Sample records for variable pressure supercritical

  1. Supercritical Fuel Pyrolysis

    DTIC Science & Technology

    2007-05-28

    be supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which have the potential of forming...physical properties, supercritical fluids have highly variable densities, no surface tension, and transport properties (i.e., mass, energy, and momentum...are very dependent on pressure, chemical reaction rates in supercritical fluids can be highly pressure-dependent [6-9]. The kinetic reaction rate

  2. Supercritical Fuel Pyrolysis

    DTIC Science & Technology

    2010-05-30

    supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which have the potential of forming...With regard to physical properties, supercritical fluids have highly variable densities, no surface tension, and transport properties (i.e., mass...effects in supercritical fluids , often affecting chemical reaction pathways by facilitating the formation of certain transition states [6]. Because

  3. Identification of critical process variables affecting particle size following precipitation using a supercritical fluid.

    PubMed

    Sacha, Gregory A; Schmitt, William J; Nail, Steven L

    2006-01-01

    The critical processing parameters affecting average particle size, particle size distribution, yield, and level of residual carrier solvent using the supercritical anti-solvent method (SAS) were identified. Carbon dioxide was used as the supercritical fluid. Methylprednisolone acetate was used as the model solute in tetrahydrofuran. Parameters examined included pressure of the supercritical fluid, agitation rate, feed solution flow rate, impeller diameter, and nozzle design. Pressure was identified as the most important process parameter affecting average particle size, either through the effect of pressure on dispersion of the feed solution into the precipitation vessel or through the effect of pressure on solubility of drug in the CO2/organic solvent mixture. Agitation rate, impeller diameter, feed solution flow rate, and nozzle design had significant effects on particle size, which suggests that dispersion of the feed solution is important. Crimped HPLC tubing was the most effective method of introducing feed solution into the precipitation vessel, largely because it resulted in the least amount of clogging during the precipitation. Yields of 82% or greater were consistently produced and were not affected by the processing variables. Similarly, the level of residual solvent was independent of the processing variables and was present at 0.0002% wt/wt THF or less.

  4. A calibration loop to test hot-wire response under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Radulović, Ivana; Vukoslavčević, P. V.; Wallace, J. M.

    2004-11-01

    A calibration facility to test the response of hot-wires in CO2 flow under supercritical conditions has been designed and constructed. It is capable of inducing variable speeds at different temperatures and pressures in the ranges of 0.15 - 2 m/s, 15 - 70 deg. C and 1 - 100 bar. The facility is designed as a closed loop with a test section, pump, electrical heater, DC motor and different regulating and measuring devices. The test section is a small tunnel, with a diffuser, honeycomb, screens and a nozzle to provide a uniform flow with a low turbulence level. The speed variation is created by a sealed, magnetic driven gear pump, with a variable rpm DC motor. Using the electrical heater and regulating the amount of CO2 in the facility, the desired temperature and pressure can be reached. The dimensions of the instalation are minimized to reduce the heat, pump power required, and CO2 consumption and to optimize safety. Preliminary testing of a single hot-wire velocity sensor at constant pressure (80 bar) and variable speed and temperature will be briefly described. The hot-wire probes calibrated in this loop will be used to measure turbulence properties in supercritical CO2 in support of improved designs of nuclear reactors to be cooled by supercritical fluids.

  5. Study of Variable Turbulent Prandtl Number Model for Heat Transfer to Supercritical Fluids in Vertical Tubes

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin

    2018-06-01

    In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.

  6. Effects of supercritical environment on hydrocarbon-fuel injection

    NASA Astrophysics Data System (ADS)

    Shin, Bongchul; Kim, Dohun; Son, Min; Koo, Jaye

    2017-04-01

    In this study, the effects of environment conditions on decane were investigated. Decane was injected in subcritical and supercritical ambient conditions. The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions. For supercritical ambient conditions, the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K. The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method. A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions. Conversely, for supercritical injection in supercritical ambient conditions, a small density gradient was observed at the jet interface. In a manner similar to that observed in other cases, supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid. Additionally, there were changes in the interface, and the supercritical injection core width was thicker than that in the subcritical injection. Furthermore, in cases with the same injection conditions, the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface. Therefore, the interface was affected by the changing ambient condition. Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine, the effects of the ambient conditions were investigated experimentally.

  7. Code Development in Coupled PARCS/RELAP5 for Supercritical Water Reactor

    DOE PAGES

    Hu, Po; Wilson, Paul

    2014-01-01

    The new capability is added to the existing coupled code package PARCS/RELAP5, in order to analyze SCWR design under supercritical pressure with the separated water coolant and moderator channels. This expansion is carried out on both codes. In PARCS, modification is focused on extending the water property tables to supercritical pressure, modifying the variable mapping input file and related code module for processing thermal-hydraulic information from separated coolant/moderator channels, and modifying neutronics feedback module to deal with the separated coolant/moderator channels. In RELAP5, modification is focused on incorporating more accurate water properties near SCWR operation/transient pressure and temperature in themore » code. Confirming tests of the modifications is presented and the major analyzing results from the extended codes package are summarized.« less

  8. Preparation and Physicochemical Properties of Vinblastine Microparticles by Supercritical Antisolvent Process

    PubMed Central

    Zhang, Xiaonan; Zhao, Xiuhua; Zu, Yuangang; Chen, Xiaoqiang; Lu, Qi; Ma, Yuliang; Yang, Lei

    2012-01-01

    The objective of the study was to prepare vinblastine microparticles by supercritical antisolvent process using N-methyl-2-pyrrolidone as solvent and carbon dioxide as antisolvent and evaluate its physicochemical properties. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during the supercritical antisolvent process, were investigated. Particles with a mean particle size of 121 ± 5.3 nm were obtained under the optimized process conditions (precipitation temperature 60 °C, precipitation pressure 25 MPa, vinblastine concentration 2.50 mg/mL and vinblastine solution flow rate 6.7 mL/min). The vinblastine was characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, mass spectrometry and dissolution test. It was concluded that physicochemical properties of crystalline vinblastine could be improved by physical modification, such as particle size reduction and generation of amorphous state using the supercritical antisolvent process. Furthermore, the supercritical antisolvent process was a powerful methodology for improving the physicochemical properties of vinblastine. PMID:23202916

  9. DNS of High Pressure Supercritical Combustion

    NASA Astrophysics Data System (ADS)

    Chong, Shao Teng; Raman, Venkatramanan

    2016-11-01

    Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.

  10. Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.

    PubMed

    Esfandiari, Nadia; Ghoreishi, Seyyed M

    2015-12-01

    The micronization of ampicillin via supercritical gas antisolvent (GAS) process was studied. The particle size distribution was significantly controlled with effective GAS variables such as initial solute concentration, temperature, pressure, and antisolvent addition rate. The effect of each variable in three levels was investigated. The precipitated particles were analyzed with scanning electron microscopy (SEM) and Zetasizer Nano ZS. The results indicated that decreasing the temperature and initial solute concentration while increasing the antisolvent rate and pressure led to a decrease in ampicillin particle size. The mean particle size of ampicillin was obtained in the range of 220-430 nm by varying the GAS effective variables. The purity of GAS-synthesized ampicillin nanoparticles was analyzed in contrast to unprocessed ampicillin by FTIR and HPLC. The results indicated that the structure of the ampicillin nanoparticles remained unchanged during the GAS process.

  11. A numerical solution of the Navier-Stokes equations for supercritical fluid thermodynamic analysis

    NASA Technical Reports Server (NTRS)

    Heinmiller, P. J.

    1971-01-01

    An explicit numerical solution of the compressible Navier-Stokes equations is applied to the thermodynamic analysis of supercritical oxygen in the Apollo cryogenic storage system. The wave character is retained in the conservation equations which are written in the basic fluid variables for a two-dimensional Cartesian coordinate system. Control-volume cells are employed to simplify imposition of boundary conditions and to ensure strict observance of local and global conservation principles. Non-linear real-gas thermodynamic properties responsible for the pressure collapse phenomonon in supercritical fluids are represented by tabular and empirical functions relating pressure and temperature to density and internal energy. Wall boundary conditions are adjusted at one cell face to emit a prescribed mass flowrate. Scaling principles are invoked to achieve acceptable computer execution times for very low Mach number convection problems. Detailed simulations of thermal stratification and fluid mixing occurring under low acceleration in the Apollo 12 supercritical oxygen tank are presented which model the pressure decay associated with de-stratification induced by an ordinary vehicle maneuver and heater cycle operation.

  12. Large Eddy Simulation of a Supercritical Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Sheikhi, Reza; Hadi, Fatemeh; Safari, Mehdi

    2017-11-01

    Supercritical turbulent flows are relevant to a wide range of applications such as supercritical power cycles, gas turbine combustors, rocket propulsion and internal combustion engines. Large eddy simulation (LES) analysis of such flows involves solving mass, momentum, energy and scalar transport equations with inclusion of generalized diffusion fluxes. These equations are combined with a real gas equation of state and the corresponding thermodynamic mixture variables. Subgrid scale models are needed for not only the conventional convective terms but also the additional high pressure effects arising due to the nonlinearity associated with generalized diffusion fluxes and real gas equation of state. In this study, LES is carried out to study the high pressure turbulent mixing of methane with carbon dioxide in a temporally developing mixing layer under supercritical condition. LES results are assessed by comparing with data obtained from direct numerical simulation (DNS) of the same layer. LES predictions agree favorably with DNS data and represent several key supercritical turbulent flow features such as high density gradient regions. Supported by DOE Grant SC0017097; computational support is provided by DOE National Energy Research Scientific Computing Center.

  13. Evaporation of LOX under supercritical and subcritical conditions

    NASA Technical Reports Server (NTRS)

    Yang, A. S.; Hsieh, W. H.; Kuo, K. K.; Brown, J. J.

    1993-01-01

    The evaporation of LOX under supercritical and subcritical conditions was studied experimentally and theoretically. In experiments, the evaporation rate and surface temperature were measured for LOX strand vaporizing in helium environments at pressures ranging from 5 to 68 atmospheres. Gas sampling and chromatography analysis were also employed to profile the gas composition above the LOX surface for the purpose of model validation. A comprehensive theoretical model was formulated and solved numerically to simulate the evaporation process of LOX at high pressures. The model was based on the conservation equations of mass, momentum, energy, and species concentrations for a multicomponent system, with consideration of gravitational body force, solubility of ambient gases in liquid, and variable thermophysical properties. Good agreement between predictions and measured oxygen mole fraction profiles was obtained. The effect of pressure on the distribution of the Lewis number, as well as the effect of variable diffusion coefficient, were further examined to elucidate the high-pressure transport behavior exhibited in the LOX vaporization process.

  14. Optimization of Supercritical CO2 Extraction of Fish Oil from Viscera of African Catfish (Clarias gariepinus)

    PubMed Central

    Sarker, Mohamed Zaidul Islam; Selamat, Jinap; Habib, Abu Sayem Md. Ahsan; Ferdosh, Sahena; Akanda, Mohamed Jahurul Haque; Jaffri, Juliana Mohamed

    2012-01-01

    Fish oil was extracted from the viscera of African Catfish using supercritical carbon dioxide (SC-CO2). A Central Composite Design of Response Surface methodology (RSM) was employed to optimize the SC-CO2 extraction parameters. The oil yield (Y) as response variable was executed against the four independent variables, namely pressure, temperature, flow rate and soaking time. The oil yield varied with the linear, quadratic and interaction of pressure, temperature, flow rate and soaking time. Optimum points were observed within the variables of temperature from 35 °C to 80 °C, pressure from 10 MPa to 40 MPa, flow rate from 1 mL/min to 3 mL/min and soaking time from 1 h to 4 h. However, the extraction parameters were found to be optimized at temperature 57.5 °C, pressure 40 MPa, flow rate 2.0 mL/min and soaking time 2.5 h. At this optimized condition, the highest oil yields were found to be 67.0% (g oil/100 g sample on dry basis) in the viscera of catfish which was reasonable to the yields of 78.0% extracted using the Soxhlet method. PMID:23109854

  15. Combustion of liquid-fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor; Hsaio, C. C.

    1992-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both subcritical and supercritical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates variable thermophysical properties, finite-rate chemical kinetics, and a full treatment of liquid-vapor phase equilibrium at the drop surface. The governing equations and associated interfacial boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures in the range of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the critical pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure.

  16. A Wind-Tunnel Investigation of the Application of the NASA Supercritical Airfoil to a Variable-Wing-Sweep Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Ayers, T. G.

    1973-01-01

    An investigation was conducted in the Langley 8 foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel to evaluate the effectiveness of three variations of the NASA supercritical airfoil as applied to a model of a variable wing sweep fighter airplane. Wing panels incorporating conventional NACA 64A series airfoil with 0.20 and 0.40 camber were used as bases of reference for this evaluation. Static force and moment measurements were obtained for wing leading edge sweep angles of 26, 33, 39, and 72.5 degrees. Fluctuating wing root bending moment data were obtained at subsonic speeds to determine buffet characteristics. Subsonic data were also obtained for determining the effects of wing transition location and spoiler deflection. Limited lateral directional data are included for the conventional 0.20 cambered wing and the supercritical wing.

  17. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design.

    PubMed

    Patil, Ajit A; Sachin, Bhusari S; Wakte, Pravin S; Shinde, Devanand B

    2014-11-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.

  18. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design

    PubMed Central

    Patil, Ajit A.; Sachin, Bhusari S.; Wakte, Pravin S.; Shinde, Devanand B.

    2013-01-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05) effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. PMID:25687584

  19. Possibilities and limitations of the kinetic plot method in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Desmet, Gert; Broeckhoven, Ken

    2013-08-30

    Although supercritical fluid chromatography (SFC) is becoming a technique of increasing importance in the field of analytical chromatography, methods to compare the performance of SFC-columns and separations in an unbiased way are not fully developed. The present study uses mathematical models to investigate the possibilities and limitations of the kinetic plot method in SFC as this easily allows to investigate a wide range of operating pressures, retention and mobile phase conditions. The variable column length (L) kinetic plot method was further investigated in this work. Since the pressure history is identical for each measurement, this method gives the true kinetic performance limit in SFC. The deviations of the traditional way of measuring the performance as a function of flow rate (fixed back pressure and column length) and the isopycnic method with respect to this variable column length method were investigated under a wide range of operational conditions. It is found that using the variable L method, extrapolations towards other pressure drops are not valid in SFC (deviation of ∼15% for extrapolation from 50 to 200bar pressure drop). The isopycnic method provides the best prediction but its use is limited when operating closer towards critical point conditions. When an organic modifier is used, the predictions are improved for both methods with respect to the variable L method (e.g. deviations decreases from 20% to 2% when 20mol% of methanol is added). Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography.

    PubMed

    Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-09-15

    In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.

  1. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Supercritical fluid extraction of ginger (Zingiber Officinale Var. Amarum) : Global yield and composition study

    NASA Astrophysics Data System (ADS)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-11-01

    An experiment to observe the effect of temperature and time process in ginger rhizome-Supercritical Fluid Extraction (SFE) using CO2 as the solvent has been conducted. The ginger rhizome (Zingiber Officinale Var. Amarum) was washed, drained, sliced, sun-dried, and then stored in a sealed bag prior to usage. The temperature and time process variables are each 35, 40, 45°C and 2, 4, 6 hours respectively with the pressure variable are 3500, 4000, and 4500 psi. It is found that the highest yield (2.9%) was achieved using temperature of 40°C and pressure of 4500 psiwith the process time of 4 hours. However, using the curve-fitting method, it is suggested to use 42°C as the temperature and 5 hours, 7 minutes, and 30 seconds (5.125 Hours) as the time process to obtain the highest yield. The temperature changes will affect both solvent and vapor pressure of diluted compounds of the ginger which will influence the global yield and the composition of the extract. The three major components of the extract are curcumene, zingiberene, and β - sesquipellandrene,

  3. Design of experimental system for supercritical CO2 fracturing under confining pressure conditions

    NASA Astrophysics Data System (ADS)

    Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.

    2018-03-01

    Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

  4. Nested subcritical flows within supercritical systems

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In supercritical systems the design inlet and outlet pressures are maintained above the thermaodynamic critical pressure P sub C. Designers rely on this simple rule of thumb to circumvent problems associated with a subcritical pressure regime nested within the supercritical pressure system along with the uncertainties in heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines and linear systems, where nested two-phase regions can exist. Examples for a free-jet expansion with backpressure greater than P sub C and a rotor (bearing) with ambient pressure greater than P sub C illustrate the existence of subcritical pressure regimes nested within supercritical systems.

  5. Recovery of Minerals in Martian Soils Via Supercritical Fluid Extraction

    NASA Astrophysics Data System (ADS)

    Debelak, Kenneth A.; Roth, John A.

    2001-03-01

    We are investigating the use of supercritical fluids to extract mineral and/or carbonaceous material from Martian surface soils and its igneous crust. Two candidate supercritical fluids are carbon dioxide and water. The Martian atmosphere is composed mostly of carbon dioxide (approx. 95.3%) and could therefore provide an in-situ source of carbon dioxide. Water, although present in the Martian atmosphere at only approx. 0.03%, is also a candidate supercritical solvent. Previous work done with supercritical fluids has focused primarily on their solvating properties with organic compounds. Interestingly, the first work reported by Hannay and Hogarth at a meeting of the Royal Society of London in 1879 observed that increasing or decreasing the pressure caused several inorganic salts e.g., cobalt chloride, potassium iodide, and potassium bromide, to dissolve or precipitate in supercritical ethanol. In high-pressure boilers, silica, present in most boiler feed waters, is dissolved in supercritical steam and transported as dissolved silica to the turbine blades. As the pressure is reduced the silica precipitates onto the turbine blades eventually requiring the shutdown of the generator. In supercritical water oxidation processes for waste treatment, dissolved salts present a similar problem. The solubility of silicon dioxide (SiO2) in supercritical water is shown. The solubility curve has a shape characteristic of supercritical systems. At a high pressure (greater than 1750 atmospheres) increasing the temperature results in an increase in solubility of silica, while at low pressures, less than 400 atm., the solubility decreases as temperature increases. There are only a few studies in the literature where supercritical fluids are used in extractive metallurgy. Bolt modified the Mond process in which supercritical carbon monoxide was used to produce nickel carbonyl (Ni(CO)4). Tolley and Tester studied the solubility of titanium tetrachloride (TiCl4) in supercritical CO2. They reported complete miscibility of TiCl4 with supercritical CO2 (infinite solubility). At 1500 psig, TiCl4 and CO2 form a single liquid phase below 50 C. Tolley et al. also reported on the solubility and thermodynamics of tin tetrachloride in supercritical CO2. Some of their data for TiC14 are shown. Three criteria have been suggested to predict which materials are suitable for supercritical extraction: 1) Hydrocarbons or lipophilic compounds of low molecular weight and polarity are easily extracted with supercritical CO2. 2) Compounds with polar groups are not easily extracted with supercritical CO2. 3) Separation of mixtures is facilitated if components differing mass, vapor pressure, or polarity.

  6. Supercritical convection, critical heat flux, and coking characteristics of propane

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Gross, R. S.; Boyd, W. C.

    1984-01-01

    The heat transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically heated Monel K-500 tubes. A design correlation for supercritical heat transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical heat flux measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed heat flux conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.

  7. High Materials Performance in Supercritical CO2 in Comparison with Atmospheric Pressure CO2 and Supercritical Steam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, Gordon; Tylczak, Joseph; Carney, Casey

    2017-02-26

    This presentation covers environments (including advanced ultra-supercritical (A-USC) steam boiler/turbine and sCO2 indirect power cycle), effects of pressure, exposure tests, oxidation results, and mechanical behavior after exposure.

  8. Model-free adaptive control of advanced power plants

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  9. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.

    PubMed

    Li, Ying; Yang, Da-Jian; Chen, Shi-Lin; Chen, Si-Bao; Chan, Albert Sun-Chi

    2008-07-09

    The aim of the study was to develop and evaluate a new method for the production of puerarin phospholipids complex (PPC) microparticles. The advanced particle formation method, solution enhanced dispersion by supercritical fluids (SEDS), was used for the preparation of puerarin (Pur), phospholipids (PC) and their complex particles for the first time. Evaluation of the processing variables on PPC particle characteristics was also conducted. The processing variables included temperature, pressure, solution concentration, the flow rate of supercritical carbon dioxide (SC-CO2) and the relative flow rate of drug solution to CO2. The morphology, particle size and size distribution of the particles were determined. Meanwhile Pur and phospholipids were separately prepared by gas antisolvent precipitation (GAS) method and solid characterization of particles by the two supercritical methods was also compared. Pur formed by GAS was more orderly, purer crystal, whereas amorphous Pur particles between 0.5 and 1microm were formed by SEDS. The complex was successfully obtained by SEDS exhibiting amorphous, partially agglomerated spheres comprised of particles sized only about 1microm. SEDS method may be useful for the processing of other pharmaceutical preparations besides phospholipids complex particles. Furthermore adopting a GAS process to recrystallize pharmaceuticals will provide a highly versatile methodology to generate new polymorphs of drugs in addition to conventional techniques.

  10. Supercritical fuel injection system

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  11. High-Pressure Liquid Chromatograph with Mass Spectrometric Detection for Analysis of Supercritical Fuels Pyrolysis Products

    DTIC Science & Technology

    2006-08-01

    conditions will necessarily be supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which...Spectrometric Detection for 5a. CONTRACT NUMBER Analysis of Supercritical Fuels Pyrolysis Products 5b. GRANT NUMBER FA9550-05-1-0253 5c... supercritical pyrolysis experiments with the model fuels 1-methylnaphthalene and toluene. The HPLC/UV/MS instrument facilitated the identification of fifteen 5

  12. Isoprene/methyl acrylate Diels-Alder reaction in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, B.; Akgerman, A.

    1999-12-01

    The Diels-Alder reaction between isoprene and methyl acrylate was carried out in supercritical carbon dioxide in the temperature range 110--140 C and the pressure range 95.2--176.9 atm in a 300 cm{sup 3} autoclave. The high-pressure phase behavior of the reaction mixture in the vicinity of its critical region was determined in a mixed vessel with a sight window to ensure that all the experiments were performed in the supercritical single-phase region. Kinetic data were obtained at different temperatures, pressures, and reaction times. It was observed that in the vicinity of the critical point the reaction rate constant decreases with increasingmore » pressure. It was also determined that the reaction selectivity does not change with operating conditions. Transition-state theory was used to explain the effect of pressure on reaction rate and product selectivity. Additional experiments were conducted at constant temperature but different phase behaviors (two-phase region, liquid phase, supercritical phase) by adjusting the initial composition and pressure. It was shown that the highest reaction rate is in the supercritical region.« less

  13. Prediction of the effects of thermal stratification on pressure and temperature response of the Apollo supercritical oxygen tank

    NASA Technical Reports Server (NTRS)

    Chen, I. M.; Anderson, R. E.

    1971-01-01

    A semiempirical design-oriented model has been developed for the prediction of the effects of thermal stratification on tank pressure and heater temperature response for the Apollo supercritical oxygen tank. The heat transfer formulation describes laminar free convection at low-g and takes into account the radiation and conduction processes occurring in the tank. The nonequilibrium thermodynamic behavior of the system due to localized heating of the stored fluid is represented by the characteristics of a discrete number of fluid regions and thermal nodes. Solutions to the time dependent variable fluid property problem are obtained through the use of a reference temperature procedure. A criterion which establishes the reference temperature as a function of the fluid density ratio is derived. The analytical results are compared with the flight data.

  14. Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.

    1990-01-01

    Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.

  15. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  16. Modeling of Fuel Film Cooling on Chamber Hot Wall

    DTIC Science & Technology

    2013-12-01

    flow at supercritical pressure. The fuel jet and the cross-flow interact. Some part of the jet is stripped off and entrained by the hot gas...modelers. The supercritical pressure makes information on equation of state and transport properties hard to come by. The large temperature range...the modeling of hydrocarbon fuel film cooling at supercritical pressures. A relevant recent simulation study by Yang and Sun [1] used a finite-rate

  17. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  18. Supercritical Fuel Measurements

    DTIC Science & Technology

    2012-09-01

    TERMS Fuels, supercritical fluids , stimulated scattering, Brillouin scattering, Rayleigh scattering, elastic properties, thermal properties 16...10 Supercritical Cell and Fluid Handling ....................................................................................... 11...motion in supercritical fluids . Thus, the method can perform diagnostics on the heat transfer of high-temperature and high-pressure fuels, measuring

  19. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmapmore » for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would advance the supercritical oxy-combustion cycle and the supercritical oxy-combustor from a current TRL of 2, Technology Concept, to TRL 6, Pilot Scale System Demonstrated in a Relevant Environment, and enable the evaluation and continued refinement of the supercritical oxy-combustor and critical secondary systems.« less

  20. Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition.

    PubMed

    Andrade, Kátia S; Gonçalvez, Ricardo T; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa Maria; Martínez, Julian; Ferreira, Sandra R S

    2012-01-15

    The present study describes the chemical composition and the antioxidant activity of spent coffee grounds and coffee husks extracts, obtained by supercritical fluid extraction (SFE) with CO(2) and with CO(2) and co-solvent. In order to evaluate the high pressure method in terms of process yield, extract composition and antioxidant activity, low pressure methods, such as ultrasound (UE) and soxhlet (SOX) with different organic solvents, were also applied to obtain the extracts. The conditions for the SFE were: temperatures of 313.15K, 323.15K and 333.15K and pressures from 100 bar to 300 bar. The SFE kinetics and the mathematical modeling of the overall extraction curves (OEC) were also investigated. The extracts obtained by LPE (low pressure extraction) with ethanol showed the best results for the global extraction yield (X(0)) when compared to SFE results. The best extraction yield was 15±2% for spent coffee grounds with ethanol and 3.1±04% for coffee husks. The antioxidant potential was evaluated by DPPH method, ABTS method and Folin-Ciocalteau method. The best antioxidant activity was showed by coffee husk extracts obtained by LPE. The quantification and the identification of the extracts were accomplished using HPLC analysis. The main compounds identified were caffeine and chlorogenic acid for the supercritical extracts from coffee husks. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo

    PubMed Central

    Yang, Gang; Zhao, Yaping; Zhang, Yongtai; Dang, Beilei; Liu, Ying; Feng, Nianping

    2015-01-01

    The aim of this investigation was to develop a procedure to improve the dissolution and bioavailability of silymarin (SM) by using bile salt-containing liposomes that were prepared by supercritical fluid technology (ie, solution-enhanced dispersion by supercritical fluids [SEDS]). The process for the preparation of SM-loaded liposomes containing a bile salt (SM-Lip-SEDS) was optimized using a central composite design of response surface methodology with the ratio of SM to phospholipids (w/w), flow rate of solution (mL/min), and pressure (MPa) as independent variables. Particle size, entrapment efficiency (EE), and drug loading (DL) were dependent variables for optimization of the process and formulation variables. The particle size, zeta potential, EE, and DL of the optimized SM-Lip-SEDS were 160.5 nm, −62.3 mV, 91.4%, and 4.73%, respectively. Two other methods to produce SM liposomes were compared to the SEDS method. The liposomes obtained by the SEDS method exhibited the highest EE and DL, smallest particle size, and best stability compared to liposomes produced by the thin-film dispersion and reversed-phase evaporation methods. Compared to the SM powder, SM-Lip-SEDS showed increased in vitro drug release. The in vivo AUC0−t of SM-Lip-SEDS was 4.8-fold higher than that of the SM powder. These results illustrate that liposomes containing a bile salt can be used to enhance the oral bioavailability of SM and that supercritical fluid technology is suitable for the preparation of liposomes. PMID:26543366

  2. Simultaneous destraction and desulfurization of Illinois coals with supercritical ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, B.C.

    1983-01-01

    Various Illinois coals (with Illinois number6 being the main one) are liquefied with various supercritical solvents (ethanol being the main solvent) at 543-598 K, system pressures of 6.99-24.23 MPa, flow rates of 3.0-7.5 ml/min, reaction time of 0-180 minutes, and coal particle sizes of 0.36-0.85 mm to 1.00-2.36 mm to systematically investigate the effects of flow rates, reaction time, coal particle size, temperature, pressure, coal characteristics (by using different Illinois coals), supercritical medium (by using different solvents), and the addition of potassium hydroxide. The % weight loss of coal and the % sulfur removal during destraction and desulfurization of coalmore » are functions of the flow rate, the reaction time, the coal particle size, temperature, pressure and the supercritical solvent. Temperature, pressure and the supercritical medium are the most important parameters in controlling the % weight loss of coal and the % sulfur removal. The % weight loss of coal can be related to a power law and fits quite nicely into a second order kinetic model. The % sulfur removal also follows a second order kinetic model. A secondary reaction is observed during the destraction process, which implies that destraction, and possibly desulfurization, of coal is a multistep reaction including a physical extraction step where the major portion of the coal and sulfur was removed and then followed by a chemical reaction. Supercritical ethanol definitely enhances the removal of sulfur compounds from coal. The enhanced selectivity by supercritical ethanol is greatest at a pressure just above the critical pressure of ethanol. Finally, addition of a base such as potassium hydroxide enhances both % weight loss of coal and the % sulfur removal.« less

  3. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md. Sohrab; Nik Ab Rahman, Nik Norulaini; Balakrishnan, Venugopal

    2015-04-15

    Highlights: • Supercritical carbon dioxide sterilization of clinical solid waste. • Inactivation of bacteria in clinical solid waste using supercritical carbon dioxide. • Reduction of the hazardous exposure of clinical solid waste. • Optimization of the supercritical carbon dioxide experimental conditions. - Abstract: Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO{sub 2}) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis,more » and gram-negative Escherichia coli in CSW. The effects of SC-CO{sub 2} sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO{sub 2}-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO{sub 2} exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials.« less

  4. Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-02-01

    Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.

  5. Shadowgraphy of transcritical cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Woodward, R. D.; Talley, D. G.; Anderson, T. J.; Winter, M.

    1994-01-01

    The future of liquid-rocket propulsion depends heavily on continued development of high pressure liquid oxygen/hydrogen systems that operate near or above the propellant critical states; however, current understanding of transcritical/supercritical injection and combustion is yet lacking. The Phillips Laboratory and the United Technologies Research Center are involved in a collaborative effort to develop diagnostics for and make detailed measurements of transcritical droplet vaporization and combustion. The present shadowgraph study of transcritical cryogenic fluids is aimed at providing insight into the behavior of liquid oxygen or cryogenic stimulants as they are injected into a supercritical environment of the same or other fluids. A detailed history of transcritical injection of liquid nitrogen into gaseous nitrogen at reduced pressures of 0.63 (subcritical) to 1.05 (supercritical) is provided. Also, critical point enhancement due to gas phase solubility and mixture effects is investigated by adding helium to the nitrogen system, which causes a distinct liquid phase to re-appear at supercritical nitrogen pressures. Liquid oxygen injection into supercritical argon or nitrogen, however, does not indicate an increase in the effective critical pressure of the system.

  6. Supercritical Fluid Spray Application Process for Adhesives and Primers

    DTIC Science & Technology

    2003-03-01

    The basic scheme of SFE process consists of three steps. A solvent, typically carbon dioxide, first is heated and pressurized to a supercritical...passivation step to remove contaminants and to prevent recontamination. Bok et al. (25) describe a pressure pulsation mechanism to stimulate improved...in as a liquid, and then it is heated to above its critical temperature to become a supercritical fluid. The sample is injected and dissolved into

  7. Using supercritical fluids to refine hydrocarbons

    DOEpatents

    Yarbro, Stephen Lee

    2015-06-09

    A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.

  8. The latent heat of vaporization of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Banuti, Daniel; Raju, Muralikrishna; Hickey, Jean-Pierre; Ihme, Matthias

    2016-11-01

    The enthalpy of vaporization is the energy required to overcome intermolecular attractive forces and to expand the fluid volume against the ambient pressure when transforming a liquid into a gas. It diminishes for rising pressure until it vanishes at the critical point. Counterintuitively, we show that a latent heat is in fact also required to heat a supercritical fluid from a liquid to a gaseous state. Unlike its subcritical counterpart, the supercritical pseudoboiling transition is spread over a finite temperature range. Thus, in addition to overcoming intermolecular attractive forces, added energy simultaneously heats the fluid. Then, considering a transition from a liquid to an ideal gas state, we demonstrate that the required enthalpy is invariant to changes in pressure for 0 < p < 3pcr . This means that the classical pressure-dependent latent heat is merely the equilibrium part of the phase transition. The reduction at higher pressures is compensated by an increase in a nonequilibrium latent heat required to overcome residual intermolecular forces in the real fluid vapor during heating. At supercritical pressures, all of the transition occurs at non-equilibrium; for p -> 0 , all of the transition occurs at equilibrium.

  9. Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)

    NASA Astrophysics Data System (ADS)

    Adenariwo, Adepoju

    The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have been done to appropriately size components in the loop. Sensitivity analysis has been done to find the optimum design for the loop.

  10. Supercritical transitiometry of polymers.

    PubMed

    Randzio, S L; Grolier, J P

    1998-06-01

    Employing supercritical fluids (SCFs) during polymers processing allows the unusual properties of SCFs to be exploited for making polymer products that cannot be obtained by other means. A new supercritical transitiometer has been constructed to permit study of the interactions of SCFs with polymers during processing under well-defined conditions of temperature and pressure. The supercritical transitiometer allows pressure to be exerted by either a supercritical fluid or a neutral medium and enables simultaneous determination of four basic parameters of a transition, i.e., p, T, Δ(tr)H and Δ(tr)V. This permits determination of the SCF effect on modification of the polymer structure at a given pressure and temperature and defines conditions to allow reproducible preparation of new polymer structures. Study of a semicrystalline polyethylene by this method has defined conditions for preparation of new microfoamed phases with good mechanical properties. The low densities and microporous structures of the new materials may make them useful for applications in medicine, pharmacy, or the food industry, for example.

  11. [Optimization for supercritical CO2 extraction with response surface methodology and component analysis of Sapindus mukorossi oil].

    PubMed

    Wu, Yan; Xiao, Xin-yu; Ge, Fa-huan

    2012-02-01

    To study the extraction conditions of Sapindus mukorossi oil by Supercritical CO2 Extraction and identify its components. Optimized SFE-CO2 Extraction by response surface methodology and used GC-MS to analysie Sapindus mukorossi oil compounds. Established the model of an equation for the extraction rate of Sapindus mukorossi oil by Supercritical CO2 Extraction, and the optimal parameters for the Supercritical CO2 Extraction determined by the equation were: the extraction pressure was 30 MPa, temperature was 40 degrees C; The separation I pressure was 14 MPa, temperature was 45 degrees C; The separation II pressure was 6 MPa, temperature was 40 degrees C; The extraction time was 60 min and the extraction rate of Sapindus mukorossi oil of 17.58%. 22 main compounds of Sapindus mukorossi oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 86.59%. This process is reliable, safe and with simple operation, and can be used for the extraction of Sapindus mukorossi oil.

  12. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method.

    PubMed

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks.

  13. Effect of supercritical fluid density on nanoencapsulated drug particle size using the supercritical antisolvent method

    PubMed Central

    Kalani, Mahshid; Yunus, Robiah

    2012-01-01

    The reported work demonstrates and discusses the effect of supercritical fluid density (pressure and temperature of supercritical fluid carbon dioxide) on particle size and distribution using the supercritical antisolvent (SAS) method in the purpose of drug encapsulation. In this study, paracetamol was encapsulated inside L-polylactic acid, a semicrystalline polymer, with different process parameters, including pressure and temperature, using the SAS process. The morphology and particle size of the prepared nanoparticles were determined by scanning electron microscopy and transmission electron microscopy. The results revealed that increasing temperature enhanced mean particle size due to the plasticizing effect. Furthermore, increasing pressure enhanced molecular interaction and solubility; thus, particle size was reduced. Transmission electron microscopy images defined the internal structure of nanoparticles. Thermal characteristics of nanoparticles were also investigated via differential scanning calorimetry. Furthermore, X-ray diffraction pattern revealed the changes in crystallinity structure during the SAS process. In vitro drug release analysis determined the sustained release of paracetamol in over 4 weeks. PMID:22619552

  14. High Pressure, Transport Properties of Fluids: Theory and Data from Levitated Fluid-Drops at Combustion-Relevant Temperatures

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Ohaska, K.

    2001-01-01

    The objective of this investigation is to derive a set of consistent mixing rules for calculating diffusivities and thermal diffusion factors over a thermodynamic regime encompassing the subcritical and supercritical ranges. These should serve for modeling purposes, and therefore for accurate simulations of high pressure phenomena such as fluid disintegration, turbulent flows and sprays. A particular consequence of this work will be the determination of effective Lewis numbers for supercritical conditions, thus enabling the examination of the relative importance of heat and mass transfer at supercritical pressures.

  15. Tabulated pressure measurements on an executive-type jet transport model with a supercritical wing

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1975-01-01

    A 1/9 scale model of an existing executive type jet transport refitted with a supercritical wing was tested on in the 8 foot transonic pressure tunnel. The supercritical wing had the same sweep as the original airplane wing but had maximum thickness chord ratios 33 percent larger at the mean geometric chord and almost 50 percent larger at the wing-fuselage juncture. Wing pressure distributions and fuselage pressure distributions in the vicinity of the left nacelle were measured at Mach numbers from 0.25 to 0.90 at angles of attack that generally varied from -2 deg to 10 deg. Results are presented in tabular form without analysis.

  16. [Optimization of supercritical fluid extraction of bioactive components in Ligusticum chuanxiong by orthogonal array design].

    PubMed

    Hu, Li-Cui; Wu, Xun; Yang, Xue-Dong

    2013-10-01

    With the yields of ferulic acid, coniferylferulate, Z-ligustilide, senkyunolide A, butylidenephthalide, butylphthalide, senkyunolide I, senkyunolide H, riligustilide, levistolide A, and total pharmacologically active ingredient as evaluation indexes, the extraction of Ligusticum chuanxiong by supercritical fluid technology was investigated through an orthogonal experiment L9 (3(4)). Four factors, namely temperature, pressure, flow rate of carbon dioxide, co-solvent concentration of the supercritical fluid, were investigated and optimized. Under the optimized conditions, namely 65 degrees C of temperature, 35 MPa of pressure, 1 L x min(-1) of CO2 flow rate, 8% of co-solvent concetration, supercritical fluid extraction could achieve a better yield than the conventional reflux extraction using methanol. And the supercritical fluid extraction process was validated to be stable and reliable.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr.

    Recently, carbonaceous materials were proved to be effective catalysts for hazardous waste decomposition in supercritical water. Gasification of the carbonaceous catalyst itself is also expected, however, under supercritical conditions. Thus, it is essential to determine the gasification rate of the carbonaceous materials during this process to determine the active lifetime of the catalysts. For this purpose, the gasification characteristics of granular coconut shell activated carbon in supercritical water alone (600-650{degrees}C, 25.5-34.5 MPa) were investigated. The gasification rate at subatmospheric pressure agreed well with the gasification rate at supercritical conditions, indicating the same reaction mechanism. Methane generation under these conditions ismore » via pyrolysis, and thus is not affected by the water pressure. An iodine number increase of 25% was observed as a result of the supercritical water gasification.« less

  18. High-pressure cell for neutron reflectometry of supercritical and subcritical fluids at solid interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Justin R; Rother, Gernot; Browning, Jim

    2012-01-01

    A new high-pressure cell design for use in neutron reflectometry (NR) for pressures up to 50 MPa and a temperature range of 300 473 K is described. The cell design guides the neutron beam through the working crystal without passing through additional windows or the bulk fluid, which provides for a high neutron transmission, low scattering background, and low beam distortion. The o-ring seal is suitable for a wide range of subcritical and supercritical fluids and ensures high chemical and pressure stability. Wafers with a diameter of 5.08 cm (2 in.) and 5 mm or 10 mm thickness can bemore » used with the cells, depending on the required pressure and momentum transfer range. The fluid volume in the sample cell is very small at about 0.1 ml, which minimizes scattering background and stored energy. The cell design and pressure setup for measurements with supercritical fluids are described. NR data are shown for silicon/silicon oxide and quartz wafers measured against air and subsequently within the high-pressure cell to demonstrate the neutron characteristics of the high-pressure cell. Neutron reflectivity data for supercritical CO2 in contact with quartz and Si/SiO2 wafers are also shown.« less

  19. Dehydrating and Sterilizing Wastes Using Supercritical CO2

    NASA Technical Reports Server (NTRS)

    Brown, Ian J.

    2006-01-01

    A relatively low-temperature process for dehydrating and sterilizing biohazardous wastes in an enclosed life-support system exploits (1) the superior mass-transport properties of supercritical fluids in general and (2) the demonstrated sterilizing property of supercritical CO2 in particular. The wastes to be treated are placed in a chamber. Liquid CO2, drawn from storage at a pressure of 850 psi (approx.=5.9 MPa) and temperature of 0 C, is compressed to pressure of 2 kpsi (approx.=14 MPa) and made to flow into the chamber. The compression raises the temperature to 10 C. The chamber and its contents are then further heated to 40 C, putting the CO2 into a supercritical state, in which it kills microorganisms in the chamber. Carrying dissolved water, the CO2 leaves the chamber through a back-pressure regulator, through which it is expanded back to the storage pressure. The expanded CO2 is refrigerated to extract the dissolved water as ice, and is then returned to the storage tank at 0 C

  20. [Extraction of 10-Deacetyl Baccatin by Supercritical CO2 from Taxus yunnanensis Branches and Leaves].

    PubMed

    Tang, Yang-qin; Li, Hai-chi; Huang, Wen-jie; Xiong, Yan; Ge, Fa-huan

    2015-04-01

    To study the supercritical CO2 fluids extraction (SFE) method to extract the components from Taxus yunnanensis. Medicinal meterials were extracted by supercritical CO2, and then purified by industrial chromatography. Using the extraction yield of 10-DAB as the index,single factor test was carried out to investigate the effect of co-solvent, extraction time, extraction pressure, extraction temperature, pressure and temperature of separation kettle I. Then orthogonal experiment was used to optimize the best extraction condition. The suitable extraction condition was as follows: the ratio of co-solvent (80% ethanol) amount and the madicinal materials was 3: 1, Separation kettle I pressure was 14 MPa, separation kettle I temperature was 40 °C, extraction pressure was 25 MPa, extraction temperature was 60 T and extraction time was 90 min. The extract was separated by industrial chromatographic and then crystallized. The supercritical CO2 extraction and purification process of 10-DAB were simple and feasible.

  1. Advanced Thermal Storage for Central Receivers with Supercritical Coolants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Bruce D.

    2010-06-15

    The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Lowmore » temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 °C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 °C. At temperatures of 700 °C and above, intermetallic compounds can precipitate between, and within, the grains of nickel alloys. The precipitation leads to an increase in tensile strength, and a decrease in ductility. Whether the proposed tube materials can provide the required low cycle fatigue life for the supercritical H2O and CO2 receivers is an open question. 4) A ranking of the plants, in descending order of technical and economic feasibility, is as follows: i) Supercritical nitrate salt and baseline nitrate salt: equal ratings ii) Low temperature supercritical H2O iii) Low temperature supercritical CO2 iv) High temperature supercritical CO2 v) High temperature supercritical H2O 5) The two-tank nitrate salt thermal storage systems are strongly preferred over the thermocline systems using supercritical heat transport fluids.« less

  2. Benzil fluorescence and phosphorescence emissions: a pertinent probe for the kinematic behaviour and microheterogeneity of supercritical CO 2

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Nitin; Serpa, Carlos; Isilda Silva, M.; Arnaut, Luis G.; Formosinho, Sebastião J.

    2001-10-01

    The relative intensity (RI) of the phosphorescence and fluorescence from the relaxed trans-planar geometry of benzil has been studied as a function of pressure and temperature in supercritical carbon dioxide (SC-CO 2). The nature of the variation of RI with pressure and temperature is similar to that of the kinematic viscosity (KV) with the two said parameters. The experimental results have been interpreted in terms of microheterogeneity of the supercritical fluid (SCF).

  3. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth.

    PubMed

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-09-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%).

  4. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth#

    PubMed Central

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-01-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%). PMID:27604860

  5. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption

    PubMed Central

    Sovová, Helena; Nobre, Beatriz P.; Palavra, António

    2016-01-01

    Microalgae contain valuable biologically active lipophilic substances such as omega-3 fatty acids and carotenoids. In contrast to the recovery of vegetable oils from seeds, where the extraction with supercritical CO2 is used as a mild and selective method, economically viable application of this method on similarly soluble oils from microalgae requires, in most cases, much higher pressure. This paper presents and verifies hypothesis that this difference is caused by high adsorption capacity of microalgae. Under the pressures usually applied in supercritical fluid extraction from plants, microalgae bind a large fraction of the extracted oil, while under extremely high CO2 pressures their adsorption capacity diminishes and the extraction rate depends on oil solubility in supercritical CO2. A mathematical model for the extraction from microalgae was derived and applied to literature data on the extraction kinetics in order to determine model parameters. PMID:28773546

  6. Influence of supercritical CO(2) pressurization on the phase behavior of mixed cholesteryl esters.

    PubMed

    Huang, Zhen; Feng, Mei; Su, Junfeng; Guo, Yuhua; Liu, Tie-Yan; Chiew, Yee C

    2010-09-15

    Evidences indicating the presence of phase transformations in the mixed cholesteryl benzoate (CBE) and cholesteryl butyrate (CBU) under the supercritical CO(2) pressurization, by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD), are presented in this work. These include (1) the DSC heating curve of pure CBU; (2) the DSC heating curves of CBU/CBE mixtures; (3) the XRD spectra of pure CBU; (4) the XRD spectra of CBU/CBE mixtures; (5) CBU and CBE are miscible in either solid phase or liquid phase over the whole composition range. As a result of the presence of these phase transformations induced by pressurization, it could be deduced that a solid solution of the CBU/CBE mixture might have formed at the interfaces under supercritical conditions, subsequently influencing their dissolving behaviors in supercritical CO(2). Copyright 2010 Elsevier B.V. All rights reserved.

  7. Experimental study of elliptical jet from sub to supercritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in

    2014-04-15

    The jet mixing at supercritical conditions involves fluid dynamics as well as thermodynamic phenomena. All the jet mixing studies at critical conditions to the present date have focused only on axisymmetric jets. When the liquid jet is injected into supercritical environment, the thermodynamic transition could be well understood by considering one of the important fluid properties such as surface tension since it decides the existence of distinct boundary between the liquid and gaseous phase. It is well known that an elliptical liquid jet undergoes axis-switching phenomena under atmospheric conditions due to the presence of surface tension. The experimental investigations weremore » carried out with low speed elliptical jet under supercritical condition. Investigation of the binary component system with fluoroketone jet and N{sub 2} gas as environment shows that the surface tension force dominates for a large downstream distance, indicating delayed thermodynamic transition. The increase in pressure to critical state at supercritical temperature is found to expedite the thermodynamic transition. The ligament like structures has been observed rather than droplets for supercritical pressures. However, for the single component system with fluoroketone jet and fluoroketone environment shows that the jet disintegrates into droplets as it is subjected to the chamber conditions even for the subcritical pressures and no axis switching phenomenon is observed. For a single component system, as the pressure is increased to critical state, the liquid jet exhibits gas-gas like mixing behavior and that too without exhibiting axis-switching behavior.« less

  8. [Supercritical CO2 extraction and component analysis of Aesculus wilsonii seed oil].

    PubMed

    Chen, Guang-Yu; Shi, Zhao-Hua; Li, Hai-Chi; Ge, Fa-Huan; Zhan, Hua-Shu

    2013-03-01

    To research the optimal extraction process of supercritical CO2 extraction and analyze the component of the oil extracted from Aesculus wilsonii seed. Using the yield of Aesculus wilsonii seed oil as the index, optimized supercritical CO2 extraction parameter by orthogonal experiment methodology and analysed the compounds of Aesculus wilsonii seed oil by GC-MS. The optimal parameters of the supercritical CO2 extraction of the oil extracted from Aesculus wilsoniit seed were determined: the extraction pressure was 28 MPa and the temperature was 38 degrees C, the separation I pressure was 12 MPa and the temperature was 40 degrees C, the separation II pressure was 5 MPa and the temperature was 40 degrees C, the extraction time was 110 min. The average extraction rate of Aesculus wilsonii seed oil was 1.264%. 26 kinds of compounds were identified by GC-MS in Aesculus wilsonii seed oil extracted by supercritical CO2. The main components were fatty acids. Comparing with the petroleum ether extraction, the supercritical CO2 extraction has higher extraction rate, shorter extraction time, more clarity oil. The kinds of fatty acids with high amounts in Aesculus wilsonii seed oil is identical in general, the kinds of fatty acids with low amounts in Aesculus wilsonii seed oil have differences.

  9. The Frenkel Line: a direct experimental evidence for the new thermodynamic boundary

    DOE PAGES

    Bolmatov, Dima; Zhernenkov, Mikhail; Zav’yalov, Dmitry; ...

    2015-11-05

    We report that supercritical fluids play a significant role in elucidating fundamental aspects of liquid matter under extreme conditions. They have been extensively studied at pressures and temperatures relevant to various industrial applications. However, much less is known about the structural behaviour of supercritical fluids and no structural crossovers have been observed in static compression experiments in any temperature and pressure ranges beyond the critical point. The structure of supercritical state is currently perceived to be uniform everywhere on the pressure-temperature phase diagram, and to change only in a monotonic way even moving around the critical point, not only alongmore » isotherms or isobars. Conversely, we observe structural crossovers for the first time in a deeply supercritical sample through diffraction measurements in a diamond anvil cell and discover a new thermodynamic boundary on the pressure-temperature diagram. We explain the existence of these crossovers in the framework of the phonon theory of liquids using molecular dynamics simulations. The obtained results are of prime importance since they imply a global reconsideration of the mere essence of the supercritical phase. Furthermore, this discovery may pave the way to new unexpected applications and to the exploration of exotic behaviour of confined fluids relevant to geo- and planetary sciences.« less

  10. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir, which is located at the top of magma chamber of granite-porphyry system, will be revealed.

  11. Optimisation of the supercritical extraction of toxic elements in fish oil.

    PubMed

    Hajeb, P; Jinap, S; Shakibazadeh, Sh; Afsah-Hejri, L; Mohebbi, G H; Zaidul, I S M

    2014-01-01

    This study aims to optimise the operating conditions for the supercritical fluid extraction (SFE) of toxic elements from fish oil. The SFE operating parameters of pressure, temperature, CO2 flow rate and extraction time were optimised using a central composite design (CCD) of response surface methodology (RSM). High coefficients of determination (R²) (0.897-0.988) for the predicted response surface models confirmed a satisfactory adjustment of the polynomial regression models with the operation conditions. The results showed that the linear and quadratic terms of pressure and temperature were the most significant (p < 0.05) variables affecting the overall responses. The optimum conditions for the simultaneous elimination of toxic elements comprised a pressure of 61 MPa, a temperature of 39.8ºC, a CO₂ flow rate of 3.7 ml min⁻¹ and an extraction time of 4 h. These optimised SFE conditions were able to produce fish oil with the contents of lead, cadmium, arsenic and mercury reduced by up to 98.3%, 96.1%, 94.9% and 93.7%, respectively. The fish oil extracted under the optimised SFE operating conditions was of good quality in terms of its fatty acid constituents.

  12. Conditioning of carbonaceous material prior to physical beneficiation

    DOEpatents

    Warzinski, Robert P.; Ruether, John A.

    1987-01-01

    A carbonaceous material such as coal is conditioned by contact with a supercritical fluid prior to physical beneficiation. The solid feed material is contacted with an organic supercritical fluid such as cyclohexane or methanol at temperatures slightly above the critical temperature and pressures of 1 to 4 times the critical pressure. A minor solute fraction is extracted into critical phase and separated from the solid residuum. The residuum is then processed by physical separation such as by froth flotation or specific gravity separation to recover a substantial fraction thereof with reduced ash content. The solute in supercritical phase can be released by pressure reduction and recombined with the low-ash, carbonaceous material.

  13. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical andmore » near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.« less

  14. Step-wise supercritical extraction of carbonaceous residua

    DOEpatents

    Warzinski, Robert P.

    1987-01-01

    A method of fractionating a mixture containing high boiling carbonaceous material and normally solid mineral matter includes processing with a plurality of different supercritical solvents. The mixture is treated with a first solvent of high critical temperature and solvent capacity to extract a large fraction as solute. The solute is released as liquid from solvent and successively treated with other supercritical solvents of different critical values to extract fractions of differing properties. Fractionation can be supplemented by solute reflux over a temperature gradient, pressure let down in steps and extractions at varying temperature and pressure values.

  15. Evaporation and combustion of LOX under supercritical and subcritical conditions

    NASA Technical Reports Server (NTRS)

    Yang, A. S.; Hsieh, W. H.; Kuo, K. K.

    1993-01-01

    The objective is to study the evaporation and combustion of LOX under supercritical and subcritical conditions both experimentally and theoretically. In the evaporation studies, evaporation rate and surface temperature were measured when LOX vaporizing in helium environments at pressures ranging from 5 to 68 atm. A Varian 3700 gas chromatograph was employed to measure the oxygen concentration above the LOX surface. For the combustion tests, high-magnification video photography was used to record direct images of the flame shape of a LOX/H2/He laminar diffusion flame. The gas composition in the post-flame region is also being measured with the gas sampling and chromatography analysis. These data are being used to validate the theoretical model. A comprehensive theoretical model with the consideration of the solubility of ambient gases as well as variable thermophysical properties was formulated and solved numerically to study the gasification and burning of LOX at elevated pressures. The calculated flame shape agreed reasonably well with the edge of the observed luminous flame surface. The effect of gravity on the flame structure of laminar diffusion flames was found to be significant. In addition, the predicted results using the flame-sheet model were compared with those based upon full equilibrium calculations (which considered the formation of intermediate species) at supercritical pressures. Except at the flame front where temperature exceeded 2,800 K, the flame-sheet and equilibrium solutions in terms of temperature distributions were in very close agreement. The temperature deviation in the neighborhood of the flame front is caused by the effect of high-temperature dissociation.

  16. Method and apparatus for waste destruction using supercritical water oxidation

    DOEpatents

    Haroldsen, Brent Lowell; Wu, Benjamin Chiau-pin

    2000-01-01

    The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

  17. Flight Wing Surface Pressure and Boundary-Layer Data Report from the F-111 Smooth Variable-Camber Supercritical Mission Adaptive Wing

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.

    1997-01-01

    Flight tests were conducted using the advanced fighter technology integration F-111 (AFTI/F-111) aircraft modified with a variable-sweep supercritical mission adaptive wing (MAW). The MAW leading- and trailing-edge variable-camber surfaces were deflected in flight to provide a near-ideal wing camber shape for the flight condition. The MAW features smooth, flexible upper surfaces and fully enclosed lower surfaces, which distinguishes it from conventional flaps that have discontinuous surfaces and exposed or semi-exposed mechanisms. Upper and lower surface wing pressure distributions were measured along four streamwise rows on the right wing for cruise, maneuvering, and landing configurations. Boundary-layer measurements were obtained near the trailing edge for one of the rows. Cruise and maneuvering wing leading-edge sweeps were 26 deg for Mach numbers less than 1 and 45 deg or 58 deg for Mach numbers greater than 1. The landing wing sweep was 9 deg or 16 deg. Mach numbers ranged from 0.27 to 1.41, angles of attack from 2 deg to 13 deg, and Reynolds number per unit foot from 1.4 x 10(exp 6) to 6.5 x 10(exp 6). Leading-edge cambers ranged from O deg to 20 deg down, and trailing-edge cambers ranged from 1 deg up to 19 deg down. Wing deflection data for a Mach number of 0.85 are shown for three cambers. Wing pressure and boundary-layer data are given. Selected data comparisons are shown. Measured wing coordinates are given for three streamwise semispan locations for cruise camber and one spanwise location for maneuver camber.

  18. Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin: Implications for carbon sequestration and enhanced coalbed methane recovery

    USGS Publications Warehouse

    Pashin, J.C.; McIntyre, M.R.

    2003-01-01

    Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs equilibrate toward a normal hydrostatic pressure gradient after abandonment. Coal can hold large quantities of carbon dioxide under supercritical conditions, and supercritical isotherms indicate non-Langmiur conditions under which some carbon dioxide may remain mobile in coal or may react with formation fluids or minerals. Hence, carbon sequestration and enhanced coalbed methane recovery show great promise in subcritical reservoirs, and additional research is required to assess the behavior of carbon dioxide in coal under supercritical conditions where additional sequestration capacity may exist. ?? 2003 Elsevier Science B.V. All rights reserved.

  19. Numerical investigation of heat transfer in parallel channels with water at supercritical pressure.

    PubMed

    Shitsi, Edward; Kofi Debrah, Seth; Yao Agbodemegbe, Vincent; Ampomah-Amoako, Emmanuel

    2017-11-01

    Thermal phenomena such as heat transfer enhancement, heat transfer deterioration, and flow instability observed at supercritical pressures as a result of fluid property variations have the potential to affect the safety of design and operation of Supercritical Water-cooled Reactor SCWR, and also challenge the capabilities of both heat transfer correlations and Computational Fluid Dynamics CFD physical models. These phenomena observed at supercritical pressures need to be thoroughly investigated. An experimental study was carried out by Xi to investigate flow instability in parallel channels at supercritical pressures under different mass flow rates, pressures, and axial power shapes. Experimental data on flow instability at inlet of the heated channels were obtained but no heat transfer data along the axial length was obtained. This numerical study used 3D numerical tool STAR-CCM+ to investigate heat transfer at supercritical pressures along the axial lengths of the parallel channels with water ahead of experimental data. Homogeneous axial power shape HAPS was adopted and the heating powers adopted in this work were below the experimental threshold heating powers obtained for HAPS by Xi. The results show that the Fluid Centre-line Temperature FCLT increased linearly below and above the PCT region, but flattened at the PCT region for all the system parameters considered. The inlet temperature, heating power, pressure, gravity and mass flow rate have effects on WT (wall temperature) values in the NHT (normal heat transfer), EHT (enhanced heat transfer), DHT (deteriorated heat transfer) and recovery from DHT regions. While variation of all other system parameters in the EHT and PCT regions showed no significant difference in the WT and FCLT values respectively, the WT and FCLT values respectively increased with pressure in these regions. For most of the system parameters considered, the FCLT and WT values obtained in the two channels were nearly the same. The numerical study was not quantitatively compared with experimental data along the axial lengths of the parallel channels, but it was observed that the numerical tool STAR-CCM+ adopted was able to capture the trends for NHT, EHT, DHT and recovery from DHT regions. The heating powers used for the various simulations were below the experimentally observed threshold heating powers, but heat transfer deterioration HTD was observed, confirming the previous finding that HTD could occur before the occurrence of unstable behavior at supercritical pressures. For purposes of comparing the results of numerical simulations with experimental data, the heat transfer data on temperature oscillations obtained at the outlet of the heated channels and instability boundary results obtained at the inlet of the heated channels were compared. The numerical results obtained quite well agree with the experimental data. This work calls for provision of experimental data on heat transfer in parallel channels at supercritical pressures for validation of similar numerical studies.

  20. MALEIC ANHYDRIDE HYDROGENATION OF PD/AL2O3 CATALYST UNDER SUPERCRITICAL CO2 MEDIUM

    EPA Science Inventory

    Hydrogenation of maleic anhydride (MA) to either y-butyrolactone of succinic anhydride over simple Pd/Al2O3 impregnated catalyst in supercritical CO2 medium has been studied at different temperatures and pressures. A comparison of the supercritical CO2 medium reaction with the c...

  1. Supercritical-Fluid Extraction of Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1982-01-01

    New supercritical solvent mixtures have been laboratory-tested for extraction of oil from tar sands. Mixture is circulated through sand at high pressure and at a temperature above critical point, dissolving organic matter into the compressed gas. Extract is recovered from sand residues. Low-temperature super-critical solvents reduce energy consumption and waste-disposal problems.

  2. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given power rating.

  3. The thermal circuit of a nuclear power station's unit built around a supercritical-pressure water-cooled reactor

    NASA Astrophysics Data System (ADS)

    Silin, V. A.; Zorin, V. M.; Tagirov, A. M.; Tregubova, O. I.; Belov, I. V.; Povarov, P. V.

    2010-12-01

    Main results obtained from calculations of the steam generator and thermal circuit of the steam turbine unit for a nuclear power unit with supercritical-pressure water coolant and integral layout are presented. The obtained characteristics point to the advisability of carrying out further developments of this promising nuclear power technology.

  4. Size-selective separation of polydisperse gold nanoparticles in supercritical ethane.

    PubMed

    Williams, Dylan P; Satherley, John

    2009-04-09

    The aim of this study was to use supercritical ethane to selectively disperse alkanethiol-stabilized gold nanoparticles of one size from a polydisperse sample in order to recover a monodisperse fraction of the nanoparticles. A disperse sample of metal nanoparticles with diameters in the range of 1-5 nm was prepared using established techniques then further purified by Soxhlet extraction. The purified sample was subjected to supercritical ethane at a temperature of 318 K in the pressure range 50-276 bar. Particles were characterized by UV-vis absorption spectroscopy, TEM, and MALDI-TOF mass spectroscopy. The results show that with increasing pressure the dispersibility of the nanoparticles increases, this effect is most pronounced for smaller nanoparticles. At the highest pressure investigated a sample of the particles was effectively stripped of all the smaller particles leaving a monodisperse sample. The relationship between dispersibility and supercritical fluid density for two different size samples of alkanethiol-stabilized gold nanoparticles was considered using the Chrastil chemical equilibrium model.

  5. Measured and predicted pressure distributions on the AFTI/F-111 mission adaptive wing

    NASA Technical Reports Server (NTRS)

    Webb, Lannie D.; Mccain, William E.; Rose, Lucinda A.

    1988-01-01

    Flight tests have been conducted using an F-111 aircraft modified with a mission adaptive wing (MAW). The MAW has variable-camber leading and trailing edge surfaces that can change the wing camber in flight, while preserving smooth upper surface contours. This paper contains wing surface pressure measurements obtained during flight tests at Dryden Flight Research Facility of NASA Ames Research Center. Upper and lower surface steady pressure distributions were measured along four streamwise rows of static pressure orifices on the right wing for a leading-edge sweep angle of 26 deg. The airplane, wing, instrumentation, and test conditions are discussed. Steady pressure results are presented for selected wing camber deflections flown at subsonic Mach numbers up to 0.90 and an angle-of-attack range of 5 to 12 deg. The Reynolds number was 26 million, based on the mean aerodynamic chord. The MAW flight data are compared to MAW wind tunnel data, transonic aircraft technology (TACT) flight data, and predicted pressure distributions. The results provide a unique database for a smooth, variable-camber, advanced supercritical wing.

  6. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can bemore » used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.« less

  7. Developing an effective means to reduce 5-hydroxymethyl-2-furfural from caramel colour.

    PubMed

    Guan, Yongguang; Chen, Mingshun; Yu, Shujuan; Tang, Qiang; Yan, He

    2014-01-15

    Supercritical carbon dioxide fluid extraction was used to extract 5-hydroxymethyl-2-furfural from caramel colour (solid content was about 75%). The procedure was carried out by response surface methodology using a quadratic polynomial model. Extraction pressure, time, temperature and ethanol content were selected as the independent variables. Conditions to obtain the highest extraction ratio of 5-hydroxymethyl-2-furfural were determined to be an extraction pressure of 21.65MPa, time of 46.7min, temperature of 35°C and 70% ethanol content of caramel colour. The predicted 5-hydroxymethyl-2-furfural extraction ratio was 87.42%. Under the conditions stated above, the experimental value of 5-hydroxymethyl-2-furfural extraction ratio was 86.98%, which was similar to the predicted value by the model. This study indicated that supercritical carbon dioxide fluid extraction can effectively reduce 5-hydroxymethyl-2-furfural from caramel colour, which can help food industry to improve the safety of the food material, as well as provide more healthy caramel colour for human beings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water

    PubMed Central

    Hayashi, Hiromichi; Hakuta, Yukiya

    2010-01-01

    This paper summarizes specific features of supercritical hydrothermal synthesis of metal oxide particles. Supercritical water allows control of the crystal phase, morphology, and particle size since the solvent's properties, such as density of water, can be varied with temperature and pressure, both of which can affect the supersaturation and nucleation. In this review, we describe the advantages of fine particle formation using supercritical water and describe which future tasks need to be solved. PMID:28883312

  9. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)

    2000-01-01

    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past, however none of these studies identified the crucial differences between the subcritical and supercritical behavior. In fact, in two of these studies, it was found that the subcritical and supercritical behavior is similar as the drop diameter decreased according to the classical d(exp 2)-law over a wide range of pressures and drop diameters. The present study is devoted to the exploration of differences in fluid-behavior characteristics under subcritical and supercritical conditions in the particular case of heptane fluid drops in nitrogen; these substances were selected because of the availability of experimental observations for model validation.

  10. Preparation of high porosity xerogels by chemical surface modification.

    DOEpatents

    Deshpande, Ravindra; Smith, Douglas M.; Brinker, C. Jeffrey

    1996-01-01

    This invention provides an extremely porous xerogel dried at vacuum-to-below supercritical pressures but having the properties of aerogels which are typically dried at supercritical pressures. This is done by reacting the internal pore surface of the wet gel with organic substances in order to change the contact angle of the fluid meniscus in the pores during drying. Shrinkage of the gel (which is normally prevented by use of high autoclave pressures, such that the pore fluid is at temperature and pressure above its critical values) is avoided even at vacuum or ambient pressures.

  11. Supercritical Fluid Extraction of Pyrrolidine Alkaloid from Leaves of Piper amalago L.

    PubMed Central

    Filho, L. C.; Faiões, V. S.; Cunha-Júnior, E. F.; Torres-Santos, E. C.; Cortez, D. A. G.

    2017-01-01

    Supercritical fluid extraction was used to extract the alkaloid N-[7-(3′,4′-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl]pyrrolidine from leaves of Piper amalago L. A three-level orthogonal array design matrix, OAD OA9(34), was used for optimization of the parameters of supercritical extraction of the alkaloid, employing supercritical carbon dioxide: extraction time (20, 40, and 60 min), temperature (40, 50, and 60°C), pressure (150, 200, and 250 bar), and the use of cosolvents (ethanol, methanol, and propyleneglycol). All parameters had significant effect on the alkaloid yield. The alkaloid yield after 60 min of extraction without cosolvents at 9 different conditions (32) in terms of temperature (40, 50, and 60°C) and pressure (150, 200, and 250 bar) was also evaluated. The optimal yield (≈3.8 mg g−1) was obtained with supercritical CO2 + methanol (5% v : v) at 40°C and 200 bar for 60 min of extraction. PMID:28539966

  12. Field-portable supercritical CO{sub 2} extractor

    DOEpatents

    Wright, B.W.; Zemanian, T.S.; Robins, W.H.; Woodcock, L.J.

    1997-06-10

    The present invention is an apparatus for extracting organic compounds from solid materials. A generator vessel has a removable closure for receiving a solid or liquid solvent which is heated with a resistive heating element to a gaseous or supercritical phase. The removable closure is unencumbered because the side wall is penetrated with an outlet for the gaseous or supercritical solvent. The generator vessel further has a pressure transducer that provides an electronic signal related to pressure of the gaseous or supercritical solvent. The apparatus of the present invention further includes at least one extraction cell having a top and a bottom and a wall extending there between, wherein the bottom is sealably penetrated by an inlet for gaseous or supercritical solvent received through a manifold connected to the outlet, the top having an easy-open removable closure cap, and the wall having an outlet port. Finally, a permeable sample cartridge is included for holding the solid materials and to provide radial-flow of the extraction fluid, which is placed within the extraction cell. 10 figs.

  13. Field-portable supercritical CO.sub.2 extractor

    DOEpatents

    Wright, Bob W.; Zemanian, Thomas S.; Robins, William H.; Woodcock, Leslie J.

    1997-01-01

    The present invention is an apparatus for extracting organic compounds from solid materials. A generator vessel has a removable closure for receiving a solid or liquid solvent which is heated with a resistive heating element to a gaseous or supercritical phase. The removable closure is unencumbered because the side wall is penetrated with an outlet for the gaseous or supercritical solvent. The generator vessel further has a pressure transducer that provides an electronic signal related to pressure of the gaseous or supercritical solvent. The apparatus of the present invention further includes at least one extraction cell having a top and a bottom and a wall extending therebetween, wherein the bottom is sealably penetrated by an inlet for gaseous or supercritical solvent received through a manifold connected to the outlet, the top having an easy-open removable closure cap, and the wall having an outlet port. Finally, a permeable sample cartridge is included for holding the solid materials and to provide radial-flow of the extraction fluid, which is placed within the extraction cell.

  14. Design of an efficient space constrained diffuser for supercritical CO2 turbines

    NASA Astrophysics Data System (ADS)

    Keep, Joshua A.; Head, Adam J.; Jahn, Ingo H.

    2017-03-01

    Radial inflow turbines are an arguably relevant architecture for energy extraction from ORC and supercritical CO 2 power cycles. At small scale, design constraints can prescribe high exit velocities for such turbines, which lead to high kinetic energy in the turbine exhaust stream. The inclusion of a suitable diffuser in a radial turbine system allows some exhaust kinetic energy to be recovered as static pressure, thereby ensuring efficient operation of the overall turbine system. In supercritical CO 2 Brayton cycles, the high turbine inlet pressure can lead to a sealing challenge if the rotor is supported from the rotor rear side, due to the seal operating at rotor inlet pressure. An alternative to this is a cantilevered layout with the rotor exit facing the bearing system. While such a layout is attractive for the sealing system, it limits the axial space claim of any diffuser. Previous studies into conical diffuser geometries for supercritical CO 2 have shown that in order to achieve optimal static pressure recovery, longer geometries of a shallower cone angle are necessitated when compared to air. A diffuser with a combined annular-radial arrangement is investigated as a means to package the aforementioned geometric characteristics into a limited space claim for a 100kW radial inflow turbine. Simulation results show that a diffuser of this design can attain static pressure rise coefficients greater than 0.88. This confirms that annular-radial diffusers are a viable design solution for supercritical CO2 radial inflow turbines, thus enabling an alternative cantilevered rotor layout.

  15. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    EPA Science Inventory

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  16. XAFS measurements on zinc chloride aqueous solutions from ambient to supercritical conditions using the diamond anvil cell

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    1999-01-01

    The structure and bonding properties of metal complexes in subcritical and supercritical fluids are still largely unknown. Conventional high pressure and temperature cell designs impose considerable limitations on the pressure, temperature, and concentration of metal salts required for measurements on solutions under supercritical conditions. In this study, we demonstrate the first application of the diamond anvil cell, specially designed for x-ray absorption studies of first-row transition metal ions in supercritical fluids. Zn K-edge XAFS spectra were measured from aqueous solutions of 1-2m ZnCl2 and up to 6m NaCl, at temperatures ranging from 25-660 ??C and pressures up to 800 MPa. Our results indicate that the ZnCl42- complex is predominant in the 1m ZnCl2/6m NaCl solution, while ZnCl2(H2O)2 is similarly predominant in the 2m ZnCl2 solution, at all temperatures and pressures. The Zn-Cl bond length of both types of chlorozinc(II) complexes was found to decrease at a rate of about 0.01 A??/100 ??C.

  17. Bio-oil production from biomass via supercritical fluid extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds weremore » identified by GC-MS obtained in acetone and ethanol respectively.« less

  18. Application of response surface methodology to optimise supercritical carbon dioxide extraction of volatile compounds from Crocus sativus.

    PubMed

    Shao, Qingsong; Huang, Yuqiu; Zhou, Aicun; Guo, Haipeng; Zhang, Ailian; Wang, Yong

    2014-05-01

    Crocus sativus has been used as a traditional Chinese medicine for a long time. The volatile compounds of C. sativus appear biologically active and may act as antioxidants as well as anticonvulsants, antidepressants and antitumour agents. In order to obtain the highest possible yield of essential oils from C. sativus, response surface methodology was employed to optimise the conditions of supercritical fluid carbon dioxide extraction of the volatile compounds from C. sativus. Four factorswere investigated: temperature, pressure, extraction time and carbon dioxide flow rate. Furthermore, the chemical compositions of the volatile compounds extracted by supercritical fluid extraction were compared with those obtained by hydro-distillation and Soxhlet extraction. The optimum extraction conditions were found to be: optimised temperature 44.9°C, pressure 34.9 MPa, extraction time 150.2 min and CO₂ flow rate 10.1 L h⁻¹. Under these conditions, the mean extraction yield was 10.94 g kg⁻¹. The volatile compounds extracted by supercritical fluid extraction and Soxhlet extraction contained a large amount of unsaturated fatty acids. Response surface methodology was successfully applied for supercritical fluid CO₂ extraction optimisation of the volatile compounds from C. sativus. The study showed that pressure and CO₂ flow rate had significant effect on volatile compounds yield produced by supercritical fluid extraction. This study is beneficial for the further research operating on a large scale. © 2013 Society of Chemical Industry.

  19. Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.

    1980-01-01

    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.

  20. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  1. Optimization of sample preparation variables for wedelolactone from Eclipta alba using Box-Behnken experimental design followed by HPLC identification.

    PubMed

    Patil, A A; Sachin, B S; Shinde, D B; Wakte, P S

    2013-07-01

    Coumestan wedelolactone is an important phytocomponent from Eclipta alba (L.) Hassk. It possesses diverse pharmacological activities, which have prompted the development of various extraction techniques and strategies for its better utilization. The aim of the present study is to develop and optimize supercritical carbon dioxide assisted sample preparation and HPLC identification of wedelolactone from E. alba (L.) Hassk. The response surface methodology was employed to study the optimization of sample preparation using supercritical carbon dioxide for wedelolactone from E. alba (L.) Hassk. The optimized sample preparation involves the investigation of quantitative effects of sample preparation parameters viz. operating pressure, temperature, modifier concentration and time on yield of wedelolactone using Box-Behnken design. The wedelolactone content was determined using validated HPLC methodology. The experimental data were fitted to second-order polynomial equation using multiple regression analysis and analyzed using the appropriate statistical method. By solving the regression equation and analyzing 3D plots, the optimum extraction conditions were found to be: extraction pressure, 25 MPa; temperature, 56 °C; modifier concentration, 9.44% and extraction time, 60 min. Optimum extraction conditions demonstrated wedelolactone yield of 15.37 ± 0.63 mg/100 g E. alba (L.) Hassk, which was in good agreement with the predicted values. Temperature and modifier concentration showed significant effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds.

    PubMed

    Ghafoor, Kashif; Al-Juhaimi, Fahad Y; Choi, Yong Hee

    2012-12-01

    Supercritical fluid extraction (SFE) technique was applied and optimized for temperature, CO₂ pressure and ethanol (modifier) concentration using orthogonal array design and response surface methodology for the extract yield, total phenols and antioxidants from grape (Vitis labrusca B.) seeds. Effects of extraction temperature and pressure were found to be significant for all these response variables in SFE process. Optimum SFE conditions (44 ~ 46 °C temperature and 153 ~ 161 bar CO₂ pressure) along with ethanol (<7 %) as modifier, for the maximum predicted values of extract yield (12.09 %), total phenols (2.41 mg GAE/ml) and antioxidants (7.08 mg AAE/ml), were used to obtain extracts from grape seeds. The predicted values matched well with the experimental values (12.32 % extract yield, 2.45 mg GAE/ml total phenols and 7.08 mg AAE/ml antioxidants) obtained at optimum SFE conditions. The antiradical assay showed that SFE extracts of grape seeds can scavenge more than 85 % of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The grape seeds extracts were also analyzed for hydroxybenzoic acids which included gallic acid (1.21 ~ 3.84 μg/ml), protocatechuic acid (3.57 ~ 11.78 μg/ml) and p-hydroxybenzoic acid (206.72 ~ 688.18 μg/ml).

  3. A high-pressure atomic force microscope for imaging in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lea, Alan S.; Higgins, Steven R.; Knauss, Kevin G.

    2011-04-26

    A high-pressure atomic force microscope (AFM) that enables in-situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~ 350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations thatmore » change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in-situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (10¯14) surface are presented. This new AFM provides unprecedented in-situ access to interfacial phenomena at solid-fluid interfaces under pressure.« less

  4. Oxy-combustor operable with supercritical fluid

    DOEpatents

    Brun, Klaus; McClung, Aaron M.; Owston, Rebecca A.

    2017-04-04

    An oxy-combustor is provided which comprises a combustion vessel including at least one solid fuel slurry inlet port, at least one oxygen inlet port and at least one supercritical fluid inlet port, wherein the combustion vessel is operable at an operating pressure of at least 1,100 psi; an interior of the combustion vessel comprises a combustion chamber and a supercritical fluid infusion chamber surrounding at least a part of the combustion chamber, the supercritical fluid infusion chamber and the combustion chamber are separated by a porous liner surrounding the combustion chamber, and the supercritical infusion chamber is located between the porous liner and an outer casing of the combustion vessel.

  5. Steady- and unsteady-pressure measurements on a supercritical-wing model with oscillating control surfaces at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.

    1983-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static pressure orifices and 164 in situ dynamic pressure gages for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Results from the present test (the third in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60, 0.78, and 0.86 and are presented in tabular form.

  6. Supercritical extraction of lycopene from tomato industrial wastes with ethane.

    PubMed

    Nobre, Beatriz P; Gouveia, Luisa; Matos, Patricia G S; Cristino, Ana F; Palavra, António F; Mendes, Rui L

    2012-07-11

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO₂ and a near critical mixture of ethane and propane). The recovery of all-E-lycopene increased with pressure, decreased with the increase of the particle size in the initial stages of the extraction and was not practically affected by the solvent superficial velocity. The effect of the temperature was more complex. When the temperature increased from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z isomerization could have occurred, as well as some degradation of lycopene. The recovery of all-E-lycopene was almost the same for feed samples with different all-E-lycopene content. Furthermore, when a batch with a higher all-E-lycopene content was used, supercritical ethane and a near critical mixture of ethane and propane showed to be better solvents than supercritical CO₂ leading to a faster extraction with a higher recovery of the carotenoid.

  7. Supercritical Carbon Dioxide Extraction of the Oak Silkworm (Antheraea pernyi) Pupal Oil: Process Optimization and Composition Determination

    PubMed Central

    Pan, Wen-Juan; Liao, Ai-Mei; Zhang, Jian-Guo; Dong, Zeng; Wei, Zhao-Jun

    2012-01-01

    Supercritical carbon dioxide (SC-CO2) extraction of oil from oak silkworm pupae was performed in the present research. Response surface methodology (RSM) was applied to optimize the parameters of SC-CO2 extraction, including extraction pressure, temperature, time and CO2 flow rate on the yield of oak silkworm pupal oil (OSPO). The optimal extraction condition for oil yield within the experimental range of the variables researched was at 28.03 MPa, 1.83 h, 35.31 °C and 20.26 L/h as flow rate of CO2. Under this condition, the oil yield was predicted to be 26.18%. The oak silkworm pupal oil contains eight fatty acids, and is rich in unsaturated fatty acids and α-linolenic acid (ALA), accounting for 77.29% and 34.27% in the total oil respectively. PMID:22408458

  8. Buffet characteristics of the F-8 supercritical wing airplane

    NASA Technical Reports Server (NTRS)

    Deangelis, V. M.; Monaghan, R. C.

    1977-01-01

    The buffet characteristics of the F-8 supercritical wing airplane were investigated. Wing structural response was used to determine the buffet characteristics of the wing and these characteristics are compared with wind tunnel model data and the wing flow characteristics at transonic speeds. The wingtip accelerometer was used to determine the buffet onset boundary and to measure the buffet intensity characteristics of the airplane. The effects of moderate trailing edge flap deflections on the buffet onset boundary are presented. The supercritical wing flow characteristics were determined from wind tunnel and flight static pressure measurements and from a dynamic pressure sensor mounted on the flight test airplane in the vicinity of the shock wave that formed on the upper surface of the wing at transonic speeds. The comparison of the airplane's structural response data to the supercritical flow characteristics includes the effects of a leading edge vortex generator.

  9. New large volume hydrothermal reaction cell for studying chemical processes under supercritical hydrothermal conditions using time-resolved in situ neutron diffraction.

    PubMed

    Ok, Kang Min; O'Hare, Dermot; Smith, Ronald I; Chowdhury, Mohammed; Fikremariam, Hanna

    2010-12-01

    The design and testing of a new large volume Inconel pressure cell for the in situ study of supercritical hydrothermal syntheses using time-resolved neutron diffraction is introduced for the first time. The commissioning of this new cell is demonstrated by the measurement of the time-of-flight neutron diffraction pattern for TiO(2) (Anatase) in supercritical D(2)O on the POLARIS diffractometer at the United Kingdom's pulsed spallation neutron source, ISIS, Rutherford Appleton Laboratory. The sample can be studied over a wide range of temperatures (25-450 °C) and pressures (1-355 bar). This novel apparatus will now enable us to study the kinetics and mechanisms of chemical syntheses under extreme environments such as supercritical water, and in particular to study the crystallization of a variety of technologically important inorganic materials.

  10. Uncertainty Analysis of Heat Transfer to Supercritical Hydrogen in Cooling Channels

    NASA Technical Reports Server (NTRS)

    Locke, Justin M.; Landrum, D. Brian

    2005-01-01

    Sound understanding of the cooling efficiency of supercritical hydrogen is crucial to the development of high pressure thrust chambers for regeneratively cooled LOX/LH2 rocket engines. This paper examines historical heat transfer correlations for supercritical hydrogen and the effects of uncertainties in hydrogen property data. It is shown that uncertainty due to property data alone can be as high as 10%. Previous heated tube experiments with supercritical hydrogen are summarized, and data from a number of heated tube experiments are analyzed to evaluate conditions for which the available correlations are valid.

  11. Investigation of Instabilities and Heat Transfer Phenomena in Supercritical Fuels at High Heat Flux and Temperatures

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Meyer, Michael L.; Braun, Donald C.; Keller, Dennis J.

    2000-01-01

    A series of heated tube experiments was performed to investigate fluid instabilities that occur during heating of supercritical fluids. In these tests, JP-7 flowed vertically through small diameter tubes at supercritical pressures. Test section heated length, diameter, mass flow rate, inlet temperature, and heat flux were varied in an effort to determine the range of conditions that trigger the instabilities. Heat flux was varied up to 4 BTU/sq in./s, and test section wall temperatures reached as high as 1950 F. A statistical model was generated to explain the trends and effects of the control variables. The model included no direct linear effect of heat flux on the occurrence of the instabilities. All terms involving inlet temperature were negative, and all terms involving mass flow rate were positive. Multiple tests at conditions that produced instabilities provided inconsistent results. These inconsistencies limit the use of the model as a predictive tool. Physical variables that had been previously postulated to control the onset of the instabilities, such as film temperature, velocity, buoyancy, and wall-to-bulk temperature ratio, were evaluated here. Film temperatures at or near critical occurred during both stable and unstable tests. All tests at the highest velocity were stable, but there was no functional relationship found between the instabilities and velocity, or a combination of velocity and temperature ratio. Finally, all of the unstable tests had significant buoyancy at the inlet of the test section, but many stable tests also had significant buoyancy forces.

  12. Infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide.

    PubMed

    Kong, Chang Yi; Siratori, Tomoya; Funazukuri, Toshitaka; Wang, Guosheng

    2014-10-03

    The effects of temperature and density on retention of platinum(II) 2,4-pentanedionate in supercritical fluid chromatography were investigated at temperatures of 308.15-343.15K and pressure range from 8 to 40MPa by the chromatographic impulse response method with curve fitting. The retention factors were utilized to derive the infinite dilution partial molar volumes of platinum(II) 2,4-pentanedionate in supercritical carbon dioxide. The determined partial molar volumes were small and positive at high pressures but exhibited very large and negative values in the highly compressible near critical region of carbon dioxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Supercritical (and Subcritical) Fluid Behavior and Modeling: Drops, Streams, Shear and Mixing Layers, Jets and Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, J.

    1999-01-01

    A critical review of recent investigations in the real of supercritical (and subcritical) fluid behavior is presented with the goal of obtaining a perspective on the peculiarities of high pressure observations.

  14. Subsonic and transonic pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Watson, J. J.

    1981-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.

  15. Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.

    1991-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.

  16. Control of optical transport parameters of 'porous medium – supercritical fluid' systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Ushakova, O V; Yuvchenko, S A

    2015-11-30

    The possibility of controlling optical transport parameters (in particular, transport scattering coefficient) of porous systems based on polymer fibres, saturated with carbon dioxide in different phase states (gaseous, liquid and supercritical) has been experimentally studied. An increase in the pressure of the saturating medium leads to a rise of its refractive index and, correspondingly, the diffuse-transmission coefficient of the system due to the decrease in the transport scattering coefficient. It is shown that, in the case of subcritical saturating carbon dioxide, the small-angle diffuse transmission of probed porous layers at pressures close to the saturated vapour pressure is determined bymore » the effect of capillary condensation in pores. The immersion effect in 'porous medium – supercritical fluid' systems, where the fluid pressure is used as a control parameter, is considered. The results of reconstructing the values of transport scattering coefficient of probed layers for different refractive indices of a saturating fluid are presented. (radiation scattering)« less

  17. Simplified Physics Based Models Research Topical Report on Task #2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Srikanta; Ganesh, Priya

    We present a simplified-physics based approach, where only the most important physical processes are modeled, to develop and validate simplified predictive models of CO2 sequestration in deep saline formation. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. We use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and themore » nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Similar correlations are also developed to predict the average pressure within the injection reservoir, and the pressure buildup within the caprock.« less

  18. Geological model of supercritical geothermal reservoir related to subduction system

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological model for "Beyond Brittle" and "Supercritical" geothermal reservoir in the subduction zone were was revealed.

  19. Investigations of Very High Enthalpy Geothermal Resources in Iceland.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.

    2012-12-01

    The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal reservoir, without increasing its environmental foot print. If these efforts are successful, in future such very high enthalpy geothermal systems worldwide could become significant energy resources, where ever suitable young volcanic rocks occur, such as in the western USA, Hawaii, and Alaska.

  20. Continuous production of biodiesel under supercritical methyl acetate conditions: Experimental investigation and kinetic model.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2017-10-01

    In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.

  1. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    PubMed Central

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. PMID:22489140

  2. Structural Design Considerations for Tubular Power Tower Receivers Operating at 650 Degrees C: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, T. W.; Wagner, M. J.; Gray, A. K.

    Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditionalmore » boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.« less

  3. Experimental investigation of wall shock cancellation and reduction of wall interference in transonic testing

    NASA Technical Reports Server (NTRS)

    Ferri, A.; Roffe, G.

    1975-01-01

    A series of experiments were performed to evaluate the effectiveness of a three-dimensional land and groove wall geometry and a variable permeability distribution to reduce the interference produced by the porous walls of a supercritical transonic test section. The three-dimensional wall geometry was found to diffuse the pressure perturbations caused by small local mismatches in wall porosity permitting the use of a relatively coarse wall porosity control to reduce or eliminate wall interference effects. The wall porosity distribution required was found to be a sensitive function of Mach number requiring that the Mach number repeatability characteristics of the test apparatus be quite good. The effectiveness of a variable porosity wall is greatest in the upstream region of the test section where the pressure differences across the wall are largest. An effective variable porosity wall in the down stream region of the test section requires the use of a slightly convergent test section geometry.

  4. Supercritical-Multiple-Solvent Extraction From Coal

    NASA Technical Reports Server (NTRS)

    Corcoran, W.; Fong, W.; Pichaichanarong, P.; Chan, P.; Lawson, D.

    1983-01-01

    Large and small molecules dissolve different constituents. Experimental apparatus used to test supercritical extraction of hydrogen rich compounds from coal in various organic solvents. In decreasing order of importance, relevant process parameters were found to be temperature, solvent type, pressure, and residence time.

  5. Supercritical Fluid Extraction of Aflatoxin B 1 from Soil

    EPA Science Inventory

    This research describes the development of a Supercritical Fluid Extraction (SFE) method to recover aflatoxin B1 from fortified soil. The effects of temperature, pressure, modifier (identity and percentage), and extraction type were assessed. Using the optimized SFE conditions, ...

  6. Improved Oxidation Resistance of 3-D Carbon/Carbon Composites

    DTIC Science & Technology

    1994-01-14

    extraction process (which might be the extraction of the flavoring agents from hops or decaffeination of coffee beans) to point out how the pressure dependent...SiC) were made by a process termed Supercritical Fluid Infiltration. A preceramic polymer, e.g., a polycarbosilane which can pyrolyze to form SiC, is...using supercritical propane (in a process termed increasing pressure profiling), and it was found that some of the low molecular weight fractions gave

  7. Pressure distributions on a rectangular aspect-ratio-6, slotted supercritical airfoil wing with externally blown flaps

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.

    1976-01-01

    An investigation was made in the 5.18 m (17 ft) test section of the Langley 300 MPH 7 by 10 foot tunnel on a rectangular, aspect ratio 6 wing which had a slotted supercritical airfoil section and externally blown flaps. The 13 percent thick wing was fitted with two high lift flap systems: single slotted and double slotted. The designations single slotted and double slotted do not include the slot which exists near the trailing edge of the basic slotted supercritical airfoil. Tests were made over an angle of attack range of -6 deg to 20 deg and a thrust-coefficient range up to 1.94 for a free-stream dynamic pressure of 526.7 Pa (11.0 lb/sq ft). The results of the investigation are presented as curves and tabulations of the chordwise pressure distributions at the midsemispan station for the wing and each flap element.

  8. Controlled Expansion of Supercritical Solution: A Robust Method to Produce Pure Drug Nanoparticles With Narrow Size-Distribution.

    PubMed

    Pessi, Jenni; Lassila, Ilkka; Meriläinen, Antti; Räikkönen, Heikki; Hæggström, Edward; Yliruusi, Jouko

    2016-08-01

    We introduce a robust, stable, and reproducible method to produce nanoparticles based on expansion of supercritical solutions using carbon dioxide as a solvent. The method, controlled expansion of supercritical solution (CESS), uses controlled mass transfer, flow, pressure reduction, and particle collection in dry ice. CESS offers control over the crystallization process as the pressure in the system is reduced according to a specific profile. Particle formation takes place before the exit nozzle, and condensation is the main mechanism for postnucleation particle growth. A 2-step gradient pressure reduction is used to prevent Mach disk formation and particle growth by coagulation. Controlled particle growth keeps the production process stable. With CESS, we produced piroxicam nanoparticles, 60 mg/h, featuring narrow size distribution (176 ± 53 nm). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Valorization of horse manure through catalytic supercritical water gasification.

    PubMed

    Nanda, Sonil; Dalai, Ajay K; Gökalp, Iskender; Kozinski, Janusz A

    2016-06-01

    The organic wastes such as lignocellulosic biomass, municipal solid waste, sewage sludge and livestock manure have attracted attention as alternative sources of energy. Cattle manure, a waste generated in surplus amounts from the feedlot, has always been a chief environmental concern. This study is focused on identifying the candidacy of horse manure as a next generation feedstock for biofuel production through supercritical water gasification. The horse manure was gasified in supercritical water to examine the effects of temperature (400-600°C), biomass-to-water ratio (1:5 and 1:10) and reaction time (15-45min) at a pressure range of 23-25MPa. The horse manure and resulting biochar were characterized through carbon-hydrogen-nitrogen-sulfur (CHNS), inductively coupled plasma-mass spectrometry (ICP-MS), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and scanning electron microscopy (SEM). The effects of alkali catalysts such as NaOH, Na2CO3 and K2CO3 at variable concentrations (1-2wt%) were investigated to maximize the hydrogen yields. Supercritical water gasification of horse manure with 2wt% Na2CO3 at 600°C and 1:10 biomass-to-water ratio for 45min revealed maximum hydrogen yields (5.31mmol/g), total gas yields (20.8mmol/g) with greater carbon conversion efficiency (43.1%) and enhanced lower heating value of gas products (2920kJ/Nm(3)). The manure-derived biochars generated at temperatures higher than 500°C also demonstrated higher thermal stability (weight loss <34%) and larger carbon content (>70wt%) suggesting their application in enhancing soil fertility and carbon sequestration. The results propose that supercritical water gasification could be a proficient remediation technology for horse manure to generate hydrogen-rich gas products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. On the correlation of buoyancy-influenced turbulent convective heat transfer to fluids at supercritical pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J. D.; Jiang, P. X.; Liu, B.

    2012-07-01

    This paper is concerned with buoyancy-influenced turbulent convective heat transfer in vertical tubes for conditions where the physical properties vary strongly with temperature as in fluids at supercritical pressure in the pseudocritical temperature region. An extended physically-based, semi-empirical model is described which has been developed to account for the extreme non-uniformity of properties which can be present in such fluids and lead to strong influences of buoyancy which cause the mean flow and turbulence fields to be modified in such a manner that has a very profound effect on heat transfer. Data for both upward and downward flow from experimentsmore » using carbon dioxide at supercritical pressure (8.80, MPa, p/pc=1.19) in a uniformly heated tube of internal diameter 2 mm and length 290 mm, obtained under conditions of strong non-uniformity of fluid properties, are being correlated and fitted using an approach based on the model. It provides a framework for describing the complex heat transfer behaviour which can be encountered in such experiments by means of an equation of simple form. Buoyancy-induced impairment and enhancement of heat transfer is successfully reproduced by the model. Similar studies are in progress using experimental data for both carbon dioxide and water from other sources. The aim is to obtain an in-depth understanding of the mechanisms by which deterioration of heat transfer might arise in sensitive applications involving supercritical pressure fluids, such as high pressure, water-cooled reactors operating above the critical pressure. (authors)« less

  11. Supercritical solvent extraction of oil sand bitumen

    NASA Astrophysics Data System (ADS)

    Imanbayev, Ye. I.; Ongarbayev, Ye. K.; Tileuberdi, Ye.; Mansurov, Z. A.; Golovko, A. K.; Rudyk, S.

    2017-08-01

    The supercritical solvent extraction of bitumen from oil sand studied with organic solvents. The experiments were performed in autoclave reactor at temperature above 255 °C and pressure 29 atm with stirring for 6 h. The reaction resulted in the formation of coke products with mineral part of oil sands. The remaining products separated into SARA fractions. The properties of the obtained products were studied. The supercritical solvent extraction significantly upgraded extracted natural bitumen.

  12. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  13. Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jr., R.L.; Fang, Z.; Tohoku)

    In this review, diamond anvil type cells (DACs) are reviewed as a method for studying supercritical water systems. The hydrothermal DAC provides easy and safe experimental access to high pressure (30-3000 MPa) and high temperature (400-800 C) regions and the device allows exploration of supercritical systems at high density (400-1200 kg/m{sup 3}), which is usually difficult or costly with batch or flow systems. In the first part of this review, characteristics of DACs regarding anvil type, DAC type, anvil alignment, heating, analytical methods, pressure and temperature determination, gasket, loading, physical size are discussed with emphasis on DACs that can bemore » used to generate conditions of interest for understanding supercritical water systems. In the second part of this review, applications and key findings of studies on supercritical water systems from geology, chemical, biomass, energy, environmental, polymer, and materials related fields are discussed. Some of the key findings determined with DAC are related to the dissolution or existence of phases at conditions of high temperature and high pressure, however, DAC has been used in many quantitative studies to determine fundamental properties such as speeds of sound, phase behavior, solubilities, partition coefficients and viscosities. Future prospects for DAC as a method for exploring supercritical water systems include combination of DAC with transmission electron microscopy (TEM) for studying nanostructures, use of high-speed streak cameras to study high-speed reactions, combustions, and energetic materials, use of time-dependent loads to study kinetics, precipitation and crystallization phenomena, the use of DAC with synchrotron radiation to follow reaction and material processes in situ, and the many modifications that can be made to DAC anvils and rapid heating methods such as lasers and masers used in conjunction with in situ techniques. The DAC is a highly versatile instrument and should find widespread use in studying supercritical water systems.« less

  14. Extraction of ewe's milk cream with supercritical carbon dioxide.

    PubMed

    González Hierro, M T; Ruiz-Sala, P; Alonso, L; Santa-María, G

    1995-04-01

    The extraction of ewe's milk cream by supercritical carbon dioxide in the pressure range 9-30 MPa (90-300 bar) and at temperatures of 40 degrees C and 50 degrees C was studied. The solubility of total fat increased with pressure at both temperatures until a plateau was reached. The extraction of cholesterol also increased with pressure until a plateau was reached and it was higher at 50 degrees C than at 40 degrees C when the pressure was > or = 15 MPa (150 bar). The triglyceride composition of each extract, determined by GC, showed that extracts obtained at lower pressures were enriched in short-chain triglycerides and their concentration decreased as the pressure increased. In the other hand, long-chain triglycerides were enriched in the extracts obtained at higher pressures and their concentration rose with increasing pressure.

  15. Supercritical separation process for complex organic mixtures

    DOEpatents

    Chum, Helena L.; Filardo, Giuseppe

    1990-01-01

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70.degree. C. and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution.

  16. Methods for producing films using supercritical fluid

    DOEpatents

    Yonker, Clement R.; Fulton, John L.

    2004-06-15

    A method for forming a continuous film on a substrate surface that involves depositing particles onto a substrate surface and contacting the particle-deposited substrate surface with a supercritical fluid under conditions sufficient for forming a continuous film from the deposited particles. The particles may have a mean particle size of less 1 micron. The method may be performed by providing a pressure vessel that can contain a compressible fluid. A particle-deposited substrate is provided in the pressure vessel and the compressible fluid is maintained at a supercritical or sub-critical state sufficient for forming a film from the deposited particles. The T.sub.g of particles may be reduced by subjecting the particles to the methods detailed in the present disclosure.

  17. Inhibition effect in supercritical water oxidation of hydroquinone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thammanayakatip, C.; Oshima, Yoshito; Koda, Seiichiro

    1998-05-01

    In the oxidation reactions of hydroquinone under a supercritical conditions (temperature of 683 K and pressure of 24.5 MPa), the conversion was found to become saturated despite the very fast initial reaction. This behavior was quite different from that under a subcritical condition (temperature of 633 K and pressure of 24.5 MPa). Under both conditions, p-benzoquinone was found to be an important intermediate. The yield of CO{sub 2} was very small, which indicates a strong inhibition effect of hydroquinone and/or its derivatives. These inhibition phenomena should be taken into account very carefully in the application of supercritical water oxidation formore » treating waste organic materials where a complete decomposition is very important.« less

  18. Investigation of some effects of humidity on aerodynamic characteristics on a 10-percent-thick NASA supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1976-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel to determine the effects of wind-tunnel humidity on the aerodynamic characteristics of a 10-percent-thick NASA supercritical airfoil. Effects of dewpoint variation from 267 K (20 F) to 294 K (70 F) were investigated. The tunnel stagnation temperature was 322 K (120 F) and the stagnation pressure was 0.1013 MN/09 m (1 atm).

  19. A new high pressure sapphire nuclear magnetic resonance cell

    NASA Astrophysics Data System (ADS)

    Bai, Shi; Taylor, Craig M.; Mayne, Charles L.; Pugmire, Ronald J.; Grant, David M.

    1996-01-01

    A new version of a single-crystal sapphire high pressure nuclear magnetic resonance (NMR) cell is described that is capable of controlling the sample pressure independent of the temperature. A movable piston inside the cell adjusts and controls the sample pressure from ambient conditions to 200 atm within ±0.3 atm. The linewidth at half-height for a 13C spectrum of carbon dioxide at 15 °C and 57.8 atm is found to be 0.5 Hz. The carbon dioxide gas/liquid phase transition is clearly observed by measuring 13C chemical shifts as the sample pressure approaches equilibrium. The time required for this NMR cell to reach equilibrium with its surroundings is relatively short, usually 15-30 min. The cell body has the same outer dimensions of a standard spinning turbine and fits into a standard 10 mm commercial probehead capable of controlling the sample temperature using the spectrometer's variable temperature unit. The flexibility of the device and the increased speed in making the measurement is demonstrated. Such control of important thermodynamic variables facilitates the NMR study of important biochemical and chemical reactions in gas, liquid, and supercritical fluid environments.

  20. Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process.

    PubMed

    Chou, Wei-Lung; Wang, Chih-Ta; Yang, Kai-Chiang; Huang, Yen-Hsiang

    2008-12-15

    Supercritical carbon dioxide extraction, which is a feasible "green" alternative, was applied in this study as a sample pretreatment step for the removal of gallium (III) ions from acidic aqueous solution. The effect of various process parameters, including various chelating agents, extraction pressure and temperature, dimensionless CO(2) volume, the concentration of the chelating agent, and the pH of the solution, governing the efficiency and throughput of the procedure were systematically investigated. The performance of the various chelating agents from different studies indicated that the extraction efficiency of supercritical CO(2) was in the order: thiopyridine (PySH)>thenoyltrifluoroacetone (TTAH)>acetylacetone (AcAcH). The optimal extraction pressure and temperature for the supercritical CO(2) extraction of gallium (III) with chelating agent PySH were found to be 70 degrees C and 3000psi, respectively. The optimum concentration of the chelating agent was found to be 50ppm. A value of 7.5 was selected as the optimum dimensionless CO(2) volume. The optimum pH of the solution for supercritical CO(2) extraction should fall in the range of 2.0-3.0.

  1. Polyester Fabric's Fluorescent Dyeing in Supercritical Carbon Dioxide and its Fluorescence Imaging.

    PubMed

    Xiong, Xiaoqing; Xu, Yanyan; Zheng, Laijiu; Yan, Jun; Zhao, Hongjuan; Zhang, Juan; Sun, Yanfeng

    2017-03-01

    As one of the most important coumarin-like dyes, disperse fluorescent Yellow 82 exhibits exceptionally large two-photon effects. Here, it was firstly introduced into the supercritical CO 2 dyeing polyester fabrics in this work. Results of the present work showed that the dyeing parameters such as the dyeing time, pressure and temperature had remarkable influences on the color strength of fabrics. The optimized dyeing condition in supercritical CO 2 dyeing has been proposed that the dyeing time was 60 min; the pressure was 25 MPa and the temperature was 120 °C. As a result, acceptable products were obtained with the wash and rub fastness rating at 5 or 4-5. The polyester fabrics dyed with fluorescent dyes can be satisfied for the requirement of manufacturing warning clothing. Importantly, the confocal microscopy imaging technology was successfully introduced into textile fields to observe the distribution and fluorescence intensity of disperse fluorescent Yellow 82 on polyester fabrics. As far as we know, this is the first report about supercritical CO 2 dyeing polyester fabrics based on disperse fluorescent dyes. It will be very helpful for the further design of new fluorescent functional dyes suitable for supercritical CO 2 dyeing technique.

  2. Diffusion coefficients of phenylbutazone in supercritical CO2 and in ethanol.

    PubMed

    Kong, Chang Yi; Watanabe, Kou; Funazukuri, Toshitaka

    2013-03-01

    The diffusion coefficients D(12) of phenylbutazone at infinite dilution in supercritical CO(2) were measured by the chromatographic impulse response (CIR) method. The measurements were carried out over the temperature range from 308.2 to 343.2 K at pressures up to 40.0 MPa. In addition, the D(12) data of phenylbutazone at infinite dilution in ethanol were also measured by the Taylor dispersion method at 298.2-333.2K and at atmospheric pressure. The D(12) value of phenylbutazone increased from 4.45×10(-10) m(2) s(-1) at 298.2 K and 0.1 MPa in ethanol to about 1.43×10(-8) m(2) s(-1) at 343.2 K and 14.0 MPa in supercritical CO(2). It was found that all diffusion data of phenylbutazone measured in this study in supercritical CO(2) and in ethanol can be satisfactorily represented by the hydrodynamic equation over a wide range of fluid viscosity from supercritical state to liquid state with average absolute relative deviation of 5.4% for 112 data points. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. SELECTIVE OXIDATION IN SUPERCRITICAL CARBON DIOXIDE USING CLEAN OXIDANTS

    EPA Science Inventory

    We have systematically investigated heterogeneous catalytic oxidation of different substrates in supercritical carbon dioxide (SC-CO2). Three types of catagysts: a metal complex, 0.5% platinum g-alumina and 0.5% palladium g-alumina were used at a pressure of 200 bar, temperatures...

  4. Develop of innovative technologies for flame resistant cotton fabrics at USDA

    USDA-ARS?s Scientific Manuscript database

    Supercritical carbon dioxide (scCO2) high pressure and microwave reactor are considered in green chemistry as a substitute for organic solvents in chemical reactions. In this presentation, innovative approaches for preparation of flame retardant fabrics were obtained by utilizing supercritical carb...

  5. Development of innovative technologies for flame resistant cotton fabrics at USDA

    USDA-ARS?s Scientific Manuscript database

    Supercritical carbon dioxide (scCO2) high pressure and microwave reactor are considered in green chemistry as a substitute for organic solvents in chemical reactions. In this presentation, innovative approaches for preparation of flame retardant fabrics were obtained by utilizing supercritical carbo...

  6. Mathematical modelling for extraction of oil from Dracocephalum kotschyi seeds in supercritical carbon dioxide.

    PubMed

    Sodeifian, Gholamhossein; Sajadian, Seyed Ali; Honarvar, Bizhan

    2018-04-01

    Extraction of oil from Dracocephalum kotschyi Boiss seeds using supercritical carbon dioxide was designed using central composite design to evaluate the effect of various operating parameters including pressure, temperature, particle size and extraction time on the oil yield. Maximum extraction yield predicted from response surface method was 71.53% under the process conditions with pressure of 220 bar, temperature of 35 °C, particle diameter of 0.61 mm and extraction time of 130 min. Furthermore, broken and intact cells model was utilised to consider mass transfer kinetics of extracted natural materials. The results revealed that the model had a good agreement with the experimental data. The oil samples obtained via supercritical and solvent extraction methods were analysed by gas chromatography. The most abundant acid was linolenic acid. The results analysis showed that there was no significant difference between the fatty acid contents of the oils obtained by the supercritical and solvent extraction techniques.

  7. Microencapsulation and characterization of liposomal vesicles using a supercritical fluid process coupled with vacuum-driven cargo loading.

    PubMed

    Tsai, Wen-Chyan; Rizvi, Syed S H

    2017-06-01

    A new technique of liposomal microencapsulation, consisting of supercritical fluid extraction followed by rapid expansion of the supercritical solution and vacuum-driven cargo loading, was successfully developed. It is a continuous flow-through process without usage of any toxic organic solvent. For use as a coating material, the solubility of soy phospholipids in supercritical carbon dioxide was first determined using a dynamic equilibrium system and the data was correlated with the Chrastil model with good agreement. Liposomes were made with D-(+)-glucose as a cargo and their properties were characterized as functions of expansion pressure, temperature, and cargo loading rates. The highest encapsulation efficiency attained was 31.7% at the middle expansion pressure of 12.41MPa, highest expansion temperature of 90°C, and lowest cargo loading rate of 0.25mL/s. The large unilamellar vesicles and multivesicular vesicles were observed to be a majority of the liposomes produced using this eco-friendly process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Supercritical CO2 extraction of candlenut oil: process optimization using Taguchi orthogonal array and physicochemical properties of the oil.

    PubMed

    Subroto, Erna; Widjojokusumo, Edward; Veriansyah, Bambang; Tjandrawinata, Raymond R

    2017-04-01

    A series of experiments was conducted to determine optimum conditions for supercritical carbon dioxide extraction of candlenut oil. A Taguchi experimental design with L 9 orthogonal array (four factors in three levels) was employed to evaluate the effects of pressure of 25-35 MPa, temperature of 40-60 °C, CO 2 flow rate of 10-20 g/min and particle size of 0.3-0.8 mm on oil solubility. The obtained results showed that increase in particle size, pressure and temperature improved the oil solubility. The supercritical carbon dioxide extraction at optimized parameters resulted in oil yield extraction of 61.4% at solubility of 9.6 g oil/kg CO 2 . The obtained candlenut oil from supercritical carbon dioxide extraction has better oil quality than oil which was extracted by Soxhlet extraction using n-hexane. The oil contains high unsaturated oil (linoleic acid and linolenic acid), which have many beneficial effects on human health.

  9. Effects of process parameters on peanut skins extract and CO2 diffusivity by supercritical fluid extraction

    NASA Astrophysics Data System (ADS)

    Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.

    2018-03-01

    Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.

  10. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, C.M.; Shapiro, C.

    1997-11-25

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

  11. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark; Sienicki, James; Moisseytsev, Anton

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO 2 (S-CO 2)more » or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO 2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see-through labyrinth seals was proposed. A stepped labyrinth seal, which mimics the behavior of the labyrinth seal used in the Sandia National Laboratory (SNL) S-CO 2 Brayton cycle, was also tested in the experiment along with simulations performed. The rest of this study demonstrates the difference of valves' behavior under supercritical fluid and normal fluid conditions. A small-scale valve was tested in the experiment facility using S-CO 2. Different percentages of opening valves were tested, and the measured mass flow rate agreed with simulation predictions. Two transients from a real S-CO 2 Brayton cycle design provided the data for valve selection. The selected valve was studied using numerical simulation, as experimental data is not available.« less

  12. Ultrahigh hydrostatic pressure extraction of flavonoids from Epimedium koreanum Nakai

    NASA Astrophysics Data System (ADS)

    Hou, Lili; Zhang, Shouqin; Dou, Jianpeng; Zhu, Junjie; Liang, Qing

    2011-02-01

    Herba Epimedii is one of the most famous Chinese herbal medicines listed in the Pharmacopoeia of the People's Republic of China, as one of the representatives of traditional Chinese herb, it has been widely applied in the field of invigorate the kidney and strengthen 'Yang'. The attention to Epimedium extract has more and more increased in recent years. In this work, a novel extraction technique, ultra-high hydrostatic pressure extraction (UPE) technology was applied to extract the total flavonoids of E. koreanum. Three factors (pressure, ethanol concentration and extraction time) were chosen as the variables of extraction experiments, and the optimum UPE conditions were pressure 350 MPa; ethanol concentration 50% (v/v); extraction time 5 min. Compared with Supercritical CO2 extraction, Reflux extraction and Ultrasonic-assisted extraction, UPE has excellent advantages (shorter extraction time, higher yield, better antioxidant activity, lower energy consumption and eco-friendly).

  13. Pressurized fluid extraction of essential oil from Lavandula hybrida using a modified supercritical fluid extractor and a central composite design for optimization.

    PubMed

    Kamali, Hossein; Jalilvand, Mohammad Reza; Aminimoghadamfarouj, Noushin

    2012-06-01

    Essential oil components were extracted from lavandin (Lavandula hybrida) flowers using pressurized fluid extraction. A central composite design was used to optimize the effective extraction variables. The chemical composition of extracted samples was analyzed by a gas chromatograph-flame ionization detector column. For achieving 100% extraction yield, the temperature, pressure, extraction time, and the solvent flow rate were adjusted at 90.6°C, 63 bar, 30.4 min, and 0.2 mL/min, respectively. The results showed that pressurized fluid extraction is a practical technique for separation of constituents such as 1,8-cineole (8.1%), linalool (34.1%), linalyl acetate (30.5%), and camphor (7.3%) from lavandin to be applied in the food, fragrance, pharmaceutical, and natural biocides industries. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Advanced Concepts for Pressure-Channel Reactors: Modularity, Performance and Safety

    NASA Astrophysics Data System (ADS)

    Duffey, Romney B.; Pioro, Igor L.; Kuran, Sermet

    Based on an analysis of the development of advanced concepts for pressure-tube reactor technology, we adapt and adopt the pressure-tube reactor advantage of modularity, so that the subdivided core has the potential for optimization of the core, safety, fuel cycle and thermal performance independently, while retaining passive safety features. In addition, by adopting supercritical water-cooling, the logical developments from existing supercritical turbine technology and “steam” systems can be utilized. Supercritical and ultra-supercritical boilers and turbines have been operating for some time in coal-fired power plants. Using coolant outlet temperatures of about 625°C achieves operating plant thermal efficiencies in the order of 45-48%, using a direct turbine cycle. In addition, by using reheat channels, the plant has the potential to produce low-cost process heat, in amounts that are customer and market dependent. The use of reheat systems further increases the overall thermal efficiency to 55% and beyond. With the flexibility of a range of plant sizes suitable for both small (400 MWe) and large (1400 MWe) electric grids, and the ability for co-generation of electric power, process heat, and hydrogen, the concept is competitive. The choice of core power, reheat channel number and exit temperature are all set by customer and materials requirements. The pressure channel is a key technology that is needed to make use of supercritical water (SCW) in CANDU®1 reactors feasible. By optimizing the fuel bundle and fuel channel, convection and conduction assure heat removal using passive-moderator cooling. Potential for severe core damage can be almost eliminated, even without the necessity of activating the emergency-cooling systems. The small size of containment structure lends itself to a small footprint, impacts economics and building techniques. Design features related to Canadian concepts are discussed in this paper. The main conclusion is that development of SCW pressure-channel nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  15. Investigation on heat transfer characteristics and flow performance of Methane at supercritical pressures

    NASA Astrophysics Data System (ADS)

    Xian, Hong Wei; Oumer, A. N.; Basrawi, F.; Mamat, Rizalman; Abdullah, A. A.

    2018-04-01

    The aim of this study is to investigate the heat transfer and flow characteristic of cryogenic methane in regenerative cooling system at supercritical pressures. The thermo-physical properties of supercritical methane were obtained from the National institute of Standards and Technology (NIST) webbook. The numerical model was developed based on the assumptions of steady, turbulent and Newtonian flow. For mesh independence test and model validation, the simulation results were compared with published experimental results. The effect of four different performance parameter ranges namely inlet pressure (5 to 8 MPa), inlet temperature (120 to 150 K), heat flux (2 to 5 MW/m2) and mass flux (7000 to 15000 kg/m2s) on heat transfer and flow performances were investigated. It was found that the simulation results showed good agreement with experimental data with maximum deviation of 10 % which indicates the validity of the developed model. At low inlet temperature, the change of specific heat capacity at near-wall region along the tube length was not significant while the pressure drop registered was high. However, significant variation was observed for the case of higher inlet temperature. It was also observed that the heat transfer performance and pressure drop penalty increased when the mass flux was increased. Regarding the effect of inlet pressure, the heat transfer performance and pressure drop results decreased when the inlet pressure is increased.

  16. Combustion of liquid fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor

    1991-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both sub- and super-critical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influences on the fluid transport, gas/liquid interface thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibits a significant variation near the critical burning pressure, mainly as a result of reduced mass-diffusion rate and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  17. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  18. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  19. Plasma microreactor in supercritical xenon and its application to diamondoid synthesis

    NASA Astrophysics Data System (ADS)

    Oshima, F.; Stauss, S.; Ishii, C.; Pai, D. Z.; Terashima, K.

    2012-10-01

    The generation of plasmas in a microreactor is demonstrated in xenon from atmospheric pressure up to supercritical conditions. Ac high voltage at a frequency of 15 kHz was applied across a 25-µm discharge gap between a tungsten wire and a fused silica micro-capillary tube in a coaxial configuration. Using this continuous flow supercritical fluid microreactor, it was possible to synthesize diamantane and other diamondoids up to nonamantane, using adamantane as a precursor and seed. It is anticipated that plasmas generated in supercritical fluid microreactors may not only allow faster fabrication of diamondoids, but also offer opportunities for the fabrication of other nanomaterials.

  20. Aerodynamic characteristics of an improved 10-percent-thick NASA supercritical airfoil. [Langley 8 foot transonic tunnel tests

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1974-01-01

    Refinements in a 10 percent thick supercritical airfoil produced improvements in the overall drag characteristics at normal force coefficients from about 0.30 to 0.65 compared with earlier supercritical airfoils which were developed for a normal force coefficient of 0.7. The drag divergence Mach number of the improved supercritical airfoil (airfoil 26a) varied from approximately 0.82 at a normal force coefficient to of 0.30, to 0.78 at a normal force coefficient of 0.80 with no drag creep evident. Integrated section force and moment data, surface pressure distributions, and typical wake survey profiles are presented.

  1. Selective free radical reactions using supercritical carbon dioxide.

    PubMed

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar

    2014-02-12

    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  2. Measurements of surface-pressure and wake-flow fluctuations in the flow field of a whitcomb supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Roos, F. W.; Riddle, D. W.

    1977-01-01

    Measurements of surface pressure and wake flow fluctuations were made as part of a transonic wind tunnel investigation into the nature of a supercritical airfoil flow field. Emphasis was on a range of high subsonic Mach numbers and moderate lift coefficients corresponding to the development of drag divergence and buffeting. Fluctuation data were analyzed statistically for intensity, frequency content, and spatial coherence. Variations in these parameters were correlated with changes in the mean airfoil flow field.

  3. The effect of water chemistry on a change in the composition of gas phase in the steam-water path of a supercritical-pressure boiler

    NASA Astrophysics Data System (ADS)

    Belyakov, I. I.; Belokonova, A. F.

    2010-07-01

    We present the results from an experimental research work on studying the behavior of the gas phase in the path of a supercritical-pressure boiler during its operation with different water chemistries, including all-volatile (hydrazine-ammonia), complexone, neutral oxygenated, and combined oxygenated-ammonia chemistries. It is shown that the minimal content of hydrogen in steam is achieved if feedwater is treated with oxygen.

  4. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  5. Surfactant/Supercritical Fluid Cleaning of Contaminated Substrates

    NASA Technical Reports Server (NTRS)

    White, Gary L.

    1997-01-01

    CFC's and halogenated hydrocarbon solvents have been the solvents of choice to degrease and otherwise clean precision metal parts to allow proper function. Recent regulations have, however, rendered most of these solvents unacceptable for these purposes. New processes which are being used or which have been proposed to replace these solvents usually either fail to remove water soluble contaminants or produce significant aqueous wastes which must then be disposed of. In this work, a new method for cleaning surfaces will be investigated. Solubility of typical contaminants such as lubricating greases and phosphatizing bath residues will be studied in several surfactant/supercritical fluid solutions. The effect of temperature, pressure, and the composition of the cleaning mixture on the solubility of oily, polar, and ionic contaminants will be investigated. A reverse micellar solution in a supercritical light hydrocarbon solvent will be used to clean samples of industrial wastes. A reverse micellar solution is one where water is dissolved into a non-polar solvent with the aid of a surfactant. The solution will be capable of dissolving both water-soluble contaminants and oil soluble contaminants. Once the contaminants have been dissolved into the solution they will be separated from the light hydrocarbon and precipitated by a relatively small pressure drop and the supercritical solvent will be available for recycle for reuse. The process will be compared to the efficacy of supercritical CO2 cleaning by attempting to clean the same types of substrates and machining wastes with the same contaminants using supercritical CO2. It is anticipated that the supercritical CO2 process will not be capable of removing ionic residues.

  6. Silica-promoted Diels-Alder reactions in carbon dioxide from gaseous to supercritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinstein, R.D.; Renslo, A.R.; Danheiser, R.L.

    1999-04-15

    Amorphous fumed silica (SiO{sub 2}) was shown to increase yields and selectivities of several Diels-Alder reactions in gaseous and supercritical CO{sub 2}. Pressure effects on the Diels-Alder reaction were explored using methyl vinyl ketone and penta-1,3-diene at 80 C. The selectivity of the reaction was not affected by pressure/density. As pressure was increased, the yield decreased. At the reaction temperature, adsorption isotherms at various pressures were obtained for the reactants and the Diels-Alder adduct. As expected when pressure is increased, the ratio of the amount of reactants adsorbed to the amount of reactants in the fluid phase decreases, thus causingmore » the yield to decrease. The Langmuir adsorption model fit the adsorption data. The Langmuir equilibrium partitioning constants all decreased with increasing pressure. The effect of temperature on adsorption was experimentally determined and traditional heats of adsorption were calculated. However, since supercritical CO{sub 2} is a highly compressible fluid, it is logical to examine the effect of temperature at constant density. In this case, entropies of adsorption were obtained. The thermodynamic properties that influence the real enthalpy and entropy of adsorption were derived. Methods of doping the silica and improving yields and selectivities were also explored.« less

  7. Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: Simulation and experiment.

    PubMed

    Gai, Yanzhe; Wang, Wucong; Xiao, Ding; Zhao, Yaping

    2018-03-01

    Ultrasound coupled with supercritical CO 2 has become an important method for exfoliation of graphene, but behind which a peeling mechanism is unclear. In this work, CFD simulation and experiment were both investigated to elucidate the mechanism and the effects of the process parameters on the exfoliation yield. The experiments and the CFD simulation were conducted under pressure ranging from 8MPa to 16MPa, the ultrasonic power ranging from 12W to 240W and the frequency of 20kHz. The numerical analysis of fluid flow patterns and pressure distributions revealed that the fluid shear stress and the periodical pressure fluctuation generated by ultrasound were primary factors in exfoliating graphene. The distribution of the fluid shear stress decided the effective exfoliation area, which, in turn, affected the yield. The effective area increased from 5.339cm 3 to 8.074cm 3 with increasing ultrasonic power from 12W to 240W, corresponding to the yield increasing from 5.2% to 21.5%. The pressure fluctuation would cause the expansion of the interlayers of graphite. The degree of the expansion increased with the increase of the operating pressure but decreased beyond 12MPa. Thus, the maximum yield was obtained at 12MPa. The cavitation might be generated by ultrasound in supercritical CO 2 . But it is too weak to exfoliate graphite into graphene. These results provide a strategy in optimizing and scaling up the ultrasound-assisted supercritical CO 2 technique for producing graphene. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Enzymatic hydrolysis of chitin pretreated by rapid depressurization from supercritical 1,1,1,2-tetrafluoroethane toward highly acetylated oligosaccharides.

    PubMed

    Villa-Lerma, Guadalupe; González-Márquez, Humberto; Gimeno, Miquel; Trombotto, Stéphane; David, Laurent; Ifuku, Shinsuke; Shirai, Keiko

    2016-06-01

    The hydrolysis of chitin treated under supercritical conditions was successfully carried out using chitinases obtained by an optimized fermentation of the fungus Lecanicillium lecanii. The biopolymer was subjected to a pretreatment based on suspension in supercritical 1,1,1,2-tetrafluoroethane (scR134a), which possesses a critical temperature and pressure of 101°C and 40bar, respectively, followed by rapid depressurization to atmospheric pressure and further fibrillation. This methodology was compared to control untreated chitins and chitin subjected to steam explosion showing improved production of reducing sugars (0.18mg/mL), enzymatic hydrolysis and high acetylation (FA of 0.45) in products with degrees of polymerization between 2 and 5. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An experimental study of transonic flow about a supercritical airfoil. Static pressure and drag data obtained from tests of a supercritical airfoil and an NACA 0012 airfoil at transonic speeds, supplement

    NASA Technical Reports Server (NTRS)

    Spaid, F. W.; Dahlin, J. A.; Roos, F. W.; Stivers, L. S., Jr.

    1983-01-01

    Surface static-pressure and drag data obtained from tests of two slightly modified versions of the original NASA Whitcomb airfoil and a model of the NACA 0012 airfoil section are presented. Data for the supercritical airfoil were obtained for a free-stream Mach number range of 0.5 to 0.9, and a chord Reynolds number range of 2 x 10 to the 6th power to 4 x 10 to the 6th power. The NACA 0012 airfoil was tested at a constant chord Reynolds number of 2 x 10 to the 6th power and a free-stream Mach number range of 0.6 to 0.8.

  10. Supercritical separation process for complex organic mixtures

    DOEpatents

    Chum, H.L.; Filardo, G.

    1990-10-23

    A process is disclosed for separating low molecular weight components from complex aqueous organic mixtures. The process includes preparing a separation solution of supercritical carbon dioxide with an effective amount of an entrainer to modify the solvation power of the supercritical carbon dioxide and extract preselected low molecular weight components. The separation solution is maintained at a temperature of at least about 70 C and a pressure of at least about 1,500 psi. The separation solution is then contacted with the organic mixtures while maintaining the temperature and pressure as above until the mixtures and solution reach equilibrium to extract the preselected low molecular weight components from the organic mixtures. Finally, the entrainer/extracted components portion of the equilibrium mixture is isolated from the separation solution. 1 fig.

  11. Aerodynamic characteristics of two 10-percent-thick NASA supercritical airfoils with different upper surface curvature distributions. [Langley 8 foot transonic tunnel tests

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1974-01-01

    In order to assess the degree to which the characteristic region of low curvature of the supercritical airfoil can be practically extended on the upper surface, the aerodynamic characteristics of two supercritical airfoils with different upper surface curvature distributions were measured at Mach numbers from 0.60 to 0.81. Integrated section force and moment data, surface pressure distributions, and typical wake survey profiles are presented.

  12. Aerodynamic Characteristics of a 14-Percent-Thick NASA Supercritical Airfoil Designed for a Normal-Force Coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1975-01-01

    This report documents the experimental aerodynamic characteristics of a 14 percent thick supercritical airfoil based on an off design sonic pressure plateau criterion. The design normal force coefficient was 0.7. The results are compared with those of the family related 10 percent thick supercritical airfoil 33. Comparisons are also made between experimental and theoretical characteristics and composite drag rise characteristics derived for a full scale Reynolds number of 40 million.

  13. SOLUBILITY OF ORGANIC BIOCIDES IN SUPERCRITICAL CO2 AND CO2+ COSOLVENT MIXTURES

    EPA Science Inventory

    Solubilities of four organic biocides in supercritical carbon dioxide (Sc-CO2) were measured using a dynamic flowr apparatus over a pressure range of 10 to 30 MPa and temperature of 35-80 degrees C. The biocides studied were: Amical-48 (diiodomethyl p-tolyl sulfone), chlorothalo...

  14. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dong; Pan, Jie; Zhu, Xiaojing

    2011-02-15

    Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure dropmore » in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)« less

  15. Effects of hydrostatic pressure and supercritical carbon dioxide on the viability of Botryococcus braunii algae cells.

    PubMed

    Yildiz-Ozturk, Ece; Ilhan-Ayisigi, Esra; Togtema, Arnoud; Gouveia, Joao; Yesil-Celiktas, Ozlem

    2018-05-01

    In bio-based industries, Botryococcus braunii is identified as a potential resource for production of hydrocarbons having a wide range of applications in chemical and biopolymer industries. For a sustainable production platform, the algae cultivation should be integrated with downstream processes. Ideally the algae are not harvested, but the product is isolated while cultivation and growth is continued especially if the doubling time is slow. Consequently, hydrocarbons can be extracted while keeping the algae viable. In this study, the effects of pressure on the viability of B. braunii cells were tested hydrostatically and under supercritical CO 2 conditions. Viability was determined by light microscopy, methylene blue uptake and by re-cultivation of the algae after treatments to follow the growth. It was concluded that supercritical CO 2 was lethal to the algae, whereas hydrostatic pressure treatments up to 150 bar have not affected cell viability and recultivation was successful. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Supercritical droplet combustion and related transport phenomena

    NASA Technical Reports Server (NTRS)

    Yang, Vigor; Hsieh, K. C.; Shuen, J. S.

    1993-01-01

    An overview of recent advances in theoretical analyses of supercritical droplet vaporization and combustion is conducted. Both hydrocarbon and cryogenic liquid droplets over a wide range of thermodynamic states are considered. Various important high-pressure effects on droplet behavior, such as thermodynamic non-ideality, transport anomaly, and property variation, are reviewed. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the criticl pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  17. Comparison of analytical and experimental subsonic steady and unsteady pressure distributions for a high-aspect-ratio-supercritical wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Mccain, W. E.

    1982-01-01

    The results of a comparative study using the unsteady aerodynamic lifting surface theory, known as the Doublet Lattice method, and experimental subsonic steady- and unsteady-pressure measurements, are presented for a high-aspect-ratio supercritical wing model. Comparisons of pressure distributions due to wing angle of attack and control-surface deflections were made. In general, good correlation existed between experimental and theoretical data over most of the wing planform. The more significant deviations found between experimental and theoretical data were in the vicinity of control surfaces for both static and oscillatory control-surface deflections.

  18. Investigation at near-sonic speed of some effects of humidity on the longitudinal aerodynamic characteristics of an NASA supercritical wing research airplane model

    NASA Technical Reports Server (NTRS)

    Jordan, F. L., Jr.

    1972-01-01

    The Langley 8-foot transonic pressure tunnel was used in an effort to determine the effects of humidity at near-sonic speed on the longitudinal aerodynamic characteristics and wing pressure distributions of an area-rule research airplane model with an NASA supercritical wing. Effects of dewpoint at the normal tunnel operating stagnation temperature of 48.9 C (120 F) and effects of stagnation temperature at a relatively high dewpoint of 15.6 C (60 F) were investigated. The test tunnel stagnation pressure was 101 325 N/sq m (1 atmosphere).

  19. Growth and Morphology of Supercritical Fluids Studied in Microgravity on Mir

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2000-01-01

    The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center at Lewis Field and under the guidance of U.S. principal investigator Professor John Hegseth of the University of New Orleans and three French coinvestigators Daniel Beysens, Yves Garrabos, and Carole Chabot. In early 1999, GMSF experiments were operated for 20 days on the Russian Space Station Mir. Mir astronauts performed experiments One through Seven, which spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) to be applied to the sample.

  20. Physicochemical properties and oral bioavailability of ursolic acid nanoparticles using supercritical anti-solvent (SAS) process.

    PubMed

    Yang, Lei; Sun, Zhen; Zu, Yuangang; Zhao, Chunjian; Sun, Xiaowei; Zhang, Zhonghua; Zhang, Lin

    2012-05-01

    The objective of the study was to prepare ursolic acid (UA) nanoparticles using the supercritical anti-solvent (SAS) process and evaluate its physicochemical properties and oral bioavailability. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during SAS process, were investigated. Particles with mean particle size ranging from 139.2±19.7 to 1039.8±65.2nm were obtained by varying the process parameters. The UA was characterised by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, thermal gravimetric analysis, specific surface area, dissolution test and bioavailability test. It was concluded that physicochemical properties and bioavailability of crystalline UA could be improved by physical modification, such as particle size reduction and generation of amorphous state using SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and bioavailability of UA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    The simulation of high-pressure turbulent flows, where the pressure, p, is larger than the critical value, p(sub c), for the species under consideration, is relevant to a wide array of propulsion systems, e.g. gas turbine, diesel, and liquid rocket engines. Most turbulence models, however, have been developed for atmospheric-p turbulent flows. The difference between atmospheric-p and supercritical-p turbulence is that, in the former situation, the coupling between dynamics and thermodynamics is moderate to negligible, but for the latter it is very significant, and can dominate the flow characteristics. The reason for this stems from the mathematical form of the equation of state (EOS), which is the perfect-gas EOS in the former case, and the real-gas EOS in the latter case. For flows at supercritical pressure, p, the large eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas EOS. The equations use transport properties that depend on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid scale (SGS) fluxes, but also new SGS terms, each denoted as a correction. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations, and represent differences between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) that is the difference between the filtered divergence of the heat flux and the divergence of the heat flux computed as a function of the filtered flow field. In a previous study, there was only partial success in modeling the q-correction term, but in this innovation, success has been achieved by using a different modeling approach. This analysis, based on a temporal mixing layer Direct Numerical Simulation database, shows that the focus in modeling the q-correction should be on reconstructing the primitive variable gradients rather than their coefficients, and proposes the approximate deconvolution model (ADM) as an effective means of flow field reconstruction for LES heat flux calculation. Further, results for a study conducted for temporal mixing layers initially containing oxygen in the lower stream, and hydrogen or helium in the upper stream, show that, for any LES, including SGS-flux models (constant-coefficient Gradient or Scale-Similarity models, dynamic-coefficient Smagorinsky/Yoshizawa or mixed Smagorinsky/Yoshizawa/Gradient models), the inclusion of the q-correction in the LES leads to the theoretical maximum reduction of the SGS heat-flux difference. The remaining error in modeling this new subgrid term is thus irreducible.

  2. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction.

    PubMed

    Bertuol, Daniel A; Machado, Caroline M; Silva, Mariana L; Calgaro, Camila O; Dotto, Guilherme L; Tanabe, Eduardo H

    2016-05-01

    Continuing technological development decreases the useful lifetime of electronic equipment, resulting in the generation of waste and the need for new and more efficient recycling processes. The objective of this work is to study the effectiveness of supercritical fluids for the leaching of cobalt contained in lithium-ion batteries (LIBs). For comparative purposes, leaching tests are performed with supercritical CO2 and co-solvents, as well as under conventional conditions. In both cases, sulfuric acid and H2O2 are used as reagents. The solution obtained from the supercritical leaching is processed using electrowinning in order to recover the cobalt. The results show that at atmospheric pressure, cobalt leaching is favored by increasing the amount of H2O2 (from 0 to 8% v/v). The use of supercritical conditions enable extraction of more than 95wt% of the cobalt, with reduction of the reaction time from 60min (the time employed in leaching at atmospheric pressure) to 5min, and a reduction in the concentration of H2O2 required from 8 to 4% (v/v). Electrowinning using a leach solution achieve a current efficiency of 96% and a deposit with cobalt concentration of 99.5wt%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Liposomes Size Engineering by Combination of Ethanol Injection and Supercritical Processing.

    PubMed

    Santo, Islane Espirito; Campardelli, Roberta; Albuquerque, Elaine Cabral; Vieira De Melo, Silvio A B; Reverchon, Ernesto; Della Porta, Giovanna

    2015-11-01

    Supercritical fluid extraction using a high-pressure packed tower is proposed not only to remove the ethanol residue from liposome suspensions but also to affect their size and distribution leading the production of nanosomes. Different operating pressures, temperatures, and gas to liquid ratios were explored and ethanol was successfully extracted up to a value of 400 ppm; liposome size and distribution were also reduced by the supercritical processing preserving their integrity, as confirmed by Z-potential data and Trasmission Electron Microscopy observations. Operating at 120 bar and 38°C, nanosomes with a mean diameter of about 180 ± 40 nm and good storage stability were obtained. The supercritical processing did not interfere on drug encapsulation, and no loss of entrapped drug was observed when the water-soluble fluorescein was loaded as a model compound. Fluorescein encapsulation efficiency was 30% if pure water was used during the supercritical extraction as processing fluid; whereas an encapsulation efficiency of 90% was obtained if the liposome suspension was processed in water/fluorescein solution. The described technology is easy to scale up to an industrial production and merge in one step the solvent extraction, liposome size engineering, and an excellent drug encapsulation in a single operation unit. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Green separation and characterization of fatty acids from solid wastes of leather industry in supercritical fluid CO2.

    PubMed

    Onem, Ersin; Renner, Manfred; Prokein, Michael

    2018-05-26

    Considerable tannery waste is generated by leather industry around the world. Recovery of the value-added products as natural fats from the solid wastes gained interest of many researchers. In this study, supercritical fluid separation method was applied for the fatty acid isolation from leather industry solid wastes. Pre-fleshing wastes of the double-face lambskins were used as natural fat source. Only supercritical CO 2 was used as process media without any solvent additive in high-pressure view cell equipment. The effect of different conditions was investigated for the best separation influence. The parameters of pressure (100 to 200 bar), temperature (40 to 80 °C), and time (1 to 3 h) were considered. Extraction yields and fat yields of the parameters were statistically evaluated after the processes. Maximum 78.57 wt% fat yield was obtained from leather industry fleshings in supercritical fluid CO 2 at 200 bar, 80 °C, and 2 h. Morever, conventional Soxhlet and supercritical CO 2 extracted fatty acids were characterized by using gas chromatography (GC) coupled with mass spectrometry (MS) and flame ionization detector (FID). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) characterizations were also done. The results showed that supercritical fluid CO 2 extraction was highly effective for the fat separation as green solvent and leather industry tannery wastes could be used for the value-added products.

  5. Fast copper extraction from printed circuit boards using supercritical carbon dioxide.

    PubMed

    Calgaro, C O; Schlemmer, D F; da Silva, M D C R; Maziero, E V; Tanabe, E H; Bertuol, D A

    2015-11-01

    Technological development and intensive marketing support the growth in demand for electrical and electronic equipment (EEE), for which printed circuit boards (PCBs) are vital components. As these devices become obsolete after short periods, waste PCBs present a problem and require recycling. PCBs are composed of ceramics, polymers, and metals, particularly Cu, which is present in highest percentages. The aim of this study was to develop an innovative method to recover Cu from the PCBs of old mobile phones, obtaining faster reaction kinetics by means of leaching with supercritical CO2 and co-solvents. The PCBs from waste mobile phones were characterized, and evaluation was made of the reaction kinetics during leaching at atmospheric pressure and using supercritical CO2 with H2O2 and H2SO4 as co-solvents. The results showed that the PCBs contained 34.83 wt% of Cu. It was found that the supercritical extraction was 9 times faster, compared to atmospheric pressure extraction. After 20 min of supercritical leaching, approximately 90% of the Cu contained in the PCB was extracted using a 1:20 solid:liquid ratio and 20% of H2O2 and H2SO4 (2.5 M). These results demonstrate the efficiency of the process. Therefore the supercritical CO2 employment in the PCBs recycling is a promising alternative and the CO2 is environmentally acceptable and reusable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition.

    PubMed

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2013-01-15

    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions.

  7. Effects of Natural Osmolytes on the Protein Structure in Supercritical CO2: Molecular Level Evidence.

    PubMed

    Monhemi, Hassan; Housaindokht, Mohammad Reza; Nakhaei Pour, Ali

    2015-08-20

    Protein instability in supercritical CO2 limits the application of this green solvent in enzyme-catalyzed reactions. CO2 molecules act as a protein denaturant at high pressure under supercritical conditions. Here, for the first time, we show that natural osmolytes could stabilize protein conformation in supercritical CO2. Molecular dynamics simulation is used to monitor the effects of adding different natural osmolytes on the conformation and dynamics of chymotrypsin inhibitor 2 (CI2) in supercritical CO2. Simulations showed that CI2 is denatured at 200 bar in supercritical CO2, which is in agreement with experimental observations. Interestingly, the protein conformation remains native after addition of ∼1 M amino acid- and sugar-based osmolyte models. These molecules stabilize protein through the formation of supramolecular self-assemblies resulting from macromolecule-osmolyte hydrogen bonds. Nevertheless, trimethylamine N-oxide, which is known as a potent osmolyte for protein stabilization in aqueous solutions, amplifies protein denaturation in supercritical CO2. On the basis of our structural analysis, we introduce a new mechanism for the osmolyte effect in supercritical CO2, an "inclusion mechanism". To the best of our knowledge, this is the first study that introduces the application of natural osmolytes in a supercritical fluid and describes mechanistic insights into osmolyte action in nonaqueous media.

  8. Dynamics, thermodynamics and structure of liquids and supercritical fluids: crossover at the Frenkel line

    NASA Astrophysics Data System (ADS)

    Fomin, Yu D.; Ryzhov, V. N.; Tsiok, E. N.; Proctor, J. E.; Prescher, C.; Prakapenka, V. B.; Trachenko, K.; Brazhkin, V. V.

    2018-04-01

    We review recent work aimed at understanding dynamical and thermodynamic properties of liquids and supercritical fluids. The focus of our discussion is on solid-like transverse collective modes, whose evolution in the supercritical fluids enables one to discuss the main properties of the Frenkel line separating rigid liquid-like and non-rigid gas-like supercritical states. We subsequently present recent experimental evidence of the Frenkel line showing that structural and dynamical crossovers are seen at a pressure and temperature corresponding to the line as predicted by theory and modelling. Finally, we link dynamical and thermodynamic properties of liquids and supercritical fluids by the new calculation of liquid energy governed by the evolution of solid-like transverse modes. The disappearance of those modes at high temperature results in the observed decrease of heat capacity.

  9. [Optimization for supercritical CO2 extraction with response surface methodology of Prunus armeniaca oil].

    PubMed

    Chen, Fei-Fei; Wu, Yan; Ge, Fa-Huan

    2012-03-01

    To optimize the extraction conditions of Prunus armeniaca oil by Supercritical CO2 extraction and identify its components by GC-MS. Optimized of SFE-CO extraction by response surface methodology and used GC-MS to analysis Prunus armeniaca oil compounds. Established the model of an equation for the extraction rate of Prunus armeniaca oil by supercritical CO2 extraction, and the optimal parameters for the supercritical CO2 extraction determined by the equation were: the extraction pressure was 27 MPa, temperature was 39 degrees C, the extraction rate of Prunus armeniaca oil was 44.5%. 16 main compounds of Prunus armeniaca oil extracted by supercritical CO2 were identified by GC-MS, unsaturated fatty acids were 92.6%. This process is simple, and can be used for the extraction of Prunus armeniaca oil.

  10. Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: a potential green approach to sustainable waste management in the pharmaceutical industry.

    PubMed

    Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J

    2009-03-15

    Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.

  11. HYDROGENATION OF 4-OXOISOPHORONE OVER PD/AL2/O2 CATALYST UNDER SUPERCRITICAL CO2 MEDIUM

    EPA Science Inventory

    Hydrogenation of 4-oxoisophorone has been studied over 1% Pd/Al2O3 impregnated catalyst in supercritical CO2 medium at different reaction conditions. The effect of temperature, pressure and reaction medium on the conversion and product selectivity is discussed. Phase behavior stu...

  12. Instabilities encountered during heat transfer to a supercritical fluid

    NASA Technical Reports Server (NTRS)

    Cornelius, A. J.

    1969-01-01

    Investigation was made of the unstable behavior of a heat-transfer loop operating at a supercritical pressure. Natural convection operation of the loop, with observations on acoustic and slow oscillatory behavior, was emphasized during testing. The basic cause of both types of behavior appeared to originate in the heated boundary layer.

  13. Catalytic Intermolecular Pauson - Khand Reactions in Supercritical Ethylene.

    PubMed

    Jeong; Hwang

    2000-02-01

    Ethylene is not only a substrate, but also a solvent: Catalytic intermolecular Pauson - Khand reactions of terminal alkynes were carried out in supercritical ethylene to provide 2-substituted cyclopentenones in moderate to high yields [Eq. (1)]. Under these conditions, even a low pressure of CO (5 atm) is sufficient for the reaction to take place.

  14. Effects of supercritical fluid extraction pressure on chemical composition, microbial population, polar lipid profile, and microstructure of goat cheese.

    PubMed

    Sánchez-Macías, D; Laubscher, A; Castro, N; Argüello, A; Jiménez-Flores, R

    2013-03-01

    The consumer trend for healthier food choices and preferences for low-fat products has increased the interest in low-fat cheese and nutraceutical dairy products. However, consumer preference is still for delicious food. Low- and reduced-fat cheeses are not completely accepted because of their unappealing properties compared with full-fat cheeses. The method reported here provides another option to the conventional cheese-making process to obtain lower fat cheese. Using CO(2) as a supercritical fluid offers an alternative to reduce fat in cheese after ripening, while maintaining the initial characteristics and flavor. The aim of this experiment was to evaluate the effect of pressure (10, 20, 30, and 40 × 10(6) Pa) of supercritical CO(2) on the amount of fat extracted, microbial population, polar lipid profile, and microstructure of 2 varieties of goat cheese: Majorero, a protected denomination of origin cheese from Spain, and goat Gouda-type cheese. The amount of fat was reduced 50 to 57% and 48 to 55% for Majorero and goat Gouda-type cheeses, respectively. Higher contents (on a fat basis) of sphingomyelin and phosphatidylcholine were found in Majorero cheese compared with control and goat Gouda-type cheeses. The microbial population was reduced after supercritical fluid extraction in both cheeses, and the lethality was higher as pressure increased in Majorero cheese, most noticeably on lactococcus and lactobacillus bacteria. The Gouda-type cheese did not contain any lactobacilli. Micrographs obtained from confocal laser scanning microscopy showed a more open matrix and whey pockets in the Majorero control cheese. This could explain the ease of extracting fat and reducing the microbial counts in this cheese after treatment with supercritical CO(2). Supercritical fluid extraction with CO(2) has great potential in the dairy industry and in commercial applications. The Majorero cheese obtained after the supercritical fluid extraction treatment was an excellent candidate as a low-fat goat cheese, lower in triglycerides and cholesterol but still with all the health benefits inherent in goat milk. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Numerical simulation of stress distribution in Inconel 718 components realized by metal injection molding during supercritical debinding

    NASA Astrophysics Data System (ADS)

    Agne, Aboubakry; Barrière, Thierry

    2018-05-01

    Metal injection molding (MIM) is a process combining advantages of thermoplastic injection molding and powder metallurgy process in order to manufacture components with complex and near net-shape geometries. The debinding of a green component can be performed in two steps, first by using solvent debinding in order to extract the organic part of the binder and then by thermal degradation of the rest of the binder. A shorter and innovative method for extracting an organic binder involves the use of supercritical fluid instead of a regular solvent. The debinding via a supercritical fluid was recently investigated to extract organic binders contained in components obtained by Metal Injection Molding. It consists to put the component in an enclosure subjected to high pressure and temperature. The supercritical fluid has various properties depending on these two conditions, e.g., density and viscosity. The high-pressure combined with the high temperature during the process affect the component structure. Three mechanisms contributing to the deformation of the component can been differentiated: thermal expansion, binder extraction and supercritical fluid effect on the outer surfaces of the component. If one supposes that, the deformation due to binder extraction is negligible, thermal expansion and the fluid effect are probably the main mechanisms that can produce several stress. A finite-element model, which couples fluid-structures interaction and structural mechanics, has been developed and performed on the Comsol Multiphysics® finite-element software platform allowed to estimate the stress distribution during the supercritical debinding of MIM component composed of Inconel 718 powders, polypropylene, polyethylene glycol and stearic acid as binder. The proposed numerical simulations allow the estimation of the stress distribution with respect to the processing parameters for MIM components during the supercritical debinding process using a stationary solver.

  16. Supercritical Nitrogen Processing for the Purification of Reactive Porous Materials

    PubMed Central

    Stadie, Nicholas P.; Callini, Elsa; Mauron, Philippe; Borgschulte, Andreas; Züttel, Andreas

    2015-01-01

    Supercritical fluid extraction and drying methods are well established in numerous applications for the synthesis and processing of porous materials. Herein, nitrogen is presented as a novel supercritical drying fluid for specialized applications such as in the processing of reactive porous materials, where carbon dioxide and other fluids are not appropriate due to their higher chemical reactivity. Nitrogen exhibits similar physical properties in the near-critical region of its phase diagram as compared to carbon dioxide: a widely tunable density up to ~1 g ml-1, modest critical pressure (3.4 MPa), and small molecular diameter of ~3.6 Å. The key to achieving a high solvation power of nitrogen is to apply a processing temperature in the range of 80-150 K, where the density of nitrogen is an order of magnitude higher than at similar pressures near ambient temperature. The detailed solvation properties of nitrogen, and especially its selectivity, across a wide range of common target species of extraction still require further investigation. Herein we describe a protocol for the supercritical nitrogen processing of porous magnesium borohydride. PMID:26066492

  17. Enrichment desired quality chitosan fraction and advance yield by sequential static and static-dynamic supercritical CO2.

    PubMed

    Hsieh, Yi-Yin; Chin, Hui Yen; Tsai, Min-Lang

    2015-11-20

    This study aimed to establish the sequential static and static-dynamic supercritical carbon dioxide (SDCO2) fractionation conditions to obtain a higher yield and desired chitosan with lower polydispersity index (PDI) and higher degree of deacetylation (DD). The yield increased with increasing DD of used chitosan and amount of cosolvent. The yield of acetic acid cosolvent was higher than those of malic and citric acid cosolvents. SDCO2, compared to static supercritical carbon dioxide, has higher yield. The yield of extracted chitosan was 5.82-14.70% by SDCO2/acetic acid, which increases with increasing pressure. The DD of fractionated chitosan increased from 66.1% to 70.81-85.33%, while the PDI decreased from 3.97 to 1.69-3.16. The molecular weight changed from 622kDa to 412-649kDa, which increased as density of supercritical carbon dioxide increases. Hence, higher DD and lower PDI extracted chitosan can be obtained through controlling the temperature and pressure of SDCO2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Wind-tunnel measurements of aerodynamic load distribution on an NASA supercritical-wing research airplane configuration

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1972-01-01

    Wind tunnel tests have been conducted on a research airplane model with an NASA supercritical wing to define the general character of the flow over the wing and to aid in structural design of the full scale airplane. Pressure measurements were made at Mach numbers from 0.25 to 1.30 for sideslip angles from -2.50 deg to 2.50 deg over a moderate range of angles of attack and dynamic pressures. Except for representative figures, the results are presented in tabular form without detailed analysis.

  19. Pressure Effects on the Relaxation of an Excited Nitromethane Molecule in an Argon Bath

    DTIC Science & Technology

    2015-01-05

    pressure. The Schwarzer et al. measurements of the relaxation of azulene in a variety of supercritical fluids including CO2 show that a change in...J. Chem. Phys. 142, 014303 (2015) experimental studies8(b),8(c),14,15 that have used supercritical fluids for which the density can be conveniently...work of Heidelbach et al.20 for azulene/ CO2 and of Paul et al.23 for the C6F6/N2 system. While it is impossible to briefly summarize the vast body of

  20. The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Evaluation of initial perforated configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1992-01-01

    The initial evaluation of a large-chord, swept, supercritical airfoil incorporating an active laminar-flow-control (LFC) suction system with a perforated upper surface is documented in a chronological manner, and the deficiencies in the suction capability of the perforated panels as designed are described. The experiment was conducted in the Langley 8-Foot Transonic Pressure Tunnel. Also included is an evaluation of the influence of the proximity of the tunnel liner to the upper surface of the airfoil pressure distribution.

  1. Rate variations of a hetero-Diels--Alder reaction in supercritical fluid CO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, R.L.; Glaeser, R.; Bush, D.

    1999-11-01

    The hetero-Diels-Alder reaction between anthracene and excess 4-phenyl-1,2,4-triazoline-3,5-dione has been investigated in supercritical CO{sub 2} at 40 C and pressures between 75 and 216 bar. Biomolecular reaction rate constants have been measured via fluorescence spectroscopy by following the decrease in anthracene concentration with reaction time. The reaction rate is elevated in the vicinity of the critical pressure. This difference is consistent with local composition enhancement and can be modeled with the Peng-Robinson equation of state.

  2. Phytochemical profile, antioxidant and antimicrobial activity of extracts obtained from erva-mate (Ilex paraguariensis) fruit using compressed propane and supercritical CO2.

    PubMed

    Fernandes, Ciro E F; Scapinello, Jaqueline; Bohn, Aline; Boligon, Aline A; Athayde, Margareth L; Magro, Jacir Dall; Palliga, Marshall; Oliveira, J Vladimir; Tres, Marcus V

    2017-01-01

    Traditionally, Ilex paraguariensis leaves are consumed in tea form or as typical drinks like mate and terere, while the fruits are discarded processing and has no commercial value. The aim of this work to evaluate phytochemical properties, total phenolic compounds, antioxidant and antimicrobial activity of extracts of Ilex paraguariensis fruits obtained from supercritical CO 2 and compressed propane extraction. The extraction with compressed propane yielded 2.72 wt%, whereas with supercritical CO 2 1.51 wt% was obtained. The compound extracted in larger amount by the two extraction solvents was caffeine, 163.28 and 54.17 mg/g by supercritical CO 2 and pressurized propane, respectively. The antioxidant activity was more pronounced for the supercritical CO 2 extract, with no difference found in terms of minimum inhibitory concentration for Staphylococcus aureus for the two extracts and better results observed for Escherichia coli when using supercritical CO 2 .

  3. Scour in supercritical flow

    DOT National Transportation Integrated Search

    1988-10-01

    Scour in supercritical flow is one extreme aspect of the effects of velocity on scour. Analysis of the case of scour in a long contraction shows that if all other independent variables are kept constant (1) some finite velocity is necessary to have a...

  4. Design and adaptation of a novel supercritical extraction facility for operation in a glove box for recovery of radioactive elements

    NASA Astrophysics Data System (ADS)

    Kumar, V. Suresh; Kumar, R.; Sivaraman, N.; Ravisankar, G.; Vasudeva Rao, P. R.

    2010-09-01

    The design and development of a novel supercritical extraction experimental facility adapted for safe operation in a glove box for the recovery of radioactive elements from waste is described. The apparatus incorporates a high pressure extraction vessel, reciprocating pumps for delivering supercritical fluid and reagent, a back pressure regulator, and a collection chamber. All these components of the system have been specially designed for glove box adaptation and made modular to facilitate their replacement. Confinement of these materials must be ensured in a glove box to protect the operator and prevent contamination to the work area. Since handling of radioactive materials under high pressure (30 MPa) and temperature (up to 333 K) is involved in this process, the apparatus needs elaborate safety features in the design of the equipment, as well as modification of a standard glove box to accommodate the system. As a special safety feature to contain accidental leakage of carbon dioxide from the extraction vessel, a safety vessel has been specially designed and placed inside the glove box. The extraction vessel was enclosed in the safety vessel. The safety vessel was also incorporated with pressure sensing and controlling device.

  5. An investigation of supercritical-CO2 copper electroplating parameters for application in TSV chips

    NASA Astrophysics Data System (ADS)

    Chuang, Ho-Chiao; Lai, Wei-Hong; Sanchez, Jorge

    2015-01-01

    This study uses supercritical electroplating for the filling of through silicon vias (TSVs) in chips. The present study utilizes the inductively coupled plasma reactive ion etching (ICP RIE) process technique to etch the TSVs and discusses different supercritical-CO2 electroplating parameters, such as the supercritical pressure, the electroplating current density’s effect on the TSV Cu pillar filling time, the I-V curve, the electrical resistance and the hermeticity. In addition, the results for all the tests mentioned above have been compared to results from traditional electroplating techniques. For the testing, we will first discuss the hermeticity of the TSV Cu pillars, using a helium leaking test apparatus to assess the vacuum sealing of the fabricated TSV Cu pillars. In addition, this study also conducts tests for the electrical properties, which include the measurement of the electrical resistance of the TSV at both ends in the horizontal direction, followed by the passing of a high current (10 A, due to probe limitations) to check if the TSV can withstand it without burnout. Finally, the TSV is cut in half in cross-section to observe the filling of Cu pillars by the supercritical electroplating and check for voids. The important characteristic of this study is the use of the supercritical electroplating process without the addition of any surfactants to aid the filling of the TSVs, but by taking advantage of the high permeability and low surface tension of supercritical fluids to achieve our goal. The results of this investigation point to a supercritical pressure of 2000 psi and a current density of 3 A dm-2 giving off the best electroplating filling and hermeticity, while also being able to withstand a high current of 10 A, with a relatively short electroplating time of 3 h (when compared to our own traditional dc electroplating).

  6. A Posteriori Study of a DNS Database Describing Super critical Binary-Species Mixing

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    Currently, the modeling of supercritical-pressure flows through Large Eddy Simulation (LES) uses models derived for atmospheric-pressure flows. Those atmospheric-pressure flows do not exhibit the particularities of high densitygradient magnitude features observed both in experiments and simulations of supercritical-pressure flows in the case of two species mixing. To assess whether the current LES modeling is appropriate and if found not appropriate to propose higher-fidelity models, a LES a posteriori study has been conducted for a mixing layer that initially contains different species in the lower and upper streams, and where the initial pressure is larger than the critical pressure of either species. An initially-imposed vorticity perturbation promotes roll-up and a double pairing of four initial span-wise vortices into an ultimate vortex that reaches a transitional state. The LES equations consist of the differential conservation equations coupled with a real-gas equation of state, and the equation set uses transport properties depending on the thermodynamic variables. Unlike all LES models to date, the differential equations contain, additional to the subgrid scale (SGS) fluxes, a new SGS term that is a pressure correction in the momentum equation. This additional term results from filtering of Direct Numerical Simulation (DNS) equations, and represents the gradient of the difference between the filtered pressure and the pressure computed from the filtered flow field. A previous a priori analysis, using a DNS database for the same configuration, found this term to be of leading order in the momentum equation, a fact traced to the existence of high-densitygradient magnitude regions that populated the entire flow; in the study, models were proposed for the SGS fluxes as well as this new term. In the present study, the previously proposed constantcoefficient SGS-flux models of the a priori investigation are tested a posteriori in LES, devoid of or including, the SGS pressure correction term. The present pressure-correction model is different from, and more accurate as well as less computationally intensive than that of the a priori study. The constant-coefficient SGS-flux models encompass the Smagorinsky (SMC), in conjunction with the Yoshizawa (YO) model for the trace, the Gradient (GRC) and the Scale Similarity (SSC) models, all exercised with the a priori study constant coefficients calibrated at the transitional state. The LES comparison is performed with the filtered- and-coarsened (FC) DNS, which represents an ideal LES solution. Expectably, an LES model devoid of SGS terms is shown to be considerably inferior to models containing SGS effects. Among models containing SGS effects, those including the pressure-correction term are substantially superior to those devoid of it. The sensitivity of the predictions to the initial conditions and grid size are also investigated. Thus, it has been discovered that, additional to the atmospheric-pressure models currently used, a new model is necessary to simulate supercritical-pressure flows. This model depends on the thermodynamic characteristics of the chemical species involved.

  7. Densification of Supercritical Carbon Dioxide Accompanied by Droplet Formation When Passing the Widom Line

    NASA Astrophysics Data System (ADS)

    Pipich, Vitaliy; Schwahn, Dietmar

    2018-04-01

    Thermal density fluctuations of supercritical CO2 were explored using small-angle neutron scattering (SANS), whose amplitude (susceptibility) and correlation length show the expected maximum at the Widom line. At low pressure, the susceptibility is in excellent agreement with the evaluated values on the basis of mass density measurements. At about 20 bar beyond the Widom line, SANS shows the formation of droplets accompanied by an enhanced number density of the supercritical fluid. The corresponding borderline is interpreted as a Frenkel line separating gas- and liquidlike regimes.

  8. Densification of Supercritical Carbon Dioxide Accompanied by Droplet Formation When Passing the Widom Line.

    PubMed

    Pipich, Vitaliy; Schwahn, Dietmar

    2018-04-06

    Thermal density fluctuations of supercritical CO_{2} were explored using small-angle neutron scattering (SANS), whose amplitude (susceptibility) and correlation length show the expected maximum at the Widom line. At low pressure, the susceptibility is in excellent agreement with the evaluated values on the basis of mass density measurements. At about 20 bar beyond the Widom line, SANS shows the formation of droplets accompanied by an enhanced number density of the supercritical fluid. The corresponding borderline is interpreted as a Frenkel line separating gas- and liquidlike regimes.

  9. Supercritical water oxidation for wastewater treatment Preliminary study of urea destruction

    NASA Technical Reports Server (NTRS)

    Timberlake, S. H.; Hong, G. T.; Simson, M.; Modell, M.

    1982-01-01

    Supercritical water oxidation is being investigated as a method of treating spacecraft wastewater for recycle. In this process, oxidation is conducted in an aqueous phase maintained above the critical temperature (374 C) and pressure (215 bar) of water. Organic materials are oxidized with efficiencies greater than 99.99 percent in residence times of less than 1 minute. This paper presents preliminary results for urea destruction. Above 650 C, urea can be completely broken down to nitrogen gas, carbon dioxide and water by supercritical water oxidation, without the use of a specific catalyst.

  10. Partition Coefficients of Organics between Water and Carbon Dioxide Revisited: Correlation with Solute Molecular Descriptors and Solvent Cohesive Properties.

    PubMed

    Roth, Michal

    2016-12-06

    High-pressure phase behavior of systems containing water, carbon dioxide and organics has been important in several environment- and energy-related fields including carbon capture and storage, CO 2 sequestration and CO 2 -assisted enhanced oil recovery. Here, partition coefficients (K-factors) of organic solutes between water and supercritical carbon dioxide have been correlated with extended linear solvation energy relationships (LSERs). In addition to the Abraham molecular descriptors of the solutes, the explanatory variables also include the logarithm of solute vapor pressure, the solubility parameters of carbon dioxide and water, and the internal pressure of water. This is the first attempt to include also the properties of water as explanatory variables in LSER correlations of K-factor data in CO 2 -water-organic systems. Increasing values of the solute hydrogen bond acidity, the solute hydrogen bond basicity, the solute dipolarity/polarizability, the internal pressure of water and the solubility parameter of water all tend to reduce the K-factor, that is, to favor the solute partitioning to the water-rich phase. On the contrary, increasing values of the solute characteristic volume, the solute vapor pressure and the solubility parameter of CO 2 tend to raise the K-factor, that is, to favor the solute partitioning to the CO 2 -rich phase.

  11. Effects of intermolecular forces and backbone architecture on the phase behavior of fluorocopolymer-supercritical fluid mixtures

    NASA Astrophysics Data System (ADS)

    Mertdogan, Cynthia Asli

    The impact of polymer backbone architecture on fluorocopolymer solubility in supercritical fluid (SCF) solvents is studied by systematically varying the chemical type of the repeat units in the main chain. The fluorocopolymers investigated include nonpolar copolymers of tetrafluoroethylene with 19 mol% hexafluoropropylene (FEPsb{19}) and 48 mol% hexafluoropropylene (FEPsb{48}) and a polar copolymer of vinylidene fluoride with 22 mol% hexafluoropropylene (Fluorelsp°ler ). The solvents are methodically varied from nonpolar perfluoroalkanes and SFsb6 to polar fluorocarbons and COsb2. Low molecular weight solvents are used to facilitate in interpreting the intermolecular forces that control fluorocopolymer solubility, although pressures in excess of 2,500 bar are sometimes needed to dissolve the fluorocopolymers in these simple solvents. Polarity effects, which vary inversely with temperature, are moderated by operating over a large temperature range from 0 to 300sp° C. A variable-volume view cell, capable of operating to high temperatures and high pressures, was designed and implemented to meet these extreme operating conditions. Increasing the polarizability of nonpolar solvents reduces the pressures required to dissolve FEPsb{19} by as much as 1,500 bar going from perfluoromethane to perfluoropropane. However, in polar solvents, the pressures required for FEPsb{19} solubility rise dramatically as the temperature is decreased due to the increase in polar, solvent-solvent interactions that do not favor the solubility of a nonpolar copolymer. Replacing semi-crystalline FEPsb{19} with amorphous FEPsb{48} yields the same trends in phase behavior. Therefore, crystallinity does not control the shape of these fluorocopolymer-SCF cloud-point curves. Adding a cosolvent to the solution can dramatically lower the pressures needed to dissolve the copolymer. Introducing the "cosolvent" directly into the polymer backbone by changing copolymer architecture is another method of modifying fluorocopolymer solubility as seen with the results for Fluorel-SCF mixtures compared to those for FEPsb{19}-SCF mixtures. A supercritical fractionation of FEPsb{19} provides information on the impact of molecular weight and end-group content on fluorocopolymer solubility. Challenges remain for modeling fluorocopolymer-solvent mixtures. The Sanchez-Lacombe equation cannot capture the characteristics of FEPsb{19}-SCF solvent phase behavior unless two empirical mixture parameters, one of which varies with temperature, are used.

  12. Patterns of variability in supercritical hadronic systems

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Mastichiadis, A.

    2018-07-01

    A unique and often overlooked property of a source loaded with relativistic protons is that it can become supercritical, i.e. it can undergo an abrupt transition from a radiatively inefficient to a radiatively efficient state once its proton energy density exceeds a certain threshold. In this paper, we investigate the temporal variability of hadronic systems in this hardly explored regime. We show that there exists a range of proton densities that prevent the system from reaching a steady state, but drive it instead in a quasi-periodic mode. The escaping radiation then exhibits limit cycles, even if all physical parameters are held constant in time. We extend our analysis to cases where the proton injection rate varies with time and explore the variability patterns of escaping radiation as the system moves in and out from the supercritical regime. We examine the relevance of our results to the variability of the prompt gamma-ray burst emission and show that, at least on a phenomenological level, some interesting analogies exist.

  13. The NASA Langley Laminar-Flow-Control Experiment on a Swept Supercritical Airfoil: Basic Results for Slotted Configuration

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Brooks, Cuyler W., Jr.; Clukey, Patricia G.; Stack, John P.

    1989-01-01

    The effects of Mach number and Reynolds number on the experimental surface pressure distributions and transition patterns for a large chord, swept supercritical airfoil incorporating an active Laminar Flow Control suction system with spanwise slots are presented. The experiment was conducted in the Langley 8 foot Transonic Pressure Tunnel. Also included is a discussion of the influence of model/tunnel liner interactions on the airfoil pressure distribution. Mach number was varied from 0.40 to 0.82 at two chord Reynolds numbers, 10 and 20 x 1,000,000, and Reynolds number was varied from 10 to 20 x 1,000,000 at the design Mach number.

  14. Intermolecular interactions and the thermodynamic properties of supercritical fluids.

    PubMed

    Yigzawe, Tesfaye M; Sadus, Richard J

    2013-05-21

    The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.

  15. A Validated All-Pressure Fluid Drop Model and Lewis Number Effects for a Binary Mixture

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.

    1999-01-01

    The differences between subcritical liquid drop and supercritical fluid drop behavior are discussed. Under subcritical, evaporative high emission rate conditions, a film layer is present in the inner part of the drop surface which contributes to the unique determination of the boundary conditions; it is this film layer which contributes to the solution's convective-diffusive character. In contrast, under supercritical condition as the boundary conditions contain a degree of arbitrariness due to the absence of a surface, and the solution has then a purely diffusive character. Results from simulations of a free fluid drop under no-gravity conditions are compared to microgravity experimental data from suspended, large drop experiments at high, low and intermediary temperatures and in a range of pressures encompassing the sub-and supercritical regime. Despite the difference between the conditions of the simulations and experiments (suspension vs. free floating), the time rate of variation of the drop diameter square is remarkably well predicted in the linear curve regime. The drop diameter is determined in the simulations from the location of the maximum density gradient, and agrees well with the data. It is also shown that the classical calculation of the Lewis number gives qualitatively erroneous results at supercritical conditions, but that an effective Lewis number previously defined gives qualitatively correct estimates of the length scales for heat and mass transfer at all pressures.

  16. Comparison of analytical and experimental steadyand unsteady-pressure distributions at Mach number 0.78 for a high-aspect-ratio supercritical wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Mccain, W. E.

    1984-01-01

    The unsteady aerodynamic lifting surface theory, the Doublet Lattice method, with experimental steady and unsteady pressure measurements of a high aspect ratio supercritical wing model at a Mach number of 0.78 were compared. The steady pressure data comparisons were made for incremental changes in angle of attack and control surface deflection. The unsteady pressure data comparisons were made at set angle of attack positions with oscillating control surface deflections. Significant viscous and transonic effects in the experimental aerodynamics which cannot be predicted by the Doublet Lattice method are shown. This study should assist development of empirical correction methods that may be applied to improve Doublet Lattice calculations of lifting surface aerodynamics.

  17. A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2015-09-01

    In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Physical properties of the benchmark models program supercritical wing

    NASA Technical Reports Server (NTRS)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Turnock, David L.; Silva, Walter A.; Rivera, Jose A., Jr.

    1993-01-01

    The goal of the Benchmark Models Program is to provide data useful in the development and evaluation of aeroelastic computational fluid dynamics (CFD) codes. To that end, a series of three similar wing models are being flutter tested in the Langley Transonic Dynamics Tunnel. These models are designed to simultaneously acquire model response data and unsteady surface pressure data during wing flutter conditions. The supercritical wing is the second model of this series. It is a rigid semispan model with a rectangular planform and a NASA SC(2)-0414 supercritical airfoil shape. The supercritical wing model was flutter tested on a flexible mount, called the Pitch and Plunge Apparatus, that provides a well-defined, two-degree-of-freedom dynamic system. The supercritical wing model and associated flutter test apparatus is described and experimentally determined wind-off structural dynamic characteristics of the combined rigid model and flexible mount system are included.

  19. Insights into Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Quin RS; Thompson, Christopher J.; Loring, John S.

    2013-07-01

    Long-term geologic storage of carbon dioxide (CO2) is considered an integral part to moderating CO2 concentrations in the atmosphere and subsequently minimizing effects of global climate change. Although subsurface injection of CO2 is common place in certain industries, deployment at the scale required for emission reduction is unprecedented and therefore requires a high degree of predictability. Accurately modeling geochemical processes in the subsurface requires experimental derived data for mineral reactions occurring between the CO2, water, and rocks. Most work in this area has focused on aqueous-dominated systems in which dissolved CO2 reacts to form crystalline carbonate minerals. Comparatively little laboratorymore » research has been conducted on reactions occurring between minerals in the host rock and the wet supercritical fluid phase. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably hydrated supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) that simulate conditions in geologic repositories. Mineral transformation reactions were followed by three novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the supercritical CO2 resulted in increased silicate carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared spectroscopy and determined to be critical for facilitating carbonation processes. Even in extreme low water conditions, magic angle spinning nuclear magnetic resonance detected formation of Q3 [Si(OSi)3OH] and Q4 [Si(OSi)4] amorphous silica species. Unlike the thick (<10 μm) passivating silica layers observed in the fully water saturated scCO2 experiments, images obtained from a focused ion beam sectioned sample indicted these coatings were chemically wollastonite but structurally amorphous. In addition, evidence of an intermediate hydrated amorphous calcium carbonate forming under these conditions further emphasize the importance of understanding geochemical processes occurring in water bearing scCO2 fluids.« less

  20. SEMICONDUCTOR TECHNOLOGY Supercritical carbon dioxide process for releasing stuck cantilever beams

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Chaoqun, Gao; Lei, Wang; Yupeng, Jing

    2010-10-01

    The multi-SCCO2 (supercritical carbon dioxide) release and dry process based on our specialized SCCO2 semiconductor process equipment is investigated and the releasing mechanism is discussed. The experiment results show that stuck cantilever beams were held up again under SCCO2 high pressure treatment and the repeatability of this process is nearly 100%.

  1. Supercritical Extraction of Scopoletin from Helichrysum italicum (Roth) G. Don Flowers.

    PubMed

    Jokić, Stela; Rajić, Marina; Bilić, Blanka; Molnar, Maja

    2016-09-01

    The increasing popularity of immortelle (Helichrysum italicum (Roth) G. Don) and its products, particularly in the cosmetic industry, is evident nowadays. This plant is a source of coumarins, especially scopoletin, which are highly soluble in supercritical CO2 . The objective of this study was to perform the supercritical CO2 extraction process of Helichrysum italicum flowers at different values of pressure and temperature and to optimise the extraction process using response surface methodology in terms of obtaining the highest extraction yield and yield of extracted scopoletin. Extraction was performed in a supercritical extraction system under different extraction conditions of pressure and temperature determined by central composite rotatable design. The mass of flowers in the extractor of 40 g, extraction time of 90 min and CO2 mass flow rate of 1.94 kg/h were kept constant during experiments. Antioxidant activity was determined using the DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging assay method. Scopoletin concentration was determined by HPLC. Changes in extraction conditions affect the extracting results remarkably. The greatest extraction yield (6.31%) and the highest yield of scopoletin (1.933 mg/100 g) were obtained under extraction conditions of 20 MPa and 40°C. Extracts have also proven to possess antioxidant activity (44.0-58.1% DPPH scavenging activity) influenced by both temperature and pressure applied within the investigated parameters. The extraction conditions, especially pressure, exhibited significant influence on the extraction yield as well as the yield of extracted scopoletin and antioxidant activity of extracts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    NASA Astrophysics Data System (ADS)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  3. Comparison of Nitronic 50 and Stainless Steel 316 for use in Supercritical Water Environments

    NASA Astrophysics Data System (ADS)

    Karmiol, Zachary

    Increased efficiency can greatly benefit any mode of power production. Many proposed coal, natural gas, and nuclear reactors attempt to realize this goal through the use of increased operating temperatures and pressures, and as such require materials capable of withstanding extreme conditions. One such design employs supercritical water, which in addition to high temperatures and pressures is also highly oxidizing. A critical understanding of both mechanical and oxidation characteristics of candidate materials are required to determine the viability of materials for these reactors. This work investigates two potential materials, austenitic stainless steels, namely, Nitronic-50 and stainless steel 316, for use in these conditions. The supercritical water loop at the University of Nevada, Reno allowed for the study of materials at both subcritical and supercritical conditions. The materials were investigated mechanically using slow strain rate tests under conditions ranging from an inert nitrogen atmosphere, to both subcritical and supercritical water, with the failed samples surface characterized by optical microscopy, scanning electron microscopy, and Raman spectroscopy. Electrochemical studies were performed via potentiodynamic polarization in subcritical water only, and characterized using Raman spectroscopy. The samples were also exposed to supercritical water, and characterized using Raman spectroscopy. Nitronic-50 was found to have superior mechanical characteristics to stainless steel 316. SS-316 was found to have a surface film consisting of iron oxides, while the surface film of N-50 consisted predominantly of nickel-iron spinel. The crack interior of the sample was different from the exterior, indicating that the time and temperature of the exposure might play a defining role in determining the chemistry of the film.

  4. Supercritical water oxidation of dioxins and furans in waste incinerator fly ash, sewage sludge and industrial soil.

    PubMed

    Zainal, Safari; Onwudili, Jude A; Williams, Paul T

    2014-08-01

    Three environmental samples containing dioxins and furans have been oxidized in the presence of hydrogen peroxide under supercritical water oxidation conditions. The samples consisted of a waste incinerator fly ash, sewage sludge and contaminated industrial soil. The reactor system was a batch, autoclave reactor operated at temperatures between 350 degrees C and 450degrees C, corresponding to pressures of approximately 20-33.5 MPa and with hydrogen peroxide concentrations from 0.0 to 11.25 vol%. Hydrogen peroxide concentration and temperature/pressure had a strong positive effect on the oxidation of dioxins and furans. At the highest temperatures and pressure of supercritical water oxidation of 4500C and 33.5 MPa and with 11.25 vol% of hydrogen peroxide, the destruction efficiencies of the individual polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) isomers were between 90% and 99%. There did not appear to be any significant differences in the PCDD/PCDF destruction efficiencies in relation to the different sample matrices of the waste incinerator fly ash, sewage sludge and contaminated industrial soil.

  5. Experimental unsteady pressures at flutter on the Supercritical Wing Benchmark Model

    NASA Technical Reports Server (NTRS)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Rivera, Jose A.; Silva, Walter A.; Wieseman, Carol D.; Turnock, David L.

    1993-01-01

    This paper describes selected results from the flutter testing of the Supercritical Wing (SW) model. This model is a rigid semispan wing having a rectangular planform and a supercritical airfoil shape. The model was flutter tested in the Langley Transonic Dynamics Tunnel (TDT) as part of the Benchmark Models Program, a multi-year wind tunnel activity currently being conducted by the Structural Dynamics Division of NASA Langley Research Center. The primary objective of this program is to assist in the development and evaluation of aeroelastic computational fluid dynamics codes. The SW is the second of a series of three similar models which are designed to be flutter tested in the TDT on a flexible mount known as the Pitch and Plunge Apparatus. Data sets acquired with these models, including simultaneous unsteady surface pressures and model response data, are meant to be used for correlation with analytical codes. Presented in this report are experimental flutter boundaries and corresponding steady and unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations.

  6. Ketoprofen-β-cyclodextrin inclusion complexes formation by supercritical process technology

    NASA Astrophysics Data System (ADS)

    Sumarno, Rahim, Rizki; Trisanti, Prida Novarita

    2017-05-01

    Ketoprofen was a poorly soluble which anti-inflammatory, analgesic and antipyretic drug, solubility of which can be enchanced by form complexation with β-cyclodextrin. Besides that, the inclusion complex reduces the incidence of gastrointestinal side effect of drug. The aims of this research are to study the effect of H2O concentration in the supercritical carbondioxide and operation condition in the formation of ketoprofen-β-Cyclodextrin inclusion complex. This research was began by dissolved H2O in supercritical CO2 at 40°C and various saturation pressures. Then, dissolved H2O contacted with (1:5 w/w) ketoprofen-β-Cyclodextrin mixture at 50°C and various operation pressures. It called saturation process. Saturation was done for ±2 hours with agitation process and continued by decompression process. The products were characterized by drug Release, Differential Scanning Calorimetry (DCS) dan Scanning Electron Microscopy (SEM) analyses. The percentage from this work were 76,82%-89,99% for inclusion complexes. The percentage drug release of ketoprofen were 82,83%-88,36% on various inclusion pressure and various inclusion period.

  7. Solubility and precipitation of nicotinic acid in supercritical carbon dioxide.

    PubMed

    Rehman, M; Shekunov, B Y; York, P; Colthorpe, P

    2001-10-01

    Solubilities of a model compound (nicotinic acid) in pure supercritical carbon dioxide (SC-CO(2)) and SC-CO(2) modified with methanol have been measured in the pressure range of 80-200 bar and between temperatures of 35 and 90 degrees C. On-line ultraviolet detection enabled a simple and relatively fast measurement of very low levels of solubility (10(-7) mol fraction) with good accuracy in pure and modified SC-CO(2). The solute solubility in both pure SC-CO(2) and SC-CO(2) modified with methanol increased with pressure at all investigated temperatures. A retrograde solubility behavior was observed in that, at pressures below 120 bar, a solubility decrease on temperature increase occurred. Solubility data were used to calculate supersaturation values and to define optimum operating conditions to obtain crystalline particles 1-5 microm in diameter using the solution-enhanced dispersion by supercritical fluids (SEDS) process, thereby demonstrating the feasibility of a one-step production process for particulate pharmaceuticals suitable for respiratory drug delivery. Copyright 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:1570-1582, 2001

  8. Micronization of Taxifolin by Supercritical Antisolvent Process and Evaluation of Radical Scavenging Activity

    PubMed Central

    Zu, Shuchong; Yang, Lei; Huang, Jinming; Ma, Chunhui; Wang, Wenjie; Zhao, Chunjian; Zu, Yuangang

    2012-01-01

    The aim of this study was to prepare micronized taxifolin powder using the supercritical antisolvent precipitation process to improve the dissolution rate of taxifolin. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters, such as temperature (35–65 °C), pressure (10–25 MPa), solution flow rate (3–6 mL/min) and concentration of the liquid solution (5–20 mg/mL) on the precipitate crystals were investigated. With a lower temperature, a stronger pressure and a lower concentration of the liquid solution, the size of crystals decreased. The precipitation temperature, pressure and concentration of taxifolin solution had a significant effect. However, the solution flow rate had a negligible effect. It was concluded that the physicochemical properties and dissolution rate of crystalline taxifolin could be improved by physical modification such as particle size reduction using the supercritical antisolvent (SAS) process. Further, the SAS process was a powerful methodology for improving the physicochemical properties and radical scavenging activity of taxifolin. PMID:22942740

  9. The design of supercritical wings by the use of three-dimensional transonic theory

    NASA Technical Reports Server (NTRS)

    Mann, M. J.

    1979-01-01

    A procedure was developed for the design of transonic wings by the iterative use of three dimensional, inviscid, transonic analysis methods. The procedure was based on simple principles of supersonic flow and provided the designer with a set of guidelines for the systematic alteration of wing profile shapes to achieve some desired pressure distribution. The method was generally applicable to wing design at conditions involving a large region of supercriterical flow. To illustrate the method, it was applied to the design of a wing for a supercritical maneuvering fighter that operates at high lift and transonic Mach number. The wing profiles were altered to produce a large region of supercritical flow which was terminated by a weak shock wave. The spanwise variation of drag of this wing and some principles for selecting the streamwise pressure distribution are also discussed.

  10. High Fidelity Simulation of Transcritical Liquid Jet in Crossflow

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi; Soteriou, Marios

    2017-11-01

    Transcritical injection of liquid fuel occurs in many practical applications such as diesel, rocket and gas turbine engines. In these applications, the liquid fuel, with a supercritical pressure and a subcritical temperature, is introduced into an environment where both the pressure and temperature exceeds the critical point of the fuel. The convoluted physics of the transition from subcritical to supercritical conditions poses great challenges for both experimental and numerical investigations. In this work, numerical simulation of a binary system of a subcritical liquid injecting into a supercritical gaseous crossflow is performed. The spatially varying fluid thermodynamic and transport properties are evaluated using established cubic equation of state and extended corresponding state principles with established mixing rules. To efficiently account for the large spatial gradients in property variations, an adaptive mesh refinement technique is employed. The transcritical simulation results are compared with the predictions from the traditional subcritical jet atomization simulations.

  11. Recent transonic unsteady pressure measurements at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Hess, R. W.

    1985-01-01

    Four semispan wing model configurations were studied in the Transonic Dynamics Tunnel (TDT). The first model had a clipped delta planform with a circular arc airfoil, the second model had a high aspect ratio planform with a supercritical airfoil, the third model has a rectangular planform with a supercritical airfoil and the fourth model had a high aspect ratio planform with a supercritical airfoil. To generate unsteady flow, the first and third models were equipped with pitch oscillation mechanisms and the first, second and fourth models were equipped with control surface oscillation mechanisms. The fourth model was similar in planform and airfoil shape to the second model, but it is the only one of the four models that has an elastic wing structure. The unsteady pressure studies of the four models are described and some typical results for each model are presented. Comparison of selected experimental data with analytical results also are included.

  12. Investigation to optimize the passive shock wave-boundary layer control for supercritical airfoil drag reduction

    NASA Technical Reports Server (NTRS)

    Nagamatsu, H. T.; Ficarra, R.; Orozco, R.

    1983-01-01

    The optimization of passive shock wave/boundary layer control for supercritical airfoil drag reduction was investigated in a 3 in. x 15.4 in. Transonic Blowdown Wind Tunnel. A 14% thick supercritical airfoil was tested with 0%, 1.42% and 2.8% porosities at Mach numbers of .70 to .83. The 1.42% case incorporated a linear increase in porosity with the flow direction while the 2.8% case was uniform porosity. The static pressure distributions over the airfoil, the wake impact pressure data for determining the profile drag, and the Schlieren photographs for porous surface airfoils are presented and compared with the results for solid-surface airfoils. While the results show that linear 1.42% porosity actually led to a slight increase in drag it was found that the uniform 2.8% porosity can lead to a drag reduction of 46% at M = .81.

  13. EC85-33205-07

    NASA Image and Video Library

    1985-10-18

    This photograph shows a modified General Dynamics AFTI/F-111A Aardvark with supercritical mission adaptive wings (MAW) installed. The four dark bands on the right wing are the locations of pressure orifices used to measure surface pressures and shock locations on the MAW. The El Paso Mountains and Red Rock Canyon State Park Califonia, about 30 miles northwest of Edwards Air Force Base, are seen directly in the background. With the phasing out of the TACT program came a renewed effort by the Air Force Flight Dynamics Laboratory to extend supercritical wing technology to a higher level of performance. In the early 1980s the supercritical wing on the F-111A aircraft was replaced with a wing built by Boeing Aircraft Company System called a “mission adaptive wing” (MAW), and a joint NASA and Air Force program called Advanced Fighter Technology Integration (AFTI) was born.

  14. A Procedure for the supercritical fluid extraction of coal samples, with subsequent analysis of extracted hydrocarbons

    USGS Publications Warehouse

    Kolak, Jonathan J.

    2006-01-01

    Introduction: This report provides a detailed, step-by-step procedure for conducting extractions with supercritical carbon dioxide (CO2) using the ISCO SFX220 supercritical fluid extraction system. Protocols for the subsequent separation and analysis of extracted hydrocarbons are also included in this report. These procedures were developed under the auspices of the project 'Assessment of Geologic Reservoirs for Carbon Dioxide Sequestration' (see http://pubs.usgs.gov/fs/fs026-03/fs026-03.pdf) to investigate possible environmental ramifications associated with CO2 storage (sequestration) in geologic reservoirs, such as deep (~1 km below land surface) coal beds. Supercritical CO2 has been used previously to extract contaminants from geologic matrices. Pressure-temperature conditions within deep coal beds may render CO2 supercritical. In this context, the ability of supercritical CO2 to extract contaminants from geologic materials may serve to mobilize noxious compounds from coal, possibly complicating storage efforts. There currently exists little information on the physicochemical interactions between supercritical CO2 and coal in this setting. The procedures described herein were developed to improve the understanding of these interactions and provide insight into the fate of CO2 and contaminants during simulated CO2 injections.

  15. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    NASA Technical Reports Server (NTRS)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  16. Supercritical fluid molecular spray film deposition and powder formation

    DOEpatents

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  17. NASA supercritical laminar flow control airfoil experiment

    NASA Technical Reports Server (NTRS)

    Harvey, W. D.

    1982-01-01

    The design and goals of experimental investigations of supercritical LFC airfoils conducted in the NASA Langley 8-ft Transonic Pressure Tunnel beginning in March 1982 are reviewed. Topics addressed include laminarization aspects; flow-quality requirements; simulation of flight parameters; the setup of screens, honeycomb, and sonic throat; the design cycle; theoretical pressure distributions and shock-free limits; drag divergence and stability analysis; and the LFC suction system. Consideration is given to the LFC airfoil model, the air-flow control system, airfoil-surface instrumentation, liner design and hardware, and test options. Extensive diagrams, drawings, graphs, photographs, and tables of numerical data are provided.

  18. Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide

    PubMed Central

    Chen, Yuan Yao; Temelli, Feral

    2017-01-01

    ABSTRACT High-pressure carbon dioxide processing is a promising technology for nonthermal food preservation. However, few studies have determined the lethality of high-pressure CO2 on dry bacterial cells, and the mechanism of inactivation remains unknown. This study explored the mechanisms of inactivation by using Escherichia coli AW1.7 and mutant strains differing in heat and acid resistance, in membrane composition based on disruption of the locus of heat resistance, and in genes coding for glutamate decarboxylases and cyclopropane fatty acid synthase. The levels of lethality of treatments with liquid, gaseous, and supercritical CO2 were compared. The cell counts of E. coli AW1.7 and mutants with a water activity (aW) of 1.0 were reduced by more than 3 log10 (CFU/ml) after supercritical CO2 treatment at 35°C for 15 min; increasing the pressure generally enhanced inactivation, except for E. coli AW1.7 ΔgadAB. E. coli AW1.7 Δcfa was more susceptible than E. coli AW1.7 after treatment at 10 and 40 MPa; other mutations did not affect survival. Dry cells of E. coli were resistant to treatments with supercritical and liquid CO2 at any temperature. Treatments with gaseous CO2 at 65°C were more bactericidal than those with supercritical CO2 or treatments at 65°C only. Remarkably, E. coli AW1.7 was more susceptible than E. coli AW1.7 Δcfa when subjected to the gaseous CO2 treatment. This study identified CO2-induced membrane fluidization and permeabilization as causes of supercritical mediated microbial inactivation, and diffusivity was a dominant factor for gaseous CO2. IMPORTANCE The safety of dry foods is of increasing concern for public health. Desiccated microorganisms, including pathogens, remain viable over long periods of storage and generally tolerate environmental insults that are lethal to the same organisms at high water activity. This study explored the use of high-pressure carbon dioxide to determine its lethality for dried Escherichia coli and to provide insight into the mechanisms of inactivation. The lethality of high-pressure CO2 and the mechanisms of CO2-mediated inactivation of dry E. coli depended on the physical state of CO2. Liquid and supercritical CO2 were ineffective in reducing the cell counts of dry E. coli isolates, and the effectiveness of gaseous CO2 was related to the diffusivity of CO2. Results provide a novel and alternative method for the food industry to enhance the safety of low aW products. PMID:28283526

  19. Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide.

    PubMed

    Chen, Yuan Yao; Temelli, Feral; Gänzle, Michael G

    2017-05-15

    High-pressure carbon dioxide processing is a promising technology for nonthermal food preservation. However, few studies have determined the lethality of high-pressure CO 2 on dry bacterial cells, and the mechanism of inactivation remains unknown. This study explored the mechanisms of inactivation by using Escherichia coli AW1.7 and mutant strains differing in heat and acid resistance, in membrane composition based on disruption of the locus of heat resistance, and in genes coding for glutamate decarboxylases and cyclopropane fatty acid synthase. The levels of lethality of treatments with liquid, gaseous, and supercritical CO 2 were compared. The cell counts of E. coli AW1.7 and mutants with a water activity (a W ) of 1.0 were reduced by more than 3 log 10 (CFU/ml) after supercritical CO 2 treatment at 35°C for 15 min; increasing the pressure generally enhanced inactivation, except for E. coli AW1.7 Δ gadAB E. coli AW1.7 Δ cfa was more susceptible than E. coli AW1.7 after treatment at 10 and 40 MPa; other mutations did not affect survival. Dry cells of E. coli were resistant to treatments with supercritical and liquid CO 2 at any temperature. Treatments with gaseous CO 2 at 65°C were more bactericidal than those with supercritical CO 2 or treatments at 65°C only. Remarkably, E. coli AW1.7 was more susceptible than E. coli AW1.7 Δ cfa when subjected to the gaseous CO 2 treatment. This study identified CO 2 -induced membrane fluidization and permeabilization as causes of supercritical mediated microbial inactivation, and diffusivity was a dominant factor for gaseous CO 2 IMPORTANCE The safety of dry foods is of increasing concern for public health. Desiccated microorganisms, including pathogens, remain viable over long periods of storage and generally tolerate environmental insults that are lethal to the same organisms at high water activity. This study explored the use of high-pressure carbon dioxide to determine its lethality for dried Escherichia coli and to provide insight into the mechanisms of inactivation. The lethality of high-pressure CO 2 and the mechanisms of CO 2 -mediated inactivation of dry E. coli depended on the physical state of CO 2 Liquid and supercritical CO 2 were ineffective in reducing the cell counts of dry E. coli isolates, and the effectiveness of gaseous CO 2 was related to the diffusivity of CO 2 Results provide a novel and alternative method for the food industry to enhance the safety of low a W products. Copyright © 2017 American Society for Microbiology.

  20. The NASA supercritical-wing technology

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.; Patterson, J. C., Jr.

    1978-01-01

    A number of high aspect ratio supercritical wings in combination with a representative wide body type fuselage were tested in the Langley 8 foot transonic pressure tunnel. The wing parameters investigated include aspect ratio, sweep, thickness to chord ratio, and camber. Subsequent to these initial series of tests, a particular wing configuration was selected for further study and development. Tests on the selected wing involved the incorporation of a larger inboard trailing edge extension, an inboard leading edge extension, and flow through nacelles. Range factors for the various supercritical wing configurations are compared with those for a reference wide body transport configuration.

  1. Numerical Simulation in a Supercirtical CFB Boiler

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Gaol, Xiang; Luo, Zhongyang; Jiang, Xiaoguo

    The dimension of the hot circulation loop of the supercritical CFB boiler is large, and there are many unknowns and challenges that should be identified and resolved during the development. In order to realize a reasonable and reliable design of the hot circulation loop, numerical simulation of gas-solid flow in a supercritical CFB boiler was conducted by using FLUENT software. The working condition of hot circulation loop flow field, gas-solid flow affected by three unsymmetrical cyclones, air distribution and pressure drop in furnace were analyzed. The simulation results showed that the general arrangement of the 600MWe supercritical CFB boiler is reasonable.

  2. High-resolution imaging of the supercritical antisolvent process

    NASA Astrophysics Data System (ADS)

    Bell, Philip W.; Stephens, Amendi P.; Roberts, Christopher B.; Duke, Steve R.

    2005-06-01

    A high-magnification and high-resolution imaging technique was developed for the supercritical fluid antisolvent (SAS) precipitation process. Visualizations of the jet injection, flow patterns, droplets, and particles were obtained in a high-pressure vessel for polylactic acid and budesonide precipitation in supercritical CO2. The results show two regimes for particle production: one where turbulent mixing occurs in gas-like plumes, and another where distinct droplets were observed in the injection. Images are presented to demonstrate the capabilities of the method for examining particle formation theories and for understanding the underlying fluid mechanics, thermodynamics, and mass transport in the SAS process.

  3. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  4. Application of digital holographic interferometry to pressure measurements of symmetric, supercritical and circulation-control airfoils in transonic flow fields

    NASA Technical Reports Server (NTRS)

    Torres, Francisco J.

    1987-01-01

    Six airfoil interferograms were evaluated using a semiautomatic image-processor system which digitizes, segments, and extracts the fringe coordinates along a polygonal line. The resulting fringe order function was converted into density and pressure distributions and a comparison was made with pressure transducer data at the same wind tunnel test conditions. Three airfoil shapes were used in the evaluation to test the capabilities of the image processor with a variety of flows. Symmetric, supercritical, and circulation-control airfoil interferograms provided fringe patterns with shocks, separated flows, and high-pressure regions for evaluation. Regions along the polygon line with very clear fringe patterns yielded results within 1% of transducer measurements, while poorer quality regions, particularly near the leading and trailing edges, yielded results that were not as good.

  5. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    PubMed

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  6. Flight measurements of surface pressures on a flexible supercritical research wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.

    1985-01-01

    A flexible supercritical research wing, designated as ARW-1, was flight-tested as part of the NASA Drones for Aerodynamic and Structural Testing Program. Aerodynamic loads, in the form of wing surface pressure measurements, were obtained during flights at altitudes of 15,000, 20,000, and 25,000 feet at Mach numbers from 0.70 to 0.91. Surface pressure coefficients determined from pressure measurements at 80 orifice locations are presented individually as nearly continuous functions of angle of attack for constant values of Mach number. The surface pressure coefficients are also presented individually as a function of Mach number for an angle of attack of 2.0 deg. The nearly continuous values of the pressure coefficient clearly show details of the pressure gradient, which occurred in a rather narrow Mach number range. The effects of changes in angle of attack, Mach number, and dynamic pressure are also shown by chordwise pressure distributions for the range of test conditions experienced. Reynolds numbers for the tests ranged from 5.7 to 8.4 x 1,000,000.

  7. Wind-tunnel investigation of aerodynamic loading on a 0.237-scale model of a remotely piloted research vehicle with a thick, high-aspect-ratio supercritical wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, T. A.; Brooks, C. W., Jr.

    1983-01-01

    Wind-tunnel measurements were made of the wing-surface static-pressure distributions on a 0.237 scale model of a remotely piloted research vehicle equipped with a thick, high-aspect-ratio supercritical wing. Data are presented for two model configurations (with and without a ventral pod) at Mach numbers from 0.70 to 0.92 at angles of attack from -4 deg to 8 deg. Large variations of wing-surface local pressure distributions were developed; however, the characteristic supercritical-wing pressure distribution occurred near the design condition of 0.80 Mach number and 2 deg angle of attack. The significant variations of the local pressure distributions indicated pronounced shock-wave movements that were highly sensitive to angle of attack and Mach number. The effect of the vertical pod varied with test conditions; however at the higher Mach numbers, the effects on wing flow characteristics were significant at semispan stations as far outboard as 0.815. There were large variations of the wing loading in the range of test conditions, both model configurations exhibited a well-defined peak value of normal-force coefficient at the cruise angle of attack (2 deg) and Mach number (0.80).

  8. A combinational supercritical CO2 system for nanoparticle preparation of indomethacin.

    PubMed

    Tozuka, Yuichi; Miyazaki, Yuta; Takeuchi, Hirofumi

    2010-02-15

    An improved system using both supercritical antisolvent precipitation and rapid expansion from supercritical to aqueous solution (RESAS) was proposed to overcome the problem of low solubility of medicinal substances in scCO(2). When the ethanol solution with IMC was sprayed into the vessel purged with scCO(2), no precipitation of IMC was observed if the CO(2) pressure was more than 15MPa at 40 degrees C. This indicates that very small droplets of the ethanol solution with IMC could disperse in the high pressure CO(2). After expansion into distilled water using an RESAS device, this same solution, in CO(2) at high pressure, produced submicron particles of IMC. For the pharmaceutical application, the IMC suspension was freeze-dried and re-dispersed to the aqueous media. SEM images of freeze-dried sample showed that the suspension was composed of submicron particles with 300-500 nm. Although the average particle size of re-dispersed IMC related significantly to the pressure and temperature in the vessel on scCO(2) processing, the freeze-dried sample of the IMC suspension after the treatment shows good redispersibility as a nanosuspension. This apparatus is found to be a promising way to produce fine crystals of IMC with a high yield. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Optimisation of supercritical carbon dioxide extraction of essential oil of flowers of tea (Camellia sinensis L.) plants and its antioxidative activity.

    PubMed

    Chen, Zhenchun; Mei, Xin; Jin, Yuxia; Kim, Eun-Hye; Yang, Ziyin; Tu, Youying

    2014-01-30

    To extract natural volatile compounds from tea (Camellia sinensis) flowers without thermal degradation and residue of organic solvents, supercritical fluid extraction (SFE) using carbon dioxide was employed to prepare essential oil of tea flowers in the present study. Four important parameters--pressure, temperature, static extraction time, and dynamic extraction time--were selected as independent variables in the SFE. The optimum extraction conditions were the pressure of 30 MPa, temperature of 50°C, static time of 10 min, and dynamic time of 90 min. Based on gas chromatography-mass spectrometry analysis, 59 compounds, including alkanes (45.4%), esters (10.5%), ketones (7.1%), aldehydes (3.7%), terpenes (3.7%), acids (2.1%), alcohols (1.6%), ethers (1.3%) and others (10.3%) were identified in the essential oil of tea flowers. Moreover, the essential oil of tea flowers showed relatively stronger DPPH radical scavenging activity than essential oils of geranium and peppermint, although its antioxidative activity was weaker than those of essential oil of clove, ascorbic acid, tert-butylhydroquinone, and butylated hydroxyanisole. Essential oil of tea flowers using SFE contained many types of volatile compounds and showed considerable DPPH scavenging activity. The information will contribute to the future application of tea flowers as raw materials in health-care food and food flavour industries. © 2013 Society of Chemical Industry.

  10. Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse.

    PubMed

    Silveira, Marcos Henrique Luciano; Vanelli, Bruno Angelo; Corazza, Marcos Lucio; Ramos, Luiz Pereira

    2015-09-01

    The use of green solvents for the partial delignification of milled sugarcane bagasse (1mm particle size) and for the enhancement of its susceptibility to enzymatic hydrolysis was demonstrated. The experiments were carried out for 2h using 40 g of supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and 15.8 g of ethanol. The effects of temperature (110-180 °C), pressure (195-250 bar) and IL-to-bagasse mass ratio (0:1-1:1) were investigated through a factorial design in which the response variables were the extent of delignification and both anhydroglucose and anhydroxylose contents in the pretreated materials. The highest delignification degree (41%) led to the best substrate for hydrolysis, giving a 70.7 wt% glucose yield after 12h using 5 wt% and Cellic CTec2® (Novozymes) at 10 mg g(-1) total solids. Hence, excellent substrates for hydrolysis were produced with a minimal IL requirement, which could be recovered by ethanol washing for its downstream processing and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Ionic Effects on Supercritical CO2-Brine Interfacial Tensions: Molecular Dynamics Simulations and a Universal Correlation with Ionic Strength, Temperature, and Pressure.

    PubMed

    Zhao, Lingling; Ji, Jiayuan; Tao, Lu; Lin, Shangchao

    2016-09-13

    For geological CO2 storage in deep saline aquifers, the interfacial tension (IFT) between supercritical CO2 and brine is critical for the storage security and design of the storage capacitance. However, currently, no predictive model exists to determine the IFT of supercritical CO2 against complex electrolyte solutions involving various mixed salt species at different concentrations and compositions. In this paper, we use molecular dynamics (MD) simulations to investigate the effect of salt ions on the incremental IFT at the supercritical CO2-brine interface with respect to that at the reference supercritical CO2-water interface. Supercritical CO2-NaCl solution, CO2-CaCl2 solution and CO2-(NaCl+CaCl2) mixed solution systems are simulated at 343 K and 20 MPa under different salinities and salt compositions. We find that the valence of the cations is the primary contributor to the variation in IFT, while the Lennard-Jones potentials for the cations pose a smaller impact on the IFT. Interestingly, the incremental IFT exhibits a general linear correlation with the ionic strength in the above three electrolyte systems, and the slopes are almost identical and independent of the solution types. Based on this finding, a universal predictive formula for IFTs of CO2-complex electrolyte solution systems is established, as a function of ionic strength, temperature, and pressure. The predicted IFTs using the established formula agree perfectly (with a high statistical confidence level of ∼96%) with a wide range of experimental data for CO2 interfacing with different electrolyte solutions, such as those involving MgCl2 and Na2SO4. This work provides an efficient and accurate route to directly predict IFTs in supercritical CO2-complex electrolyte solution systems for practical engineering applications, such as geological CO2 sequestration in deep saline aquifers and other interfacial systems involving complex electrolyte solutions.

  12. DEVELOPMENT OF A NOVEL GAS PRESSURIZED STRIPPING (GPS)-BASED TECHNOLOGY FOR CO 2 CAPTURE FROM POST-COMBUSTION FLUE GASES Topical Report: Techno-Economic Analysis of GPS-based Technology for CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shiaoguo

    This topical report presents the techno-economic analysis, conducted by Carbon Capture Scientific, LLC (CCS) and Nexant, for a nominal 550 MWe supercritical pulverized coal (PC) power plant utilizing CCS patented Gas Pressurized Stripping (GPS) technology for post-combustion carbon capture (PCC). Illinois No. 6 coal is used as fuel. Because of the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant is not exactly 550 MWe. DOE/NETL Case 11 supercritical PC plant without CO2 capture and Case 12 supercritical PC plant with benchmark MEA-based CO2 capture are chosen as references.more » In order to include CO2 compression process for the baseline case, CCS independently evaluated the generic 30 wt% MEA-based PCC process together with the CO2 compression section. The net power produced in the supercritical PC plant with GPS-based PCC is 647 MW, greater than the MEA-based design. The levelized cost of electricity (LCOE) over a 20-year period is adopted to assess techno-economic performance. The LCOE for the supercritical PC plant with GPS-based PCC, not considering CO2 transport, storage and monitoring (TS&M), is 97.4 mills/kWh, or 152% of the Case 11 supercritical PC plant without CO2 capture, equivalent to $39.6/tonne for the cost of CO2 capture. GPS-based PCC is also significantly superior to the generic MEA-based PCC with CO2 compression section, whose LCOE is as high as 109.6 mills/kWh.« less

  13. A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.

    PubMed

    Kim, Su Hee; Jung, Youngmee; Kim, Soo Hyun

    2013-03-01

    Supercritical fluids are used in various industrial fields, such as the food and medical industries, because they have beneficial physical and chemical properties and are also nonflammable and inexpensive. In particular, supercritical carbon dioxide (ScCO(2)) is attractive due to its mild critical temperature, pressure values, and nontoxicity. Poly(L-lactide-co-ɛ-caprolactone) (PLCL), which is a biocompatible, biodegradable, and very elastic polymer, has been used in cartilage tissue engineering. However, organic solvents, such as chloroform or dichloromethane, are usually used for the fabrication of a PLCL scaffold through conventional methods. This leads to a cytotoxic effect and long processing time for removing solvents. To alleviate these problems, supercritical fluid processing is introduced here. In this study, we fabricated a mechano-active PLCL scaffold by supercritical fluid processing for cartilage tissue engineering, and we compared it with a scaffold made by a conventional solvent-casting method in terms of physical and biological performance. Also, to examine the optimum condition for preparing scaffolds with ScCO(2), we investigated the effects of pressure, temperature, and the depressurization rate on PLCL foaming. The PLCL scaffolds produced by supercritical fluid processing had a homogeneously interconnected porous structure, and they exhibited a narrow pore size distribution. Also, there was no cytotoxicity of the scaffolds made with ScCO(2) compared to the scaffolds made by the solvent-pressing method. The scaffolds were seeded with chondrocytes, and they were subcutaneously implanted into nude mice for up to 4 weeks. In vivo accumulation of extracellular matrix of cell-scaffold constructs demonstrated that the PLCL scaffold made with ScCO(2) formed a mature and well-developed cartilaginous tissue compared to the PLCL scaffold formed by solvent pressing. Consequently, these results indicated that the PLCL scaffolds made by supercritical fluid processing offer well-interconnected and nontoxic substrates for cell growth, avoiding problems associated with a solvent residue. This suggests that these elastic PLCL scaffolds formed by supercritical fluid processing could be used for cartilage tissue engineering.

  14. Chemical Demilitarization - Assembled Chemical Weapons Assessment (ACWA): Root Cause Analysis

    DTIC Science & Technology

    2011-07-01

    BGCAPP, supercritical water oxidation (SCWO) will subject the hydrolysate to very high temperatures and pressures, breaking it down into carbon dioxide ...ANS. The resulting hydrolysates from both the chemical and energetic process are then broken down into carbon dioxide , water and salts in the SCWO...Cutter Machine RDT&E Research, Development, Test and Evaluation RSM Rocket Shear Machine SAR Selected Acquisition Report SCWO Supercritical Water

  15. Supercritical Fluid Chromatography/Fourier Transform Infrared Spectroscopy Of Food Components

    NASA Astrophysics Data System (ADS)

    Calvey, Elizabeth M.; Page, Samuel W.; Taylor, Larry T.

    1989-12-01

    Supercritical fluid (SF) technologies are being investigated extensively for applications in food processing. The number of SF-related patents issued testifies to the level of interest. Among the properties of materials at temperatures and pressures above their critical points (supercritical fluids) is density-dependent solvating power. Supercritical CO2 is of particular interest to the food industry because of its low critical temperature (31.3°C) and low toxicity. Many of the components in food matrices react or degrade at elevated temperatures and may be adversely affected by high temperature extractions. Likewise, these components may not be amenable to GC analyses. Our SF research has been in the development of methods employing supercritical fluid chromatography (SFC) and extraction (SFE) coupled to a Fourier transform infrared (FT-IR) spectrometer to investigate food composition. The effects of processing techniques on the isomeric fatty acid content of edible oils and the analysis of lipid oxidation products using SFC/FT-IR with a flow-cell interface are described.

  16. High-power ultrasonic system for the enhancement of mass transfer in supercritical CO2 extraction processes

    NASA Astrophysics Data System (ADS)

    Riera, Enrique; Blanco, Alfonso; García, José; Benedito, José; Mulet, Antonio; Gallego-Juárez, Juan A.; Blasco, Miguel

    2010-01-01

    Oil is an important component of almonds and other vegetable substrates that can show an influence on human health. In this work the development and validation of an innovative, robust, stable, reliable and efficient ultrasonic system at pilot scale to assist supercritical CO2 extraction of oils from different substrates is presented. In the extraction procedure ultrasonic energy represents an efficient way of producing deep agitation enhancing mass transfer processes because of some mechanisms (radiation pressure, streaming, agitation, high amplitude vibrations, etc.). A previous work to this research pointed out the feasibility of integrating an ultrasonic field inside a supercritical extractor without losing a significant volume fraction. This pioneer method enabled to accelerate mass transfer and then, improving supercritical extraction times. To commercially develop the new procedure fulfilling industrial requirements, a new configuration device has been designed, implemented, tested and successfully validated for supercritical fluid extraction of oil from different vegetable substrates.

  17. Preparing silica aerogel monoliths via a rapid supercritical extraction method.

    PubMed

    Carroll, Mary K; Anderson, Ann M; Gorka, Caroline A

    2014-02-28

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10(-3) molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes.

  18. Preparing Silica Aerogel Monoliths via a Rapid Supercritical Extraction Method

    PubMed Central

    Gorka, Caroline A.

    2014-01-01

    A procedure for the fabrication of monolithic silica aerogels in eight hours or less via a rapid supercritical extraction process is described. The procedure requires 15-20 min of preparation time, during which a liquid precursor mixture is prepared and poured into wells of a metal mold that is placed between the platens of a hydraulic hot press, followed by several hours of processing within the hot press. The precursor solution consists of a 1.0:12.0:3.6:3.5 x 10-3 molar ratio of tetramethylorthosilicate (TMOS):methanol:water:ammonia. In each well of the mold, a porous silica sol-gel matrix forms. As the temperature of the mold and its contents is increased, the pressure within the mold rises. After the temperature/pressure conditions surpass the supercritical point for the solvent within the pores of the matrix (in this case, a methanol/water mixture), the supercritical fluid is released, and monolithic aerogel remains within the wells of the mold. With the mold used in this procedure, cylindrical monoliths of 2.2 cm diameter and 1.9 cm height are produced. Aerogels formed by this rapid method have comparable properties (low bulk and skeletal density, high surface area, mesoporous morphology) to those prepared by other methods that involve either additional reaction steps or solvent extractions (lengthier processes that generate more chemical waste).The rapid supercritical extraction method can also be applied to the fabrication of aerogels based on other precursor recipes. PMID:24637334

  19. Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows

    NASA Technical Reports Server (NTRS)

    Cheng, Gary; Farmer, Richard

    2003-01-01

    The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.

  20. Development of an Accelerated Methodology to Study Degradation of Materials in Supercritical Water for Application in High Temperature Power Plants

    NASA Astrophysics Data System (ADS)

    Rodriguez, David

    The decreasing supply of fossil fuel sources, coupled with the increasing concentration of green house gases has placed enormous pressure to maximize the efficiency of power generation. Increasing the outlet temperature of these power plants will result in an increase in operating efficiency. By employing supercritical water as the coolant in thermal power plants (nuclear reactors and coal power plants), the plant efficiency can be increased to 50%, compared to traditional reactors which currently operate at 33%. The goal of this dissertation is to establish techniques to characterize the mechanical properties and corrosion behavior of materials exposed to supercritical water. Traditionally, these tests have been long term exposure tests spanning months. The specific goal of this dissertation is to develop a methodology for accelerated estimation of corrosion rates in supercritical water that can be sued as a screening tool to select materials for long term testing. In this study, traditional methods were used to understand the degradation of materials in supercritical water and establish a point of comparison to the first electrochemical studies performed in supercritical water. Materials studied included austenitic steels (stainless steel 304, stainless steel 316 and Nitronic 50) and nickel based alloys (Inconel 625 and 718). Surface chemistry of the oxide layer was characterized using scanning electron microscopy, X-ray diffraction, FT-IR, Raman and X-ray photoelectron spectroscopies. Stainless steel 304 was subjected to constant tensile load creep tests in water at a pressure of 27 MPa and at temperatures of 200 °C, 315 °C and supercritical water at 450 °C for 24 hours. It was determined that the creep rate for stainless steel 304 exposed to supercritical water would be unacceptable for use in service. It was observed that the formation of hematite was favored in subcritical temperatures, while magnetite was formed in the supercritical region. Corrosion of stainless steel 316, Nitronic 50, Inconel 625 and Inconel 718 was exposed to supercritical water at 530 °C and ultra-supercritical water at 600 °C and was studied as a function exposure time. When exposed to supercritical water, Nitronic 50 and stainless steel 316 were observed to have similar mass gains; however, stainless steel 316 was found to gain less mass than Nitronic 50 in exposure tests performed in ultra-supercritical water. Stainless steel 316 developed surface films primarily composed of iron oxides, while the surface of Nitronic 50 contained a mixture of iron, chromium and manganese oxides. Inconels 625 and 718 samples were exposed to these temperatures for 24, 96, and 200 hours. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. For the first time, corrosion rates in supercritical water were determined using electrochemical techniques. The corrosion rates of stainless steel 316, Nitronic 50, Inconel 625 and Inconel 718 were estimated in supercritical and ultra-supercritical water using electrochemical impedance spectroscopy and electrochemical frequency modulation. For all conditions tested, the corrosion rates obtained from electrochemical testing followed similar trends to the long-term gravimetric results. As a screening tool, this protocol can potentially reduce the time required for corrosion rate studies from thousands of hours to 24 hours.

  1. Chemical composition of Juniperus communis L. fruits supercritical CO2 extracts: dependence on pressure and extraction time.

    PubMed

    Barjaktarović, Branislava; Sovilj, Milan; Knez, Zeljko

    2005-04-06

    Ground fruits of the common juniper (Juniperus communis L.), with a particle size range from 0.250-0.400 mm, forming a bed of around 20.00 +/- 0.05 g, were extracted with supercritical CO(2) at pressures of 80, 90, and 100 bars and at a temperature of 40 degrees C. The total amount of extractable substances or global yield (mass of extract/mass of raw material) for the supercritical fluid extraction process varied from 0.65 to 4.00% (wt). At each investigated pressure, supercritical CO(2) extract fractions collected in successive time intervals over the course of the extraction were analyzed by capillary gas chromatography, using flame ionization (GC-FID) and mass spectrometric detection (GC-MS). More than 200 constituents were detected in the extracts, and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene, and oxygenated sesquiterpene hydrocarbon groups on the extraction time was investigated, and conditions that favored the yielding of each terpene groups were emphasized. At all pressures, monoterpene hydrocarbons were almost completely extracted from the berries in the first 0.6 h. It was possible to extract oxygenated monoterpenes at 100 bar in 0.5 h and at 90 bar in 1.2 h. Contrary to that, during an extraction period of 4 h at 80 bar, it was possible to extract only 75% of the maximum yielded value of oxygenated monoterpene at 100 bar. Intensive extraction of sesquiterpenes could be by no means avoided at any pressure, but at the beginning of the process (the first 0.5 h) at 80 bar, they were extracted about 8 and 3 times slower than at 100 and 90 bar, respectively. Oxygenated sesquiterpenes were yielded at fast, constant extraction rates at 100 and 90 bar in 1.2 and 3 h, respectively. This initial fast extraction period was consequently followed by much slower extraction of oxygenated sesquiterpenes.

  2. Effects of catalysts on liquefaction of Agaricus versicolor (L.)

    NASA Astrophysics Data System (ADS)

    Durak, Halil

    2016-04-01

    Supercritical liquefaction process is used for producing energy from biomass. The common reaction conditions for supercritical liquefaction process are the 240-380 °C temperature range and 5-20 Mpa pressure values range. Agaricus versicolor (L.) was liquefied by acetone in an autoclave (75 mL) under high pressure with (aluminium oxide and calcium hydroxide) and without catalyst at 290 °C for producing bio-oil. The products of liquefaction (bio-oil) were analysed and characterized using various methods including elemental analysis, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. GC-MS identified 27 different compounds in the bio-oils obtained at 290 °C.

  3. Lox droplet vaporization in a supercritical forced convective environment

    NASA Technical Reports Server (NTRS)

    Hsiao, Chia-Chun; Yang, Vigor

    1994-01-01

    A systematic investigation has been conducted to study the effects of ambient flow conditions (i.e. pressure and velocity) on supercritical droplet gasification in a forced-convective environment. The model is based on the time-dependent conservation equations in axisymmetric coordinates, and accommodates thermodynamic nonidealities and transport anomalies. In addition, an efficient scheme for evaluating thermophysical properties over the entire range of fluid thermodynamic states is established. The analysis allows a thorough examination of droplet behavior during its entire lifetime, including transient gasification, dynamic deformation, and shattering. A parametric study of droplet vaporization rate in terms of ambient pressure and Reynolds number is also conducted.

  4. Nucleation of Super-Critical Carbon Dioxide in a Venturi Nozzle

    NASA Astrophysics Data System (ADS)

    Jarrahbashi, Dorrin; Pidaparti, Sandeep; Ranjan, Devesh

    2015-11-01

    The supercritical carbon dioxide (S-CO2) Brayton cycle combines the primary advantages of the ideal Brayton and Rankine cycles by utilizing CO2 above its critical pressure. In addition to single phase and small back work ratios, supercritical fluids offer other advantages, e.g. heat transfer augmentation and low specific volume. Pressure reduction at the entrance of the compressor may cause homogenous nucleation, vapor production, and collapse of bubbles due to operation near the saturation conditions. Transient behavior of the flow after nucleation may cause serious issues in operation of the cycle and affect the materials used in design. The flow of S-CO2 through a venturi nozzle near the critical point has been studied. A transient compressible 3D Navier-Stokes solver, coupled with continuity, and energy equation has been used. Developed FIT libraries based on a piecewise biquintic spline interpolation of Helmholtz energy have been integrated with OpenFOAM to model S-CO2 properties. The mass fraction of vapor created in the venturi has been calculated using homogeneous equilibrium model (HEM). The flow conditions that lead to nucleation have been investigated. The sensitivity of nucleation to the inlet pressure and temperature, flow rate, and venturi profile has been shown.

  5. Optimization of the Supercritical Carbon Dioxide Separation of Bergapten from Bergamot Essential Oil.

    PubMed

    Sicari, Vincenzo

    2018-01-01

    The possibility of following traditional cold-press extraction with the post process continuous separation of bergapten from bergamot essential oil was investigated. A fractionation tower was used in an experiment in which cold-pressed bergamot oil was extracted in a continuous countercurrent process by supercritical carbon dioxide under different conditions. Bergapten is fairly soluble in CO2 in its supercritical phase, in particular at a density of 277.90 kg⋅m-3, corresponding to a pressure of 8 MPa and temperature of 40°C. Under these conditions, an extract with 0.198% bergapten was obtained, a figure slightly below the percentage of bergapten contained in cold-pressed oil (0.21%). However, at densities below 200 kg⋅m-3, the amount of bergapten in the extracted oil was negligible. Of all tested conditions for separation, the best was found to be at a pressure of 8 MPa and temperature of 70°C, conditions under which bergapten was not detected. The results of the experiment showed that bergapten, and the non-volatile fraction in general, was extracted only in small quantities and was not extracted at all with at a CO2 pressure of 8 MPa.

  6. Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials.

    PubMed

    Villegas, Carolina; Torres, Alejandra; Rios, Mauricio; Rojas, Adrián; Romero, Julio; de Dicastillo, Carol López; Valenzuela, Ximena; Galotto, María José; Guarda, Abel

    2017-09-01

    Supercritical impregnation was used to incorporate a natural compound with antibacterial activity into biopolymer-based films to develop active food packaging materials. Impregnation tests were carried out under two pressure conditions (9 and 12MPa), and three depressurization rates (0.1, 1 and 10MPamin -1 ) in a high-pressure cell at a constant temperature equal to 40°C. Cinnamaldehyde (Ci), a natural compound with proven antimicrobial activity, was successfully incorporated into poly(lactic acid) films (PLA) using supercritical carbon dioxide (scCO 2 ), with impregnation yields ranging from 8 to 13% w/w. Higher pressure and slower depressurization rate seem to favor the Ci impregnation. The incorporation of Ci improved thermal, structural and mechanical properties of the PLA films. Impregnated films were more flexible, less brittle and more resistant materials than neat PLA films. The tested samples showed strong antibacterial activity against the selected microorganisms. In summary, this study provides an innovative route to the development of antibacterial biodegradable materials, which could be used in a wide range of applications of active food packaging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pulsed Laser Ablation Synthesis of Diamond Molecules in Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    Nakahara, Sho; Stauss, Sven; Miyazoe, Hiroyuki; Shizuno, Tomoki; Suzuki, Minoru; Kataoka, Hiroshi; Sasaki, Takehiko; Terashima, Kazuo

    2010-09-01

    Nanocarbon materials have been synthesized by pulsed laser ablation (532 nm; 52 J/cm2; 7 ns; 10 Hz) of highly oriented pyrolytic graphite in adamantane-dissolved supercritical xenon at a temperature T = 290.2 K and pressure p = 5.86 MPa. Micro-Raman spectroscopy of the products revealed the presence of hydrocarbons possessing sp3 hybridized bonds also found in diamond structures. The synthesis of diamantane was confirmed by gas chromatography-mass spectrometry. The same measurements also indicate the possible synthesis of other diamondoids up to octamantane. Thus, laser ablation in supercritical fluids is proposed as one practical method of synthesizing diamondoids.

  8. Cooling of High Pressure Rocket Thrust Chambers with Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Price, H. G.

    1980-01-01

    An experimental program using hydrogen and oxygen as the propellants and supercritical liquid oxygen (LOX) as the coolant was conducted at 4.14 and 8.274 MN/square meters (600 and 1200 psia) chamber pressure. Data on the following are presented: the effect of LOX leaking into the combustion region through small cracks in the chamber wall; and verification of the supercritical oxygen heat transfer correlation developed from heated tube experiments; A total of four thrust chambers with throat diameters of 0.066 m were tested. Of these, three were cyclically tested to 4.14 MN/square meters (600 psia) chamber pressure until a crack developed. One had 23 additional hot cycles accumulated with no apparent metal burning or distress. The fourth chamber was operated at 8.274 MN/square meters (1200 psia) pressure to obtain steady state heat transfer data. Wall temperature measurements confirmed the heat transfer correlation.

  9. Novel micronisation β-carotene using rapid expansion supercritical solution with co-solvent

    NASA Astrophysics Data System (ADS)

    Kien, Le Anh

    2017-09-01

    Rapid expansion of supercritical solution (RESS) is the most common approach of pharmaceutical pacticle forming methods using supercritical fluids. The RESS method is a technology producing a small solid product with a very narrow particle size distribution, organic solvent-free particles. This process is also simple and easy to control the operating parameters in comparision with other ways based on supercritical techniques. In this study, β-carotene, a strongly colored red-orange pigment abundant in plants and fruits, has been forming by RESS. In addition, the size and morphology effect of four different RESS parameters including co-solvent, extraction temperature, and extraction pressure and expansion nozzle temperature has surveyed. The particle size distribution has been determined by using laser diffraction experiment. SEM has conducted to analyze the surface structure, DSC and FTIR for thermal and chemical structure analysis.

  10. Design philosophy of long range LFC transports with advanced supercritical LFC airfoils. [laminar flow control

    NASA Technical Reports Server (NTRS)

    Pfenninger, Werner; Vemuru, Chandra S.

    1988-01-01

    The achievement of 70 percent laminar flow using modest boundary layer suction on the wings, empennage, nacelles, and struts of long-range LFC transports, combined with larger wing spans and lower span loadings, could make possible an unrefuelled range halfway around the world up to near sonic cruise speeds with large payloads. It is shown that supercritical LFC airfoils with undercut front and rear lower surfaces, an upper surface static pressure coefficient distribution with an extensive low supersonic flat rooftop, a far upstream supersonic pressure minimum, and a steep subsonic rear pressure rise with suction or a slotted cruise flap could alleviate sweep-induced crossflow and attachment-line boundary-layer instability. Wing-mounted superfans can reduce fuel consumption and engine tone noise.

  11. Lipase-catalyzed transesterification of soybean oil and phytosterol in supercritical CO2.

    PubMed

    Hu, Lizhi; Llibin, Sun; Li, Jun; Qi, Liangjun; Zhang, Xu; Yu, Dianyu; Walid, Elfalleh; Jiang, Lianzhou

    2015-12-01

    The transesterification of phytosterol and soybean oil was performed using Novozym 435 in supercritical carbon dioxide (SC-CO2). The transesterification reaction was conducted in soybean oil containing 5-25% phytosterol at 55-95 °C and free-water solvent. The effects of temperature, reaction time, phytosterol concentration, lipase dosage and reaction pressure on the conversion rate of transesterification were investigated. The optimal reaction conditions were the reaction temperature (85 °C), reaction time (1 h), phytosterol concentration (5%), reaction pressure (8 Mpa) and lipase dosage (1%). The highest conversion rate of 92% could be achieved under the optimum conditions. Compared with the method of lipase-catalyzed transesterification of phytosterol and soybean oil at normal pressure, the transesterification in SC-CO2 reduced significantly the reaction temperature and reaction time.

  12. Historical background and design evolution of the transonic aircraft technology supercritical wing

    NASA Technical Reports Server (NTRS)

    Ayers, T. G.; Hallissy, J. B.

    1981-01-01

    Two dimensional wind tunnel test results obtained for supercritical airfoils indicated that substantial improvements in aircraft performance at high subsonic speeds could be achieved by shaping the airfoil to improve the supercritical flow above the upper surface. Significant increases in the drag divergence Mach number, the maximum lift coefficient for buffer onset, and the Mach number for buffet onset at a given lift coefficient were demonstrated for the supercritical airfoil, as compared with a NACA 6 series airfoil of comparable thickness. These trends were corroborated by results from three dimensional wind tunnel and flight tests. Because these indicated extensions of the buffet boundaries could provide significant improvements in the maneuverability of a fighter airplane, an exploratory wind tunnel investigation was initiated which demonstrated that significant aerodynamic improvements could be achieved from the direct substitution of a supercritical airfoil on a variable wing sweep multimission airplane model.

  13. [Study on supercritical CO2 extraction of xiaoyaosan and its GC-MS fingerprint].

    PubMed

    Zuo, Ya-Mei; Tian, Jun-Sheng; Guo, Xiao-Qing; Zhou, Yu-Zhi; Gao, Xiao-Xia; Qin, Xue-Mei

    2014-02-01

    To determine the optimum conditions of supercritical CO2 extraction of Xiaoyaosan, and establish its fingerprint by gas chromatography-mass spectrometry (GC-MS), the yield of extract were investigated, an orthogonal test was used to quantify the effects of extraction temperature, pressure, CO2 flow rate and time, and fingerprint analysis of different batches of extracts were by GC-MS. The optimal extraction conditions were determined as follows: extraction pressure 20 MPa, extraction temperature 50 degrees C, CO2 flow rate 25 kg x h(-1), extraction time 3 h, and average yield 2.2%. The GC-MS fingerprint was established and 27 common peaks were found, whose contents add up to 81.89% of the total peak area. Among them, 21 compounds were identified, accounting for 53.20% of the total extract. The extraction process is reasonable and favorable for industrial production. The GC-MS method is accurate, reliable, reproducible, and can be used for quality control of supercritical CO2 extract from Xiaoyaosan.

  14. Experimental study on heat transfer to supercritical water flowing through tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, M.; Gu, H.; Cheng, X.

    2012-07-01

    A test facility named SWAMUP (Supercritical Water Multi-Purpose Loop) has been constructed in Shanghai Jiao Tong Univ. to investigate heat transfer and pressure drop through tubes and rod bundles. SWAMUP is a closed loop with operating pressure up to 30 MPa, outlet-water temperature up to 550 deg. C, and mass flow rate up to 5 t/h. In this paper, experimental study has been carried out on heat transfer of supercritical water flowing vertically through tubes (ID=7.6 and 10 mm). A large number of test points in tubes has been obtained with a wide range of heat flux (200-1500 kw/m{sup 2})more » and mass flux (450-2000 kg/m{sup 2}s). Test results showed that heat transfer deterioration (HTD) caused by buoyancy effect only appears in upward flow and HTD caused by acceleration effect appears both in upward flow and downward flow. The heat transfer coefficients (HTC) produced in tube tests were compared with existing heat transfer correlations. (authors)« less

  15. Preparation of highly pure zeaxanthin particles from sea water-cultivated microalgae using supercritical anti-solvent recrystallization.

    PubMed

    Chen, Chao-Rui; Hong, Siang-En; Wang, Yuan-Chuen; Hsu, Shih-Lan; Hsiang, Daina; Chang, Chieh-Ming J

    2012-01-01

    Xanthophylls, including zeaxanthin, are considered dietary supplements with a potentially positive impact on age-related macular degeneration. Using pilot-scale column fractionation coupled with supercritical anti-solvent (SAS) recrystallization, highly pure zeaxanthin particulates were prepared from ultrasonic extracts of the microalgae, Nannochloropsis oculata, grown in sea water. Column partition chromatography increased the concentration of zeaxanthin from 36.2 mg/g of the ultrasonic extracts to 425.6 mg/g of the collected column fractions. A response surface methodology was systematically designed for the SAS process by changing feed concentration, CO(2) flow rate and anti-solvent pressure. Zeaxanthin-rich particles with a purity of 84.2% and a recovery of 85.3% were produced using supercritical anti-solvent recrystallization from the column eluate at a feed concentration of 1.5 mg/mL, CO(2) flow rate of 48.6 g/min and pressure of 135 bar. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel.

    PubMed

    Ara, Katayoun Mahdavi; Raofie, Farhad

    2016-07-01

    Essential oils and volatile components of pomegranate ( Punica granatum L.) peel of the Malas variety from Meybod, Iran, were extracted using supercritical fluid extraction (SFE) and hydro-distillation methods. The experimental parameters of SFE that is pressure, temperature, extraction time, and modifier (methanol) volume were optimized using a central composite design after a (2 4-1 ) fractional factorial design. Detailed chemical composition of the essential oils and volatile components obtained by hydro-distillation and optimum condition of the supercritical CO 2 extraction were analyzed by GC-MS, and seventy-three and forty-six compounds were identified according to their retention indices and mass spectra, respectively. The optimum SFE conditions were 350 atm pressure, 55 °C temperature, 30 min extraction time, and 150 µL methanol. Results showed that oleic acid, palmitic acid and (-)-Borneol were major compounds in both extracts. The optimum extraction yield was 1.18 % (w/w) for SFE and 0.21 % (v/w) for hydro-distillation.

  17. Numerical modeling of the waves evolution generated by the depressurization of the vessels containing a supercritical parameters coolant

    NASA Astrophysics Data System (ADS)

    Alekseev, Maksim V.; Vozhakov, Ivan S.; Lezhnin, Sergey I.; Pribaturin, Nikolay A.

    2017-10-01

    The development of power plants focuses on increasing the parameters of water coolants up to a supercritical level. Depressurization of the unit circuits with such a coolant leads to emergency situations. Their scenarios can change significantly with the variation of initial pressure and temperature before the start of depressurization. When the pressure drops from the supercritical single-phase region of the initial thermodynamic parameters of the coolant, either the liquid boils up, or the vapor is condensed. Because of the rapid pressure decrease, the phase transition can be non-equilibrium that must be taken into account in the simulation. In the present study, an axisymmetric problem of the outflow of a water coolant from the pipe butt-end is considered. The equations of continuity, momentum and energy for a two-phase homogeneous mixture are solved numerically. The vapor and liquid properties are calculated using the TTSE software package (The Tabular Taylor Series Expansion Method). On the basis of the computer complex LCPFCT (The Flux-Corrected Transport Algorithm) the program code was developed for solving numerous problems on the depressurization of vessels or pipelines, containing superheated water or gas under high pressure. Different variants of outflow in the external model atmosphere and generation of waves are analyzed. The calculated data on the interaction of pressure waves with a barrier are calculated. To describe phase transitions, an asymptotic relaxation model of nonequilibrium evaporation and condensation has been created and tested.

  18. IMAGE Project: Results of Laboratory Tests on Tracers for Supercritical Conditions.

    NASA Astrophysics Data System (ADS)

    Brandvoll, Øyvind; Opsahl Viig, Sissel; Nardini, Isabella; Muller, Jiri

    2016-04-01

    The use of tracers is a well-established technique for monitoring dynamic behaviour of water and gas through a reservoir. In geothermal reservoirs special challenges are encountered due to high temperatures and pressures. In this work, tracer candidates for monitoring water at supercritical conditions (temperature > 374°C, pressure ca 218 bar), are tested in laboratory experiments. Testing of tracers at supercritical water conditions requires experimental set-ups which tolerate harsh conditions with respect to high temperature and pressure. In addition stringent HES (health, environment and safety) factors have to be taken into consideration when designing and performing the experiments. The setup constructed in this project consists of a pressure vessel, high pressure pump, instrumentation for pressure and temperature control and instrumentation required for accurate sampling of tracers. In order to achieve accurate results, a special focus has been paid to the development of the tracer sampling technique. Perfluorinated cyclic hydrocarbons (PFCs) have been selected as tracer candidates. This group of compounds is today commonly used as gas tracers in oil reservoirs. According to the literature they are stable at temperatures up to 400°C. To start with, five PFCs have been tested for thermal stability in static experiments at 375°C and 108 bar in the experimental setup described above. The tracer candidates will be further tested for several months at the relevant conditions. Preliminary results indicate that some of the PFC compounds show stability after three months. However, in order to arrive at conclusive results, the experiments have to be repeated over a longer period and paying special attention to more accurate sampling procedures.

  19. Fabrication of a form- and size-variable microcellular-polymer-stabilized metal nanocomposite using supercritical foaming and impregnation for catalytic hydrogenation

    PubMed Central

    2012-01-01

    This article presents the fabrication of size-controllable and shape-flexible microcellular high-density polyethylene-stabilized palladium nanoparticles (Pd/m-HDPE) using supercritical foaming, followed by supercritical impregnation. These nanomaterials are investigated for use as heterogeneous hydrogenation catalysts of biphenyls in supercritical carbon dioxide with no significant surface and inner mass transfer resistance. The morphology of the Pd/m-HDPE is examined using scanning electron microscopy images of the pores inside Pd/m-HDPE catalysts and transmission electron microscopy images of the Pd particles confined in an HDPE structure. This nanocomposite simplifies industrial design and operation. These Pd/m-HDPE catalysts can be recycled easily and reused without complex recovery and cleaning procedures. PMID:22651135

  20. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  1. Solubility and Phase Behavior of CL20 and RDX in Supercritical Carbon Dioxide

    DTIC Science & Technology

    2004-12-01

    with Enhanced mass transfer (SAS-EMTM) are potential green processes for producing ultrafine particles . In these processes, the material to be...particulated will be dissolved (solubilized) into an environmentally benign solvent such as supercritical carbon dioxide and then condensed to ultrafine ... particles by reducing the pressure and temperature of the mixture. Theoretical and/or predictive models are required for process simulation and to

  2. Supercritical Water Mixture (SCWM) Experiment

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.

    2012-01-01

    The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.

  3. Occurrence of turbulent flow conditions in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-09-26

    Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going from 0.5 to 2.5 ml/min for neat CO2). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    PubMed

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Transient heat transfer to a forced flow of supercritical helium at 4.2 K

    NASA Astrophysics Data System (ADS)

    Bloem, W. B.

    The transient heat transfer coefficient of supercritical helium flowing through a rectangular copper tube with a hydraulic diameter of 5 mm has been measured. The conditions of the flow were: inlet bulk temperature of the fluid was 4.2 K pressures from 3 to 10 bar and Reynolds numbers between 1.5 × 10 4 and 2 × 10 5. The tube was heated on four sides with heat fluxes up to 9800 W m -2. From the experiments it followed that during the first tens of milliseconds the heat transfer is determined by the heat conduction in the boundary layer of the supercritical helium flow. The heat transfer coefficient can be described by h = 0.5(Π λ p C p/t) 1/2. Although the helium properties λ p and Cp are a strong function of pressure and temperature, it was remarkable that the temperature increase during a heat pulse was almost the same at different flow pressures. After analysing the data an empirical relation, h =b ṁ0.75 (t t/t) case1/n, was derived, which predicts the heat transfer coefficient at a given mass flow, ṁ, to within 10% during 0.1 s. The constants b, n and tt are related to the mass flow, ṁ, and the pressure of the fluid.

  6. Application of chiral critical clusters to assymetric synthesis

    DOEpatents

    Ferrieri, Richard A.

    2002-01-01

    Disclosed is a composition, a method of making and a method of using critical clusters for asymmetric synthesis using substantially optically-pure chiral solvent molecules in a supercritical fluid. The solvent molecules are capable of forming a multipoint hydrogen bonded solvate as they encage at least one solute molecule. The encaged solute molecule is capable of reacting to form an optically active chiral center. In another aspect, there is disclosed a method of directing the position of bonding between a solute molecule and a ligand involving encaging the solute molecule and the ligand with polar solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to change electric charge distribution in the solute molecule. In yet another aspect, disclosed is a method of making pharmaceutical compounds involving encaging a solute molecule, which is capable of forming a chiral center, and a ligand with polar solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to change electric charge distribution of the solute molecule. The solute molecule and ligand are then reacted whereby the ligand bonds to the solute molecule forming a chiral center. Also disclosed is a method for racemic resolution using critical clusters involving encaging racemic mixtures of solute molecules with substantially optically-pure chiral solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to form critical clusters. The solvent molecules are capable of multipoint hydrogen bonding with the solute molecules. The encaged solute molecules are then nonenzymatically reacted to enhance the optical purity of the solute molecules.

  7. Molecular Gibbs Surface Excess and CO2-Hydrate Density Determine the Strong Temperature- and Pressure-Dependent Supercritical CO2-Brine Interfacial Tension.

    PubMed

    Ji, Jiayuan; Zhao, Lingling; Tao, Lu; Lin, Shangchao

    2017-06-29

    In CO 2 geological storage, the interfacial tension (IFT) between supercritical CO 2 and brine is critical for the storage capacitance design to prevent CO 2 leakage. IFT relies not only on the interfacial molecule properties but also on the environmental conditions at different storage sites. In this paper, supercritical CO 2 -NaCl solution systems are modeled at 343-373 K and 6-35 MPa under the salinity of 1.89 mol/L using molecular dynamics simulations. After computing and comparing the molecular density profile across the interface, the atomic radial distribution function, the molecular orientation distribution, the molecular Gibbs surface excess (derived from the molecular density profile), and the CO 2 -hydrate number density under the above environmental conditions, we confirm that only the molecular Gibbs surface excess of CO 2 molecules and the CO 2 -hydrate number density correlate strongly with the temperature- and pressure-dependent IFTs. We also compute the populations of two distinct CO 2 -hydrate structures (T-type and H-type) and attribute the observed dependence of IFTs to the dominance of the more stable, surfactant-like T-type CO 2 -hydrates at the interface. On the basis of these new molecular mechanisms behind IFT variations, this study could guide the rational design of suitable injecting environmental pressure and temperature conditions. We believe that the above two molecular-level metrics (Gibbs surface excess and hydrate number density) are of great fundamental importance for understanding the supercritical CO 2 -water interface and engineering applications in geological CO 2 storage.

  8. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: probing atomic structure in situ.

    PubMed

    Wang, Hsiu-Wen; Fanelli, Victor R; Reiche, Helmut M; Larson, Eric; Taylor, Mark A; Xu, Hongwu; Zhu, Jinlong; Siewenie, Joan; Page, Katharine

    2014-12-01

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO2 measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H2 and natural gas uptake/storage.

  9. Combination of supercritical CO2 and vacuum distillation for the fractionation of bergamot oil.

    PubMed

    Fang, Tao; Goto, Motonobu; Sasaki, Mitsuru; Hirose, Tsutomu

    2004-08-11

    Supercritical CO2 can be used to separate oxygenated compounds from essential oils. This technique still cannot replace vacuum distillation as an industrial process because of low recoveries and inconsistent results. In the present work, a comparison between the two methods was made in terms of composition, recovery, and color. Vacuum distillation and supercritical CO2 are complementary processes for producing high quality oxygenated compounds with high recovery rates. The former is more suitable for removing monoterpenes at low fraction temperatures (< or =308 K), and the latter is more suitable for separating oxygenated compounds from pigments and waxes. Consequently, the two methods were combined. For supercritical CO2 fractionation, the parameters of pressure, temperature gradient, and the ratio of solvent to feed were investigated for the fractionation of oxygenated compounds with high recoveries (> or =85%) and without other macromolecules, such as pigments and waxes.

  10. Free-radical scavenging activity and antibacterial impact of Greek oregano isolates obtained by SFE.

    PubMed

    Stamenic, Marko; Vulic, Jelena; Djilas, Sonja; Misic, Dusan; Tadic, Vanja; Petrovic, Slobodan; Zizovic, Irena

    2014-12-15

    The antioxidant and antibacterial properties of Greek oregano extracts obtained by fractional supercritical fluid extraction (SFE) with carbon dioxide were investigated and compared with the properties of essential oil obtained by hydrodistillation. According to DPPH, hydroxyl radical and superoxide anion radical scavenging activity assays, the supercritical extracts expressed stronger antioxidant activity comparing to the essential oil. The most effective was the supercritical extract obtained by fractional extraction at 30 MPa and 100°C after the volatile fraction had been extracted at lower pressure. At the same time this extract showed strong antibacterial activity against staphylococci, including MRSA strain, but did not affect Escherichia coli of normal intestinal flora. The essential oil obtained by hydrodistillation showed stronger antibacterial activity against E. coli, Salmonella and Klebsiella pneumoniae, comparing to the supercritical extracts but at the same affected the normal gut flora. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Parameters optimization of supercritical fluid-CO2 extracts of frankincense using response surface methodology and its pharmacodynamics effects.

    PubMed

    Zhou, Jing; Ma, Xing-miao; Qiu, Bi-Han; Chen, Jun-xia; Bian, Lin; Pan, Lin-mei

    2013-01-01

    The volatile oil parts of frankincense (Boswellia carterii Birdw.) were extracted with supercritical carbon dioxide under constant pressure (15, 20, or 25 MPa) and fixed temperature (40, 50, or 60°C), given time (60, 90, or 120 min) aiming at the acquisition of enriched fractions containing octyl acetate, compounds of pharmaceutical interest. A mathematical model was created by Box-Behnken design, a popular template for response surface methodology, for the extraction process. The response value was characterized by synthetical score, which comprised yields accounting for 20% and content of octyl acetate for 80%. The content of octyl acetate was determined by GC. The supercritical fluid extraction showed higher selectivity than conventional steam distillation. Supercritical fluid-CO(2) for extracting frankincense under optimum condition was of great validity, which was also successfully verified by the pharmacological experiments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. General corrosion properties of modified PNC1520 austenitic stainless steel in supercritical water as a fuel cladding candidate material for supercritical water reactor

    NASA Astrophysics Data System (ADS)

    Nakazono, Y.; Iwai, T.; Abe, H.

    2010-03-01

    The Super-Critical Water-cooled Reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy but there are numerous potential problems, particularly with materials. As the operating temperature of supercritical water reactor will be between 280°C and 620°C with a pressure of 25MPa, the selection of materials is difficult and important. Austenitic stainless steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. The corrosion data of PNC1520 in supercritical water (SCW) is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in supercritical water. The supercritical water corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520Ti) by using a supercritical water autoclave. Corrosion tests on the austenitic 1520S and 1520Ti steels in supercritical water were performed at 400, 500 and 600°C with exposures up to 1000h. The amount of weight gain, weight loss and weight of scale were evaluated after the corrosion test in supercritical water for both austenitic steels. After 1000h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m2 at 400°C and 500°C . But both weight gain and weight loss of 1520Ti were larger than those of 1520S at 600°C . By increasing the temperature to 600°C, the surface of 1520Ti was covered with magnetite formed in supercritical water and dissolution of the steel alloying elements has been observed. In view of corrosion, 1520S may have larger possibility than 1520Ti to adopt a supercritical water reactor core fuel cladding.

  13. General Relativistic Radiation MHD Simulations of Supercritical Accretion onto a Magnetized Neutron Star: Modeling of Ultraluminous X-Ray Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiroyuki R.; Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp

    By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of themore » disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.« less

  14. Intramolecular vibrational redistribution of CH 2I 2 dissolved in supercritical Xe

    NASA Astrophysics Data System (ADS)

    Sekiguchi, K.; Shimojima, A.; Kajimoto, O.

    2003-03-01

    Intramolecular vibrational energy redistribution (IVR) of CH 2I 2 in supercritical Xe has been studied. The first overtone of the C-H stretching mode was excited with a near infrared laser pulse and the transient UV absorption near 390 nm was monitored. Signals showed a rise and decay profile, which gave the IVR and VET (intermolecular vibrational energy transfer) rates, respectively. Solvent density dependence of each rate was obtained by tuning the pressure at a constant temperature. The IVR rate in supercritical Xe increased with increasing solvent density and asymptotically reached a limiting value. This result suggests that the IVR process of CH 2I 2 in condensed phase is a solvent-assisted process.

  15. Multi-Phase Equilibrium and Solubilities of Aromatic Compounds and Inorganic Compounds in Sub- and Supercritical Water: A Review.

    PubMed

    Liu, Qinli; Ding, Xin; Du, Bowen; Fang, Tao

    2017-11-02

    Supercritical water oxidation (SCWO), as a novel and efficient technology, has been applied to wastewater treatment processes. The use of phase equilibrium data to optimize process parameters can offer a theoretical guidance for designing SCWO processes and reducing the equipment and operating costs. In this work, high-pressure phase equilibrium data for aromatic compounds+water systems and inorganic compounds+water systems are given. Moreover, thermodynamic models, equations of state (EOS) and empirical and semi-empirical approaches are summarized and evaluated. This paper also lists the existing problems of multi-phase equilibria and solubility studies on aromatic compounds and inorganic compounds in sub- and supercritical water.

  16. Application of supercritical antisolvent method in drug encapsulation: a review

    PubMed Central

    Kalani, Mahshid; Yunus, Robiah

    2011-01-01

    The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer), nozzle geometry, CO2 flow rate, and the liquid phase flow rate on particle size and its distribution. PMID:21796245

  17. Modeling High-Pressure Gas-Polymer Sorpion Behavior Using the Sanchez-Lacombe Equation of State.

    DTIC Science & Technology

    1987-06-01

    The solubility of a gas in an amorphous or molten polymer is an important consideration in membrane and polymer processes . For instance, the efficacy...to a supercritical fluid during the impregnation process . Swelling the polymer effectively increases the diffusion coefficient of the heavy dopant by...dissolve the impurity, and then diffuse out of the swollen matrix thus removing the impurity. This supercritical fluid extraction process is somewhat

  18. Computational Modeling of Supercritical and Transcritical Flows

    DTIC Science & Technology

    2017-01-09

    Acentric factor I. Introduction Liquid rocket and gas turbine engines operate at high pressures. For gas turbines, the combustor pressurecan be 60 − 100...an approach the liquid gas interface is tracked.4 We note that an overwhelming majority of the computational studies have similarly focused on purely...A standard approach for supercritical flows is to treat the multicomponent mixture of species as a dense fluid using a real gas equation of state such

  19. Supercritical oxygen heat transfer. [regenerative cooling

    NASA Technical Reports Server (NTRS)

    Spencer, R. G.; Rousar, D. C.

    1977-01-01

    Heat transfer to supercritical oxygen was experimentally measured in electrical heated tubes. Experimental data were obtained for pressures ranging from 17 to 34.5 MPa (2460 to 5000 psia), and heat fluxes from 2 to 90 million w/sq cm (1.2 to 55 Btu/(sq in. sec)). Bulk temperatures ranged from 96 to 217 K (173 to 391 R). Experimental data obtained by other investigators were added to this to increase the range of pressure down to 2 MPa (290 psia) and increase the range of bulk temperature up to 566 K (1019 R). From this compilation of experimental data a correlating equation was developed which predicts over 95% of the experimental data within + or - 30%.

  20. Flow Distribution Measurement Feasibility in Supercritical CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lance, Blake

    2017-12-01

    Supercritical CO 2 (sCO 2) is a fluid of interest for advanced power cycles that can reach thermal to electric energy conversion efficiencies of 50% or higher. Of particular interest for fossil-fired natural gas is the Allam cycle that captures nearly all CO 2 emissions and exports it as a fluid stream where it may be of value. The combustion process conditions are unlike any before realized with 90-95% CO 2 concentration, temperatures around 1000°C, and pressures near 300 bar. This work outlines the experimental feasibility of flow measurements to acquire the first known data in pure sCO 2 atmore » similar but reduced temperature and pressure conditions.« less

  1. From oligomers to molecular giants of soybean oil in supercritical carbon dioxide medium: 1. Preparation of polymers with lower molecular weight from soybean oil.

    PubMed

    Liu, Zengshe; Sharma, Brajendra K; Erhan, Sevim Z

    2007-01-01

    Polymers with a low molecular weight derived from soybean oil have been prepared in a supercritical carbon dioxide medium by cationic polymerization. Boron trifluoride diethyl etherate was used as an initiator. Influences of polymerization temperature, amount of initiator, and carbon dioxide pressure on the molecular weight were investigated. It is shown that the higher polymerization temperature favors polymers with relatively higher molecular weights. Larger amounts of initiator also provide polymers with higher molecular weights. Higher pressure favors polymers with relatively higher molecular weights. The applications of these soy-based materials will be in the lubrication and hydraulic fluid areas.

  2. Biodiesel production with continuous supercritical process: non-catalytic transesterification and esterification with or without carbon dioxide.

    PubMed

    Tsai, Yu-Ting; Lin, Ho-mu; Lee, Ming-Jer

    2013-10-01

    The non-catalytic transesterification of refined sunflower oil with supercritical methanol, in the presence of carbon dioxide, was conducted in a tubular reactor at temperatures from 553.2 to 593.2K and pressures up to 25.0 MPa. The FAME yield can be achieved up to about 0.70 at 593.2 K and 10.0 MPa in 23 min with methanol:oil of 25:1 in molar ratio. The effect of adding CO2 on the FAME yield is insignificant. The kinetic behavior of the non-catalytic esterification and transesterification of oleic acid or waste cooking oil (WCO) with supercritical methanol was also investigated. By using the supercritical process, the presence of free fatty acid (FFA) in WCO gives positive contribution to FAME production. The FAME yield of 0.90 from WCO can be achieved in 13 min at 573.2K. The kinetic data of supercritical transesterification and esterifaication were correlated well with a power-law model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.

    PubMed

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki

    2012-11-13

    Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.

  4. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism

    PubMed Central

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Ono, Shigeaki

    2012-01-01

    Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  5. In situ infrared spectroscopic study of brucite carbonation in dry to water-saturated supercritical carbon dioxide.

    PubMed

    Loring, John S; Thompson, Christopher J; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T; Rosso, Kevin M

    2012-05-17

    In geologic carbon sequestration, whereas part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated supercritical CO(2) (scCO(2)) near the well bore and at the caprock, especially in the short term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO(2) containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)(2)) in situ over a 24 h reaction period with scCO(2) containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO(2). Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO(3)·3H(2)O). Mixtures of nesquehonite and magnesite (MgCO(3)) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.

  6. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology.

    PubMed

    Hossain, Md Sohrab; Nik Ab Rahman, Nik Norulaini; Balakrishnan, Venugopal; Alkarkhi, Abbas F M; Ahmad Rajion, Zainul; Ab Kadir, Mohd Omar

    2015-04-01

    Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO2) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and gram-negative Escherichia coli in CSW. The effects of SC-CO2 sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO2-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO2 exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Suitability of polymer materials for production of pulmonary microparticles using a PGSS supercritical fluid technique: thermodynamic behaviour of fatty acids, PEGs and PEG-fatty acids.

    PubMed

    Vijayaraghavan, Meera; Stolnik, Snjezana; Howdle, Steven M; Illum, Lisbeth

    2012-11-15

    The thermodynamic behaviour of selected polymeric components for preparation of controlled release microparticles using supercritical carbon dioxide (scCO(2)) processing was investigated. The polymeric materials selected were egg lecithin (a model for the lung surfactant phospholipid), poly(ethyleneglycol) (PEG) of different molecular weights, fatty acids (C18, C16, and C14), and physical blends of PEGs and fatty acids. In addition a range of PEG-stearates was also assessed. Analysis of thermodynamic behaviour was performed by differential scanning calorimetry (DSC) and by assessment of their interaction with scCO(2) in a high-pressure variable volume view cell. The key criterion was to demonstrate a strong interaction with scCO(2) and to show liquefaction of the polymeric material at acceptable processing temperatures and pressures. Positive results should then indicate the suitability of these materials for processing by the Particle from Gas Saturated Solutions (PGSS) technique using scCO(2) to create microparticles for pulmonary administration. It was found that the materials tested interacted with scCO(2) and showed a sufficient lowering of their melting temperature (T(m)) to make them suitable for use in the PGSS microparticle production rig. Fatty acids of low T(m) were shown to act as a plasticising agent and to lower the T(m) of PEG further during interaction with scCO(2). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Practical development of continuous supercritical fluid process using high pressure and high temperature micromixer

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shin-Ichiro; Sue, Kiwamu; Ookawara, Ryuto; Wakashima, Yuichiro; Suzuki, Akira

    2015-12-01

    In the synthesis of metal oxide fine particles by continuous supercritical hydrothermal method, the particle characteristics are greatly affected by not only the reaction conditions (temperature, pressure, residence time, concentration, etc.), but also the heating rate from ambient to reaction temperature. Therefore, the heating method by direct mixing of starting solution at room temperature with supercritical water is a key technology for the particle production having smaller size and narrow distribution. In this paper, mixing engineering study through comparison between conventional T-shaped mixers and recently developed swirl mixers was carried out in the hydrothermal synthesis of NiO nanoparticles from Ni(NO3)2 aqueous solution at 400 °C and 30 MPa. Inner diameter in the mixers and total flow rates were varied. Furthermore, the heating rate was calculated by computational fluid dynamics (CFD) simulation. Relationship between the heating rate and the average particle size were discussed. It was clarified that the miniaturization of mixer inner diameter and the use of the swirl flow were effective for improving mixing performance and contributed to produce small and narrow distribution particle under same experimental condition of flow rate, temperature, pressure, residence time, and concentration of the starting materials. We have focused the mixer optimization due to a difference in fluid viscosity.

  9. Toward Better Modeling of Supercritical Turbulent Mixing

    NASA Technical Reports Server (NTRS)

    Selle, Laurent; Okongo'o, Nora; Bellan, Josette; Harstad, Kenneth

    2008-01-01

    study was done as part of an effort to develop computational models representing turbulent mixing under thermodynamic supercritical (here, high pressure) conditions. The question was whether the large-eddy simulation (LES) approach, developed previously for atmospheric-pressure compressible-perfect-gas and incompressible flows, can be extended to real-gas non-ideal (including supercritical) fluid mixtures. [In LES, the governing equations are approximated such that the flow field is spatially filtered and subgrid-scale (SGS) phenomena are represented by models.] The study included analyses of results from direct numerical simulation (DNS) of several such mixing layers based on the Navier-Stokes, total-energy, and conservation- of-chemical-species governing equations. Comparison of LES and DNS results revealed the need to augment the atmospheric- pressure LES equations with additional SGS momentum and energy terms. These new terms are the direct result of high-density-gradient-magnitude regions found in the DNS and observed experimentally under fully turbulent flow conditions. A model has been derived for the new term in the momentum equation and was found to perform well at small filter size but to deteriorate with increasing filter size. Several alternative models were derived for the new SGS term in the energy equation that would need further investigations to determine if they are too computationally intensive in LES.

  10. Validation of a program for supercritical power plant calculations

    NASA Astrophysics Data System (ADS)

    Kotowicz, Janusz; Łukowicz, Henryk; Bartela, Łukasz; Michalski, Sebastian

    2011-12-01

    This article describes the validation of a supercritical steam cycle. The cycle model was created with the commercial program GateCycle and validated using in-house code of the Institute of Power Engineering and Turbomachinery. The Institute's in-house code has been used extensively for industrial power plants calculations with good results. In the first step of the validation process, assumptions were made about the live steam temperature and pressure, net power, characteristic quantities for high- and low-pressure regenerative heat exchangers and pressure losses in heat exchangers. These assumptions were then used to develop a steam cycle model in Gate-Cycle and a model based on the code developed in-house at the Institute of Power Engineering and Turbomachinery. Properties, such as thermodynamic parameters at characteristic points of the steam cycle, net power values and efficiencies, heat provided to the steam cycle and heat taken from the steam cycle, were compared. The last step of the analysis was calculation of relative errors of compared values. The method used for relative error calculations is presented in the paper. The assigned relative errors are very slight, generally not exceeding 0.1%. Based on our analysis, it can be concluded that using the GateCycle software for calculations of supercritical power plants is possible.

  11. ReaxFF based molecular dynamics simulations of ignition front propagation in hydrocarbon/oxygen mixtures under high temperature and pressure conditions.

    PubMed

    Ashraf, Chowdhury; Jain, Abhishek; Xuan, Yuan; van Duin, Adri C T

    2017-02-15

    In this paper, we present the first atomistic-scale based method for calculating ignition front propagation speed and hypothesize that this quantity is related to laminar flame speed. This method is based on atomistic-level molecular dynamics (MD) simulations with the ReaxFF reactive force field. Results reported in this study are for supercritical (P = 55 MPa and T u = 1800 K) combustion of hydrocarbons as elevated pressure and temperature are required to accelerate the dynamics for reactive MD simulations. These simulations are performed for different types of hydrocarbons, including alkyne, alkane, and aromatic, and are able to successfully reproduce the experimental trend of reactivity of these hydrocarbons. Moreover, our results indicate that the ignition front propagation speed under supercritical conditions has a strong dependence on equivalence ratio, similar to experimentally measured flame speeds at lower temperatures and pressures which supports our hypothesis that ignition front speed is a related quantity to laminar flame speed. In addition, comparisons between results obtained from ReaxFF simulation and continuum simulations performed under similar conditions show good qualitative, and reasonable quantitative agreement. This demonstrates that ReaxFF based MD-simulations are a promising tool to study flame speed/ignition front speed in supercritical hydrocarbon combustion.

  12. Computational Analyses of Pressurization in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2010-01-01

    A comprehensive numerical framework utilizing multi-element unstructured CFD and rigorous real fluid property routines has been developed to carry out analyses of propellant tank and delivery systems at NASA SSC. Traditionally CFD modeling of pressurization and mixing in cryogenic tanks has been difficult primarily because the fluids in the tank co-exist in different sub-critical and supercritical states with largely varying properties that have to be accurately accounted for in order to predict the correct mixing and phase change between the ullage and the propellant. For example, during tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. In our modeling framework, we incorporated two different approaches to real fluids modeling: (a) the first approach is based on the HBMS model developed by Hirschfelder, Beuler, McGee and Sutton and (b) the second approach is based on a cubic equation of state developed by Soave, Redlich and Kwong (SRK). Both approaches cover fluid properties and property variation spanning sub-critical gas and liquid states as well as the supercritical states. Both models were rigorously tested and properties for common fluids such as oxygen, nitrogen, hydrogen etc were compared against NIST data in both the sub-critical as well as supercritical regimes.

  13. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    NASA Astrophysics Data System (ADS)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    The contaminants that can be found in soils are many, inorganic, like heavy metals, as well as organic. Among the organic contaminants, oil and coal refineries are responsi- ble for several cases of soil contamination with PAHs (Polycyclic Aromatic Hydrocar- bons). Polynuclear aromatic hydrocarbons (PAHs) have toxic, carcinogenic and mu- tagenic effects. Limits have been set on the concentration of most contaminants, and growing concern is focusing on soil contamination issues. USA regulations set the maximum acceptable level of contamination by PAHs equal to 40 ppm at residential sites and 270 ppm at industrial sites. Stricter values are usually adopted in European Countries. Supercritical carbon dioxide extraction is a possible alternative technology to remove volatile organic compounds from contaminated soils. Supercritical fluid extraction (SFE) offers many advantages over conventional solvent extraction. Super- critical fluids combine gaseous properties as a high diffusion coefficient, and liquid properties as a high solvent power. The solvent power is strongly pressure-dependent near supercritical conditions: selective extractions are possible without changing the solvent. Solute can be separate from the solvent depressurising the system; therefore, it is possible to recycle the solvent and recover the contaminant. Carbon dioxide is frequently used as supercritical fluid, because it has moderate critical conditions, it is inert and available in pure form. In this work, supercritical fluid extraction technology has been used to remove a polynuclear aromatic hydrocarbon from contaminated soils. The contaminant choice for the experiment has been naphthalene since several data are available in literature. G. A. Montero et al. [1] studied soil remediation with supercrit- ical carbon dioxide extraction technology; these Authors have found that there was a mass-transfer limitation. In the extraction vessel, the mass transfer coefficient in- creases with the superficial velocity of the supercritical carbon dioxide; therefore, the mass transfer resistance can be reduced increasing such velocity. In this work, higher values of superficial velocity were investigated. The experimental apparatus includes a pump, an extraction vessel, an adjustable restrictor and a trap to collect the extracted substance. Liquid carbon dioxide coming from a cylinder with a dip-tube is cooled by a cryostatic bath and then it is compressed by a pneumatic drive pump (the max- imum available pressure is 69 MPa). Subsequently, the pressurised current flows into 1 a heating coil and then into the extraction vessel, which is contained in a stove; the outlet flow is depressurised in an adjustable restrictor and the extracted substance is collected in a trap by dissolution into a solvent. The extracted naphthalene quantity was obtained by weighting the solvent and measuring the naphthalene concentration with a gas chromatograph. The soil sample is a sandy soil geologically representative of the North of Italy that was sampled and physically and chemically characterized: particle-size distribution analysis, diffractometric analysis, Cation Exchange Capac- ity, Total Organic Carbon, iron content and manganese content in order to evaluate the potential sorption degree. The soil was artificially polluted by means of a naphta- lene and methylene chloride solution. The experimental work consists in a number of naphthalene extractions from the spiked soil, that were carried out at different operat- ing conditions, temperature, pressure and flow rate by means of supercritical carbon dioxide evaluating the corresponding recovery efficiencies. The results obtained were analysed and compared in order to determine which parameters influence the system. [1] G. A. Montero, T.D. Giorgio, and K. B. Schnelle, Jr..Removal of Hazardous ,1994, Contaminants form Soils by Supercritical Fluid Extraction. Innovations in Supercriti- cal Fluids. ACS Symposium Series, 608, 280-197. 2

  14. Wind-tunnel investigation of several high aspect-ratio supercritical wing configurations on a wide-body-type fuselage

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1977-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel on two aspect-ratio 11.95 supercritical wings that were tested in combination with a representative wide-body-type fuselage. The two supercritical wings have identical planforms for equal sweep angles and differ only in thickness. Each wing was tested at quarter-chord sweep angles of 27 deg and 30 deg. At the higher sweep angle, the aspect ratio is reduced to 11.36. At 27 deg of quarter-chord sweep, the thicker supercritical wing (SCW-1) has maximum streamwise thickness-to-chord ratios of 0.16 at the wing-fuselage juncture, 0.14 at the planform break station, and 0.12 at the tip. The thinner wing (SCW-2) has maximum streamwise thickness-to-chord ratios of 0.144, 0.12, and 0.10 at the same stations respectively. Tests were also conducted on the thinner supercritical wing at the 27 deg sweep angle with a 15.24 cm (6.0 in.) shorter span which results in an aspect ratio of 10.25. For comparison, data were obtained on a current wide-body transport wing (AR=7) that was tested on the same fuselage used with the supercritical wings.

  15. Preparation and characterisation of hydrocortisone particles using a supercritical fluids extraction process.

    PubMed

    Velaga, Sitaram P; Ghaderi, Raouf; Carlfors, Johan

    2002-01-14

    Crystallisation and subsequent milling of pharmaceutical powders by traditional methods often cause variations in physicochemical properties thereby influencing bioavailability of the formulation. Crystallisation of drug substances using supercritical fluids (SFs) offers some advantages over existing traditional methods in controlling particle characteristics. The novel particle formation method, solution enhanced dispersion by supercritical (SEDS) fluids was used for the preparation of hydrocortisone (HC) particles. The influence of processing conditions on the solid-state properties of the particles was studied. HC, an anti-inflammatory corticosteroid, particles were prepared from acetone and methanol solutions using the SEDS process. The solutions were dispersed with supercritical CO(2), acting as an anti-solvent, through a specially designed co-axial nozzle into a pressured vessel maintained at a specific constant temperature and pressure. The temperatures and pressures studied were 40-90 degrees C and 90-180 bar, respectively. The relative flow rates of drug solution to CO(2) were varied between 0.002 and 0.03. Solid-state characterisation of particles included differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), solubility studies and scanning electron microscopy (SEM) examination. The aerodynamic properties of SEDS prepared particles were determined by a multistage liquid impinger (MLI). Particles produced from acetone solutions were crystalline needles, melting at 221+/-2 degrees C. Their morphology was independent of processing conditions. With methanol solutions, particles were flakes or needles depending on the processing temperature and pressure. This material melted at 216+/-1 degrees C, indicating a different crystal structure from the original material, in agreement with observed differences in the position and intensity of the XRPD peaks. The simulated lung deposition, using the MLI, for HC powder was improved after SEDS processing. It was possible to produce and control the crystallinity, morphology, and aerodynamic properties of HC particles with the SEDS technique. This method may be useful for the processing of inhalation powders.

  16. Droplet turbulence interactions under subcritical and supercritical conditions

    NASA Technical Reports Server (NTRS)

    Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.

    1993-01-01

    The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.

  17. Helicity in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This report describes a study of databases produced by direct numerical simulation of mixing layers developing between opposing flows of two fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence, with emphasis on helicity. The simulations were performed for two different fluid pairs -- O2/H2 and C7H16/N2 -- at similar values of reduced pressure.

  18. Towards the isolation and estimation of elemental carbon in atmospheric aerosols using supercritical fluid extraction and thermo-optical analysis.

    PubMed

    Azeem, Hafiz Abdul; Martinsson, Johan; Stenström, Kristina Eriksson; Swietlicki, Erik; Sandahl, Margareta

    2017-07-01

    Air-starved combustion of biomass and fossil fuels releases aerosols, including airborne carbonaceous particles, causing negative climatic and health effects. Radiocarbon analysis of the elemental carbon (EC) fraction can help apportion sources of its emission, which is greatly constrained by the challenges in isolation of EC from organic compounds in atmospheric aerosols. The isolation of EC using thermo-optical analysis is however biased by the presence of interfering compounds that undergo pyrolysis during the analysis. EC is considered insoluble in all acidic, basic, and organic solvents. Based on the property of insolubility, a sample preparation method using supercritical CO 2 and methanol as co-solvent was developed to remove interfering organic compounds. The efficiency of the method was studied by varying the density of supercritical carbon dioxide by means of temperature and pressure and by varying the methanol content. Supercritical CO 2 with 10% methanol by volume at a temperature of 60 °C, a pressure of 350 bar and 20 min static mode extraction were found to be the most suitable conditions for the removal of 59 ± 3% organic carbon, including compounds responsible for pyrolysis with 78 ± 16% EC recovery. The results indicate that the method has potential for the estimation and isolation of EC from OC for subsequent analysis methods and source apportionment studies.

  19. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    DOE PAGES

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; ...

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m -3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m -3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m -3 (T = 333.15 K,more » p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg • m -3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.« less

  20. Monolithic composites of silica aerogels by reactive supercritical deposition of hydroxy-terminated poly(dimethylsiloxane).

    PubMed

    Sanli, D; Erkey, C

    2013-11-27

    Monolithic composites of silica aerogels with hydroxyl-terminated poly(dimethylsiloxane) (PDMS(OH)) were developed with a novel reactive supercritical deposition technique. The method involves dissolution of PDMS(OH) in supercritical CO2 (scCO2) and then exposure of the aerogel samples to this single phase mixture of PDMS(OH)-CO2. The demixing pressures of the PDMS(OH)-CO2 binary mixtures determined in this study indicated that PDMS(OH) forms miscible mixtures with CO2 at a wide composition range at easily accessible pressures. Upon supercritical deposition, the polymer molecules were discovered to react with the hydroxyl groups on the silica aerogel surface and form a conformal coating on the surface. The chemical attachment of the polymer molecules on the aerogel surface were verified by prolonged extraction with pure scCO2, simultaneous deposition with superhydrophobic and hydrophilic silica aerogel samples and ATR-FTIR analysis. All of the deposited silica aerogel samples were obtained as monoliths and retained their transparency up to around 30 wt % of mass uptake. PDMS(OH) molecules were found to penetrate all the way to the center of the monoliths and were distributed homogenously throughout the cylindrical aerogel samples. Polymer loadings as high as 75.4 wt % of the aerogel mass could be attained. It was shown that the polymer uptake increases with increasing exposure time, as well as the initial polymer concentration in the vessel.

  1. Supercritical and Transcritical Shear Flows in Microgravity: Experiments and Direct Numerical Simulations

    DTIC Science & Technology

    2006-08-01

    Boiler and Pressure Vessel Code were con...GRC, and to specifically state a general operating requirement. 1.1. The entire apparatus will be designed to ASME Boiler and Pressure Vessel Code , whenever...calculations, including a finite element analysis (FEA) will be inspected to verify the ASME Boiler and Pressure Vessel Code has been me, whenever

  2. A study of power cycles using supercritical carbon dioxide as the working fluid

    NASA Astrophysics Data System (ADS)

    Schroder, Andrew Urban

    A real fluid heat engine power cycle analysis code has been developed for analyzing the zero dimensional performance of a general recuperated, recompression, precompression supercritical carbon dioxide power cycle with reheat and a unique shaft configuration. With the proposed shaft configuration, several smaller compressor-turbine pairs could be placed inside of a pressure vessel in order to avoid high speed, high pressure rotating seals. The small compressor-turbine pairs would share some resemblance with a turbocharger assembly. Variation in fluid properties within the heat exchangers is taken into account by discretizing zero dimensional heat exchangers. The cycle analysis code allows for multiple reheat stages, as well as an option for the main compressor to be powered by a dedicated turbine or an electrical motor. Variation in performance with respect to design heat exchanger pressure drops and minimum temperature differences, precompressor pressure ratio, main compressor pressure ratio, recompression mass fraction, main compressor inlet pressure, and low temperature recuperator mass fraction have been explored throughout a range of each design parameter. Turbomachinery isentropic efficiencies are implemented and the sensitivity of the cycle performance and the optimal design parameters is explored. Sensitivity of the cycle performance and optimal design parameters is studied with respect to the minimum heat rejection temperature and the maximum heat addition temperature. A hybrid stochastic and gradient based optimization technique has been used to optimize critical design parameters for maximum engine thermal efficiency. A parallel design exploration mode was also developed in order to rapidly conduct the parameter sweeps in this design space exploration. A cycle thermal efficiency of 49.6% is predicted with a 320K [47°C] minimum temperature and 923K [650°C] maximum temperature. The real fluid heat engine power cycle analysis code was expanded to study a theoretical recuperated Lenoir cycle using supercritical carbon dioxide as the working fluid. The real fluid cycle analysis code was also enhanced to study a combined cycle engine cascade. Two engine cascade configurations were studied. The first consisted of a traditional open loop gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 65.0% using a peak temperature of 1,890K [1,617°C]. The second configuration consisted of a hybrid natural gas powered solid oxide fuel cell and gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 73.1%. Both configurations had a minimum temperature of 306K [33°C]. The hybrid stochastic and gradient based optimization technique was used to optimize all engine design parameters for each engine in the cascade such that the entire engine cascade achieved the maximum thermal efficiency. The parallel design exploration mode was also utilized in order to understand the impact of different design parameters on the overall engine cascade thermal efficiency. Two dimensional conjugate heat transfer (CHT) numerical simulations of a straight, equal height channel heat exchanger using supercritical carbon dioxide were conducted at various Reynolds numbers and channel lengths.

  3. Supercritical fluids crystallization of budesonide and flunisolide.

    PubMed

    Velaga, Sitaram P; Berger, Rolf; Carlfors, Johan

    2002-10-01

    Budesonide and flunisolide anhydrate were crystallized using the solution enhanced dispersion by supercritical fluids (SEDS) technique. The aim was to investigate the possibility of preparing different pure polymorphs. 0.25% w/v solutions of each drug were prepared from acetone and methanol. Operating conditions were 40-80 degrees C and 80-200 bars. The flow rate of drug solution was 0.3 mL/min and that of CO2 was 9-25 mL/min. Sample characterizations included differential scanning calorimetry, X-ray powder diffraction, variable temperature X-ray diffraction, scanning electron microscopy, and solubility studies. The particle morphology of budesonide was dependent on the nature of the solvent. SEDS processing of flunisolide with acetone at 100 bars resulted in the formation of polymorphic mixtures at 80 degrees C and a new polymorph III at 60 C and 40 degrees C. With methanol at 100 bars another new polymorph IV was formed with different particle morphology at 80 degrees C and a polymorphic mixture at 60 degrees C. Using the SEDS, microparticles of crystalline budesonide were prepared and new polymorphs of flunisolide were produced. Particle characteristics were controlled by the temperature, pressure and relative flow rates of drug solution and CO2.

  4. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.

    PubMed

    Saraji, Soheil; Goual, Lamia; Piri, Mohammad; Plancher, Henry

    2013-06-11

    Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface. A thorough study of these parameters and their variations with temperature and pressure will provide a better understanding of the carbon sequestration process and thus improve predictions of the sequestration efficiency. In this study, the controversial concept of wettability alteration of quartz surfaces in the presence of supercritical carbon dioxide (sc-CO2) was investigated. A novel apparatus for measuring interfacial tension and contact angle at high temperatures and pressures based on Axisymmetric Drop Shape Analysis with no-Apex (ADSA-NA) method was developed and validated with a simple system. Densities, interfacial tensions, and dynamic contact angles of CO2/water/quartz systems were determined for a wide range of pressures and temperatures relevant to geological sequestration of CO2 in the subcritical and supercritical states. Image analysis was performed with ADSA-NA method that allows the determination of both interfacial tensions and contact angles with high accuracy. The results show that supercritical CO2 alters the wettability of quartz surface toward less water-wet conditions compared to subcritical CO2. Also we observed an increase in the water advancing contact angles with increasing temperature indicating less water-wet quartz surfaces at higher temperatures.

  5. Dielectric Interactions and the Prediction of Retention Times of Pesticides in Supercritical Fluid Chromatography with CO2

    NASA Astrophysics Data System (ADS)

    Alvarez, Guillermo A.; Baumanna, Wolfram

    2005-02-01

    A thermodynamic model for the partition of a solute (pesticide) between two immiscible phases, such as the stationary and mobile phases of supercritical fluid chromatography with CO2, is developed from first principles. A key ingredient of the model is the result of the calculation made by Liptay of the energy of interaction of a polar molecule with a dielectric continuum, which represents the solvent. The strength of the interaction between the solute and the solvent, which may be considered a measure of the solvent power, is characterized by a function g = (ɛ - 1)/(2ɛ +1), where ɛ is the dielectric constant of the medium, which is a function of the temperature T and the pressure P. Since the interactions between the nonpolar supercritical CO2 solvent and the slightly polar pesticide molecules are considered to be extremely weak, a regular solution model is appropriate from the thermodynamic point of view. At constant temperature, the model predicts a linear dependence of the logarithm of the capacity factor (lnk) of the chromatographic experiment on the function g = g(P), as the pressure is varied, with a slope which depends on the dipole moment of the solute, dispersion interactions and the size of the solute cavity in the solvent. At constant pressure, once the term containing the g (solvent interaction) factor is subtracted from lnk, a plot of the resulting term against the inverse of temperature yields the enthalpy change of transfer of the solute from the mobile (supercritical CO2) phase to the stationary (adsorbent) phase. The increase in temperature with the consequent large volume expansion of the supercritical fluid lowers its solvent strength and hence the capacity factor of the column (or solute retention time) increases. These pressure and temperature effects, predicted by the model, agree excellently with the experimental retention times of seven pesticides. Beyond a temperature of about 393 K, where the liquid solvent densities approach those of a gas (and hence the solvent strength becomes negligible), a dramatic loss of the retention times of all pesticides is observed in the experiments; this is attributed to desorption of the solute from the stationary phase, as predicted by Le Châtelier's principle for the (exothermic) adsorption process.

  6. Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent.

    PubMed

    Macías-Sánchez, Maria Dolores; Mantell Serrano, Casimiro; Rodríguez Rodríguez, Miguel; Martínez de la Ossa, Enrique; Lubián, Luís M; Montero, Olimpio

    2008-05-01

    The extraction of carotenoids and chlorophylls using carbon dioxide modified with ethanol as a cosolvent is an alternative to solvent extraction because it provides a high-speed extraction process. In the study described here, carotenoid and chlorophyll extraction with supercritical CO(2 )+ ethanol was explored using freeze-dried powders of three microalgae (Nannochloropsis gaditana, Synechococcus sp. and Dunaliella salina) as the raw materials. The operation conditions were as follows: pressures of 200, 300, 400 and 500 bar, temperatures of 40, 50 and 60 degrees C. Analysis of the extracts was performed by measuring the absorbance and by using empirical correlations. The results demonstrate that it is necessary to work at a temperature of 50-60 degrees C and a pressure range of 300-500 bar, depending on the type of microalgae, in order to obtain the highest yield of pigments. The best carotenoid/chlorophyll ratios were obtained by using supercritical fluid extraction + cosolvent instead of using conventional extraction. The higher selectivity of the former process should facilitate the separation and purification of the two extracted pigments.

  7. Simulations of dissociation constants in low pressure supercritical water

    NASA Astrophysics Data System (ADS)

    Halstead, S. J.; An, P.; Zhang, S.

    2014-09-01

    This article reports molecular dynamics simulations of the dissociation of hydrochloric acid and sodium hydroxide in water from ambient to supercritical temperatures at a fixed pressure of 250 atm. Corrosion of reaction vessels is known to be a serious problem of supercritical water, and acid/base dissociation can be a significant contributing factor to this. The SPC/e model was used in conjunction with solute models determined from density functional calculations and OPLSAA Lennard-Jones parameters. Radial distribution functions were calculated, and these show a significant increase in solute-solvent ordering upon forming the product ions at all temperatures. For both dissociations, rapidly decreasing entropy of reaction was found to be the controlling thermodynamic factor, and this is thought to arise due to the ions produced from dissociation maintaining a relatively high density and ordered solvation shell compared to the reactants. The change in entropy of reaction reaches a minimum at the critical temperature. The values of pKa and pKb were calculated and both increased with temperature, in qualitative agreement with other work, until a maximum value at 748 K, after which there was a slight decrease.

  8. Supercritical CO(2) fluid extraction of crystal water from trehalose dihydrate. Efficient production of form II (T(alpha)) phase.

    PubMed

    Akao, Ken-ichi; Okubo, Yusei; Inoue, Yoshio; Sakurai, Minoru

    2002-10-11

    Form II is a kind of metastable crystalline form of trehalose anhydrate, and it is easily converted to the dihydrate crystal by absorbing water in moist atmosphere at room temperature (Akao et al., Carbohydr. Res. 2001, 334, 233-241). It can be utilized as an edible and nontoxic desiccant, and thus its efficient production from the dihydrate is significant from a viewpoint of industrial applications. In this study, we attempt to extract crystal water from the dihydrate using supercritical CO(2). We examine the dependence of extraction efficiency on the extraction time, the temperature and pressure of the fluid. Then, FTIR measurements are carried out to detect the extracted water and to identify the polymorphic phase of the sugar sample after the extraction treatment. In particular, the so-called first derivative euclidean distance analysis for IR spectra is shown to be quite useful for the structural identification. Consequently, we demonstrate that form II is produced from the dihydrate through supercritical CO(2) fluid extraction if appropriate temperature and pressure conditions (around 80 degrees C and 20 MPa) are maintained.

  9. Turbulent convective heat transfer of methane at supercritical pressure in a helical coiled tube

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Sun, Baokun; Lin, Wei; He, Fan; You, Yingqiang; Yu, Jiuyang

    2018-02-01

    The heat transfer of methane at supercritical pressure in a helically coiled tube was numerically investigated using the Reynolds Stress Model under constant wall temperature. The effects of mass flux ( G), inlet pressure ( P in) and buoyancy force on the heat transfer behaviors were discussed in detail. Results show that the light fluid with higher temperature appears near the inner wall of the helically coiled tube. When the bulk temperature is less than or approach to the pseudocritical temperature ( T pc ), the combined effects of buoyancy force and centrifugal force make heavy fluid with lower temperature appear near the outer-right of the helically coiled tube. Beyond the T pc , the heavy fluid with lower temperature moves from the outer-right region to the outer region owing to the centrifugal force. The buoyancy force caused by density variation, which can be characterized by Gr/ Re 2 and Gr/ Re 2.7, enhances the heat transfer coefficient ( h) when the bulk temperature is less than or near the T pc , and the h experiences oscillation due to the buoyancy force. The oscillation is reduced progressively with the increase of G. Moreover, h reaches its peak value near the T pc . Higher G could improve the heat transfer performance in the whole temperature range. The peak value of h depends on P in. A new correlation was proposed for methane at supercritical pressure convective heat transfer in the helical tube, which shows a good agreement with the present simulated results.

  10. Enantioseparation of napropamide by supercritical fluid chromatography: Effects of the chromatographic conditions and separation mechanism.

    PubMed

    Zhao, Lu; Xie, Jingqian; Guo, Fangjie; Liu, Kai

    2018-05-01

    Supercritical fluid chromatography (SFC) is already used for enantioseparation in the pharmaceutical industry, but it is rarely used for the separation of chiral pesticides. Comparing with high performence liquid chromatography, SFC uses much more environmnetal friendly and economic mobile phase, supercritical CO 2 . In our work, the enantioseparation of an amide herbicide, napropamide, using three different polysaccharide-type chiral stationary phases (CSPs) in SFC was investigated. By studying the effect of different CSPs, organic modifiers, temperature, back-pressure regulator pressures, and flow rates for the enantioseparation of napropamide, we established a rapid and green method for enantioseparation that takes less than 2 minutes: The column was CEL2, the mobile phase was CO 2 with 20% 2-propanol, and the flow rate was 2.0 mL/min. We found that CEL2 demonstrated the strongest resolution capability. Acetonitrile was favored over alcoholic solvents when the CSP was amylose and 2-propanol was the best choice when using cellulose. When the concentration of the modifiers or the flow rate was decreased, resolutions and analysis times increased concurrently. The temperature and back-pressure regulator pressure exhibited only minor influences on the resolution and analysis time of the napropamide enantioseparations with these chiral columns. The molecular docking analysis provided a deeper insight into the interactions between the enantiomers and the CSPs at the atomic level and partly explained the reason for the different elution orders using the different chiral columns. © 2018 Wiley Periodicals, Inc.

  11. Analysis of supercritical vapor explosions using thermal detonation wave theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamoun, B.I.; Corradini, M.L.

    The interaction of certain materials such as Al{sub 2}O{sub 3} with water results in vapor explosions with very high (supercritical) pressures and propagation velocities. A quasi-steady state analysis of supercritical detonation in one-dimensional multiphase flow was applied to analyze experimental data of the KROTOS (26-30) set of experiments conducted at the Joint Research Center at Ispra, Italy. In this work we have applied a new method of solution which allows for partial fragmentation of the fuel in the shock adiabatic thermodynamic model. This method uses known experiment values of the shock pressure and propagation velocity to estimate the initial mixingmore » conditions of the experiment. The fuel and coolant were both considered compressible in this analysis. In KROTOS 26, 28, 29, and 30 the measured values of the shock pressure by the experiment were found to be higher than 25, 50, 100, and 100 Mpa respectively. Using the above data for the wave velocity and our best estimate for the values of the pressure, the predicted minimum values of the fragmented mass of the fuel were found to be 0.026. 0.04, 0.057, and 0.068 kg respectively. The predicted values of the work output corresponding to the above fragmented masses of the fuel were found to be 40, 84, 126, and 150 kJ respectively, with predicted initial void fractions of 112%, 12.5%, 8%, and 6% respectively.« less

  12. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.

    2009-07-01

    Analyses of supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle performance have largely settled on the recompression supercritical cycle (or Feher cycle) incorporating a flow split between the main compressor downstream of heat rejection, a recompressing compressor providing direct compression without heat rejection, and high and low temperature recuperators to raise the effectiveness of recuperation and the cycle efficiency. Alternative cycle layouts have been previously examined by Angelino (Politecnico, Milan), by MIT (Dostal, Hejzlar, and Driscoll), and possibly others but not for sodium-cooled fast reactors (SFRs) operating at relatively low core outlet temperature. Thus, the present authors could not be suremore » that the recompression cycle is an optimal arrangement for application to the SFR. To ensure that an advantageous alternative layout has not been overlooked, several alternative cycle layouts have been investigated for a S-CO{sub 2} Brayton cycle coupled to the Advanced Burner Test Reactor (ABTR) SFR preconceptual design having a 510 C core outlet temperature and a 470 C turbine inlet temperature to determine if they provide any benefit in cycle performance (e.g., enhanced cycle efficiency). No such benefits were identified, consistent with the previous examinations, such that attention was devoted to optimizing the recompression supercritical cycle. The effects of optimizing the cycle minimum temperature and pressure are investigated including minimum temperatures and/or pressures below the critical values. It is found that improvements in the cycle efficiency of 1% or greater relative to previous analyses which arbitrarily fixed the minimum temperature and pressure can be realized through an optimal choice of the combination of the minimum cycle temperature and pressure (e.g., for a fixed minimum temperature there is an optimal minimum pressure). However, this leads to a requirement for a larger cooler for heat rejection which may impact the tradeoff between efficiency and capital cost. In addition, for minimum temperatures below the critical temperature, a lower heat sink temperature is required the availability of which is dependent upon the climate at the specific plant site.« less

  13. Oxidation of alloys for energy applications in supercritical CO 2 and H 2O

    DOE PAGES

    Holcomb, Gordon R.; Carney, Casey; Doğan, Ömer N.

    2016-03-19

    To facilitate development of supercritical CO 2 (sCO 2) power plants, a comparison of the oxidation behavior of austenitic stainless steels and Ni-base alloys in sH 2O and sCO 2 were made. Experiments were conducted at 730 °C/207 bar (sCO 2) and 726 °C/208 bar (sH 2O). Ni-base alloys in sCO 2 did not exhibit much change with pressure. Ni-base alloys in sH 2O had an increase in corrosion rate and the log of the parabolic rate constant was proportional to pressure. Lastly, fine-grain austenitic stainless steels in sCO 2 and sH 2O were both less protective with pressure asmore » the dense protective chromia scale was replaced with faster growing Fe-oxide rich scales.« less

  14. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions

    NASA Astrophysics Data System (ADS)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  15. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.

    PubMed

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO 2 (SC-CO 2 ) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO 2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO 2 generation system, pure SC-CO 2 jet system, abrasive SC-CO 2 jet system, CO 2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO 2 jet, and the results have proven the great perforating efficiency of SC-CO 2 jet and the applications of this setup.

  16. Low pressure supercritical CO2 extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip.

    PubMed

    Cheng, Xiang; Qi, ZhenBang; Burdyny, Thomas; Kong, Tian; Sinton, David

    2018-02-01

    This study demonstrates the efficacy of low pressure supercritical CO 2 extraction of astaxanthin from disrupted Haematococcus pluvialis. A microfluidic reactor was employed that enabled excellent control and allowed direct monitoring of the whole process at the single cell level, in real time. Astaxanthin extraction using ScCO 2 achieved 92% recovery at 55 °C and 8 MPa applied over 15 h. With the addition of co-solvents, ethanol and olive oil, the extraction rates in both experiments were significantly improved reaching full recovery within a few minutes. Notably, for the ethanol case, the timescales of extraction process are reduced 1800-fold from 15 h to 30 s at 55 °C and 8 MPa, representing the fastest complete astaxanthin extraction at such low pressures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  18. Concentration dependent refractive index of CO2/CH4 mixture in gaseous and supercritical phase.

    PubMed

    Giraudet, C; Marlin, L; Bégué, D; Croccolo, F; Bataller, H

    2016-04-07

    Carbon dioxide (CO2)/methane (CH4) binary mixtures are investigated at pressure values up to 20 MPa at 303 K in order to investigate the pressure dependence of the optical concentration contrast factor, ∂n/∂c(P,T), through gaseous and supercritical phase. Refractive index is measured by means of a Michelson interferometer. Refractivities of the mixtures are found in good agreement with Lorentz-Lorenz predictions after density calculations by means of the AGA8-DC92 equation of state. Experimental polarizabilities of pure fluids are compared to quantum calculations of monomers and dimers for each pressure; it results that the quantity of dimers is small in the investigated thermodynamic conditions. Finally, by extending our experimental database with numerical simulations, we evidence that ∂n/∂cP,T presents a critical enhancement similar to heat capacity.

  19. Application of response surface methodology to optimise supercritical carbon dioxide extraction of essential oil from Cyperus rotundus Linn.

    PubMed

    Wang, Hongwu; Liu, Yanqing; Wei, Shoulian; Yan, Zijun

    2012-05-01

    Supercritical fluid extraction with carbon dioxide (SC-CO2 extraction) was performed to isolate essential oils from the rhizomes of Cyperus rotundus Linn. Effects of temperature, pressure, extraction time, and CO2 flow rate on the yield of essential oils were investigated by response surface methodology (RSM). The oil yield was represented by a second-order polynomial model using central composite rotatable design (CCRD). The oil yield increased significantly with pressure (p<0.0001) and CO2 flow rate (p<0.01). The maximum oil yield from the response surface equation was predicted to be 1.82% using an extraction temperature of 37.6°C, pressure of 294.4bar, extraction time of 119.8 min, and CO2 flow rate of 20.9L/h. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Design of Test Loops for Forced Convection Heat Transfer Studies at Supercritical State

    NASA Astrophysics Data System (ADS)

    Balouch, Masih N.

    Worldwide research is being conducted to improve the efficiency of nuclear power plants by using supercritical water (SCW) as the working fluid. One such SCW reactor considered for future development is the CANDU-Supercritical Water Reactor (CANDU-SCWR). For safe and accurate design of the CANDU-SCWR, a detailed knowledge of forced-convection heat transfer in SCW is required. For this purpose, two supercritical fluid loops, i.e. a SCW loop and an R-134a loop are developed at Carleton University. The SCW loop is designed to operate at pressures as high as 28 MPa, temperatures up to 600 °C and mass fluxes of up to 3000 kg/m2s. The R-134a loop is designed to operate at pressures as high as 6 MPa, temperatures up to 140 °C and mass fluxes in the range of 500-6000 kg/m2s. The test loops designs allow for up to 300 kW of heating power to be imparted to the fluid. Both test loops are of the closed-loop design, where flow circulation is achieved by a centrifugal pump in the SCW loop and three parallel-connected gear pumps in the R-134a loop, respectively. The test loops are pressurized using a high-pressure nitrogen cylinder and accumulator assembly, which allows independent control of the pressure, while simultaneously dampening pump induced pressure fluctuations. Heat exchangers located upstream of the pumps control the fluid temperature in the test loops. Strategically located measuring instrumentation provides information on the flow rate, pressure and temperature in the test loops. The test loops have been designed to accommodate a variety of test-section geometries, ranging from a straight circular tube to a seven-rod bundle, achieving heat fluxes up to 2.5 MW/m2 depending on the test-section geometry. The design of both test loops allows for easy reconfiguration of the test-section orientation relative to the gravitational direction. All the test sections are of the directly-heated design, where electric current passing through the pressure retaining walls of the test sections provides the Joule heating required to heat up the fluid to supercritical conditions. A high-temperature dielectric gasket isolates the current carrying parts of the test section from the rest of the assembly. Temperature and pressure drop data are collected at the inlet and outlet, and along the heated length of the test section. The test loops and test sections are designed according to American Society of Mechanical Engineers (ASME) Pressure Piping B31.1, and Boiler and Pressure Vessel Code, Section VIII-Division 1 rules. The final test loops and test sections assemblies are certified by Technical Standards and Safety Authority (TSSA). Every attempt is made to use off-the-shelf components where possible in order to streamline the design process and reduce costs. Following a rigorous selection process, stainless steel Types 316 and 316H are selected as the construction materials for the test loops, and Inconel 625 is selected as the construction material for the test sections. This thesis describes the design of the SCW and R-134a loops along with the three test-section geometries (i.e., tubular, annular and bundle designs).

  1. Determination of major aromatic constituents in vanilla using an on-line supercritical fluid extraction coupled with supercritical fluid chromatography.

    PubMed

    Liang, Yanshan; Liu, Jiaqi; Zhong, Qisheng; Shen, Lingling; Yao, Jinting; Huang, Taohong; Zhou, Ting

    2018-04-01

    An on-line supercritical fluid extraction coupled with supercritical fluid chromatography method was developed for the determination of four major aromatic constituents in vanilla. The parameters of supercritical fluid extraction were systematically investigated using single factor optimization experiments and response surface methodology by a Box-Behnken design. The modifier ratio, split ratio, and the extraction temperature and pressure were the major parameters which have significant effects on the extraction. While the static extraction time, dynamic extraction time, and recycle time had little influence on the compounds with low polarity. Under the optimized conditions, the relative extraction efficiencies of all the constituents reached 89.0-95.1%. The limits of quantification were in the range of 1.123-4.747 μg. The limits of detection were in the range of 0.3368-1.424 μg. The recoveries of the four analytes were in the range of 76.1-88.9%. The relative standard deviations of intra- and interday precision ranged from 4.2 to 7.6%. Compared with other off-line methods, the present method obtained higher extraction yields for all four aromatic constituents. Finally, this method has been applied to the analysis of vanilla from different sources. On the basis of the results, the on-line supercritical fluid extraction-supercritical fluid chromatography method shows great promise in the analysis of aromatic constituents in natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Unsteady pressure and structural response measurements of an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.

    1988-01-01

    Results are presented which define unsteady flow conditions associated with high dynamic response experienced on a high aspect ratio elastic supercritical wing at transonic test conditions while being tested in the NASA Langley Transonic Dynamics Tunnel. The supercritical wing, designed for a cruise Mach number of 0.80, experienced the high dynamic response in the Mach number range from 0.90 to 0.94 with the maximum response occurring at a Mach number of approximately 0.92. At the maximum wing response condition the forcing function appears to be the oscillatory chordwise movement of strong shocks located on both the wing upper and lower surfaces in conjunction with the flow separating and reattaching in the trailing edge region.

  3. Unsteady pressure and structural response measurements on an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.

    1988-01-01

    Results are presented which define unsteady flow conditions associated with high dynamic response experienced on a high aspect ratio elastic supercritical wing at transonic test conditions while being tested in the NASA Langley Transonic Dynamics Tunnel. The supercritical wing, designed for a cruise Mach number of 0.80, experienced the high dynamic response in the Mach number range from 0.90 to 0.94 with the maximum response occurring at a Mach number of approximately 0.92. At the maximum wing response condition the forcing function appears to be the oscillatory chordwise movement of strong shocks located on both the wing upper and lower surfaces in conjuction with the flow separating and reattaching in the trailing edge region.

  4. Aerodynamic characteristics of the 10-percent-thick NASA supercritical airfoil 33 designed for a normal-force coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1975-01-01

    A 10-percent-thick supercritical airfoil based on an off-design sonic-pressure plateau criterion was developed and experimental aerodynamic characteristics measured. The airfoil had a design normal-force coefficient of 0.7 and was identified as supercritical airfoil 33. Results show the airfoil to have good drag rise characteristics over a wide range of normal-force coefficients with no measurable shock losses up to the Mach numbers at which drag divergence occurred for normal-force coefficients up to 0.7. Comparisons of experimental and theoretical characteristics were made and composite drag rise characteristics were derived for normal-force coefficients of 0.5 and 0.7 and a Reynolds number of 40 million.

  5. iTOUGH2-EOS1SC. Multiphase Reservoir Simulator for Water under Sub- and Supercritical Conditions. User's Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnusdottir, Lilja; Finsterle, Stefan

    2015-03-01

    Supercritical fluids exist near magmatic heat sources in geothermal reservoirs, and the high enthalpy fluid is becoming more desirable for energy production with advancing technology. In geothermal modeling, the roots of the geothermal systems are normally avoided but in order to accurately predict the thermal behavior when wells are drilled close to magmatic intrusions, it is necessary to incorporate the heat sources into the modeling scheme. Modeling supercritical conditions poses a variety of challenges due to the large gradients in fluid properties near the critical zone. This work focused on using the iTOUGH2 simulator to model the extreme temperature andmore » pressure conditions in magmatic geothermal systems.« less

  6. Corrosion Behavior of FBR Structural Materials in High Temperature Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Furukawa, Tomohiro; Inagaki, Yoshiyuki; Aritomi, Masanori

    A key problem in the application of a supercritical carbon dioxide (CO2) turbine cycle to a fast breeder reactor (FBR) is the corrosion of structural material by supercritical CO2 at high temperature. In this study, corrosion test of high-chromium martensitic steel (12Cr-steel) and FBR grade type 316 stainless steel (316FR), which are candidate materials for FBRs, were performed at 400-600°C in supercritical CO2 pressurized at 20MPa. Corrosion due to the high temperature oxidation in exposed surface was measured up to approximately 2000h in both steels. In the case of 12Cr-steel, the weight gain showed parabolic growth with exposure time at each temperature. The oxidation coefficient could be estimated by the Arrhenius function. The specimens were covered by two successive oxide layers, an Fe-Cr-O layer (inside) and an Fe-O layer (outside). A partial thin oxide diffusion layer appeared between the base metal and the Fe-Cr-O layer. The corrosion behavior was equivalent to that in supercritical CO2 at 10MPa, and no effects of CO2 pressure on oxidation were observed in this study. In the case of 316FR specimens, the weight gain was significantly lower than that of 12Cr-steel. Dependency of neither temperature nor exposed time on oxidation was not observed, and the value of all tested specimens was within 2g/m2. Nodule shape oxides which consisted of two structures, Fe-Cr-O and Fe-O were observed on the surface of the 316FR specimen. Carburizing, known as a factor in the occurrence of breakaway corrosion and/or the degradation of ductility, was observed on the surface of both steels.

  7. An experimental and computational investigation of the flow field about a transonic airfoil in supercritical flow with turbulent boundary-layer separation

    NASA Technical Reports Server (NTRS)

    Rubesin, M. W.; Okuno, A. F.; Levy, L. L., Jr.; Mcdevitt, J. B.; Seegmiller, H. L.

    1976-01-01

    A combined experimental and computational research program is described for testing and guiding turbulence modeling within regions of separation induced by shock waves incident in turbulent boundary layers. Specifically, studies are made of the separated flow the rear portion of an 18%-thick circular-arc airfoil at zero angle of attack in high Reynolds number supercritical flow. The measurements include distributions of surface static pressure and local skin friction. The instruments employed include highfrequency response pressure cells and a large array of surface hot-wire skin-friction gages. Computations at the experimental flow conditions are made using time-dependent solutions of ensemble-averaged Navier-Stokes equations, plus additional equations for the turbulence modeling.

  8. Influence of high-pressure homogenization, ultrasonication, and supercritical fluid on free astaxanthin extraction from β-glucanase-treated Phaffia rhodozyma cells.

    PubMed

    Hasan, Mojeer; Azhar, Mohd; Nangia, Hina; Bhatt, Prakash Chandra; Panda, Bibhu Prasad

    2016-01-01

    In this study astaxanthin production by Phaffia rhodozyma was enhanced by chemical mutation using ethyl methane sulfonate. The mutant produces a higher amount of astaxanthin than the wild yeast strain. In comparison to supercritical fluid technique, high-pressure homogenization is better for extracting astaxanthin from yeast cells. Ultrasonication of dimethyl sulfoxide, hexane, and acetone-treated cells yielded less astaxanthin than β-glucanase enzyme-treated cells. The combination of ultrasonication with β-glucanase enzyme is found to be the most efficient method of extraction among all the tested physical and chemical extraction methods. It gives a maximum yield of 435.71 ± 6.55 µg free astaxanthin per gram of yeast cell mass.

  9. Supercritical Mixing in a Shear Coaxial Injector

    DTIC Science & Technology

    2016-07-27

    in the core of the injected fluid emphasizes this observation. Two acoustically excited cases: pressure node and pressure anti-node at the center... acoustically excited cases: pressure node and pressure anti-node at the center plane of the jet are also studied in the same manner. The pressure anti-node...shortens the core flow of the injected jet. I. Introduction OCKET engines present a unique environment for injection of the propellants due to

  10. Method for growth of crystals by pressure reduction of supercritical or subcritical solution

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor)

    1985-01-01

    Crystals of high morphological quality are grown by dissolution of a substance to be grown into the crystal in a suitable solvent under high pressure, and by subsequent slow, time-controlled reduction of the pressure of the resulting solution. During the reduction of the pressure interchange of heat between the solution and the environment is minimized by performing the pressure reduction either under isothermal or adiabatic conditions.

  11. X-ray variability of SS 433: Evidence for supercritical accretion

    NASA Astrophysics Data System (ADS)

    Atapin, K. E.; Fabrika, S. N.

    2016-08-01

    We study the X-ray variability of SS 433 based on data from the ASCA observatory and the MAXI and RXTE/ASM monitoring missions. Based on the ASCA data, we have constructed the power spectrum of SS 433 in the frequency range from 10-6 to 0.1 Hz, which confirms the presence of a flat portion in the spectrum at frequencies 3 × 10-5-10-3 Hz. The periodic variability (precession, nutation, eclipses) begins to dominate significantly over the stochastic variability at lower frequencies, which does not allow the stochastic variability to be studied reliably. The model in which the flat portion extends to 9.5 × 10-6 Hz, while a power-law rise with an index of 2.6 occurs below provides the best agreement with the observations. The nutational oscillations of the jets with a period of about three days suggests that the time for the passage of material through the disk is less than this value. At frequencies below 4 × 10-6 Hz, the shape of the power spectrum probably does not reflect the disk structure but is determined by external factors, for example, by a change in the amount of material supplied by the donor. The flat portion can arise from a rapid decrease in the viscous time in the supercritical or radiative disk zones. The flat spectrum is associated with the variability of the X-ray jets that are formed in the supercritical disk region.

  12. Experimental evaluation of shockless supercritical airfoils in cascade

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Buggele, A. E.; Shaw, L. M.

    1983-01-01

    Surface Mach number distributions, total pressure loss coefficients, and schlieren images of the flow are presented over a range of inlet Mach numbers and air angles. Several different trailing edge geometries were tested. At design conditions a leading edge separation bubble was observed resulting in higher losses than anticipated. The minimum losses were obtained at a negative incidence condition in which the flow was accelerating over most of the supercritical region. Relatively minor differences in losses were measured with the different trailing edge geometries studied.

  13. Engine-Level Simulation of Liquid Rocket Combustion Instabilities: Transcritical Combustion Simulations in Single Injector Configurations

    DTIC Science & Technology

    2012-03-01

    simple 1-step mechanism taking into account 4 species: CH4, O2, CO2 and H2O. Figure 2. Multiblock grid for the CVRC experiment. Left: Overall view, Right... Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays. Progress in Energy and...hydrogen shear-coaxial jet flames at supercritical pressure. Com- bustion science and technology, 178(1-3):229–252, 2006. 12 B. E. Poling, J. M. Prausnitz

  14. Method for making monolithic metal oxide aerogels

    DOEpatents

    Coronado, Paul R.

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  15. Supercritical hydrogen-free and catalyst-free hydrogenation: Possibilities of the method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubin, S.P.

    1995-12-01

    In this work, the authors generalize the results of preliminary investigations of a catalyst-free hydrogenation process, which roughly revealed the applicability limits of the method and its potentialities. Experiments were carried out in standard autoclaves of various volume and also in glass ampules placed into an autoclave, which contained the same solvent as the contents of the ampule. The transition into the supercritical state was accomplished by increasing the reactor temperature and, hence, the internal pressure.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr.

    Recently, carbonaceous materials including activated carbon were proven to be effective catalysts for hazardous waste gasification in supercritical water. Using coconut shell activated carbon catalyst, complete decomposition of industrial organic wastes including methanol and acetic acid was achieved. During this process, the total mass of the activated carbon catalyst changes by two competing processes: a decrease in weight via gasification of the carbon by supercritical water, or an increase in weight by deposition of carbonaceous materials generated by incomplete gasification of the biomass feedstocks. The deposition of carbonaceous materials does not occur when complete gasification is realized. Gasification of themore » activated carbon in supercritical water is often favored, resulting in changes in the quality and quantity of the catalyst. To thoroughly understand the hazardous waste decomposition process, a more complete understanding of the behavior of activated carbon in pure supercritical water is needed. The gasification rate of carbon by water vapor at subcritical pressures was studied in relation to coal gasification and generating activated carbon.« less

  17. Solubility of caffeine from green tea in supercritical CO2: a theoretical and empirical approach.

    PubMed

    Gadkari, Pravin Vasantrao; Balaraman, Manohar

    2015-12-01

    Decaffeination of fresh green tea was carried out with supercritical CO2 in the presence of ethanol as co-solvent. The solubility of caffeine in supercritical CO2 varied from 44.19 × 10(-6) to 149.55 × 10(-6) (mole fraction) over a pressure and temperature range of 15 to 35 MPa and 313 to 333 K, respectively. The maximum solubility of caffeine was obtained at 25 MPa and 323 K. Experimental solubility data were correlated with the theoretical equation of state models Peng-Robinson (PR), Soave Redlich-Kwong (SRK), and Redlich-Kwong (RK). The RK model had regressed experimental data with 15.52 % average absolute relative deviation (AARD). In contrast, Gordillo empirical model regressed the best to experimental data with only 0.96 % AARD. Under supercritical conditions, solubility of caffeine in tea matrix was lower than the solubility of pure caffeine. Further, solubility of caffeine in supercritical CO2 was compared with solubility of pure caffeine in conventional solvents and a maximum solubility 90 × 10(-3) mol fraction was obtained with chloroform.

  18. Extraction of nobiletin from Citrus Unshiu peels by supercritical fluid and its CRE-mediated transcriptional activity.

    PubMed

    Oba, Chisato; Ota, Masaki; Nomura, Koichiro; Fujiwara, Hironori; Takito, Jiro; Sato, Yoshiyuki; Ohizumi, Yasushi; Inomata, Hiroshi

    2017-04-15

    Polymethoxyflavone (PMF) is one of bioactive compounds in Citrus Unshiu and included mainly in the peels rather than the fruits, seeds and leaves. Supercritical CO 2 extraction is one candidate for selective extraction of polymethoxyflavone and in this study, supercritical CO 2 extraction with/without ethanol entrainer from Citrus Unshiu peels was examined at a temperature of 333K and a pressure of 30MPa. CRE (cyclic AMP response element)-mediated transcriptional assay was examined by using the extracts from supercritical fluid extraction. The results showed that extracts including nobiletin increased with increasing ethanol concentration in supercritical CO 2 and the elapsed extraction time. Extracts at ethanol concentration of 5 mol% showed high CRE-mediated transcription activity. This can be caused by activity of the extract including nobiletin in addition to the other methoxylated flavonoid species such as tangeretin. Extracts at ethanol concentration of 50% showed the highest CRE-mediated transcription activity, which can be attributed to flavonoid glycoside such as hesperidin. From our investigations, flavonoid glycoside can be one of promoters of CRE-mediated transcription activity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Isolation of essential oil from different plants and herbs by supercritical fluid extraction.

    PubMed

    Fornari, Tiziana; Vicente, Gonzalo; Vázquez, Erika; García-Risco, Mónica R; Reglero, Guillermo

    2012-08-10

    Supercritical fluid extraction (SFE) is an innovative, clean and environmental friendly technology with particular interest for the extraction of essential oil from plants and herbs. Supercritical CO(2) is selective, there is no associated waste treatment of a toxic solvent, and extraction times are moderate. Further, supercritical extracts were often recognized of superior quality when compared with those produced by hydro-distillation or liquid-solid extraction. This review provides a comprehensive and updated discussion of the developments and applications of SFE in the isolation of essential oils from plant matrices. SFE is normally performed with pure CO(2) or using a cosolvent; fractionation of the extract is commonly accomplished in order to isolate the volatile oil compounds from other co-extracted substances. In this review the effect of pressure, temperature and cosolvent on the extraction and fractionation procedure is discussed. Additionally, a comparison of the extraction yield and composition of the essential oil of several plants and herbs from Lamiaceae family, namely oregano, sage, thyme, rosemary, basil, marjoram and marigold, which were produced in our supercritical pilot-plant device, is presented and discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Supercritical fluid technology: concepts and pharmaceutical applications.

    PubMed

    Deshpande, Praful Balavant; Kumar, G Aravind; Kumar, Averineni Ranjith; Shavi, Gopal Venkatesh; Karthik, Arumugam; Reddy, Meka Sreenivasa; Udupa, Nayanabhirama

    2011-01-01

    In light of environmental apprehension, supercritical fluid technology (SFT) exhibits excellent opportunities to accomplish key objectives in the drug delivery sector. Supercritical fluid extraction using carbon dioxide (CO(2)) has been recognized as a green technology. It is a clean and versatile solvent with gas-like diffusivity and liquid-like density in the supercritical phase, which has provided an excellent alternative to the use of chemical solvents. The present commentary provides an overview of different techniques using supercritical fluids and their future opportunity for the drug delivery industry. Some of the emerging applications of SFT in pharmaceuticals, such as particle design, drug solubilization, inclusion complex, polymer impregnation, polymorphism, drug extraction process, and analysis, are also covered in this review. The data collection methods are based on the recent literature related to drug delivery systems using SFT platforms. SFT has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This cutting-edge technology is growing predominantly to surrogate conventional unit operations in relevance to the pharmaceutical production process. Supercritical fluid technology has recently drawn attention in the field of pharmaceuticals. It is a distinct conception that utilizes the solvent properties of supercritical fluids above their critical temperature and pressure, where they exhibit both liquid-like and gas-like properties, which can enable many pharmaceutical applications. For example, the liquid-like properties provide benefits in extraction processes of organic solvents or impurities, drug solubilization, and polymer plasticization, and the gas-like features facilitate mass transfer processes. It has become a much more versatile and environmentally attractive technology that can handle a variety of complicated problems in pharmaceuticals. This review is focused on different techniques that use supercritical fluids and their opportunities for the pharmaceutical sector.

  1. Two-structured solid particle model for predicting and analyzing supercritical extraction performance.

    PubMed

    Samadi, Sara; Vaziri, Behrooz Mahmoodzadeh

    2017-07-14

    Solid extraction process, using the supercritical fluid, is a modern science and technology, which has come in vogue regarding its considerable advantages. In the present article, a new and comprehensive model is presented for predicting the performance and separation yield of the supercritical extraction process. The base of process modeling is partial differential mass balances. In the proposed model, the solid particles are considered twofold: (a) particles with intact structure, (b) particles with destructed structure. A distinct mass transfer coefficient has been used for extraction of each part of solid particles to express different extraction regimes and to evaluate the process accurately (internal mass transfer coefficient was used for the intact-structure particles and external mass transfer coefficient was employed for the destructed-structure particles). In order to evaluate and validate the proposed model, the obtained results from simulations were compared with two series of available experimental data for extraction of chamomile extract with supercritical carbon dioxide, which had an excellent agreement. This is indicative of high potentiality of the model in predicting the extraction process, precisely. In the following, the effect of major parameters on supercritical extraction process, like pressure, temperature, supercritical fluid flow rate, and the size of solid particles was evaluated. The model can be used as a superb starting point for scientific and experimental applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The preparation and application of white graphene

    NASA Astrophysics Data System (ADS)

    Zhou, Chenghong

    2014-12-01

    In this article, another thin film named white graphene is introduced, containing its properties, preparation and potential applications. White graphene, which has the same structure with graphene but quite different electrical properties, can be exfoliated from its layered crystal, hexagonal boron nitride. Here two preparation methods of white graphene including supersonic cleavage and supercritical cleavage are presented. Inspired by the cleavage of graphene oxide, supersonic is applied to BN and few-layered films are obtained. Compared with supersonic cleavage, supercritical cleavage proves to be more successful. As supercritical fluid can diffuse into interlayer space of the layered hexagonal boron nitride easily, once reduce the pressure of the supercritical system fast, supercritical fluid among layers expands and escapes form interlayer, consequently exfoliating the hexagonal boron nitride into few layered structure. A series of characterization demonstrate that the monolayer white graphene prepared in the process matches its theoretical thickness 0.333nm and has lateral sizes at the order of 10μm. Supercritical cleavage proves to be successful and shows many advantages, such as good production quality and fast production cycle. Furthermore, the band energy of white graphene, which shows quite different from graphene, is simulated via tight-bonding in theory. The excellent properties will lead to extensive applications of white graphene. As white graphene has not received enough concern and exploration, it's potential to play a significant role in the fields of industry and science.

  3. Calculating Mass Diffusion in High-Pressure Binary Fluids

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2004-01-01

    A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.

  4. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.

    PubMed

    Gu, Tingyue; Held, Michael A; Faik, Ahmed

    2013-01-01

    Owing to high petroleum prices, there has been a major push in recent years to use lignocellulosic biomass as biorefinery feedstocks. Unfortunately, by nature's design, lignocellulosic biomass is notoriously recalcitrant. Cellulose is the most abundant renewable carbon source on the planet and comprises glucan polysaccharides which self-assemble into paracrystalline microfibrils. The extent of cellulose crystallinity largely contributes to biomass recalcitrance. Additionally, cellulose microfibrils are embedded into both hemicellulose and lignin polymeric networks, making cellulose accessibility an additional obstacle. Pretreatment is necessary before enzymatic hydrolysis in order to liberate high yields of glucose and other fermentable sugars from biomass polysaccharides. This work discusses two pretreatment methods, supercritical CO2 and ionic liquids (ILs). Both methods utilize green solvents that do not emit toxic vapours. Mechanisms for destroying or weakening biomass recalcitrance have been explored. Various pretreatment operating parameters such as temperature, pressure, time, dry biomass/solvent ratio, water content, etc. have been investigated for the pretreatment of various biomass types such as corn stover, switchgrass, sugarcane bagasse, soft and hard wood. The two pretreatment methods have their pros and cons. For example, supercritical CO2 explosion pretreatment uses inexpensive CO2, but requires a high pressure. By comparison, while IL pretreatment does not require an elevated pressure, ILs are still too expensive for large-scale uses. Further research and development are needed to make the two green pretreatment methods practical.

  5. Determination of Organic Partitioning Coefficients in Water-Supercritical CO2 Systems by Simultaneous in Situ UV and Near-Infrared Spectroscopies.

    PubMed

    Bryce, David A; Shao, Hongbo; Cantrell, Kirk J; Thompson, Christopher J

    2016-06-07

    CO2 injected into depleted oil or gas reservoirs for long-term storage has the potential to mobilize organic compounds and distribute them between sediments and reservoir brines. Understanding this process is important when considering health and environmental risks, but little quantitative data currently exists on the partitioning of organics between supercritical CO2 and water. In this work, a high-pressure, in situ measurement capability was developed to assess the distribution of organics between CO2 and water at conditions relevant to deep underground storage of CO2. The apparatus consists of a titanium reactor with quartz windows, near-infrared and UV spectroscopic detectors, and switching valves that facilitate quantitative injection of organic reagents into the pressurized reactor. To demonstrate the utility of the system, partitioning coefficients were determined for benzene in water/supercritical CO2 over the range 35-65 °C and approximately 25-150 bar. Density changes in the CO2 phase with increasing pressure were shown to have dramatic impacts on benzene's partitioning behavior. Our partitioning coefficients were approximately 5-15 times lower than values previously determined by ex situ techniques that are prone to sampling losses. The in situ methodology reported here could be applied to quantify the distribution behavior of a wide range of organic compounds that may be present in geologic CO2 storage scenarios.

  6. Treatment of municipal sewage sludge in supercritical water: A review.

    PubMed

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Laisheng

    2016-02-01

    With increasing construction of wastewater treatment plants and stricter policies, municipal sewage sludge (MSS) disposal has become a serious problem. Treatment of MSS in supercritical water (SCW) can avoid the pre-drying procedure and secondary pollution of conventional methods. SCW treatment methods can be divided into supercritical water gasification (SCWG), supercritical water partial oxidation (SCWPO) and supercritical water oxidation (SCWO) technologies with increasing amounts of oxidants. Hydrogen-rich gases can be generated from MSS by SCWG or SCWPO technology using oxidants less than stoichiometric ratio while organic compounds can be completely degraded by SCWO technology with using an oxidant excess. For SCWG and SCWPO technologies, this paper reviews the influences of different process variables (MSS properties, moisture content, temperature, oxidant amount and catalysts) on the production of gases. For SCWO technology, this paper reviews research regarding the removal of organics with or without hydrothermal flames and the changes in heavy metal speciation and risk. Finally, typical systems for handling MSS are summarized and research needs and challenges are proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Using supercritical fluids to refine hydrocarbons

    DOEpatents

    Yarbro, Stephen Lee

    2014-11-25

    This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

  8. Solubility of α-Tocopheryl Succinate in Supercritical Carbon Dioxide Using Offline HPLC-MS/MS Analysis

    PubMed Central

    Hybertson, Brooks M.

    2010-01-01

    The solubility of the vitamin E-related compound α-tocopheryl succinate in supercritical carbon dioxide was measured at pressures ranging from (15.0 to 30.0) MPa and temperatures of (40 and 50) °C using a simple microsampling type apparatus with a 100.5 μL sample loop to remove aliquots and collect them in ethanol for off line analysis. α-Tocopheryl succinate concentrations in the collected samples were measured using HPLC-MS/MS analysis. The solubility of α-tocopheryl succinate in supercritical carbon dioxide ranged from mole fractions of 0.28 × 10−5 at 15.0 MPa and 50 °C to 2.56 × 10−5 at 30.0 MPa and 50 °C. PMID:20953319

  9. Production of oridonin-rich extracts from Rabdosia rubescens using hyphenated ultrasound-assisted supercritical carbon dioxide extraction.

    PubMed

    Yang, Yu-Chiao; Lin, Pei-Hui; Wei, Ming-Chi

    2017-08-01

    Among active components in Rabdosia rubescens, oridonin has been considered a key component and the most valuable compound because it has a wide range of activities beneficial to human health. To produce a high-quality oridonin extract, an alternative hyphenated procedure involving an ultrasound-assisted and supercritical carbon dioxide (HSC-CO 2 ) extraction method to extract oridonin from R. rubescens was developed in this study. Fictitious solubilities of oridonin in supercritical CO 2 (SC-CO 2 ) with ultrasound assistance were measured by using the dynamic method at temperatures ranging from 305.15 K to 342.15 K over a pressure range of 11.5 to 33.5 MPa. Fictitious solubilities of oridonin at different temperatures and pressures were over the range of 2.13 × 10 -6 to 10.09 × 10 -6 (mole fraction) and correlated well with the density-based models, including the Bartle model, the Chrastil model, the Kumar and Johnston model and the Mendez-Santiago and Teja model, with overall average absolute relative deviations (AARDs) of 6.29%, 4.39%, 3.12% and 5.07%, respectively. Oridonin exhibits retrograde solubility behaviour in the supercritical state. Fictitious solubility data were further determined and obtained a good fit with four semi-empirical models. Simultaneously, the values of the total heat of solution, vaporisation and solvation of oridonin were estimated. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. The effects of ultrasonic agitation on supercritical CO2 copper electroplating.

    PubMed

    Chuang, Ho-Chiao; Yang, Hsi-Min; Wu, Guan-Lin; Sánchez, Jorge; Shyu, Jenq-Huey

    2018-01-01

    Applying ultrasound to the electroplating process can improve mechanical properties and surface roughness of the coating. Supercritical electroplating process can refine grain to improve the surface roughness and hardness. However, so far there is no research combining the above two processes to explore its effect on the coating. This study aims to use ultrasound (42kHz) in supercritical CO 2 (SC-CO 2 ) electroplating process to investigate the effect of ultrasonic powers and supercritical pressures on the properties of copper films. From the results it was clear that higher ultrasonic irradiation resulted in higher current efficiency, grain refinement, higher hardness, better surface roughness and higher internal stress. SEM was also presented to verify the correctness of the measured data. The optimal parameters were set to obtain the deposit at pressure of 2000psi and ultrasonic irradiation of 0.157W/cm 3 . Compared with SC-CO 2 electroplating process, the current efficiency can be increased from 77.57% to 93.4%, the grain size decreases from 24.34nm to 22.45nm, the hardness increases from 92.87Hv to 174.18Hv, and the surface roughness decreases from 0.83μm to 0.28μm. Therefore, this study has successfully integrated advantages of ultrasound and SC-CO 2 electroplating, and proved that applied ultrasound to SC-CO 2 electroplating process can significantly improve the mechanical properties of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Sorption Phase of Supercritical CO2 in Silica Aerogel: Experiments and Mesoscale Computer Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw

    2014-01-01

    Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less

  12. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu-Wen; Fanelli, Victor R.; Reiche, Helmut M.

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO{sub 2}more » measurements. The new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO{sub 2} sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H{sub 2} and natural gas uptake/storage.« less

  13. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less

  14. Pressure/temperature fluid cell apparatus for the neutron powder diffractometer instrument: Probing atomic structure in situ

    DOE PAGES

    Wang, Hsiu -Wen; Fanelli, Victor R.; Reiche, Helmut M.; ...

    2014-12-24

    This contribution describes a new local structure compatible gas/liquid cell apparatus for probing disordered materials at high pressures and variable temperatures in the Neutron Powder Diffraction instrument at the Lujan Neutron Scattering Center, Los Alamos National Laboratory. The new sample environment offers choices for sample canister thickness and canister material type. Finite element modeling is utilized to establish maximum allowable working pressures of 414 MPa at 15 K and 121 MPa at 600 K. High quality atomic pair distribution function data extraction and modeling have been demonstrated for a calibration standard (Si powder) and for supercritical and subcritical CO 2measurements.more » As a result, the new sample environment was designed to specifically target experimental studies of the local atomic structures involved in geologic CO 2 sequestration, but will be equally applicable to a wide variety of energy applications, including sorption of fluids on nano/meso-porous solids, clathrate hydrate formation, catalysis, carbon capture, and H 2 and natural gas uptake/storage.« less

  15. Final Report: Development of a Chemical Model to Predict the Interactions between Supercritical CO2, Fluid and Rock in EGS Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, Brian J.; Pan, Feng

    2014-09-24

    This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperaturemore » and pressure conditions of EGS reservoirs.« less

  16. Combustion of LOX with H2(sub g) under subcritical, critical, and supercritical conditions (Task 1) and experimental observation of dense spray and mixing of impinging jets (Task 2)

    NASA Technical Reports Server (NTRS)

    Kuo, K. K.; Hsieh, W. H.; Cheung, F. B.; Yang, A. S.; Brown, J. J.; Woodward, R. D.; Kline, M. C.; Burch, R. L.

    1992-01-01

    The objective was to achieve a better understanding of the combustion processes of liquid oxygen and gaseous hydrogen under broad range of pressure covering subcritical, critical, and supercritical conditions. The scope of the experimental work falls into the following areas: (1) design of the overall experimental setup; (2) modification of an existing windowed high pressure chamber; (3) design of the LOX feeding system; (4) provision of the safety features in the test rig design; (5) LOX cleanliness requirements; (6) cold shock testing; (7) implementation of data acquisition systems; (8) preliminary tests for system checkout; (9) modification of LOX feeding system; and (10) evaporation tests. Progress in each area is discussed.

  17. Phase I Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xijia; Fetvedt, Jeremy; Dimmig, Walker

    This Final Scientific Report addresses the accomplishments achieved during Phase I of DE- FE0023985, Coal Syngas Combustor Development for Supercritical CO 2 Power Cycles. The primary objective of the project was to develop a coal syngas-fueled combustor design for use with high-pressure, high-temperature, oxy-fuel, supercritical CO 2 power cycles, with particular focus given to the conditions required by the Allam Cycle. The primary goals, from the Statement of Project Objectives, were to develop: (1) a conceptual design of a syngas-fueled combustor-turbine block for a 300MWe high-pressure, oxy-fuel, sCO2 power plant; (2) the preliminary design of a 5MWt test combustor; andmore » (3) the definition of a combustor test program. Accomplishments for each of these goals are discussed in this report.« less

  18. Physical and chemical behavior of flowing endothermic jet fuels

    NASA Astrophysics Data System (ADS)

    Ward, Thomas Arthur

    Hydrocarbon fuels have been used as cooling media for aircraft jet engines for decades. However, modern aircraft engines are reaching a practical heat transfer limit beyond which the convective heat transfer provided by fuels is no longer adequate. One solution is to use an endothermic fuel that absorbs heat through a series of pyrolytic chemical reactions. However, many of the physical and chemical processes involved in endothermic fuel degradation are not well understood. The purpose of this dissertation is to study different characteristics of endothermic fuels using experiments and computational models. In the first section, data from three flow experiments using heated Jet-A fuel and additives were analyzed (with the aid of CFD calculations) to study the effects of treated surfaces on surface deposition. Surface deposition is the primary impediment in creating an operational endothermic fuel heat exchanger system, because deposits can obstruct fuel pathways causing a catastrophic system failure. As heated fuel flows through a fuel system, trace species within the fuel react with dissolved O2 to form surface deposits. At relatively higher fuel temperatures, the dissolved O2 is depleted, and pyrolytic chemistry becomes dominant (at temperatures greater than ˜500 °C). In the first experiment, the dissolved O2 consumption of heated fuel was measured on different surface types over a range of temperatures. It is found that use of treated tubes significantly delays oxidation of the fuel. In the second experiment, the treated length of tubing was progressively increased, which varied the characteristics of the thermal-oxidative deposits formed. In the third experiment, pyrolytic surface deposition in either fully treated or untreated tubes is studied. It is found that the treated surface significantly reduced the formation of surface deposits for both thermal oxidative and pyrolytic degradation mechanisms. Moreover, it is found that the chemical reactions resulting in pyrolytic deposition on the untreated surface are more sensitive to pressure level than those causing pyrolytic deposition on the treated surface. The second section describes the development of a two-dimensional computational model of the heat and mass transport associated with a flowing fuel using a unique global chemical kinetics model. This model calculates the changing flow properties of a supercritical reacting fuel by use of experimentally derived proportional product distributions. The third section studies the effects of pressure on flowing; mildly-cracked, supercritical n-decane. The experimental results are studied with the aid of the computational model described in section 2, expanded to deal with variable pressures. The experiments indicate that increasing pressure enhances the processes in which n-decane converts to (C5--C9) n-alkane products instead of decomposing into lower molecular weight products (C1--C4): Increasing pressure also increases the overall conversion rate of supercritical n-decane flowing through a reactor. Computational modeling of the experiment shows how the flow properties are influenced by pressure. (Abstract shortened by UMI.)

  19. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.

    PubMed

    Sheth, Pratik; Sandhu, Harpreet; Singhal, Dharmendra; Malick, Waseem; Shah, Navnit; Kislalioglu, M Serpil

    2012-05-01

    Poor aqueous solubility of drug candidates is a major challenge for the pharmaceutical scientists involved in drug development. Particle size reduction appears as an effective and versatile option for solubility improvement. Nanonization is an attractive solution to improve the bioavailability of the poorly soluble drugs, improved therapies, in vivo imaging, in vitro diagnostics and for the production of biomaterials and active implants. In drug delivery, application of nanotechnology is commonly referred to as Nano Drug Delivery Systems (NDDS). In this article, commercially available nanosized drugs, their dosage forms and proprietors, as well as the methods used for preparation like milling, high pressure homogenization, vacuum deposition, and high temperature evaporation were listed. Unlike the traditional methods used for the particle size reduction, supercritical fluid-processing techniques offer advantages ranging from superior particle size control to clean processing. The primary focus of this review article is the use of supercritical CO2 based technologies for small particle generation. Particles that have the smooth surfaces, small particle size and distribution and free flowing can be obtained with particular SCF techniques. In almost all techniques, the dominating process variables may be thermodynamic and aerodynamic in nature, and the design of the particle collection environment. Rapid Expansion of Supercritical Solutions (RESS), Supercritical Anti Solvent (SAS) and Particles from Gas Saturated Solutions (PGSS) are three groups of processes which lead to the production of fine and monodisperse powders. Few of them may also control crystal polymorphism. Among the aforementioned processes, RESS involves dissolving a drug in a supercritical fluid (SCF) and passing it through an appropriate nozzle. Rapid depressurization of this solution causes an extremely rapid nucleation of the product. This process has been known for a long time but its application is limited. Carbon dioxide, which is the only supercritical fluid that is preferentially used in pharmaceutical processes, is not a good solvent for many Active Pharmaceutical Ingredients (API). Various researchers have modified the RESS process to overcome its solubilizing limitations, by introducing RESOLV, RESAS, and RESS-SC. Overall, all RESS based processes are difficult to scale up. The SAS processes are based on decreasing the solvent power of a polar organic solvent in which the substrate (API & polymer of interest) is dissolved, by saturating it with carbon dioxide (CO2) at supercritical conditions. CO2 causes precipitation and recrystalization of the drug. SAS is scalable and can be applied to a wide variety of APIs and polymers. Minor modifications of basic SAS process include GAS, ASES, SAS-DEM and SAS-EM. Processes where SCF is used as an anti solvent and dispersing agent include SEDS, SAA, and A-SAIS. The mechanisms and applications of these processes were briefly discussed. In PGSS, CO2 is dissolved in organic solutions or melted compounds and it is successfully used for manufacturing drug products as well as for drying purposes. The two widely used methods, PGSSdrying and CAN-BD SCF, were also included in discussions. Among the limitations of the techniques involved, the poor solvent power of CO2, the cost and necessity of voluminous usage of the CO2 can be mentioned. There is still confusion in contribution of each variable on the particle morphology and properties regardless of the number of mechanistic studies available. The advantages of especially SAS and PGSS based techniques are the production of the nano or micro sized spherical particles with smooth surfaces and narrow particle size distribution. Regardless of its advantages, the reasons why 25 years of active research, and more than 10 years of process development could not promote the use of (SCF) technology, and produced only few commercial drug products, necessitate further evaluation of this technique.

  20. Phytochemical composition of fractions isolated from ten Salvia species by supercritical carbon dioxide and pressurized liquid extraction methods.

    PubMed

    Šulniūtė, Vaida; Pukalskas, Audrius; Venskutonis, Petras Rimantas

    2017-06-01

    Ten Salvia species, S. amplexicaulis, S. austriaca, S. forsskaolii S. glutinosa, S. nemorosa, S. officinalis, S. pratensis, S. sclarea, S. stepposa and S. verticillata were fractionated using supercritical carbon dioxide and pressurized liquid (ethanol and water) extractions. Fifteen phytochemicals were identified using commercial standards (some other compounds were identified tentatively), 11 of them were quantified by ultra high pressure chromatography (UPLC) with quadruple and time-of-flight mass spectrometry (Q/TOF, TQ-S). Lipophilic CO 2 extracts were rich in tocopherols (2.36-10.07mg/g), while rosmarinic acid was dominating compound (up to 30mg/g) in ethanolic extracts. Apigenin-7-O-β-d-glucuronide, caffeic and carnosic acids were quantitatively important phytochemicals in the majority other Salvia spp. Antioxidatively active constituents were determined by using on-line high-performance liquid chromatography (HPLC) analysis combined with 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay (HPLC-DPPH). Development of high pressure isolation process and comprehensive characterisation of phytochemicals in Salvia spp. may serve for their wider applications in functional foods and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Supercritical carbon dioxide (SC-CO2) extraction of essential oil from Swietenia mahagoni seeds

    NASA Astrophysics Data System (ADS)

    Norodin, N. S. M.; Salleh, L. M.; Hartati; Mustafa, N. M.

    2016-11-01

    Swietenia mahagoni (Mahogany) is a traditional plant that is rich with bioactive compounds. In this study, process parameters such as particle size, extraction time, solvent flowrate, temperature and pressure were studied on the extraction of essential oil from Swietenia mahagoni seeds by using supercritical carbon dioxide (SC-CO2) extraction. Swietenia mahagoni seeds was extracted at a pressure of 20-30 MPa and a temperature of 40-60°C. The effect of particle size on overall extraction of essential oil was done at 30 MPa and 50°C while the extraction time of essential oil at various temperatures and at a constant pressure of 30 MPa was studied. Meanwhile, the effect of flowrate CO2 was determined at the flowrate of 2, 3 and 4 ml/min. From the experimental data, the extraction time of 120 minutes, particle size of 0.5 mm, the flowrate of CO2 of 4 ml/min, at a pressure of 30 MPa and the temperature of 60°C were the best conditions to obtain the highest yield of essential oil.

  2. Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage

    NASA Astrophysics Data System (ADS)

    Prakash, Sai S.; Brinker, C. Jeffrey; Hurd, Alan J.; Rao, Sudeep M.

    1995-03-01

    HIGHLY porous inorganic films have potential applications as dielectric materials, reflective and anti-reflective coatings, flat-panel displays, sensors, catalyst supports and super-insulating architectural glazings1-3. Aerogels4 are the most highly porous solids known, and can now be prepared from inorganic5 and organic6,7 precursors with volume-fraction porosities of up to 99.9% (ref. 8). Aerogels are normally prepared by supercritical extraction of the pore fluid from a wet gel1, which prevents the network collapse that is otherwise induced by capillary forces. But supercritical processing is expensive, hazardous and incompatible with the processing requirements of many potential applications,thus severely restricting the commercial exploitation of aerogels. Here we describe a means of preparing aerogels by a simple dip-coating method at ambient pressure without the need for supercriti-cal extraction. We add surface groups to the inorganic gel which make drying shrinkage reversible9: as the solvent is withdrawn, the gel springs back to a porous state. We can generate aerogel films with 98.5% porosity using this approach. We anticipate that it will greatly expand the commercial applications of these materials.

  3. Significant solubility of carbon dioxide in Soluplus® facilitates impregnation of ibuprofen using supercritical fluid technology.

    PubMed

    Obaidat, Rana; Alnaief, Mohammed; Jaeger, Philip

    2017-04-13

    Treatment of Soluplus ® with supercritical carbon dioxide allows promising applications in preparing dispersions of amorphous solids. Several characterization techniques were employed to reveal this effect, including CO 2 gas sorption under high pressure and physicochemical characterizations techniques. A gravimetric method was used to determine the solubility of carbon dioxide in the polymer at elevated pressure. The following physicochemical characterizations were used: thermal analysis, X-ray diffraction, Fourier transform, infrared spectroscopy and scanning electron microscopy. Drug loading of the polymer with ibuprofen as a model drug was also investigated. The proposed treatment with supercritical carbon dioxide allows to prepare solid solutions of Soluplus ® in less than two hours at temperatures that do not exceed 45 °C, which is a great advantage to be used for thermolabile drugs. The advantages of using this technology for Soluplus ® formulations lies behind the high sorption capability of carbon dioxide inside the polymer. This will ensure rapid diffusion of the dissolved/dispersed drug inside the polymer under process conditions and rapid precipitation of the drug in the amorphous form during depressurization accompanied by foaming of the polymer.

  4. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin A. Harvego; Michael G. McKellar

    2011-05-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as eithermore » a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.« less

  5. An experimental study of a supercritical trailing-edge flow

    NASA Technical Reports Server (NTRS)

    Brown, J. L.; Viswanath, P. R.

    1984-01-01

    An experimental study has been conducted of a transonic, turbulent, high-Reynolds-number blunt trailing-edge flow. The model shape and the surface pressure distribution are characteristics of a modern supercritical airfoil under shock-free conditions. Reynolds number and pressure gradient scaling of the boundary layer are relevant to airfoil applications. The data set is exceptionally accurate and consistent, with the momentum balance accounting for the flux of momentum to within 1 percent, except in the immediate vicinity of the blunt trailing edge. The experimental flow exhibits strong viscous-inviscid interaction and higher-order boundary-layer effects including strong adverse streamwise pressure gradient, significant normal pressure gradients associated with surface and streamline curvature, and significant wake curvature. Navier-Stokes calculations with a two-equation K-epsilon turbulence model predict the correct pressure distribution which demonstrates the utility of these engineering tools. The experiment approaches separation at the strailing edge. However, in comparison to the experiment, the calculations predict too high skin friction and insufficient displacement thickness growth. An analysis of the turbulent and mean flow fields reveals the turbulence model defects are likely in modeling the dissipation source and sink terms, and in the eddy viscosity relation.

  6. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  7. The effect of the rigidity of perfluoropolyether surfactant on its behavior at the water/supercritical carbon dioxide interface.

    PubMed

    Lu, Lanyuan; Berkowitz, Max L

    2005-11-24

    We performed a series of molecular dynamics simulations to study the PFPE (perfluoropolyether) and PE (polyether) surfactant monolayers at the water/supercritical carbon dioxide interface. Molecular differences between fluorocarbon surfactant PFPE and its hydrocarbon analogue PE were analyzed. We observed that values of intramolecular bonded interaction parameters which are related to chain rigidity determine the monolayer surface pressure. We show that "good" and "bad" properties of PFPE/PE surfactants are connected to conformational entropy. These results are consistent with our previous micellar simulations.

  8. Transonic flow theory of airfoils and wings

    NASA Technical Reports Server (NTRS)

    Garabedian, P. R.

    1976-01-01

    There are plans to use the supercritical wing on the next generation of commercial aircraft so as to economize on fuel consumption by reducing drag. Computer codes have served well in meeting the consequent demand for new wing sections. The possibility of replacing wind tunnel tests by computational fluid dynamics is discussed. Another approach to the supercritical wing is through shockless airfoils. A novel boundary value problem in the hodograph plane is studied that enables one to design a shockless airfoil so that its pressure distribution very nearly takes on data that are prescribed.

  9. Multi-objective thermodynamic optimisation of supercritical CO2 Brayton cycles integrated with solar central receivers

    NASA Astrophysics Data System (ADS)

    Vasquez Padilla, Ricardo; Soo Too, Yen Chean; Benito, Regano; McNaughton, Robbie; Stein, Wes

    2018-01-01

    In this paper, optimisation of the supercritical CO? Brayton cycles integrated with a solar receiver, which provides heat input to the cycle, was performed. Four S-CO? Brayton cycle configurations were analysed and optimum operating conditions were obtained by using a multi-objective thermodynamic optimisation. Four different sets, each including two objective parameters, were considered individually. The individual multi-objective optimisation was performed by using Non-dominated Sorting Genetic Algorithm. The effect of reheating, solar receiver pressure drop and cycle parameters on the overall exergy and cycle thermal efficiency was analysed. The results showed that, for all configurations, the overall exergy efficiency of the solarised systems achieved at maximum value between 700°C and 750°C and the optimum value is adversely affected by the solar receiver pressure drop. In addition, the optimum cycle high pressure was in the range of 24.2-25.9 MPa, depending on the configurations and reheat condition.

  10. Paprika (Capsicum annuum) oleoresin extraction with supercritical carbon dioxide.

    PubMed

    Jarén-Galán, M; Nienaber, U; Schwartz, S J

    1999-09-01

    Paprika oleoresin was fractionated by extraction with supercritical carbon dioxide (SCF-CO(2)). Higher extraction volumes, increasing extraction pressures, and similarly, the use of cosolvents such as 1% ethanol or acetone resulted in higher pigment yields. Within the 2000-7000 psi range, total oleoresin yield always approached 100%. Pigments isolated at lower pressures consisted almost exclusively of beta-carotene, while pigments obtained at higher pressures contained a greater proportion of red carotenoids (capsorubin, capsanthin, zeaxanthin, beta-cryptoxanthin) and small amounts of beta-carotene. The varying solubility of oil and pigments in SCF-CO(2) was optimized to obtain enriched and concentrated oleoresins through a two-stage extraction at 2000 and 6000 psi. This technique removes the paprika oil and beta-carotene during the first extraction step, allowing for second-stage oleoresin extracts with a high pigment concentration (200% relative to the reference) and a red:yellow pigment ratio of 1.8 (as compared to 1.3 in the reference).

  11. Formation of pseudo-microgravity environment for dusty plasmas in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Sakakibara, Noritaka; Matsubayashi, Yasuhito; Ito, Tsuyohito; Terashima, Kazuo

    2018-01-01

    We realized a pseudo-microgravity environment for dusty plasmas in a ground-based experiment, using the field-emitting regime of a surface dielectric barrier discharge in high-pressure carbon dioxide (CO2) including supercritical conditions. Using the high and adjustable density of high-pressure CO2, the balance between gravitational force and buoyancy was controlled. When changing the density of CO2 in the range of 0.234 g/cm3 to 0.668 g/cm3, i.e., smaller and larger than that of the particles (0.5 g/cm3), a particle arrangement in the direction of the gravitational force was formed only when the density of CO2 was in the range of ±0.17 g/cm3 with respect to that of the particles. This experimentally demonstrates that the pseudo-microgravity that emerges due to the buoyancy from the high-pressure CO2 contributes to the particle arrangement in the gravitational direction, and hence, it compensates the gravity-induced anisotropy.

  12. Recrystallization of fluconazole using the supercritical antisolvent (SAS) process.

    PubMed

    Park, Hee Jun; Kim, Min-Soo; Lee, Sibeum; Kim, Jeong-Soo; Woo, Jong-Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2007-01-10

    The supercritical antisolvent (SAS) process was used to modify solid state characteristics of fluconazole. Fluconazole was recrystallized at various temperatures (60-80 degrees C) and pressures (8-16MPa) using dichloromethane (DCM) as a solvent. Acetone and ethanol were also employed as solvents. The fluconazole polymorphs prepared by the SAS process were characterized by differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Furthermore, the equilibrium solubility of the samples in aqueous solution was determined. Fluconazole anhydrate form I was obtained at low temperature (40 degrees C) and anhydrate form II was obtained at high temperature (80 degrees C). The variation of pressure during the SAS process may influence the preferred orientation. Anhydrate forms I and II were also obtained using various solvents. Therefore, it was shown that solid state characteristics of fluconazole, including the polymorphic form and preferred orientation, can be controlled by changing operating conditions of the SAS process such as temperature, pressure, and solvent.

  13. Experimental trim drag values and flow-field measurements for a wide-body transport model with conventional and supercritical wings

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.

    1982-01-01

    The purpose of this study was to determine if advanced supercritical wings incur higher trim drag values at cruise conditions than current wide body technology wings. Relative trim drag increments were measured in an experimental wind tunnel investigation conducted in the Langley 8 Foot Transonic Pressure Tunnel. The tests utilized a high aspect ratio supercritical wing and a wide body aircraft wing, in conjunction with five different horizontal tail configurations, mounted on a representative wide body fuselage. The three low tail and two T-tail configurations were designed to measure the effects of horizontal tail size, location, and camber on the trim drag increments for the two wings. Longitudinal force and moment data were taken at a Mach number of 0.82 and design cruise lift coefficients for the wide body and supercritical wings of 0.45 and 0.55, respectively. The data indicate that the supercritical wing does not have significantly higher trim drag than the wide body wing. A reduction in tail size, combined with relaxed static stability, produced trim drag reductions for both wings. The cambered tails had higher trim drag increments than the symmetrical tails for both wings, and the T-tail configurations had lower trim drag increments than the low tail configurations.

  14. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, D.; Rovere, M.; Gallo, P., E-mail: gallop@fis.uniroma3.it

    2015-09-21

    In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show howmore » different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.« less

  15. Research activities on supercritical fluid science in food biotechnology.

    PubMed

    Khosravi-Darani, Kianoush

    2010-06-01

    This article serves as an overview, introducing the currently popular area of supercritical fluids and their uses in food biotechnology. Within each application, and wherever possible, the basic principles of the technique, as well as a description of the history, instrumentation, methodology, uses, problems encountered, and advantages over the traditional, non-supercritical methods are given. Most current commercial application of the supercritical extraction involve biologically-produced materials; the technique may be particularly relevant to the extraction of biological compounds in cases where there is a requirement for low-temperature processing, high mass-transfer rates, and negligible carrying over of the solvent into the final product. Special applications to food processing include the decaffeination of green coffee beans, the production of hops extracts, the recovery of aromas and flavors from herbs and spices, the extraction and fractionation of edible oils, and the removal of contaminants, among others. New advances, in which the extraction is combined with reaction or crystallization steps, may further increase the attractiveness of supercritical fluids in the bioprocess industries. To develop and establish a novel and effective alternative to heating treatment, the lethal action of high hydrostatic pressure CO(2) on microorganisms, with none or only a minimal heating process, has recently received a great deal of attention.

  16. Experimental investigation of supercritical CO 2 trapping mechanisms at the Intermediate Laboratory Scale in well-defined heterogeneous porous media

    DOE PAGES

    Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; ...

    2014-12-31

    The heterogeneous nature of typical sedimentary formations can play a major role in the propagation of the CO 2 plume, eventually dampening the accumulation of mobile phase underneath the caprock. From core flooding experiments, it is also known that contrasts in capillary threshold pressure due to different pore size can affect the flow paths of the invading and displaced fluids and consequently influence the build- up of non-wetting phase (NWP) at interfaces between geological facies. The full characterization of the geologic variability at all relevant scales and the ability to make observations on the spatial and temporal distribution of themore » migration and trapping of supercritical CO 2 is not feasible from a practical perspective. To provide insight into the impact of well-defined heterogeneous systems on the flow dynamics and trapping efficiency of supercritical CO 2 under drainage and imbibition conditions, we present an experimental investigation at the meter scale conducted in synthetic sand reservoirs packed in a quasi-two-dimensional flow-cell. Two immiscible displacement experiments have been performed to observe the preferential entrapment of NWP in simple heterogeneous porous media. The experiments consisted of an injection, a fluid redistribution, and a forced imbibition stages conducted in an uncorrelated permeability field and a homogeneous base case scenario. We adopted x-ray attenuation analysis as a non-destructive technique that allows a precise measurement of phase saturations throughout the entire flow domain. By comparing a homogeneous and a heterogeneous scenario we have identified some important effects that can be attributed to capillary barriers, such as dampened plume advancement, higher non-wetting phase saturations, larger contact area between the injected and displaced phases, and a larger range of non-wetting phase saturations.« less

  17. Development of a Facility for Combustion Stability Experiments at Supercritical Pressure

    DTIC Science & Technology

    2013-12-01

    by the exhaust orifice. This technique adds freedom for designing a large array experimental conditions, because chamber pressure is controlled...analytical examination reveals a broad array of frequencies. The analytical relationship between chamber length L, acoustic frequency fF, and the speed...the pressure amplitude is directly controlled by altering the voltage input to the sirens, similar to a traditional loudspeaker . Last, both a PN and

  18. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  19. Wind-tunnel measurements of the chordwise pressure distribution and profile drag of a research airplane model incorporating a 17-percent-thick supercritical wing

    NASA Technical Reports Server (NTRS)

    Ferris, J. C.

    1973-01-01

    The Langley 8-foot transonic pressure tunnel to determine the wing chordwise pressure distribution for a 0.09-scale model of a research airplane incorporating a 17-percent-thick supercritical wing. Airfoil profile drag was determined from wake pressure measurements at the 42-percent-semispan wing station. The investigation was conducted at Mach numbers from 0.30 to 0.80 over an angle-of-attack range sufficient to include buffet onset. The Reynolds number based on the mean geometric chord varied from 2 x 10 to the 6th power at Mach number 0.30 to 3.33 x 10 to the 6th power at Mach number 0.65 and was maintained at a constant value of 3.86 x 10 to the 6th power at Mach numbers from 0.70 to 0.80. Pressure coefficients for four wing semispan stations and wing-section normal-force and pitching-moment coefficients for two semispan stations are presented in tabular form over the Mach number range from 0.30 to 0.80. Plotted chordwise pressure distributions and wake profiles are given for a selected range of section normal-force coefficients over the same Mach number range.

  20. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process.

    PubMed

    Kim, Min-Soo; Jin, Shun-Ji; Kim, Jeong-Soo; Park, Hee Jun; Song, Ha-Seung; Neubert, Reinhard H H; Hwang, Sung-Joo

    2008-06-01

    In this work, amorphous atorvastatin calcium nanoparticles were successfully prepared using the supercritical antisolvent (SAS) process. The effect of process variables on particle size and distribution of atorvastatin calcium during particle formation was investigated. Solid state characterization, solubility, intrinsic dissolution, powder dissolution studies and pharmacokinetic study in rats were performed. Spherical particles with mean particle size ranging between 152 and 863 nm were obtained by varying process parameters such as precipitation vessel pressure and temperature, drug solution concentration and feed rate ratio of CO2/drug solution. XRD, TGA, FT-IR, FT-Raman, NMR and HPLC analysis indicated that atorvastatin calcium existed as anhydrous amorphous form and no degradation occurred after SAS process. When compared with crystalline form (unprocessed drug), amorphous atorvastatin calcium nanoparticles were of better performance in solubility and intrinsic dissolution rate, resulting in higher solubility and faster dissolution rate. In addition, intrinsic dissolution rate showed a good correlation with the solubility. The dissolution rates of amorphous atorvastatin calcium nanoparticles were highly increased in comparison with unprocessed drug by the enhancement of intrinsic dissolution rate and the reduction of particle size resulting in an increased specific surface area. The absorption of atorvastatin calcium after oral administration of amorphous atorvastatin calcium nanoparticles to rats was markedly increased.

  1. Solute Nucleation and Growth in Supercritical Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Smedley, Gregory T.; Wilemski, Gerald; Rawlins, W. Terry; Joshi, Prakash; Oakes, David B.; Durgin, William W.

    1996-01-01

    This research effort is directed toward two primary scientific objectives: (1) to determine the gravitational effect on the measurement of nucleation and growth rates near a critical point and (2) to investigate the nucleation process in supercritical fluids to aid in the evaluation and development of existing theoretical models and practical applications. A nucleation pulse method will be employed for this investigation using a rapid expansion to a supersaturated state that is maintained for approximately 1 ms followed by a rapid recompression to a less supersaturated state that effectively terminates nucleation while permitting growth to continue. Nucleation, which occurs during the initial supersaturated state, is decoupled from growth by producing rapid pressure changes. Thermodynamic analysis, condensation modeling, apparatus design, and optical diagnostic design necessary for the initiation of a theoretical and experimental investigation of naphthalene nucleation from supercritical CO2 have been completed.

  2. β-Sitosterol: supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds.

    PubMed

    Sajfrtová, Marie; Licková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdenek

    2010-04-22

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15-60 MPa and temperatures of 40-80 degrees C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 degrees C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 degrees C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide.

  3. Installation effects of long-duct pylon-mounted nacelles on a twin-jet transport model with swept supercritical wing

    NASA Technical Reports Server (NTRS)

    Lee, E. E., Jr.; Pendergraft, O. C., Jr.

    1985-01-01

    The installation interference effects of an underwing-mounted, long duct, turbofan nacelle were evaluated in the Langley 16-Foot Transonic Tunnel with two different pylon shapes installed on a twin engine transport model having a supercritical wing swept 30 deg. Wing, pylon, and nacelle pressures and overall model force data were obtained at Mach numbers from 0.70 to 0.83 and nominal angles of attack from -2 deg to 4 deg at an average unit Reynolds number of 11.9 x 1,000,000 per meter. The results show that adding the long duct nacelles to the supercritical wing, in the near sonic flow field, changed the magnitude and direction of flow velocities over the entire span, significantly reduced cruise lift, and caused large interference drag on the nacelle afterbody.

  4. Supercritical CO2 extract of Cinnamomum zeylanicum: chemical characterization and antityrosinase activity.

    PubMed

    Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Tuveri, Enrica; Sanjust, Enrico; Meli, Massimo; Sollai, Francesca; Zucca, Paolo; Rescigno, Antonio

    2007-11-28

    The volatile oil of the bark of Cinnamomum zeylanicum was extracted by means of supercritical CO2 fluid extraction in different conditions of pressure and temperature. Its chemical composition was characterized by GC-MS analysis. Nineteen compounds, which in the supercritical extract represented >95% of the oil, were identified. (E)-Cinnamaldehyde (77.1%), (E)-beta-caryophyllene (6.0%), alpha-terpineol (4.4%), and eugenol (3.0%) were found to be the major constituents. The SFE oil of cinnamon was screened for its biological activity about the formation of melanin in vitro. The extract showed antityrosinase activity and was able to reduce the formation of insoluble flakes of melanin from tyrosine. The oil also delayed the browning effect in apple homogenate. (E)-Cinnamaldehyde and eugenol were found to be mainly responsible of this inhibition effect.

  5. Measurements of unsteady pressure and structural response for an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.

    1994-01-01

    Results are presented which define unsteady flow conditions associated with the high-dynamic structural response of a high-aspect-ratio, elastic, supercritical wing at transonic speeds. The wing was tested in the Langley Transonic Dynamics Tunnel with a heavy gas test medium. The supercritical wing, designed for a cruise lift coefficient of 0.53 at a Mach number of 0.80, experienced the high-dynamic structural response from Mach 0.90 to 0.94 with the maximum response occurring at about Mach 0.92. At the maximum response conditions of the wing, the forcing function appears to be the oscillatory chordwise movement of strong shocks located on the upper and lower surfaces of the wing in conjunction with the flow separation on the lower surface of the wing in the trailing-edge cove region.

  6. Study of poly(L-lactide) microparticles based on supercritical CO2.

    PubMed

    Chen, Ai-Zheng; Pu, Xi-Ming; Kang, Yun-Qing; Liao, Li; Yao, Ya-Dong; Yin, Guang-Fu

    2007-12-01

    Poly(L-lactide) (PLLA) microparticles were prepared in supercritical anti-solvent process. The effects of several key factors on surface morphology, and particle size and particle size distribution were investigated. These factors included initial drops size, saturation ratio of PLLA solution, pressure, temperature, concentration of the organic solution, the flow rate of the solution and molecular weight of PLLA. The results indicated that the saturation ratio of PLLA solution, concentration of the organic solution and flow rate of the solution played important roles on the properties of products. Various microparticles with the mean particle size ranging from 0.64 to 6.64 microm, could be prepared by adjusting the operational parameters. Fine microparticles were obtained in a process namely solution-enhanced dispersion by supercritical fluids (SEDS) process with dichloromethane/acetone mixture as solution.

  7. Spontaneous Ignition of Hydrothermal Flames in Supercritical Ethanol Water Solutions

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Kojima, Jun J.

    2017-01-01

    Results are reported from recent tests where hydrothermal flames spontaneously ignited in a Supercritical Water Oxidation (SCWO) Test Cell. Hydrothermal flames are generally categorized as flames that occur when appropriate concentrations of fuel and oxidizer are present in supercritical water (SCW); i.e., water at conditions above its critical point (218 atm and 374 C). A co-flow injector was used to inject fuel, comprising an aqueous solution of 30-vol to 50-vol ethanol, and air into a reactor held at constant pressure and filled with supercritical water at approximately 240 atm and 425 C. Hydrothermal flames auto-ignited and quickly stabilized as either laminar or turbulent diffusion flames, depending on the injection velocities and test cell conditions. Two orthogonal views, one of which provided a backlit shadowgraphic image, provided visual observations. Optical emission measurements of the steady state flame were made over a spectral range spanning the ultraviolet (UV) to the near infrared (NIR) using a high-resolution, high-dynamic-range spectrometer. Depending on the fuel air flow ratios varying degrees of sooting were observed and are qualitatively compared using light absorption comparisons from backlit images.

  8. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.

    PubMed

    Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon

    2011-07-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.

  9. Adsorption behaviors of supercritical Lennard-Jones fluid in slit-like pores.

    PubMed

    Li, Yingfeng; Cui, Mengqi; Peng, Bo; Qin, Mingde

    2018-05-18

    Understanding the adsorption behaviors of supercritical fluid in confined space is pivotal for coupling the supercritical technology and the membrane separation technology. Based on grand canonical Monte Carlo simulations, the adsorption behaviors of a Lennard-Jones (LJ) fluid in slit-like pores at reduced temperatures over the critical temperature, T c *  = 1.312, are investigated; and impacts of the wall-fluid interactions, the pore width, and the temperature are taken into account. It is found that even if under supercritical conditions, the LJ fluid can undergo a "vapor-liquid phase transition" in confined space, i.e., the adsorption density undergoes a sudden increase with the bulk density. A greater wall-fluid attractive potential, a smaller pore width, and a lower temperature will bring about a stronger confinement effect. Besides, the adsorption pressure reaches a local minimum when the bulk density equals to a certain value, independent of the wall-fluid potential or pore width. The insights in this work have both practical and theoretical significances. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Microscopic solvent structure of subcritical and supercritical methanol from ultraviolet/visible absorption and fluorescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Bulgarevich, Dmitry S.; Sako, Takeshi; Sugeta, Tsutomu; Otake, Katsuto; Takebayashi, Yoshihiro; Kamizawa, Chiyoshi; Uesugi, Masayuki; Kato, Masahiro

    1999-09-01

    Ultraviolet/visible absorption and fluorescence spectroscopies at different temperatures and pressures were applied to investigate the microscopic solvent structures of subcritical and supercritical methanol using 4-nitroanisole, ethyl-(4-dimethylamino)benzoate, Reichardt's dye, and anthracene as the probe molecules. It was found that at temperatures higher than 150 °C the long winding chains of sequentially hydrogen-bonded methanol molecules were probably broken, but the small hydrogen-bonded aggregates possibly existed in methanol even at higher temperature. It was also found that the solvation process of the anthracene molecule in the S0-ground state obeyed the Langmuir adsorption model. However, in the case of fluorescence measurements in supercritical methanol, we detected deviations from the simple Langmuir adsorption model. These deviations were explained in terms of preferential solvation of the solvent molecules around photoexcited anthracene. Judging from the experimental results, it was concluded that the local density augmentation of the supercritical methanol around the nonpolar solute was a short-ranged effect, which did not correspond directly to the large isothermal compressibility of fluid near the critical point.

  11. Critical size of crystalline ZrO(2) nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol.

    PubMed

    Becker, Jacob; Hald, Peter; Bremholm, Martin; Pedersen, Jan S; Chevallier, Jacques; Iversen, Steen B; Iversen, Bo B

    2008-05-01

    Nanocrystalline ZrO(2) samples with narrow size distributions and mean particle sizes below 10 nm have been synthesized in a continuous flow reactor in near and supercritical water as well as supercritical isopropyl alcohol using a wide range of temperatures, pressures, concentrations and precursors. The samples were comprehensively characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS), and the influence of the synthesis parameters on the particle size, particle size distribution, shape, aggregation and crystallinity was studied. On the basis of the choice of synthesis parameters either monoclinic or tetragonal zirconia phases can be obtained. The results suggest a critical particle size of 5-6 nm for nanocrystalline monoclinic ZrO(2) under the present conditions, which is smaller than estimates reported in the literature. Thus, very small monoclinic ZrO(2) particles can be obtained using a continuous flow reactor. This is an important result with respect to improvement of the catalytic properties of nanocrystalline ZrO(2).

  12. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process.

    PubMed

    Rudrangi, Shashi Ravi Suman; Kaialy, Waseem; Ghori, Muhammad U; Trivedi, Vivek; Snowden, Martin J; Alexander, Bruce David

    2016-07-01

    The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Kumar; Anderson, Mark

    The supercritical CO{sub 2} Brayton cycle is gaining importance for power conversion in the Generation IV fast reactor system because of its high conversion efficiencies. When used in conjunction with a sodium fast reactor, the supercritical CO{sub 2} cycle offers additional safety advantages by eliminating potential sodium-water interactions that may occur in a steam cycle. In power conversion systems for Generation IV fast reactors, supercritical CO{sub 2} temperatures could be in the range of 30°C to 650°C, depending on the specific component in the system. Materials corrosion primarily at high temperatures will be an important issue. Therefore, the corrosion performancemore » limits for materials at various temperatures must be established. The proposed research will have four objectives centered on addressing corrosion issues in a high-temperature supercritical CO{sub 2} environment: Task 1: Evaluation of corrosion performance of candidate alloys in high-purity supercritical CO{sub 2}: The following alloys will be tested: Ferritic-martensitic Steels NF616 and HCM12A, austenitic alloys Incoloy 800H and 347 stainless steel, and two advanced concept alloys, AFA (alumina forming austenitic) steel and MA754. Supercritical CO{sub 2} testing will be performed at 450°C, 550°C, and 650°C at a pressure of 20 MPa, in a test facility that is already in place at the proposing university. High purity CO{sub 2} (99.9998%) will be used for these tests. Task 2: Investigation of the effects of CO, H{sub 2}O, and O{sub 2} impurities in supercritical CO{sub 2} on corrosion: Impurities that will inevitably present in the CO{sub 2} will play a critical role in dictating the extent of corrosion and corrosion mechanisms. These effects must be understood to identify the level of CO{sub 2} chemistry control needed to maintain sufficient levels of purity to manage corrosion. The individual effects of important impurities CO, H{sub 2}O, and O{sub 2} will be investigated by adding them separately to high purity CO{sub 2}. Task 3: Evaluation of surface treatments on the corrosion performance of alloys in supercritical CO{sub 2}: Surface treatments can be very beneficial in improving corrosion resistance. Shot peening and yttrium and aluminum surface treatments will be investigated. Shot peening refines the surface grain sizes and promotes protective Cr-oxide layer formation. Both yttrium and aluminum form highly stable oxide layers (Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), which can get incorporated in the growing Fe-oxide layer to form an impervious complex oxide to enhance corrosion resistance. Task 4: Study of flow-assisted corrosion of select alloys in supercritical CO{sub 2} under a selected set of test conditions: To study the effects of flow-assisted corrosion, tests will be conducted in a supercritical CO{sub 2} flow loop. An existing facility used for supercritical water flow studies at the proposing university will be modified for use in this task. The system is capable of flow velocities up to 10 m/s and can operate at temperatures and pressures of up to 650°C and 20 MPa, respectively. All above tasks will be performed in conjunction with detailed materials characterization and analysis using scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), x-ray diffraction (XRD), Auger electron spectroscopy (AES) techniques, and weight change measurements. Inlet and outlet gas compositions will be monitored using gas chromatography-mass spectrometry (GCMS).« less

  14. Ginsenoside extraction from Panax quinquefolium L. (American ginseng) root by using ultrahigh pressure.

    PubMed

    Zhang, Shouqin; Chen, Ruizhan; Wu, Hua; Wang, Changzheng

    2006-04-11

    A new method of ultrahigh pressure extraction (UPE) was used to extract the ginsenosides from Panax quinquefolium L. (American ginseng) root at room temperature. Several solvents, including water, ethanol, methanol, and n-butanol were used in the UPE. The ginsenosides were quantified by a HPLC equipped with UV-vis detector. The results showed that ethanol is the most efficient solvent among the used ones. Compared with other methods, i.e., Soxhlet extraction, heat reflux extraction, ultrasound-assisted extraction, microwave-assisted extraction, and supercritical CO2 extraction, the UPE has the highest extraction yield in the shortest time. The extraction yield of 0.861% ginsenoside-Rc in 2 min was achieved by the UPE, while the yields of 0.284% and 0.661% were obtained in several hours by supercritical CO2 extraction and the heat reflux extraction, respectively.

  15. Supercritical fluid extraction. Principles and practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, M.A.; Krukonis, V.J.

    This book is a presentation of the fundamentals and application of super-critical fluid solvents (SCF). The authors cover virtually every facet of SCF technology: the history of SCF extraction, its underlying thermodynamic principles, process principles, industrial applications, and analysis of SCF research and development efforts. The thermodynamic principles governing SCF extraction are covered in depth. The often complex three-dimensional pressure-temperature composition (PTx) phase diagrams for SCF-solute mixtures are constructed in a coherent step-by-step manner using the more familiar two-dimensional Px diagrams. The experimental techniques used to obtain high pressure phase behavior information are described in detail and the advantages andmore » disadvantages of each technique are explained. Finally, the equations used to model SCF-solute mixtures are developed, and modeling results are presented to highlight the correlational strengths of a cubic equation of state.« less

  16. Determination of Organic Partitioning Coefficients in Water-Supercritical CO 2 Systems by Simultaneous in Situ UV and Near-Infrared Spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryce, David A.; Shao, Hongbo; Cantrell, Kirk J.

    2016-06-07

    CO2 injected into depleted oil or gas reservoirs for long-term storage has the potential to mobilize organic compounds and distribute them between sediments and reservoir brines. Understanding this process is important when considering health and environmental risks, but little quantitative data currently exists on the partitioning of organics between supercritical CO2 and water. In this work, a high-pressure, in situ measurement capability was developed to assess the distribution of organics between CO2 and water at conditions relevant to deep underground storage of CO2. The apparatus consists of a titanium reactor with quartz windows, near-infrared and UV spectroscopic detectors, and switchingmore » valves that facilitate quantitative injection of organic reagents into the pressurized reactor. To demonstrate the utility of the system, partitioning coefficients were determined for benzene in water/supercritical CO2 over the range 35-65 °C and approximately 25-150 bar. Density changes in the CO2 phase with increasing pressure were shown to have dramatic impacts on benzene's partitioning behavior. Our partitioning coefficients were approximately 5-15 times lower than values previously determined by ex situ techniques that are prone to sampling losses. The in situ methodology reported here could be applied to quantify the distribution behavior of a wide range of organic compounds that may be present in geologic CO2 storage scenarios.« less

  17. Silicate Carbonation in Supercritical CO2 Containing Dissolved H2O: An in situ High Pressure X-Ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; Miller, Quin RS; Thompson, Christopher J.

    2013-06-30

    Technological advances have been significant in recent years for managing environmentally harmful emissions (mostly CO2) resulting from combustion of fossil fuels. Deep underground geologic formations are emerging as reasonable options for long term storage of CO2 but mechanisms controlling rock and mineral stability in contact with injected supercritical fluids containing water are relatively unknown. In this paper, we discuss mineral transformation reactions occurring between supercritical CO2 containing water and the silicate minerals forsterite (Mg2SiO4), wollastonite (CaSiO3), and enstatite (MgSiO3). This study utilizes newly developed in situ high pressure x-ray diffraction (HXRD) and in situ infra red (IR) to examine mineralmore » transformation reactions. Forsterite and enstatite were selected as they are important minerals present in igneous and mafic rocks and have been the subject of a large number of aqueous dissolution studies that can be compared with non-aqueous fluid tests in this study. Wollastonite, classified as a pyroxenoid (similar to a pyroxene), was chosen as a suitably fast reacting proxy for examining silicate carbonation processes associated with a wet scCO2 fluid as related to geologic carbon sequestration. The experiments were conducted under modest pressures (90 to 160 bar), temperatures between 35° to 70° C, and varying concentrations of dissolved water. Under these conditions scCO2 contains up to 3,500 ppm dissolved water.« less

  18. The impacts of effective stress and CO 2 sorption on the matrix permeability of shale reservoir rocks [The impacts of CO 2 sorption and effective stress on the matrix permeability of shale reservoir rocks

    DOE PAGES

    Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.

    2017-05-02

    We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less

  19. The impacts of effective stress and CO 2 sorption on the matrix permeability of shale reservoir rocks [The impacts of CO 2 sorption and effective stress on the matrix permeability of shale reservoir rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.

    We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less

  20. Chad Augustine | NREL

    Science.gov Websites

    (EGS) Geothermal resource assessment High pressure, high temperature reaction systems Research Interests EGS demonstration and deployment Advanced drilling systems research Thermodynamics and process Phenomenological Experimental Demonstrations to Quantitative Understanding." Journal of Supercritical Fluids

  1. Optimizing management of the condensing heat and cooling of gases compression in oxy block using of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Brzęczek, Mateusz; Bartela, Łukasz

    2013-12-01

    This paper presents the parameters of the reference oxy combustion block operating with supercritical steam parameters, equipped with an air separation unit and a carbon dioxide capture and compression installation. The possibility to recover the heat in the analyzed power plant is discussed. The decision variables and the thermodynamic functions for the optimization algorithm were identified. The principles of operation of genetic algorithm and methodology of conducted calculations are presented. The sensitivity analysis was performed for the best solutions to determine the effects of the selected variables on the power and efficiency of the unit. Optimization of the heat recovery from the air separation unit, flue gas condition and CO2 capture and compression installation using genetic algorithm was designed to replace the low-pressure section of the regenerative water heaters of steam cycle in analyzed unit. The result was to increase the power and efficiency of the entire power plant.

  2. CFD analyses of coolant channel flowfields

    NASA Technical Reports Server (NTRS)

    Yagley, J. A.; Feng, J.; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in a rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so fully developed conditions are reached. The supercritical hydrogen coolant introduces strong property variations that have a major influence on the developing flow and the resulting heat transfer. Comparisons of constant and variable property solutions show substantial differences. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel.

  3. Investigation on the supercritical CO(2) extraction of the volatile constituents from Juniperus communis obtained under different treatments of the "berries" (cones).

    PubMed

    Chatzopoulou, Paschalina; de Haan, Andre; Katsiotis, Stavros T

    2002-09-01

    The present investigation reports the experimental data a) from the recovery and the composition of the extract under super critical fluid extraction from Juniperus communis L. "berries" (cones), and b) their comparison with those of the essential oil obtained by hydrodistillation. For the extraction of the juniper oil different values of temperature and pressure were applied; furthermore, the degree of comminution of the plant material was also considered - a) integral "berries" and b) comminuted "berries". The quality of the oil recovered from the "berries" by supercritical carbon dioxide extraction was found to be highly dependent on the applied conditions. The comminution affected greatly the oil recovery and consequently the final composition of the extracts. Significant differences were recorded between the supercritical CO(2) extract and the distilled oil, the latter being more enriched in monoterpenoid hydrocarbons.

  4. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    NASA Astrophysics Data System (ADS)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  5. The NASA Langley Laminar-Flow-Control (LFC) experiment on a swept, supercritical airfoil: Design overview

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.; Harvey, William D.; Brooks, Cuyler W., Jr.

    1988-01-01

    A large-chord, swept, supercritical, laminar-flow-control (LFC) airfoil was designed and constructed and is currently undergoing tests in the Langley 8 ft Transonic Pressure Tunnel. The experiment was directed toward evaluating the compatibility of LFC and supercritical airfoils, validating prediction techniques, and generating a data base for future transport airfoil design as part of NASA's ongoing research program to significantly reduce drag and increase aircraft efficiency. Unique features of the airfoil included a high design Mach number with shock free flow and boundary layer control by suction. Special requirements for the experiment included modifications to the wind tunnel to achieve the necessary flow quality and contouring of the test section walls to simulate free air flow about a swept model at transonic speeds. Design of the airfoil with a slotted suction surface, the suction system, and modifications to the tunnel to meet test requirements are discussed.

  6. Time-Resolved and Operando XAS Studies on Heterogeneous Catalysts - From the Gas Phase Towards Reactions in Supercritical Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grunwaldt, Jan-Dierk; Baiker, Alfons

    2007-02-02

    x-ray absorption spectroscopy is a well-suited technique to uncover the structure of heterogeneous catalysts under reaction conditions. Different aspects of in situ cell design suitable for dynamic and catalytic studies are discussed. In addition, criteria are presented that allow estimating the influence external and internal mass transfer. Starting with studies on gas-solid reactions, including structure-activity relationships, this concept is extended to liquid-solid reactions, reactions at high pressure and in supercritical fluids. The following examples are discussed in more detail: partial oxidation of methane over Pt-Rh/Al2O3, reduction of a Cu/ZnO catalyst, alcohol oxidation over Bi-promoted Pd/Al2O3 in liquid phase and overmore » Pd/Al2O3 in supercritical CO2, and batch reactions (e.g. CO2-fixation over zinc-based catalysts)« less

  7. Concerning the Role of Supercritical Carbon Dioxide in SN 1 Reactions.

    PubMed

    Qiao, Yun X; Theyssen, Nils; Eifert, Tobias; Liauw, Marcel A; Franciò, Giancarlo; Schenk, Karolin; Leitner, Walter; Reetz, Manfred T

    2017-03-17

    A series of S N 1-type reactions has been studied under various conditions to clarify the role of supercritical carbon dioxide (scCO 2 ) as reaction medium for this kind of transformations. The application of scCO 2 did not result in higher yields in any of the experiments in comparison to those under neat conditions or in the presence of other inert compressed gases. High-pressure UV/Vis spectroscopic measurements were carried out to quantify the degree of carbocation formation of a highly S N 1-active alkyl halide as a function of the applied solvent. No measureable concentration of carbocations could be detected in scCO 2 , just like in other low polarity solvents. Taken together, these results do not support the previously claimed activating effect via enhanced S N 1 ionization due to the quadrupolar moment of the supercritical fluid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. β-Sitosterol: Supercritical Carbon Dioxide Extraction from Sea Buckthorn (Hippophae rhamnoides L.) Seeds

    PubMed Central

    Sajfrtová, Marie; Ličková, Ivana; Wimmerová, Martina; Sovová, Helena; Wimmer, Zdeněk

    2010-01-01

    Supercritical fluid extraction represents an efficient and environmentally friendly technique for isolation of phytosterols from different plant sources. Sea buckthorn (Hippophae rhamnoides L.) seeds were extracted with supercritical carbon dioxide at pressures ranging from 15–60 MPa and temperatures of 40–80 °C. Oil and β-sitosterol yields were measured in the extraction course and compared with Soxhlet extraction with hexane. The average yield of β-sitosterol was 0.31 mg/g of seeds. The maximum concentration of β-sitosterol in the extract, 0.5% w/w, was achieved at 15 MPa, 40 °C, and a carbon dioxide consumption of 50 g/g of seeds. The extraction rate was maximal at 60 MPa and 40 °C. Both β-sitosterol yield and its concentration in the extract obtained with hexane were lower than with carbon dioxide. PMID:20480045

  9. Simulated propeller slipstream effects on a supercritical wing

    NASA Technical Reports Server (NTRS)

    Welge, H. R.; Crowder, J. P.

    1978-01-01

    To quantify the installed performance of high speed (M = 0.8) turboprop propulsion systems, an experimental program designed to assess the magnitude of the aerodynamic interference of a propeller slipstream on a supercritical wing has been conducted. The test was conducted in the NASA Ames 14-foot wind tunnel. An ejector-nacelle propeller slipstream simulator was used to produce a slipstream with characteristics typical of advanced propellers presently being investigated. A supercritical wing-body configuration was used to evaluate the interference effects. A traversing total pressure rake was used to make flow field measurements behind the wing and to calibrate the slipstream simulator. The force results indicated that the interference drag amounted to an increase of ten counts or about 3% of the wing-body drag for a two engine configuration at the nominal propeller operating conditions. However, at the higher swirl angles (11 deg vs. 7 deg nominally) the interference drag was favorable by about the same magnitude.

  10. Supercritical waste oxidation of aqueous wastes

    NASA Technical Reports Server (NTRS)

    Modell, M.

    1986-01-01

    For aqueous wastes containing 1 to 20 wt% organics, supercritical water oxidation is less costly than controlled incineration or activated carbon treatment and far more efficient than wet oxidation. Above the critical temperature (374 C) and pressure (218 atm) of water, organic materials and gases are completely miscible with water. In supercritical water oxidation, organics, air and water are brought together in a mixture at 250 atm and temperatures above 400 C. Organic oxidation is initiated spontaneously at these conditions. The heat of combustion is released within the fluid and results in a rise in temperature 600 to 650 C. Under these conditions, organics are destroyed rapidly with efficiencies in excess of 99.999%. Heteroatoms are oxidized to acids, which can be precipitated out as salts by adding a base to the feed. Examples are given for process configurations to treat aqueous wastes with 10 and 2 wt% organics.

  11. Production of cellulose II from native cellulose by near- and supercritical water solubilization.

    PubMed

    Sasaki, Mitsuru; Adschiri, Tadafumi; Arai, Kunio

    2003-08-27

    We explored conditions for dissolving microcrystalline cellulose in high-temperature and high-pressure water without catalyst and in order to produce cellulose II in a rapid and selective manner. For understanding reactions of microcrystalline cellulose in subcritical and supercritical water, its solubilization treatment was conducted using a continuous-flow-type microreactor. It was found that cellulose could dissolve in near- and supercritical water at short treatment times of 0.02-0.4 s, resulting in the formation of cellulose II in relatively high yield after the treatment. Next, characteristics of the cellulose II obtained were investigated. As a result, it was confirmed that the relative crystallinity index and the degree of polymerization of the cellulose II were high values ranging from 80 to 60% and from 50 to 30%, respectively. From these findings, it was suggested that this method had high potential as an alternative technique for the conventional cellulose II production method.

  12. Impregnation of Ibuprofen into Polycaprolactone using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Yoganathan, Roshan; Mammucari, Raffaella; Foster, Neil R.

    2010-03-01

    Polycaprolactone (PCL) is a Food and Drug Administration (FDA) approved biodegradable polyester used in tissue engineering applications. Ibuprofen is an anti-inflammatory drug which has good solubility in supercritical CO2 (SCCO2). The solubility of CO2 in PCL allows for the impregnation of CO2-soluble therapeutic agents into the polymer via a supercritical fluid (SCF) process. Polymers impregnated with bio-active compounds are highly desired for medical implants and controlled drug delivery. In this study, the use of CO2 to impregnate PCL with ibuprofen was investigated. The effect of operating conditions on the impregnation of ibuprofen into PCL was investigated over two pressure and two temperature levels, 150bar and 200bar, 35°C and 40 °C, respectively. Polycaprolactone with drug-loadings as high as 27% w/w were obtained. Impregnated samples exhibited controlled drug release profiles over several days.

  13. Computational Test Cases for a Rectangular Supercritical Wing Undergoing Pitching Oscillations

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Walker, Charlotte E.

    1999-01-01

    Proposed computational test cases have been selected from the data set for a rectangular wing of panel aspect ratio two with a twelve-percent-thick supercritical airfoil section that was tested in the NASA Langley Transonic Dynamics Tunnel. The test cases include parametric variation of static angle of attack, pitching oscillation frequency, and Mach numbers from subsonic to transonic with strong shocks. Tables and plots of the measured pressures are presented for each case. This report provides an early release of test cases that have been proposed for a document that supplements the cases presented in AGARD Report 702.

  14. Harsh Environment Silicon Carbide Sensor Technology for Geothermal Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, Albert P.

    2013-04-26

    This project utilizes Silicon Carbide (SiC) materials platform to fabricate advanced sensors to be used as high-temperature downhole instrumentation for the DOE’s Geothermal Technologies Program on Enhanced Geothermal Systems. The scope of the proposed research is to 1) develop a SiC pressure sensor that can operate in harsh supercritical conditions, 2) develop a SiC temperature sensor that can operate in harsh supercritical conditions, 3) develop a bonding process for adhering SiC sensor die to well casing couplers, and 4) perform experimental exposure testing of sensor materials and the sensor devices.

  15. UV spectral shift of benzene in sub- and supercritical water

    NASA Astrophysics Data System (ADS)

    Kometani, Noritsugu; Takemiya, Koji; Yonezawa, Yoshiro; Amita, Fujitsugu; Kajimoto, Okitsugu

    2004-08-01

    UV absorption spectra of benzene have been measured over the wide range of temperature and pressure from the ambient state to the supercritical state ( T = 400 °C and P = 40 MPa). The analysis of the spectral shift of benzene in water relative to that in the gas indicates that at T = 380 and 390 °C the local solvent density around benzene is likely to be depressed below the bulk density for densities near the critical density. It is found that π-hydrogen bond between benzene and water becomes evident with lowering temperature below T = 340 °C.

  16. Confocal Raman microscopy of morphological changes in poly(ethylene terephthalate) film induced by supercritical CO(2).

    PubMed

    Fleming, Oliver S; Kazarian, Sergei G

    2004-04-01

    Poly(ethylene terephthalate) (PET) film was exposed to supercritical (sc) CO(2) and confocal Raman microscopy was used to investigate the morphological changes induced. The study evaluates the use of oil and dry objectives in confocal mode to obtain depth profiles of PET film. These results were compared with the data obtained by mapping of the film cross-section. A significant gradient of degree of crystallinity normal to the surface of PET film down to 60 microm has been observed. The gradient of the degree of morphological changes are functions of exposure time and pressure.

  17. [Study on condition for extraction of arctiin from fruits of Arctium lappa using supercritical fluid extraction].

    PubMed

    Dong, Wen-hong; Liu, Ben

    2006-08-01

    To study the feasibility of supercritical fluid extraction (SFE) for arctiin from the fruits of Arctium lappa. The extracts were analyzed by HPLC, optimum extraction conditions were studied by orthogonal tests. The optimal extraction conditions were: pressure 40 MPa, temperature 70 degrees C, using methanol as modifier carrier at the rate of 0.55 mL x min(-1), static extraction time 5 min, dynamic extraction 30 min, flow rate of CO2 2 L x min(-1). SFE has the superiority of adjustable polarity, and has the ability of extracting arctiin.

  18. Hydrogen production from high moisture content biomass in supercritical water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antal, M.J. Jr.; Xu, X.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22more » MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.« less

  19. MUFITS Code for Modeling Geological Storage of Carbon Dioxide at Sub- and Supercritical Conditions

    NASA Astrophysics Data System (ADS)

    Afanasyev, A.

    2012-12-01

    Two-phase models are widely used for simulation of CO2 storage in saline aquifers. These models support gaseous phase mainly saturated with CO2 and liquid phase mainly saturated with H2O (e.g. TOUGH2 code). The models can be applied to analysis of CO2 storage only in relatively deeply-buried reservoirs where pressure exceeds CO2 critical pressure. At these supercritical reservoir conditions only one supercritical CO2-rich phase appears in aquifer due to CO2 injection. In shallow aquifers where reservoir pressure is less than the critical pressure CO2 can split in two different liquid-like and gas-like phases (e.g. Spycher et al., 2003). Thus a region of three-phase flow of water, liquid and gaseous CO2 can appear near the CO2 injection point. Today there is no widely used and generally accepted numerical model capable of the three-phase flows with two CO2-rich phases. In this work we propose a new hydrodynamic simulator MUFITS (Multiphase Filtration Transport Simulator) for multiphase compositional modeling of CO2-H2O mixture flows in porous media at conditions of interest for carbon sequestration. The simulator is effective both for supercritical flows in a wide range of pressure and temperature and for subcritical three-phase flows of water, liquid CO2 and gaseous CO2 in shallow reservoirs. The distinctive feature of the proposed code lies in the methodology for mixture properties determination. Transport equations and Darcy correlation are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines the mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. The potential is determined using a three-parametric generalization of Peng-Robinson equation of state fitted to experimental data (Todheide, Takenouchi, Altunin etc.). We apply MUFITS to simple 1D and 2D test problems of CO2 injection in shallow reservoirs subjected to phase changes between liquid and gaseous CO2. We consider CO2 injection into highly heterogeneous the 10th SPE reservoir. We provide analysis of physical phenomena that have control temperature distribution in the reservoir. The distribution is non-monotonic with regions of high and low temperature. The main phenomena responsible for considerable temperature decline around CO2 injection point is the liquid CO2 evaporation process. We also apply the code to real-scale 3D simulations of CO2 geological storage at supercritical conditions in Sleipner field and Johansen formation (Fig). The work is supported financially by the Russian Foundation for Basic Research (12-01-31117) and grant for leading scientific schools (NSh 1303.2012.1). CO2 phase saturation in Johansen formation after 50 years of injection and 1000 years of rest period

  20. Similarity law for Widom lines and coexistence lines

    NASA Astrophysics Data System (ADS)

    Banuti, D. T.; Raju, M.; Ihme, M.

    2017-05-01

    The coexistence line of a fluid separates liquid and gaseous states at subcritical pressures, ending at the critical point. Only recently, it became clear that the supercritical state space can likewise be divided into regions with liquidlike and gaslike properties, separated by an extension to the coexistence line. This crossover line is commonly referred to as the Widom line, and is characterized by large changes in density or enthalpy, manifesting as maxima in the thermodynamic response functions. Thus, a reliable representation of the coexistence line and the Widom line is important for sub- and supercritical applications that depend on an accurate prediction of fluid properties. While it is known for subcritical pressures that nondimensionalization with the respective species critical pressures pcr and temperatures Tcr only collapses coexistence line data for simple fluids, this approach is used for Widom lines of all fluids. However, we show here that the Widom line does not adhere to the corresponding states principle, but instead to the extended corresponding states principle. We resolve this problem in two steps. First, we propose a Widom line functional based on the Clapeyron equation and derive an analytical, species specific expression for the only parameter from the Soave-Redlich-Kwong equation of state. This parameter is a function of the acentric factor ω and compares well with experimental data. Second, we introduce the scaled reduced pressure pr* to replace the previously used reduced pressure pr=p /pcr . We show that pr* is a function of the acentric factor only and can thus be readily determined from fluid property tables. It collapses both subcritical coexistence line and supercritical Widom line data over a wide range of species with acentric factors ranging from -0.38 (helium) to 0.34 (water), including alkanes up to n-hexane. By using pr*, the extended corresponding states principle can be applied within corresponding states principle formalism. Furthermore, pr* provides a theoretical foundation to compare Widom lines of different fluids.

  1. Silica hydride intermediate for octadecylsilica and phenyl bonded phase preparation via heterogeneous hydrosilation in supercritical carbon dioxide.

    PubMed

    Scully, N M; Ashu-Arrah, B A; Nagle, A P; Omamogho, J O; O'Sullivan, G P; Friebolin, V; Dietrich, B; Albert, K; Glennon, J D

    2011-04-15

    Investigations into the preparation of silica hydride intermediate in supercritical carbon dioxide (sc-CO(2)) that avoids the use of organic solvents such as toluene or dioxane are described. The effects of reaction temperature, pressure and time on the surface coverage of the supercritical fluid generated silica hydride intermediate were studied. Under optimised supercritical conditions of 120°C, 483 bar and 3 h reaction time, silica hydride (Si-H) conversion efficiencies of ca. 40% were achieved for the hydride intermediate prepared from a monofunctional silane reagent (dimethylmethoxysilane). Si-H conversion efficiencies (as determined from (29)Si CP-MAS NMR spectral analysis) for the hydride intermediate prepared from triethoxysilane (TES) in sc-CO(2) were found to be comparable to those obtained using a TES silanisation approach in an organic solvent. (13)C and (29)Si CP-MAS-NMR spectroscopy was employed to provide a complete structural assignment of the silica hydride intermediates. Furthermore, supercritical CO(2) was subsequently employed as a reaction medium for the heterogenous hydrosilation of silica hydride with octadecene and with styrene, in the presence of a free radical initiator. These supercritical fluid generated reversed-phase materials were prepared in a substantially reduced reaction time (3 h) compared to organic solvent based methods (100 h reaction time). Silica functionalisation in sc-CO(2) presents an efficient and clean alternative to organic solvent based methods for the preparation of important silica hydride intermediate and silica bonded stationary phases via a hydrosilation approach. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Speed of sound measurements and mixing characterization of underexpanded fuel jets with supercritical reservoir condition using laser-induced thermal acoustics

    NASA Astrophysics Data System (ADS)

    Baab, S.; Förster, F. J.; Lamanna, G.; Weigand, B.

    2016-11-01

    The four-wave mixing technique laser-induced thermal acoustics was used to measure the local speed of sound in the farfield zone of extremely underexpanded jets. N-hexane at supercritical injection temperature and pressure (supercritical reservoir condition) was injected into quiescent subcritical nitrogen (with respect to the injectant). The technique's capability to quantify the nonisothermal, turbulent mixing zone of small-scale jets is demonstrated for the first time. Consistent radially resolved speed of sound profiles are presented for different axial positions and varying injection temperatures. Furthermore, an adiabatic mixing model based on nonideal thermodynamic properties is presented to extract mixture composition and temperature from the experimental speed of sound data. High fuel mass fractions of up to 94 % are found for the centerline at an axial distance of 55 diameters from the nozzle followed by a rapid decay in axial direction. This is attributed to a supercritical fuel state at the nozzle exit resulting in the injection of a high-density fluid. The obtained concentration data are complemented by existing measurements and collapsed in a similarity law. It allows for mixture prediction of underexpanded jets with supercritical reservoir condition provided that nonideal thermodynamic behavior is considered for the nozzle flow. Specifically, it is shown that the fuel concentration in the farfield zone is very sensitive to the thermodynamic state at the nozzle exit. Here, a transition from supercritical fluid to subcritical vapor state results in strongly varying fuel concentrations, which implies high impact on the mixture formation and, consequently, on the combustion characteristics.

  3. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  4. Effects of processing parameters on the caffeine extraction yield during decaffeination of black tea using pilot-scale supercritical carbon dioxide extraction technique.

    PubMed

    Ilgaz, Saziye; Sat, Ihsan Gungor; Polat, Atilla

    2018-04-01

    In this pilot-scale study supercritical carbon dioxide (SCCO 2 ) extraction technique was used for decaffeination of black tea. Pressure (250, 375, 500 bar), extraction time (60, 180, 300 min), temperature (55, 62.5, 70 °C), CO 2 flow rate (1, 2, 3 L/min) and modifier quantity (0, 2.5, 5 mol%) were selected as extraction parameters. Three-level and five-factor response surface methodology experimental design with a Box-Behnken type was employed to generate 46 different processing conditions. 100% of caffeine from black tea was removed under two different extraction conditions; one of which was consist of 375 bar pressure, 62.5 °C temperature, 300 min extraction time, 2 L/min CO 2 flow rate and 5 mol% modifier concentration and the other was composed of same temperature, pressure and extraction time conditions with 3 L/min CO 2 flow rate and 2.5 mol% modifier concentration. Results showed that extraction time, pressure, CO 2 flow rate and modifier quantity had great impact on decaffeination yield.

  5. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    NASA Astrophysics Data System (ADS)

    Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier-Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.

  6. Atomization and dense-fluid breakup regimes in liquid rocket engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oefelein, Joseph; Dahms, Rainer Norbert Uwe

    Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less

  7. Method of making supercritical fluid molecular spray films, powder and fibers

    DOEpatents

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a heated nozzle having a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. In another embodiment, the temperature of the solution and nozzle is elevated above the melting point of the solute, which is preferably a polymer, and the solution is maintained at a pressure such that, during expansion, the solute precipitates out of solution within the nozzle in a liquid state. Alternatively, a secondary solvent mutually soluble with the solute and primary solvent and having a higher critical temperature than that of primary solvent is used in a low concentration (<20%) to maintain the solute in a transient liquid state. The solute is discharged in the form of long, thin fibers. The fibers are collected at sufficient distance from the orifice to allow them to solidify in the low pressure/temperature region.

  8. Atomization and dense-fluid breakup regimes in liquid rocket engines

    DOE PAGES

    Oefelein, Joseph; Dahms, Rainer Norbert Uwe

    2015-04-20

    Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less

  9. A robust and accurate numerical method for transcritical turbulent flows at supercritical pressure with an arbitrary equation of state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawai, Soshi, E-mail: kawai@cfd.mech.tohoku.ac.jp; Terashima, Hiroshi; Negishi, Hideyo

    2015-11-01

    This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture themore » steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.« less

  10. Determination of arsenic species in solid matrices utilizing supercritical fluid extraction coupled with gas chromatography after derivatization with thioglycolic acid n-butyl ester.

    PubMed

    Wang, Zhifeng; Cui, Zhaojie

    2016-12-01

    A method using derivatization and supercritical fluid extraction coupled with gas chromatography was developed for the analysis of dimethylarsinate, monomethylarsonate and inorganic arsenic simultaneously in solid matrices. Thioglycolic acid n-butyl ester was used as a novel derivatizing reagent. A systematic discussion was made to investigate the effects of pressure, temperature, flow rate of the supercritical CO 2 , extraction time, concentration of the modifier, and microemulsion on extraction efficiency. The application for real environmental samples was also studied. Results showed that thioglycolic acid n-butyl ester was an effective derivatizing reagent that could be applied for arsenic speciation. Using methanol as modifier of the supercritical CO 2 can raise the extraction efficiency, which can be further enhanced by adding a microemulsion that contains Triton X-405. The optimum extraction conditions were: 25 MPa, 90°C, static extraction for 10 min, dynamic extraction for 25 min with a flow rate of 2.0 mL/min of supercritical CO 2 modified by 5% v/v methanol and microemulsion. The detection limits of dimethylarsinate, monomethylarsonate, and inorganic arsenic in solid matrices were 0.12, 0.26, and 1.1 mg/kg, respectively. The optimized method was sensitive, convenient, and reliable for the extraction and analysis of different arsenic species in solid samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Optimization of extraction process for tannins from Geranium orientali-tibeticum by supercritical CO2 method].

    PubMed

    Xie, Song; Tong, Zhi-Ping; Tan, Rui; Liu, Xiao-Zhen

    2014-08-01

    In order to optimize extraction process conditions of tannins from Geranium orientali-tibeticum by supercritical CO2, the content of tannins was determined by phosphomolybdium tungsten acid-casein reaction, with extraction pressure, extraction temper- ature and extraction time as factors, the content of tannins from extract of G. orientali-tibeticum as index, technology conditions were optimized by orthogonal test. Optimum technology conditions were as follows: extraction pressure was 25 MPa, extraction temperature was 50 °C, extracted 1.5 h. The content of tannins in extract was 12.91 mg x g(-1), extract rate was 3.67%. The method established could be used for assay the contents of tannin in G. orientali-tibeticum. The circulated extraction was an effective extraction process that was stable and feasible, and that provides a way of the extraction process conditions of tannin from G. orientali-tibeticum.

  12. Phenolic and triterpenoid antioxidants from Origanum majorana L. herb and extracts obtained with different solvents.

    PubMed

    Vági, E; Rapavi, E; Hadolin, M; Vásárhelyiné Perédi, K; Balázs, A; Blázovics, A; Simándi, B

    2005-01-12

    Antioxidant properties of marjoram (Origanum majorana L.) herb and extracts obtained with ethanol, n-hexane, and supercritical CO2 extraction are presented. Individual antioxidants, ursolic acid, carnosic acid, and carnosol, were quantified with high-performance liquid chromatography. The effects of different parameters (temperature and pressure) of high-pressure extraction on the yield of carnosol were studied. Furthermore, two marjoram herbs from Hungary and Egypt were compared measuring hydrogen-donating abilities with 1,1-diphenyl-2-picrylhydrazyl by spectrophotometric and the total scavenger capacities by chemiluminometric methods from the aqueous extracts of the herbs. The antioxidant activities of the solvent extracts were performed using the Rancimat method. The Egyptian herb and its extracts possessed better antioxidant activities than Hungarian ones. Applying supercritical CO2 extraction, the highest value of carnosol was obtained at 400 bar and 60 degrees C.

  13. Pressure and force data for a flat wing and a warped conical wing having a shockless recompression at Mach 1.62

    NASA Technical Reports Server (NTRS)

    Miller, D. S.; Landrum, E. J.; Townsend, J. C.; Mason, W. H.

    1981-01-01

    A conical nonlinear flow computer code was used to design a warped (cambered) wing which would produce a supercritical expansion and shockless recompression of the crossflow at a lift coefficient of 0.457, an angle of attack of 10 deg, and a Mach number of 1.62. This cambered wing and a flat wing the same thickness distribution were tested over a range of Mach numbers from 1.6 to 2.0. For both models the forward 60 percent is purely conical geometry. Results obtained with the cambered wing demonstrated the design features of a supercritical expansion and a shockless recompression, whereas results obtained with the flat wing indicated the presence of crossflow shocks. Tables of experimental pressure, force, and moment data are included, as well as selected oil flow photographs.

  14. Instrumentation for analytical scale supercritical fluid chromatography.

    PubMed

    Berger, Terry A

    2015-11-20

    Analytical scale supercritical fluid chromatography (SFC) is largely a sub-discipline of high performance liquid chromatography (HPLC), in that most of the hardware and software can be used for either technique. The aspects that separate the 2 techniques stem from the use of carbon dioxide (CO2) as the main component of the mobile phase in SFC. The high compressibility and low viscosity of CO2 mean that pumps, and autosamplers designed for HPLC either need to be modified or an alternate means of dealing with compressibility needs to be found. The inclusion of a back pressure regulator and a high pressure flow cell for any UV-Vis detector are also necessary. Details of the various approaches, problems and solutions are described. Characteristics, such as adiabatic vs. isothermal compressibility, thermal gradients, and refractive index issues are dealt with in detail. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Summary of the research and development effort on the supercritical CO2 cycle

    NASA Astrophysics Data System (ADS)

    Fraas, A. P.

    1981-06-01

    The supercritical CO2 cycle has the advantage over a conventional closed cycle gas turbine in that the compression work phase of the cycle can be carried out close to the critical point and hence aerodynamic losses in the compressor are reduced and the cycle efficiency increased for a given turbine inlet temperature. However, the practicable turbine inlet temperature is reduced by permissible stresses in the heater tubes because the peak pressure in the cycle must be approx. 260 atm in order to have the compression process take place close to the critical point of the working fluid. The high system pressure also makes the capital cost of the heat exchangers and gas piping higher than that for a conventional closed cycle gas turbine. Further, the waste heat from the cycle must be rejected at too low a temperature for it to be useful for industrial process heat or for district heating systems.

  16. An experimental investigation of the subcritical and supercritical flow about a swept semispan wing

    NASA Technical Reports Server (NTRS)

    Lockman, W. K.; Seegmiller, H. L.

    1983-01-01

    An experimental investigation of the turbulent, subcritical and supercritical flow over a swept, semispan wing in a solid wall wind tunnel is described. The program was conducted over a range of Mach numbers, Reynolds numbers, and angles of attack to provide a variety of test cases for assessment of wing computer codes and tunnel wall interference effects. Wing flows both without and with three dimensional flow separation are included. Data include mean surface pressures for both the wing and tunnel walls; surface oil flow patterns on the wing; and mean velocity, flow field surveys. The results are given in tabular form and presented graphically to illustrate some of the effects of the test parameters. Comparisons of the wing pressure data with the results from two inviscid wing codes are also shown to assess the importance of viscous flow and tunnel wall effects.

  17. Research on unsteady transonic flow theory

    NASA Technical Reports Server (NTRS)

    Revell, J. D.

    1973-01-01

    A two-dimensional theory is considered for the unsteady flow disturbances caused by aeroelastic deformations of a thick wing at high subsonic freestream Mach numbers, having a single, internally embedded supercritical (locally supersonic) steady flow region adjacent to the low pressure side of the wing. The theory develops a matrix of unsteady aerodynamic influence coefficients (AICs) suitable as a strip theory for aeroelastic analysis of large aspect ratio thick wings of moderate sweep, typical of a wide class of current and future aircraft. The theory derives the linearized unsteady flow solutions separately for both the subcritical and supercritical regions. These solutions are coupled together to give the requisite (wing pressure-downwash) AICs by the intermediate step of defining flow disturbances on the sonic line, and at the shock wave; these intermediate quantities are then algebraically eliminated by expressing them in terms of the wing surface downwash.

  18. Recovery of oil components of okara by ethanol-modified supercritical carbon dioxide extraction.

    PubMed

    Quitain, Armando T; Oro, Kazuyuki; Katoh, Shunsaku; Moriyoshi, Takashi

    2006-09-01

    Recovery of the oil components of okara by ethanol-modified supercritical carbon dioxide extraction was investigated at 40-80 degrees C temperature and 12-30 MPa pressure. In a typical run (holding period of 2 h, continuous flow extraction of 5 h), results indicated that the oil component could be best obtained with a recovery of 63.5% at relatively low temperature of 40 degrees C and mild pressure of 20 MPa in the presence of 10 mol% EtOH as entrainer. Based on gas chromatography-mass spectrometry (GC-MS) analysis, the extracts consisted mainly of fatty acids and phytosterols, and traces of decadienal. Folin-Ciocalteau estimates of total phenols showed that addition of EtOH as entrainer increased the yield and the amount of phenolic compounds in the extracts. The amounts of two primary soy isoflavones, genistein and daidzein, in the extracts also increased with increasing amount of EtOH.

  19. Burning of solids in oxygen-rich environments in normal and reduced gravity. [combustion of cellulose acetates

    NASA Technical Reports Server (NTRS)

    Andracchio, C. R.; Cochran, T. H.

    1974-01-01

    An experimental program was conducted to investigate the combustion characteristics of solids burning in a weightless environment. The combustion characteristics of thin cellulose acetate material were obtained from specimens burned in supercritical as well as in low pressure oxygen atmospheres. Flame spread rates were measured and found to depend on material thickness and pressure in both normal gravity (1-g) and reduced gravity (0-g). A gravity effect on the burning process was also observed; the ratio of 1-g to 0-g flame spread rate becomes larger with increasing material thickness. Qualitative results on the combustion characteristics of metal screens (stainless steel, Inconel, copper, and aluminum) burning in supercritical oxygen and normal gravity are also presented. Stainless steel (300 sq mesh) was successfully ignited in reduced gravity; no apparent difference in the flame spread pattern was observed between 1-g and 0-g.

  20. Extraction of purine alkaloids from maté (Ilex paraguariensis) using supercritical CO(2).

    PubMed

    Saldaña, M D; Mohamed, R S; Baer, M G; Mazzafera, P

    1999-09-01

    Experimental data for the supercritical CO(2) extraction of purine alkaloids (caffeine, theobromine, and theophylline) from ground herbal maté tea (Ilex paraguaryensis) using a high-pressure apparatus are presented. Caffeine, theophylline, and theobromine were identified in the extracted fractions using HPLC. Results indicated a much higher CO(2) selectivity for caffeine in comparison with those for theophylline and theobromine. Solubilities of pure compounds in carbon dioxide were also determined at 313.2, 323.2, 338.2, and 343.2 K, and pressures ranging from 14 to 24 MPa. Caffeine solubility exhibited a retrograde behavior with temperature while theophylline and theobromine manifested a normal behavior at conditions explored in this study. Solubilities in binary CO(2)/purine alkaloid model systems were much higher than those obtained during extraction of maté tea, demonstrating the difficulty of using binary data in predicting complex multicomponent behavior.

  1. Supercritical Carbon Dioxide Extraction of Selected Herbal Leaves: An Overview

    NASA Astrophysics Data System (ADS)

    Hamid, I. A. Abd; Ismail, N.; Rahman, N. Abd

    2018-05-01

    Supercritical fluid extraction of carbon dioxide (SC-CO2) is one of new alternative extraction method that has been widely used to isolate bioactive components from variety of plant materials. The method was proved to be clean and safe, compatible for the extraction of edible products such as spices, food additives, medicines and nutritional supplement products compared to traditional extraction techniques such as solvent extraction, hydro distillation and steam distillation. The SC-CO2 extraction was known as highly influenced by its process parameter such as temperature and pressure for obtaining maximum yield. Therefore, a clear review on the optimum range of temperature and pressure for herbal leaves extraction using SC-CO2 is necessary for future reference. The aim of this work is to analyze the effect of temperature and pressure of SC-CO2 process without modifier on extraction yield of some selected herbal leaves i.e clubmoss, drumstick leaves, kratom leaves, mallee and myrtle leaves. The values of investigated parameters were; pressure from 8.9 to 50 MPa and temperature from 35 to 80°C. The results showed that the highest extraction yields were obtained when the pressure and temperature were above 30 MPa and 40°C. The interaction between pressure and temperature for SC-CO2 extraction of plant leaves are crucial since the values cannot be very high or very low in order to preserve the quality of the extracts.

  2. Visualization and flow boiling heat transfer of hydrocarbons in a horizontal tube

    NASA Astrophysics Data System (ADS)

    Yang, Zhuqiang; Bi, Qincheng; Guo, Yong; Liu, Zhaohui; Yan, Jianguo

    2013-07-01

    Visualizations of a specific hydrocarbon fuel in a horizontal tube with 2.0 mm inside diameter were investigated. The experiments were conducted at mass velocity of 213.4, 426.5 and 640.2 kg/ (m2ṡs), diabatic lengths of 140, 240 and 420 mm under the pressure from 2.0-2.7 MPa. In the sub-pressure conditions, bubbly, intermittent, stratified-wave, churn and annular flow patterns were observed. The frictional pressure drops were also measured to distinguish the patterns. The development of flow patterns and frictional pressure drop were positively related to the mass velocity and the heat flux. However, the diabatic length of the tube takes an important part in the process. The residence time of the fluid does not only affect the transition of the patterns but influence the composition of the fuel manifested by the fuel color and carbon deposit. The special observational phenomenon was obtained for the supercritical pressure fluid. The flow in the tube became fuzzier and pressure drop changed sharply near the pseudocritical point. The flow boiling heat transfer characteristics of the hydrocarbons were also discussed respectively. The curve of critical heat flux about onset of nucleate boiling was plotted with different mass velocities and diabatic tube lengths. And heat transfer characteristics of supercritical fuel were proved to be better than that in subcritical conditions.

  3. SCW Pressure-Channel Nuclear Reactor Some Design Features

    NASA Astrophysics Data System (ADS)

    Pioro, Igor L.; Khan, Mosin; Hopps, Victory; Jacobs, Chris; Patkunam, Ruban; Gopaul, Sandeep; Bakan, Kurtulus

    Concepts of nuclear reactors cooled with water at supercritical pressures were studied as early as the 1950s and 1960s in the USA and Russia. After a 30-year break, the idea of developing nuclear reactors cooled with SuperCritical Water (SCW) became attractive again as the ultimate development path for water cooling. The main objectives of using SCW in nuclear reactors are: 1) to increase the thermal efficiency of modern Nuclear Power Plants (NPPs) from 30-35% to about 45-48%, and 2) to decrease capital and operational costs and hence decrease electrical energy costs (˜1000 US/kW or even less). SCW NPPs will have much higher operating parameters compared to modern NPPs (pressure about 25 MPa and outlet temperature up to 625°C), and a simplified flow circuit, in which steam generators, steam dryers, steam separators, etc., can be eliminated. Also, higher SCW temperatures allow direct thermo-chemical production of hydrogen at low cost, due to increased reaction rates. Pressure-tube or pressure-channel SCW nuclear reactor concepts are being developed in Canada and Russia for some time. Some design features of the Canadian concept related to fuel channels are discussed in this paper. The main conclusion is that the development of SCW pressure-tube nuclear reactors is feasible and significant benefits can be expected over other thermal-energy systems.

  4. Thermal-hydraulic behavior of Sc-C02 in a horizontal circular straight tube

    NASA Astrophysics Data System (ADS)

    Tanimizu, Katsuyoshi; Sadr, Reza; Ranjan, Davesh

    2011-11-01

    Fluids above critical pressure have been practically utilized for 60 years in many applications and their use and interest is still increasing in many areas, especially power generation industries and chemical industries. Above critical pressure, very rapid changes in thermophysical properties take place near the pseudocritical temperature. In this region, the fluid transforms from liquid-like to gas-like behavior when the fluid temperature rises up and passes through the pseudocritical temperature. This allows enormous potential for energy transfer, but also alters the turbulent flow due to changes in the turbulent shear stress brought about by acceleration and buoyancy effects. However, we have not fully understood their dynamic behaviors such as turbulence yet. A supercritical CO2 testing loop has been built at Texas A&M University at Qatar to perform heat transfer and pressure drop measurements and investigate the thermo-physical and dynamic characteristics of supercritical carbon dioxide flow. The results of heat transfer measurements in a super critical fluid conducted in a horizontal pipe are reported and discussed here. Supported by QNRF.

  5. Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production

    PubMed Central

    Domingues, Rui M. A.; Oliveira, Eduardo L. G.; Freire, Carmen S. R.; Couto, Ricardo M.; Simões, Pedro C.; Neto, Carlos P.; Silvestre, Armando J. D.; Silva, Carlos M.

    2012-01-01

    Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids). In this work, the supercritical fluid extraction (SFE) of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100–200 bar), co-solvent (ethanol) content (0, 5 and 8% wt), and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 °C, the introduction of 8% (wt) of ethanol greatly improves the yield of triterpenoids more than threefold. PMID:22837719

  6. [Research of the essential oil of Plumeria rubra var. actifolia from Laos by supercritical carbon dioxide extraction].

    PubMed

    Xiao, Xin-Yu; Cui, Long-Hai; Zhou, Xin-Xin; Wu, Yan; Ge, Fa-Huan

    2011-05-01

    The orthogonal test and the supercritical carbon dioxide fluid extraction were used for optimizing the extraction of the essential oil from Plumeria rubra var. actifolia for the first time. Compared with the steam distillation, the optimal operation parameter of extraction was as follows: extraction pressure 25 MPa, extraction temperature 45 degrees C; separator I pressure 12 MPa, separator I temperature 55 degrees C; separator II pressure 6 MPa, separator II temperature 30 degrees C. Under this condition the yield of the essential oil was 5.8927%. The components were separated and identified by GC-MS. 53 components of Plumeria rubra var. actifolia measured by SFE method were identified and determined by normalization method. The main components were 1, 6, 10-dodecatrien-3-ol, 3, 7, 11-trimethyl, benzoic acid, 2-hydroxy-, phenylmethyl ester, 1, 2-benzenedicarboxylic acid, bis(2-methylpropyl) ester,etc.. 1, 2-Benzenedicarboxylic acid, bis (2-methylpropyl) este. took up 66.11% of the total amount, and there was much difference of the results from SD method.

  7. Molecular dynamics studies of transport properties and equation of state of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Nwobi, Obika C.

    Many chemical propulsion systems operate with one or more of the reactants above the critical point in order to enhance their performance. Most of the computational fluid dynamics (CFD) methods used to predict these flows require accurate information on the transport properties and equation of state at these supercritical conditions. This work involves the determination of transport coefficients and equation of state of supercritical fluids by equilibrium molecular dynamics (MD) simulations on parallel computers using the Green-Kubo formulae and the virial equation of state, respectively. MD involves the solution of equations of motion of a system of molecules that interact with each other through an intermolecular potential. Provided that an accurate potential can be found for the system of interest, MD can be used regardless of the phase and thermodynamic conditions of the substances involved. The MD program uses the effective Lennard-Jones potential, with system sizes of 1000-1200 molecules and, simulations of 2,000,000 time-steps for computing transport coefficients and 200,000 time-steps for pressures. The computer code also uses linked cell lists for efficient sorting of molecules, periodic boundary conditions, and a modified velocity Verlet algorithm for particle displacement. Particle decomposition is used for distributing the molecules to different processors of a parallel computer. Simulations have been carried out on pure argon, nitrogen, oxygen and ethylene at various supercritical conditions, with self-diffusion coefficients, shear viscosity coefficients, thermal conductivity coefficients and pressures computed for most of the conditions. Results compare well with experimental and the National Institute of Standards and Technology (NIST) values. The results show that the number of molecules and the potential cut-off radius have no significant effect on the computed coefficients, while long-time integration is necessary for accurate determination of the coefficients.

  8. A pilot scale ultrasonic system to enhance extraction processes with dense gases

    NASA Astrophysics Data System (ADS)

    Riera, E.; Blasco, M.; Tornero, A.; Casas, E.; Roselló, C.; Simal, S.; Acosta, V. M.; Gallego-Juárez, J. A.

    2012-05-01

    The use of dense gases (supercritical fluids) as extracting agents has been attracting wide interest for years. In particular, supercritical carbon dioxide is considered nowadays as a green and very useful solvent. Nevertheless, the extraction process has a slow dynamics. Power ultrasound represents an efficient way for accelerating and enhancing the kinetics of the process by producing strong agitation and turbulence, compressions and decompressions, and heating in the media. For this purpose, a device prototype for using ultrasound in supercritical media was developed, tested and validated in extraction processes of oil from grounded almonds (55% oil content, wet basis and 3-4 mm particle size) in a 5 L extraction unit. An amount of 1500 g of grounded almonds was placed in a cylindrical basket during the trials inside the dense gas extractor (DGE) where solvent was introduced at different flow rates, pressures and temperatures. In all cases the ultrasonic energy confirmed the enhancement and acceleration of the almond oil extraction kinetics using supercritical CO2. Presently the power ultrasound effect in such a process is being deeply analyzed in a 5 L extraction unit before scaling-up a new ultrasonic system. This technology, still under development, has been designed for a bigger dense gas pilot-plant consisting of two extractors (20 L capacity), two separation units and has the possibility of operating at a pressure up to 50 MPa. The goal of this work is to study the effect of high-power ultrasound coupled to dense gas extraction inside the basket with the product, and to present a prototype for the use of power ultrasound in extraction processes with dense gases inside a new 20 L extractor unit.

  9. Supercritical CO₂assisted extraction and LC-MS identification of picroside I and picroside II from Picrorhiza kurroa.

    PubMed

    Patil, Ajit A; Sachin, Bhusari S; Shinde, Devanand B; Wakte, Pravin S

    2013-02-01

    Picroside I and picroside II have been studied intensively because of their pharmacological actions and clinical applications. Numerous methods have been reported for extracting picroside I and picroside II from Picrorrhiza. kurroa rhizomes. This is the first report of picroside I and picroside II extraction using the supercritical carbon dioxide assisted extraction technique. To develop supercritical carbon dioxide assisted extraction and LC-MS identification of picroside I and picroside II from the Picrorrhiza kurroa Royle rhizomes. Surface response methodology based on 3³ fractional factorial design was used to extract picroside I and picroside II from P. kurroa rhizomes. The effects of various process factors, namely temperature (40-80°C), pressure (25-35 MPa) and co-solvent (methanol) concentration (0-10% v/v) on extraction yield of the two compounds were evaluated. The picroside I and picroside II contents were determined using validated LC-MS methodology. The maximum yield of picroside I (32.502 ± 1.131 mg/g) and picroside II (9.717 ± 0.382 mg/g) was obtained at the 10% v/v co-solvent concentration, 40°C temperature and 30 MPa pressure. The conventional Soxhlet assisted methanol extract of P. kurroa powder resulted in 36.743 ± 1.75 and 11.251 ± 0.54 mg/g yield of picroside I and picroside II, respectively. Variation of concentration and extraction time showed a significant effect on the picroside I and picroside II yield. Supercritical carbon dioxide assisted extraction using methanol as a co-solvent is an efficient and environmentally sustainable method for extracting picroside I and picroside II from P. kurroa rhizomes. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Synthesis and investigation of reaction mechanisms of diamondoids produced using plasmas generated inside microcapillaries in supercritical xenon

    NASA Astrophysics Data System (ADS)

    Oshima, Fumito; Stauss, Sven; Inose, Yoshifumi; Terashima, Kazuo

    2014-01-01

    We have synthesized diamondoids using dielectric barrier discharge microplasmas generated inside a microcapillary reactor in supercritical xenon. The plasmas were generated near the critical temperature (T_{\\text{crit}} = 389.75\\,\\text{K}) and pressure (p_{\\text{crit}} = 5.84\\,\\text{MPa}) of xenon in the ranges of T/T_{\\text{crit}} = 0.964-0.983 and p/p_{\\text{crit}} = 0.998\\text-1.026 under both batch-type and continuous flow conditions with gas flow rates of 0.01-0.5 mL min-1. Micro-Raman spectra of the synthesized particles showed features characteristic of diamondoids, while gas chromatography-mass spectrometry measurements revealed that diamondoids up to undecamantane were possibly synthesized. Further, the amount of obtained diamantane was greater than those obtained using previously reported diamondoid synthesis processes that involve plasmas in supercritical fluids. This increase is attributed to the higher solubility of the supercritical medium, i.e., xenon, and the higher efficiency of the microreactor. A detailed gas chromatography-mass spectrometry analysis showed that higher diamondoids grow in a stepwise manner via the alternate removal of hydrogen atoms and the addition of methyl groups.

  11. Relative permeabilities of supercritical CO2 and brine in carbon sequestration by a two-phase lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Xie, Jian.-Fei.; He, S.; Zu, Y. Q.; Lamy-Chappuis, B.; Yardley, B. W. D.

    2017-08-01

    In this paper, the migration of supercritical carbon dioxide (CO2) in realistic sandstone rocks under conditions of saline aquifers, with applications to the carbon geological storage, has been investigated by a two-phase lattice Boltzmann method (LBM). Firstly the digital images of sandstone rocks were reproduced utilizing the X-ray computed microtomography (micro-CT), and high resolutions (up to 2.5 μm) were applied to the pore-scale LBM simulations. For the sake of numerical stability, the digital images were "cleaned" by closing the dead holes and removing the suspended particles in sandstone rocks. In addition, the effect of chemical reactions occurred in the carbonation process on the permeability was taken into account. For the wetting brine and non-wetting supercritical CO2 flows, they were treated as the immiscible fluids and were driven by pressure gradients in sandstone rocks. Relative permeabilities of brine and supercritical CO2 in sandstone rocks were estimated. Particularly the dynamic saturation was applied to improve the reliability of the calculations of the relative permeabilities. Moreover, the effects of the viscosity ratio of the two immiscible fluids and the resolution of digital images on the relative permeability were systematically investigated.

  12. Comparison of supercritical fluid and Soxhlet extractions for the quantification of hydrocarbons from Euphorbia macroclada.

    PubMed

    Ozcan, Adnan; Ozcan, Asiye Safa

    2004-10-08

    This study compares conventional Soxhlet extraction and analytical scale supercritical fluid extraction (SFE) for their yields in extracting of hydrocarbons from arid-land plant Euphorbia macroclada. The plant material was firstly sequentially extracted with supercritical carbon dioxide, modified with 10% methanol (v/v) in the optimum conditions that is a pressure of 400atm and a temperature of 50 degrees C and then it was sonicated in methylene chloride for an additional 4h. E. macroclada was secondly extracted by using a Soxhlet apparatus at 30 degrees C for 8h in methylene chloride. The validated SFE was then compared to the extraction yield of E. macroclada with a Soxhlet extraction by using the Student's t-test at the 95% confidence level. All of extracts were fractionated with silica-gel in a glass column to get better hydrocarbon yields. Thus, the highest hydrocarbons yield from E. macroclada was achieved with SFE (5.8%) when it compared with Soxhlet extractions (1.1%). Gas chromatography (GC) analysis was performed to determine the quantitative hydrocarbons from plant material. The greatest quantitative hydrocarbon recovery from GC was obtained by supercritical carbon dioxide extract (0.6mgg(-1)).

  13. An experimental study of the influence of stress history on fault slip during injection of supercritical CO2

    NASA Astrophysics Data System (ADS)

    Cuss, Robert J.; Wiseall, Andrew C.; Tamayo-Mas, Elena; Harrington, Jon F.

    2018-04-01

    The injection of super-critical CO2 into a depleted reservoir will alter the pore pressure of the basin, which if sufficiently perturbed could result in fault slip. Therefore, knowledge of the acceptable pressure limits is required in order to maintain fault stability. A two-part laboratory study was conducted on fully saturated kaolinite fault gouge to investigate this issue. Previously, we showed that fault slip occurred once pore-pressure within the gouge was sufficient to overcome the normal stress acting on the fault. For kaolinite, this behaviour occurred at a pressure similar to the yield stress. The current study shows that following a slow-reduction in the maximum principal stress, as would be expected through changes in effective stress, the reactivation pressure shows a stress memory. Consequently, the pressure necessary to initiate fault slip is similar to that required at the maximum stress encountered. Therefore, fault slip is at least partially controlled by the previous maximum stress and not the current stress state. During the slow reduction in normal stress, the flow characteristics of the fault remain unchanged until pore-pressure exceeds shear stress and does not increase significantly until it exceeds normal stress. This results in fault slip, which slows the rate of flow increase as shear is an effective self-sealing mechanism. These observations lead to the conclusion that stress history is a vital parameter when considering fault stability.

  14. Heat transfer and pressure drop measurements in prototypic heat exchanges for the supercritical carbon dioxide Brayton power cycles

    NASA Astrophysics Data System (ADS)

    Kruizenga, Alan Michael

    An experimental facility was built to perform heat transfer and pressure drop measurements in supercritical carbon dioxide. Inlet temperatures ranged from 30--125 °C with mass velocities ranging from 118--1050 kg/m2s and system pressures of 7.5--10.2 MPa. Tests were performed in horizontal, upward, and downward flow conditions to test the influence of buoyancy forces on the heat transfer. Horizontal tests showed that for system pressures of 8.1 MPa and up standard Nusselt correlations predicted the heat transfer behavior with good agreement. Tests performed at 7.5 MPa were not well predicted by existing correlations, due to large property variations. The data collected in this work can be used to better understand heat transfer near the critical point. The CFD package FLUENT was found to yield adequate prediction for the heat transfer behavior for low pressure cases, where standard correlations were inaccurate, however it was necessary to have fine mesh spacing (y+˜1) in order to capture the observed behavior. Vertical tests found, under the test conditions considered, that flow orientation had little or no effect on the heat transfer behavior, even in flow regions where buoyancy forces should result in a difference between up and down flow heat transfer. CFD results found that for a given set of boundary conditions a large increase in the gravitational acceleration could cause noticeable heat transfer deterioration. Studies performed with CFD further led to the hypothesis that typical buoyancy induced heat transfer deterioration exhibited in supercritical flows were mitigated through a complex interaction with the inertial force, which is caused by bulk cooling of the flow. This hypothesis to explain the observed data requires further investigation. Prototypic heat exchangers channels (i.e. zig-zag) proved that the heat transfer coefficient was consistently three to four times higher as compared to straight channel geometry. However, the form pressure loss due to the presence of the corners within the channels caused an increase in pressure drop by four to five times the pressure drop measured in the straight channel. Based on the results, more innovative geometries were recommended for future testing to reduce form losses found in the typical prototypic geometries.

  15. The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Tzioufas, Achillefs

    2018-04-01

    We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.

  16. The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Tzioufas, Achillefs

    2018-06-01

    We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.

  17. Optimization of supercritical carbon dioxide extraction of essential oil from Dracocephalum kotschyi Boiss: An endangered medicinal plant in Iran.

    PubMed

    Nejad-Sadeghi, Masoud; Taji, Saeed; Goodarznia, Iraj

    2015-11-27

    Extraction of the essential oil from a medicinal plant called Dracocephalum kotschyi Boiss was performed by green technology of supercritical carbon dioxide (SC-CO2) extraction. A Taguchi orthogonal array design with an OA16 (4(5)) matrix was used to evaluate the effects of five extraction variables: pressure of 150-310bar, temperature of 40-60°C, average particle size of 250-1000μm, CO2 flow rate of 2-10ml/s and dynamic extraction time of 30-100min. The optimal conditions to obtain the maximum extraction yield were at 240bar, 60°C, 500μm, 10ml/s and 100min. The extraction yield under the above conditions was 2.72% (w/w) which is more than two times the maximum extraction yield that has been reported for this plant in the literature using traditional extraction techniques. Results from analysis of variance (ANOVA) indicated that the CO2 flow rate and the extraction time were the most significant factors on the extraction yield by percentage contribution of 44.27 and 28.86, respectively. Finally, the chemical composition of the essential oil was evaluated by using gas chromatography-mass spectroscopy (GC-MS). Citral, p-mentha-1,3,8-triene, D-3-carene and methyl geranate were the major components identified. Copyright © 2015. Published by Elsevier B.V.

  18. Droplet-turbulence interactions in sprays exposed to supercritical environmental conditions

    NASA Technical Reports Server (NTRS)

    Santavicca, Domenic A.

    1993-01-01

    The goal of this research was to experimentally characterize the behavior of droplets in vaporizing sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag and lift, droplet dispersion, droplet heating, and droplet vaporization under both subcritical and supercritical conditions. A summary of the major accomplishments achieved during the period from June 1990 through June 1993, a brief description and status report on five research areas, which were directly or indirectly supported by this grant, and a list of publications and personnel associated with this research is included.

  19. Optimization of conditions for supercritical fluid extraction of flavonoids from hops (Humulus lupulus L.)*

    PubMed Central

    He, Guo-qing; Xiong, Hao-ping; Chen, Qi-he; Ruan, Hui; Wang, Zhao-yue; Traoré, Lonseny

    2005-01-01

    Waste hops are good sources of flavonoids. Extraction of flavonoids from waste hops (SC-CO2 extracted hops) using supercritical fluids technology was investigated. Various temperatures, pressures and concentrations of ethanol (modifier) and the ratio (w/w) of solvent to material were tested in this study. The results of single factor and orthogonal experiments showed that at 50 °C, 25 MPa, the ratio of solvent to material (50%), ethanol concentration (80%) resulted in maximum extraction yield flavonoids (7.8 mg/g). HPLC-MS analysis of the extracts indicated that flavonoids obtained were xanthohumol, the principal prenylflavonoid in hops. PMID:16187413

  20. Anomalous behavior of nonlinear refractive indexes of CO2 and Xe in supercritical states.

    PubMed

    Mareev, Evgenii; Aleshkevich, Victor; Potemkin, Fedor; Bagratashvili, Victor; Minaev, Nikita; Gordienko, Vyacheslav

    2018-05-14

    Direct measurement of pressure dependent nonlinear refractive index of CO 2 and Xe in subcritical and supercritical states are reported. In the vicinity of the ridge (or the Widom line), corresponding to the maximum density fluctuations, the nonlinear refractive index reaches a maximum value (up to 4.8*10 -20 m 2 /W in CO 2 and 3.5*10 -20 m 2 /W in Xe). Anomalous behavior of the nonlinear refractive index in the vicinity of a ridge is caused by the cluster formation. That corresponds to the results of our theoretical assumption based on the modified Langevin theory.

  1. Efficiency for unretained solutes in packed column supercritical fluid chromatography. I. Theory for isothermal conditions and correction factors for carbon dioxide.

    PubMed

    Poe, Donald P

    2005-06-17

    A general theory for efficiency of nonuniform columns with compressible mobile phase fluids is applied to the elution of an unretained solute in packed-column supercritical fluid chromatography (pSFC). The theoretical apparent plate height under isothermal conditions is given by the Knox equation multiplied by a compressibility correction factor f1, which is equal to the ratio of the temporal-to-spatial average densities of the mobile phase. If isothermal conditions are maintained, large pressure drops in pSFC should not result in excessive efficiency losses for elution of unretained solutes.

  2. Selective detection of underivatized 2,4-dichlorophenoxyacetic acid in soil by supercritical fluid chromatography with ion mobility detection.

    PubMed

    Morrissey, M A; Hill, H H

    1989-09-01

    A simplified procedure was developed for the determination of 2,4-dichlorophenoxyacetic acid (2,4-D) in soils. Soil samples were separated by supercritical fluid chromatography after extraction without derivatization and without the use of column chromatography for cleanup. Interferences in the chromatographic separation were eliminated by using a tunably selective ion mobility detector. An atmospheric pressure ion formed by the free acid was selectively monitored so the detector could monitor 2,4-D in the presence of other electron-capturing compounds. For a randomly chosen soil sample, the level of 2,4-D detected was estimated at 500 ppb.

  3. Studies on droplet evaporation and combustion in high pressures

    NASA Technical Reports Server (NTRS)

    Sato, J.

    1993-01-01

    High pressure droplet evaporation and combustion have been studied up to 15 MPa under normal and microgravity fields. From the evaporation studies, it has been found that in the supercritical environments, the droplet evaporation rate and lifetime take a maximum and a minimum at an ambient pressure over the critical pressure. Its maximum and minimum points move toward the lower ambient pressures if the ambient temperature is increased. It has been found from the combustion studies that the burning life time takes a minimum at an ambient pressure being equal to the critical pressure. It is attributable to both the pressure dependency of the diffusion rate and the droplet evaporation characteristics described above.

  4. Molecular simulation of CO chemisorption on Co(0001) in presence of supercritical fluid solvent: A potential of mean force study

    NASA Astrophysics Data System (ADS)

    Asiaee, Alireza; Benjamin, Kenneth M.

    2016-08-01

    For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (no SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0-1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.

  5. Short-term climatic fluctuations forced by thermal anomalies

    NASA Technical Reports Server (NTRS)

    Hanna, A. F.

    1982-01-01

    A two level, global, spectral model using pressure as a vertical coordinate was developed. The system of equations describing the model is nonlinear and quasi-geostrophic (linear balance). Static stability is variable in the model. A moisture budget is calculated in the lower layer only. Convective adjustment is used to avoid supercritical temperature lapse rates. The mechanical forcing of topography is introduced as a vertical velocity at the lower boundary. Solar forcing is specified assuming a daily mean zenith angle. The differential diabatic heating between land and sea is paramterized. On land and sea ice surfaces, a steady state thermal energy equation is solved to calculate the surface temperature. On the oceans, the sea surface temperature is specified as the climatological average for January. The model is used to simulate the January, February and March circulations.

  6. The computational modeling of supercritical carbon dioxide flow in solid wood material

    NASA Astrophysics Data System (ADS)

    Gething, Brad Allen

    The use of supercritical carbon dioxide (SC CO2) as a solvent to deliver chemicals to porous media has shown promise in various industries. Recently, efforts by the wood treating industry have been made to use SC CO 2 as a replacement to more traditional methods of chemical preservative delivery. Previous studies have shown that the SC CO2 pressure treatment process is capable of impregnating solid wood materials with chemical preservatives, but concentration gradients of preservative often develop during treatment. Widespread application of the treatment process is unlikely unless the treatment inconsistencies can be improved for greater overall treating homogeneity. The development of a computational flow model to accurately predict the internal pressure of CO2 during treatment is integral to a more consistent treatment process. While similar models that attempt to describe the flow process have been proposed by Ward (1989) and Sahle-Demessie (1994), neither have been evaluated for accuracy. The present study was an evaluation of those models. More specifically, the present study evaluated the performance of a computational flow model, which was based on the viscous flow of compressible CO2 as a single phase through a porous medium at the macroscopic scale. Flow model performance was evaluated through comparisons between predicted pressures that corresponded to internal pressure development measured with inserted sensor probes during treatment of specimens. Pressure measurements were applied through a technique developed by Schneider (2000), which utilizes epoxy-sealed stainless steel tubes that are inserted into the wood as pressure probes. Two different wood species were investigated as treating specimens, Douglas-fir and shortleaf pine. Evaluations of the computational flow model revealed that it is sensitive to input parameters that relate to both processing conditions and material properties, particularly treating temperature and wood permeability, respectively. This sensitivity requires that the input parameters, principally permeability, be relatively accurate to evaluate the appropriateness of the phenomenological relationships of the computational flow model. Providing this stipulation, it was observed that below the region of transition from CO2 gas to supercritical fluid, the computational flow model has the potential to predict flow accurately. However, above the transition region, the model does not fully account for the physics of the flow process, resulting in prediction inaccuracy. One potential cause for the loss of prediction accuracy in the supercritical region was attributed to a dynamic change in permeability that is likely caused by an interaction between the flowing SC CO2 and the wood material. Furthermore, a hysteresis was observed between the pressurization and depressurization stages of treatment, which cannot be explained by the current flow model. If greater accuracy in the computational flow model is desired, a more complex approach to the model is necessary, which would include non-constant input parameters of temperature and permeability. Furthermore, the implications of a multi-scale methodology for the flow model were explored from a qualitative standpoint.

  7. Thermophysical Properties of Pore-confined Supercritical CO2 by Vibrating Tube Densimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruszkiewicz, Miroslaw; Wesolowski, David J; Cole, David R

    2011-01-01

    Properties of fluids confined in pore systems are needed for modeling fluid flow, fluid-rock interactions, and changes in reservoir porosity. The properties of CO2-rich fluids are particularly relevant to geothermal heat mining using carbon dioxide instead of water. While manometric, volumetric, and gravimetric techniques have been used successfully to investigate adsorption of low-density subcritical vapors, the results have not been satisfactory at higher, liquid-like densities of supercritical fluids. Even if the requirements for high experimental accuracy in the neighborhood of the critical region were met, these methods are fundamentally unable to deliver the total adsorption capacity, since the properties (e.g.more » density) of the adsorbed phase are in general not known. In this work we utilize vibrating tube densimetry for the first time to measure the total amount of fluid contained within a mesoporous solid. The method is first demonstrated using propane at subcritical and supercritical temperatures between 35 C and 97 C confined in silica aerogel (density 0.2 g cm-3, porosity 90%) that was synthesized inside Hastelloy U-tubes. Sorption and desorption of carbon dioxide on the same solid was measured at 35 C at pressures to 120 bar (density to 0.767 g cm-3). The results show total adsorption increasing monotonically with increasing pressure, unlike excess adsorption isotherms which show a maximum close to the critical density.« less

  8. Formation of inhalable rifampicin-poly(L-lactide) microparticles by supercritical anti-solvent process.

    PubMed

    Patomchaiviwat, Vipaluk; Paeratakul, Ornlaksana; Kulvanich, Poj

    2008-01-01

    Formation of inhalable microparticles containing rifampicin and poly(L-lactide) (L-PLA) by using supercritical anti-solvent process (SAS) was investigated. The solutions of drug and polymer in methylene chloride were sprayed into supercritical carbon dioxide. The effect of polymer content and operating conditions, temperature, pressure, carbon dioxide molar fraction, and concentration of solution, on product characteristics were studied. The prepared microparticles were characterized with respect to their morphology, particle size and size distribution, drug content, drug loading efficiency, and drug release characteristic. Discrete, spherical microparticles were obtained at high polymer:drug ratios of 7:3, 8:2, and 9:1. The shape of L-PLA microparticles became more irregular and agglomerated with decreasing polymer content. Microparticles with polymer content higher than 60% exhibited volumetric mean diameter less than 5 microm, but percent drug loading efficiency was relatively low. Drug-loaded microparticles containing 70% and 80% L-PLA showed a sustainable drug release property without initial burst release. Operating temperature level influenced on mean size and size distribution of microparticles. The operating pressure and carbon dioxide molar fraction in the range investigated were unlikely to have an effect on microparticle formation. An increasing concentration of feed solution provided larger size microparticles. Rifampicin-loaded L-PLA microparticles could be produced by SAS in a size range suitable for dry powder inhaler formulation.

  9. Study of Combustion Characteristics of Hydrocarbon Nanofuel Droplets

    DTIC Science & Technology

    2017-08-23

    conditions in a sacrificial pressure vessel. - Investigate combustion dynamics of nanofuel sprays under acoustic forcing at supercritical conditions...change in flame color and foaming of the fuel at the end. 24DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited PA 17513

  10. Innovative green technique for preparing of flame retardant cotton

    USDA-ARS?s Scientific Manuscript database

    Due to its environmentally benign character, microwave-assisted or supercritical carbon dioxide high pressure reactors are considered in green chemistry as a substitute for organic solvents in chemical reactions. In this paper, an innovative approach for preparation of flame retardant cotton fabric ...

  11. Supercritical fluid chromatography approach for a sustainable manufacture of new stereoisomeric anticancer agent.

    PubMed

    Ghinet, Alina; Zehani, Yasmine; Lipka, Emmanuelle

    2017-10-25

    Two routes aimed at the manufacture of unprecedented stereoisomeric combretastatin A-4 analogue were described: flash chromatography vs supercritical fluid chromatography. The latter has many advantages over liquid chromatography and was therefore chosen for the small scale separation of methyl 1-[(3-hydroxy-4-methoxyphenyl) (3,4,5-trimethoxyphenyl)methyl]-5-oxo-l-prolinate 5, with potential antitumoral activity. After a screening of six different polysaccharide based chiral stationary phases and four co-solvents, the percentage of co-solvent, the flow-rate and the outlet pressure were optimized through a design of experiments (DoE). The preparation of 50mg of each stereoisomer was achieved successfully on a Chiralpak AD-H with isopropanol as a co-solvent. Productivity (kkd), solvent usage and environmental factor (E Factor) were calculated. Flash chromatography and supercritical fluid chromatography approaches were compared in terms of yield and purity of each stereoisomer manufactured. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of themore » cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.« less

  13. Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions.

    PubMed

    Ajiboye, Adejumoke Lara; Trivedi, Vivek; Mitchell, John C

    2017-08-21

    Polycaprolactone (PCL) nanoparticles were produced via supercritical fluid extraction of emulsions (SFEE) using supercritical carbon dioxide (scCO 2 ). The efficiency of the scCO 2 extraction was investigated and compared to that of solvent extraction at atmospheric pressure. The effects of process parameters including polymer concentration (0.6-10% w/w in acetone), surfactant concentration (0.07 and 0.14% w/w) and polymer-to-surfactant weight ratio (1:1-16:1 w/w) on the particle size and surface morphology were also investigated. Spherical PCL nanoparticles with mean particle sizes between 190 and 350 nm were obtained depending on the polymer concentration, which was the most important factor where increase in the particle size was directly related to total polymer content in the formulation. Nanoparticles produced were analysed using dynamic light scattering and scanning electron microscopy. The results indicated that SFEE can be applied for the preparation of PCL nanoparticles without agglomeration and in a comparatively short duration of only 1 h.

  14. Recent Development in Chemical Depolymerization of Lignin: A Review

    DOE PAGES

    Wang, Hai; Tucker, Melvin; Ji, Yun

    2013-01-01

    This article reviewed recent development of chemical depolymerization of lignins. There were five types of treatment discussed, including base-catalyzed, acid-catalyzed, metallic catalyzed, ionic liquids-assisted, and supercritical fluids-assisted lignin depolymerizations. The methods employed in this research were described, and the important results were marked. Generally, base-catalyzed and acid-catalyzed methods were straightforward, but the selectivity was low. The severe reaction conditions (high pressure, high temperature, and extreme pH) resulted in requirement of specially designed reactors, which led to high costs of facility and handling. Ionic liquids, and supercritical fluids-assisted lignin depolymerizations had high selectivity, but the high costs of ionic liquids recyclingmore » and supercritical fluid facility limited their applications on commercial scale biomass treatment. Metallic catalyzed depolymerization had great advantages because of its high selectivity to certain monomeric compounds and much milder reaction condition than base-catalyzed or acid-catalyzed depolymerizations. It would be a great contribution to lignin conversion if appropriate catalysts were synthesized.« less

  15. Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging.

    PubMed

    de Souza, Ana Cristina; Dias, Ana M A; Sousa, Hermínio C; Tadini, Carmen C

    2014-02-15

    In this work, supercritical solvent impregnation (SSI) has been tested for the incorporation of natural compounds into biocomposite materials for food packaging. Cinnamaldehyde, with proved antimicrobial activity against fungi commonly found in bread products, was successfully impregnated on biocomposite cassava starch based materials using supercritical carbon dioxide as solvent. Different process experimental conditions were tested (pressure, impregnation time and depressurization rate) at a fixed temperature (35 °C) in order to study their influence on the amount of impregnated cinnamaldehyde as well as on the morphology of the films. Results showed that all conditions permitted to impregnate antimicrobial active amounts superior to those previously obtained using conventional incorporation methods. Moreover, a significant decrease of the equilibrium water vapor sorption capacity and water vapor permeability of the films was observed after SSI processing which is a clear advantage of the process, considering the envisaged applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, K.; Aksan, S. N.

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present,more » 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)« less

  17. Research on simulation of supercritical steam turbine system in large thermal power station

    NASA Astrophysics Data System (ADS)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  18. Identification of Experimental Unsteady Aerodynamic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Piatak, David J.; Scott, Robert C.

    2003-01-01

    The identification of experimental unsteady aerodynamic impulse responses using the Oscillating Turntable (OTT) at NASA Langley's Transonic Dynamics Tunnel (TDT) is described. Results are presented for two configurations: a Rigid Semispan Model (RSM) and a rectangular wing with a supercritical airfoil section. Both models were used to acquire unsteady pressure data due to pitching oscillations on the OTT. A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the pressure impulse responses. The identified impulse responses are then used to predict the pressure response due to pitching oscillations at several frequencies. Comparisons with the experimental data are presented.

  19. Carbon-dioxide storage in the subsurface: towards an understanding of crack development in the cap-rock including phase transition processes

    NASA Astrophysics Data System (ADS)

    Häberle, K.; Ehlers, W.

    2012-04-01

    Supercritical CO2 can be injected into deep saline aquifers to reduce the amount of CO2 in the atmosphere and thus, lessen the impact on the global warming. Qualified reservoirs should be in a sufficient depth to guarantee the thermodynamical environment for the supercritical state of CO2. Furthermore, an impermeable cap-rock layer must confine the reservoir layer, in order to collect the CO2 in the desired region. In CO2 storage it is crucial to guarantee the safety of the storage site and to eliminate possibilities of leakage. Therefore, deformation processes of the rock matrix and the cap-rock layer, which might be induced by the high pressure injection of CO2, must be investigated. The increase in stress may also cause crack development in the cap-rock layer. These could either be new developing fractures or the break-up of already existing but cemented cracks or faults. If such cracks occur, CO2 could migrate to shallower regions where the temperature and pressure cannot support the supercritical condition of the CO2 anymore. Thus, it is important to describe the phase transition process between supercritical, liquid and gaseous CO2. This requires a proper understanding of the thermodynamical behaviour of CO2 within the reservoir. The Theory of Porous Media (TPM) provides a useful continuum-mechanical basis to describe real natural systems in a thermodynamically consistent way. Hence, the TPM is applied to model multiphasic flow of CO2 and water and include elasto-plastic solid deformations of the porous matrix. The Peng-Robinson equation is implemented as a cubic equation of state to describe the phase behaviour of CO2 in the liquid, gaseous and supercritical region. However, in the two-phase region the isotherms show a horizontal section and kinks at the boiling and vapour curve. This cannot be represented by a continuously differentiable function such as the Peng-Robinson equation. To circumvent this problem, the Antoine equation provides additional information by defining the saturation pressure for a given temperature. The injection of CO2 will increase the reservoir pressure which then will cause solid deformations. The extended Finite Element Method (XFEM) will be used to account for the discontinuities arising from crack development due to these solid deformations. The XFEM bears the advantage that the finite element mesh must not be adapted to the crack. Instead, to describe the discontinuity of the crack, the field quantities are locally enriched by defining additional degrees of freedom at the intersected finite elements. Herein, special attention has to be paid to the matrix-fracture interaction of the fluid phases. Numerical examples are performed to investigate the injection of CO2 into a saline aquifer. These are computed with the FEM program PANDAS, which allows solutions of strongly coupled multiphasic problems in deformable porous media.

  20. Fingerprints of flower absolutes using supercritical fluid chromatography hyphenated with high resolution mass spectrometry.

    PubMed

    Santerre, Cyrille; Vallet, Nadine; Touboul, David

    2018-06-02

    Supercritical fluid chromatography hyphenated with high resolution mass spectrometry (SFC-HRMS) was developed for fingerprint analysis of different flower absolutes commonly used in cosmetics field, especially in perfumes. Supercritical fluid chromatography-atmospheric pressure photoionization-high resolution mass spectrometry (SFC-APPI-HRMS) technique was employed to identify the components of the fingerprint. The samples were separated with a porous graphitic carbon (PGC) Hypercarb™ column (100 mm × 2.1 mm, 3 μm) by gradient elution using supercritical CO 2 and ethanol (0.0-20.0 min (2-30% B), 20.0-25.0 min (30% B), 25.0-26.0 min (30-2% B) and 26.0-30.0 min (2% B)) as mobile phase at a flow rate of 1.5 mL/min. In order to compare the SFC fingerprints between five different flower absolutes: Jasminum grandiflorum absolutes, Jasminum sambac absolutes, Narcissus jonquilla absolutes, Narcissus poeticus absolutes, Lavandula angustifolia absolutes from different suppliers and batches, the chemometric procedure including principal component analysis (PCA) was applied to classify the samples according to their genus and their species. Consistent results were obtained to show that samples could be successfully discriminated. Copyright © 2018 Elsevier B.V. All rights reserved.

Top