration of the shelf (across-shore section with uniform properties alongshore). The biogeochemical model has carbon, oxygen, and nitrogen as state variables, and includes cycling of dissolved organic matter. Carbon and oxygen cycles are coupled through ecosystem processes such as photosynthesis and remineralization, while they are decoupled by other processes (e.g., nitrification and denitrification).
Spatiotemporal Oxygen Sensing Using Dual Emissive Boron Dye–Polylactide Nanofibers
2015-01-01
Oxygenation in tissue scaffolds continues to be a limiting factor in regenerative medicine despite efforts to induce neovascularization or to use oxygen-generating materials. Unfortunately, many established methods to measure oxygen concentration, such as using electrodes, require mechanical disturbance of the tissue structure. To address the need for scaffold-based oxygen concentration monitoring, a single-component, self-referenced oxygen sensor was made into nanofibers. Electrospinning process parameters were tuned to produce a biomaterial scaffold with specific morphological features. The ratio of an oxygen sensitive phosphorescence signal to an oxygen insensitive fluorescence signal was calculated at each image pixel to determine an oxygenation value. A single component boron dye–polymer conjugate was chosen for additional investigation due to improved resistance to degradation in aqueous media compared to a boron dye polymer blend. Standardization curves show that in fully supplemented media, the fibers are responsive to dissolved oxygen concentrations less than 15 ppm. Spatial (millimeters) and temporal (minutes) ratiometric gradients were observed in vitro radiating outward from the center of a dense adherent cell grouping on scaffolds. Sensor activation in ischemia and cell transplant models in vivo show oxygenation decreases on the scale of minutes. The nanofiber construct offers a robust approach to biomaterial scaffold oxygen sensing. PMID:25426706
NASA Astrophysics Data System (ADS)
Mahasri, G.; Saskia, A.; Apandi, P. S.; Dewi, N. N.; Rozi; Usuman, N. M.
2018-04-01
The purpose of this research was to discover the process of enrichment of dissolved oxygen in fish cultivation media using nanobubble technology. This study was conducted with two treatments, namely a cultivation media without fish and a cultivation media containing 8 fish with an average body length of 24.5 cm. The results showed that the concentration of dissolved oxygen increased from 6.5 mg/L to 25 mg/L. The rate of increase in dissolved oxygen concentration for 30 minutes is 0.61 pp/minute. The rate of decrease in dissolved oxygen concentration in treatment 1 is 3.08 ppm/day and in treatment 2 is 0.23 ppm/minute. It was concluded that nanobubble is able to increase dissolved oxygen.
Mixing of acrylic bone cement: effect of oxygen on setting properties.
He, Shulin; Scott, Christopher; Higham, Paul
2003-12-01
The present study investigates the effect of different mixing methods on the setting properties of bone cement. It was found that vacuum mixing decreased the setting time of the bone cement by nearly 2 min (10%), compared to mixing in air. Two additional experiments, in which the bone cement powders were purged with argon or oxygen, and mixed with the methyl methacrylate monomer, revealed that oxygen concentrations in the bone cement had a great effect on the setting time. The setting time increases significantly as the oxygen concentration increases, which suggests that the decrease in the setting time by vacuum mixing may be attributed to the lower oxygen levels present in the mixer. No significant effect was observed on dough time or maximum exothermic temperature by varying oxygen concentrations in the bone cement mixer.
NASA Astrophysics Data System (ADS)
Capet, A.; Beckers, J.-M.; Grégoire, M.
2013-06-01
The Black Sea northwestern shelf (NWS) is a shallow eutrophic area in which the seasonal stratification of the water column isolates the bottom waters from the atmosphere. This prevents ventilation from counterbalancing the large consumption of oxygen due to respiration in the bottom waters and in the sediments, and sets the stage for the development of seasonal hypoxia. A three-dimensional (3-D) coupled physical-biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS, first at seasonal and then at interannual scales (1981-2009), and to differentiate its driving factors (climatic versus eutrophication). Model skills are evaluated by a quantitative comparison of the model results to 14 123 in situ oxygen measurements available in the NOAA World Ocean and the Black Sea Commission databases, using different error metrics. This validation exercise shows that the model is able to represent the seasonal and interannual variability of the oxygen concentration and of the occurrence of hypoxia, as well as the spatial distribution of oxygen-depleted waters. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS - which receives large inputs of nutrients from the Danube, Dniester and Dnieper rivers - and extends, during the years of severe hypoxia, towards the Romanian bay of Constanta. An index H which merges the aspects of the spatial and temporal extension of the hypoxic event is proposed to quantify, for each year, the intensity of hypoxia as an environmental stressor. In order to explain the interannual variability of H and to disentangle its drivers, we analyze the long time series of model results by means of a stepwise multiple linear regression. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate-related variables. A total of 82% of the interannual variability of H is explained by the combination of four predictors: the annual riverine nitrate load (N), the sea surface temperature in the month preceding stratification (Ts), the amount of semi-labile organic matter accumulated in the sediments (C) and the sea surface temperature during late summer (Tf). Partial regression indicates that the climatic impact on hypoxia is almost as important as that of eutrophication. Accumulation of organic matter in the sediments introduces an important inertia in the recovery process after eutrophication, with a typical timescale of 9.3 yr. Seasonal fluctuations and the heterogeneous spatial distribution complicate the monitoring of bottom hypoxia, leading to contradictory conclusions when the interpretation is done from different sets of data. In particular, it appears that the recovery reported in the literature after 1995 was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses the urgent need for a dedicated monitoring effort in the Black Sea NWS focused on the areas and months concerned by recurrent hypoxic events.
30 CFR 75.388 - Boreholes in advance of mining.
Code of Federal Regulations, 2013 CFR
2013-07-01
... more than 1.0 percent methane, less than 19.5 percent oxygen, or harmful concentrations of carbon monoxide, carbon dioxide or other explosive, harmful or noxious gases; (2) Tests for methane, oxygen... and the mine workings; (3) The concentrations of methane, oxygen, carbon monoxide, and carbon dioxide...
30 CFR 75.388 - Boreholes in advance of mining.
Code of Federal Regulations, 2010 CFR
2010-07-01
... more than 1.0 percent methane, less than 19.5 percent oxygen, or harmful concentrations of carbon monoxide, carbon dioxide or other explosive, harmful or noxious gases; (2) Tests for methane, oxygen... and the mine workings; (3) The concentrations of methane, oxygen, carbon monoxide, and carbon dioxide...
30 CFR 75.388 - Boreholes in advance of mining.
Code of Federal Regulations, 2012 CFR
2012-07-01
... more than 1.0 percent methane, less than 19.5 percent oxygen, or harmful concentrations of carbon monoxide, carbon dioxide or other explosive, harmful or noxious gases; (2) Tests for methane, oxygen... and the mine workings; (3) The concentrations of methane, oxygen, carbon monoxide, and carbon dioxide...
30 CFR 75.388 - Boreholes in advance of mining.
Code of Federal Regulations, 2014 CFR
2014-07-01
... more than 1.0 percent methane, less than 19.5 percent oxygen, or harmful concentrations of carbon monoxide, carbon dioxide or other explosive, harmful or noxious gases; (2) Tests for methane, oxygen... and the mine workings; (3) The concentrations of methane, oxygen, carbon monoxide, and carbon dioxide...
30 CFR 75.388 - Boreholes in advance of mining.
Code of Federal Regulations, 2011 CFR
2011-07-01
... more than 1.0 percent methane, less than 19.5 percent oxygen, or harmful concentrations of carbon monoxide, carbon dioxide or other explosive, harmful or noxious gases; (2) Tests for methane, oxygen... and the mine workings; (3) The concentrations of methane, oxygen, carbon monoxide, and carbon dioxide...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... Personal Oxygen Concentrator (POC) Devices on Board Aircraft AGENCY: Federal Aviation Administration (FAA.... Title: Use of Certain Personal Oxygen Concentrator (POC) Devices on Board Aircraft. Form Numbers: There... physician statement describing the oxygen therapy needed, to determine whether an inflight diversion to an...
NASA Astrophysics Data System (ADS)
Douplik, Alexandre Y.; Kessler, Manfred D.; Kakihana, Yasuyuki; Krug, Alfons
1997-08-01
Functional evaluation of local hemoglobin concentration and hemoglobin oxygenation based on back scattering spectra from human skin in vivo have been obtained in visible range (502 - 628 nm) by a rapid microlightguide spectrometer (EMPHO II) with step 250 micrometer. Analysis of received results has shown that during local cooling there is two nearly simultaneous reactions: reduction of hemoglobin concentration and increase of hemoglobin oxygenation level. In a case when one has used previous heating of planning place for cooling, reduction of hemoglobin concentration is expressed higher by 22 - 33%.
Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration
NASA Technical Reports Server (NTRS)
Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.
1987-01-01
Oxygen concentration and separation is an essential factor for air recycling in a controlled ecological life support system (CELSS). Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of oxygen from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.
On-line regeneration of hydrodesulfurization catalyst
Preston, Jr., John L.
1980-01-01
A hydrotreating catalyst is regenerated as it concurrently hydrotreats a hydrocarbon fuel by introducing a low concentration of oxygen into the catalyst bed either continuously or periodically. At low oxygen concentrations the carbon deposits on the catalyst are burned off without harming the catalyst and without significantly affecting the hydrotreating process. In a preferred embodiment the hydrotreating process is hydrodesulfurization, and regenerating is done periodically with oxygen concentrations between 0.1 and 0.5 volume percent.
NASA Technical Reports Server (NTRS)
Hirsch, David B.; Williams, James H.; Harper, Susan A.; Beeson, Harold; Pedley, Michael D.
2007-01-01
Materials selection for spacecraft is based on an upward flammability test conducted in a quiescent environment in the highest expected oxygen concentration environment. The test conditions and its pass/fail test logic do not provide sufficient quantitative materials flammability information for an advanced space exploration program. A modified approach has been suggested determination of materials self-extinguishment limits. The flammability threshold information will allow NASA to identify materials with increased flammability risk from oxygen concentration and total pressure changes, minimize potential impacts, and allow for development of sound requirements for new spacecraft and extraterrestrial landers and habitats. This paper provides data on oxygen concentration self-extinguishment limits under quiescent conditions for selected materials considered for the Constellation Program.
Dynamic Modeling of the Main Blow in Basic Oxygen Steelmaking Using Measured Step Responses
NASA Astrophysics Data System (ADS)
Kattenbelt, Carolien; Roffel, B.
2008-10-01
In the control and optimization of basic oxygen steelmaking, it is important to have an understanding of the influence of control variables on the process. However, important process variables such as the composition of the steel and slag cannot be measured continuously. The decarburization rate and the accumulation rate of oxygen, which can be derived from the generally measured waste gas flow and composition, are an indication of changes in steel and slag composition. The influence of the control variables on the decarburization rate and the accumulation rate of oxygen can best be determined in the main blow period. In this article, the measured step responses of the decarburization rate and the accumulation rate of oxygen to step changes in the oxygen blowing rate, lance height, and the addition rate of iron ore during the main blow are presented. These measured step responses are subsequently used to develop a dynamic model for the main blow. The model consists of an iron oxide and a carbon balance and an additional equation describing the influence of the lance height and the oxygen blowing rate on the decarburization rate. With this simple dynamic model, the measured step responses can be explained satisfactorily.
Dmitrieva, E V
2015-01-01
Several series of experiments investigating the influence of dissolved oxygen concentrations on the growth rates and mortality in the embryogenesis of the common toad Bufo bufo were carried out. The experiments showed that, when the eggs develop singly, the lack of oxygen does not lead to an increase in mortality by the time of hatching and results only in a change in the dynamics of mortality: mortality occurs at an earlier stage of development than in the conditions of normal access to oxygen. Taking into account the combined effect of the density of eggs and the dissolved oxygen concentration, we increase the accuracy of analysis of the experimental results and improve the interpretation of the results. In the conditions of different initial density of eggs, the impact of the concentration of dissolved oxygen on mortality and rates of development of the common toad embryos is manifested in different ways. At high density, only a small percentage of embryos survives by the time of hatching, and the embryos are significantly behind in their development compared with the individuals that developed in normal oxygen conditions. The lack of oxygen dissolved in the water slows down the development of embryos of the common toad.
Wilkinson, P L
1979-06-01
Assessing and modifying oxygen transport are major parts of ICU patient management. Determination of base excess, blood oxygen saturation and content, dead space ventilation, and P50 helps in this management. A program is described for determining these variables using a T1 59 programmable calculator and PC 100A printer. Each variable can be independently calculated without running the whole program. The calculator-printer's small size, low cost, and hard copy printout make it a valuable and versatile tool for calculating physiological variables. The program is easily entered by an stored on magnetic card, and prompts the user to enter the appropriate variables, making is easy to run by untrained personnel.
Effect of oxygen concentration on the magnetic properties of La2CoMnO6 thin films
NASA Astrophysics Data System (ADS)
Guo, H. Z.; Gupta, A.; Zhang, Jiandi; Varela, M.; Pennycook, S. J.
2007-11-01
The dependence of the magnetic properties on oxygen concentration in epitaxial La2CoMnO6 thin films deposited on (100)-oriented SrTiO3 substrates has been investigated by varying the oxygen background pressure during growth using pulsed laser deposition. Two distinct ferromagnetic (FM) phases are revealed, and the relative fraction varies with the oxygen concentration. The existence of oxygen vacancies induces the local vibronic Mn3+-O -Co3+ superexchange interactions in direct competition with the static FM Mn4+-O-Co2+ interactions. This results in the appearance of a new low temperature FM phase and suppression of the high-temperature FM phase, creating two distinct magnetic phase transitions.
Tomasso J.R., Davis; Parker, N.C.
1981-01-01
Plasma corticosteroid concentrations in channel catfish, Ictalurus punctatus, (normally 1.0 ± 0.3 μg/100 ml) increased significantly (to 5.9 ± 1.2μg/100 ml) in response to acute oxygen depletion and then returned to control levels within 30 min after the dissolved oxygen concentration was increased; however, a secondary increase in plasma corticosteroid levels was observed 6 h after exposure. Corticosteroid levels also increased in fish exposed to dissolved oxygen concentration of <0.2 mg/1 for three days. Methylene blue was not effective in preventing interrenal response to low dissolved oxygen. No diurnal plasma corticosteroid rhythm was observed in fish exposed to diurnal chemical rhythms of culture ponds.
NASA Technical Reports Server (NTRS)
Coulbourn, W. C.; Olsen, D. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Remote sensing by the ERTS-1 satellite was compared with selected water quality parameters including pH, salinity, conductivity, dissolved oxygen, water depth, water temperature, turbidity, plankton concentration, current variables, chlorophylla, total carotenoids, and species diversity of the benthic community. Strong correlation between turbidity and MSS-sensed radiance was recorded and less strong correlations between the two plankton pigments and radiance. Turbidity and benthic species diversity were highly correlated furnishing an inferential tie between an easily sensed water quality variable and a sensitive indicator of average water quality conditions.
NASA Astrophysics Data System (ADS)
Epting, William K.; Litster, Shawn
2016-02-01
Although polymer electrolyte fuel cells (PEFCs) offer promise as efficient, low emission power sources, the large amount of platinum catalyst used for the cathode's oxygen reduction (ORR) results in high costs. One approach to using less Pt is to increase the oxygen concentration at the catalyst by reducing the oxygen transport resistances. An important resistance is that of the diffusion media (DM). The DM are highly heterogeneous porous carbon fiber substrates with a graded composition of additives across their thickness. In this work we use an oxygen microsensor with a micro-positioning system to measure the oxygen concentration and presence of liquid water in the pores at discrete points across the thickness of a commercial carbon felt DM in operating PEFCs. Under conditions with no liquid water, the DM accounts for 60% of the oxygen depletion, with 60-70% of that depletion being due to the thin microporous layer (MPL) on the catalyst layer (CL) side. Using concentration gradient data, we quantify the non-uniform local transport resistance across the DM and relate it to high resolution 3D X-ray computed tomography of the same DM.
Phosphorescent nanoparticles for quantitative measurements of oxygen profiles in vitro and in vivo
Choi, Nak Won; Verbridge, Scott S.; Williams, Rebecca M.; Chen, Jin; Kim, Ju-Young; Schmehl, Russel; Farnum, Cornelia E.; Zipfel, Warren R.; Fischbach, Claudia; Stroock, Abraham D.
2012-01-01
We present the development and characterization of nanoparticles loaded with a custom phosphor; we exploit these nanoparticles to perform quantitative measurements of the concentration of oxygen within three-dimensional (3-D) tissue cultures in vitro and blood vessels in vivo. We synthesized a customized ruthenium (Ru)-phosphor and incorporated it into polymeric nanoparticles via self-assembly. We demonstrate that the encapsulated phosphor is non-toxic with and without illumination. We evaluated two distinct modes of employing the phosphorescent nanoparticles for the measurement of concentrations of oxygen: 1) in vitro, in a 3-D microfluidic tumor model via ratiometric measurements of intensity with an oxygen-insensitive fluorophore as a reference, and 2) in vivo, in mouse vasculature using measurements of phosphorescence lifetime. With both methods, we demonstrated micrometer-scale resolution and absolute calibration to the dissolved oxygen concentration. Based on the ease and customizability of the synthesis of the nanoparticles and the flexibility of their application, these oxygen-sensing polymeric nanoparticles will find a natural home in a range of biological applications, benefiting studies of physiological as well as pathological processes in which oxygen availability and concentration play a critical role. PMID:22240511
Test-retest reliability of retinal oxygen saturation measurement.
O'Connell, Rachael A; Anderson, Andrew J; Hosking, Sarah L; Batcha, Abrez H; Bui, Bang V
2014-06-01
To determine intrasession and intersession repeatability of retinal vessel oxygen saturation from the Oxymap Retinal Oximeter using a whole image-based analysis technique and so determine optimal analysis parameters to reduce variability. Ten fundus oximetry images were acquired through dilated pupils from 18 healthy participants (aged 22 to 38) using the Oxymap Retinal Oximeter T1. A further 10 images were obtained 1 to 2 weeks later from each individual. Analysis was undertaken for subsets of images to determine the number of images needed to return a stable coefficient of variation (CoV). Intrasession and intersession variability were quantified by evaluating the CoV and establishing the 95% limits of agreement using Bland and Altman analysis. Retinal oxygenation was derived from the distribution of oxygenation values from all vessels of a given width in an image or set of images, as described by Paul et al. in 2013. Grouped in 10-μm-wide bins, oxygen saturation varied significantly for both arteries and veins (p < 0.01). Between 110 and 150 μm, arteries had the least variability between individuals, with average CoVs less than 5% whose confidence intervals did not overlap with the greater than 10% average CoVs for veins across the same range. Bland and Altman analysis showed that there was no bias within or between recording sessions and that the 95% limits of agreement were generally lower in arteries. Retinal vessel oxygen saturation measurements show variability within and between clinical sessions when the whole image is used, which we believe more accurately reflects the true variability in Oxymap images than previous studies on select image segments. Averaging data from vessels 100 to 150 μm in width may help to minimize such variability.
Raimondi, Manuela T; Giordano, Carmen; Pietrabissa, Riccardo
2015-12-18
The possibility of developing engineered tissue in vitro and maintaining the cell viability and functionality is primarily related to the possibility of controlling key culture parameters such as oxygen concentration and cell-specific oxygen consumption. We measured these parameters in a three-dimensional (3D) cellularized construct maintained under interstitially perfused culture in a miniaturized bioreactor. MG63 osteosarcoma cells were seeded at high density on a 3D polystyrene scaffold. The 3D scaffolds were sensorized with sensor foils made of a polymer, which fluoresce with intensity proportional to the local oxygen tension. Images of the sensor foil in contact with the cellularized construct were acquired with a video camera every four hours for six culture days and were elaborated with analytical imaging software to obtain oxygen concentration maps. The data collected indicate a globally decreasing oxygen concentration profile, with a total drop of 28% after six days of culture and an average drop of 10.5% between the inlet and outlet of the perfused construct. Moreover, by importing the measured oxygen concentration data and the cell counts in a model of mass transport, we calculated the cell-specific oxygen consumption over the whole culture period. The consumption increased with oxygen availability and ranged from 0.1 to 0.7 µmol/h/106 cells. The sensors used here allowed a non-invasive, contamination-free and non-destructive oxygen measurement over the whole culture period. This study is the basis for optimization of the culture parameters involved in oxygen supply, in order to guarantee maintenance of cell viability in our system.
Statistical Exposé of a Multiple-Compartment Anaerobic Reactor Treating Domestic Wastewater.
Pfluger, Andrew R; Hahn, Martha J; Hering, Amanda S; Munakata-Marr, Junko; Figueroa, Linda
2018-06-01
Mainstream anaerobic treatment of domestic wastewater is a promising energy-generating treatment strategy; however, such reactors operated in colder regions are not well characterized. Performance data from a pilot-scale, multiple-compartment anaerobic reactor taken over 786 days were subjected to comprehensive statistical analyses. Results suggest that chemical oxygen demand (COD) was a poor proxy for organics in anaerobic systems as oxygen demand from dissolved inorganic material, dissolved methane, and colloidal material influence dissolved and particulate COD measurements. Additionally, univariate and functional boxplots were useful in visualizing variability in contaminant concentrations and identifying statistical outliers. Further, significantly different dissolved organic removal and methane production was observed between operational years, suggesting that anaerobic reactor systems may not achieve steady-state performance within one year. Last, modeling multiple-compartment reactor systems will require data collected over at least two years to capture seasonal variations of the major anaerobic microbial functions occurring within each reactor compartment.
Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior
Fröb, F.; Olsen, A.; Våge, K.; Moore, G. W. K.; Yashayaev, I.; Jeansson, E.; Rajasakaren, B.
2016-01-01
Deep convection in the subpolar North Atlantic ventilates the ocean for atmospheric gases through the formation of deep water masses. Variability in the intensity of deep convection is believed to have caused large variations in North Atlantic anthropogenic carbon storage over the past decades, but observations of the properties during active convection are missing. Here we document the origin, extent and chemical properties of the deepest winter mixed layers directly observed in the Irminger Sea. As a result of the deep convection in winter 2014–2015, driven by large oceanic heat loss, mid-depth oxygen concentrations were replenished and anthropogenic carbon storage rates almost tripled compared with Irminger Sea hydrographic section data in 1997 and 2003. Our observations provide unequivocal evidence that ocean ventilation and anthropogenic carbon uptake take place in the Irminger Sea and that their efficiency can be directly linked to atmospheric forcing. PMID:27786263
Cema, G; Płaza, E; Trela, J; Surmacz-Górska, J
2011-01-01
A biofilm system with Kaldnes biofilm carrier was used in these studies to cultivate bacteria responsible for both partial nitritation and Anammox processes. Due to co-existence of oxygen and oxygen-free zones within the biofilm depth, both processes can occur in a single reactor. Oxygen that inhibits the Anammox process is consumed in the outer layer of the biofilm and in this way Anammox bacteria are protected from oxygen. The impact of oxygen concentration on nitrogen removal rates was investigated in the pilot plant (2.1 m3), supplied with reject water from the Himmerfjärden Waste Water Treatment Plant. The results of batch tests showed that the highest nitrogen removal rates were obtained for a dissolved oxygen (DO) concentration around 3 g O2 m(-3) At a DO concentration of 4 g O2 m(-3), an increase of nitrite and nitrate nitrogen concentrations in the batch reactor were observed. The average nitrogen removal rate in the pilot plant during a whole operating period oscillated around 1.3 g N m(-2)d(-1) (0.3 +/- 0.1 kg N m(-3)d(-1)) at the average dissolved oxygen concentration of 2.3 g O2 m(-3). The maximum value of a nitrogen removal rate amounted to 1.9 g N m(-2)d(-1) (0.47 kg N m(-3)d(-1)) and was observed for a DO concentration equal to 2.5 g O2 m(-3). It was observed that increase of biofilm thickness during the operational period, had no influence on nitrogen removal rates in the pilot plant.
Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S
2015-10-20
Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.
Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio
2016-04-01
Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT.
NASA Astrophysics Data System (ADS)
Singh, R.; Ingole, B. S.
2016-01-01
We studied patterns of nematode distribution along the western Indian continental margin to determine the influence of habitat heterogeneity and low oxygen levels on the community's taxonomic and functional structure. A single transect, perpendicular to the coast at 14° N latitude was sampled from 34 to 2546 m depth for biological and environmental variables during August 2007. The oxygen minimum zone extended from 102 to 1001 m. Nematodes (described and undescribed) were identified to species and classified according to biological and functional traits. A total of 110 nematode species belonging to 24 families were found along the transect. Three depth zones were identified: the shelf (depth range: 34-102 m; highest nematode mean density: 176.6 ± 37 ind 10 cm-2), the slope (525-1524 m; 124.3 ± 16 ind 10 cm-2), and the basin (2001-2546 m; 62.9 ± 2 ind 10 cm-2). Across the entire study area, the dominant species were Terschellingia longicaudata, Desmodora sp. 1, Sphaerolaimus gracilis, and Theristus ensifer; their maximum density was at shelf stations. Nematode communities in different zones differed in species composition. Chromadorita sp. 2 (2.78 %) and Sphaerolaimus gracilis (2.21 %) were dominant on the shelf, whereas Terschellingia longicaudata (4.73 %) and Desmodora sp. 1 (4.42 %) were dominant on the slope, but in the basin, Halalaimus sp. 1(1.11 %) and Acantholaimus elegans (1.11 %) were dominant. The information in a particular functional group was not a simple reflection of the information in species abundance. Ecological information captured by adult length, adult shape, and life-history strategy was less site-specific and thus differed notably from information contained in other taxonomic groups. The functional composition of nematodes was strongly linked to the organic-carbon and dissolved-oxygen concentration. Seven species were found exclusively in the oxygen minimum zone: Pselionema sp. 1, Choanolaimus sp. 2, Halichoanolaimus sp. 1, Cobbia dentata, Daptonema sp. 1, Trissonchulus sp. 1, and Minolaimus sp. 1. Correlation with a number of environmental variables indicated that food quantity (measured as the organic-carbon content and chlorophyll content) and oxygen level were the major factors that influenced nematode community structure and function.
NASA Technical Reports Server (NTRS)
Porterfield, D. M.; Kuang, A.; Smith, P. J.; Crispi, M. L.; Musgrave, M. E.
1999-01-01
Growth of Arabidopsis thaliana (L.) Heynh. in decreasing oxygen partial pressures revealed a linear decrease in seed production below 15 kPa, with a complete absence of seed production at 2.5 kPa oxygen. This control of plant reproduction by oxygen had previously been attributed to an oxygen effect on the partitioning between vegetative and reproductive growth. However, plants grown in a series of decreasing oxygen concentrations produced progressively smaller embryos that had stopped developing at progressively younger stages, suggesting instead that their growth is limited by oxygen. Internal oxygen concentrations of buds, pistils, and developing siliques of Brassica rapa L. and siliques of Arabidopsis were measured using a small-diameter glass electrode that was moved into the structures using a micromanipulator. Oxygen partial pressures were found to be lowest in the developing perianth (11.1 kPa) and pistils (15.2 kPa) of the unopened buds. Pollination reduced oxygen concentration inside the pistils by 3 kPa after just 24 h. Inside Brassica silique locules, partial pressures of oxygen averaged 12.2 kPa in darkness, and increased linearly with increasing light levels to 16.2 kPa. Measurements inside Arabidopsis siliques averaged 6.1 kPa in the dark and rose to 12.2 kPa with light. Hypoxia in these microenvironments is postulated to be the point of control of plant reproduction by oxygen.
Microgravity Diode Laser Spectroscopy Measurements in a Reacting Vortex Ring
NASA Technical Reports Server (NTRS)
Chen, Shin-Juh; Dahm, Werner J. A.; Silver, Joel A.; Piltch, Nancy D.; VanderWal, R. (Technical Monitor)
2001-01-01
The technique of Diode Laser Spectroscopy (DLS) with wavelength modulation is utilized to measure the concentration of methane in reacting vortex rings under microgravity conditions. From the measured concentration of methane, other major species such as water, carbon dioxide, nitrogen, and oxygen can be easily computed under the assumption of equilibrium chemistry with an iterative method called ITAC (Iterative Temperature with Assumed Chemistry). The conserved scalar approach in modelling the coupling between fluid dynamics and combustion is utilized to represent the unknown variables in terms of the mixture fraction and scalar dissipation rate in conjunction with ITAC. Post-processing of the DLS and the method used to compute the species concentration are discussed. From the flame luminosity results, ring circulation appears to increase the fuel consumption rate inside the reacting vortex ring and the flame height for cases with similar fuel volumes but different ring circulations. The concentrations of methane, water, and carbon dioxide agree well with available results from numerical simulations.
Franchini, Michelle Lisidati; Athanazio, Rodrigo; Amato-Lourenço, Luis Fernando; Carreirão-Neto, Waldir; Saldiva, Paulo Hilario Nascimento; Lorenzi-Filho, Geraldo; Rubin, Bruce K; Nakagawa, Naomi Kondo
2016-08-01
Little is known about the effects of long-term nasal low-flow oxygen (NLFO) on mucus and symptoms and how this variable is affected by dry or cold humidified gas. The aim of this study was to investigate the effects of dry-NLFO and cold bubble humidified-NLFO on nasal mucociliary clearance (MCC), mucus properties, inflammation, and symptoms in subjects with chronic hypoxemia requiring long-term domiciliary oxygen therapy. Eighteen subjects (mean age, 68 years; 7 male; 66% with COPD) initiating NLFO were randomized to receive dry-NLFO (n = 10) or humidified-NLFO (n = 8). Subjects were assessed at baseline, 12 h, 7 days, 30 days, 12 months, and 24 months by measuring nasal MCC using the saccharin transit test, mucus contact angle (surface tension), inflammation (cells and cytokine concentration in nasal lavage), and symptoms according to the Sino-Nasal Outcome Test-20. Nasal MCC decreased significantly (40% longer saccharin transit times) and similarly in both groups over the study period. There was a significant association between impaired nasal MCC and decline in lung function. Nasal lavage revealed an increased proportion of macrophages, interleukin-8, and epidermal growth factor concentrations with decreased interleukin-10 during the study. No changes in the proportion of ciliated cells or contact angle were observed. Coughing and sleep symptoms decreased similarly in both groups. There were no outcome differences comparing dry vs cold bubble humidified NLFO. In subjects receiving chronic NLFO, cold bubble humidification does not adequately humidify inspired oxygen to prevent deterioration of MCC, mucus hydration, and pulmonary function. The unheated bubble humidification performed no better than no humidification. ClinicalTrials.gov; No.: NCT02515786; URL: www.clinicaltrials.gov. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Pressure Effects on the Self-Extinguishment Limits of Aerospace Materials
NASA Technical Reports Server (NTRS)
Hirsch, David B.; Williams, James H.; Haas, Jon P.; Beeson, Harold D.; Ruff, Gary A.; Pedley, Michael D.
2009-01-01
The Orion Crew Exploration Vehicle Module (CM) is being designed to operate in an atmosphere of up to 30% oxygen at a pressure of 10.2 psia for lunar missions. Spacecraft materials selection is based on an upward flammability test conducted in a closed chamber under the worst expected conditions of pressure and oxygen concentration. Material flammability depends on both oxygen concentration and pressure but, since oxygen concentration is the primary driver, all materials are certified in the 30% oxygen, 10.2 psia environment. Extensive data exist from the Shuttle Program at this condition which used relatively the same test methodology as currently used in the Constellation Program. When the CM returns to Earth, a snorkel device will be activated after splashdown to provide outside air to the crew; however, for operational reasons, it is desirable to maximize the time the crew is able to breathe cabin air before the snorkel device is activated. To maximize this time, it has been proposed to raise the partial pressure of oxygen in the CM immediately before reentry while maintaining the total cabin pressure at 14.7 psia. In addition, it has been proposed to leak-test the Orion CM with ambient air at a maximum pressure of 17.3 psia. No data exist to assess how high the cabin oxygen concentration can be at 14.7 psia or 17.3 psia. One is to re-test a large number of materials at these pressures at a significant cost. However, since the maximum oxygen concentration (MOC) at which a material will self-extinguish has been determined for a variety of spacecraft materials as a function of pressure, a second alternative is to use existing data to estimate the MOC at 14.7 psia and 17.3 psia. This data will be examined in this paper and an analysis presented to determine the oxygen concentrations at the increased pressures that will result in self-extinguishment of a material. This analysis showed that the oxygen concentration for the Orion CM at 14.7 psia cannot be set higher than 25.6% without potentially invalidating the materials flammability certification in 30% oxygen at 10.2 psia for some materials. Materials certified under these conditions would still be self-extinguishing in ambient air at 17.3 psia. alternative
Elhouiti, Fatiha; Tahri, Djilali; Takhi, Djalila; Ouinten, Mohamed; Barreau, Christian; Verdal-Bonnin, Marie-Noëlle; Bombarda, Isabelle; Yousfi, Mohamed
2017-12-01
The antifungal potency of the essential oils of Rhanterium adpressum was evaluated against four mycotoxigenic strains of the genus Fusarium. The essential oils were obtained, separately, by hydro-distillation of the aerial parts of R. adpressum (leaves and flowers). The parts were collected during the period of bloom (3 months) for 3 years. The GC-MS analysis revealed thirty-six compounds for the essential oils, divided into four classes of chemical compounds, with variable percentages according to the month of extraction. The monoterpene hydrocarbons form the main class in these oils. On the other hand, the highest percentages of the oxygenated compounds are observed in the samples collected during the month of May. The direct contact method was used to evaluate the antifungal activity of the essential oils. The activity can be attributed to their relatively high composition of oxygenated monoterpenes. Flowers extract showed strong inhibitory activity, with very interesting concentrations of IC50 and MIC for both tests on solid and liquid medium. The effect of these oils on the production of type B trichothecenes (TCTBs) was evaluated, showing a significant inhibitory effect on TCTBs production, for both extracts (leaves and flowers). The rates of inhibition were 66-97 and 76-100% of FX, 3-ADON and 15-ADON, respectively. The inhibition of fungal biomass and the production of TCTBs depended on the used concentration of the essential oils. These results suggest that the essential oils from R. adpressum are able to control the growth of the tested strains and their subsequent production of TCTB mycotoxins.
Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots.
Flores-Mireles, Ana L; Winans, Stephen C; Holguin, Gina
2007-11-01
An analysis of the molecular diversity of N(2) fixers and denitrifiers associated with mangrove roots was performed using terminal restriction length polymorphism (T-RFLP) of nifH (N(2) fixation) and nirS and nirK (denitrification), and the compositions and structures of these communities among three sites were compared. The number of operational taxonomic units (OTU) for nifH was higher than that for nirK or nirS at all three sites. Site 3, which had the highest organic matter and sand content in the rhizosphere sediment, as well as the lowest pore water oxygen concentration, had the highest nifH diversity. Principal component analysis of biogeochemical parameters identified soil texture, organic matter content, pore water oxygen concentration, and salinity as the main variables that differentiated the sites. Nonmetric multidimensional scaling (MDS) analyses of the T-RFLP data using the Bray-Curtis coefficient, group analyses, and pairwise comparisons between the sites clearly separated the OTU of site 3 from those of sites 1 and 2. For nirS, there were statistically significant differences in the composition of OTU among the sites, but the variability was less than for nifH. OTU defined on the basis of nirK were highly similar, and the three sites were not clearly separated on the basis of these sequences. The phylogenetic trees of nifH, nirK, and nirS showed that most of the cloned sequences were more similar to sequences from the rhizosphere isolates than to those from known strains or from other environments.
Molecular Characterization of Diazotrophic and Denitrifying Bacteria Associated with Mangrove Roots▿
Flores-Mireles, Ana L.; Winans, Stephen C.; Holguin, Gina
2007-01-01
An analysis of the molecular diversity of N2 fixers and denitrifiers associated with mangrove roots was performed using terminal restriction length polymorphism (T-RFLP) of nifH (N2 fixation) and nirS and nirK (denitrification), and the compositions and structures of these communities among three sites were compared. The number of operational taxonomic units (OTU) for nifH was higher than that for nirK or nirS at all three sites. Site 3, which had the highest organic matter and sand content in the rhizosphere sediment, as well as the lowest pore water oxygen concentration, had the highest nifH diversity. Principal component analysis of biogeochemical parameters identified soil texture, organic matter content, pore water oxygen concentration, and salinity as the main variables that differentiated the sites. Nonmetric multidimensional scaling (MDS) analyses of the T-RFLP data using the Bray-Curtis coefficient, group analyses, and pairwise comparisons between the sites clearly separated the OTU of site 3 from those of sites 1 and 2. For nirS, there were statistically significant differences in the composition of OTU among the sites, but the variability was less than for nifH. OTU defined on the basis of nirK were highly similar, and the three sites were not clearly separated on the basis of these sequences. The phylogenetic trees of nifH, nirK, and nirS showed that most of the cloned sequences were more similar to sequences from the rhizosphere isolates than to those from known strains or from other environments. PMID:17827324
Sulfide-inhibition of mitochondrial respiration at very low oxygen concentrations.
Matallo, J; Vogt, J; McCook, O; Wachter, U; Tillmans, F; Groeger, M; Szabo, C; Georgieff, M; Radermacher, P; Calzia, E
2014-09-15
Our aim was to study the ability of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the rate of elimination of sulfide through the pathway linked to the mitochondrial respiratory chain and therefore operating under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide's inhibition of cellular respiration would occur faster under continuous sulfide exposure when the oxygen concentration is in the very low range. The experiments were performed with an O2K-oxygraph (Oroboros Instruments) by suspending 0.5-1×10(6) cells in 2 ml of continuously stirred respiration medium at 37 °C and calculating the oxygen flux (JO2) as the negative derivative of the oxygen concentration in the medium. The cells were studied in two different metabolic states, namely under normal physiologic respiration (1) and after uncoupling of mitochondrial respiration (2). Oxygen concentration was controlled by means of a titration-injection pump, resulting in average concentration values of 0.73±0.05 μM, 3.1±0.2 μM, and 6.2±0.2 μM. Simultaneously we injected a 2 mM Na2S solution at a continuous rate of 10 μl/s in order to quantify the titration-time required to reduce the JO2 to 50% of the initial respiratory activity. Under the lowest oxygen concentration this effect was achieved after 3.5 [0.3;3.5] and 11.7 [6.2;21.2]min in the uncoupled and coupled state, respectively. This time was statistically significantly shorter when compared to the intermediate and the highest O2 concentrations tested, which yielded values of 24.6 [15.5;28.1]min (coupled) and 35.9 [27.4;59.2]min (uncoupled), as well as 42.4 [27.5;42.4]min (coupled) and 51.5 [46.4;51.7]min (uncoupled). All data are medians [25%, and 75% percentiles]. Our results confirm that the onset of inhibition of cell respiration by sulfide occurs earlier under a continuous exposure when approaching the anoxic condition. This property may contribute to the physiological role of sulfide as an oxygen sensor. Copyright © 2014 Elsevier Inc. All rights reserved.