Human habitat positioning system for NASA's space flight environmental simulator
NASA Technical Reports Server (NTRS)
Caldwell, W. F.; Tucker, J.; Keas, P.
1998-01-01
Artificial gravity by centrifugation offers an effective countermeasure to the physiologic deconditioning of chronic exposure to microgravity; however, the system requirements of rotational velocity, radius of rotation, and resultant centrifugal acceleration require thorough investigation to ascertain the ideal human-use centrifuge configuration. NASA's Space Flight Environmental Simulator (SFES), a 16-meter (52-foot) diameter, animal-use centrifuge, was recently modified to accommodate human occupancy. This paper describes the SFES Human Habitat Positioning System, the mechanism that facilitates radius of rotation variability and alignment of the centrifuge occupants with the artificial gravity vector.
Merfeld, D M; Zupan, L H; Gifford, C A
2001-04-01
All linear accelerometers, including the otolith organs, respond equivalently to gravity and linear acceleration. To investigate how the nervous system resolves this ambiguity, we measured perceived roll tilt and reflexive eye movements in humans in the dark using two different centrifugation motion paradigms (fixed radius and variable radius) combined with two different subject orientations (facing-motion and back-to-motion). In the fixed radius trials, the radius at which the subject was seated was held constant while the rotation speed was changed to yield changes in the centrifugal force. In variable radius trials, the rotation speed was held constant while the radius was varied to yield a centrifugal force that nearly duplicated that measured during the fixed radius condition. The total gravito-inertial force (GIF) measured by the otolith organs was nearly identical in the two paradigms; the primary difference was the presence (fixed radius) or absence (variable radius) of yaw rotational cues. We found that the yaw rotational cues had a large statistically significant effect on the time course of perceived tilt, demonstrating that yaw rotational cues contribute substantially to the neural processing of roll tilt. We also found that the orientation of the subject relative to the centripetal acceleration had a dramatic influence on the eye movements measured during fixed radius centrifugation. Specifically, the horizontal vestibuloocular reflex (VOR) measured in our human subjects was always greater when the subject faced the direction of motion than when the subjects had their backs toward the motion during fixed radius rotation. This difference was consistent with the presence of a horizontal translational VOR response induced by the centripetal acceleration. Most importantly, by comparing the perceptual tilt responses to the eye movement responses, we found that the translational VOR component decayed as the subjective tilt indication aligned with the tilt of the GIF. This was true for both the fixed radius and variable radius conditions even though the time course of the responses was significantly different for these two conditions. These findings are consistent with the hypothesis that the nervous system resolves the ambiguous measurements of GIF into neural estimates of gravity and linear acceleration. More generally, these findings are consistent with the hypothesis that the nervous system uses internal models to process and interpret sensory motor cues.
NASA Technical Reports Server (NTRS)
Wood, S. J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.
2009-01-01
Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, <20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. One result of this study will be to characterize the variability (gain, asymmetry) in both otolithocular responses and motion perception during variable radius centrifugation, and measure the time course of postflight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.
2009-01-01
Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.
Artificial gravity - The evolution of variable gravity research
NASA Technical Reports Server (NTRS)
Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard
1987-01-01
The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.
Squirrel Monkey Requirements for Chronic Acceleration
NASA Technical Reports Server (NTRS)
Fuller, Charles A.
1996-01-01
This study examined: (1) the ability of a small non-human primate to tolerate chronic centrifugation on a centrifuge with a radius of 0.9 m, and (2) the influence of centrifuge radius on the response of primates to hyperdynamic fields. Eight adult male squirrel monkeys were exposed to 1.5 g via centrifugation at two different radii (0.9 m and 3.0 m). Body temperature, activity, feeding and drinking were monitored. These primates did tolerate and adapt to 1.5G via centrifugation on either radius centrifuge. The results show, however, that centrifuge radius does have an effect on the responses of the primate to the hyperdynamic environment. Adaptation to the hyperdynamic environment occurred more quickly on the larger centrifuge. This study demonstrates that a small, non-human primate model, such as the squirrel monkey, could be used on a 0.9 m radius centrifuge such as is being considered by the NASA Space Station Program.
NASA Astrophysics Data System (ADS)
Raychev, R.; Griko, Y. V.
2018-02-01
Scenario drafting for early technology assessment of the external space centrifuge with little mass and variable radius of rotation is proposed to counteract micro gravity-associated physiological alterations in all physiological systems.
NASA Technical Reports Server (NTRS)
Amtmann, E.; Kimura, T.; Oyama, J.; Doden, E.; Potulski, M.
1979-01-01
At the age of 30 days female Sprague-Dawley rats were placed on a 3.66 m radius centrifuge and subsequently exposed almost continuously for 810 days to either 2.76 or 4.15 G. An age-matched control group of rats was raised near the centrifuge facility at earth gravity. Three further control groups of rats were obtained from the animal colony and sacrificed at the age of 34, 72 and 102 days. A total of 16 variables were simultaneously factor analyzed by maximum-likelihood extraction routine and the factor loadings presented after-rotation to simple structure by a varimax rotation routine. The variables include the G-load, age, body mass, femoral length and cross-sectional area, inner and outer radii, density and strength at the mid-length of the femur, dry weight of gluteus medius, semimenbranosus and triceps surae muscles. Factor analyses on A) all controls, B) all controls and the 2.76 G group, and C) all controls and centrifuged animals, produced highly similar loading structures of three common factors which accounted for 74%, 68% and 68%. respectively, of the total variance. The 3 factors were interpreted as: 1. An age and size factor which stimulates the growth in length and diameter and increases the density and strength of the femur. This factor is positively correlated with G-load but is also active in the control animals living at earth gravity. 2. A growth inhibition factor which acts on body size, femoral length and on both the outer and inner radius at mid-length of the femur. This factor is intensified by centrifugation.
Combining ergometer exercise and artificial gravity in a compact-radius centrifuge
NASA Astrophysics Data System (ADS)
Diaz, Ana; Trigg, Chris; Young, Laurence R.
2015-08-01
Humans experience physiological deconditioning during space missions, primarily attributable to weightlessness. Some of these adverse consequences include bone loss, muscle atrophy, sensory-motor deconditioning, and cardiovascular alteration, which may lead to orthostatic intolerance when astronauts return to Earth. Artificial gravity could provide a comprehensive countermeasure capable of challenging all the physiological systems at once, particularly if combined with exercise, thereby maintaining overall health during extended exposure to weightlessness. A new Compact Radius Centrifuge (CRC) platform was designed and built on the existing Short Radius Centrifuge (SRC) at the Massachusetts Institute of Technology (MIT). The centrifuge has been constrained to a radius of 1.4 m, the upper radial limit for a centrifuge to fit within an International Space Station (ISS) module without extensive structural alterations. In addition, a cycle ergometer has been added for exercise during centrifugation. The CRC now includes sensors of foot forces, cardiovascular parameters, and leg muscle electromyography. An initial human experiment was conducted on 12 subjects to analyze the effects of different artificial gravity levels (0 g, 1 g, and 1.4 g, measured at the feet) and ergometer exercise intensities (25 W warm-up, 50 W moderate and 100 W vigorous) on the musculoskeletal function as well as motion sickness and comfort. Foot forces were measured during the centrifuge runs, and subjective comfort and motion sickness data were gathered after each session. Preliminary results indicate that ergometer exercise on a centrifuge may be effective in improving musculoskeletal function. The combination is well tolerated and motion sickness is minimal. The MIT CRC is a novel platform for future studies of exercise combined with artificial gravity. This combination may be effective as a countermeasure to space physiological deconditioning.
Cycle-powered short radius (1.9M) centrifuge: exercise vs. passive acceleration
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Gundo, D. P.; Watenpaugh, D. E.; Mulenburg, G. M.; Marchman, N.; Looft-Wilson, R.; Hargens, A. R.
1996-01-01
A human-powered short-arm centrifuge is described. This centrifuge could be used during spaceflight to provide +Gz acceleration while subjects performed exercise, thus supplying two forms of weightlessness countermeasures. Results from a study of cardiovascular responses while using the centrifuge are presented.
Human Health Countermeasures - Partial-Gravity Analogs Workshop
NASA Technical Reports Server (NTRS)
Barr, Yael; Clement, Gilles; Norsk, Peter
2016-01-01
The experimental conditions that were deemed the most interesting by the HHC Element lead scientists are those permitting studies of the long-term effects of exposure to (a) chronic rotation when supine or in head down tilt (ground-based); and (b) long-radius centrifugation (space based). It is interesting to note that chronic ground based slow rotation room studies have not been performed since the 1960's, when the USA and USSR were investigating the potential use of AG for long-duration space missions. On the other hand, the other partial gravity analogs, i.e., parabolic flight, HUT, suspension, and short-radius centrifugation, have been regularly used in the last three decades (see review in Clément et al. 2015). Based on the workshop evaluations and the scores by the HHC scientific disciplines indicated in tables 3 and 4, simulation of partial G between 0 and 1 should be prioritized as follows: Priority 1. Chronic space-based partial-G analogs: a. Chronic space-based long-radius centrifugation. The ideal scenario would be chronic long-radius centrifugation of cells, animals and humans in a translational research approach - ideally beyond low earth orbit under deep space environmental effects and at various rotations - to obtain different G-effects. In this scenario, all physiological systems could be evaluated and the relationship between physiological response and G level established. This would be the most integrative way of defining, for the first time ever, G-thresholds for each physiological system. b. Chronic space-based centrifugation of animals. Chronic centrifugation of rodents at various G levels in space would allow for determination of AG thresholds of protection for each physiological system. In this case, all physiological systems will be of interest. Intermittent centrifugation will be of secondary interest. c. Chronic space-based centrifugation of cell cultures (RWV). Bioreactor studies of cells and cell cultures of various tissues at various G levels would allow for intracellular investigations of the effects of partial-G. Priority 2. Acute, intermittent space based partial-G analogs: a. Acute, intermittent space-based short radius human centrifugation. Intermittent centrifugation of humans would allow determination of thresholds of AG for protection of astronaut health in space. Priority 3. Chronic ground-based partial-G analogs: a. Chronic centrifugation of supine or head-down tilted humans. b. Chronic head-up tilt in humans. c. Chronic head-out graded dry immersion in humans. d. Chronic partial suspension of rodents e. Chronic rotating bioreactor cell culture studies (RWV) Priority 4. Acute ground based partial-G analogs. a. Parabolic flights. Very acute and short term effects of G levels between 0 and 1 in humans for fast responding systems like cardiovascular and sensorimotor as well as for acute responses in cell cultures and animals. b. Other acute models as indicated in table 3.
ERIC Educational Resources Information Center
Riley, Erin; Felse, P. Arthur
2017-01-01
Centrifugation is a major unit operation in chemical and biotechnology industries. Here we present a simple, hands-on laboratory experiment to teach the basic principles of centrifugation and to explore the shear effects of centrifugation using bacterial cells as model particles. This experiment provides training in the use of a bench-top…
NASA Astrophysics Data System (ADS)
Balout, Bahaa
Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles on the outer/inner casting surface and across the section varies whether the viscosity of the liquid metal used and the centrifugal radius are considered constant or variable during the modeling. Modeling the particles' segregation while discretizing, in time, the particles' velocities gives more consistent results compared to those obtained experimentally. Key-words: centrifugal casting, composite, macrosegregation, solidification.
Orientation illusions and heart-rate changes during short-radius centrifugation
NASA Technical Reports Server (NTRS)
Hecht, H.; Kavelaars, J.; Cheung, C. C.; Young, L. R.
2001-01-01
Intermittent short-radius centrifugation is a promising countermeasure against the adverse effects of prolonged weightlessness. To assess the feasibility of this countermeasure, we need to understand the disturbing sensory effects that accompany some movements carried out during rotation. We tested 20 subjects who executed yaw and pitch head movements while rotating at constant angular velocity. They were supine with their main body axis perpendicular to earth gravity. The head was placed at the centrifuge's axis of rotation. Head movements produced a transient elevation of heart-rate. All observers reported head-contingent sensations of body tilt although their bodies remained supine. Mostly, the subjective sensations conform to a model based on semicircular canal responses to angular acceleration. However, some surprising deviations from the model were found. Also, large inter-individual differences in direction, magnitude, and quality of the illusory body tilt were observed. The results have implications for subject screening and prediction of subjective tolerance for centrifugation.
Artificial gravity: head movements during short-radius centrifugation
NASA Technical Reports Server (NTRS)
Young, L. R.; Hecht, H.; Lyne, L. E.; Sienko, K. H.; Cheung, C. C.; Kavelaars, J.
2001-01-01
Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects of pitch and yaw head movements in participants placed supine on a rotating bed with their head at the center of rotation, feet at the rim. The vast majority of participants experienced motion sickness, inappropriate vertical nystagmus and illusory tilt and roll as predicted by a semicircular canal model. However, a small but significant number of the 28 participants experienced tilt in the predicted plane but in the opposite direction. Heart rate was elevated following one-second duration head turns. Significant adaptation occurred following a series of head turns in the light. Vertical nystagmus, motion sickness and illusory tilt all decreased with adaptation. Consequences for artificial gravity produced by short-radius centrifuges as a countermeasure are discussed. Grant numbers: NCC 9-58. c 2001. Elsevier Science Ltd. All rights reserved.
Centrifuge in Free Fall: Combustion at Partial Gravity
NASA Technical Reports Server (NTRS)
Ferkul, Paul
2017-01-01
A centrifuge apparatus is developed to study the effect of variable acceleration levels in a drop tower environment. It consists of a large rotating chamber, within which the experiment is conducted. NASA Glenn Research Center 5.18-second Zero-Gravity Facility drop tests were successfully conducted at rotation rates up to 1 RPS with no measurable effect on the overall Zero-Gravity drop bus. Arbitrary simulated gravity levels from zero to 1-g (at a radius of rotation 30 cm) were produced. A simple combustion experiment was used to exercise the capabilities of the centrifuge. A total of 23 drops burning a simulated candle with heptane and ethanol fuel were performed. The effect of gravity level (rotation rate) and Coriolis force on the flames was observed. Flames became longer, narrower, and brighter as gravity increased. The Coriolis force tended to tilt the flames to one side, as expected, especially as the rotation rate was increased. The Zero-Gravity Centrifuge can be a useful tool for other researchers interested in the effects of arbitrary partial gravity on experiments, especially as NASA embarks on future missions which may be conducted in non-Earth gravity.
Squat exercise biomechanics during short-radius centrifugation.
Duda, Kevin R; Jarchow, Thomas; Young, Laurence R
2012-02-01
Centrifuge-induced artificial gravity (AG) with exercise is a promising comprehensive countermeasure against the physiological de-conditioning that results from exposure to weightlessness. However, body movements onboard a rotating centrifuge are affected by both the gravity gradient and Coriolis accelerations. The effect of centrifugation on squat exercise biomechanics was investigated, and differences between AG and upright squat biomechanics were quantified. There were 28 subjects (16 male) who participated in two separate experiments. Knee position, foot reaction forces, and motion sickness were recorded during the squats in a 1-G field while standing upright and while supine on a horizontally rotating 2 m radius centrifuge at 0, 23, or 30 rpm. No participants terminated the experiment due to motion sickness symptoms. Total mediolateral knee deflection increased by 1.0 to 2.0 cm during centrifugation, and did not result in any injuries. There was no evidence of an increased mediolateral knee travel "after-effect" during postrotation supine squats. Peak foot reaction forces increased with rotation rate up to approximately 200% bodyweight (iRED on ISS provides approximately 210% bodyweight resistance). The ratio of left-to-right foot force throughout the squat cycle on the centrifuge was nonconstant and approximately sinusoidal. Total foot reaction force versus knee flexion-extension angles differed between upright and AG squats due to centripetal acceleration on the centrifuge. A brief exercise protocol during centrifugation can be safely completed without significant after-effects in mediolateral knee position or motion sickness. Several recommendations are made for the design of future centrifuge-based exercise protocols for in-space applications.
NASA Astrophysics Data System (ADS)
Owocki, Stanley P.; Cranmer, Steven R.
2018-03-01
In the subset of luminous, early-type stars with strong, large-scale magnetic fields and moderate to rapid rotation, material from the star's radiatively driven stellar wind outflow becomes trapped by closed magnetic loops, forming a centrifugally supported, corotating magnetosphere. We present here a semi-analytic analysis of how this quasi-steady accumulation of wind mass can be balanced by losses associated with a combination of an outward, centrifugally driven drift in the region beyond the Kepler co-rotation radius, and an inward/outward diffusion near this radius. We thereby derive scaling relations for the equilibrium spatial distribution of mass, and the associated emission measure for observational diagnostics like Balmer line emission. We discuss the potential application of these relations for interpreting surveys of the emission line diagnostics for OB stars with centrifugally supported magnetospheres. For a specific model of turbulent field-line-wandering rooted in surface motions associated with the iron opacity bump, we estimate values for the associated diffusion and drift coefficients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa
2016-06-20
We have analyzed rotational spectral line emission of OCS, CH{sub 3}OH, HCOOCH{sub 3}, and H{sub 2}CS observed toward the low-mass Class 0 protostellar source IRAS 16293–2422 Source A at a sub-arcsecond resolution (∼0.″6 × 0.″5) with ALMA. Significant chemical differentiation is found on a scale of 50 au. The OCS line is found to trace well the infalling–rotating envelope in this source. On the other hand, the distributions of CH{sub 3}OH and HCOOCH{sub 3} are found to be concentrated around the inner part of the infalling–rotating envelope. With a simple ballistic model of the infalling–rotating envelope, the radius of themore » centrifugal barrier (a half of the centrifugal radius) and the protostellar mass are evaluated from the OCS data to be from 40 to 60 au and from 0.5 to 1.0 M {sub ⊙}, respectively, assuming the inclination angle of the envelope/disk structure to be 60° (90° for the edge-on configuration). Although the protostellar mass is correlated with the inclination angle, the radius of the centrifugal barrier is not. This is the first indication of the centrifugal barrier of the infalling–rotating envelope in a hot corino source. CH{sub 3}OH and HCOOCH{sub 3} may be liberated from ice mantles by weak accretion shocks around the centrifugal barrier and/or by protostellar heating. The H{sub 2}CS emission seems to come from the disk component inside the centrifugal barrier in addition to the envelope component. The centrifugal barrier plays a central role not only in the formation of a rotationally supported disk but also in the chemical evolution from the envelope to the protoplanetary disk.« less
Demonstration of Reduced Gas Pressure in a Centrifugal Field.
ERIC Educational Resources Information Center
Fischer, Fred; Wild, R. L.
1979-01-01
Describes a simple demonstration that shows the change in molecular density and the reduction in pressure of air in a centrifugal field. Uses two circular disks with the same radius and rotating with the same angular velocity, in loose mutual contact, around their symmetry axis. (GA)
Development of an Artificial Gravity Sleeper (AGS)
NASA Technical Reports Server (NTRS)
Cardus, David; Mctaggart, Wesley G.; Diamandis, Peter; Campbell, Scott
1990-01-01
The design and construction of a 2-meter radius 'human compatible' centrifuge termed the Artificial Gravity Sleeper (AGS) is considered. The centrifuge will accommodate up to four subjects at a time, operate at a broad range of speeds, and have safety features. Experiments that will be conducted on the AGS will help to investigate the quality of sleep during 100 percent gradient centrifugation. A microgravity simulation also will be studied using bed rest to assess the ability of 100 percent gradient centrifugation to function as a countermeasure to cardiovascular deconditioning.
Cardiovascular Responses of Snakes to Gravitational Gradients
NASA Technical Reports Server (NTRS)
Hsieh, Shi-Tong T.; Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)
1998-01-01
Snakes are useful vertebrates for studies of gravitational adaptation, owing to their elongate body and behavioral diversification. Scansorial species have evolved specializations for regulating hemodynamics during exposure to gravitational stress, whereas, such adaptations are less well developed in aquatic and non-climbing species. We examined responses of the amphibious snake,\\italicize (Nerodia rhombifera), to increments of Gz (head-to-tail) acceleration force on both a short- and long-arm centrifuge (1.5 vs. 3.7 m radius, from the hub to tail end of snake). We recorded heart rate, dorsal aortic pressure, and carotid arterial blood flow during stepwise 0.25 G increments of Gz force (referenced at the tail) in conscious animals. The Benz tolerance of a snake was determined as the Gz level at which carotid blood flow ceased and was found to be significantly greater at the short- than long-arm centrifuge radius (1.57 Gz vs. 2.0 Gz, respectively; P=0.016). A similar pattern of response was demonstrated in semi-arboreal rat snakes,\\italicize{Elaphe obsoleta}, which are generally more tolerant of Gz force (2.6 Gz at 1.5m radius) than are water snakes. The tolerance differences of the two species reflected cardiovascular responses, which differed quantitatively but not qualitatively: heart rates increased while arterial pressure and blood flow decreased in response to increasing levels of Gz. Thus, in both species of snakes, a reduced gradient of Gz force (associated with greater centrifuge radius) significantly decreases the Gz level that can be tolerated.
Accretions Disks Around Class O Protostars: The Case of VLA 1623
NASA Astrophysics Data System (ADS)
Pudritz, Ralph E.; Wilson, Christine D.; Carlstrom, John E.; Lay, Oliver P.; Hills, Richard E.; Ward-Thompson, Derek
1996-10-01
Continuum emission at 220 and 355 GHz from the prototype class 0 source VLA 1623 has been detected using the James Clerk Maxwell Telescope-Caltech Submillimeter Observatory interferometer. Gaussian fits to the data place an upper limit of 70 AU on the half-width at half-maximum radius of the emission, which implies an upper limit of ~175 AU for the cutoff radius of the circumstellar disk in the system. In the context of existing collapse models, this disk could be magnetically supported on the largest scales and have an age of ~6 x 104 yr, consistent with previous suggestions that class 0 sources are quite young. The innermost region of the disk within ~6 AU is likely to be in centrifugal support, which is likely large enough to provide a drive for the outflow according to current theoretical models. Alternatively, if 175 AU corresponds to the centrifugal radius of the disk, the age of the system is ~2 x 105 yr, closer to age estimates for class I sources.
Compact type-I coil planet centrifuge for counter-current chromatography
Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro
2009-01-01
A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 cm and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate (N) and peak retention time (tR). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-glu, DNP-β-ala and DNP-ala were resolved at Rs of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. PMID:20060979
Compact type-I coil planet centrifuge for counter-current chromatography.
Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro
2010-02-19
A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (S(f)), peak resolution (R(s)), theoretical plate (N) and peak retention time (t(R)). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-beta-ala and DNP-l-ala were resolved at R(s) of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. Published by Elsevier B.V.
Regimes of Coriolis-Centrifugal Convection
NASA Astrophysics Data System (ADS)
Horn, Susanne; Aurnou, Jonathan M.
2018-05-01
Centrifugal buoyancy affects all rotating turbulent convection phenomena, but is conventionally ignored in rotating convection studies. Here, we include centrifugal buoyancy to investigate what we call Coriolis-centrifugal convection (C3 ), characterizing two so far unexplored regimes, one where the flow is in quasicyclostrophic balance (QC regime) and another where the flow is in a triple balance between pressure gradient, Coriolis and centrifugal buoyancy forces (CC regime). The transition to centrifugally dominated dynamics occurs when the Froude number Fr equals the radius-to-height aspect ratio γ . Hence, turbulent convection experiments with small γ may encounter centrifugal effects at lower Fr than traditionally expected. Further, we show analytically that the direct effect of centrifugal buoyancy yields a reduction of the Nusselt number Nu. However, indirectly, it can cause a simultaneous increase of the viscous dissipation and thereby Nu through a change of the flow morphology. These direct and indirect effects yield a net Nu suppression in the CC regime and a net Nu enhancement in the QC regime. In addition, we demonstrate that C3 may provide a simplified, yet self-consistent, model system for tornadoes, hurricanes, and typhoons.
Regimes of Coriolis-Centrifugal Convection.
Horn, Susanne; Aurnou, Jonathan M
2018-05-18
Centrifugal buoyancy affects all rotating turbulent convection phenomena, but is conventionally ignored in rotating convection studies. Here, we include centrifugal buoyancy to investigate what we call Coriolis-centrifugal convection (C^{3}), characterizing two so far unexplored regimes, one where the flow is in quasicyclostrophic balance (QC regime) and another where the flow is in a triple balance between pressure gradient, Coriolis and centrifugal buoyancy forces (CC regime). The transition to centrifugally dominated dynamics occurs when the Froude number Fr equals the radius-to-height aspect ratio γ. Hence, turbulent convection experiments with small γ may encounter centrifugal effects at lower Fr than traditionally expected. Further, we show analytically that the direct effect of centrifugal buoyancy yields a reduction of the Nusselt number Nu. However, indirectly, it can cause a simultaneous increase of the viscous dissipation and thereby Nu through a change of the flow morphology. These direct and indirect effects yield a net Nu suppression in the CC regime and a net Nu enhancement in the QC regime. In addition, we demonstrate that C^{3} may provide a simplified, yet self-consistent, model system for tornadoes, hurricanes, and typhoons.
A Large Radius Human Centrifuge: The Human Hypergravity Havitat
NASA Astrophysics Data System (ADS)
van Loon, J. J. W. A.
2008-06-01
Life on Earth has developed at unit gravity, 9.81 m/s2, but how would plants and animals have evolved on a larger planet, i.e. larger than Earth? We are able to address this question simply by studies using centrifuges. In the past decades numerous experiments have been performed on cells, plants and animals grown for longer durations, even multi generations, under hypergravity conditions. Based on these studies we have gained interesting insights in the physiological process of these systems when exposed to artificial gravity. Animals and plants adapt themselves to this new high-g environment. Information of adaptation to hyper-g in mammals is interesting, or maybe even proof vital, for future human space flight programs especially in light of long duration missions to Moon and Mars. We know from long duration animal studies that numerous physiological processes and structures like muscles, bones, neuro-vestibular, or the cardiovascular system are affected. However, humans have never been exposed to a hyper-g environment for long durations. Human studies are mostly in the order of hours at most. Current work on human centrifuges is all focused on short arm systems to apply artificial gravity in long duration space missions. In this paper we want to address the possible usefulness of a large radius human centrifuge on Earth, or even on Moon or Mars, for both basic research and possible applications. In such a centrifuge a group of humans may be exposed to hypergravity for, in principle, an unlimited period of time.
Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight
NASA Technical Reports Server (NTRS)
Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.
2008-01-01
Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize that performance on the closed-loop tilt control task will be improved with this tactile display feedback of tilt orientation. The current plans include testing on eight crewmembers following Space Shuttle missions or short stay onboard the International Space Station. Measurements are obtained pre-flight at L-120 (plus or minus 30), L-90 (plus or minus 30), and L-30, (plus or minus 10) days and post-flight at R+0, R+1, R+2 or 3, R+4 or 5, and R+8 days. Pre-and post-flight testing (from R+1 on) is performed in the Neuroscience Laboratory at the NASA Johnson Space Center on both the Tilt-Translation Device and a variable radius centrifuge. A second variable radius centrifuge, provided by DLR for another joint ESA-NASA project, has been installed at the Baseline Data Collection Facility at Kennedy Space Center to collect data immediately after landing. ZAG was initiated with STS-122/1E and the first post-flight testing will take place after STS-123/1JA landing.
Effect of chronic centrifugation of the musculoskeletal system of the dog.
Amtmann, E; Oyama, J; Fisher, G L
1976-04-21
Sixteen male Beagle dogs, 293 to 509 days old, were exposed almost continuously for 3 months to 2.0 G on a 7.9 meter radius centrifuge. The dogs were maintained on the centrifuge, by means of a specially designed automated waste disposal and life support system. As compared to the mean values of normal gravity controls, centrifuged dogs showed no differences in femur length; cross-sectional area, outer and inner radii at mid-shaft of the femur; dry weights of the biceps femoris, quadriceps femoris, and gastrocnemius muscles. It was shown by analysis of covariance that chronic centrifugation has no effect on the relationship between the length and the cross-sectional dimensions at mid-shaft of the femur. Photon absorptiometry, however, revealed significant mineral content increases averaging 1.5% at 3 sites, i.e., at the 1/4, 1/2 and 3/4 length of the femur.
Change in the chemical composition of infalling gas forming a disk around a protostar.
Sakai, Nami; Sakai, Takeshi; Hirota, Tomoya; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Kahane, Claudine; Bottinelli, Sandrine; Caux, Emmanuel; Demyk, Karine; Vastel, Charlotte; Coutens, Audrey; Taquet, Vianney; Ohashi, Nagayoshi; Takakuwa, Shigehisa; Yen, Hsi-Wei; Aikawa, Yuri; Yamamoto, Satoshi
2014-03-06
IRAS 04368+2557 is a solar-type (low-mass) protostar embedded in a protostellar core (L1527) in the Taurus molecular cloud, which is only 140 parsecs away from Earth, making it the closest large star-forming region. The protostellar envelope has a flattened shape with a diameter of a thousand astronomical units (1 AU is the distance from Earth to the Sun), and is infalling and rotating. It also has a protostellar disk with a radius of 90 AU (ref. 6), from which a planetary system is expected to form. The interstellar gas, mainly consisting of hydrogen molecules, undergoes a change in density of about three orders of magnitude as it collapses from the envelope into the disk, while being heated from 10 kelvin to over 100 kelvin in the mid-plane, but it has hitherto not been possible to explore changes in chemical composition associated with this collapse. Here we report that the unsaturated hydrocarbon molecule cyclic-C3H2 resides in the infalling rotating envelope, whereas sulphur monoxide (SO) is enhanced in the transition zone at the radius of the centrifugal barrier (100 ± 20 AU), which is the radius at which the kinetic energy of the infalling gas is converted to rotational energy. Such a drastic change in chemistry at the centrifugal barrier was not anticipated, but is probably caused by the discontinuous infalling motion at the centrifugal barrier and local heating processes there.
Research of Mechanical Property Gradient Distribution of Al-Cu Alloy in Centrifugal Casting
NASA Astrophysics Data System (ADS)
Sun, Zhi; Sui, Yanwei; Liu, Aihui; Li, Bangsheng; Guo, Jingjie
Al-Cu alloy castings are obtained using centrifugal casting. The regularity of mechanical property gradient distribution of Al-Cu alloy castings with the same centrifugal radius at different positions is investigated. The result shows that the tensile strength, yield strength, elongation and microscope hardness exhibit the following gradient distribution characteristic — high on both sides and low on the center. The trend of mechanical property gradient distribution of Al-Cu alloy increases with the increase in the rotation speed. Moreover, the mechanical properties of casting centerline two sides have asymmetry. The reason is that the grain size of casting centerline two sides and Al2Cu phase and Cu content change correspondingly.
Response of Ambulatory Human Subjects to Artificial Gravity (Short Radius Centrifugation)
NASA Technical Reports Server (NTRS)
Paloski, William H.; Arya, Maneesh; Newby, Nathaniel; Tucker, Jon-Michael; Jarchow, Thomas; Young, Laurence
2006-01-01
Prolonged exposure to microgravity results in significant adaptive changes, including cardiovascular deconditioning, muscle atrophy, bone loss, and sensorimotor reorganization, that place individuals at risk for performing physical activities after return to a gravitational environment. Planned missions to Mars include unprecedented hypogravity exposures that would likely result in unacceptable risks to crews. Artificial gravity (AG) paradigms may offer multisystem protection from the untoward effects of adaptation to the microgravity of space or the hypogravity of planetary surfaces. While the most effective AG designs would employ a rotating spacecraft, perceived issues may preclude their use. The questions of whether and how intermittent AG produced by a short radius centrifuge (SRC) could be employed have therefore sprung to the forefront of operational research. In preparing for a series of intermittent AG trials in subjects deconditioned by bed rest, we have examined the responses of several healthy, ambulatory subjects to SRC exposures.
Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.
Morita, Hironobu; Obata, Koji; Abe, Chikara; Shiba, Dai; Shirakawa, Masaki; Kudo, Takashi; Takahashi, Satoru
2015-01-01
To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.
Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments
Morita, Hironobu; Obata, Koji; Abe, Chikara; Shiba, Dai; Shirakawa, Masaki; Kudo, Takashi; Takahashi, Satoru
2015-01-01
To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments. PMID:26221724
NASA Astrophysics Data System (ADS)
Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang
2017-11-01
To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.
NASA Technical Reports Server (NTRS)
Clevenger, W. B., Jr.; Tabakoff, W.
1974-01-01
The particle motion in two-dimensional free and forced inward flowing vortices is considered. A particle in such a flow field experiences a balance between the aerodynamic drag forces that tend to drive erosive particles toward the axis, and centrifugal forces that prevent these particles from traveling toward the axis. Results predict that certain sizes of particles will achieve a stable orbit about the turbine axis in the inward flowing free vortex. In this condition, the radial drag force is equal to the centrifugal force. The sizes of particles that will achieve a stable orbit is shown to be related to the gas flow velocity diagram at a particular radius. A second analysis yields a description of particle sizes that will experience a centrifugal force that is greater than the radial component of the aerodynamic drag force for a more general type of particle motion.
NASA Astrophysics Data System (ADS)
Fan, Y. Z.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Sha, Y. J.
2012-11-01
Primary formulation derivation indicates that the dimension of one existing centrifugal boiler circulation pump casing is too large. As great manufacture cost can be saved by dimension decrease, a numerical simulation research is developed in this paper on dimension decrease for annular casing of this pump with a specific speed equaling to 189, which aims at finding an appropriately smaller dimension of the casing while hydraulic performance and strength performance will hardly be changed according to the requirements of the cooperative company. The research object is one existing centrifugal pump with a diffuser and a semi-spherical annular casing, working as the boiler circulation pump for (ultra) supercritical units in power plants. Dimension decrease, the modification method, is achieved by decreasing the existing casing's internal radius (marked as "Ri0") while keeping the wall thickness. The research analysis is based on primary formulation derivation, CFD (Computational Fluid Dynamics) simulation and FEM (Finite Element Method) simulation. Primary formulation derivation estimates that a design casing's internal radius should be less than 0.75 Ri0. CFD analysis indicates that smaller casing with 0.75 Ri0 has a worse hydraulic performance when working at large flow rates and a better hydraulic performance when working at small flow rates. In consideration of hydraulic performance and dimension decrease, an appropriate casing's internal radius is determined, which equals to 0.875 Ri0. FEM analysis then confirms that modified pump casing has nearly the same strength performance as the existing pump casing. It is concluded that dimension decrease can be an economical method as well as a practical method for large pumps in engineering fields.
Effects of artificial gravity on the cardiovascular system: Computational approach
NASA Astrophysics Data System (ADS)
Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.
2016-09-01
Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected steady-state cardiovascular behavior during sustained artificial gravity and exercise. Further validation of the model was performed using experimental data from the combined exercise and artificial gravity experiments conducted on the MIT CRC, and these results will be presented separately in future publications. This unique computational framework can be used to simulate a variety of centrifuge configuration and exercise intensities to improve understanding and inform decisions about future implementation of artificial gravity in space.
NASA Technical Reports Server (NTRS)
Pampreen, R. C.
1977-01-01
Mechanical design and fabrication of two splitter-bladed centrifugal compressor impellers were completed for rig testing at NASA Lewis Research Center. These impellers were designed for automotive gas turbine application. The mechanical design was based on NASA specifications for blade-shape and flowpath configurations. The contractor made engineering drawings and performed calculations for mass and center-of-gravity, for stress and vibration analyses, and for shaft critical speed analysis. One impeller was machined to print; the other had a blade height and exit radius of 2.54 mm larger than print dimensions.
Comparison of gradual and rapid onset runs in a short-arm centrifugation
NASA Astrophysics Data System (ADS)
Miyamoto, A.; Saga, K.; Kinoue, T.; Nakazato, T.; Hirayanagi, K.; Yajima, K.; Hayashi, S.; Matsumoto, S.
A gradual onset run (GOR) in a short-arm centrifugation was performed on ten healthy students. The centrifuge had a 1.8 m radius, and the subjects sat on a chair in a cabin. The Gz force increased to 2.2 Gz at 0.1 °/sec 2 for 32 min. and the same Gz-level was maintained for 20 min. Three out of ten subjects completed the whole protocol; the load on the others was terminated because of symptoms or increased heart rate. There were few symptoms such as vertigo, that was a common problem with a rapid onset run (ROR) in former experiments, due to the short-arm centrifugation. The changes of the flicker test after the load were much less in the GOR protocol than in the ROR protocol, even in the terminated group. GOR seemed preferable to ROR in preventing vertigo even though it took longer to reach the necessary G load.
Nishida, Yoshifumi; Kobayashi, Hiromi; Nishida, Hideo; Sugimura, Kazuyuki
2013-05-01
The effect of the design parameters of a return channel on the performance of a multistage centrifugal compressor was numerically investigated, and the shape of the return channel was optimized using a multiobjective optimization method based on a genetic algorithm to improve the performance of the centrifugal compressor. The results of sensitivity analysis using Latin hypercube sampling suggested that the inlet-to-outlet area ratio of the return vane affected the total pressure loss in the return channel, and that the inlet-to-outlet radius ratio of the return vane affected the outlet flow angle from the return vane. Moreover, this analysis suggested that the number of return vanes affected both the loss and the flow angle at the outlet. As a result of optimization, the number of return vane was increased from 14 to 22 and the area ratio was decreased from 0.71 to 0.66. The radius ratio was also decreased from 2.1 to 2.0. Performance tests on a centrifugal compressor with two return channels (the original design and optimized design) were carried out using two-stage test apparatus. The measured flow distribution exhibited a swirl flow in the center region and a reversed swirl flow near the hub and shroud sides. The exit flow of the optimized design was more uniform than that of the original design. For the optimized design, the overall two-stage efficiency and pressure coefficient were increased by 0.7% and 1.5%, respectively. Moreover, the second-stage efficiency and pressure coefficient were respectively increased by 1.0% and 3.2%. It is considered that the increase in the second-stage efficiency was caused by the increased uniformity of the flow, and the rise in the pressure coefficient was caused by a decrease in the residual swirl flow. It was thus concluded from the numerical and experimental results that the optimized return channel improved the performance of the multistage centrifugal compressor.
Improved Descent-Rate Limiting Mechanism
NASA Technical Reports Server (NTRS)
Rivellini, Tommaso P.; Bickler, Donald B.; Swenson, Bradford; Gallon, John; Ingle, Jack
2008-01-01
An improved braking cable-payout mechanism has been developed. Whereas other such mechanisms operate at payout speeds that vary with the length of payout, this mechanism operates at approximately constant payout speed, regardless of the length of cord that has already been paid out. The present mechanism includes a spool, a capstan assembly, and centrifugal brakes. The spool is used to store the cord and, unlike in the prior mechanism, is not involved in the primary braking function. That is, the spool operates in such a way that the cord is unwound from the spool at low tension. The spool is connected to the rest of the mechanism through a constant- torque slip clutch. The clutch must slip in order to pay out the cord. As the cord leaves the spool, it passes into the capstan assembly, wherein its direction is changed by use of the first of three idler sheaves and it is then routed into the first of three grooves on a capstan. After completing less than a full circle in the first groove, the cord passes over the second idler sheave, which is positioned to enable the cord to make the transition to the second groove on the capstan. Similarly, a third idler sheave enables the cord to make the transition to the third groove on the capstan. After traveling less than a full circle in the third groove, the cord leaves the capstan along the payout path. The total wrap angle afforded by this capstan-and-idler arrangement is large enough to prevent slippage between the cord and the capstan. The capstan is connected to a shaft that, in turn, is connected to a centrifugal brake. Hence, the effective payout radius, for purposes of braking, is not the varying radius of the remaining cord on the spool but, rather, the constant radius of the grooves in the capstan. The payout speed is determined primarily by this radius and by the characteristics of the centrifugal brake. Therefore, the payout speed is more nearly constant in this mechanism than in the prior mechanism.
Medical Monitoring during Short Radius Centrifugation in Bed-rested Subjects
NASA Technical Reports Server (NTRS)
Reinertson, Randal; Nelson, Victor; Aunon, Serena; Schlegel, Todd; Paloski, William
2007-01-01
The artificial gravity pilot project was designed to investigate the efficacy of daily exposure to a Gz acceleration gradient for counteracting the physiologic decrements induced by prolonged bed rest. A short radius centrifuge was used to produce a Gz gradient such that 1 g was applied at the level of the subject s heart and 2.5 g at the feet. For inclusion in the study, subjects were required to complete a 75-minute screening spin on the centrifuge. During the study, each active treatment subject was scheduled for a 60-minute spin each day for 20 consecutive days. During centrifugation, subjects were continuously monitored by a physician for signs and symptoms of pre-syncope, motion sickness, arrhythmias, joint/muscle pain and any other unanticipated problems. The physician was also present to provide emergency care in the case of a medical emergency. Cameras mounted on the centrifuge were used to provide a means of observing the subject s face and torso. Audio communication was continuously maintained. Other monitoring tools included two-lead EKG tracings, pulse oximetry, intermittent sphygmomanometer readings, lights in the peripheral visual field, and continuous blood pressure readout from a tonometry device. Thirty screening runs were attempted using twenty-seven subjects. Seven of these runs were terminated early for symptoms of pre-syncope, motion sickness, or GI distress. A total of eight subjects completed the active treatment arm of the study. Of the 160 centrifuge runs that were scheduled for these eight treatment subjects, 152 were completed, seven were terminated early, and one was not attempted. Of the seven early terminations, four were related to symptoms of pre-syncope, one to leg pain, one to GI discomfort, and one to equipment failure. Three terminations for adverse symptoms occurred on the first treatment day. Three terminations occurred on day nineteen of treatment and within 24 hours after scheduled soleus and quadriceps muscle biopsies. We have summarized the relative usefulness of the information obtained by the various monitoring modalities in making a decision to terminate a centrifuge run. The video and audio communication information was essential to the decision-making process. Heart rate and EKG tracings are considered valuable, even though no spins were terminated due to significant arrhythmias. The tonometer device was generally not reliable in this application. Our observations suggest that subjects may be less tolerant of centrifugation just after starting bed rest and after invasive procedures.
Artificial Gravity as a Multi-System Countermeasure to Bed Rest Deconditioning: Preliminary Results
NASA Technical Reports Server (NTRS)
Warren, L. E.; Paloski, William H.; Young, L. R.
2006-01-01
Artificial gravity paradigms may offer effective, efficient, multi-system protection from the untoward effects of adaptation to the microgravity of space or the hypogravity of planetary surfaces. Intermittent artificial gravity (AG) produced by a horizontal short-radius centrifuge (SRC) has recently been utilized on human test subjects deconditioned by bed rest. This presentation will review preliminary results of a 41 day study conducted at the University of Texas Medical Branch, Galveston, TX bed rest facility. During the first eleven days of the protocol, subjects were ambulatory, but confined to the facility. They began a carefully controlled diet, and participated in multiple baseline tests of bone, muscle, cardiovascular, sensory-motor, immunological, and psychological function. On the twelfth day, subjects entered the bed rest phase of the study, during which they were confined to strict 6deg head down tilt bed rest for 21 days. Beginning 24 hrs into this period, treatment subjects received one hour daily exposures to artificial gravity which was produced by spinning the subjects on a 3.0 m radius SRC. They were oriented radially in the supine position so that the centrifugal force was aligned with their long body axis, and while spinning, they "stood" on a force plate, supporting the centrifugal loading (2.5 g at the feet, 1.0 g at the heart). The subject station allowed free translation over approximately 10 cm to ensure full loading of the lower extremities and to allow for anti-orthostatic muscle contractions. Control subjects were positioned on the centrifuge but did not spin. Following the bed rest phase, subjects were allowed to ambulate again, but remained within the facility for an additional 9 days and participated in multiple follow-up tests of physiological function.
NASA Astrophysics Data System (ADS)
Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro
2017-07-01
Numerical analysis on the rotation of an ultrasonically levitated droplet in centrifugal coordinate is discussed. A droplet levitated in an acoustic chamber is simulated using the distributed point source method and the moving particle semi-implicit method. Centrifugal coordinate is adopted to avoid the Laplacian differential error, which causes numerical divergence or inaccuracy in the global coordinate calculation. Consequently, the duration of calculation stability has increased 30 times longer than that in a the previous paper. Moreover, the droplet radius versus rotational acceleration characteristics show a similar trend to the theoretical and experimental values in the literature.
Behavior of turbulent boundary layers on curved convex walls
NASA Technical Reports Server (NTRS)
Schmidbauer, Hans
1936-01-01
The system of linear differential equations which indicated the approach of separation and the so-called "boundary-layer thickness" by Gruschwitz is extended in this report to include the case where the friction layer is subject to centrifugal forces. Evaluation of the data yields a strong functional dependence of the momentum change and wall drag on the boundary-layer thickness radius of curvature ratio for the wall. It is further shown that the transition from laminar to turbulent flow occurs at somewhat higher Reynolds Numbers at the convex wall than at the flat plate, due to the stabilizing effect of the centrifugal forces.
Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A
2017-05-01
The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.
Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation
NASA Technical Reports Server (NTRS)
Fuller, Charles A.
1997-01-01
This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.
Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation
NASA Technical Reports Server (NTRS)
Fuller, Charles A.
1992-01-01
This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.
NASA Technical Reports Server (NTRS)
Johnson, C. C.; Hargens, A. R.
1990-01-01
The potential need and science requirements for a centrifuge to be designed and flown on Space Station Freedom are discussed, with a focus on a design concept for a centrifuge developed at NASA Ames. Applications identified for the centrifuge include fundamental studies in which gravity is a variable under experimental control, the need to provide a 1-g control, attempts to discover the threshold value of gravitation force for psychological response, and an effort to determine the effects of intermittent hypergravity. Science requirements specify the largest possible diameter at approximately 2.5 m, gravity levels ranging from 0.01 to 2 g, a nominal ramp-up rate of 0.01 g/sec, and life support for plants and animals. Ground-based studies using rats and squirrel monkeys on small-diameter centrifuges have demonstrated that animals can adapt to centrifugation at gravity gradients higher than those normally used in ground-based hypergravity studies.
Centrifugal and Coriolis Effects on Thermal Convection in a Rotating Vertical Cylinder
NASA Astrophysics Data System (ADS)
Lee, Hanjie; Pearlstein, Arne J.
1997-11-01
For a rotating vertical circular cylinder, we compute steady axisymmetric flows driven by heating from below, accounting for both centrifugal and Coriolis effects. We discuss the dependence of the flow and heat transfer on Rayleigh number and Ekman number for selected values of the Prandtl number and aspect ratio. For the case where the sidewall temperature varies linearly, the computed solutions include single- and multi-cell flows. We pay particular attention to deviations from rigid-body rotation, with emphasis on topological division of the flow by surfaces on which the azimuthal velocity is equal to the product of the angular velocity and the radius, or by surfaces on which the meridional flow vanishes.
The centrifugal force reversal and X-ray bursts
NASA Astrophysics Data System (ADS)
Abramowicz, M. A.; Kluźniak, W.; Lasota, J. P.
2001-08-01
Heyl (2000) made an interesting suggestion that the observed shifts in QPO frequency in type I X-ray bursts could be influenced by the same geometrical effect of strong gravity as the one that causes centrifugal force reversal discovered by Abramowicz & Lasota (1974). However, his main result contains a sign error. Here we derive the correct formula and conclude that constraints on the M(R) relation for neutron stars deduced from the rotational-modulation model of QPO frequency shifts are of no practical interest because the correct formula implies a weak condition R* > 1.3 RS, where RS is the Schwarzschild radius. We also argue against the relevance of the rotational-modulation model to the observed frequency modulations.
Geotechnical centrifuge under construction
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
Modifications are underway at the National Aeronautics and Space Administration (NASA) Ames Research Center in California to transform a centrifuge used in the Apollo space program to the largest geotechnical centrifuge in the free world. The centrifuge, to be finished in August and opened next January, following check out and tuning, will enable geoscientists to model stratigraphic features down to 275 m below the earth's surface. Scientists will be able to model processes that are coupled with body force loading, including earthquake response of earth structures and soil structure interaction; rubbled-bed behavior during in situ coal gasification or in oil shale in situ retorts; behavior of frozen soil; frost heave; behavior of offshore structures; wave-seabed interactions; explosive cratering; and blast-induced liquefaction.The centrifuge will have a load capacity of 900-g-tons (short); that is, it will be able to carry a net soil load of 3 short tons to a centripetal acceleration of 300 times the acceleration caused by gravity. Modified for a total cost of $2.4 million, the centrifuge will have an arm with a 7.6-m radius and a swinging platform or bucket at its end that will be able to carry a payload container measuring 2.1×2.1 m. An additional future input of $500,000 would enable the purchase of a larger bucket that could accommodate a load of up to 20 tons, according to Charles Babendreier, program director for geotechnical engineering at the National Science Foundation. Additional cooling for the motor would also be required. The centrifuge has the capability of accelerating the 20-ton load to 100 g.
NASA Astrophysics Data System (ADS)
Frett, Timo; Mayrhofer, Michael; Schwandtner, Johann; Anken, Ralf; Petrat, Guido
2014-11-01
In July 2013, the German Aerospace Center (DLR) in Cologne, Germany, commissioned its new medical research facility :envihab. One central element of the facility is a new type of short radius centrifuge called DLR-SAHC 1 (formerly known as :enviFuge), which has been developed in collaboration with AMST Systemtechnik GmbH, Ranshofen, Austria. The shift of subjects above heart-level on a short arm centrifuge allows unique studies on, e.g., the cardiovascular regulation in surroundings with a high gradient of artificial gravity. Equipped with the capacity to move the four nacelles along the acceleration axis simultaneously and independently from each other, the centrifuge allows the possibility to perform up to four complex trials in parallel. The maximal acceleration is 6 g at the foot level and each nacelle can accomodate an up to 150kg payload. Additional equipment can be mounted on two payload bays with a capacity of 100kg each. Standard features of the centrifuge include a motion capturing system with six cameras and two triaxial force plates to study the kinematics of physical exercise (e.g., squatting, jumping or vibration training) under increased gravity. Future projects involving SAHC 1 will allow the development and testing of potential countermeasures and training methods against the negative effects of weightlessness in space on human physiology. Due to the centrifuge's capability to hold heavy equipment, carrying out a variety of non-human life science experiments requiring complex and heavy hardware is also fully feasible.
Wave Augmented Diffuser for Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)
2001-01-01
A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.
Separation Control in a Centrifugal Bend Using Plasma Actuators
NASA Astrophysics Data System (ADS)
Arthur, Michael; Corke, Thomas
2011-11-01
An experiment and CFD simulation are presented to examine the use of plasma actuators to control flow separation in a 2-D channel with a 135° inside-bend that is intended to represent a centrifugal bend in a gas turbine engine. The design inlet conditions are P = 330 psia., T =1100° F, and M = 0 . 24 . For these conditions, the flow separates on the inside radius of the bend. A CFD simulation was used to determine the location of the flow separation, and the conditions (location and voltage) of a plasma actuator that was needed to keep the flow attached. The plasma actuator body force model used in the simulation was updated to include the effect of high-pressure operation. An experiment was used to validate the simulation and to further investigate the effect of inlet pressure and Mach number on the flow separation control. This involved a transient high-pressure blow-down facility. The flow field is documented using an array of static pressure taps in the channel outside-radius side wall, and a rake of total pressure probes at the exit of the bend. The results as well as the pressure effect on the plasma actuators are presented.
Centrifuge impact cratering experiments: Scaling laws for non-porous targets
NASA Technical Reports Server (NTRS)
Schmidt, Robert M.
1987-01-01
A geotechnical centrifuge was used to investigate large body impacts onto planetary surfaces. At elevated gravity, it is possible to match various dimensionless similarity parameters which were shown to govern large scale impacts. Observations of crater growth and target flow fields have provided detailed and critical tests of a complete and unified scaling theory for impact cratering. Scaling estimates were determined for nonporous targets. Scaling estimates for large scale cratering in rock proposed previously by others have assumed that the crater radius is proportional to powers of the impactor energy and gravity, with no additional dependence on impact velocity. The size scaling laws determined from ongoing centrifuge experiments differ from earlier ones in three respects. First, a distinct dependence of impact velocity is recognized, even for constant impactor energy. Second, the present energy exponent for low porosity targets, like competent rock, is lower than earlier estimates. Third, the gravity exponent is recognized here as being related to both the energy and the velocity exponents.
Asm-Triggered too Observations of Z Sources at Low Accretion Rate
NASA Astrophysics Data System (ADS)
van der Klis, Michiel
We propose to perform a pointed observation if the ASM shows that a Z source has entered a state of low accretion rate. This would provide a unique opportunity to detect millisecond pulsations. In Sco X-1 we would expect to discover beat-frequency QPO, and could perform a unique high count rate study of them. At sufficiently low accretion rate it would be possible to study the accretion flow when the magnetospheric radius approaches the corotation radius. The frequency of the horizontal branch QPO should go to zero here, and centrifugal inhibition of the accretion should set in, providing direct tests of the magnetospheric model of Z sources.
Instability of a rotating liquid ring
NASA Astrophysics Data System (ADS)
Zhao, Sicheng; Tao, Jianjun
2013-09-01
It is shown numerically that a rotating inviscid liquid ring has a temporally oscillating state, where the radius of the ring varies periodically because of the competition between the centrifugal force and the centripetal force caused by the surface tension. Stability analysis reveals that an enlarging or shrinking ring is unstable to a varicose-type mode, which is affected by both the radial velocity and the radius ratio between the cross section and the ring. Furthermore, uniform rotation of a ring leads to a traveling unstable mode, whose frequency is determined by a simple sinuous mode, while the surface shape is modulated by the varicose mode and twisted by the rotation-induced Coriolis force.
Instability of a rotating liquid ring.
Zhao, Sicheng; Tao, Jianjun
2013-09-01
It is shown numerically that a rotating inviscid liquid ring has a temporally oscillating state, where the radius of the ring varies periodically because of the competition between the centrifugal force and the centripetal force caused by the surface tension. Stability analysis reveals that an enlarging or shrinking ring is unstable to a varicose-type mode, which is affected by both the radial velocity and the radius ratio between the cross section and the ring. Furthermore, uniform rotation of a ring leads to a traveling unstable mode, whose frequency is determined by a simple sinuous mode, while the surface shape is modulated by the varicose mode and twisted by the rotation-induced Coriolis force.
Design Optimization of a Centrifugal Fan with Splitter Blades
NASA Astrophysics Data System (ADS)
Heo, Man-Woong; Kim, Jin-Hyuk; Kim, Kwang-Yong
2015-05-01
Multi-objective optimization of a centrifugal fan with additionally installed splitter blades was performed to simultaneously maximize the efficiency and pressure rise using three-dimensional Reynolds-averaged Navier-Stokes equations and hybrid multi-objective evolutionary algorithm. Two design variables defining the location of splitter, and the height ratio between inlet and outlet of impeller were selected for the optimization. In addition, the aerodynamic characteristics of the centrifugal fan were investigated with the variation of design variables in the design space. Latin hypercube sampling was used to select the training points, and response surface approximation models were constructed as surrogate models of the objective functions. With the optimization, both the efficiency and pressure rise of the centrifugal fan with splitter blades were improved considerably compared to the reference model.
Centrifuge facility conceptual system study. Volume 2: Facility systems and study summary
NASA Technical Reports Server (NTRS)
Synnestvedt, Robert (Editor); Blair, Patricia; Cartledge, Alan; Garces-Porcile, Jorge; Garin, Vladimir; Guerrero, Mike; Haddeland, Peter; Horkachuck, Mike; Kuebler, Ulrich; Nguyen, Frank
1991-01-01
The Centrifuge Facility is a major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using nonhuman species (small primates, rodents, plants, insects, cell tissues, etc.). The Centrifuge Facility consists of a variable gravity Centrifuge to provide artificial gravity up to 2 earth G's' a Holding System to maintain specimens at microgravity levels, a Glovebox, and a Service Unit for servicing specimen chambers. The following subject areas are covered: (1) Holding System; (2) Centrifuge System; (3) Glovebox System; (4) Service System; and (5) system study summary.
Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters
NASA Astrophysics Data System (ADS)
Lu, Yunsong; Wang, Fuli; Jia, Mingxing; Qi, Yuanchen
2016-12-01
This paper concerns fault diagnosis of centrifugal compressor based on thermal parameters. An improved qualitative simulation (QSIM) based fault diagnosis method is proposed to diagnose the faults of centrifugal compressor in a gas-steam combined-cycle power plant (CCPP). The qualitative models under normal and two faulty conditions have been built through the analysis of the principle of centrifugal compressor. To solve the problem of qualitative description of the observations of system variables, a qualitative trend extraction algorithm is applied to extract the trends of the observations. For qualitative states matching, a sliding window based matching strategy which consists of variables operating ranges constraints and qualitative constraints is proposed. The matching results are used to determine which QSIM model is more consistent with the running state of system. The correct diagnosis of two typical faults: seal leakage and valve stuck in the centrifugal compressor has validated the targeted performance of the proposed method, showing the advantages of fault roots containing in thermal parameters.
Strength analysis of an aircraft turbo-compressor engine turbine disc
NASA Astrophysics Data System (ADS)
Klimko, Marek
2017-09-01
This article deals with a strength analysis of a gas turbine rotor disc of the concrete type of an aircraft turbo-compressor engine (ATCE). The introductory part is dedicated to a basic description of the given engine, including the main technical parameters entering the calculation. The calculation is carried out by the finite difference method. This method allows to determine the tension of a generally shaped disc, which is affected by centrifugal forces of its weight, external load and heat stress caused by the difference of thermal gradients along the disc radius. The result of calculations are dependencies of the most important parameters, such as the reduced stress, radial stress, or the safety coefficient along the disc radius.
Guided imagery, anxiety, heart rate, and heart rate variability during centrifuge training.
Jing, Xiaolu; Wu, Ping; Liu, Fang; Wu, Bin; Miao, Danmin
2011-02-01
Centrifuge training is an important method of improving the hypergravity tolerance of pilots, cosmonauts, and Chinese astronauts. However, the concomitants of tension or anxiety often impede training. Guided imagery (GI), a mind-body relaxation technique, provides a behavioral and cognitive means whereby individuals are able to exert control over the focus of attention. This study aims to investigate the immediate effects of GI for reducing stress in centrifuge training. There were 12 healthy young men who were randomly assigned to a GI group or music group. We measured changes in heart rate during centrifuge training, in heart rate variability before and after centrifuge training, and also evaluated relaxation and anxiety in three phases: before intervention, after intervention, and following centrifuge training. The change in the pattern of anxiety was different in the two groups over the three phases. Anxiety (measured by State Anxiety Inventory) in the GI group changed from 31.7 +/- 5.9 to 26.8 +/- 2.6 and 27.8 +/- 4.1, whereas for the music group this changed from 32.2 +/- 7.6 to 31.2 +/- 8.3 and 26.8 +/- 6.8. During centrifuge training, the maximal HR for the GI group (101.2 +/- 8.8) was lower than that of the music group (123.0 +/- 19.1). In addition GI showed a decrease in low frequency (LF, 0.04-0.15 Hz) components and an increase in high frequency (HF, 0.15-0.4 Hz) components before and after centrifuge training. GI was capable of decreasing tension, anxiety, and sympathetic nervous system activity pre- or post-centrifugation.
NASA Technical Reports Server (NTRS)
Kaufman, Galen D.; Wood, Scott J.; Gianna, Claire C.; Black, F. Owen; Paloski, William H.
2000-01-01
Eight chronic vestibular deficient (VD) patients (bilateral N = 4, unilateral N = 4, ages 18-67 were exposed to an interaural centripetal acceleration of 1 G (resultant 45 degree roll tilt of 1.4 G) on a 0.8 meter radius centrifuge for up to 90 minutes in the dark. The patients sat with head fixed upright, except every 4 of 10 minutes when instructed to point their nose and eyes towards a visual target (switched on every 3 to 5 seconds at random places within plus or minus 30 deg) in the Earth horizontal plane. Eye movements, including directed saccades for subjective Earth-and head-referenced planes, were recorded before, during, and after centrifugation using electro-oculography. Postural sway was measured before and within ten minutes after centrifugation using a sway-referenced or earth-fixed support surface, and with or without a head movement sequence. The protocol was selected for each patient based on the most challenging condition in which the patient was able to maintain balance with eyes closed.
Some aversive characteristics of centrifugally generated gravity.
NASA Technical Reports Server (NTRS)
Altman, F.
1973-01-01
The effective weight of rats was manipulated by centrifugation. Two effective weight levels were obtained. In three escape avoidance conditions a lever press produced a change from a base level of 2.1 g to a response level of 1.1 g. In a punishment condition a response produced a change from a 1.1 g level to a 2.1 g level and in an extinction condition responses had no effect on the 2.1 g effective weight level present. All changes took 30 sec and were maintained for an additional 10 sec before a return to base level was initiated. When responses occurred closer together than the 40 sec, they delayed the return to base level by 40 sec. This 40 sec interval is referred to as response-contingent-time. The response rate and amount of response-contingent-time served as the data. The results confirmed previous data that centrifugation is aversive. The results are interpreted as indicating that the aversiveness is attributable to the increase in effective weight, and that rats can discriminate the different angular velocity-radius of rotation combinations used.
NASA Technical Reports Server (NTRS)
Mosqueira, I.; Estrada, P. R.
2000-01-01
Using an optically thick inner disk and an extended, optically thin outer disk as described in Mosqueira and Estrada, we compute the torque as a function of position in the subnebula, and show that although the torque exerted on the satellite is generally negative, which leads to inward migration as expected, there are regions of the disk where the torque is positive. For our model these regions of positive torque correspond roughly to the locations of Callisto and Iapetus. Though the outer location of zero torque depends on the (unknown) size of the transition region between the inner and outer disks, the result that Saturn's is found much farther out (at approximately 3r(sub c, sup S) where r(sub c, sup S) is Saturn's centrifugal radius) than Jupiter's (at approximately 2r(sub c, sup J), where r(sub c, sup J) is Jupiter's centrifugal radius) is mostly due to Saturn's less massive outer disk, and larger Hill radius. For a satellite to survive in the disk the timescale of satellite migration must be longer than the timescale for gas dissipation. For large satellites (approximately 1000 km) migration is dominated by the gas torque. We consider the possibility that the feedback reaction of the gas disk caused by the redistribution of gas surface density around satellites with masses larger than the inertial mass causes a large drop in the drift velocity of such objects, thus improving the likelihood that they will be left stranded following gas dissipation. We adapt the inviscid inertial mass criterion to include gas drag, and m-dependent non-local deposition of angular momentum.
Skeletal mass change as a function of gravitational loading
NASA Technical Reports Server (NTRS)
Pace, N.; Smith, A. H.; Rahlmann, D. F.
1985-01-01
The hypothesis that increased loading on an animal by chronic centrifugation results in an increase in skeletal mass was tested, using metabolically mature hamsters, rats, guinea pigs, Dutch rabbits and New Zealand rabbits representing a body mass range from 0.15 to 3.8 kg. Groups of 12 male animals of each species were subjeted to 2.0 g for 6 weeks on a 2.74 radius centrifuge with one degree of freedom. Subsequently, six of the animals were killed to measure whole body composition, while the rest comprised the control group, recovering for four weeks at 1.0 g prior to composition analysis. Results show a significant increase in bone mineral mass at 2.0 g. These centrifuge experiment results were then compared with the results of the USSR Cosmos Biosatellite experiment, whereby five rats experienced osteoporosis after 18.5 days of weightlessness. The opposing nature of effects that occurred at 0 g and 2.0 g is indicated schematically of particular interest is the fact that the bone mineral mass of the Cosmos 1129 flight rats was 17 pct less than that of the 1.0 g controls; whereas the bone mineral mass of the centrifuge rats was 18 pct greater than that of their 1.0 g controls. It is concluded that the bone mineral mass of the rat is directly proportional to gravitational loading over the range of 0 g to 2.0 g.
Evaluation of a series hybird thrust bearing at DN values to three million. 1: Analysis and design
NASA Technical Reports Server (NTRS)
Gu, A.; Eusepi, M.; Winn, L. W.
1974-01-01
The analysis and design are presented of a hybrid bearing consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid film bearing fitting an envelope with an outer radius of 86.4 mm (3.4 in.) and an inner radius of 71 mm (2.8 in.). The bearing analysis, combined with available torque data on ball bearings, indicates that an effective speed split between the ball and fluid-film bearings of 50 percent may be expected during operation at 20,000 rpm and under an axial load of 17,800 newtons (4000 lbs.). This speed split can result in a ten-fold increase in the life of the ball bearing when compared to a simple ball bearing system operating under similar conditions.
1998-09-01
reviewed and is approved for publication. FOR THE DIRECTOR ROGER L. STORK , Colonel, USAF, BSC Chief, Biodynamics and Protection Division Air Force Research...possible disorienting stimuli. Short radius yaw rotational movements that occur in helicopter flight and vertical take off and landing (VTOL) fixed wing ... wing flight. Aeronautical terms and thought has evolved. Tactical concepts, once thought inviolate, are changing. New terms are emerging and the very
Effect of area ratio on the performance of a 5.5:1 pressure ratio centrifugal impeller
NASA Technical Reports Server (NTRS)
Schumann, L. F.; Clark, D. A.; Wood, J. R.
1986-01-01
A centrifugal impeller which was initially designed for a pressure ratio of approximately 5.5 and a mass flow rate of 0.959 kg/sec was tested with a vaneless diffuser for a range of design point impeller area ratios from 2.322 to 2.945. The impeller area ratio was changed by successively cutting back the impeller exit axial width from an initial value of 7.57 mm to a final value of 5.97 mm. In all, four separate area ratios were tested. For each area ratio a series of impeller exit axial clearances was also tested. Test results are based on impeller exit surveys of total pressure, total temperature, and flow angle at a radius 1.115 times the impeller exit radius. Results of the tests at design speed, peak efficiency, and an exit tip clearance of 8 percent of exit blade height show that the impeller equivalent pressure recovery coefficient peaked at a design point area ratio of approximately 2.748 while the impeller aerodynamic efficiency peaked at a lower value of area ratio of approximately 2.55. The variation of impeller efficiency with clearance showed expected trends with a loss of approximately 0.4 points in impeller efficiency for each percent increase in exit axial tip clearance for all impellers tested.
Variability in perceived tilt during a roll plane canal-otolith conflict in a gondola centrifuge.
Tribukait, Arne; Bergsten, Eddie; Eiken, Ola
2013-11-01
During a simulated coordinated turn in a gondola centrifuge, the perceived roll-tilt, quantified as the subjective visual horizontal (SVH), may differ tenfold between individuals. One aim of this study was to discern whether this variability reflects real individual characteristics or is due to noise or day-to-day variation. We also wanted to establish whether there are any habituation or learning effects of the centrifuge test. In nine nonpilots (NP) and nine student pilots (SP), with a flight experience of 150 h, the SVH was measured using an adjustable luminous line in darkness. At two test occasions (T1, T2) (interval 5-14 d) subjects underwent two runs (R1, R2; acceleration to 2 G in 10 s, gondola inclination 60 degrees, 5 min at 2 G, deceleration to 1 g in 10 s, interval between runs 5 min) in a centrifuge (r = 9.1 m). Initial and final SVH was determined for each individual run. Acceleration of the centrifuge induced a tilt of the SVH. At T1 R1, this SVH tilt was, in NP, initially 24 +/- 18 degrees and finally 8 +/- 10 degrees. The corresponding values for SP were 28 +/- 18 degrees and 31 +/- 33 degrees. The SVH tilt was slightly larger at R2 than at R1. There was no difference between T1 and T2. Reliability coefficients ranged between 0.86 and 0.98 for NP and between 0.78 and 0.99 for SP. The large interindividual variability combined with a very high reproducibility suggests the existence of persistent individual characteristics in the perception of complex vestibular stimuli. Habituation or learning effects of gondola centrifugation appears to be small.
Variable-Speed Instrumented Centrifuges
NASA Technical Reports Server (NTRS)
Chapman, David K.; Brown, Allan H.
1991-01-01
Report describes conceptual pair of centrifuges, speed of which varied to produce range of artificial gravities in zero-gravity environment. Image and data recording and controlled temperature and gravity provided for 12 experiments. Microprocessor-controlled centrifuges include video cameras to record stop-motion images of experiments. Potential applications include studies of effect of gravity on growth and on production of hormones in corn seedlings, experiments with magnetic flotation to separate cells, and electrophoresis to separate large fragments of deoxyribonucleic acid.
Response of rat body composition to simultaneous exercise and centrifugation at 3.14g
NASA Technical Reports Server (NTRS)
Pitts, G. C.; Oyama, J.
1982-01-01
A study is described calling into question the hypothesis that an increased physical load during chronic centrifugation contributes to the body composition changes observed in centrifuged rats. Considering fat-free and fat-free dry masses of the total body and carcass, it is seen that centrifugation combined with either wheel running or restraint reduced these masses to approximately 85% of the respective 1-g values, that is, the same result with either sedentary rats or rats running several hundred meters per day. It is pointed out that if an effect of a centrifugation-induced load is present but hidden by opposing factors, an analysis of variance should reveal it as an interaction between acceleration and other variables; however, no such interactions are found here. Tables are included emphasizing the pervasive influence of chronic centrifugation after only 12 days exposure.
Artificial gravity considerations for a mars exploration mission
NASA Technical Reports Server (NTRS)
Young, L. R.
1999-01-01
Artificial gravity (AG), as a means of preventing physiological deconditioning of astronauts during long-duration space flights, presents certain special challenges to the otolith organs and the adaptive capabilities of the CNS. The key issues regarding the choice of AG acceleration, radius, and rotation rate are reviewed from the viewpoints of physiological requirements and human factors disturbances. Head movements and resultant Coriolis forces on the rotating platform may limit the usefulness of economical short centrifuges for other than brief periods of intermittent stimulation.
NASA Astrophysics Data System (ADS)
Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Inayoshi, Kohei; Omukai, Kazuyuki
2018-05-01
Accretion on to seed black holes (BHs) is believed to play a crucial role in formation of supermassive BHs observed at high-redshift (z > 6). Here, we investigate the combined effect of gas angular momentum and radiation feedback on the accretion flow, by performing 2D axially symmetric radiation hydrodynamics simulations that solve the flow structure across the Bondi radius and the outer part of the accretion disc simultaneously. The accreting gas with finite angular momentum forms a rotationally-supported disc inside the Bondi radius, where the accretion proceeds by the angular momentum transport due to assumed α-type viscosity. We find that the interplay of radiation and angular momentum significantly suppresses accretion even if the radiative feedback is weakened in an equatorial shadowing region. The accretion rate is O(α) ˜ O(0.01 - 0.1) times the Bondi value, where α is the viscosity parameter. By developing an analytical model, we show that such a great reduction of the accretion rate persists unless the angular momentum is so small that the corresponding centrifugal radius is ≲ 0.04 times the Bondi radius. We argue that BHs are hard to grow quickly via rapid mass accretion considering the angular momentum barrier presented in this paper.
Neuro-Motor Responses to Daily Centrifugation in Bed-Rested Subjects
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Somers, Jeffery T.; Krnavek, Jody; Fisher, Elizibeth; Ford, George; Paloski, William H.
2007-01-01
It is well known from numerous space flight studies that exposure to micro-g produces both morphological and neural adaptations in the major postural muscles. However, the characteristics and mechanism of these changes, particularly when it may involve the central nervous system are not defined. Furthermore, it is not known what role unloading of the muscular system may have on central changes in sensorimotor function or if centrifugation along the +Gz direction (long body axis) can mitigate both the peripheral changes in muscle function and modification of the central changes in sensorimotor adaptation to the near weightless environment of space flight. The purpose of this specific effort was, therefore, to investigate the efficacy of artificial gravity (AG) as a method for maintaining sensorimotor function in micro-g. Eight male subjects were exposed to daily 1 hr centrifugation during a 21 day 6 degree head-down bed rest study. Seven controls were placed on the centrifuge without rotation. The radius and angular velocity of the centrifuge were adjusted such that each subject experienced a centripetal acceleration of 2.5g at the feet, and approximately 1.0g at the heart. Both the tendon (MSR) and functional stretch reflexes (FSR) were collected using an 80 lb. ft. servomotor controlled via position feedback to provide a dorsiflexion step input to elicit the MSR, and the same step input with a built in 3 sec hold to evoke the FSR. EMG data were obtained from the triceps surae. Supplementary torque, velocity and position data were collected with the EMG responses. All data were digitized and sampled at 4 kHz. Only the MSR data has been analyzed at this time, and preliminary results suggest that those subjects exposed to active centrifugation (treatment group) show only minor changes in MSR peak latency times, either as a function of time spent in bed rest or exposure to centrifugation, while the control subjects show delays in the MSR peak latencies that are typical of bed rested subjects. There also appears to be a trend in the treatment group where centrifugation results in peak latencies that are shorter than the control group. This trend is supported by the observation that peak reflex amplitudes are larger (up to 40% in magnitude)than those of the control subjects. Furthermore, centrifugation tends, by day 21 of bed rest, to normalize the peak amplitudes to the amplitudes observed prior to bed rest or centrifugation. From a preliminary point of view, centrifugation appears to have a positive effect on the sensorimotor system, and specifically on those muscles that provide anti-gravity and postural support.
NASA Astrophysics Data System (ADS)
Yanao, Tomohiro; Koon, Wang Sang; Marsden, Jerrold E.
2009-04-01
This paper uncovers novel and specific dynamical mechanisms that initiate large-amplitude collective motions in polyatomic molecules. These mechanisms are understood in terms of intramolecular energy transfer between modes and driving forces. Structural transition dynamics of a six-atom cluster between a symmetric and an elongated isomer is highlighted as an illustrative example of what is a general message. First, we introduce a general method of hyperspherical mode analysis to analyze the energy transfer among internal modes of polyatomic molecules. In this method, the (3n-6) internal modes of an n-atom molecule are classified generally into three coarse level gyration-radius modes, three fine level twisting modes, and (3n-12) fine level shearing modes. We show that a large amount of kinetic energy flows into the gyration-radius modes when the cluster undergoes structural transitions by changing its mass distribution. Based on this fact, we construct a reactive mode as a linear combination of the three gyration-radius modes. It is shown that before the reactive mode acquires a large amount of kinetic energy, activation or inactivation of the twisting modes, depending on the geometry of the isomer, plays crucial roles for the onset of a structural transition. Specifically, in a symmetric isomer with a spherical mass distribution, activation of specific twisting modes drives the structural transition into an elongated isomer by inducing a strong internal centrifugal force, which has the effect of elongating the mass distribution of the system. On the other hand, in an elongated isomer, inactivation of specific twisting modes initiates the structural transition into a symmetric isomer with lower potential energy by suppressing the elongation effect of the internal centrifugal force and making the effects of the potential force dominant. This driving mechanism for reactions as well as the present method of hyperspherical mode analysis should be widely applicable to molecular reactions in which a system changes its overall mass distribution in a significant way.
Implementation of the NASA AG-Bed Rest Pilot
NASA Technical Reports Server (NTRS)
Warren, L. E.; Paloski, W. H.; Young, L. R.
2007-01-01
To examine the efficacy of artificial gravity (AG) as a countermeasure to spaceflight deconditioning, intermittent AG produced by a horizontal short-radius centrifuge (SRC) was utilized on human test subjects deconditioned by bed rest. This poster will present the subject screening, study design, logistics, and implementation of the 41 day pilot study conducted at the University of Texas Medical Branch, Galveston, TX bed rest facility. An extensive screening process was employed to exclude subjects that were dissimilar to the U.S. astronaut population. Candidates underwent a modified U.S. Air Force Class III physical and tests of bone density, cardiovascular fitness, vestibular system function, psychological fitness and centrifuge tolerance. 15 subjects completed the study; 7 control and 8 AG treatment. All provided written consent to volunteer after the nature of the study and its hazards were clearly explained to them. Standard conditions were strictly regulated; Ta = 72 +/- 2 F, humidity = 70 +/- 5%, light/dark cycle 16h:8h. All fluid intake (minimum 28.5 ml/kg body weight/day) and urine output was monitored. Caloric intake was adjusted as necessary to maintain body weight. Carbohydrate, fat and protein were provided in a ratio of 55:30:15. Phosphorus intake was 1400 mg/d, sodium intake was 2 mmol/kg/d, potassium intake was 1.3 mmol/kg/d, and dietary calcium intake was 1000 mg/d. A physician examined each subject daily. During the first 11 days of the study protocol, subjects were ambulatory, but confined to the facility. Subjects participated in multiple baseline tests of bone, muscle, cardiovascular, sensory-motor, immunological, and psychological function. On the 12th day, subjects entered the bed rest phase of the study, during which they were confined to strict 6? head down tilt bed rest for 21 days. Beginning 24 hrs into this period, treatment subjects received 1 hour daily exposures to artificial gravity which was produced by spinning the subjects on a 3.0 m radius SRC. They were oriented radially in the supine position so that the centrifugal force was aligned with their long body axis, and while spinning, they #stood# on a force plate, supporting the centrifugal loading (2.5 g at the feet, 1.0 g at the heart). The subject station allowed free translation over approximately 10 cm to ensure full loading of the lower extremities and to allow for anti-orthostatic muscle contractions. Control subjects were positioned on the centrifuge but did not spin. Following the bed rest phase, subjects were allowed to ambulate again, but remained within the facility for an additional 9 days and participated in multiple follow-up tests of physiological function.
Hydrodynamical Modeling of Large Circumstellar Disks
NASA Astrophysics Data System (ADS)
Kurfürst, P.; Krtǐcka, J.
2016-11-01
Direct centrifugal ejection from a critically or near-critically rotating surface forms a gaseous equatorial decretion disk. Anomalous viscosity provides the efficient mechanism for transporting the angular momentum outwards. The outer part of the disk can extend up to a very large distance from the parent star. We study the evolution of density, radial and azimuthal velocity, and angular momentum loss rate of equatorial decretion disks out to very distant regions. We investigate how the physical characteristics of the disk depend on the distribution of temperature and viscosity. We also study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We use analytical calculations to study the stability of outflowing disks submerged to the magnetic field. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. Therefore, the disk sonic radius can be roughly considered as an outer disk radius.
Effect of the radial buoyancy on a circular Couette flow
NASA Astrophysics Data System (ADS)
Meyer, Antoine; Yoshikawa, Harunori N.; Mutabazi, Innocent
2015-11-01
The effect of a radial temperature gradient on the stability of a circular Couette flow is investigated when the gravitational acceleration is neglected. The induced radial stratification of the fluid density coupled with the centrifugal acceleration generates radial buoyancy which is centrifugal for inward heating and centripetal for outward heating. This radial buoyancy modifies the Rayleigh discriminant and induces the asymmetry between inward heating and outward heating in flow behavior. The critical modes are axisymmetric and stationary for inward heating while for outward heating, they can be oscillatory axisymmetric or nonaxisymmetric depending on fluid diffusion properties, i.e., on the Prandtl number Pr. The dependence of the critical modes on Pr is explored for different values of the radius ratio of the annulus. The power input of the radial buoyancy is compared with other power terms. The critical frequency of the oscillatory axisymmetric modes is linked to the Brunt-Väisälä frequency due to the density stratification in the radial gravity field induced by the rotation. These modes are associated with inertial waves. The dispersion relation of the oscillatory axisymmetric modes is derived in the vicinity of the critical conditions. A weakly nonlinear amplitude equation with a forcing term is proposed to explain the domination of these axisymmetric oscillatory modes over the stationary centrifugal mode.
Spatial orientation and balance control changes induced by altered gravitoinertial force vectors
NASA Technical Reports Server (NTRS)
Kaufman, G. D.; Wood, S. J.; Gianna, C. C.; Black, F. O.; Paloski, W. H.
2001-01-01
To better understand the mechanisms of human adaptation to rotating environments, we exposed 19 healthy subjects and 8 vestibular-deficient subjects ("abnormal"; four bilateral and four unilateral lesions) to an interaural centripetal acceleration of 1 g (resultant 45 degrees roll-tilt of 1.4 g) on a 0.8-m-radius centrifuge for periods of 90 min. The subjects sat upright (body z-axis parallel to centrifuge rotation axis) in the dark with head stationary, except during 4 min of every 10 min, when they performed head saccades toward visual targets switched on at 3- to 5-s intervals at random locations (within +/- 30 degrees) in the earth-horizontal plane. Eight of the normal subjects also performed the head saccade protocol in a stationary chair adjusted to a static roll-tilt angle of 45 degrees for 90 min (reproducing the change in orientation but not the magnitude of the gravitoinertial force on the centrifuge). Eye movements, including voluntary saccades directed along perceived earth- and head-referenced planes, were recorded before, during, and immediately after centrifugation. Postural center of pressure (COP) and multisegment body kinematics were also gathered before and within 10 min after centrifugation. Normal subjects overestimated roll-tilt during centrifugation and revealed errors in perception of head-vertical provided by directed saccades. Errors in this perceptual response tended to increase with time and became significant after approximately 30 min. Motion-sickness symptoms caused approximately 25% of normal subjects to limit their head movements during centrifugation and led three normal subjects to stop the test early. Immediately after centrifugation, subjects reported feeling tilted 10 degrees in the opposite direction, which was in agreement with the direction of their earth-referenced directed saccades. Postural COP, segmental body motion amplitude, and hip-sway frequency increased significantly after centrifugation. These postural effects were short-lived, however, with a recovery time of several postural test trials (minutes). There were also asymmetries in the direction of postcentrifugation COP and head tilt which depended on the subject's orientation during the centrifugation adaptation period (left ear or right ear out). The amount of total head movements during centrifugation correlated poorly or inversely with postcentrifugation postural stability, and the most unstable subject made no head movements. There was no decrease in postural stability after static tilt, although these subjects also reported a perceived tilt briefly after return to upright, and they also had COP asymmetries. Abnormal subjects underestimated roll-tilt during centrifugation, and their directed saccades revealed permanent spatial distortions. Bilateral abnormal subjects started out with poor postural control, but showed no postural decrements after centrifugation, while unilateral abnormal subjects had varying degrees of postural decrement, both in their everyday function and as a result of experiencing the centrifugation. In addition, three unilateral, abnormal subjects, who rode twice in opposite orientations, revealed a consistent orthogonal pattern of COP offsets after centrifugation. These results suggest that both orientation and magnitude of the gravitoinertial vector are used by the central nervous system for calibration of multiple orientation systems. A change in the background gravitoinertial force (otolith input) can rapidly initiate postural and perceptual adaptation in several sensorimotor systems, independent of a structured visual surround.
Spatial orientation and balance control changes induced by altered gravitoinertial force vectors.
Kaufman, G D; Wood, S J; Gianna, C C; Black, F O; Paloski, W H
2001-04-01
To better understand the mechanisms of human adaptation to rotating environments, we exposed 19 healthy subjects and 8 vestibular-deficient subjects ("abnormal"; four bilateral and four unilateral lesions) to an interaural centripetal acceleration of 1 g (resultant 45 degrees roll-tilt of 1.4 g) on a 0.8-m-radius centrifuge for periods of 90 min. The subjects sat upright (body z-axis parallel to centrifuge rotation axis) in the dark with head stationary, except during 4 min of every 10 min, when they performed head saccades toward visual targets switched on at 3- to 5-s intervals at random locations (within +/- 30 degrees) in the earth-horizontal plane. Eight of the normal subjects also performed the head saccade protocol in a stationary chair adjusted to a static roll-tilt angle of 45 degrees for 90 min (reproducing the change in orientation but not the magnitude of the gravitoinertial force on the centrifuge). Eye movements, including voluntary saccades directed along perceived earth- and head-referenced planes, were recorded before, during, and immediately after centrifugation. Postural center of pressure (COP) and multisegment body kinematics were also gathered before and within 10 min after centrifugation. Normal subjects overestimated roll-tilt during centrifugation and revealed errors in perception of head-vertical provided by directed saccades. Errors in this perceptual response tended to increase with time and became significant after approximately 30 min. Motion-sickness symptoms caused approximately 25% of normal subjects to limit their head movements during centrifugation and led three normal subjects to stop the test early. Immediately after centrifugation, subjects reported feeling tilted 10 degrees in the opposite direction, which was in agreement with the direction of their earth-referenced directed saccades. Postural COP, segmental body motion amplitude, and hip-sway frequency increased significantly after centrifugation. These postural effects were short-lived, however, with a recovery time of several postural test trials (minutes). There were also asymmetries in the direction of postcentrifugation COP and head tilt which depended on the subject's orientation during the centrifugation adaptation period (left ear or right ear out). The amount of total head movements during centrifugation correlated poorly or inversely with postcentrifugation postural stability, and the most unstable subject made no head movements. There was no decrease in postural stability after static tilt, although these subjects also reported a perceived tilt briefly after return to upright, and they also had COP asymmetries. Abnormal subjects underestimated roll-tilt during centrifugation, and their directed saccades revealed permanent spatial distortions. Bilateral abnormal subjects started out with poor postural control, but showed no postural decrements after centrifugation, while unilateral abnormal subjects had varying degrees of postural decrement, both in their everyday function and as a result of experiencing the centrifugation. In addition, three unilateral, abnormal subjects, who rode twice in opposite orientations, revealed a consistent orthogonal pattern of COP offsets after centrifugation. These results suggest that both orientation and magnitude of the gravitoinertial vector are used by the central nervous system for calibration of multiple orientation systems. A change in the background gravitoinertial force (otolith input) can rapidly initiate postural and perceptual adaptation in several sensorimotor systems, independent of a structured visual surround.
Optimum dimensions of power solenoids for magnetic suspension
NASA Technical Reports Server (NTRS)
Kaznacheyev, B. A.
1985-01-01
Design optimization of power solenoids for controllable and stabilizable magnetic suspensions with force compensation in a wind tunnel is shown. It is assumed that the model of a levitating body is a sphere of ferromagnetic material with constant magnetic permeability. This sphere, with a radius much smaller than its distance from the solenoid above, is to be maintained in position on the solenoid axis by balance of the vertical electromagnetic force and the force of gravitation. The necessary vertical (axial) force generated by the solenoid is expressed as a function of relevant system dimensions, solenoid design parameters, and physical properties of the body. Three families of curves are obtained which depict the solenoid power for a given force as a function of the solenoid length with either outside radius or inside radius as a variable parameter and as a function of the outside radius with inside radius as a variable parameter. The curves indicate the optimum solenoid length and outside radius, for minimum power, corresponding to a given outside radius and inside radius, respectively.
Ram Kumar Deo; Robert E. Froese; Michael J. Falkowski; Andrew T. Hudak
2016-01-01
The conventional approach to LiDAR-based forest inventory modeling depends on field sample data from fixed-radius plots (FRP). Because FRP sampling is cost intensive, combining variable-radius plot (VRP) sampling and LiDAR data has the potential to improve inventory efficiency. The overarching goal of this study was to evaluate the integration of LiDAR and VRP data....
Yang, Chang-Bin; Zhang, Shu; Zhang, Yu; Wang, Bing; Yao, Yong-Jie; Wang, Yong-Chun; Wu, Yan-Hong; Liang, Wen-Bin; Sun, Xi-Qing
2010-12-01
Musculoskeletal and cardiovascular deconditioning occurring in long-term spaceflight gives rise to the needs to develop new strategies to counteract these adverse effects. Short-arm centrifuge combined with ergometer has been proposed as a strategy to counteract adverse effects of microgravity. This study sought to investigate whether the combination of short-arm centrifuge and aerobic exercise training have advantages over short-arm centrifuge or aerobic exercise training alone. One week training was conducted by 24 healthy men. They were randomly divided into 3 groups: (1) short-arm centrifuge training, (2) aerobic exercise training, 40 W, and (3) combined short-arm centrifuge and aerobic exercise training. Before and after training, the cardiac pump function represented by stroke volume, cardiac output, left ventricular ejection time, and total peripheral resistance was evaluated. Variability of heart rate and systolic blood pressure were determined by spectral analysis. Physical working capacity was surveyed by near maximal physical working capacity test. The 1-week combined short-arm centrifuge and aerobic exercise training remarkably ameliorated the cardiac pump function and enhanced vasomotor sympathetic nerve modulation and improved physical working capacity by 10.9% (P<.05, n=8). In contrast, neither the short-arm centrifuge nor the aerobic exercise group showed improvements in these functions. These results demonstrate that combined short-arm centrifuge and aerobic exercise training has advantages over short-arm centrifuge or aerobic exercise training alone in influencing several physiologically important cardiovascular functions in humans. The combination of short-arm centrifuge and aerobic exercise offers a promising countermeasure to microgravity.
Dynamics of immiscible liquids in a rotating horizontal cylinder
NASA Astrophysics Data System (ADS)
Kozlov, N. V.; Kozlova, A. N.; Shuvalova, D. A.
2016-11-01
The dynamics of an interface between two immiscible liquids of different density is studied experimentally in a horizontal cylinder at rotation in the gravity field. Two liquids entirely fill the cavity volume, and the container is rotated sufficiently fast so that the liquids are centrifuged. The light liquid forms a column extended along the rotation axis, and the heavy liquid forms an annular layer. Under the action of gravity, the light liquid column displaces steadily along the radius, downwards in the laboratory frame. As a result, fluid oscillations in the cavity frame are excited at the interface, which lead to the generation of a steady streaming, and the fluid comes into a slow lagging rotation with respect to the cylinder walls. The dynamics of the studied system is determined by the ratio of the gravity acceleration to the centrifugal one—the dimensionless acceleration. In experiments, the system is controlled by the means of variation of the rotation rate, i.e., of the centrifugal force. At a critical value of the dimensionless acceleration the circular interface looses stability, and an azimuthal wave is excited. This leads to a strong increase in the interface differential velocity. A theoretical analysis is done based on the theory of centrifugal waves and a frequency equation is obtained. Experimental results are in good agreement with the theory at the condition of small wave amplitudes. Mechanism of steady streaming generation is analyzed based on previously published theoretical results obtained for the limiting case when the light phase is a solid cylinder. A qualitative agreement is found.
Spatial Orientation and Balance Control Changes Induced by Altered Gravito-Inertial Force Vectors
NASA Technical Reports Server (NTRS)
Kaufman, Galen D.; Wood, Scott J.; Gianna, Claire C.; Black, F. Owen; Paloski, William H.; Dawson, David L. (Technical Monitor)
1999-01-01
Seventeen healthy and eight vestibular deficient subjects were exposed to an interaural centripetal acceleration of 1 G (resultant 45 deg roll tilt of 1.4 G) on a 0.8 meter radius centrifuge for a period of 90 minutes in the dark. The subjects sat with head fixed upright, except every 4 of 10 minutes when instructed to rotate their head so that their nose and eyes pointed towards a visual point switched on every 3 to 5 seconds at random places (within +/- 30 deg) in the Earth horizontal plane. Motion sickness caused some subjects to limit their head movements during significant portions of the 90 minute period, and led three normal subjects to stop the test earlier. Eye movements, including directed saccades for subjective Earth- and head-referenced planes, were recorded before, during, and immediately after centrifugation using electro-oculography. Postural stability measurements were made before and within ten minutes after centrifugation. In normal subjects, postural sway and multisegment body kinematics were gathered during an eyes-closed head movement cadence (sway-referenced support platform), and in response to translational/rotational platform perturbations. A significant increase in postural sway, segmental motion amplitude and hip frequency was observed after centrifugation. This effect was short-lived, with a recovery time of several postural test trials. There were also asymmetries in the direction of post-centrifugation center of sway and head tilt which depended on the subject's orientation during the centrifugation adaptation period (left ear or right ear out). To delineate the effect of the magnitude of the gravito-inertial vector versus its direction during the adaptive centrifugation period, we tilted eight normal subjects in the roll axis at a 45 deg angle in the dark for 90 minutes without rotational motion. Their postural responses did not change following the period of tilt. Based on verbal reports, normal subjects overestimated roll-tilt during 90 minutes of both tilt and centrifugation stimuli. Subjective estimates of head-horizontal, provided by directed saccades, revealed significant errors after approximately 30 minutes that tended to increase only in the group who underwent centrifugation. Immediately after centrifugation, subjects reported feeling tilted on average 10 degrees in the opposite direction, which was in agreement with the direction of their earth-directed saccades. In vestibular deficient (VD) subjects, postural sway was measured using a sway-referenced or earth-fixed support surface, and with or without a head movement sequence. 'Me protocol was selected for each patient during baseline testing, and corresponded to the most challenging condition in which the patient was able to maintain balance with eyes closed. Bilaterally VD subjects showed no postural decrement after centrifugation, while unilateral VD subjects had varying degrees of decrement. Unilateral VD subjects were tested twice; they underwent centrifugation both with right ear out and left ear out. Their post-centrifuation center of sway shifted at right angles depending on the centrifuge GIF orientation. Bilateral VD subjects bad shifts as well, but no consistent directional trend. VD subjects underestimated roll-tilt during centrifugation, These results suggest that orientation of the gravito-inertial vector and its magnitude arc both used by the central nervous system for calibration of multiple orientation systems. A change in the background gravito-inertial force (otolith input) can rapidly initiate postural and perceptual adaptation in several sensorimotor systems, independent of a structured visual surround.
DNA stretching on the wall surfaces in curved microchannels with different radii
NASA Astrophysics Data System (ADS)
Hsieh, Shou-Shing; Wu, Fong-He; Tsai, Ming-Ju
2014-08-01
DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10-4 ≤ Re ≤ 10-3 and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm.
Influence of Microphysical Variability on Stochastic Condensation in Turbulent Clouds
NASA Astrophysics Data System (ADS)
Desai, N.; Chandrakar, K. K.; Chang, K.; Glienke, S.; Cantrell, W. H.; Fugal, J. P.; Shaw, R. A.
2017-12-01
We investigate the influence of variability in droplet number concentration and radius on the evolution of cloud droplet size distributions. Measurements are made on the centimeter scale using digitial inline holography, both in a controlled laboratory setting and in the field using HOLODEC measurements from CSET. We created steady state cloud conditions in the laboratory Pi Chamber, in which a turbulent cloud can be sustained for long periods of time. Using holographic imaging, we directly observe the variations in local number concentration and droplet size distribution and, thereby, the integral radius. We interpret the measurements in the context of stochastic condensation theory to determine how fluctuations in integral radius contribute to droplet growth. We find that the variability in integral radius is primarily driven by variations in the droplet number concentration and not the droplet radius. This variability does not contribute significantly to the mean droplet growth rate, but contributes significantly to the rate of increase of the size distribution width. We compare these results with in-situ measurements and find evidence for microphysical signatures of stochastic condensation. The results suggest that supersaturation fluctuations lead to broader size distributions and allow droplets to reach the collision-coalescence stage.
NASA Astrophysics Data System (ADS)
Zhu, Xuchao; Cao, Ruixue; Shao, Mingan; Liang, Yin
2018-03-01
Cosmic-ray neutron probes (CRNPs) have footprint radii for measuring soil-water content (SWC). The theoretical radius is much larger at high altitude, such as the northern Tibetan Plateau, than the radius at sea level. The most probable practical radius of CRNPs for the northern Tibetan Plateau, however, is not known due to the lack of SWC data in this hostile environment. We calculated the theoretical footprint of the CRNP based on a recent simulation and analyzed the practical radius of a CRNP for the northern Tibetan Plateau by measuring SWC at 113 sampling locations on 21 measuring occasions to a depth of 30 cm in a 33.5 ha plot in an alpine meadow at 4600 m a.s.l. The temporal variability and spatial heterogeneity of SWC within the footprint were then analyzed. The theoretical footprint radius was between 360 and 420 m after accounting for the influences of air humidity, soil moisture, vegetation and air pressure. A comparison of SWCs measured by the CRNP and a neutron probe from access tubes in circles with different radii conservatively indicated that the most probable experimental footprint radius was >200 m. SWC within the CRNP footprint was moderately variable over both time and space, but the temporal variability was higher. Spatial heterogeneity was weak, but should be considered in future CRNP calibrations. This study provided theoretical and practical bases for the application and promotion of CRNPs in alpine meadows on the Tibetan Plateau.
Gyration-radius dynamics in structural transitions of atomic clusters.
Yanao, Tomohiro; Koon, Wang S; Marsden, Jerrold E; Kevrekidis, Ioannis G
2007-03-28
This paper is concerned with the structural transition dynamics of the six-atom Morse cluster with zero total angular momentum, which serves as an illustrative example of the general reaction dynamics of isolated polyatomic molecules. It develops a methodology that highlights the interplay between the effects of the potential energy topography and those of the intrinsic geometry of the molecular internal space. The method focuses on the dynamics of three coarse variables, the molecular gyration radii. By using the framework of geometric mechanics and hyperspherical coordinates, the internal motions of a molecule are described in terms of these three gyration radii and hyperangular modes. The gyration radii serve as slow collective variables, while the remaining hyperangular modes serve as rapidly oscillating "bath" modes. Internal equations of motion reveal that the gyration radii are subject to two different kinds of forces: One is the ordinary force that originates from the potential energy function of the system, while the other is an internal centrifugal force. The latter originates from the dynamical coupling of the gyration radii with the hyperangular modes. The effects of these two forces often counteract each other: The potential force generally works to keep the internal mass distribution of the system compact and symmetric, while the internal centrifugal force works to inflate and elongate it. Averaged fields of these two forces are calculated numerically along a reaction path for the structural transition of the molecule in the three-dimensional space of gyration radii. By integrating the sum of these two force fields along the reaction path, an effective energy curve is deduced, which quantifies the gross work necessary for the system to change its mass distribution along the reaction path. This effective energy curve elucidates the energy-dependent switching of the structural preference between symmetric and asymmetric conformations. The present methodology should be of wide use for the systematic reduction of dimensionality as well as for the identification of kinematic barriers associated with the rearrangement of mass distribution in a variety of molecular reaction dynamics in vacuum.
Gyration-radius dynamics in structural transitions of atomic clusters
NASA Astrophysics Data System (ADS)
Yanao, Tomohiro; Koon, Wang S.; Marsden, Jerrold E.; Kevrekidis, Ioannis G.
2007-03-01
This paper is concerned with the structural transition dynamics of the six-atom Morse cluster with zero total angular momentum, which serves as an illustrative example of the general reaction dynamics of isolated polyatomic molecules. It develops a methodology that highlights the interplay between the effects of the potential energy topography and those of the intrinsic geometry of the molecular internal space. The method focuses on the dynamics of three coarse variables, the molecular gyration radii. By using the framework of geometric mechanics and hyperspherical coordinates, the internal motions of a molecule are described in terms of these three gyration radii and hyperangular modes. The gyration radii serve as slow collective variables, while the remaining hyperangular modes serve as rapidly oscillating "bath" modes. Internal equations of motion reveal that the gyration radii are subject to two different kinds of forces: One is the ordinary force that originates from the potential energy function of the system, while the other is an internal centrifugal force. The latter originates from the dynamical coupling of the gyration radii with the hyperangular modes. The effects of these two forces often counteract each other: The potential force generally works to keep the internal mass distribution of the system compact and symmetric, while the internal centrifugal force works to inflate and elongate it. Averaged fields of these two forces are calculated numerically along a reaction path for the structural transition of the molecule in the three-dimensional space of gyration radii. By integrating the sum of these two force fields along the reaction path, an effective energy curve is deduced, which quantifies the gross work necessary for the system to change its mass distribution along the reaction path. This effective energy curve elucidates the energy-dependent switching of the structural preference between symmetric and asymmetric conformations. The present methodology should be of wide use for the systematic reduction of dimensionality as well as for the identification of kinematic barriers associated with the rearrangement of mass distribution in a variety of molecular reaction dynamics in vacuum.
NASA Technical Reports Server (NTRS)
Cowing, Keith L.
1992-01-01
Centrifuges will continue to serve as a valuable research tool in gaining an understanding of the biological significance of the inertial acceleration due to gravity. Space- and possibly lunar-based centrifuges will play a significant and enabling role with regard to the human component of future lunar and martian exploration, both as a means of accessing potential health and performance risks and as a means of alleviating these risks. Lunar-based centrifuges could be particularly useful as part of a program of physiologic countermeasures designed to alleviate the physical deconditioning that may result from prolonged exposure to a 1/6-g environment. Centrifuges on the lunar surface could also be used as part of a high-fidelity simulation of a trip to Mars. Other uses could include crew readaptation to 1 g, waste separation, materials processing, optical mirror production in situ on the Moon, and laboratory specimen separation.
Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system
NASA Astrophysics Data System (ADS)
Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham
2013-10-01
According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.
Advanced two-stage compressor program design of inlet stage
NASA Technical Reports Server (NTRS)
Bryce, C. A.; Paine, C. J.; Mccutcheon, A. R. S.; Tu, R. K.; Perrone, G. L.
1973-01-01
The aerodynamic design of an inlet stage for a two-stage, 10/1 pressure ratio, 2 lb/sec flow rate compressor is discussed. Initially a performance comparison was conducted for an axial, mixed flow and centrifugal second stage. A modified mixed flow configuration with tandem rotors and tandem stators was selected for the inlet stage. The term conical flow compressor was coined to describe a particular type of mixed flow compressor configuration which utilizes axial flow type blading and an increase in radius to increase the work input potential. Design details of the conical flow compressor are described.
Abnormal Canine Bone Development Associated with Hypergravity Exposure
NASA Technical Reports Server (NTRS)
Morgan, J. P.; Fisher, G. L.; McNeill, K. L.; Oyama, J.
1979-01-01
Chronic centrifugation of 85- to 92-day-old Beagles at 2.0 x g and 2.6 x g for 26 weeks during the time of active skeletal growth caused skeletal abnormalities in the radius and the ulna of ten of 11 dogs. The pattern of change mimicked that found in naturally occurring and experimentally induced premature distal ulnar physeal closure or delayed growth at this physis. Minimal changes in bone density were detected by sensitive photon absorptiometric techniques. Skeletal abnormalities also were found in five of the six cage-control dogs, although the run-control dogs were radiographically normal.
Optimisation of a double-centrifugation method for preparation of canine platelet-rich plasma.
Shin, Hyeok-Soo; Woo, Heung-Myong; Kang, Byung-Jae
2017-06-26
Platelet-rich plasma (PRP) has been expected for regenerative medicine because of its growth factors. However, there is considerable variability in the recovery and yield of platelets and the concentration of growth factors in PRP preparations. The aim of this study was to identify optimal relative centrifugal force and spin time for the preparation of PRP from canine blood using a double-centrifugation tube method. Whole blood samples were collected in citrate blood collection tubes from 12 healthy beagles. For the first centrifugation step, 10 different run conditions were compared to determine which condition produced optimal recovery of platelets. Once the optimal condition was identified, platelet-containing plasma prepared using that condition was subjected to a second centrifugation to pellet platelets. For the second centrifugation, 12 different run conditions were compared to identify the centrifugal force and spin time to produce maximal pellet recovery and concentration increase. Growth factor levels were estimated by using ELISA to measure platelet-derived growth factor-BB (PDGF-BB) concentrations in optimised CaCl 2 -activated platelet fractions. The highest platelet recovery rate and yield were obtained by first centrifuging whole blood at 1000 g for 5 min and then centrifuging the recovered platelet-enriched plasma at 1500 g for 15 min. This protocol recovered 80% of platelets from whole blood and increased platelet concentration six-fold and produced the highest concentration of PDGF-BB in activated fractions. We have described an optimised double-centrifugation tube method for the preparation of PRP from canine blood. This optimised method does not require particularly expensive equipment or high technical ability and can readily be carried out in a veterinary clinical setting.
Influence of Vibrotactile Feedback on Controlling Tilt Motion After Spaceflight
NASA Technical Reports Server (NTRS)
Wood, S. J.; Rupert, A. H.; Vanya, R. D.; Esteves, J. T.; Clement, G.
2011-01-01
We hypothesize that adaptive changes in how inertial cues from the vestibular system are integrated with other sensory information leads to perceptual disturbances and impaired manual control following transitions between gravity environments. The primary goals of this ongoing post-flight investigation are to quantify decrements in manual control of tilt motion following short-duration spaceflight and to evaluate vibrotactile feedback of tilt as a sensorimotor countermeasure. METHODS. Data is currently being collected on 9 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s, <20 cm radius) in a darkened room is utilized to elicit otolith reflexes in the lateral plane without concordant canal or visual cues. A Tilt-Translation Sled (TTS) is capable of synchronizing pitch tilt with fore-aft translation to align the resultant gravitoinertial vector with the longitudinal body axis, thereby eliciting canal reflexes without concordant otolith or visual cues. A simple 4 tactor system was implemented to provide feedback when tilt position exceeded predetermined levels in either device. Closed-loop nulling tasks are performed during random tilt steps or sum-of-sines (TTS only) with and without vibrotactile feedback of chair position. RESULTS. On landing day the manual control performance without vibrotactile feedback was reduced by >30% based on the gain or the amount of tilt disturbance successfully nulled. Manual control performance tended to return to baseline levels within 1-2 days following landing. Root-mean-square position error and tilt velocity were significantly reduced with vibrotactile feedback. CONCLUSIONS. These preliminary results are consistent with our hypothesis that adaptive changes in vestibular processing corresponds to reduced manual control performance following G-transitions. A simple vibrotactile prosthesis improves the ability to null out tilt motion within a limited range of motion disturbances.
NASA Astrophysics Data System (ADS)
Wei, Jun; Zhong, Fangyuan
Based on comparative experiment, this paper deals with using tangentially skewed rotor blades in axial-flow fan. It is seen from the comparison of the overall performance of the fan with skewed bladed rotor and radial bladed rotor that the skewed blades operate more efficiently than the radial blades, especially at low volume flows. Meanwhile, decrease in pressure rise and flow rate of axial-flow fan with skewed rotor blades is found. The rotor-stator interaction noise and broadband noise of axial-flow fan are reduced with skewed rotor blades. Forward skewed blades tend to reduce the accumulation of the blade boundary layer in the tip region resulting from the effect of centrifugal forces. The turning of streamlines from the outer radius region into inner radius region in blade passages due to the radial component of blade forces of skewed blades is the main reason for the decrease in pressure rise and flow rate.
NASA Technical Reports Server (NTRS)
Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee
1993-01-01
We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.
[Matrimonial radius and anthropologic differentiation of the population of the Peloponnese, Greece].
Pitsios, T K
1983-09-01
Mean matrimonial radius (MMR) and mean breeding radius (MBR) were studied in the population of the Peloponnese (Greece). The historical and geographical causes of these important genetical variables are discussed considering, too, their effects on the anthropological differentiation of this population.
DNA stretching on the wall surfaces in curved microchannels with different radii.
Hsieh, Shou-Shing; Wu, Fong-He; Tsai, Ming-Ju
2014-01-01
DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10(-4) ≤ Re ≤ 10(-3) and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm.
DNA stretching on the wall surfaces in curved microchannels with different radii
2014-01-01
DNA molecule conformation dynamics and stretching were made on semi-circular surfaces with different radii (500 to 5,000 μm) in microchannels measuring 200 μm × 200 μm in cross section. Five different buffer solutions - 1× Tris-acetate-EDTA (TAE), 1× Tris-borate-EDTA (TBE), 1× Tris-EDTA (TE), 1× Tris-phosphate-EDTA (TPE), and 1× Tris-buffered saline (TBS) solutions - were used with a variety of viscosity such as 40, 60, and 80 cP, with resultant 10−4 ≤ Re ≤ 10−3 and the corresponding 5 ≤ Wi ≤ 12. The test fluids were seeded with JOJO-1 tracer particles for flow visualization and driven through the test channels via a piezoelectric (PZT) micropump. Micro particle image velocimetry (μPIV) measuring technique was applied for the centered-plane velocity distribution measurements. It is found that the radius effect on the stretch ratio of DNA dependence is significant. The stretch ratio becomes larger as the radius becomes small due to the larger centrifugal force. Consequently, the maximum stretch was found at the center of the channel with a radius of 500 μm. PMID:25147488
Šimůnek, Jirka; Nimmo, John R.
2005-01-01
A modified version of the Hydrus software package that can directly or inversely simulate water flow in a transient centrifugal field is presented. The inverse solver for parameter estimation of the soil hydraulic parameters is then applied to multirotation transient flow experiments in a centrifuge. Using time‐variable water contents measured at a sequence of several rotation speeds, soil hydraulic properties were successfully estimated by numerical inversion of transient experiments. The inverse method was then evaluated by comparing estimated soil hydraulic properties with those determined independently using an equilibrium analysis. The optimized soil hydraulic properties compared well with those determined using equilibrium analysis and steady state experiment. Multirotation experiments in a centrifuge not only offer significant time savings by accelerating time but also provide significantly more information for the parameter estimation procedure compared to multistep outflow experiments in a gravitational field.
Numerical Investigations of Slip Phenomena in Centrifugal Compressor Impellers
NASA Astrophysics Data System (ADS)
Huang, Jeng-Min; Luo, Kai-Wei; Chen, Ching-Fu; Chiang, Chung-Ping; Wu, Teng-Yuan; Chen, Chun-Han
2013-03-01
This study systematically investigates the slip phenomena in the centrifugal air compressor impellers by CFD. Eight impeller blades for different specific speeds, wrap angles and exit blade angles are designed by compressor design software to analyze their flow fields. Except for the above three variables, flow rate and number of blades are the other two. Results show that the deviation angle decreases as the flow rate increases. The specific speed is not an important parameter regarding deviation angle or slip factor for general centrifugal compressor impellers. The slip onset position is closely related to the position of the peak value in the blade loading factor distribution. When no recirculation flow is present at the shroud, the variations of slip factor under various flow rates are mainly determined by difference between maximum blade angle and exit blade angle, Δβmax-2. The solidity should be of little importance to slip factor correlations in centrifugal compressor impellers.
Facilities for Biological Research Aboard the International Space Station
NASA Technical Reports Server (NTRS)
Souza, Kenneth A.; Yost, Bruce D.; Berry, William E.; Johnson, Catherine C.
1996-01-01
A centrifuge designed as part of an integrated biological facility for installation onboard the International Space Station is presented. The requirements for the 2.5 m diameter centrifuge, which is designed for the support of biological experiments are discussed. The scientific objectives of the facility are to: provide a means of conducting fundamental studies in which gravitational acceleration is a controllable variable; provide a 1g control; determine the threshold acceleration for physiological response, and determine the value of centrifugation as a potential countermeasure for the biomedical problems associated with space flight. The implementation of the facility is reported on, and the following aspects of the facility are described: the host resources systems supply requirements such as power and data control; the habitat holding rack; the life sciences glove box; the centrifuge; the different habitats for cell culture, aquatic studies, plant research and insect research; the egg incubator, and the laboratory support equipment.
NASA Astrophysics Data System (ADS)
Vanyashov, A. D.; Karabanova, V. V.
2017-08-01
A mathematical description of the method for obtaining gas-dynamic characteristics of a centrifugal compressor stage is proposed, taking into account the control action by varying the rotor speed and the angle of rotation of the guide vanes relative to the "basic" characteristic, if the kinematic and dynamic similitude conditions are not met. The formulas of the correction terms for the non-dimensional coefficients of specific work, consumption and efficiency are obtained. A comparative analysis of the calculated gas-dynamic characteristics of a high-pressure centrifugal stage with experimental data is performed.
Exercise Increases the Cardiovascular Stimulus Provided by Artificial Gravity
NASA Technical Reports Server (NTRS)
Howarth, M. S.; Moore, F. B.; Hinghofer-Szalkay, H.; Jezova, D.; Diedrich, A.; Ferris, M. B.; Schlegel, T. T.; Pathwardhan, A. R.; Knapp, C. F.; Evans, J. M.
2008-01-01
We investigated fluid shifts and regulatory responses to variations of posture, exercise, Gz level and radius of rotation in subjects riding NASA Ames 20G centrifuge. Results are from 4 protocols that address radius and exercise effects only. Protocol A: After 10 min supine control, 12 healthy men (35 plus or minus 9 yr, 82.8 plus or minus 7.9 kg) were exposed to rotational 1 Gz (2.5 m radius) for 2 min followed by 20 min alternating between 1 and 1.25 Gz. Blood samples were taken pre and post spin. Protocol B: Same as A, but lower limb exercise (70% V02max) preceded ramps to 1.25 Gz. Protocol C: Same as A but radius of rotation 8.3 m. Protocol D: Same as B but at 8.3 m. The 8 subjects who completed all protocols, increased heart rate (HR) from control, on average, by: A: 5, B: 39, C: 11, D: 44 bpm. For thoracic fluid volume, (bioimpedance), the 8 subjects changed from control, on average: A: -394, B: -548, C: -537, D: -708 mL. For thigh fluid volume, changes from control, on average, were: A: -137, B: 129, C: -75, D: 159 mL. Hematocrit changes from control were: A: 2.3, B: 3.5, C: 2.3, D: 4.3 %. Radius effects were mild and included greater loss of fluid from the thorax, less fluid loss from the thigh and increased heart rate at the longer radius. Pre-acceleration exercise effects were more dramatic and included additional loss of fluid from the chest, increased fluid volume of the thigh, increased hematocrit and greater heart rate increases. We propose that short bouts of intense exercise can be used to magnify the cardiovascular stress delivered by artificial gravity (AG) training and the combination of AG with exercise training can be fine-tuned to preserve orthostatic tolerance of astronauts during spaceflight.
The performance of a centrifugal compressor with high inlet prewhirl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, A.; Abdullah, A.H.
1998-07-01
The performance requirements of centrifugal compressors usually include a broad operating range between surge and choke. This becomes increasingly difficult to achieve as increased pressure ratio is demanded. In order to suppress the tendency to surge and extend the operating range at low flow rates, inlet swirl is often considered through the application of inlet guide vanes. To generate high inlet swirl angles efficiently, an inlet volute has been applied as the swirl generator, and a variable geometry design developed in order to provide zero swirl. The variable geometry approach can be applied to increase the swirl progressively or tomore » switch rapidly from zero swirl to maximum swirl. The variable geometry volute and the swirl conditions generated are described. The performance of a small centrifugal compressor is presented for a wide range of inlet swirl angles. In addition to the basic performance characteristics of the compressor, the onsets of flow reversals at impeller inlet are presented, together with the development of pressure pulsations, in the inlet and discharge ducts, through to full surge. The flow rate at which surge occurred was shown, by the shift of the peak pressure condition and by the measurement of the pressure pulsations, to be reduced by over 40%.« less
Variable radius cartography - History and perspectives of a new discipline
NASA Astrophysics Data System (ADS)
Scalera, Giancarlo
2014-05-01
The map that Toscanelli sent to Columbus was an unconscious application of cartography at a smaller radius than the real. The first really conscious attempts to represent the geography of Earth on globes of radius less than the current one occurred after the formulation of the concept of expanding Earth through geological time. The American chemist and geologist Richard Owen (1810-1890) in his book Key to the geology of the globe (1857) described the principles of what he himself called Anatomical Geology, with the Earth growing as a biological organism. The book contained a global paleogeographic map of the Earth that would have had a radius of about 4000 kilometers. In 1928 J.A.H. Kerkhoff (under the pseudonym Aero-dilettant) published a series of paleogeographic globes on which the modern oceans disappeared. With the same artisan methods of transfer continental outlines from a sphere to a smaller one, in 1933 O.C. Hilgenberg represented three different geological epochs, and, later, for the first time mapped paleopoles with their site-pole segments of meridian. Even today the traditional method of Hilgenberg is followed by senior researchers (Klaus Vogel, 2003) and younger geologists (James Maxlow). In England Hugh Owen applied the methods of traditional cartography to the variable radius one. His Atlas of Continental Displacement was in the 70s and 80s, for this discipline, a real milestone. While in the field of constant radius paleogeography the adherents to plate tectonics created many computer codes of automatic mapping (Bullard et al., 1965; Smith & Hallam, 1970; Scotese et al., 1979; and many others), in the variable radius field few tried to reach the same task. In 1972 in United States a first very simple attempt (but was not further developed) came from a private, R.B. Perry, followed by the still not-computerized Atlas of Owen, and both them constituted inspiration for the construction of a FORTRAN variable radius mapping code at INGV, with which it is now possible to represent paleopoles, their uncertainty ellipses, and site-pole segments of meridian (Scalera, 1988, 1990). In all paleogeographic reconstructions of the different authors, variable radius cartography is used in a way more or less complex, more or less intertwined with other disciplines and databases, not as pure representation or in the spirit of the simple fits that supported plate tectonics, but as experiments of greater complexity with a value of proof in favor of the planet expansion. Today a common feeling is that is now necessary to develop an interactive and user friendly program code, which could be distributed or used in the web. The use of variable radius mapping would be a profitable tool in the field of geodesy, where a full treatment without subtle vicious loops of an expanding globe has yet to be developed.
Ayers, Lisa; Kohler, Malcolm; Harrison, Paul; Sargent, Ian; Dragovic, Rebecca; Schaap, Marianne; Nieuwland, Rienk; Brooks, Susan A; Ferry, Berne
2011-04-01
Circulating cell-derived microparticles (MPs) have been implicated in several disease processes and elevated levels are found in many pathological conditions. The detection and accurate measurement of MPs, although attracting widespread interest, is hampered by a lack of standardisation. The aim of this study was to establish a reliable flow cytometric assay to measure distinct subtypes of MPs in disease and to identify any significant causes of variability in MP quantification. Circulating MPs within plasma were identified by their phenotype (platelet, endothelial, leukocyte and annexin-V positivity (AnnV+). The influence of key variables (i.e. time between venepuncture and centrifugation, washing steps, the number of centrifugation steps, freezing/long-term storage and temperature of thawing) on MP measurement were investigated. Increasing time between venepuncture and centrifugation leads to increased MP levels. Washing samples results in decreased AnnV+MPs (P=0.002) and platelet-derived MPs (PMPs) (P=0.002). Double centrifugation of MPs prior to freezing decreases numbers of AnnV+MPs (P=0.0004) and PMPs (P=0.0004). A single freeze thaw cycle of samples led to an increase in AnnV+MPs (P=0.0020) and PMPs (P=0.0039). Long-term storage of MP samples at -80° resulted in decreased MP levels. This study found that minor protocol changes significantly affected MP levels. This is one of the first studies attempting to standardise a method for obtaining and measuring circulating MPs. Standardisation will be essential for successful development of MP technologies, allowing direct comparison of results between studies and leading to a greater understanding of MPs in disease. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Understand Centrifugal Compressor stage curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, E.L.
1986-08-01
Multistage Centrifugal Compressor Performance is generally presented in the form of a composite curve showing discharge pressure and bhp plotted as a function of capacity. This composite curve represents the cumulative performance of each stage performance curve. A simple yet quite accurate means of measuring compressor total performance is to test each stage as a single-stage compressor, usually on air with atmospheric inlets. Stage curves are then generated from the test data and three important variables are plotted: head coefficient, work coefficient and adiabatic efficiency. These variables are plotted against a normalized flow coefficient, Q/N, which is inlet volume flowmore » (cfm) divided by impeller speed (rpm). The nomenclature used to define these stage variables changes from manufacturer to manufacturer; however, the parameters presented are the same. An understanding of each parameter's theoretical derivation and determination from test data will help the engineer reviewing test curves to be more cognizant of the interrelationships between these variables; specifically, how they affect overall machine pressure rise and power consumption.« less
Thoracic Impedance as a Potential Indicator of Gz-induced Presyncope
NASA Technical Reports Server (NTRS)
Howarth, M. S.; Moore, F. B.; Hinghofer-Szalkay, H.; Jezova, D.; Diedrich, A.; Ferris, M. B.; Patwardhan, A. R.; Knapp, C. F.; Evans, J. M.
2008-01-01
We investigated fluid shifts and regulatory responses to variations of posture, exercise, Gz level and radius of rotation in subjects riding NASA Ames 20G centrifuge. Results are from 4 protocols that address radius and exercise effects only. Protocol A: After 10 min supine control, 12 healthy men (35 9 yr, 82.8 7.9 kg) were exposed to rotational 1 Gz (2.5 m radius) for 2 min followed by 20 min alternating between 1 and 1.25 Gz. Blood samples were taken pre and post spin. Protocol B: Same as A, but lower limb exercise (70% V02max) preceded ramps to 1.25 Gz. Protocol C: Same as A but radius of rotation 8.3 m. Protocol D: Same as B but at 8.3 m. The 8 subjects who completed all protocols, increased heart rate (HR) from control by: A: 5, B: 39, C: 11, D: 44 bpm; and the 4 who did not: A: 6, B: 35, C: 20, D: 50 bpm. For thoracic fluid volume, (bioimpedance), the 8 subjects changed from control: A: -394, B: -548, C: -537, D: -708 mL; and the 4: A: -516, B: -652, C: -583, D: -1263 mL. The 4 subjects lost more thoracic fluid volume than the 8, especially in protocol D. A slightly greater increase in HR for the 4 compared to the 8 was not adequate to maintain cardiac output during D. Our data support the concept that thoracic impedance can detect inability to return adequate fluid to the heart, thereby predicting presyncope.
Tilt perception during dynamic linear acceleration.
Seidman, S H; Telford, L; Paige, G D
1998-04-01
Head tilt is a rotation of the head relative to gravity, as exemplified by head roll or pitch from the natural upright orientation. Tilt stimulates both the otolith organs, owing to shifts in gravitational orientation, and the semicircular canals in response to head rotation, which in turn drive a variety of behavioral and perceptual responses. Studies of tilt perception typically have not adequately isolated otolith and canal inputs or their dynamic contributions. True tilt cannot readily dissociate otolith from canal influences. Alternatively, centrifugation generates centripetal accelerations that simulate tilt, but still entails a rotatory (canal) stimulus during important periods of the stimulus profiles. We reevaluated the perception of head tilt in humans, but limited the stimulus to linear forces alone, thus isolating the influence of otolith inputs. This was accomplished by employing a centrifugation technique with a variable-radius spinning sled. This allowed us to accelerate the sled to a constant angular velocity (128 degrees/s), with the subject centered, and then apply dynamic centripetal accelerations after all rotatory perceptions were extinguished. These stimuli were presented in the subjects' naso-occipital axis by translating the subjects 50 cm eccentrically either forward or backward. Centripetal accelerations were thus induced (0.25 g), which combined with gravity to yield a dynamically shifting gravitoinertial force simulating pitch-tilt, but without actually rotating the head. A magnitude-estimation task was employed to characterize the dynamic perception of pitch-tilt. Tilt perception responded sluggishly to linear acceleration, typically reaching a peak after 10-30 s. Tilt perception also displayed an adaptation phenomenon. Adaptation was manifested as a per-stimulus decline in perceived tilt during prolonged stimulation and a reversal aftereffect upon return to zero acceleration (i.e., recentering the subject). We conclude that otolith inputs can produce tilt perception in the absence of canal stimulation, and that this perception is subject to an adaptation phenomenon and low-pass filtering of its otolith input.
Pernin, P.; Pélandakis, M.; Rouby, Y.; Faure, A.; Siclet, F.
1998-01-01
Detection of pathogenic Naegleria fowleri in environmental water samples, which is necessary for the prevention of primary amoebic meningoencephalitis, generally requires concentrating the samples. Two concentration techniques, filtration and centrifugation, were used to study the recovery of N. fowleri, in vegetative or cystic form, that had been mixed with the two other thermotolerant Naegleria species, N. lovaniensis and N. australiensis. Counting of amoebae was performed by the most probable number method on 10 water replicates of 100 ml and 10 ml each. With both concentration methods, recovery was better for cysts than for trophozoites (53% ± 21% versus 5% ± 5% by filtration and 57% ± 25% versus 22% ± 5% by centrifugation). The recovery of Naegleria trophozoites by filtration was very low, and centrifugation was significantly better than filtration in recovery of Naegleria trophozoites (22% ± 5% versus 5% ± 5%; P < 0.001). For cysts, however, filtration appeared as efficient as centrifugation, with equivalent values for recovery (53% ± 21% versus 57% ± 25%; P > 0.7). Although the recovery of cysts of N. fowleri obtained by filtration (51% ± 24%) appeared higher than that by centrifugation (36% ± 23%), the difference was not significant (P > 0.1). Both concentration methods have highly variable recovery rates, making accurate quantification of low concentrations (<100/liter) of N. fowleri in the environment difficult. PMID:9501435
Vestibular stimulation interferes with the dynamics of an internal representation of gravity.
De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Diaz Artiles, Ana; Seyedmadani, Kimia; Sherwood, David P; Young, Laurence R
2017-11-01
The remembered vanishing location of a moving target has been found to be displaced downward in the direction of gravity (representational gravity) and more so with increasing retention intervals, suggesting that the visual spatial updating recruits an internal model of gravity. Despite being consistently linked with gravity, few inquiries have been made about the role of vestibular information in these trends. Previous experiments with static tilting of observers' bodies suggest that under conflicting cues between the idiotropic vector and vestibular signals, the dynamic drift in memory is reduced to a constant displacement along the body's main axis. The present experiment aims to replicate and extend these outcomes while keeping the observers' bodies unchanged in relation to physical gravity by varying the gravito-inertial acceleration using a short-radius centrifuge. Observers were shown, while accelerated to varying degrees, targets moving along several directions and were required to indicate the perceived vanishing location after a variable interval. Increases of the gravito-inertial force (up to 1.4G), orthogonal to the idiotropic vector, did not affect the direction of representational gravity, but significantly disrupted its time course. The role and functioning of an internal model of gravity for spatial perception and orientation are discussed in light of the results.
The behavior of surface tension on steady-state rotating fluids in the low gravity environments
NASA Technical Reports Server (NTRS)
Hung, R. J.; Leslie, Fred W.
1987-01-01
The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hathaway, M.D.; Wood, J.R.
1997-10-01
CFD codes capable of utilizing multi-block grids provide the capability to analyze the complete geometry of centrifugal compressors. Attendant with this increased capability is potentially increased grid setup time and more computational overhead with the resultant increase in wall clock time to obtain a solution. If the increase in difficulty of obtaining a solution significantly improves the solution from that obtained by modeling the features of the tip clearance flow or the typical bluntness of a centrifugal compressor`s trailing edge, then the additional burden is worthwhile. However, if the additional information obtained is of marginal use, then modeling of certainmore » features of the geometry may provide reasonable solutions for designers to make comparative choices when pursuing a new design. In this spirit a sequence of grids were generated to study the relative importance of modeling versus detailed gridding of the tip gap and blunt trailing edge regions of the NASA large low-speed centrifugal compressor for which there is considerable detailed internal laser anemometry data available for comparison. The results indicate: (1) There is no significant difference in predicted tip clearance mass flow rate whether the tip gap is gridded or modeled. (2) Gridding rather than modeling the trailing edge results in better predictions of some flow details downstream of the impeller, but otherwise appears to offer no great benefits. (3) The pitchwise variation of absolute flow angle decreases rapidly up to 8% impeller radius ratio and much more slowly thereafter. Although some improvements in prediction of flow field details are realized as a result of analyzing the actual geometry there is no clear consensus that any of the grids investigated produced superior results in every case when compared to the measurements. However, if a multi-block code is available, it should be used, as it has the propensity for enabling better predictions than a single block code.« less
Dey-Hazra, Emily; Hertel, Barbara; Kirsch, Torsten; Woywodt, Alexander; Lovric, Svjetlana; Haller, Hermann; Haubitz, Marion; Erdbruegger, Uta
2010-01-01
The clinical importance of microparticles resulting from vesiculation of platelets and other blood cells is increasingly recognized, although no standardized method exists for their measurement. Only a few studies have examined the analytical and preanalytical steps and variables affecting microparticle detection. We focused our analysis on microparticle detection by flow cytometry. The goal of our study was to analyze the effects of different centrifugation protocols looking at different durations of high and low centrifugation speeds. We also analyzed the effect of filtration of buffer and long-term freezing on microparticle quantification, as well as the role of Annexin V in the detection of microparticles. Absolute and platelet-derived microparticles were 10- to 15-fold higher using initial lower centrifugation speeds at 1500 × g compared with protocols using centrifugation speeds at 5000 × g (P < 0.01). A clear separation between true events and background noise was only achieved using higher centrifugation speeds. Filtration of buffer with a 0.2 μm filter reduced a significant amount of background noise. Storing samples for microparticle detection at −80°C decreased microparticle levels at days 28, 42, and 56 (P < 0.05 for all comparisons with fresh samples). We believe that staining with Annexin V is necessary to distinguish true events from cell debris or precipitates. Buffers should be filtered and fresh samples should be analyzed, or storage periods will have to be standardized. Higher centrifugation speeds should be used to minimize contamination by smaller size platelets. PMID:21191433
Cyclone–anticyclone vortex asymmetry mechanism and linear Ekman friction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chefranov, S. G., E-mail: schefranov@mail.ru
2016-04-15
Allowance for the linear Ekman friction has been found to ensure a threshold (in rotation frequency) realization of the linear dissipative–centrifugal instability and the related chiral symmetry breaking in the dynamics of Lagrangian particles, which leads to the cyclone–anticyclone vortex asymmetry. An excess of the fluid rotation rate ω{sub 0} over some threshold value determined by the fluid eigenfrequency ω (i.e., ω{sub 0} > ω) is shown to be a condition for the realization of such an instability. A new generalization of the solution of the Karman problem to determine the steady-state velocity field in a viscous incompressible fluid abovemore » a rotating solid disk of large radius, in which the linear Ekman friction was additionally taken into account, has been obtained. A correspondence of this solution and the conditions for the realization of the dissipative–centrifugal instability of a chiral-symmetric vortex state and the corresponding cyclone–anticyclone vortex asymmetry has been shown. A generalization of the well-known spiral velocity distribution in an “Ekman layer” near a solid surface has been established for the case where the fluid rotation frequency far from the disk ω differs from the disk rotation frequency ω{sub 0}.« less
Two-dimensional compressible flow in centrifugal compressors with straight blades
NASA Technical Reports Server (NTRS)
Stanitz, John D; Ellis, Gaylord O
1950-01-01
Six numerical examples are presented for steady, two-dimensional, compressible, nonviscous flow in centrifugal compressors with thin straight blades, the center lines of which generate the surface of a right circular cone when rotated about the axis of the compressor. A seventh example is presented for incompressible flow. The solutions were obtained in a region of the compressors, including the impeller tip, that was considered to be unaffected by the diffuser vanes or by the impeller-inlet configuration. Each solution applies to radial and mixed flow compressors with various cone angles but with the same angle between blades on the conic flow surface. The solution also apply to radial and mixed flow turbines with the rotation and the flow direction reversed. The effects of variations in the following parameters were investigated: (1) flow rate, (2) impeller-tip speed, (3) variation of passage height with radius, and (4) angle between blades on conic flow surface. The numerical results are presented in plots of the streamlines and constant Mach number lines. Correlation equations are developed whereby the flow conditions in any impeller with straight blades can be determined (in the region investigated by this analysis) for all operating conditions.
NASA Technical Reports Server (NTRS)
Guedry, F. E.; Paloski, W. F. (Principal Investigator)
1996-01-01
When head motion includes a linear velocity component, eye velocity required to track an earth-fixed target depends upon: a) angular and linear head velocity, b) target distance, and c) direction of gaze relative to the motion trajectory. Recent research indicates that eye movements (LVOR), presumably otolith-mediated, partially compensate for linear velocity in small head excursions on small devices. Canal-mediated eye velocity (AVOR), otolith-mediated eye velocity (LVOR), and Ocular Torsion (OT) can be measured, one by one, on small devices. However, response dynamics that depend upon the ratio of linear to angular velocity in the motion trajectory and on subject orientation relative to the trajectory are present in a centrifuge paradigm. With this paradigm, two 3-min runs yields measures of: LVOR differentially modulated by different subject orientations in the two runs; OT dynamics in four conditions; two directions of "steady-state" OT, and two directions of AVOR. Efficient assessment of the dynamics (and of the underlying central integrative processes) may require a centrifuge radius of 1.0 meters or more. Clinical assessment of the spatial orientation system should include evaluation of central integrative processes that determine the dynamics of these responses.
Unsteady Flow Dynamics and Acoustics of Two-Outlet Centrifugal Fan Design
NASA Astrophysics Data System (ADS)
Wong, I. Y. W.; Leung, R. C. K.; Law, A. K. Y.
2011-09-01
In this study, a centrifugal fan design with two flow outlets is investigated. This design aims to provide high mass flow rate but low noise performance. Two dimensional unsteady flow simulation with CFD code (FLUENT 6.3) is carried out to analyze the fan flow dynamics and its acoustics. The calculations were done using the unsteady Reynolds averaged Navier Stokes (URANS) approach in which effects of turbulence were accounted for using κ-ɛ model. This work aims to provide an insight how the dominant noise source mechanisms vary with a key fan geometrical paramters, namely, the ratio between cutoff distance and the radius of curvature of the fan housing. Four new fan designs were calculated. Simulation results show that the unsteady flow-induced forces on the fan blades are found to be the main noise sources. The blade force coefficients are then used to build the dipole source terms in Ffowcs Williams and Hawkings (FW-H) Equation for estimating their noise effects. It is found that one design is able to deliver a mass flow 34% more, but with sound pressure level (SPL) 10 dB lower, than the existing design .
Evolution of the solar radius during the solar cycle 24 rise time
NASA Astrophysics Data System (ADS)
Meftah, Mustapha
2015-08-01
One of the real motivations to observe the solar radius is the suspicion that it might be variable. Possible temporal variations of the solar radius are important as an indicator of internal energy storage and as a mechanism for changes in the total solar irradiance. Measurements of the solar radius are of great interest within the scope of the debate on the role of the Sun in climate change. Solar energy input dominates the surface processes (climate, ocean circulation, wind, etc.) of the Earth. Thus, it appears important to know on what time scales the solar radius and other fundamental solar parameters, like the total solar irradiance, vary in order to better understand and assess the origin and mechanisms of the terrestrial climate changes. The current solar cycle is probably going to be the weakest in 100 years, which is an unprecedented opportunity for studying the variability of the solar radius during this period. This paper presents more than four years of solar radius measurements obtained with a satellite and a ground-based observatory during the solar cycle 24 rise time. Our measurements show the benefit of simultaneous measurements obtained from ground and space observatories. Space observations are a priori most favourable, however, space entails also technical challenges, a harsh environment, and a finite mission lifetime. The evolution of the solar radius during the rising phase of the solar cycle 24 show small variations that are out of phase with solar activity.
Improving Early Adaptation Following Long Duration Spaceflight by Enhancing Vestibular Information
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar; Kofman, Igor; DeDios, Yiri E.; Galvan, Raquel; Miller, Chris; Peters, Brian; Cohen, Helen; Jeevarajan, Jerome; Reschke, Millard; Wood, Scott;
2014-01-01
Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after g-transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" -immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance (SR) to enhance information transfer by improving the brain's ability to detect vestibular signals especially when combined with balance training exercises for rapid improvement in functional skill, for standing and mobility. The countermeasure to improve post-flight balance and locomotor disturbances is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation, SVS). The techniques for improving signal detection using SVS may thus provide additional information to improve such strategic abilities and thus help in significantly reducing the number of days required to recover functional performance to preflight levels after long duration space flight. We have conducted a series of studies to document the efficacy of SVS stimulation on balance/locomotion tasks on unstable surfaces and motion tracking tasks during intra-vestibular system conflicts. In an initial study, we showed that SVS improved overall balance performance while standing on an unstable surface indicating that SVS may be sufficient to provide a comprehensive countermeasure approach for improving postural stability. In a second study, we showed that SVS improved locomotor performance on a treadmill mounted on an oscillating platform indicating that SVS may also be used to maximize locomotor performance during walking in unstable environments. In a third study, SVS was evaluated during an otolith-canal conflict scenario in a variable radius centrifuge at low frequency of oscillation (0.1 Hz) on both eye movements and perceptual responses (using a joystick) to track imposed oscillations. The variable radius centrifuge provides a selective tilting sensation that is detectable only by the otolith organs providing conflicting information from the canal organs of the vestibular system (intra-vestibular conflict). Results show that SVS significantly reduced the timing difference between both the eye movement responses as well as the perceptual tracking responses with respect to the imposed tilt sensations. These results indicate that SVS can improve performance in sensory conflict scenarios like that experienced during space flight. Such a SR countermeasure will act synergistically along with the pre-and in-flight adaptability training protocols providing an integrated, multi-disciplinary countermeasure capable of fulfilling multiple requirements making it a comprehensive and cost effective countermeasure approach to enhance sensorimotor capabilities following long-duration space flight.
Centrifuge Impact Cratering Experiments
NASA Technical Reports Server (NTRS)
Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.
1985-01-01
The kinematics of crater growth, impact induced target flow fields and the generation of impact melt were determined. The feasibility of using scaling relationships for impact melt and crater dimensions to determine impactor size and velocity was studied. It is concluded that a coupling parameter determines both the quantity of melt and the crater dimensions for impact velocities greater than 10km/s. As a result impactor radius, a, or velocity, U cannot be determined individually, but only as a product in the form of a coupling parameter, delta U micron. The melt volume and crater volume scaling relations were applied to Brent crater. The transport of melt and the validity of the melt volume scaling relations are examined.
Interface stability in a slowly rotating, low gravity tank Experiments
NASA Technical Reports Server (NTRS)
Leslie, F.; Gans, R. F.
1986-01-01
Analytical models of liquid in partially-filled rotating tanks predict both the shape of the interface between the liquid and its vapor, and the stability of that interface. The models are of necessity incomplete and experimental data are needed to assess the approximations made. Presented are preliminary experimental studies both in the laboratory and in the low-gravity environment of a free-falling aircraft. Emphasis is placed on bubbles which intersect the container boundaries. Measurements of rotating equilibrium bubble shapes are in agreement with theoretical profiles derived from Laplace's formula. The interface shape depends on the contact angle, the radius of intersection with container, and the ratio of centrifugal force to surface tension.
Io. [history of studies and current level of understanding of this satellite
NASA Technical Reports Server (NTRS)
Nash, Douglas B.; Yoder, Charles F.; Carr, Michael H.; Gradie, Jonathan; Hunten, Donald M.
1986-01-01
The present work reviews the history of Io studies and describes the current level of understanding of Io's physics, chemistry, geology, orbital dynamics, and geophysics. Consideration is given to the satellite's internal, superficial, atmospheric, plasma, and magnetospheric properties and how they interrelate. A pictorial map of Io's surface based on Voyager 1 and 2 images is presented. It is found that Io's surface color and spectra are dominated by sulfur compounds which may include various sulfur allotropes. Volcanic processes yielding three kinds of surface features (vent regions, plains, and mountains) dominate Io's surface geology. The Io plasma torus corotates with Jupiter's magnetic field in the plane of Jupiter's centrifugal equator centered at Io's orbital radius.
A Systematic Evaluation of Blood Serum and Plasma Pre-Analytics for Metabolomics Cohort Studies
Jobard, Elodie; Trédan, Olivier; Postoly, Déborah; André, Fabrice; Martin, Anne-Laure; Elena-Herrmann, Bénédicte; Boyault, Sandrine
2016-01-01
The recent thriving development of biobanks and associated high-throughput phenotyping studies requires the elaboration of large-scale approaches for monitoring biological sample quality and compliance with standard protocols. We present a metabolomic investigation of human blood samples that delineates pitfalls and guidelines for the collection, storage and handling procedures for serum and plasma. A series of eight pre-processing technical parameters is systematically investigated along variable ranges commonly encountered across clinical studies. While metabolic fingerprints, as assessed by nuclear magnetic resonance, are not significantly affected by altered centrifugation parameters or delays between sample pre-processing (blood centrifugation) and storage, our metabolomic investigation highlights that both the delay and storage temperature between blood draw and centrifugation are the primary parameters impacting serum and plasma metabolic profiles. Storing the blood drawn at 4 °C is shown to be a reliable routine to confine variability associated with idle time prior to sample pre-processing. Based on their fine sensitivity to pre-analytical parameters and protocol variations, metabolic fingerprints could be exploited as valuable ways to determine compliance with standard procedures and quality assessment of blood samples within large multi-omic clinical and translational cohort studies. PMID:27929400
Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices.
Guyot, Sylvain; Marnet, Nathalie; Sanoner, Philippe; Drilleau, Jean-François
2003-10-08
Five French cider apple varieties were compared on the basis of their detailed polyphenol profile in the cortex and in the juices. Among the factors studied, variety was the most important variability factor in fruits, whereas polyphenol profiles showed an overall stability from one year to another, and a limited decrease of polyphenol concentration was observed during the starch regression period of fruit maturation. In juices, procyanidins remained the preponderant polyphenol class with concentrations up to 2.4 g/L even in centrifuged juices. Compared to the fruits, the average degree of polymerization of procyanidins was significantly reduced in the juice. Centrifugation of the crude juice had only minor effects on the polyphenol composition. For one variety, highly polymerized procyanidins with average degrees of polymerization of 25 were shown to be soluble in the centrifuged juice at a concentration of close to 1.2 g/L. Oxygenation of the juices during processing resulted in a significant decrease of all classes of native polyphenols. Catechins and procyanidins were particularly affected by oxidation, whereas caffeoylquinic acid was partly preserved. The transfer of polyphenols after pressing was maximal for dihydrochalcones and minimal for procyanidins with extraction yield values close to 80 and 30%, respectively.
Research opportunities with the Centrifuge Facility
NASA Technical Reports Server (NTRS)
Funk, Glenn A.
1992-01-01
The Centrifuge Facility on Space Station Freedom will consist of a 2.5-meter diameter Centrifuge accommodating two concentric rings of habitats and providing variable g-forces between 0.01 g and 2.0 g; modular habitats providing housing and lifesupport for rats, mice, and plants; a habitat holding system providing power, water, airflow and other utilities to several modular habitats; and a life sciences glovebox, an isolated work volume accommodating simultaneous operations by at least two scientists and providing lighting, airflow, video and data access, and other experiment support functions. The centrifuge facility will enable long-duration animal and plant microgravity research not previously possible in the NASA flight research program. It will offer unprecedented opportunities for use of on-board 1-g control populations and statistically significant numbers of specimens. On orbit 1-g controls will allow separation of the effects of microgravity from other environmental factors. Its selectable-g and simultaneous multiple-g capabilities will enable studies of gravitational thresholds, the use of artificial gravity as a countermeasure to the effects of microgravity, and ready simulation of Lunar and Martian gravities.
Calculations of the Acceleration of Centrifugal Loading on Adherent Cells
NASA Astrophysics Data System (ADS)
Chen, Kang; Song, Yang; Liu, Qing; Zhang, Chunqiu
2017-07-01
Studies have shown that the morphology and function of living cells are greatly affected by the state of different high acceleration. Based on the centrifuge, we designed a centrifugal cell loading machine for the mechanical biology of cells under high acceleration loading. For the machine, the feasibility of the experiment was studied by means of constant acceleration or variable acceleration loading in the Petri dish fixture and/or culture flask. Here we analyzed the distribution of the acceleration of the cells with the change of position and size of the culturing device quantitatively. It is obtained that Petri dish fixture and/or culture flask can be used for constant acceleration loading by experiments; the centripetal acceleration of the adherent cells increases with the increase of the distance between the rotor center of the centrifuge and the fixture of the Petri dish and the size of the fixture. It achieves the idea that the general biology laboratory can conduct the study of mechanical biology at high acceleration. It also provides a basis for more accurate study of the law of high acceleration on mechanobiology of cells.
Vivid Motor Imagery as an Adaptation Method for Head Turns on a Short-Arm Centrifuge
NASA Technical Reports Server (NTRS)
Newby, N. J.; Mast, F. W.; Natapoff, A.; Paloski, W. H.
2006-01-01
Artificial gravity (AG) has been proposed as a potential countermeasure to the debilitating physiological effects of long duration space flight. The most economical means of implementing AG may be through the use of a short-radius (2m or less) centrifuge. For such a device to produce gravitational forces comparable to those on earth requires rotation rates in excess of 20 revolutions per minute (rpm). Head turns made out of the plane of rotation at these rates, as may be necessary if exercise is combined with AG, result in cross-coupled stimuli (CCS) that cause adverse side effects including motion sickness, illusory sensations of motion, and inappropriate eye movements. Recent studies indicate that people can adapt to CCS and reduce these side effects by making multiple head turns during centrifuge sessions conducted over consecutive days. However, about 25% of the volunteers for these studies have difficulty tolerating the CCS adaptation paradigm and often drop out due to motion sickness symptoms. The goal of this investigation was to determine whether vivid motor imagery could be used as a pseudostimulus for adapting subjects to this unique environment. Twenty four healthy human subjects (14 males, 10 females), ranging in age from 21 to 48 years (mean 33, sd 7 years) took part in this study. The experimental stimuli were produced using the NASA JSC short-arm centrifuge (SAC). Subjects were oriented supinely on this device with the nose pointed toward the ceiling and head centered on the axis of rotation. Thus, centrifuge rotation was in the body roll plane. After ramp-up the SAC rotated clockwise at a constant rate of 23 rpm, producing a centrifugal force of approximately 1 g at the feet. Semicircular canal CCS were produced by having subjects make yaw head turns from the nose up (NU) position to the right ear down (RED) position and from RED to NU. Each head turn was completed in about one second, and a 30 second recovery period separated consecutive head movements. Participants were randomly assigned to one of three groups (n=8 per group): physical adapters (PA), mental adapters (MA), or a control group (CG). Each subject participated in a one hour test session on each of three consecutive days. Each test session consisted of an initial (preadaptation) period during which the subject performed six CCS maneuvers in the dark, followed by an adaptation period with internal lighting on the centrifuge, and a final (postadaptation) period during which six more CCS maneuvers were performed in the dark. For the PA group, the adaptation period consisted of performing 30 additional CCS maneuvers in the light. For the MA and CG group the centrifuge was ramped down to 0 rpm after the pre-adaptation period and ramped back up to 23 rpm before the post-adaptation period. For the both of these groups, the adaptation period consisted of making 30 CCS maneuvers in the light with the centrifuge stationary (so no cross-coupling occurred). MA group subjects were instructed to vividly imagine the provocative sensations produced by the preadaptation CCS maneuvers in terms of magnitude, duration, and direction of illusory body tilt, as well as any accompanying levels of motion sickness. CG group subjects were asked to answer low imagery content questions (trivial pursuit) during each adaptation period head turn. During the 30 second recovery following each head turn, psychophysical data were collected including self reports of motion sickness, magnitude and direction estimates of illusory body tilt, and the overall duration of these sensations. A multilevel mixed effects linear regression analysis performed on all response variables indicated that all three groups experienced some psychophysical adaptation across the three test sessions. For illusory tilt magnitude, the PA group exhibited the most overall adaptation, followed by the MA group, and the CG group. The slopes of these adaptation trajectories by group over day were significantly diffent from one another. For the perceived duration of sensations, the CG group again exhibited the least amount of adaptation. However, the rates of adaptation of the PA and the MA groups were indistinguishable, suggesting that the imagined pseudostimulus appeared to be just as effective a means of adaptation as the actual stimulus. The MA group's rate of adaptation to motion sickness symptoms was also comparable to the PA group. The use of vivid motor imagery may be an effective method for adapting to the illusory sensations and motion sickness symptoms produced by cross-coupled stimuli. For space-based AG applications, this technique may prove quite useful in retaining astronauts considered highly susceptible to motion sickness as it reduces the number of actual CCS required to attain adaptation.
Kosaka, Ryo; Yasui, Kazuya; Nishida, Masahiro; Kawaguchi, Yasuo; Maruyama, Osamu; Yamane, Takashi
2014-09-01
We have developed a hydrodynamically levitated centrifugal pump as a bridge-to-decision device. The purpose of the present study is to determine the optimal bearing gap of a multiarc radial bearing in the developed blood pump for the reduction of hemolysis. We prepared eight pump models having bearing gaps of 20, 30, 40, 80, 90, 100, 180, and 250 μm. The driving conditions were set to a pressure head of 200 mm Hg and a flow rate of 4 L/min. First, the orbital radius of the impeller was measured for the evaluation of the impeller stability. Second, the hemolytic property was evaluated in an in vitro hemolysis test. As a result, the orbital radius was not greater than 15 μm when the bearing gap was between 20 and 100 μm. The relative normalized index of hemolysis (NIH) ratios in comparison with BPX-80 were 37.67 (gap: 20 μm), 0.95 (gap: 30 μm), 0.96 (gap: 40 μm), 0.82 (gap: 80 μm), 0.77 (gap: 90 μm), 0.92 (gap: 100 μm), 2.76 (gap: 180 μm), and 2.78 (gap: 250 μm). The hemolysis tended to increase at bearing gaps of greater than 100 μm due to impeller instability. When the bearing gap decreased from 30 to 20 μm, the relative NIH ratios increased significantly from 0.95 to 37.67 times (P < 0.01) due to high shear stress. We confirmed that the optimal bearing gap was determined between 30 and 100 μm in the developed blood pump for the reduction of hemolysis. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Pitch-Plane Angular Displacement Perception During Helicopter Flight and Gondola Centrifugation.
Tribukait, Arne; Bergsten, Eddie; Eiken, Ola
During hovering with a helicopter, an involuntary change in attitude (during brownout) results in reduced lifting force and a horizontal acceleration component. This movement pattern is difficult to perceive via the otolith organs. If the angular displacement occurs rapidly, it will, however, activate the semicircular canals. The major aim of this study was to establish to what extent pitch-plane angular displacements can be perceived based on canal information when there is no tilt stimulus to the otoliths. In a helicopter, 9 nonpilots (N) and 8 helicopter pilots (P) underwent 5-6 pitch-forward displacements (magnitude 14-33°, angular velocity 2-7° · s -1 ). In a swing-out gondola centrifuge, 9 N and 3 P were exposed to a similar canal-otolith conflict (acceleration, seated centripetally) with four displacements of 25° and two of 60°. The visually perceived eye level (VPEL) was continuously recorded using an adjustable luminous dot in darkness. For each helicopter dive and centrifuge run the gain was calculated as the ratio (VPEL deflection)/(displacement of helicopter or gondola). In the helicopter there was no difference between N (0.28 ± 0.13) and P (0.36 ± 0.22). In the centrifuge the gains were 0.34 ± 0.18° (25° displacements) and 0.30 ± 0.16° (60° displacements). Values obtained in the helicopter did not differ significantly from those in the centrifuge. There was a correlation between data obtained during the 25° and 60° displacements in the centrifuge. There was a pronounced underestimation of pitch angular displacements in a helicopter. The interindividual variability was considerable. Gains for perceived displacement were similar in helicopter and centrifuge. Tribukait A, Bergsten E, Eiken O. Pitch-plane angular displacement perception during helicopter flight and gondola centrifugation. Aerosp Med Hum Perform. 2016; 87(10):852-861.
An alternative arrangement of metered dosing fluid using centrifugal pump
NASA Astrophysics Data System (ADS)
Islam, Md. Arafat; Ehsan, Md.
2017-06-01
Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.
NASA Technical Reports Server (NTRS)
Kelley, Anthony R. (Inventor); Buskirk, Paul D. (Inventor)
2006-01-01
An orifice plate for use in a conduit through which fluid flows is defined by a central circular region having a radius R, and a ring-shaped region surrounding the central circular region. The ring-shaped region has holes formed therethrough with those holes centered at each radius R thereof satisfying a relationship A(sub R)=al(X(sub R)V(sub R)(sup b)) where A(sub R) is a sum of areas of those holes having centers at radius R, X(sub R) is a flow coefficient at radius R, V(sub R) is a velocity of the fluid that is to flow through the conduit at radius R, b is a constant selected to make at least one process variable (associated with the fluid that is to flow through the conduit) approximately equal at each radius R, and a is a constant that is equal to (X(sub R)A(sub R)V(sub R)(sup b)) at each radius R.
A universal relation for the propeller mechanisms in magnetic rotating stars at different scales
NASA Astrophysics Data System (ADS)
Campana, Sergio; Stella, Luigi; Mereghetti, Sandro; de Martino, Domitilla
2018-02-01
Accretion of matter onto a magnetic, rotating object can be strongly affected by the interaction with its magnetic field. This occurs in a variety of astrophysical settings involving young stellar objects, white dwarfs, and neutron stars. As matter is endowed with angular momentum, its inflow toward the star is often mediated by an accretion disc. The pressure of matter and that originating from the stellar magnetic field balance at the magnetospheric radius: at smaller distances the motion of matter is dominated by the magnetic field, and funnelling towards the magnetic poles ensues. However, if the star, and thus its magnetosphere, is fast spinning, most of the inflowing matter will be halted at the magnetospheric radius by centrifugal forces, resulting in a characteristic reduction of the accretion luminosity. The onset of this mechanism, called the propeller, has been widely adopted to interpret a distinctive knee in the decaying phase of the light curve of several transiently accreting X-ray pulsar systems. By comparing the observed luminosity at the knee for different classes of objects with the value predicted by accretion theory on the basis of the independently measured magnetic field, spin period, mass, and radius of the star, we disclose here a general relation for the onset of the propeller which spans about eight orders of magnitude in spin period and ten in magnetic moment. The parameter-dependence and normalisation constant that we determine are in agreement with basic accretion theory.
Early adaptation to altered gravitational environments in the squirrel monkey
NASA Technical Reports Server (NTRS)
Fuller, C. A.
1985-01-01
The feeding behavior of two squirrel monkeys flown in Spacelab 3 is compared to that of six monkeys exposed to 1.5 G through centrifugation. The monkeys in the centrifugation study were housed unrestrained in cages, maintained at 25 C + or - 1 C, exposed to a 12:12 light/dark cycle, and had unrestrained access to food and water. The Spacelab monkeys were maintained at 26 C, exposed to a 12:12 light/dark cycle and had unlimited food and water. It is observed that the centrifuge rats displayed a change in feeding behavior for 4 days prior to resuming a normal pattern; one Spacelab monkey exhibited a 6 day depression before recover to control levels, and the feeding pattern of the second monkey was not influenced by the environment. It is noted that the effect of an altered dynamic environment is variable on the feeding behavior of individual monkeys.
NASA Technical Reports Server (NTRS)
Ortiz, R. M.; Wade, C. E.; Morey-Holton, E.
2000-01-01
A dissociation between plasma luteinizing hormone (LH) and testosterone (T) appears to exist during exposure to altered gravity. The pulsatile nature of LH release and the diurnal variability of T secretion may mask or bias the effects of altered gravity on the pituitary-gonadal axis when analyzing plasma concentrations. Therefore, we examined the relationship between the excretion of urinary LH and T in male Sprague-Dawley rats during exposure to increased gravity upon return to Earth following a 14-day spaceflight (n = 6) and by 12 days of centrifugation at 2g (n = 8). Excreted LH and T were elevated on the first 3 days postflight. Excreted T was elevated between Days 1 and 8 of centrifugation; however, excreted LH was reduced on Days 2 and 3 compared with control animals. Excreted LH and T were significantly correlated (R = 0.731 and 0.706, respectively) in postspaceflight and centrifuged animals. Correlation curves had similar slopes (0.0213 and 0.023, respectively), but different y-intercepts (-1.43 and 3.32, respectively). The sustained increase in excreted T during centrifugation suggests that the pituitary-gonadal axis in postspaceflight animals may adapt quicker to increased gravity. The upward shift in the correlation curve exhibited by the centrifuged animals suggests that the sensitivity of LH-induced T release is increased in these animals. The previous dissociation between plasma LH and T during altered gravity was not observed in the present study in which excreted LH and T were measured.
2012-01-01
Background Variability among stallions in terms of semen cryopreservation quality renders it difficult to arrive at a standardized cryopreservation method. Different extenders and processing techniques (such us colloidal centrifugation) are used in order to optimize post-thaw sperm quality. Sperm chromatin integrity analysis is an effective tool for assessing such quality. The aim of the present study was to compare the effect of two single layer colloidal centrifugation protocols (prior to cryopreservation) in combination with three commercial freezing extenders on the post-thaw chromatin integrity of equine sperm samples at different post-thaw incubation (37°C) times (i.e., their DNA fragmentation dynamics). Results Post-thaw DNA fragmentation levels in semen samples subjected to either of the colloidal centrifugation protocols were significantly lower (p<0.05) immediately after thawing and after 4 h of incubation at 37°C compared to samples that underwent standard (control) centrifugation. The use of InraFreeze® extender was associated with significantly less DNA fragmentation than the use of Botu-Crio® extender at 6 h of incubation, and than the use of either Botu-Crio® or Gent® extender at 24 h of incubation (p<0.05). Conclusions These results suggest that single layer colloidal centrifugation performed with extended or raw semen prior to cryopreservation reduces DNA fragmentation during the first four hours after thawing. Further studies are needed to determine the influence of freezing extenders on equine sperm DNA fragmentation dynamics. PMID:23217215
Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station
NASA Technical Reports Server (NTRS)
Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)
2000-01-01
The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.
DEM simulation of granular flows in a centrifugal acceleration field
NASA Astrophysics Data System (ADS)
Cabrera, Miguel Angel; Peng, Chong; Wu, Wei
2017-04-01
The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of this validation is abstracting the role of the governing acceleration on the granular flow dynamics and extend it to a wider range of accelerations and slope angles. Based on this results we aim to validate the centrifuge scaling principle of flow velocity and flow height, and discuss the viability of centrifuge modelling of mass flows in a wider range of configurations. References T. Arndt, A. Brucks, J.M. Ottino, and R. Lueptow. Creeping granular motion under variable gravity levels. Phys. Rev. E, 74 (031307), 2006. E. Bowman, J. Laue, and S. Springman. Experimental modelling of debris flow behaviour using a geotechnical centrifuge. Canadian Geotechnical Journal, 47(7): 742 - 762, 2010. M. Cabrera. Experimental modelling of granular flows in rotating frames. PhD thesis, University of Natural Resources and Life Sciences, Vienna, February 2016 J. Garnier, C. Gaudin, S.M. Springman, P.J. Culligan, D.J. Goodings, D. Konig, B.L. Kutter, R. Phillips, M.F. Randolph, and L. Thorel. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. International Journal of Physical Modelling in Geotechnics, 7(3):1 - 23, 2007. R.M. Iverson. Scaling and design of landslide and debris-flow experiments. Geomorphology, 2015. J. Mathews. Investigation of granular flow using silo centrifuge models. PhD thesis, University of Natural Resources and Life Sciences, Vienna, September 2013. L. Vallejo, N. Estrada, A. Taboada, B. Caicedo, and J.A. Silva. Numerical and physical modeling of granular flow. In C.W. Ng, Y.H. Wang, and L.M. Zhang, editors, Physical Modelling in Geotechnics. Taylor & Francis, July 2006.
NASA Astrophysics Data System (ADS)
Leclercq, Colin; Nguyen, Florian; Kerswell, Rich R.
2016-10-01
The "Rayleigh line" μ =η2 , where μ =Ωo/Ωi and η =ri/ro are respectively the rotation and radius ratios between inner (subscript i ) and outer (subscript o ) cylinders, is regarded as marking the limit of centrifugal instability (CI) in unstratified inviscid Taylor-Couette flow, for both axisymmetric and nonaxisymmetric modes. Nonaxisymmetric stratorotational instability (SRI) is known to set in for anticyclonic rotation ratios beyond that line, i.e., η2<μ <1 for axially stably stratified Taylor-Couette flow, but the competition between CI and SRI in the range μ <η2 has not yet been addressed. In this paper, we establish continuous connections between the two instabilities at finite Reynolds number Re, as previously suggested by Le Bars and Le Gal [Phys. Rev. Lett. 99, 064502 (2007), 10.1103/PhysRevLett.99.064502], making them indistinguishable at onset. Both instabilities are also continuously connected to the radiative instability at finite Re. These results demonstrate the complex impact viscosity has on the linear stability properties of this flow. Several other qualitative differences with inviscid theory were found, among which are the instability of a nonaxisymmetric mode localized at the outer cylinder without stratification and the instability of a mode propagating against the inner cylinder rotation with stratification. The combination of viscosity and stratification can also lead to a "collision" between (axisymmetric) Taylor vortex branches, causing the axisymmetric oscillatory state already observed in past experiments. Perhaps more surprising is the instability of a centrifugal-like helical mode beyond the Rayleigh line, caused by the joint effects of stratification and viscosity. The threshold μ =η2 seems to remain, however, an impassable instability limit for axisymmetric modes, regardless of stratification, viscosity, and even disturbance amplitude.
Changes in mesenteric, renal, and aortic flows with +Gx acceleration
NASA Technical Reports Server (NTRS)
Stone, H. L.; Erickson, H. H.; Sandler, H.
1974-01-01
Previous studies in man and dogs have indicated that the splanchnic bed might contribute to the maintenance of arterial pressure during +Gx acceleration. Eight mongrel dogs were chronically instrumented with Doppler flow probes around the superior mesenteric (SMA) and renal arteries (RA) as well as the terminal aorta (TA). A solid-state pressure transducer was placed in the aorta distal to the flow probe. Using alpha-chloralose anesthesia following a 2-4 week recovery period, the animals were subjected to 120 sec at levels of 5, 10 and 15 +Gx acceleration on a 7.6-m radius centrifuge. The results indicate that both an active component and a mechanical component contribute to the maintenance of arterial pressure during +Gx acceleration.
Acute spinal injury after centrifuge training in asymptomatic fighter pilots.
Kang, Kyung-Wook; Shin, Young Ho; Kang, Seungcheol
2015-04-01
Many countries have hypergravity training centers using centrifuges for pilots to cope with a high gravity (G) environment. The high G training carries potential risk for the development of spinal injury. However, no studies evaluated the influence of centrifuge training on the spines of asymptomatic fighter pilots on a large scale. Study subjects were 991 male fighter pilots with high G training at one institution. Subject variables included information about physical characteristics, flight hours of pilots prior to the training, and G force exposure related factors during training. The two dependent variables were whether the pilots developed acute spinal injury after training and the severity of the injury (major/minor). The incidence of acute spinal injury after high G training was 2.3% (23 of 991 subjects). There were 19 subjects who developed minor injury and 4 subjects who developed a herniated intervertebral disc, which is considered a major injury. In multivariate analysis, only the magnitude of G force during training was significantly related to the development of acute spinal injury. However, there was no significant factor related to the severity of the injury. These results suggest that high G training could cause negative effects on fighter pilots' spines. The magnitude of G force during training seemed to be the most significant factor affecting the occurrence of acute spinal injury.
Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 1; Start-up
NASA Technical Reports Server (NTRS)
Ku, Jentung; Rogers, Paul; Hoff, Craig
2000-01-01
The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. They are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the first part of the experimental study, i.e. the effects of a centrifugal force on the LHP start-up. Tests were conducted by varying the heat load to the evaporator, sink temperature, magnitude and frequency of centrifugal force, and LHP orientation relative to the direction of the accelerating force. The accelerating force seems to have little effect on the loop start-up in terms of temperature overshoot and superheat at boiling incipience. Changes in these parameters seem to be stochastic with or without centrifugal accelerating forces. The LHP started successfully in all tests.
X-ray microtomography analysis of soil structure deformation caused by centrifugation
NASA Astrophysics Data System (ADS)
Schlüter, Steffen; Leuther, Frederic; Vogler, Steffen; Vogel, Hans-Jörg
2016-04-01
Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of <-100kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent to any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.
X-ray microtomography analysis of soil structure deformation caused by centrifugation
NASA Astrophysics Data System (ADS)
Schlüter, S.; Leuther, F.; Vogler, S.; Vogel, H.-J.
2016-01-01
Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of ψ < -100 kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent in any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.
NASA Technical Reports Server (NTRS)
Eusepi, M.; Winn, L. W.
1975-01-01
Results of tests made to determine the experimental performance of a series hybrid bearing are reported. The bearing consists of a 150 mm ball bearing and a centrifugally actuated, conical, fluid film bearing fitting an envelope with an outer radius of 86.4 mm (3.4 in.) and inner radius of 71 mm (2.8 in.). Tests were conducted up to 16,500 rpm, at which speed an axial load of 15,568 N (3500 lb) was safely supported by the hybrid bearing system. Through the employment of the series hybrid bearing principle, it was possible to reduce the effective ball bearing speed to approximately one-half of the shaft speed. A reduction of this magnitude should result in a tenfold increase in the ball bearing fatigue life. A successful simulation of fluid film bearing lubricant supply failure, performed repeatedly at an operating speed of 10,000 rpm, resulted in complete and smooth change over to full scale ball bearing operation when the oil supply to the fluid film bearing was discontinued. Reactivation of the fluid film supply system produced a flawless return to the original mode of hybrid operation.
Fluid surface behavior in low gravity. Center discretionary fund no. 83-21
NASA Technical Reports Server (NTRS)
Leslie, F.; Gans, R. F.; Schafer, C.
1985-01-01
Measurements of rotating equilibrium bubble shapes in the low-gravity environment of a free-falling aircraft are presented. Emphasis is placed on bubbles which intersect the container boundaries. These data are compared with theoretical profiles derived from Laplace's formula and are in good agreement with the measurements. Two types of instability are explored. The first occurs when the baffle spacing is too large for the bubble to intersect both the top and bottom boundaries. The second occurs when the hydrostatic pressure beneath a displaced free surface does not compensate for pressure change due to capillary forces. The interface shape depends on the contact angle, the radius of intersection with container, and the parameter F which is a measure of the relative importance of centrifugal force to surface tension. For isolated bubbles, F has a maximum value of 1/2. A further increase in F causes the bubble to break contact with the axis of rotation. For large values of F, the bubble becomes more cylindrical and the capillary rise occurs over a thinner layer so that the small radius of curvature can generate enough pressure drop to balance the increased hydrostatic contribution.
Superradiance-tidal friction correspondence
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Kapadia, Shasvath J.; Kennefick, Daniel
2014-01-01
Since the work of Hartle in the 1970s, and the subsequent development of the membrane paradigm approach to black hole physics it has been widely accepted that superradiant scattering of gravitational waves bears strong similarities with the phenomenon of "tidal friction" (well known from Newtonian gravity) operating in binary systems of viscous material bodies. In this paper we revisit the superradiance-tidal friction analogy within the context of ultracompact relativistic bodies. We advocate that as long as these bodies have nonzero viscosity they should undergo tidal friction that can be construed as a kind of superradiant scattering from the point of view of the dynamics of an orbiting test body. In addition we consider the presence of anisotropic matter, which is required for at least some ultracompact bodies, if they are to sustain a radius very close to the gravitational radius. We find that the tidal friction/superradiance output is enhanced with increasing anisotropy and that strongly anisotropic systems exhibit an unconventional response to tidal and centrifugal forces. Finally, we make contact with the artificial system comprising a black hole with its horizon replaced by a mirror (sometimes used as a proxy for ultracompact material bodies) and discuss superradiance and tidal friction in relation to it.
NASA Astrophysics Data System (ADS)
Estrada, P. R.; Mosqueira, I.
2003-05-01
Mosqueira and Estrada (2003a) argue that following giant planet accretion a largely quiescent circumplanetary disk may form with most of the mass inside a radius located outside, but perhaps close to, the centrifugal radius rc = RH/48, where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, and extending as far as the irregular satellites at RH/5 due to the high specific angular momentum of parcels of gas accreted from distances several times RH during the final stages of planetary growth (Lubow et al. 1999). Provided that allowances are made for the capture of Triton from heliocentric orbit, this picture fits well with the primordial satellite systems of all four giant planets. Because strong gas turbulence would smooth out the gas surface density of the disk, this description can only apply if the turbulence subsides as planetary accretion ceases. Although the viability of a hydrodynamic shear instability in Keplerian disks that can sustain significant post-accretion turbulence and drive evolution of the gas disk is in serious doubt (see Mosqueira et al. this conference), the possibility has not yet been totally ruled out. This leads us to consider gas-poor scenarios that might produce a close-in regular satellite system. To this end, we re-examine the ideas of Safronov et al. (1986) to see whether a gas-free (or nearly gas-free) model can be made consistent with the extent of the regular satellites of the giant planets. In this model, planetesimals containing most of the mass of solids (Mizuno et al. 1978; Weidenschilling 1997) that are de-coupled from the gas and whose dynamics must be followed independently are collisionally captured and form a swarm of circumplanetary objects lasting for perhaps ˜ 106 years. While such a swarm might occupy a significant fraction of the Hill radius of the planet, the small net angular momentum of the swarm might lead to the formation of close-in prograde satellites as observed. A key point that this model must contend with is how to capture sufficient mass to form the Galilean satellites while still making Callisto partially differentiated. Other points of comparison with the model of Mosqueira and Estrada (2003a, b) may be briefly discussed (such as the concentration of mass in Titan, the apparent lack of objects between the regular and irregular satellites, the low density of the small Saturnian satellites, and the compositional gradient of the Galilean satellites).
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Kofman, I. S.; De Dios, Y. E; Galvan, R.; Goel, R.; Miller, C.; Peters, B.; Cohen, H. S.; Jeevarajan, J.; Reschke, M.;
2014-01-01
Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after gravitational transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" - immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance to enhance information transfer by improving the brain's ability to detect vestibular signals (Vestibular Stochastic Resonance, VSR) especially when combined with balance training exercises such as sensorimotor adaptability (SA) training for rapid improvement in functional skill, for standing and mobility. This countermeasure to improve detection of vestibular signals is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation). To determine efficacy of vestibular stimulation on physiological and perceptual responses during otolith-canal conflicts and dynamic perturbations we have conducted a series of studies: We have shown that imperceptible binaural bipolar electrical stimulation of the vestibular system across the mastoids enhances balance performance in the mediolateral (ML) plane while standing on an unstable surface. We have followed up on the previous study showing VSR stimulation improved balance performance in both ML and anteroposterior planes while stimulating in the ML axis only. We have shown the efficacy of VSR stimulations on enhancing physiological and perceptual responses of whole-body orientation during low frequency perturbations (0.1 Hz) on the ocular motor system using a variable radius centrifuge on both physiological (using eye movements) and perceptual responses (using a joystick) to track imposed oscillations. The variable radius centrifuge provides a selective tilting sensation that is detectable only by the otolith organs providing conflicting information from the canal organs of the vestibular system (intra-vestibular conflict). These results indicate that VSR can improve performance in sensory conflict scenarios like that experienced during space flight. We have showed the efficacy of VSR stimulation to improve balance and locomotor control on subjects exposed to continuous, sinusoidal lateral motion of the support surface while walking on a treadmill while viewing perceptually matched linear optic flow. We have shown the safety of short term continuous use of up to 4 hours of VSR stimulation and its efficacy in improving balance and locomotor function in Parkinson's Disease patients. This technique for improving vestibular signal detection may thus provide additional information to improve strategic abilities. We hypothesize that VSR stimulation will act synergistically with SA training to improve adaptability by increased utilization of vestibular information and therefore serve to optimize and personalize the SA countermeasure prescription. This forms the basis of its usefulness both as a training modality and further help in significantly reducing the number of days required to recover functional performance to preflight levels after long duration space flight.
Influence of tree spatial pattern and sample plot type and size on inventory
John-Pascall Berrill; Kevin L. O' Hara
2012-01-01
Sampling with different plot types and sizes was simulated using tree location maps and data collected in three even-aged coast redwood (Sequoia sempervirens) stands selected to represent uniform, random, and clumped spatial patterns of tree locations. Fixed-radius circular plots, belt transects, and variable-radius plots were installed by...
Reliability Based Geometric Design of Horizontal Circular Curves
NASA Astrophysics Data System (ADS)
Rajbongshi, Pabitra; Kalita, Kuldeep
2018-06-01
Geometric design of horizontal circular curve primarily involves with radius of the curve and stopping sight distance at the curve section. Minimum radius is decided based on lateral thrust exerted on the vehicles and the minimum stopping sight distance is provided to maintain the safety in longitudinal direction of vehicles. Available sight distance at site can be regulated by changing the radius and middle ordinate at the curve section. Both radius and sight distance depend on design speed. Speed of vehicles at any road section is a variable parameter and therefore, normally the 98th percentile speed is taken as the design speed. This work presents a probabilistic approach for evaluating stopping sight distance, considering the variability of all input parameters of sight distance. It is observed that the 98th percentile sight distance value is much lower than the sight distance corresponding to 98th percentile speed. The distribution of sight distance parameter is also studied and found to follow a lognormal distribution. Finally, the reliability based design charts are presented for both plain and hill regions, and considering the effect of lateral thrust.
Gravity-Loading During Pregnancy and Birth: Effects on Neonatal Outcome
NASA Technical Reports Server (NTRS)
Ronca, April E.; Dahl, Bonnie (Technical Monitor)
1998-01-01
In this presentation, I will describe the effects of increased gravity on mammalian development in rodents, from gestation throughout weaning. The work is based on studies of centrifugation-induced hypergravity-rearing, the fundamentals of which will be described. The key variables include: 1) comparison of first-time (primparous) and experienced (multiparous) rodent mothers; 2) prenatal adaptation to the centrifuge; and 3) application of a modest g-load (1.5-g). The reported findings emphasize pregnancy, labor and birth, maternal care and lactation in the dams, and suckling, growth, development, and weaning in the offspring. Pregnancy success and offspring growth and survival will be discussed.
NASA Astrophysics Data System (ADS)
Wang, Leilei; Yang, Ce; Zhao, Ben; Lao, Dazhong; Ma, Chaochen; Li, Du
2013-06-01
The impact on the compressor performance is important for designing the inlet pipe of the centrifugal compressor of a vehicle turbocharger with different inlet pipes. First, an experiment was performed to determine the compressor performance from three cases: a straight inlet pipe, a long bent inlet pipe and a short bent inlet pipe. Next, dynamic sensors were installed in key positions to collect the sign of the unsteady pressure of the centrifugal compressor. Combined with the results of numerical simulations, the total pressure distortion in the pipes, the pressure distributions on the blades and the pressure variability in the diffuser are studied in detail. The results can be summarized as follows: a bent pipe results in an inlet distortion to the compressor, which leads to performance degradation, and the effect is more apparent as the mass flow rate increases. The distortion induced by the bent inlet is not only influenced by the distance between the outlet of the bent section and the leading edge of the impeller but also by the impeller rotation. The flow fields in the centrifugal impeller and the diffuser are influenced by a coupling effect produced by the upstream inlet distortion and the downstream blocking effect from the volute tongue. If the inlet geometry is changed, the distributions and the fluctuation intensities of the static pressure on the main blade surface of the centrifugal impeller and in the diffuser are changed accordingly.
Two-proton radioactivity with 2p halo in light mass nuclei A = 18-34
NASA Astrophysics Data System (ADS)
Saxena, G.; Kumawat, M.; Kaushik, M.; Jain, S. K.; Aggarwal, Mamta
2017-12-01
Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A = 18- 34. We predict 19Mg, 22Si, 26S, 30Ar and 34Ca as promising candidates of ground state 2p-radioactivity with S2p < 0 and Sp > 0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far.
Comparability of automated human induced pluripotent stem cell culture: a pilot study.
Archibald, Peter R T; Chandra, Amit; Thomas, Dave; Chose, Olivier; Massouridès, Emmanuelle; Laâbi, Yacine; Williams, David J
2016-12-01
Consistent and robust manufacturing is essential for the translation of cell therapies, and the utilisation automation throughout the manufacturing process may allow for improvements in quality control, scalability, reproducibility and economics of the process. The aim of this study was to measure and establish the comparability between alternative process steps for the culture of hiPSCs. Consequently, the effects of manual centrifugation and automated non-centrifugation process steps, performed using TAP Biosystems' CompacT SelecT automated cell culture platform, upon the culture of a human induced pluripotent stem cell (hiPSC) line (VAX001024c07) were compared. This study, has demonstrated that comparable morphologies and cell diameters were observed in hiPSCs cultured using either manual or automated process steps. However, non-centrifugation hiPSC populations exhibited greater cell yields, greater aggregate rates, increased pluripotency marker expression, and decreased differentiation marker expression compared to centrifugation hiPSCs. A trend for decreased variability in cell yield was also observed after the utilisation of the automated process step. This study also highlights the detrimental effect of the cryopreservation and thawing processes upon the growth and characteristics of hiPSC cultures, and demonstrates that automated hiPSC manufacturing protocols can be successfully transferred between independent laboratories.
Osteoblast Differentiation Decreases Hypergravity-Stimulated Release of PGE(sub 2)
NASA Technical Reports Server (NTRS)
Searby, Nancy D.; Steele, Charles R.; Globus, Ruth K.
2002-01-01
We determined if progressive differentiation of osteoblasts influences their sensitivity to gravitational loading. Osteoblasts were cultured for 4 days (confluent monolayer), 6 days (prenodules), 9 days (nodules) and 19 days (mineralized nodules), then centrifuged at 10 times gravity (g) or 50-g for 3 hours using the NASA Ames 1-ft. Diameter Centrifuge. Stationary controls were placed in an adjacent incubator. Following centrifugation, conditioned media were collected and analyzed for PGE, by ELISA. Microtubules were fluorescently labeled and analyzed by confocal microscopy to determine microtubule network morphology and height. Centrifugation at 10-g reduced microtubule network height by 15% on d4 and 10% on d6, with variable changes in more mature cultures. No major changes in microtubule morphology were observed. PGE(sub 2) release by d4 cultures increased in a dose-dependent fashion (3-fold at 10-g and 6-fold at 50-g relative to controls). D6 cultures produced a 5-fold increase for both 10-g and 50-g. PGE(sub 2) increased only 1.5-fold by d9, and by d19, PGE(sub 2) was not delectable in either the control or hypergravity-stimulated cells. Thus, as osteoblasts differentiate in culture, responsiveness of the microtubule cytoskeleton and the PGE(sub 2) pathway to hypergravity declines.
Phenotypic variability and selection of lipid-producing microalgae in a microfluidic centrifuge
NASA Astrophysics Data System (ADS)
Estévez-Torres, André.; Mestler, Troy; Austin, Robert H.
2010-03-01
Isogenic cells are known to display various expression levels that may result in different phenotypes within a population. Here we focus on the phenotypic variability of a species of unicellular algae that produce neutral lipids. Lipid-producing algae are one of the most promising sources of biofuel. We have implemented a simple microfluidic method to assess lipid-production variability in a population of algae that relays on density differences. We will discuss the reasons of this variability and address the promising avenues of this technique for directing the evolution of algae towards high lipid productivity.
Rippled beam free electron laser amplifier
Carlsten, Bruce E.
1999-01-01
A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.
López-Yerena, A; Guerra-Ramírez, D; Jácome-Rincón, J; Espinosa-Solares, T; Reyes-Trejo, B; Famiani, F; Cruz-Castillo, J G
2018-04-15
Persea schiedeana Nees is an underutilized and very little known species whose fruit is consumed in Mesoamerica where it grows wild. This study was carried out to evaluate: 1) the variability of fruit characteristics of different accessions; 2) the effects of centrifugation and microwave treatment on extracting oil from the fruit and on its qualitative characteristics; 3) the nutraceutical characteristics of the fruit and seeds of different accessions. The results showed a large variability in fruit size and oil/dry matter contents among the different accessions. There was a significant relationship between the dry matter and oil contents in the pulp. The combined use of centrifugation and microwave treatments gave high oil extraction yields (67-68%). The oils had good fatty acid composition and antioxidant capacity. The results gave an initial picture about the total phenol contents and antioxidant capacities in the seeds and in the different parts of the fruit. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Klassen, H. A.
1975-01-01
A low-pressure-ratio centrifugal compressor was tested with nine combinations of three diffuser throat areas and three impeller inducer inlet areas which were 75, 100, and 125 percent of design values. For a given inducer inlet area, increases in diffuser area within the range investigated resulted in increased mass flow and higher peak efficiency. Changes in both diffuser and inducer areas indicated that efficiencies within one point of the maximum efficiency were obtained over a compressor specific speed range of 27 percent. The performance was analyzed of an assumed two-spool open-cycle engine using the 75 percent area inducer with a variable area diffuser.
Adelmann, S; Schembecker, G
2011-08-12
Besides the selection of a suitable biphasic solvent system the separation efficiency in Centrifugal Partition Chromatography (CPC) is mainly influenced by the hydrodynamics in the chambers. The flow pattern, the stationary phase retention and the interfacial area for mass transfer strongly depend on physical properties of the solvent system and operating parameters. In order to measure these parameters we visualized the hydrodynamics in a FCPC-chamber for five different solvent systems with an optical measurement system and calculated the stationary phase retention, interfacial area and the distribution of mobile phase thickness in the chamber. Although inclined chambers were used we found that the Coriolis force always deflected the mobile phase towards the chamber wall reducing the interfacial area. This effect increased for systems with low density difference. We also have shown that the stability of phase systems (stationary phase retention) and its tendency to disperse increased for smaller values of the ratio of interfacial tension and density difference. But also the viscosity ratio and the flow pattern itself had a significant effect on retention and dispersion of the mobile phase. As a result operating parameters should be chosen carefully with respect to physical properties for a CPC system. In order to reduce the effect of the Coriolis force CPC devices with greater rotor radius are desirable. Copyright © 2011 Elsevier B.V. All rights reserved.
Research of Precataclysmic Variables with Radius Excesses
NASA Astrophysics Data System (ADS)
Deminova, N. R.; Shimansky, V. V.; Borisov, N. V.; Gabdeev, M. M.; Shimanskaya, N. N.
2017-06-01
The results of spectroscopic observations of the pre-cataclysmic variable NSVS 14256825, which is a HW Vir binary system, were analyzed. The chemical composition is determined, the radial velocities and equivalent widths of a given star are measured. The fundamental parameters of the components were determined (R1 = 0.166 R⊙ , M2 = 0.100 M⊙ , R2 = 0.122 R⊙). It is shown that the secondary component has a mass close to the mass of brown dwarfs. A comparison of two close binary systems is made: HS 2333 + 3927 and NSVS 14256825. A radius-to-mass relationship for the secondary components of the studied pre-cataclysmic variables is constructed. It is concluded that an excess of radii relative to model predictions for MS stars is observed in virtually all systems.
Christie, J; Schwan, E V; Bodenstein, L L; Sommerville, J E M; van der Merwe, L L
2011-06-01
Several faecal examination techniques have shown variable sensitivity in demonstrating Spirocerca lupi (S. lupi) eggs. The objective of this study was to determine which faecal examination technique, including a novel modified centrifugal flotation technique, was most sensitive to diagnose spirocercosis. Ten coproscopic examinations were performed on faeces collected from 33 dogs confirmed endoscopically to have spirocercosis. The tests included a direct faecal examination, a faecal sedimentation/flotation test, 4 direct faecal flotations and 4 modified faecal centrifugal flotations. These latter 2 flotation tests utilised 4 different faecal flotation solutions: NaNO3 (SG 1.22), MgSO4 (SG 1.29), ZnSO4 (SG 1.30) and sugar (SG 1.27). The sensitivity of the tests ranged between 42% and 67%, with the NaNO3 solution showing the highest sensitivity in both the direct and modified-centrifugal flotations. The modified NaNO3 centrifugal method ranked 1st with the highest mean egg count (45.24 +/- 83), and was superior (i.e. higher egg count) and significantly different (P < 0.05) compared with the routine saturated sugar, ZnSO4 and MgSO4 flotation methods. The routine NaNO3 flotation method was also superior and significantly different (P < 0.05) compared with the routine ZnSO4 and MgSO4 flotation methods. Fifteen per cent (n = 5) of dogs had neoplastic oesophageal nodules and a further 18% (n = 6) had both neoplastic and non-neoplastic nodules. S. lupi eggs were demonstrated in 40% of dogs with neoplastic nodules only and 72.9% of the dogs with non-neoplastic nodules. The mean egg count in the non-neoplastic group (61) was statistically greater (P = 0.02) than that of the neoplastic group (1). The results show that faecal examination using a NaNO3 solution is the most sensitive in the diagnosis of spirocercosis. The modified centrifugal flotation faecal method using this solution has the highest egg count. The study also found that dogs with neoplastic nodules shed significantly fewer eggs than dogs with non-neoplastic nodules.
Asteroid (2867) Steins: Shape, topography and global physical properties from OSIRIS observations
NASA Astrophysics Data System (ADS)
Jorda, L.; Lamy, P. L.; Gaskell, R. W.; Kaasalainen, M.; Groussin, O.; Besse, S.; Faury, G.
2012-11-01
The Rosetta spacecraft flew by Asteroid (2867) Steins on 5 September 2008, allowing the onboard OSIRIS cameras to collect the first images of an E-type asteroid. We implemented several three-dimensional reconstruction techniques to retrieve its shape. Limb profiles, combined with stereo control points, were used to reconstruct an approximate shape model. This model was refined using a stereophotoclinometry technique to accurately retrieve the topography of the hemisphere observed by OSIRIS. The unseen part of the surface was constrained by the technique of light curves inversion. The global shape resembles a top with dimensions along the principal axes of inertia of 6.83 × 5.70 × 4.42 km. It is conspicuously more regular than other small asteroids like (233) Eros and (25143) Itokawa. Its mean radius is Rm = 2.70 km and its equivalent radius (radius of a sphere of equivalent volume) is Rv = 2.63 km. The north pole is oriented at RA = 99 ± 5° and Dec = -59 ± 5°, which implies a very large obliquity of 172° and a retrograde rotation. Maps of the gravitational field and slopes were calculated for the well-imaged part of the asteroid. Together with the shape, they helped characterizing the most prominent topographic features identified at the surface of (2867) Steins: an equatorial ridge restricted to the extremities of the long axis, a large crater having dimensions of 2100 × 1800 m in the southern hemisphere, and an elongated hill in the northern hemisphere. We conjecture that the equatorial ridge was formed by centrifugal acceleration as the asteroid was spun up by the Yarkovsky-O’Keefe-Radzievskii-Paddack effect.
Exercise Training During +Gz Acceleration
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Chou, J. L.; Simonson, S. R.; Jackson, C. G. R.; Barnes, P. R.
1999-01-01
The overall purpose is to study the effect of passive (without exercise) and active (with exercise) +Gz (head-to-foot) acceleration training, using a short-arm (1.9m radius) centrifuge, on post- training maximal oxygen uptake (VO2 max, work capacity) and 70 deg head-up tilt (orthostatic) tolerance in ambulatory subjects to test the hypothesis that (a) both passive and active acceleration training will improve post-training tilt-tolerance, and (b) there will be no difference in tilt-tolerance between passive and active exercise acceleration training because increased hydrostatic and blood pressures, rather than increased muscular metabolism, will provide the major adaptive stimulus. The purpose of the pilot study was to test the hypothesis that there would be no significant difference in the metabolic responses (oxygen uptake, heart rate, pulmonary ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.
Spörri, Jörg; Kröll, Josef; Gilgien, Matthias; Müller, Erich
2016-01-01
Background There is limited empirical knowledge about the effect of ski geometry, particularly in the context of injury prevention in alpine ski racing. We investigated the effect of sidecut radius on biomechanical variables related to the mechanics of turning. Methods During a field experiment, six European Cup level athletes skied on three different pairs of giant slalom (GS) skis varying in sidecut radii (30 m, 35 m and 40 m). Using a video-based three-dimensional (3D) kinematic system, a 22-point body segment model of the athletes was reconstructed in 3D, and the variables ground reaction force, centre of mass (COM) speed, COM turn radius, ski turn radius, edge angle, fore/aft position and skid angle were calculated. Results While steering out of the fall line after gate passage, ground reaction force significantly differed between the 30 m and 40 m skis and between the 35 m and 40 m skis. These differences were mainly explainable by larger COM turn radii when skiing on the 40 m ski. During the same turn phase, significant differences in ski turn radius also were found, but there were no differences in edge angle, fore/aft position and skid angle. Summary The sidecut-induced reduction in ground reaction force and the sidecut-induced increase in centre of mass and ski turn radius observed in this study provides indirect evidence of reduced self-steering of the ski. Self-steering plays a central role in the mechanism of anterior cruciate ligament rupture in alpine ski racing. PMID:26702014
Motion perception during variable-radius swing motion in darkness.
Rader, A A; Oman, C M; Merfeld, D M
2009-10-01
Using a variable-radius roll swing motion paradigm, we examined the influence of interaural (y-axis) and dorsoventral (z-axis) force modulation on perceived tilt and translation by measuring perception of horizontal translation, roll tilt, and distance from center of rotation (radius) at 0.45 and 0.8 Hz using standard magnitude estimation techniques (primarily verbal reports) in darkness. Results show that motion perception was significantly influenced by both y- and z-axis forces. During constant radius trials, subjects' perceptions of tilt and translation were generally almost veridical. By selectively pairing radius (1.22 and 0.38 m) and frequency (0.45 and 0.8 Hz, respectively), the y-axis acceleration could be tailored in opposition to gravity so that the combined y-axis gravitoinertial force (GIF) variation at the subject's ears was reduced to approximately 0.035 m/s(2) - in effect, the y-axis GIF was "nulled" below putative perceptual threshold levels. With y-axis force nulling, subjects overestimated their tilt angle and underestimated their horizontal translation and radius. For some y-axis nulling trials, a radial linear acceleration at twice the tilt frequency (0.25 m/s(2) at 0.9 Hz, 0.13 m/s(2) at 1.6 Hz) was simultaneously applied to reduce the z-axis force variations caused by centripetal acceleration and by changes in the z-axis component of gravity during tilt. For other trials, the phase of this radial linear acceleration was altered to double the magnitude of the z-axis force variations. z-axis force nulling further increased the perceived tilt angle and further decreased perceived horizontal translation and radius relative to the y-axis nulling trials, while z-axis force doubling had the opposite effect. Subject reports were remarkably geometrically consistent; an observer model-based analysis suggests that perception was influenced by knowledge of swing geometry.
Cardiovascular responses of semi-arboreal snakes to chronic, intermittent hypergravity
NASA Technical Reports Server (NTRS)
Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.
1996-01-01
Cardiovascular functions were studied in semi-arboreal rat snakes (Elaphe obsoleta) following long-term, intermittent exposure to +1.5 Gz (head-to-tail acceleration) on a centrifuge. Snakes were held in a nearly straight position within horizontal plastic tubes during periods of centrifugation. Centrifugal acceleration, therefore, subjected snakes to a linear force gradient with the maximal force being experienced at the tail. Compared to non-centrifuged controls, Gz-acclimated snakes showed greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of corticosterone, and higher blood ratios of prostaglandin F 2 alpha/prostaglandin E2. Cardiovascular tolerance to increased gravity during graded Gz acceleration was measured as the maximum (caudal) acceleration force at which carotid arterial blood flow became null. When such tolerances were adjusted for effects of body size and other continuous variables incorporated into an analysis of covariance, the difference between the adjusted mean values of control and acclimated snakes (2.37 and 2.84 Gz, respectively) corresponded closely to the 0.5 G difference between the acclimation G (1.5) and Earth gravity (1.0). As in other vertebrates, cardiovascular tolerance to Gz stress tended to be increased by acclimation, short body length, high arterial pressure, and comparatively large blood volume. Voluntary body movements were important for promoting carotid blood flow at the higher levels of Gz stress.
Huang, Ming; Tamura, Toshiyo; Chen, Wenxi; Kanaya, Shigehiko
2015-01-01
To help pave a path toward the practical use of continuous unconstrained noninvasive deep body temperature measurement, this study aims to evaluate the structural and thermophysical effects on measurement accuracy for the dual-heat-flux method (DHFM). By considering the thermometer's height, radius, conductivity, density and specific heat as variables affecting the accuracy of DHFM measurement, we investigated the relationship between those variables and accuracy using 3-D models based on finite element method. The results of our simulation study show that accuracy is proportional to the radius but inversely proportional to the thickness of the thermometer when the radius is less than 30.0mm, and is also inversely proportional to the heat conductivity of the heat insulator inside the thermometer. The insights from this study would help to build a guideline for design, fabrication and optimization of DHFM-based thermometers, as well as their practical use. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ushakov, Anton; Orlov, Alexey; Sovach, Victor P.
2018-03-01
This article presents the results of research filling of gas centrifuge cascade for separation of the multicomponent isotope mixture with process gas by various feed flow rate. It has been used mathematical model of the nonstationary hydraulic and separation processes occurring in the gas centrifuge cascade. The research object is definition of the regularity transient of nickel isotopes into cascade during filling of the cascade. It is shown that isotope concentrations into cascade stages after its filling depend on variable parameters and are not equal to its concentration on initial isotope mixture (or feed flow of cascade). This assumption is used earlier any researchers for modeling such nonstationary process as set of steady-state concentration of isotopes into cascade. Article shows physical laws of isotope distribution into cascade stage after its filling. It's shown that varying each parameters of cascade (feed flow rate, feed stage number or cascade stage number) it is possible to change isotope concentration on output cascade flows (light or heavy fraction) for reduction of duration of further process to set of steady-state concentration of isotopes into cascade.
NASA Astrophysics Data System (ADS)
Nooij, S. A. E.; Bos, J. E.; Groen, E. L.; Bles, W.; Ockels, W. J.
2007-09-01
During the first days in space, i.e., after a transition from 1G to 0G, more than 50% of the astro- (and cosmonauts) suffer from the Space Adaptation Syndrome (SAS).The symptoms of SAS, like nausea and dizziness, are especially provoked by head movements. Astronauts have mentioned close similarities between the symptoms of SAS and the symptoms they experienced after a 1 hour centrifuge run on Earth, i.e., after a transition from 3G to 1G (denoted by Sickness Induced by Centrifugation, SIC). During several space missions, we related susceptibility to SAS and to SIC in 11 astronauts and found 4 of them being susceptible to both SIC and SAS, and 7 being not susceptible to SIC nor to SAS. This correspondence in susceptibility suggests that SIC and SAS share the same underlying mechanism. To further study this mechanism, several vestibular parameters have been investigated (e.g. postural stability, vestibularly driven eye movements, subjective vertical). We found some striking changes in individual cases that are possibly due to the centrifuge run. However, the variability between subjects generally is very large, making physiological links to SIC and SAS still hard to find.
The size of adenylate cyclase and guanylate cyclase from the rat renal medulla.
Neer, E J
1976-01-01
The size distribution of adenylate cyclase from the rat renal medulla solubilized with the nonionic detergents Triton X-100 and Lubrol PX was determined by gel filtration and by centrifugation in sucrose density gradients made up in H2O or D2O. The physical parameters of the predominant form in Triton X-100 are s20,w, 5.9S; Strokes radius, 62 A; partial specific volume (v), 0.74 ml/g; mass, 159,000 daltons; f/f0, 1.6; axial ratio (prolate ellipsoid), 11. For the minor form the values are: s20w, 3.0; Stokes radius, 28 A; mass, 38,000 daltons; f/f0, 1.2. The corresponding values determined in Lubrol PX are similar. The value for V for the enzyme indicates that it binds less than 0.2 mg detergent/mg protein. Since interactions with detergents probably substitute for interactions with lipids and hydrophobic amino acid side chains, these findings suggest that no more than 5% of the surface of adenylate cyclase is involved in hydrophobic interactions with other membrane components. Thus, most of the mass of the enzyme is not deeply embedded in the lipid bilayer of the plasma membrane. Similar studies have been performed on the soluble guanylate cyclase of the rat renal medulla. In the absence of detergent, the molecular properties of this enzyme are: s20w, 6.3S; Stokes radius, 54 A, V, 0.75 ml/g; mass, 154,000 daltons f/f0, 1.4; Axial ratio, 7. The addition of 0.1% Lubrol PX to this soluble enzyme increases it activity two- to fourfold and changes the physical properties to: s20,w, 5.5S; Stokes radius, 62 A; V, 0.74 ml/g; mass, 148,000 daltons, f/f0, 1.6; axial ratio, 11. These results show that Lubrol PX activates the enzyme by causing a conformational change with unfolding on the polypeptide chain. Guanylate cyclase from the particulate cell fraction can be solubilized with Lubrol PX but has properties quite different from those of the enzyme in the soluble cell fraction. It is a heterogeneous aggregate with s20,w, 10S; Stokes radius, 65 A; mass about 300,000 daltons. The conditions which solubilize guanylate cyclase also solubilize adenylate cyclase and the two activities can be separated on the same sucrose gradient.
Gutiérrez-Cepeda, L; Fernández, A; Crespo, F; Gosálvez, J; Serres, C
2011-03-01
For many years in human assisted-reproduction procedures there have been special protocols to prepare and improve sperm quality. Colloidal centrifugation (CC) is a useful technique that has been proved to enhance semen quality by selection of the best spermatozoa for different species. Its use is recommended to improve fertility of subfertile stallions but current CC protocols are clinically complicated in the equine sperm processing technique due to economic and technical difficulties. The aim of this study was to determine the optimal processing procedures to adapt the use of a CC product (EquiPure™) in the equine reproduction industry. A total of nineteen ejaculates were collected from 10 Purebred Spanish Horses (P.R.E horses) using a Missouri artificial vagina. Gel-free semen aliquots were analyzed prior to treatment (control). Semen was subjected to one of six CC protocols with EquiPure™ and centrifuged samples were statistically evaluated by ANOVA and Duncan tests (p<0.05) for sperm quality and recovery rate. We obtained higher values by colloidal centrifugation in LIN, STR and BCF variables and DNA fragmentation index trended to be lower in most of the CC protocols. The studied protocols were shown to be as efficient in improving equine sperm quality as the current commercial EquiPure™, with the added advantage of being much more economical and simple to use. According to these results it seems to be possible to incorporate single layer and or high colloidal centrifugation volume protocols what would make them simple, economic and clinically viable for the equine sperm processing procedure. Copyright © 2011 Elsevier B.V. All rights reserved.
Risk-based management of invading plant disease.
Hyatt-Twynam, Samuel R; Parnell, Stephen; Stutt, Richard O J H; Gottwald, Tim R; Gilligan, Christopher A; Cunniffe, Nik J
2017-05-01
Effective control of plant disease remains a key challenge. Eradication attempts often involve removal of host plants within a certain radius of detection, targeting asymptomatic infection. Here we develop and test potentially more effective, epidemiologically motivated, control strategies, using a mathematical model previously fitted to the spread of citrus canker in Florida. We test risk-based control, which preferentially removes hosts expected to cause a high number of infections in the remaining host population. Removals then depend on past patterns of pathogen spread and host removal, which might be nontransparent to affected stakeholders. This motivates a variable radius strategy, which approximates risk-based control via removal radii that vary by location, but which are fixed in advance of any epidemic. Risk-based control outperforms variable radius control, which in turn outperforms constant radius removal. This result is robust to changes in disease spread parameters and initial patterns of susceptible host plants. However, efficiency degrades if epidemiological parameters are incorrectly characterised. Risk-based control including additional epidemiology can be used to improve disease management, but it requires good prior knowledge for optimal performance. This focuses attention on gaining maximal information from past epidemics, on understanding model transferability between locations and on adaptive management strategies that change over time. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Larsen, Bethany; Jacofsky, Marc C; Jacofsky, David J
2015-06-01
Gait of single-radius (SR, n=16) and multi-radius (MR, n=16) posterior stabilized total knee arthroplasties was compared, along with controls (n=16), pre-op and 1 year post-op. Computer navigation and standard order sets controlled confounding variables. Post-operatively, SR knees did not differ from controls while MR knees continued to differ in important knee kinetic and kinematic properties. MR knees remained more extended (P=0.019) and had decreased power absorption (P=0.0001) during weight acceptance compared to the SR knees. Both surgical groups had similar KSS for Knee Scores (P=0.22) and Function Scores (P=0.58). The significant biomechanical differences are likely influenced by patella-femoral moment arm geometry and changing ligament laxity throughout the active range of motion. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romberger, Jeff
An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol.
Centrifugation effects on estrous cycle, mating success and pregnancy outcome in rats
NASA Astrophysics Data System (ADS)
Ronca, April E.; Rushing, Linda; Tou, Janet; Wade, Charles E.; Baer, Lisa A.
2005-08-01
We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrus cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.
Centrifugation Effects on Estrous Cycling, Mating Success and Pregnancy Outcome in Rats
NASA Technical Reports Server (NTRS)
Ronca, April E.; Rushing, Linda S.; Tou, Janet; Wade, Charles E.; Baer, Lisa A.
2005-01-01
We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrous cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.
Impact absorbing blade mounts for variable pitch blades
NASA Technical Reports Server (NTRS)
Ravenhall, R.; Salemme, C. T.; Adamson, A. P. (Inventor)
1977-01-01
A variable pitch blade and blade mount are reported that are suitable for propellers, fans and the like and which have improved impact resistance. Composite fan blades and blade mounting arrangements permit the blades to pivot relative to a turbine hub about an axis generally parallel to the centerline of the engine upon impact of a large foreign object, such as a bird. Centrifugal force recovery becomes the principal energy absorbing mechanism and a blade having improved impact strength is obtained.
High Efficiency Centrifugal Compressor for Rotorcraft Applications
NASA Technical Reports Server (NTRS)
Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.
2017-01-01
The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were measured at design flow rate and speed. The measured efficiency and stall margin were lower than pre-test CFD predictions by 2.4 percentage points (pt) and 4.5 pt, respectively. Initial impressions from the experimental data indicated that the loss in the efficiency and stall margin can be attributed to a design shortfall in the impeller. However, detailed investigation of experimental data and post-test CFD simulations of higher fidelity than pre-test CFD, and in particular the unsteady CFD simulations and the assessment with a wider range of turbulence models, have indicated that the loss in efficiency is most likely due to the impact of unfavorable unsteady impeller/diffuser interactions induced by diffuser vanes, an impeller/diffuser corrected flow-rate mismatch (and associated incidence levels), and, potentially, flow separation in the radial-to-axial bend. An experimental program with a vaneless diffuser is recommended to evaluate this observation. A subsequent redesign of the diffuser (and the radial-to-axial bend) is also recommended. The diffuser needs to be redesigned to eliminate the mismatching of the impeller and the diffuser, targeting a slightly higher flow capacity. Furthermore, diffuser vanes need to be adjusted to align the incidence angles, to optimize the splitter vane location (both radially and circumferentially), and to minimize the unsteady interactions with the impeller. The radial-to-axial bend needs to be redesigned to eliminate, or at least minimize, the flow separation at the inner wall, and its impact on the flow in the diffuser upstream. Lessons were also learned in terms of CFD methodology and the importance of unsteady CFD simulations for centrifugal compressors was highlighted. Inconsistencies in the implementation of a widely used two-equation turbulence model were identified and corrections are recommended. It was also observed that unsteady simulations for centrifugal compressors require significantly longer integration times than what is current practice in industry.
High Efficiency Centrifugal Compressor for Rotorcraft Applications
NASA Technical Reports Server (NTRS)
Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.
2014-01-01
The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were measured at design flow rate and speed. The measured efficiency and stall margin were lower than pre-test CFD predictions by 2.4 percentage points (pt) and 4.5 pt, respectively. Initial impressions from the experimental data indicated that the loss in the efficiency and stall margin can be attributed to a design shortfall in the impeller. However, detailed investigation of experimental data and post-test CFD simulations of higher fidelity than pre-test CFD, and in particular the unsteady CFD simulations and the assessment with a wider range of turbulence models, have indicated that the loss in efficiency is most likely due to the impact of unfavorable unsteady impeller/diffuser interactions induced by diffuser vanes, an impeller/diffuser corrected flow-rate mismatch (and associated incidence levels), and, potentially, flow separation in the radial-to-axial bend. An experimental program with a vaneless diffuser is recommended to evaluate this observation. A subsequent redesign of the diffuser (and the radial-to-axial bend) is also recommended. The diffuser needs to be redesigned to eliminate the mismatching of the impeller and the diffuser, targeting a slightly higher flow capacity. Furthermore, diffuser vanes need to be adjusted to align the incidence angles, to optimize the splitter vane location (both radially and circumferentially), and to minimize the unsteady interactions with the impeller. The radial-to-axial bend needs to be redesigned to eliminate, or at least minimize, the flow separation at the inner wall, and its impact on the flow in the diffuser upstream. Lessons were also learned in terms of CFD methodology and the importance of unsteady CFD simulations for centrifugal compressors was highlighted. Inconsistencies in the implementation of a widely used two-equation turbulence model were identified and corrections are recommended. It was also observed that unsteady simulations for centrifugal compressors require significantly longer integration times than what is current practice in industry.
Nonlinear vibrations analysis of rotating drum-disk coupling structure
NASA Astrophysics Data System (ADS)
Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen
2018-04-01
A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.
Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.
Qian, K X; Wan, F K; Ru, W M; Zeng, P; Yuan, H Y
2006-01-01
It is widely acknowledged that the permanent maglev cannot achieve stable equilibrium; the authors have developed, however, a stable permanent maglev centrifugal blood pump. Permanent maglev needs no position detection and feedback control of the rotor, nevertheless the eccentric distance (ED) and vibration amplitude (VA) of the levitator have been measured to demonstrate the levitation and to investigate the factors affecting levitation. Permanent maglev centrifugal impeller pump has a rotor and a stator. The rotor is driven by stator coil and levitated by two passive magnetic bearings. The rotor position is measured by four Hall sensors, which are distributed evenly and peripherally on the end of the stator against the magnetic ring of the bearing on the rotor. The voltage differences of the sensors due to different distances between the sensors and the magnetic ring are converted into ED. The results verify that the rotor can be disaffiliated from the stator if the rotating speed and the flow rate of the pump are large enough, that is, the maximal ED will reduce to about half of the gap between the rotor and the stator. In addition, the gap between rotor and stator and the viscosity of the fluid to be pumped also affect levitation. The former has an optimal value of approximately 2% of the radius of the rotor. For the latter, levitation stability is better with higher viscosity, meaning smaller ED and VA. The pressure to be pumped has no effect on levitation.
Interactions between Artificial Gravity, the Affected Physiological Systems, and Nutrition
NASA Technical Reports Server (NTRS)
Heer, Martina; Baecker, Nathalie; Zwart, Sara; Smith, Scott
2006-01-01
Malnutrition, either by insufficient supply of some nutrients or by overfeeding, has a profound effect on the health of an organism. Therefore, optimal nutrition is a necessity in normal gravity on Earth, in microgravity, and when applying artificial gravity to the human system. Reduced physical activity, such as observed in microgravity or bed rest, has an effect on many physiological systems, such as the cardiovascular, musculoskeletal, immune, and body fluids regulation systems. There is currently no countermeasure that is effective to counteract both the cardiovascular and musculoskeletal deconditioning when applied for a short duration (see Chapter 1). Artificial gravity therefore seems the simplest physiological approach to keep these systems intact. The application of intermittent daily dose of artificial gravity by means of centrifugation has often been proposed as a potential countermeasure against the physiological deconditioning induced by spaceflight. However, neither the optimal gravity level, nor its optimal duration of exposure have been enough studied to recommend a validated, effective, and efficient artificial gravity application. As discussed in previous chapters, artificial gravity has a very high potential to counteract any changes caused by reduced physical activity. The nutrient supply, which ideally should match the actual needs, will interact with these changes and therefore has also to be taken into account. This chapter reviews the potential interactions between these nutrients (energy intake, vitamins, minerals) and the other physiological systems affected by artificial gravity generated by an on-board short-radius centrifuge.
Air Mass Considerations in Fog Optical Modeling.
1981-02-01
Other microphysical quantities whi.-h are frequently used include the mean radius, the mode radius, and the liquid water content. All these quantities...Commerce .a~ il -’ ecommunications and Commander nr1~nAdministration Ja) Arm~y Comined Arms Center *,Y nn-l t n elecommunication Sciences, & Fort !-eav...Forecasting Selected Weather Variables (Emphasizinq Remote Means )," ASL-TR-O001, January 1978. 73. Heaps, Melvin G., "The 1979 Solar Eclipse and Validation
Thermodynamics in variable speed of light theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racker, Juan; Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N; Sisterna, Pablo
2009-10-15
The perfect fluid in the context of a covariant variable speed of light theory proposed by J. Magueijo is studied. On the one hand the modified first law of thermodynamics together with a recipe to obtain equations of state are obtained. On the other hand the Newtonian limit is performed to obtain the nonrelativistic hydrostatic equilibrium equation for the theory. The results obtained are used to determine the time variation of the radius of Mercury induced by the variability of the speed of light (c), and the scalar contribution to the luminosity of white dwarfs. Using a bound for themore » change of that radius and combining it with an upper limit for the variation of the fine structure constant, a bound on the time variation of c is set. An independent bound is obtained from luminosity estimates for Stein 2015B.« less
Discovery of SiCSi in IRC +10216: A missing link between gas and dust carriers of Si–C bonds
Cernicharo, J.; McCarthy, M. C.; Gottlieb, C. A.; Agúndez, M.; Velilla Prieto, L.; Baraban, J. H.; Changala, P. B.; Guélin, M.; Kahane, C.; Martin-Drumel, M. A.; Patel, N. A.; Reilly, N. J.; Stanton, J. F.; Quintana-Lacaci, G.; Thorwirth, S.; Young, K. H.
2015-01-01
We report the discovery in space of a disilicon species, SiCSi, from observations between 80 and 350 GHz with the IRAM10 30m radio telescope. Owing to the close coordination between laboratory experiments and astrophysics, 112 lines have now been detected in the carbon-rich star CW Leo. The derived frequencies yield improved rotational and centrifugal distortion constants up to sixth order. From the line profiles and interferometric maps with the Submillimeter Array11, the bulk of the SiCSi emission arises from a region of 6″ in radius. The derived abundance is comparable to that of SiC2. As expected from chemical equilibrium calculations, SiCSi and SiC2 are the most abundant species harboring a Si–C bond in the dust formation zone and certainly both play a key role in the formation of SiC dust grains. PMID:26722621
Magnetic field of jupiter and its interaction with the solar wind.
Smith, E J; Davis, L; Jones, D E; Colburn, D S; Coleman, P J; Dyal, P; Sonett, C P
1974-01-25
Jupiter's magnetic field and its interaction with the magnetized solar wind were observed with the Pioneer 10 vector helium magnetometer. The magnetic dipole is directed opposite to that of the earth with a moment of 4.0 gauss R(J)(3) (R(J), Jupiter radius), and an inclination of 15 degrees lying in a system III meridian of 230 degrees . The dipole is offset about 0.1 R(J) north of the equatorial plane and about 0.2 R(J) toward longitude 170 degrees . There is severe stretching of the planetary field parallel to the equator throughout the outer magnetosphere, accompanied by a systematic departure from meridian planes. The field configuration implies substantial plasma effects inside the magnetosphere, such as thermal pressure, centrifugal forces, and differential rotation. As at the earth, the outer boundary is thin, nor diffuse, and there is a detached bow shock.
Spatial Reorientation of Sensorimotor Balance Control in Altered Gravity
NASA Technical Reports Server (NTRS)
Paloski, W. H.; Black, F. L.; Kaufman, G. D.; Reschke, M. F.; Wood, S. J.
2007-01-01
Sensorimotor coordination of body segments following space flight are more pronounced after landing when the head is actively tilted with respect to the trunk. This suggests that central vestibular processing shifts from a gravitational frame of reference to a head frame of reference in microgravity. A major effect of such changes is a significant postural instability documented by standard head-erect Sensory Organization Tests. Decrements in functional performance may still be underestimated when head and gravity reference frames remained aligned. The purpose of this study was to examine adaptive changes in spatial processing for balance control following space flight by incorporating static and dynamic tilts that dissociate head and gravity reference frames. A second aim of this study was to examine the feasibility of altering the re-adaptation process following space flight by providing discordant visual-vestibular-somatosensory stimuli using short-radius pitch centrifugation.
Dynamics of Magnetic Flux Tubes in an Advective Flow around a Black Hole
NASA Astrophysics Data System (ADS)
Deb, Arnab; Chakrabarti, Sandip Kumar; Giri, Kinsuk
2016-07-01
Magnetic fields cannibalized by an accretion flow would very soon have a dominant toroidal component. Without changing the topology, we study the movements of these flux tubes inside a geometrically thick advective disk which undergo centrifugal pressure supported shocks. We also consider the effects of the flux tubes on the flow. We use a finite element method (Total Variation Diminishing) for this purpose and specifically focussed whether the flux tubes contribute to changes in outflow properties in terms of its collimation and outflow rates. It is seen that depending upon the cross sectional radius of the flux tubes (which control the drag force), these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surface). These interesting results obtained with and without flux tubes point to the role the flux tubes play in collimation of jets and outflows.
The energetics of cycling on Earth, Moon and Mars.
Lazzer, Stefano; Plaino, Luca; Antonutto, Guglielmo
2011-03-01
From 1885, technological improvements, such as the use of special metal alloys and the application of aerodynamics principles, have transformed the bicycle from a human powered heavy transport system to an efficient, often expensive, object used to move not only in our crowded cities, but also in leisure activities and in sports. In this paper, the concepts of mechanical work and efficiency of cycling together with the corresponding metabolic expenditure are discussed. The effects of altitude and aerodynamic improvements on sports performances are also analysed. A section is dedicated to the analysis of the maximal cycling performances. Finally, since during the next decades the return of Man on the Moon and, why not, a mission to Mars can be realistically hypothesised, a section is dedicated to cycling-based facilities, such as man powered short radius centrifuges, to be used to prevent cardiovascular and skeletal muscle deconditioning otherwise occurring during long-term exposure to microgravity.
Yin, Pengxian; Meng, Feng; Liu, Qing; An, Rui; Cai, Jing; Du, Guangyuan
2018-03-30
A vulnerability curve (VC) describes the extent of xylem cavitation resistance. Centrifuges have been used to generate VCs for decades via static- and flow-centrifuge methods. Recently, the validity of the centrifuge techniques has been questioned. Researchers have hypothesized that the centrifuge techniques might yield unreliable VCs due to the open-vessel artifact. However, other researchers reject this hypothesis. The focus of the dispute is centred on whether exponential VCs are more reliable when the static-centrifuge method is used than with the flow-centrifuge method. To further test the reliability of the centrifuge technique, two centrifuges were manufactured to simulate the static- and flow-centrifuge methods. VCs of three species with open vessels of known lengths were constructed using the two centrifuges. The results showed that both centrifuge techniques produced invalid VCs for Robinia because the water flow through stems under mild tension in centrifuges led to an increasing loss of water conductivity. Additionally, the injection of water in the flow-centrifuge exacerbated the loss of water conductivity. However, both centrifuge techniques yielded reliable VCs for Prunus, regardless of the presence of open vessels in the tested samples. We conclude that centrifuge techniques can be used in species with open vessels only when the centrifuge produces a VC that matches the bench-dehydration VC. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, S. J.
2011-01-01
The neural mechanisms to resolve ambiguous tilt-translation motion have been hypothesized to be different for motion perception and eye movements. Previous studies have demonstrated differences in ocular and perceptual responses using a variety of motion paradigms, including Off-Vertical Axis Rotation (OVAR), Variable Radius Centrifugation (VRC), translation along a linear track, and tilt about an Earth-horizontal axis. While the linear acceleration across these motion paradigms is presumably equivalent, there are important differences in semicircular canal cues. The purpose of this study was to compare translation motion perception and horizontal slow phase velocity to quantify consistencies, or lack thereof, across four different motion paradigms. Twelve healthy subjects were exposed to sinusoidal interaural linear acceleration between 0.01 and 0.6 Hz at 1.7 m/s/s (equivalent to 10 tilt) using OVAR, VRC, roll tilt, and lateral translation. During each trial, subjects verbally reported the amount of perceived peak-to-peak lateral translation and indicated the direction of motion with a joystick. Binocular eye movements were recorded using video-oculography. In general, the gain of translation perception (ratio of reported linear displacement to equivalent linear stimulus displacement) increased with stimulus frequency, while the phase did not significantly vary. However, translation perception was more pronounced during both VRC and lateral translation involving actual translation, whereas perceptions were less consistent and more variable during OVAR and roll tilt which did not involve actual translation. For each motion paradigm, horizontal eye movements were negligible at low frequencies and showed phase lead relative to the linear stimulus. At higher frequencies, the gain of the eye movements increased and became more inphase with the acceleration stimulus. While these results are consistent with the hypothesis that the neural computational strategies for motion perception and eye movements differ, they also indicate that the specific motion platform employed can have a significant effect on both the amplitude and phase of each.
Choi, Hyun Seok; Sul, Jin Gon; Yi, Kyung Sik; Seo, Jeong-Min; Chung, Ki Young
2010-07-01
Gravity-induced loss of consciousness (G-LOC) is caused by loss of cerebral blood flow during high +Gz (head-to-foot inertial forces). The resistance of the jugular vein is a significant factor in decrease in cerebral blood flow. Ultrasonography of thoracic inlet veins, including internal jugular vein, is feasible to visualize the internal jugular vein and hemodynamic information. Anti-gravity straining maneuver (AGSM) was widely recognized as one of the important factors in preventing G-LOC. The purpose of this study was to evaluate the relationship between the ultrasonographic shape and size of internal jugular vein during AGSM and G-LOC. 47 trainee pilots who participated in human centrifuge education program were enrolled. They were all men, and their mean age was 23.9 +/- 1.38 years. Questionnaire sheets were used to collect information about well-being sensation, smoking, drinking, height, and weight. Using ultrasonography, we monitored shape and size of internal jugular vein during AGSM. After ultrasonographic examination, 47 subjects underwent human centrifuge on the same day. The protocol of human centrifuge training was maximal 6G with sustaining time of 30 s. G-LOC occurred to ten out of 47 subjects in human centrifuge. To find presumptive variable associated with G-LOC, we performed logistic regression analysis. Concave contour and smaller cross-sectional area of internal jugular vein during AGSM were associated with G-LOC.
Ground-facilities at the DLR Institute of Aerospace Medicine for preparation of flight experiments
NASA Astrophysics Data System (ADS)
Hemmersbach, Ruth; Hendrik Anken, Ralf; Hauslage, Jens; von der Wiesche, Melanie; Baerwalde, Sven; Schuber, Marianne
In order to investigate the influence of altered gravity on biological systems and to identify gravisensitive processes, various experimental platforms have been developed, which are useful to simulate weightlessness or are able to produce hypergravity. At the Institute of Aerospace Medicine, DLR Cologne, a broad spectrum of applications is offered to scientists: clinostats with one rotation axis and variable rotation speeds for cultivation of small objects (including aquatic organisms) in simulated weightlessness conditions, for online microscopic observations and for online kinetic measurements. Own research concentrates on comparative studies with other kinds of methods to simulate weightlessness, also available at the institute: Rotating Wall Vessel (RWV) for aquatic studies, Random Positioning Machine (RPM; manufactured by Dutch Space, Leiden, The Netherlands). Correspondingly, various centrifuge devices are available to study different test objects under hypergravity conditions -such as NIZEMI, a slow rotating centrifuge microscope, and MUSIC, a multi-sample centrifuge. Mainly for experiments with human test subjects (artificial gravity), but also for biological systems or for testing various kinds of (flight-) hardware, the SAHC, a short arm human centrifuge -loaned by ESA -was installed in Cologne and completes our experimental scenario. Furthermore, due to our specific tasks such as providing laboratories during the German Parabolic Flight Experiments starting from Cologne and being the Facility Responsible Center for BIOLAB, a science rack in the Columbus module aboard the ISS, scientists have the possibility for an optimal preparation of their flight experiments.
NASA Technical Reports Server (NTRS)
Knott, P. R.; Blozy, J. T.; Staid, P. S.
1981-01-01
The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.
Low Velocity Blunt Impact on Lightweight Composite Sandwich Panels
NASA Astrophysics Data System (ADS)
Chan, Monica Kar
There is an increased desire to incorporate more composite sandwich structures into modern aircrafts. Because in-service aircrafts routinely experience impact damage during maintenance due to ground vehicle collision, dropped equipment, or foreign object damage (FOD) impact, it is necessary to understand their impact characteristics, particularly when blunt impact sources create internal damage with little or no external visibility. The objective of this investigation is to explore damage formation in lightweight composite sandwich panels due to low-velocity impacts of variable tip radius and energy level. The correlation between barely visible external dent formation and internal core damage was explored as a function of impact tip radius. A pendulum impactor was used to impact composite sandwich panels having honeycomb core while held in a 165 mm square window fixture. The panels were impacted by hardened steel tips with radii of 12.7, 25.4, 50.8, and 76.2 mm at energy levels ranging from 2 to 14 J. Experimental data showed little dependence of external dent depth on tip radius at very low energies of 2 to 6 J, and thus, there was also little variation in visibility due to tip radius. Four modes of internal core damage were identified. Internal damage span and depth were dependent on impact tip radius. Damage depth was also radius-dependent, but stabilized at constant depth independent of kinetic energy. Internal damage span increased with increasing impact energy, but not with increasing tip radius, suggesting a relationship between maximum damage tip radius with core density/size.
Rocking or Rolling – Perception of Ambiguous Motion after Returning from Space
Clément, Gilles; Wood, Scott J.
2014-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Adaptive changes during spaceflight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions after return to Earth. The purpose of this study was to compare tilt and translation motion perception in astronauts before and after returning from spaceflight. We hypothesized that these stimuli would be the most ambiguous in the low-frequency range (i.e., at about 0.3 Hz) where the linear acceleration can be interpreted either as a translation or as a tilt relative to gravity. Verbal reports were obtained in eleven astronauts tested using a motion-based tilt-translation device and a variable radius centrifuge before and after flying for two weeks on board the Space Shuttle. Consistent with previous studies, roll tilt perception was overestimated shortly after spaceflight and then recovered with 1–2 days. During dynamic linear acceleration (0.15–0.6 Hz, ±1.7 m/s2) perception of translation was also overestimated immediately after flight. Recovery to baseline was observed after 2 days for lateral translation and 8 days for fore–aft translation. These results suggest that there was a shift in the frequency dynamic of tilt-translation motion perception after adaptation to weightlessness. These results have implications for manual control during landing of a space vehicle after exposure to microgravity, as it will be the case for human asteroid and Mars missions. PMID:25354042
Rocking or rolling--perception of ambiguous motion after returning from space.
Clément, Gilles; Wood, Scott J
2014-01-01
The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Adaptive changes during spaceflight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions after return to Earth. The purpose of this study was to compare tilt and translation motion perception in astronauts before and after returning from spaceflight. We hypothesized that these stimuli would be the most ambiguous in the low-frequency range (i.e., at about 0.3 Hz) where the linear acceleration can be interpreted either as a translation or as a tilt relative to gravity. Verbal reports were obtained in eleven astronauts tested using a motion-based tilt-translation device and a variable radius centrifuge before and after flying for two weeks on board the Space Shuttle. Consistent with previous studies, roll tilt perception was overestimated shortly after spaceflight and then recovered with 1-2 days. During dynamic linear acceleration (0.15-0.6 Hz, ±1.7 m/s2) perception of translation was also overestimated immediately after flight. Recovery to baseline was observed after 2 days for lateral translation and 8 days for fore-aft translation. These results suggest that there was a shift in the frequency dynamic of tilt-translation motion perception after adaptation to weightlessness. These results have implications for manual control during landing of a space vehicle after exposure to microgravity, as it will be the case for human asteroid and Mars missions.
A Rotating Space Interferometer with Variable Baselines and Low Power Consumption
NASA Technical Reports Server (NTRS)
Gezari, Daniel Y.
1999-01-01
A new concept is presented here for a large, rotating space interferometer which would achieve full u, v plane coverage with reasonably uniform integration times, yet once set in motion no additional energy would be required to change collector separations, maintain constant baseline rotation rates, or to counteract centrifugal forces on the collectors.
Rausch, S; Hoffmeier, K; Gueorguiev, B G; Klos, K; Gras, F; Hofmann, G O; Mückley, T
2011-12-01
Polyaxial angle-stable plating is thought to be particularly beneficial in the management of complex intra-articular fractures of the distal radius. The present study was performed to investigate the strength of polyaxial locking interfaces of distal radius plates. We tested the polyaxial interfaces of 3 different distal radius plates (2.4 mm Variable Angle LCP Two-Column Volar Distal Radius Plate, Synthes, Palmar Classic, Königsee Implantate and VariAx Plate Stryker). The strength of 0° and 10° screw locking angle was obtained during static loading. The strength of Palmar Classic with a 0° locking angle is significantly the best of all tested systems. With a 10° locking angle there is no significant difference between Palmar Classic, Two column Plate and VariAx Plate. The strength of polyaxial interfaces differs between the tested systems. A reduction of ultimate strength is due to increases of screw locking angle. The design of polyaxial locking interfaces should be investigated in human bone models. © Georg Thieme Verlag KG Stuttgart · New York.
Handling performance control for hybrid 8-wheel-drive vehicle and simulation verification
NASA Astrophysics Data System (ADS)
Ni, Jun; Hu, Jibin
2016-08-01
In order to improve handling performance of a hybrid 8-Wheel-Drive vehicle, the handling performance control strategy was proposed. For armoured vehicle, besides handling stability in high speed, the minimum steer radius in low speed is also a key tactical and technical index. Based on that, the proposed handling performance control strategy includes 'Handling Stability' and 'Radius Minimization' control modes. In 'Handling Stability' control mode, 'Neutralsteer Radio' is defined to adjust the steering characteristics to satisfy different demand in different speed range. In 'Radius Minimization' control mode, the independent motors are controlled to provide an additional yaw moment to decrease the minimum steer radius. In order to verify the strategy, a simulation platform was built including engine and continuously variable transmission systems, generator and battery systems, independent motors and controllers systems, vehicle dynamic and tyre mechanical systems. The simulation results show that the handling performance of the vehicle can be enhanced significantly, and the minimum steer radius can be decreased by 20% which is significant improvement compared to the common level of main battle armoured vehicle around the world.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... NUCLEAR REGULATORY COMMISSION [EA-11-013] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order Approving Direct Transfer of Licenses and Conforming Amendment I USEC... Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively, which...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-16
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0355] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct Transfer of Licenses In the Matter of USEC INC. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order EA-12- [[Page 9274
NEUTRON STAR RADIUS MEASUREMENT WITH THE QUIESCENT LOW-MASS X-RAY BINARY U24 IN NGC 6397
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillot, Sebastien; Rutledge, Robert E.; Brown, Edward F., E-mail: guillots@physics.mcgill.ca, E-mail: rutledge@physics.mcgill.ca
This paper reports the spectral and timing analyses of the quiescent low-mass X-ray binary (qLMXB) U24 observed during five archived Chandra/ACIS exposures of the nearby globular cluster NGC 6397, for a total of 350 ks. We find that the X-ray flux and the parameters of the hydrogen atmosphere spectral model are consistent with those previously published for this source. On short timescales, we find no evidence of aperiodic intensity variability, with 90% confidence upper limits during five observations ranging between <8.6% rms and <19% rms, in the 0.0001-0.1 Hz frequency range (0.5-8.0 keV); and no evidence of periodic variability, withmore » maximum observed powers in this frequency range having a chance probability of occurrence from a Poisson-deviated light curve in excess of 10%. We also report the improved neutron star (NS) physical radius measurement, with statistical accuracy of the order of {approx}10%: R{sub NS} = 8.9{sup +0.9}{sub -0.6} km for M{sub NS} = 1.4 M{sub sun}. Alternatively, we provide the confidence regions in mass-radius space as well as the best-fit projected radius R{sub {infinity}} = 11.9{sup +1.0}{sub -0.8} km, as seen by an observer at infinity. The best-fit effective temperature, kT{sub eff} = 80{sup +4}{sub -5} eV, is used to estimate the NS core temperature which falls in the range T{sub core} = (3.0-9.8) x 10{sup 7} K, depending on the atmosphere model considered. This makes U24 the third most precisely measured NS radius among qLMXBs, after those in {omega} Cen and M13.« less
Mid-term functional outcome after the internal fixation of distal radius fractures
2012-01-01
Background Distal radius fracture is a common injury with a variety of operative and non-operative management options. There remains debate as to the optimal treatment for a given patient and fracture. Despite the popularity of volar locking plate fixation, there are few large cohort or long term follow up studies to justify this modality. Our aim was to report the functional outcome of a large number of patients at a significant follow up time after fixation of their distal radius with a volar locking plate. Methods 180 patients with 183 fractures and a mean age of 62.4 years were followed up retrospectively at a mean of 30 months (Standard deviation = 10.4). Functional assessment was performed using the Disabilities of the Arm, Shoulder and Hand (DASH) and modified MAYO wrist scores. Statistical analysis was performed to identify possible variables affecting outcome and radiographs were assessed to determine time to fracture union. Results The median DASH score was 2.3 and median MAYO score was 90 for the whole group. Overall, 133 patients (74%) had a good or excellent DASH and MAYO score. Statistical analysis showed that no specific variable including gender, age, fracture type, post-operative immobilisation or surgeon grade significantly affected outcome. Complications occurred in 27 patients (15%) and in 11 patients were major (6%). Conclusion This single centre large population series demonstrates good to excellent results in the majority of patients after volar locking plate fixation of the distal radius, with complication rates comparable to other non-operative and operative treatment modalities. On this basis we recommend this mode of fixation for distal radius fractures requiting operative intervention. PMID:22280557
Mid-term functional outcome after the internal fixation of distal radius fractures.
Phadnis, Joideep; Trompeter, Alex; Gallagher, Kieran; Bradshaw, Lucy; Elliott, David S; Newman, Kevin J
2012-01-26
Distal radius fracture is a common injury with a variety of operative and non-operative management options. There remains debate as to the optimal treatment for a given patient and fracture. Despite the popularity of volar locking plate fixation, there are few large cohort or long term follow up studies to justify this modality. Our aim was to report the functional outcome of a large number of patients at a significant follow up time after fixation of their distal radius with a volar locking plate. 180 patients with 183 fractures and a mean age of 62.4 years were followed up retrospectively at a mean of 30 months (Standard deviation=10.4). Functional assessment was performed using the Disabilities of the Arm, Shoulder and Hand (DASH) and modified MAYO wrist scores. Statistical analysis was performed to identify possible variables affecting outcome and radiographs were assessed to determine time to fracture union. The median DASH score was 2.3 and median MAYO score was 90 for the whole group. Overall, 133 patients (74%) had a good or excellent DASH and MAYO score. Statistical analysis showed that no specific variable including gender, age, fracture type, post-operative immobilisation or surgeon grade significantly affected outcome. Complications occurred in 27 patients (15%) and in 11 patients were major (6%). This single centre large population series demonstrates good to excellent results in the majority of patients after volar locking plate fixation of the distal radius, with complication rates comparable to other non-operative and operative treatment modalities. On this basis we recommend this mode of fixation for distal radius fractures requiting operative intervention.
Xu, Hongjuan; Weber, Stephen G.
2006-01-01
A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte’s retention factor, k′, is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (ar) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of ar become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 μm radius is suitable for all columns smaller than 150 μm (radius) packed with 2–5 μm particles. For 1 μm packing particles, only columns smaller than 42.5 μm (radius) can be used and the reactor radius needs to be 5 μm. PMID:16494886
Aerodynamic performance investigation on waverider with variable blunt radius in hypersonic flows
NASA Astrophysics Data System (ADS)
Li, Shibin; Wang, Zhenguo; Huang, Wei; Xu, Shenren; Yan, Li
2017-08-01
Waverider is an important candidate for the design of hypersonic vehicles. However, the ideal waverider cannot be manufactured because of its sharp leading edge, so the leading edge should be blunted. In the paper, the HMB solver and laminar flow model have been utilized to obtain the flow field properties around the blunt waverider with the freestream Mach number being 8.0, and several novel strategies have been suggested to improve the aerodynamic performance of blunt waverider. The numerical method has been validated against experimental data, and the Stanton number(St) of the predicted result has been analyzed. The obtained results show good agreement with the experimental data. Stmax decreases by 58% and L/D decreases by 8.2% when the blunt radius increases from 0.0002 m to 0.001 m. ;Variable blunt waverider; is a good compromise for aerodynamic performance and thermal insulation. The aero-heating characteristics are very sensitive to Rmax. The position of the smallest blunt radius has a great effect on the aerodynamic performance. In addition, the type of blunt leading edge has a great effect on the aero-heating characteristics when Rmax is fixed. Therefore, out of several designs, Type 4is the best way to achieve the good overall performance. The ;Variable blunt waverider; not only improves the aerodynamic performance, but also makes the aero-heating become evenly-distributed, leading to better aero-heating characteristics.
Agrawal, M; Pardasani, K R; Adlakha, N
2014-08-01
The investigators in the past have developed some models of temperature distribution in the human limb assuming it as a regular circular or elliptical tapered cylinder. But in reality the limb is not of regular tapered cylindrical shape. The radius and eccentricity are not same throughout the limb. In view of above a model of temperature distribution in the irregular tapered elliptical shaped human limb is proposed for a three dimensional steady state case in this paper. The limb is assumed to be composed of multiple cylindrical substructures with variable radius and eccentricity. The mathematical model incorporates the effect of blood mass flow rate, metabolic activity and thermal conductivity. The outer surface is exposed to the environment and appropriate boundary conditions have been framed. The finite element method has been employed to obtain the solution. The temperature profiles have been computed in the dermal layers of a human limb and used to study the effect of shape, microstructure and biophysical parameters on temperature distribution in human limbs. The proposed model is one of the most realistic model as compared to conventional models as this can be effectively employed to every regular and nonregular structures of the body with variable radius and eccentricity to study the thermal behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.
Prediction of dimethyl disulfide levels from biosolids using statistical modeling.
Gabriel, Steven A; Vilalai, Sirapong; Arispe, Susanna; Kim, Hyunook; McConnell, Laura L; Torrents, Alba; Peot, Christopher; Ramirez, Mark
2005-01-01
Two statistical models were used to predict the concentration of dimethyl disulfide (DMDS) released from biosolids produced by an advanced wastewater treatment plant (WWTP) located in Washington, DC, USA. The plant concentrates sludge from primary sedimentation basins in gravity thickeners (GT) and sludge from secondary sedimentation basins in dissolved air flotation (DAF) thickeners. The thickened sludge is pumped into blending tanks and then fed into centrifuges for dewatering. The dewatered sludge is then conditioned with lime before trucking out from the plant. DMDS, along with other volatile sulfur and nitrogen-containing chemicals, is known to contribute to biosolids odors. These models identified oxidation/reduction potential (ORP) values of a GT and DAF, the amount of sludge dewatered by centrifuges, and the blend ratio between GT thickened sludge and DAF thickened sludge in blending tanks as control variables. The accuracy of the developed regression models was evaluated by checking the adjusted R2 of the regression as well as the signs of coefficients associated with each variable. In general, both models explained observed DMDS levels in sludge headspace samples. The adjusted R2 value of the regression models 1 and 2 were 0.79 and 0.77, respectively. Coefficients for each regression model also had the correct sign. Using the developed models, plant operators can adjust the controllable variables to proactively decrease this odorant. Therefore, these models are a useful tool in biosolids management at WWTPs.
Axial and Centrifugal Compressor Mean Line Flow Analysis Method
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2009-01-01
This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.
Goorens, Chul Ki; Geeurickx, Stijn; Wernaers, Pascal; Staelens, Barbara; Scheerlinck, Thierry; Goubau, Jean
2017-06-01
Specific treatment of the volar marginal rim fragment of distal radius fractures avoids occurance of volar radiocarpal dislocation. Although several fixation systems are available to capture this fragment, adequately maintaining internal fixation is difficult. We present our experience of the first 10 cases using the 2.4 mm variable angle LCP volar rim distal radius plate (Depuy Synthes®, West Chester, US), a low-profile volar rim-contouring plate designed for distal plate positioning and stable buttressing of the volar marginal fragment. Follow-up patient satisfaction, range of motion, grips strength, functional scoring with the QuickDASH and residual pain with a numeric rating scale were assessed. Radiological evaluation consisted in evaluating fracture consolidation, ulnar variance, volar angulation and maintenance of the volar rim fixation. The female to male ratio was 5:5 and the mean age was 52.2 (range, 17-80) years. The mean follow-up period was 11 (range, 5-19) months postoperatively. Patient satisfaction was high. The mean total flexion/extension range was 144° (range, 100-180°) compared to the contralateral uninjured side 160° (range, 95-180°). The mean total pronation/supination range was 153° (range, 140-180°) compared to the contralateral uninjured side 170° (range, 155-180°). Mean grip strength was 14 kg (range, 9-22), compared to the contralateral uninjured side 20 kg (range, 12-25 kg). Mean pre-injury level activity QuickDASH was 23 (range, 0-34.1), while post-recovery QuickDASH was 25 (range 0-43.2). Residual pain was 1.5 on the visual numerical pain rating scale. Radiological evaluation revealed in all cases fracture consolidation, satisfactory reconstruction of ulnar variance, volar angulation and volar rim. We encountered no flexor tendon complications, although plate removal was systematically performed after fracture consolidation. The 2.4 mm variable angle LCP volar rim distal radius plates is a valid treatment option for treating the volar marginal fragment in distal radius fractures.
Bubble Eliminator Based on Centrifugal Flow
NASA Technical Reports Server (NTRS)
Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan
2004-01-01
The fluid bubble eliminator (FBE) is a device that removes gas bubbles from a flowing liquid. The FBE contains no moving parts and does not require any power input beyond that needed to pump the liquid. In the FBE, the buoyant force for separating the gas from the liquid is provided by a radial pressure gradient associated with a centrifugal flow of the liquid and any entrained bubbles. A device based on a similar principle is described in Centrifugal Adsorption Cartridge System (MSC- 22863), which appears on page 48 of this issue. The FBE was originally intended for use in filtering bubbles out of a liquid flowing relatively slowly in a bioreactor system in microgravity. Versions that operate in normal Earth gravitation at greater flow speeds may also be feasible. The FBE (see figure) is constructed as a cartridge that includes two concentric cylinders with flanges at the ends. The outer cylinder is an impermeable housing; the inner cylinder comprises a gas-permeable, liquid-impermeable membrane covering a perforated inner tube. Multiple spiral disks that collectively constitute a spiral ramp are mounted in the space between the inner and outer cylinders. The liquid enters the FBE through an end flange, flows in the annular space between the cylinders, and leaves through the opposite end flange. The spiral disks channel the liquid into a spiral flow, the circumferential component of which gives rise to the desired centrifugal effect. The resulting radial pressure gradient forces the bubbles radially inward; that is, toward the inner cylinder. At the inner cylinder, the gas-permeable, liquid-impermeable membrane allows the bubbles to enter the perforated inner tube while keeping the liquid in the space between the inner and outer cylinders. The gas thus collected can be vented via an endflange connection to the inner tube. The centripetal acceleration (and thus the radial pressure gradient) is approximately proportional to the square of the flow speed and approximately inversely proportional to an effective radius of the annular space. For a given FBE geometry, one could increase the maximum rate at which gas could be removed by increasing the rate of flow to obtain more centripetal acceleration. In experiments and calculations oriented toward the original microgravitational application, centripetal accelerations between 0.001 and 0.012 g [where g normal Earth gravitation (.9.8 m/s2)] were considered. For operation in normal Earth gravitation, it would likely be necessary to choose the FBE geometry and the rate of flow to obtain centripetal acceleration comparable to or greater than g.
The microcomputer scientific software series 5: the BIOMASS user's guide.
George E. Host; Stephen C. Westin; William G. Cole; Kurt S. Pregitzer
1989-01-01
BIOMASS is an interactive microcomputer program that uses allometric regression equations to calculate aboveground biomass of common tree species of the Lake States. The equations are species-specific and most use both diameter and height as independent variables. The program accommodates fixed area and variable radius sample designs and produces both individual tree...
An identification method for damping ratio in rotor systems
NASA Astrophysics Data System (ADS)
Wang, Weimin; Li, Qihang; Gao, Jinji; Yao, Jianfei; Allaire, Paul
2016-02-01
Centrifugal compressor testing with magnetic bearing excitations is the last step to assure the compressor rotordynamic stability in the designed operating conditions. To meet the challenges of stability evaluation, a new method combining the rational polynomials method (RPM) with the weighted instrumental variables (WIV) estimator to fit the directional frequency response function (dFRF) is presented. Numerical simulation results show that the method suggested in this paper can identify the damping ratio of the first forward and backward modes with high accuracy, even in a severe noise environment. Experimental tests were conducted to study the effect of different bearing configurations on the stability of rotor. Furthermore, two example centrifugal compressors (a nine-stage straight-through and a six-stage back-to-back) were employed to verify the feasibility of identification method in industrial configurations as well.
The Effects of Training on Anxiety and Task Performance in Simulated Suborbital Spaceflight.
Blue, Rebecca S; Bonato, Frederick; Seaton, Kimberly; Bubka, Andrea; Vardiman, Johnené L; Mathers, Charles; Castleberry, Tarah L; Vanderploeg, James M
2017-07-01
In commercial spaceflight, anxiety could become mission-impacting, causing negative experiences or endangering the flight itself. We studied layperson response to four varied-length training programs (ranging from 1 h-2 d of preparation) prior to centrifuge simulation of launch and re-entry acceleration profiles expected during suborbital spaceflight. We examined subject task execution, evaluating performance in high-stress conditions. We sought to identify any trends in demographics, hemodynamics, or similar factors in subjects with the highest anxiety or poorest tolerance of the experience. Volunteers participated in one of four centrifuge training programs of varied complexity and duration, culminating in two simulated suborbital spaceflights. At most, subjects underwent seven centrifuge runs over 2 d, including two +Gz runs (peak +3.5 Gz, Run 2) and two +Gx runs (peak +6.0 Gx, Run 4) followed by three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz, peak +6.0 Gx and +4.0 Gz). Two cohorts also received dedicated anxiety-mitigation training. Subjects were evaluated on their performance on various tasks, including a simulated emergency. Participating in 2-7 centrifuge exposures were 148 subjects (105 men, 43 women, age range 19-72 yr, mean 39.4 ± 13.2 yr, body mass index range 17.3-38.1, mean 25.1 ± 3.7). There were 10 subjects who withdrew or limited their G exposure; history of motion sickness was associated with opting out. Shorter length training programs were associated with elevated hemodynamic responses. Single-directional G training did not significantly improve tolerance. Training programs appear best when high fidelity and sequential exposures may improve tolerance of physical/psychological flight stressors. The studied variables did not predict anxiety-related responses to these centrifuge profiles.Blue RS, Bonato F, Seaton K, Bubka A, Vardiman JL, Mathers C, Castleberry TL, Vanderploeg JM. The effects of training on anxiety and task performance in simulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(7):641-650.
USDA-ARS?s Scientific Manuscript database
Vulnerability to cavitation is a key variable defining the limits to drought resistance in woody plants (e.g. Kursar et al., 2009). This trait is typically assessed by a vulnerability curve, which can be generated by a range of methods including dehydration (Sperry et al., 1988) air injection (Cocha...
Farigliano, Lucas M; Paz, Sergio A; Leiva, Ezequiel P M; Villarreal, Marcos A
2017-08-08
The coalescence process of two nanoparticles to yield a core-shell structure is analyzed by a well-tempered metadynamics procedure. This methodology has been shown to be useful in understanding the present phenomenon in terms of two collective variables: the distance between the center of mass of the coalescing particles and the gyration radius of the resulting core element. The free-energy contour plots clearly show that the coalescence process involves the deformation of the core material, which is manifested in the residence of the system in regions with a larger gyration radius. Results from molecular dynamics for the same system were found helpful to reach the definition of this second collective variable. The advantages and limitations of the latter approach are discussed.
Shifera, Amde Selassie; Pennesi, Mark E; Yang, Paul; Lin, Phoebe
2017-06-01
To determine whether ultra-wide-field fundus autofluorescence (UWFFAF) findings in acute zonal occult outer retinopathy correlated well with perimetry, optical coherence tomography, and electroretinography findings. Retrospective observational study on 16 eyes of 10 subjects with AZOOR seen at a single referral center from October 2012 to March 2015 who had UWFFAF performed. Chi-square analysis was performed to compare categorical variables, and Mann-Whitney U test used for comparisons of nonparametric continuous variables. All eyes examined within 3 months of symptom onset (five of the five eyes) had diffusely hyperautofluorescent areas on UWFFAF. The remaining eyes contained hypoautofluorescent lesions with hyperautofluorescent borders. In 11/16 (68.8%) eyes, UWFFAF showed the full extent of lesions that would not have been possible with standard fundus autofluorescence centered on the fovea. There were 3 patterns of spread: centrifugal spread (7/16, 43.8%), centripetal spread (5/16, 31.3%), and centrifugal + centripetal spread (4/16, 25.0%). The UWFFAF lesions corresponded well with perimetric, optical coherence tomography, and electroretinography abnormalities. The UWFFAF along with optical coherence tomography can be useful in the evaluation and monitoring of acute zonal occult outer retinopathy patients.
Shifera, Amde Selassie; Pennesi, Mark E.; Yang, Paul; Lin, Phoebe
2016-01-01
Purpose To determine if ultra-wide-field fundus autofluorescence (UWFFAF) findings in acute zonal occult outer retinopathy (AZOOR) correlated well with perimetry, optical coherence tomography (OCT), and electroretinography (ERG) findings. Methods Retrospective observational study on 16 eyes of 10 subjects with AZOOR seen at a single referral center from October 2012 to March 2015 who had UWFFAF performed. Chi-square analysis was performed to compare categorical variables and Mann-Whitney U-test used for comparisons of non-parametric continuous variables. Results All eyes examined within 3 months of symptom onset (5 of 5 eyes) had diffusely hyperautofluorescent areas on UWFFAF. The remaining eyes contained hypoautofluorescent lesions with hyperautofluorescent borders. In 11/16 (68.8%) eyes, UWFFAF showed the full extent of lesions that would not have been possible with standard FAF centered on the fovea. There were 3 patterns of spread: centrifugal spread (7/16, 43.8%), centripetal spread (5/16, 31.3%), and centrifugal + centripetal spread (4/16, 25.0%). UWFFAF lesions corresponded well with perimetric, OCT, and ERG abnormalities. Conclusions UWFFAF along with OCT can be useful in the evaluation and monitoring of AZOOR patients. PMID:27755372
Skarstrom, C.; Urey, H.C.; Cohen, K.
1960-08-01
A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.
Vacuum chamber-free centrifuge with magnetic bearings.
Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo
2013-09-01
Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.
NASA Technical Reports Server (NTRS)
Norsk, P.; Shelhamer, M.
2016-01-01
This panel will present NASA's plans for ongoing and future research to define the requirements for Artificial Gravity (AG) as a countermeasure against the negative health effects of long-duration weightlessness. AG could mitigate the gravity-sensitive effects of spaceflight across a host of physiological systems. Bringing gravity to space could mitigate the sensorimotor and neuro-vestibular disturbances induced by G-transitions upon reaching a planetary body, and the cardiovascular deconditioning and musculoskeletal weakness induced by weightlessness. Of particular interest for AG during deep-space missions is mitigation of the Visual Impairment Intracranial Pressure (VIIP) syndrome that the majority of astronauts exhibit in space to varying degrees, and which presumably is associated with weightlessness-induced fluid shift from lower to upper body segments. AG could be very effective for reversing the fluid shift and thus help prevent VIIP. The first presentation by Dr. Charles will summarize some of the ground-based and (very little) space-based research that has been conducted on AG by the various space programs. Dr. Paloski will address the use of AG during deep-space exploration-class missions and describe the different AG scenarios such as intra-vehicular, part-of-vehicle, or whole-vehicle centrifugations. Dr. Clement will discuss currently planned NASA research as well as how to coordinate future activities among NASA's international partners. Dr. Barr will describe some possible future plans for using space- and ground-based partial-G analogs to define the relationship between physiological responses and G levels between 0 and 1. Finally, Dr. Stenger will summarize how the human cardiovascular system could benefit from intermittent short-radius centrifugations during long-duration missions.
NASA Technical Reports Server (NTRS)
Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Shutiani, P. K.; Vogt, P. G.
1981-01-01
Six coannular plug nozzle configurations having inverted velocity and temperature profiles, and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation in General Electric's Anechoic Free-Jet Acoustic Facility. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. The outer stream radius ratio for most of the configurations was 0.853, and the inner-stream-outer-stream area ratio was tested in the range of 0.54. Other variables investigated were the influence of bypass struts, a simple noncontoured convergent-divergent outer stream nozzle for forward quadrant shock noise control, and the effects of varying outer stream radius and inner-stream-to-outer-stream velocity ratios on the flight noise signatures of the nozzles. It was found that in simulated flight, the high-radius-ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass structs will not significantly effect the acoustic noise reduction features of a General Electric-type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insight into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further beneficial research efforts.
An analysis of spatial representativeness of air temperature monitoring stations
NASA Astrophysics Data System (ADS)
Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen
2018-05-01
Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.
NASA Astrophysics Data System (ADS)
Zheng, Zhongchao; Seto, Tatsuru; Kim, Sanghong; Kano, Manabu; Fujiwara, Toshiyuki; Mizuta, Masahiko; Hasebe, Shinji
2018-06-01
The Czochralski (CZ) process is the dominant method for manufacturing large cylindrical single-crystal ingots for the electronics industry. Although many models and control methods for the CZ process have been proposed, they were only tested with small equipment and only a few industrial application were reported. In this research, we constructed a first-principle model for controlling industrial CZ processes that produce 300 mm single-crystal silicon ingots. The developed model, which consists of energy, mass balance, hydrodynamic, and geometrical equations, calculates the crystal radius and the crystal growth rate as output variables by using the heater input, the crystal pulling rate, and the crucible rise rate as input variables. To improve accuracy, we modeled the CZ process by considering factors such as changes in the positions of the crucible and the melt level. The model was validated with the operation data from an industrial 300 mm CZ process. We compared the calculated and actual values of the crystal radius and the crystal growth rate, and the results demonstrated that the developed model simulated the industrial process with high accuracy.
A pocket of variability in Pinus rigida
F. Thomas Ledig; John H. Fryer
1971-01-01
Steady state gene frequencies around a pocket of differential fitness have been formulated by Hanson (1966) in a generalization of the work of Haldane (1948). A pocket of differential fitness would result in a pocket-of-variability, assuming that the radius of the area of contrasting fitness was large in relation to the vagility of the organism. Conversely, the absence...
Tobin, M F; Pratt, R B; Jacobsen, A L; De Guzman, M E
2013-05-01
Vulnerability to cavitation curves describe the decrease in xylem hydraulic conductivity as xylem pressure declines. Several techniques for constructing vulnerability curves use centrifugal force to induce negative xylem pressure in stem or root segments. Centrifuge vulnerability curves constructed for long-vesselled species have been hypothesised to overestimate xylem vulnerability to cavitation due to increased vulnerability of vessels cut open at stem ends that extend to the middle or entirely through segments. We tested two key predictions of this hypothesis: (i) centrifugation induces greater embolism than dehydration in long-vesselled species, and (ii) the proportion of open vessels changes centrifuge vulnerability curves. Centrifuge and dehydration vulnerability curves were compared for a long- and short-vesselled species. The effect of open vessels was tested in four species by comparing centrifuge vulnerability curves for stems of two lengths. Centrifuge and dehydration vulnerability curves agreed well for the long- and short-vesselled species. Centrifuge vulnerability curves constructed using two stem lengths were similar. Also, the distribution of embolism along the length of centrifuged stems matched the theoretical pressure profile induced by centrifugation. We conclude that vulnerability to cavitation can be accurately characterised with vulnerability curves constructed using a centrifuge technique, even in long-vesselled species. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Kalogianni, E P; Savopoulos, T; Karapantsios, T D; Raphaelides, S N
2004-06-01
A dynamic wicking technique is employed for the first time for the determination of the effective mean pore radius of a thin-layer porous food: drum dried pregelatinized starch sheets. The technique consists of measuring the penetration rate of various n-alkanes in the porous matrix of the starch sheets and using this data to calculate the effective pore radius via the Washburn equation. Pore sizes in the order of a few nanometers have been determined in the starch sheets depending on the drum dryer's operating variables (drum rotation speed, steam pressure and starch feed concentration). The conditions for the application of the technique in porous foods are discussed as compared to the conditions for single capillaries and inorganic porous material measured in other studies.
Microwave assisted centrifuge and related methods
Meikrantz, David H [Idaho Falls, ID
2010-08-17
Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.
26. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...
26. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, unknown. Supplied by Honolulu Ironworks, Honolulu, Hawaii, 1879, 1881. View: Historical view, 1934, from T. T. Waterman collection, Hawaiian Sugar Planters' Association. Once the molasses was separated from the sugar crystals it flowed through the spouts in the base of the centrifugals. The centrifugals' pulleys can be seen underneath the centrifugal. The centrifugal on the right has been reinforced with seven metal bands. The handles for the clutch mechanism are located above the centrifugal. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Effects of centrifugation stress on pituitary-gonadal function in male rats
NASA Technical Reports Server (NTRS)
Gray, G. D.; Smith, E. R.; Damassa, D. A.; Davidson, J. M.
1980-01-01
The effects of centrifugation for various lengths of time on circulating levels of luteinizing hormone (LH) and testosterone in male rats were investigated. In a chronic 52-day experiment, centrifugation at 4.1 G significantly reduced LH and testosterone levels for the entire period. Centrifugation at 2.3 G had less effect inasmuch as LH levels were not significantly decreased and testosterone levels were significantly reduced only during the first few days of centrifugation. In more acute experiments, centrifugation at 4.1 G for 4 h resulted in reduced testosterone levels, whereas centrifugation for 15 min did not significantly alter the hormone levels. These results indicate that centrifugation can decrease circulating LH and testosterone levels if the gravitational force is of sufficient magnitude and is maintained for a period of hours. Chronic centrifugation may also inhibit the acute excitatory response of LH to handling and ether stress.
A 'smart' tube holder enables real-time sample monitoring in a standard lab centrifuge.
Hoang, Tony; Moskwa, Nicholas; Halvorsen, Ken
2018-01-01
The centrifuge is among the oldest and most widely used pieces of laboratory equipment, with significant applications that include clinical diagnostics and biomedical research. A major limitation of laboratory centrifuges is their "black box" nature, limiting sample observation to before and after centrifugation. Thus, optimized protocols require significant trial and error, while unoptimized protocols waste time by centrifuging longer than necessary or material due to incomplete sedimentation. Here, we developed an instrumented centrifuge tube receptacle compatible with several commercial benchtop centrifuges that can provide real-time sample analysis during centrifugation. We demonstrated the system by monitoring cell separations during centrifugation for different spin speeds, concentrations, buffers, cell types, and temperatures. We show that the collected data are valuable for analytical purposes (e.g. quality control), or as feedback to the user or the instrument. For the latter, we verified an adaptation where complete sedimentation turned off the centrifuge and notified the user by a text message. Our system adds new functionality to existing laboratory centrifuges, saving users time and providing useful feedback. This add-on potentially enables new analytical applications for an instrument that has remained largely unchanged for decades.
A ‘smart’ tube holder enables real-time sample monitoring in a standard lab centrifuge
Hoang, Tony; Moskwa, Nicholas
2018-01-01
The centrifuge is among the oldest and most widely used pieces of laboratory equipment, with significant applications that include clinical diagnostics and biomedical research. A major limitation of laboratory centrifuges is their “black box” nature, limiting sample observation to before and after centrifugation. Thus, optimized protocols require significant trial and error, while unoptimized protocols waste time by centrifuging longer than necessary or material due to incomplete sedimentation. Here, we developed an instrumented centrifuge tube receptacle compatible with several commercial benchtop centrifuges that can provide real-time sample analysis during centrifugation. We demonstrated the system by monitoring cell separations during centrifugation for different spin speeds, concentrations, buffers, cell types, and temperatures. We show that the collected data are valuable for analytical purposes (e.g. quality control), or as feedback to the user or the instrument. For the latter, we verified an adaptation where complete sedimentation turned off the centrifuge and notified the user by a text message. Our system adds new functionality to existing laboratory centrifuges, saving users time and providing useful feedback. This add-on potentially enables new analytical applications for an instrument that has remained largely unchanged for decades. PMID:29659624
Twinning of amphibian embryos by centrifugation
NASA Technical Reports Server (NTRS)
Black, S. D.
1984-01-01
In the frog Xenopus laevis, the dorsal structures of the embryonic body axis normally derive from the side of the egg opposite the side of sperm entry. However, if the uncleaved egg is inclined at lg or centrifuged in an inclined position, this topographic relationship is overridden: the egg makes its dorsal axial structures according to its orientation in the gravitational/centrifugal field, irrespective of the position of sperm entry. Certain conditions of centrifugation cause eggs to develop into conjoined twins with two sets of axial structures. A detailed analysis of twinning provided some insight into experimental axis orientation. First, as with single-axis embryos, both axes in twins are oriented according to the direction of centrifugation. One axis forms at the centripetal side of the egg and the other forms at the centrifugal side, even when the side of sperm entry is normal to the centrifugal force vector. Second, if eggs are centrifuged to give twins, but are inclined at lg to prevent post-centrifugation endoplasmic redistributions, only single-axis embryos develop. Thus, a second redistribution is required for high-frequency secondary axis formation. This can be accomplished by lg (as in the single centrifugations) or by a second centrifugation directed along the egg's animal-vegetal axis.
2000-03-01
Pipe 1 HP Motor Variable Speed Ignition Torch High Density Infrared Heater Sin Bearing Material Feeder Figure 2. Sketch of SHS Centrifugal...the effects of muzzle blast over pressure or how it could be reduced was taken in to account in the formulation of these rules. Since WW2 MB types
Design and development of an advanced two-stage centrifugal compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, D.L.; Waterman, W.F.
1995-04-01
Small turboshaft engines require high-pressure-ratio, high-efficiency compressors to provide low engine fuel consumption. This paper describes the aeromechanical design and development of a 3.3 kg/s (7.3 lb/sec), 14:1 pressure ratio two-stage centrifugal compressor, which is used in the T800-LHT-800 helicopter engine. The design employs highly nonradial, splitter bladed impellers with swept leading edges and compact vaned diffusers to achieve high performance in a small and robust configuration. The development effort quantified the effects of impeller diffusion and passive inducer shroud bleed on surge margin as well as the effects of impeller loading on tip clearance sensitivity and the impact ofmore » sand erosion and shroud roughness on performance. The developed compressor exceeded its performance objectives with a minimum of 23% surge margin without variable geometry. The compressor provides a high-performance, rugged, low-cost configuration ideally suited for helicopter applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, R.G.; Finney, D.; Davidson, D.F.
1988-07-01
The construction, testing, and installation of a 6500 r/min 15 000-hp adjustable-speed electric drive for a centrifugal gas compressor is presented. A power electronic converter is applied to control the speed of a 5-kV motor. The motor is directly coupled to a 6500 r/min compressor and replaced a steam turbine. Dual converters are used in a twelve-pulse arrangement at both the utility and the motor. The motor is of solid rotor construction, with dual 30/sup 0/ displaced stator windings. Finite-element analysis is used to optimize the motor designs for use with a variable-frequency static converter. Full-power tests are completed whichmore » confirm theoretical predictions on losses, performance, and operation. The electrical drive takes up considerably less space and is much more efficient than the steam turbine it replaced.« less
Geometry and physical conditions in the stellar wind of AG Carinae
NASA Technical Reports Server (NTRS)
Leitherer, Claus; Allen, Richard; Altner, Bruce; Damineli, Augusto; Drissen, Laurent; Idiart, Thais; Lupie, Olivia; Nota, Antonella; Robert, Carmelle; Schmutz, Werner
1994-01-01
AG Carinae is one of the prototypes of the class of Luminous Blue Variables (LBVs). Since 1990 the star has continuously brightened in its visual continuum. We report on a multi-instrument and -wavelength observing campaign to monitor the current activity phase of AG Car. Ground-based photometry, polarimetry, spectroscopy, and space-ultraviolet spectroscopy and spectropolarimetry have been obtained. From the variability of the polarization at ultraviolet and optical wavelengths we detect significant intrinsic polarization. P(sub int) greater than or equal to 0.5% is a large value for a hot, luminous star, suggesting departure from spherical symmetry in the wind of AG Car. The intrinsic polarization is variable on a timescale of 2 months or less. The measured ultraviolet polarization (intrinsic + interstellar) dropped to 0.5% in 1992 May and returned to 1% in 1992 July. The results are interpreted in terms of a variable outflow with a density enhancement in the equatorial plane. A similar model was suggested for the related object R127 in the Large Magellanic Cloud (LMC). This geometry is reminiscent of the large-scale morphology of the gas nebula and dust 'jet' surrounding AG Car. It is therefore likely that physical conditions close to the stellar surface are responsible for the geometry of the spatially resolved circumstellar material around AG Car. Despite the drastic change of the photospheric conditions, the mass-loss rate did not increase. We find no evidence for a positive correlation between wind density and stellar radius. This makes models that explain the radius increase by opacity effects in the outflow unlikely. The mechanism responsible for the temperature and radius variations is still unknown but most likely has its origin in subphotospheric regions.
Rms-flux relation and fast optical variability simulations of the nova-like system MV Lyr
NASA Astrophysics Data System (ADS)
Dobrotka, A.; Mineshige, S.; Ness, J.-U.
2015-03-01
The stochastic variability (flickering) of the nova-like system (subclass of cataclysmic variable) MV Lyr yields a complicated power density spectrum with four break frequencies. Scaringi et al. analysed high-cadence Kepler data of MV Lyr, taken almost continuously over 600 d, giving the unique opportunity to study multicomponent Power Density Spectra (PDS) over a wide frequency range. We modelled this variability with our statistical model based on disc angular momentum transport via discrete turbulent bodies with an exponential distribution of the dimension scale. Two different models were used, a full disc (developed from the white dwarf to the outer radius of ˜1010 cm) and a radially thin disc (a ring at a distance of ˜1010 cm from the white dwarf) that imitates an outer disc rim. We succeed in explaining the two lowest observed break frequencies assuming typical values for a disc radius of 0.5 and 0.9 times the primary Roche lobe and an α parameter of 0.1-0.4. The highest observed break frequency was also modelled, but with a rather small accretion disc with a radius of 0.3 times the primary Roche lobe and a high α value of 0.9 consistent with previous findings by Scaringi. Furthermore, the simulated light curves exhibit the typical linear rms-flux proportionality linear relation and the typical log-normal flux distribution. As the turbulent process is generating fluctuations in mass accretion that propagate through the disc, this confirms the general knowledge that the typical rms-flux relation is mainly generated by these fluctuations. In general, a higher rms is generated by a larger amount of superposed flares which is compatible with a higher mass accretion rate expressed by a larger flux.
Effect of facility on the operative costs of distal radius fractures.
Mather, Richard C; Wysocki, Robert W; Mack Aldridge, J; Pietrobon, Ricardo; Nunley, James A
2011-07-01
The purpose of this study was to investigate whether ambulatory surgery centers can deliver lower-cost care and to identify sources of those cost savings. We performed a cost identification analysis of outpatient volar plating for closed distal radius fractures at a single academic medical center. Multiple costs and time measures were taken from an internal database of 130 consecutive patients and were compared by venue of treatment, either an inpatient facility or an ambulatory, stand-alone surgery facility. The relationships between total cost and operative time and multiple variables, including fracture severity, patient age, gender, comorbidities, use of bone graft, concurrent carpal tunnel release, and surgeon experience, were examined, using multivariate analysis and regression modeling to identify other cost drivers or explanatory variables. The mean operative cost was considerably greater at the inpatient facility ($7,640) than at the outpatient facility ($5,220). Cost drivers of this difference were anesthesia services, post-anesthesia care unit, and operating room costs. Total surgical time, nursing time, set-up, and operative times were 33%, 109%, 105%, and 35% longer, respectively, at the inpatient facility. There was no significant difference between facilities for the additional variables, and none of those variables independently affected cost or operative time. The only predictor of cost and time was facility type. This study supports the use of ambulatory stand-alone surgical facilities to achieve efficient resource utilization in the operative treatment of distal radius fractures. We also identified several specific costs and time measurements that differed between facilities, which can serve as potential targets for tertiary facilities to improve utilization. Economic and Decisional Analysis III. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Polynomial approximation of the Lense-Thirring rigid precession frequency
NASA Astrophysics Data System (ADS)
De Falco, Vittorio; Motta, Sara
2018-05-01
We propose a polynomial approximation of the global Lense-Thirring rigid precession frequency to study low-frequency quasi-periodic oscillations around spinning black holes. This high-performing approximation allows to determine the expected frequencies of a precessing thick accretion disc with fixed inner radius and variable outer radius around a black hole with given mass and spin. We discuss the accuracy and the applicability regions of our polynomial approximation, showing that the computational times are reduced by a factor of ≈70 in the range of minutes.
NASA Technical Reports Server (NTRS)
Gwin, Hal S. (Inventor); Aaron, James (Inventor)
1990-01-01
A low noise, variable discharage area, valve is constructed having opposed recesses within which a pair of gates are slidably disposed. Each of the gates is provided with upstream edges having a radius thereon, the radius enabling smooth, accelerated, low noise flow therebetween. The gates are further provided with tracks along each side, which in turn slide along splines set in the side walls of the valve. A threaded rod which rotates in a threaded insert in a rear wall of each of the gates, serves to move the gates within their respective recesses.
Daves, Massimo; Giacomuzzi, Katia; Tagnin, Enrico; Jani, Erika; Adcock Funk, Dorothy M; Favaloro, Emmanuel J; Lippi, Giuseppe
2014-04-01
Sample centrifugation is an essential step in the coagulation laboratory, as clotting tests are typically performed on citrated platelet (PLT) poor plasma (PPP). Nevertheless, no clear indication has been provided as to whether centrifugation of specimens should be performed with the centrifuge brake set to on or off. Fifty consecutive sodium citrate anticoagulated samples were collected and divided into two aliquots. The former was centrifuged as for Clinical Laboratory Standards Institute (CLSI) guidelines with the centrifuge brake set to on, whereas the latter was centrifuged again as for CLSI guidelines, but with the brake set to off. In the PPP of all samples, a PLT count was performed, followed by the analysis of activated partial thromboplastin time (APTT), prothrombin time (PT) and fibrinogen (FBG). The PLT count after samples centrifugation was substantially reduced, either with centrifuge brake set to on or off (5 ± 1 versus 3 ± 1 × 10/l; P = 0.009). The frequency of samples exceeding a PLT count less than 10 × 10/l was nearly double in samples centrifuged with the brake on than in those with the brake off (14 versus 8%; P < 0.01). Although no significant difference was found for APTT values, PT was slightly prolonged using the centrifuge brake set to on (mean bias 0.2 s; P < 0.001). FBG values were also significantly higher using the centrifuge brake set to on (mean bias 0.29 g/l; P < 0.001). The results of this study indicate that sample centrifugation for routine coagulation testing should be preferably performed with the centrifuge brake set to off for providing a better quality specimen.
Centrifugal dryers keep pace with the market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiscor, S.
2008-03-15
New plant design and upgrades create a shift in dewatering strategies. The article describes recent developments. Three major manufacturers supply centrifugal dryers - TEMA, Centrifugal & Mechanical Industries (CMI) and Ludowici. CMI introduced a line of vertical centrifugal dryers. TEMA improved the techniques by developing a horizontal vibratory centrifuge (HVC) which simplified maintenance. 3 figs., 1 photo.
SEAL FOR HIGH SPEED CENTRIFUGE
Skarstrom, C.W.
1957-12-17
A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.
Centrifugal separator devices, systems and related methods
Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Macaluso, Lawrence L [Carson City, NV
2012-03-20
Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.
NASA Technical Reports Server (NTRS)
Clement, Gilles; Wood, Scott J.
2010-01-01
This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.
Lopes, A G; Keshavarz-Moore, E
2013-01-01
During centrifugation operation, the major challenge in the recovery of extracellular proteins is the removal of the maximum liquid entrapped within the spaces between the settled solids-dewatering level. The ability of the scroll decanter centrifuge (SDC) to process continuously large amounts of feed material with high concentration of solids without the need for resuspension of feeds, and also to achieve relatively high dewatering, could be of great benefit for future use in the biopharmaceutical industry. However, for reliable prediction of dewatering in such a centrifuge, tests using the same kind of equipment at pilot-scale are required, which are time consuming and costly. To alleviate the need of pilot-scale trials, a novel USD device, with reduced amounts of feed (2 mL) and to be used in the laboratory, was developed to predict the dewatering levels of a SDC. To verify USD device, dewatering levels achieved were plotted against equivalent compression (Gtcomp ) and decanting (Gtdec ) times, obtained from scroll rates and feed flow rates operated at pilot-scale, respectively. The USD device was able to successfully match dewatering trends of the pilot-scale as a function of both Gtcomp and Gtdec , particularly for high cell density feeds, hence accounting for all key variables that influenced dewatering in a SDC. In addition, it accurately mimicked the maximum dewatering performance of the pilot-scale equipment. Therefore the USD device has the potential to be a useful tool at early stages of process development to gather performance data in the laboratory thus minimizing lengthy and costly runs with pilot-scale SDC. © 2013 American Institute of Chemical Engineers.
DISCOVERY OF SiCSi IN IRC+10216: A MISSING LINK BETWEEN GAS AND DUST CARRIERS OF Si–C BONDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cernicharo, J.; Agúndez, M.; Prieto, L. Velilla
2015-06-10
We report the discovery in space of a disilicon species, SiCSi, from observations between 80 and 350 GHz with the IRAM 30 m radio telescope. Owing to the close coordination between laboratory experiments and astrophysics, 112 lines have now been detected in the carbon-rich star CW Leo. The derived frequencies yield improved rotational and centrifugal distortion constants up to sixth order. From the line profiles and interferometric maps with the Submillimeter Array, the bulk of the SiCSi emission arises from a region of 6″ in radius. The derived abundance is comparable to that of SiC{sub 2}. As expected from chemicalmore » equilibrium calculations, SiCSi and SiC{sub 2} are the most abundant species harboring a Si−C bond in the dust formation zone and certainly both play a key role in the formation of SiC dust grains.« less
Sensorimotor aspects of high-speed artificial gravity: I. Sensory conflict in vestibular adaptation
NASA Technical Reports Server (NTRS)
Brown, Erika L.; Hecht, Heiko; Young, Laurence R.
2002-01-01
Short-radius centrifugation offers a promising and affordable countermeasure to the adverse effects of prolonged weightlessness. However, head movements made in a fast rotating environment elicit Coriolis effects, which seriously compromise sensory and motor processes. We found that participants can adapt to these Coriolis effects when exposed intermittently to high rotation rates and, at the same time, can maintain their perceptual-motor coordination in stationary environments. In this paper, we explore the role of inter-sensory conflict in this adaptation process. Different measures (vertical nystagmus, illusory body tilt, motion sickness) react differently to visual-vestibular conflict and adapt differently. In particular, proprioceptive-vestibular conflict sufficed to adapt subjective parameters and the time constant of nystagmus decay, while retinal slip was required for VOR gain adaptation. A simple correlation between the strength of intersensory conflict and the efficacy of adaptation fails to explain the data. Implications of these findings, which differ from existing data for low rotation rates, are discussed.
A MEMS and agile optics-based dual-mode variable optical power splitter with no moving parts
NASA Astrophysics Data System (ADS)
Khwaja, Tariq S.; Suleman, Hamid; Reza, Syed Azer
2017-06-01
In this paper, we present a novel design of an optical power splitter. Owing to the inherent variable power split ratios that the proposed design delivers, it is ideal for use in communications, sensing and signal processing applications where variable power splitting is often quintessential. The proposed power splitter module is dual mode as it combines the use of a Micro-Electro-Mechanical Systems (MEMS) based Digital Micro-mirror Device (DMD) and an Electronically Controlled Tunable Lens (ECTL) to split the power of an input optical signal between two output ports - the designated port and the surplus port. The use of a reflective Digital Spatial Light Modulator (DSLM) such as the DMD provides a motion-free digital control of the split ratio between the two output ports. Although the digital step between two possible successive split ratios can be fairly minimal with the use of a high resolution DMD but it is a challenge to correctly ascertain the exact image pattern on the DMD to obtain any desired specific split ratio. To counter this challenge, we propose the synchronized use of a circular pattern on the DMD, which serves as a circular clear aperture with a tunable radius, and an ECTL. The radius of the circular pattern on the DMD provides a digital control of the split ratio between the two ports whereas the ECTL, depending on its controller, can provide either an analog or a digital control by altering the beam radius which is incident at the DMD circular pattern. The radius of the circular pattern on the DMD can be minimally changed by one micro-pixel thickness. Setting the radius of the circular pattern on the DMD to an appropriate value provides the closest "ball-park" split ratio whereas further tuning the ECTL aids in slightly altering from this digitally set value to obtain the exact desired split ratio in-between any two digitally-set successive split ratios that correspond to any clear aperture radius of the DMD pattern and its incremental minimal allowable change of one micropixel. We provide a detailed scheme to calculate the desired DMD aperture radius as well as the focal length setting of the ECTL to obtain any given split ratio. By setting tolerance limits on the split ratio, we also show that our method affords diversity by providing multiple possible solutions to achieve a desired optical power split ratio within the specified tolerances. We also demonstrate the validation of the proposed concept with initial experimental results and discussions. These experimental results show a repeatable splitter operation and the resulting power split ratios according to the theoretical predictions. With the experimental data, we also demonstrate the effectiveness of the method in obtaining any particular split ratio through different DMD and ECTL configurations with specific split ratio tolerance values.
Conceptual Design of a Two Spool Compressor for the NASA Large Civil Tilt Rotor Engine
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Thurman, Douglas R.
2010-01-01
This paper focuses on the conceptual design of a two spool compressor for the NASA Large Civil Tilt Rotor engine, which has a design-point pressure ratio goal of 30:1 and an inlet weight flow of 30.0 lbm/sec. The compressor notional design requirements of pressure ratio and low-pressure compressor (LPC) and high pressure ratio compressor (HPC) work split were based on a previous engine system study to meet the mission requirements of the NASA Subsonic Rotary Wing Projects Large Civil Tilt Rotor vehicle concept. Three mean line compressor design and flow analysis codes were utilized for the conceptual design of a two-spool compressor configuration. This study assesses the technical challenges of design for various compressor configuration options to meet the given engine cycle results. In the process of sizing, the technical challenges of the compressor became apparent as the aerodynamics were taken into consideration. Mechanical constraints were considered in the study such as maximum rotor tip speeds and conceptual sizing of rotor disks and shafts. The rotor clearance-to-span ratio in the last stage of the LPC is 1.5% and in the last stage of the HPC is 2.8%. Four different configurations to meet the HPC requirements were studied, ranging from a single stage centrifugal, two axi-centrifugals, and all axial stages. Challenges of the HPC design include the high temperature (1,560deg R) at the exit which could limit the maximum allowable peripheral tip speed for centrifugals, and is dependent on material selection. The mean line design also resulted in the definition of the flow path geometry of the axial and centrifugal compressor stages, rotor and stator vane angles, velocity components, and flow conditions at the leading and trailing edges of each blade row at the hub, mean and tip. A mean line compressor analysis code was used to estimate the compressor performance maps at off-design speeds and to determine the required variable geometry reset schedules of the inlet guide vane and variable stators that would result in the transonic stages being aerodynamically matched with high efficiency and acceptable stall margins based on user specified maximum levels of rotor diffusion factor and relative velocity ratio.
Mailler, R; Gasperi, J; Patureau, D; Vulliet, E; Delgenes, N; Danel, A; Deshayes, S; Eudes, V; Guerin, S; Moilleron, R; Chebbo, G; Rocher, V
2017-01-01
This article provides data on the contamination of different kinds of sludge (raw, centrifuged, digested, thermally dried sludge and sludge cake) from Paris conurbation by 71 various pollutants including pharmaceutical products (PHPs), hormones, perfluorinated acids (PFAs), linear alkylbenzene sulfonate (LAS), alkylphenols (APs), phthalates (PAEs), polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs). Very high contents of LAS (0.1-10g/kg dry matter - DM) compared to other compounds were found in all types of sludge followed by DEHP (10-100mg/kg DM) and fluoroquinolones (1-100mg/kg DM). APs were measured at intermediary contents in Parisian sludge, lying in the 2-20mg/kg DM range. Finally, hormones, PAHs, PCBs, PAEs, PFAs and the remaining PHPs were all found at contents lower than 1mg/kg DM. For most compounds (PHPs, PFOS, DEHP, PAHs), no significant differences in the micropollutant contents were found for similar types of sludge from different WWTP in Paris, highlighting the homogeneity of sludge contamination in downstream Paris catchment. The variability of concentration is rather high (coefficient of variation >100%) for several PHPs, PFAs or PCBs while it is moderate (<100%) or low (<50%) for fluoroquinolones, hormones, PAHs, APs or LAS. In addition, digestion seems to have a buffer effect as variabilities are lower in digested sludge for PHPs, PFAs, APs and PCBs. During sludge treatment (centrifugation, digestion, thermal drying, sludge conditioning+press filtration), the hormones, LAS, APs, PAHs, DEHP and PCBs concentrations increased, while those of PHPs and PFAs decreased. In the case of digestion, the increase of content can be explained by no pollutant removal or a lower removal than DM removal (concentration phenomenon) whereas the decrease underlines that the compound is more removed than the DM. In any case, these concentration variations presuppose the mechanisms of dissipation that could be attributed to volatilization, biotic or abiotic transformation (complete or with metabolites production), bound residues formation. In addition, data on sludge liquors - centrifuged (CW) and condensed (TDW) waters - from respectively centrifugation and thermal drying were collected. Several hormones, PHPs, PFAs, LAS, PAEs, APs, PCBs and PAHs were quantified in CW and TDW, displaying a transfer through the water removal. The concentrations observed are rather comparable to those found in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
A variable circular-plot method for estimated bird numbers
Reynolds, R.T.; Scott, J.M.; Nussbaum, R.A.
1980-01-01
A bird census method is presented that is designed for tall, structurally complex vegetation types, and rugged terrain. With this method the observer counts all birds seen or heard around a station, and estimates the horizontal distance from the station to each bird. Count periods at stations vary according to the avian community and structural complexity of the vegetation. The density of each species is determined by inspecting a histogram of the number of individuals per unit area in concentric bands of predetermined widths about the stations, choosing the band (with outside radius x) where the density begins to decline, and summing the number of individuals counted within the circle of radius x and dividing by the area (Bx2). Although all observations beyond radius x are rejected with this procedure, coefficients of maximum distance.
Microfluidic size separation of cells and particles using a swinging bucket centrifuge.
Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck
2015-09-01
Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.
Microfluidic size separation of cells and particles using a swinging bucket centrifuge
Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck
2015-01-01
Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency. PMID:26487900
Preisser, J. S.; Hammett-Stabler, C. A.; Renner, J. B.; Rubin, J.
2011-01-01
Summary The association between follicle-stimulating hormone (FSH) and bone density was tested in 111 postmenopausal women aged 50–64 years. In the multivariable analysis, weight and race were important determinants of bone mineral density. FSH, bioavailable estradiol, and other hormonal variables did not show statistically significant associations with bone density at any site. Introduction FSH has been associated with bone density loss in animal models and longitudinal studies of women. Most of these analyses have not considered the effect of weight or race. Methods We tested the association between FSH and bone density in younger postmenopausal women, adjusting for patient-related factors. In 111 postmenopausal women aged 50–64 years, areal bone mineral density (BMD) was measured at the lumbar spine, femoral neck, total hip, and distal radius using dual-energy X-ray absorptiometry, and volumetric BMD was measured at the distal radius using peripheral quantitative computed tomography (pQCT). Height, weight, osteoporosis risk factors, and serum hormonal factors were assessed. Results FSH inversely correlated with weight, bioavailable estradiol, areal BMD at the lumbar spine and hip, and volumetric BMD at the ultradistal radius. In the multivariable analysis, no hormonal variable showed a statistically significant association with areal BMD at any site. Weight was independently associated with BMD at all central sites (p<0.001), but not with BMD or pQCT measures at the distal radius. Race was independently associated with areal BMD at all sites (p≤0.008) and with cortical area at the 33% distal radius (p=0.004). Conclusions Correlations between FSH and bioavailable estradiol and BMD did not persist after adjustment for weight and race in younger postmenopausal women. Weight and race were more important determinants of bone density and should be included in analyses of hormonal influences on bone. PMID:21125395
Aćimović, Jugoslava; Mäki-Marttunen, Tuomo; Linne, Marja-Leena
2015-01-01
We developed a two-level statistical model that addresses the question of how properties of neurite morphology shape the large-scale network connectivity. We adopted a low-dimensional statistical description of neurites. From the neurite model description we derived the expected number of synapses, node degree, and the effective radius, the maximal distance between two neurons expected to form at least one synapse. We related these quantities to the network connectivity described using standard measures from graph theory, such as motif counts, clustering coefficient, minimal path length, and small-world coefficient. These measures are used in a neuroscience context to study phenomena from synaptic connectivity in the small neuronal networks to large scale functional connectivity in the cortex. For these measures we provide analytical solutions that clearly relate different model properties. Neurites that sparsely cover space lead to a small effective radius. If the effective radius is small compared to the overall neuron size the obtained networks share similarities with the uniform random networks as each neuron connects to a small number of distant neurons. Large neurites with densely packed branches lead to a large effective radius. If this effective radius is large compared to the neuron size, the obtained networks have many local connections. In between these extremes, the networks maximize the variability of connection repertoires. The presented approach connects the properties of neuron morphology with large scale network properties without requiring heavy simulations with many model parameters. The two-steps procedure provides an easier interpretation of the role of each modeled parameter. The model is flexible and each of its components can be further expanded. We identified a range of model parameters that maximizes variability in network connectivity, the property that might affect network capacity to exhibit different dynamical regimes.
jsc2018m000314_Spinning_Science_Multi-use_Variable-g_Platform_Arrives_at_the_Space_Station-MP4
2018-05-09
Spinning Science: Multi-use Variable-g Platform Arrives at the Space Station --- The Multi-use Variable-gravity Platform (MVP) Validation mission will install and test the MVP, a new hardware platform developed and owned by Techshot Inc., on the International Space Station (ISS). Though the MVP is designed for research with many different kinds of organisms and cell types, this validation mission will focus on Drosophila melanogaster, more commonly known as the fruit fly. This platform will be especially important for fruit fly research, as it will allow researchers to study larger sample sizes of Drosophila melanogaster than in other previous hardware utilizing centrifuges and it will be able to support fly colonies for multiple generations.
NASA Astrophysics Data System (ADS)
Pei, Ji; Wang, Wenjie; Yuan, Shouqi; Zhang, Jinfeng
2016-09-01
In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0 Q d and 1.4 Q d is proposed. Three parameters, namely, the blade outlet width b 2, blade outlet angle β 2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0 Q d and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.
NASA Astrophysics Data System (ADS)
Grzegożek, W.; Dobaj, K.; Kot, A.
2016-09-01
The paper includes the analysis of the rubber V-belt cooperation with the CVT transmission pulleys. The analysis of the forces and torques acting in the CVT transmission was conducted basing on calculated characteristics of the centrifugal regulator and the torque regulator. The accurate estimation of the regulator surface curvature allowed for calculation of the relation between the driving wheel axial force, the engine rotational speed and the gear ratio of the CVT transmission. Simplified analytical models of the rubber V-belt- pulley cooperation are based on three basic approaches. The Dittrich model assumes two contact regions on the driven and driving wheel. The Kim-Kim model considers, in addition to the previous model, also the radial friction. The radial friction results in the lack of the developed friction area on the driving pulley. The third approach, formulated in the Cammalleri model, assumes variable sliding angle along the wrap arch and describes it as a result the belt longitudinal and cross flexibility. Theoretical torque on the driven and driving wheel was calculated on the basis of the known regulators characteristics. The calculated torque was compared to the measured loading torque. The best accordance, referring to the centrifugal regulator range of work, was obtained for the Kim-Kim model.
Neighborhood sampling: how many streets must an auditor walk?
McMillan, Tracy E; Cubbin, Catherine; Parmenter, Barbara; Medina, Ashley V; Lee, Rebecca E
2010-03-12
This study tested the representativeness of four street segment sampling protocols using the Pedestrian Environment Data Scan (PEDS) in eleven neighborhoods surrounding public housing developments in Houston, TX. The following four street segment sampling protocols were used (1) all segments, both residential and arterial, contained within the 400 meter radius buffer from the center point of the housing development (the core) were compared with all segments contained between the 400 meter radius buffer and the 800 meter radius buffer (the ring); all residential segments in the core were compared with (2) 75% (3) 50% and (4) 25% samples of randomly selected residential street segments in the core. Analyses were conducted on five key variables: sidewalk presence; ratings of attractiveness and safety for walking; connectivity; and number of traffic lanes. Some differences were found when comparing all street segments, both residential and arterial, in the core to the ring. Findings suggested that sampling 25% of residential street segments within the 400 m radius of a residence sufficiently represents the pedestrian built environment. Conclusions support more cost effective environmental data collection for physical activity research.
Neighborhood sampling: how many streets must an auditor walk?
2010-01-01
This study tested the representativeness of four street segment sampling protocols using the Pedestrian Environment Data Scan (PEDS) in eleven neighborhoods surrounding public housing developments in Houston, TX. The following four street segment sampling protocols were used (1) all segments, both residential and arterial, contained within the 400 meter radius buffer from the center point of the housing development (the core) were compared with all segments contained between the 400 meter radius buffer and the 800 meter radius buffer (the ring); all residential segments in the core were compared with (2) 75% (3) 50% and (4) 25% samples of randomly selected residential street segments in the core. Analyses were conducted on five key variables: sidewalk presence; ratings of attractiveness and safety for walking; connectivity; and number of traffic lanes. Some differences were found when comparing all street segments, both residential and arterial, in the core to the ring. Findings suggested that sampling 25% of residential street segments within the 400 m radius of a residence sufficiently represents the pedestrian built environment. Conclusions support more cost effective environmental data collection for physical activity research. PMID:20226052
Enhancing Centrifugal Separation With Electrophoresis
NASA Technical Reports Server (NTRS)
Herrmann, F. T.
1986-01-01
Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.
Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure.
Lee, Dae-Young; Kim, Sa-Reum; Kim, Ji-Suk; Park, Jae-Jun; Cho, Kyu-Jin
2017-06-01
A wheel drive mechanism is simple, stable, and efficient, but its mobility in unstructured terrain is seriously limited. Using a deformable wheel is one of the ways to increase the mobility of a wheel drive robot. By changing the radius of its wheels, the robot becomes able to pass over not only high steps but also narrow gaps. In this article, we propose a novel design for a variable-diameter wheel using an origami-based soft robotics design approach. By simply folding a patterned sheet into a wheel shape, a variable-diameter wheel was built without requiring lots of mechanical parts and a complex assembly process. The wheel's diameter can change from 30 to 68 mm, and it is light in weight at about 9.7 g. Although composed of soft materials (fabrics and films), the wheel can bear more than 400 times its weight. The robot was able to change the wheel's radius in response to terrain conditions, allowing it to pass over a 50-mm gap when the wheel is shrunk and a 50-mm step when the wheel is enlarged.
Coupled out of plane vibrations of spiral beams for micro-scale applications
NASA Astrophysics Data System (ADS)
Amin Karami, M.; Yardimoglu, Bulent; Inman, Daniel J.
2010-12-01
An analytical method is proposed to calculate the natural frequencies and the corresponding mode shape functions of an Archimedean spiral beam. The deflection of the beam is due to both bending and torsion, which makes the problem coupled in nature. The governing partial differential equations and the boundary conditions are derived using Hamilton's principle. Two factors make the vibrations of spirals different from oscillations of constant radius arcs. The first is the presence of terms with derivatives of the radius in the governing equations of spirals and the second is the fact that variations of radius of the beam causes the coefficients of the differential equations to be variable. It is demonstrated, using perturbation techniques that the derivative of the radius terms have negligible effect on structure's dynamics. The spiral is then approximated with many merging constant-radius curved sections joined together to approximate the slow change of radius along the spiral. The equations of motion are formulated in non-dimensional form and the effect of all the key parameters on natural frequencies is presented. Non-dimensional curves are used to summarize the results for clarity. We also solve the governing equations using Rayleigh's approximate method. The fundamental frequency results of the exact and Rayleigh's method are in close agreement. This to some extent verifies the exact solutions. The results show that the vibration of spirals is mostly torsional which complicates using the spiral beam as a host for a sensor or energy harvesting device.
Artificial Gravity as a Multi-System Countermeasure to Bed Rest Deconditioning: Pilot Study Overview
NASA Technical Reports Server (NTRS)
Paloski, William H.; Young, L. R.
2007-01-01
Efficient, effective, multi-system countermeasures will likely be required to protect the health, safety, and performance of crews aboard planned exploration-class space flight missions to Mars and beyond. To that end, NASA, DLR, and IMBP initiated a multi-center international project to begin systematically exploring the utility of artificial gravity (AG) as a multi-system countermeasure in ground based venues using test subjects deconditioned by bed rest. The goal of this project is to explore the efficacy of short-radius, intermittent AG as a countermeasure to bone, muscle, cardiovascular, and sensory-motor adaptations to hypogravity. This session reports the results from a pilot study commissioned to validate a standardized protocol to be used by all centers involved in the project. Subject selection criteria, medical monitoring requirements, medical care procedures, experiment control procedures, and standardized dependent measures were established jointly. Testing was performed on 15 rigorously screened male volunteers subjected to 21 days of 6deg HDT bed rest. (All provided written consent to volunteer after the nature of the study and its hazards were clearly explained to them.) Eight were treated with daily 1hr AG exposures (2.5g at the feet decreasing to 1.0g at the heart) aboard a short radius (3m) centrifuge, while the other seven served as controls. Multiple tests of multiple dependent measures were made in each of the primary physiological systems of interest during a 10 day acclimatization period prior to HDT bed rest and again during an 8 day recovery period after the bed rest period was complete. Analyses of these data (presented in other papers in this session) suggest the AG prescription had salutary effects on aspects of the bone, muscle, and cardiovascular systems, with no untoward effects on the vestibular system, the immune system, or cognitive function. Furthermore, treatment subjects were able to tolerate 153/160 centrifuge sessions over the 21 day deconditioning protocol, suggesting that tolerance was unaffected by deconditioning. These positive results set the stage for full implementation of the planned multi-center international AG project. Future work will be devoted to developing optimization techniques for AG prescriptions (likely supplemented by exercise) to provide maximum physiological protection across all systems subject to space flight deconditioning in both men and women with minimum time and/or side effects. While a continuous AG solution (rotating vehicle) would likely be more efficient, this study suggests that intermittent AG could be an effective multi-system countermeasure.
Distribution of fluids in the body of the centrifuged rat
NASA Technical Reports Server (NTRS)
Pitts, G. C.
1983-01-01
The effects of exposure to an elevated g-level throughout the period of rapid growth is investigated in a comparison of a group of female Sprague-Dawley rats centrifuged as adults with other groups centrifuged for prolonged intervals starting shortly after weaning. The fluid-solid composition of total body, heart, liver, gut, skin, and muscle for both study groups is compared with that of a control group. None of the changes as a result of centrifugation were truly persistent. The only increases in mass associated with centrifugation and the only responses to centrifugation per se were observed in the skin values.
Hacke, Uwe G; Venturas, Martin D; MacKinnon, Evan D; Jacobsen, Anna L; Sperry, John S; Pratt, R Brandon
2015-01-01
The standard centrifuge method has been frequently used to measure vulnerability to xylem cavitation. This method has recently been questioned. It was hypothesized that open vessels lead to exponential vulnerability curves, which were thought to be indicative of measurement artifact. We tested this hypothesis in stems of olive (Olea europea) because its long vessels were recently claimed to produce a centrifuge artifact. We evaluated three predictions that followed from the open vessel artifact hypothesis: shorter stems, with more open vessels, would be more vulnerable than longer stems; standard centrifuge-based curves would be more vulnerable than dehydration-based curves; and open vessels would cause an exponential shape of centrifuge-based curves. Experimental evidence did not support these predictions. Centrifuge curves did not vary when the proportion of open vessels was altered. Centrifuge and dehydration curves were similar. At highly negative xylem pressure, centrifuge-based curves slightly overestimated vulnerability compared to the dehydration curve. This divergence was eliminated by centrifuging each stem only once. The standard centrifuge method produced accurate curves of samples containing open vessels, supporting the validity of this technique and confirming its utility in understanding plant hydraulics. Seven recommendations for avoiding artefacts and standardizing vulnerability curve methodology are provided. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
21 CFR 864.5350 - Microsedimentation centrifuge.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...
Responses of heart rate and blood pressure to KC-135 hyper-gravity
NASA Technical Reports Server (NTRS)
Satake, Hirotaka; Matsunami, Ken'ichi; Reschke, Millard F.
1992-01-01
Many investigators have clarified the effects of hyper gravitational-inertial forces (G) upon the cardiovascular system, using the centrifugal apparatus with short rotating radius. We investigated the cardiovascular responses to KC-135 hyper-G flight with negligibly small angular velocity. Six normal, healthy subjects 29 to 40 years old (5 males and 1 female) took part in this experiment. Hyper gravitational-inertial force was generated by the KC-135 hyper-G flight, flown in a spiral path with a very long radius of 1.5 miles. Hyper-G was sustained for 3 minutes with 1.8 +Gz in each session and was repeatedly exposed to very subject sitting on a chair 5 times. The preliminary results of blood pressure and R-R interval are discussed. An exposure of 1.8 +Gz stress resulted in a remarkable increase of systolic and diastolic blood pressure, while the pulse pressure did not change and remained equal to the control level regardless of an exposure of hyper-G. These results in blood pressure indicate an increase of resistance in the peripheral vessels, when an exposure of hyper-G was applied. The R-R interval was calculated from ECG. R-R interval in all subjects was changed but not systematically, and R-R interval became obviously shorter during the hyper-G period than during the 1 +Gz control period although R-R interval varied widely in some cases. The coefficient of variation of R-R interval was estimated to determine the autonomic nerve activity, but no significant change was detectable.
ROTATING ACCRETION FLOWS: FROM INFINITY TO THE BLACK HOLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jason; Ostriker, Jeremiah; Sunyaev, Rashid, E-mail: jgli@astro.princeton.edu
2013-04-20
Accretion onto a supermassive black hole of a rotating inflow is a particularly difficult problem to study because of the wide range of length scales involved. There have been broadly utilized analytic and numerical treatments of the global properties of accretion flows, but detailed numerical simulations are required to address certain critical aspects. We use the ZEUS code to run hydrodynamical simulations of rotating, axisymmetric accretion flows with Bremsstrahlung cooling, considering solutions for which the centrifugal balance radius significantly exceeds the Schwarzschild radius, with and without viscous angular momentum transport. Infalling gas is followed from well beyond the Bondi radiusmore » down to the vicinity of the black hole. We produce a continuum of solutions with respect to the single parameter M-dot{sub B}/ M-dot{sub Edd}, and there is a sharp transition between two general classes of solutions at an Eddington ratio of M-dot{sub B}/M-dot{sub Edd}{approx}few Multiplication-Sign 10{sup -2}. Our high inflow solutions are very similar to the standard Shakura and Sunyaev results. But our low inflow results are to zeroth order the stationary Papaloizou and Pringle solution, which has no accretion. To next order in the small, assumed viscosity they show circulation, with disk and conical wind outflows almost balancing inflow. These solutions are characterized by hot, vertically extended disks, and net accretion proceeds at an extremely low rate, only of order {alpha} times the inflow rate. Our simulations have converged with respect to spatial resolution and temporal duration, and they do not depend strongly on our choice of boundary conditions.« less
NASA Technical Reports Server (NTRS)
Talyansky, Y.; Moyer, E. L.; Oijala, E.; Baer, L. A.; Ronca, A. E.
2016-01-01
During adaptation to the microgravity environment, adult mammals experience stress mediated by the Hypothalamic-Pituitary-Adrenal axis. In our previous studies of pregnant rats exposed to 2-g hypergravity via centrifugation, we reported decreased corticosterone and increased body mass and leptin in adult male, but not female, offspring. In this study, we utilized Unpredictable Variable Prenatal Stress to simulate the stressors of spaceflight by exposing dams to different stressors. Stress response modulation occurs via both positive and negative feedback in the hypothalamus, anterior pituitary gland, and adrenal cortex resulting in the differential release of corticosterone (CORT), a murine analog to human cortisol.
Single shaft automotive gas turbine engine characterization test
NASA Technical Reports Server (NTRS)
Johnson, R. A.
1979-01-01
An automotive gas turbine incorporating a single stage centrifugal compressor and a single stage radial inflow turbine is described. Among the engine's features is the use of wide range variable geometry at the inlet guide vanes, the compressor diffuser vanes, and the turbine inlet vanes to achieve improved part load fuel economy. The engine was tested to determine its performance in both the variable geometry and equivalent fixed geometry modes. Testing was conducted without the originally designed recuperator. Test results were compared with the predicted performance of the nonrecuperative engine based on existing component rig test maps. Agreement between test results and the computer model was achieved.
The variable rotation period of the inner region of Saturn's plasma disk.
Gurnett, D A; Persoon, A M; Kurth, W S; Groene, J B; Averkamp, T F; Dougherty, M K; Southwood, D J
2007-04-20
We show that the plasma and magnetic fields in the inner region of Saturn's plasma disk rotate in synchronism with the time-variable modulation period of Saturn's kilometric radio emission. This relation suggests that the radio modulation has its origins in the inner region of the plasma disk, most likely from a centrifugally driven convective instability and an associated plasma outflow that slowly slips in phase relative to Saturn's internal rotation. The slippage rate is determined by the electrodynamic coupling of the plasma disk to Saturn and by the drag force exerted by its interaction with the Enceladus neutral gas torus.
Kim, Suhee; Agca, Cansu; Agca, Yuksel
2013-01-01
The aim of the present study was to evaluate the effects of various physical interventions on the function of epididymal rat spermatozoa and determine whether there are correlations among these functional parameters. Epididymal rat spermatozoa were subjected to various mechanical (pipetting, centrifugation and Percoll gradient separation) and anisotonic conditions, and sperm motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) were evaluated. Repeated pipetting caused a loss in motility, PMI and MMP (P < 0.05). Minimal centrifugation force (200g) had no effect on motility, PMI and MMP, whereas an increase in the centrifugation force to 400g or 600g decreased sperm function (P < 0.005). Percoll gradient separation increased total motility, PMI and MMP (P < 0.05). However, the spermatozoa that were subjected to mechanical interventions showed high susceptibility to a ROS stimulant (P < 0.005). Anisotonic conditions decreased motility, PMI and MMP, and hypotonic conditions in particular increased basal ROS (P < 0.05). In correlation tests, there were strong positive correlations among total motility, PMI and MMP, whereas ROS showed no or negatively weak correlations with the other parameters. In conclusion, the physical interventions may act as important variables, affecting functional parameters of epididymal rat spermatozoa. Therefore, careful consideration and proper protocols for handling of rat spermatozoa and osmotic conditions are required to achieve reliable results and minimise damage. PMID:23140582
Bouwmeester, J Christopher; Park, Jiheum; Valdovinos, John; Bonde, Pramod
2018-05-29
Changing the speed of left ventricular assist devices (LVADs) cyclically may be useful to restore aortic pulsatility; however, the effects of this pulsation on right ventricular (RV) function are unknown. This study investigates the effects of direct ventricular interaction by quantifying the amount of wave energy created by RV contraction when axial and centrifugal LVADs are used to assist the left ventricle. In 4 anesthetized pigs, pressure and flow were measured in the main pulmonary artery and wave intensity analysis was used to identify and quantify the energy of waves created by the RV. The axial pump depressed the intensity of waves created by RV contraction compared with the centrifugal pump. In both pump designs, there were only minor and variable differences between the continuous and pulsed operation on RV function. The axial pump causes the RV to contract with less energy compared with a centrifugal design. Diminishing the ability of the RV to produce less energy translates to less pressure and flow produced, which may lead to LVAD-induced RV failure. The effects of pulsed LVAD operation on the RV appear to be minimal during acute observation of healthy hearts. Further study is necessary to uncover the effects of other modes of speed modulation with healthy and unhealthy hearts to determine if pulsed operation will benefit patients by reducing LVAD complications.
A hand-powered, portable, low-cost centrifuge for diagnosing anemia in low-resource settings.
Brown, Jocelyn; Theis, Lauren; Kerr, Lila; Zakhidova, Nazima; O'Connor, Kelly; Uthman, Margaret; Oden, Z Maria; Richards-Kortum, Rebecca
2011-08-01
This report describes the development of a hand-powered centrifuge to determine hematocrit values in low-resource settings. A hand-powered centrifuge was constructed by using a salad spinner. Hematocrit values were measured by using the hand-powered device, and results were compared with those of a benchtop centrifuge. The packed cell volume (PCV) measured with the hand-powered device correlated linearly with results obtained with a benchtop centrifuge (r = 0.986, P < 0.001). The PCVs measured with the hand-powered centrifuge were consistently 1.14 times higher than those measured with the benchtop system. The 14% increase in PCV measured with the hand-powered centrifuge is caused by increased plasma trapped in the cell column. The reader card was adjusted to compensate for trapped plasma. A hand-powered centrifuge and calibrated reader card can be constructed for U.S. $35 and can accurately determine hematocrit values. It is suitable for use in low-resource settings because it is mechanically-powered, inexpensive, and accurate.
A Hand-Powered, Portable, Low-Cost Centrifuge for Diagnosing Anemia in Low-Resource Settings
Brown, Jocelyn; Theis, Lauren; Kerr, Lila; Zakhidova, Nazima; O'Connor, Kelly; Uthman, Margaret; Oden, Z. Maria; Richards-Kortum, Rebecca
2011-01-01
This report describes the development of a hand-powered centrifuge to determine hematocrit values in low-resource settings. A hand-powered centrifuge was constructed by using a salad spinner. Hematocrit values were measured by using the hand-powered device, and results were compared with those of a benchtop centrifuge. The packed cell volume (PCV) measured with the hand-powered device correlated linearly with results obtained with a benchtop centrifuge (r = 0.986, P < 0.001). The PCVs measured with the hand-powered centrifuge were consistently 1.14 times higher than those measured with the benchtop system. The 14% increase in PCV measured with the hand-powered centrifuge is caused by increased plasma trapped in the cell column. The reader card was adjusted to compensate for trapped plasma. A hand-powered centrifuge and calibrated reader card can be constructed for U.S. $35 and can accurately determine hematocrit values. It is suitable for use in low-resource settings because it is mechanically-powered, inexpensive, and accurate. PMID:21813855
Liquid-Sensing Probe and Methods for Using the Same
NASA Technical Reports Server (NTRS)
Haberbusch, Mark S. (Inventor); Ickes, Jacob C. (Inventor); Thurn, Adam (Inventor); Lawless, Branden J. (Inventor)
2014-01-01
A sensor assembly includes a main body, a sensor, and a filler. The main body includes an outer surface having a continuously-variable radius of curvature in at least one portion. A sensor in thermal communication with a region of that surface having relatively low radius of curvature is disposed in the assembly recessed from the outer surface. Liquid droplets adhered to the outer surface in this region tend to migrate to a distant location having a higher radius of curvature. The main body has low thermal conductivity. The filler has a relatively higher thermal conductivity and, in embodiments, fills an opening in the outer surface of the main body, providing a thermally-conductive pathway between the sensor and the surrounding environment via the opening. A probe having a plurality of such sensors, and methods of detecting the presence of liquid and phase transitions in a predetermined space are also disclosed.
21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...
21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...
21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...
21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...
21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Centrifugal chemistry analyzer for clinical use... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Laboratory Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A centrifugal...
Flow Induced Noise from Turbulent Flow over Steps and Gaps
2010-05-04
Wall Jet Facility which is detailed in Figures 2.1 through 2.3. In this facility a Cincinnati Fan variable speed centrifugal fan with model number...the flow over the multiple backward steps considered in this study The following subsections will concentrate on the oil flow visualization performed ...NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Virginia Polytechnic Institute and State University
Beams, J.W.; Snoddy, L.B.
1960-08-01
An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.
Skarstrom, C.
1959-03-10
A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.
Cardiac arrhythmias during aerobatic flight and its simulation on a centrifuge.
Zawadzka-Bartczak, Ewelina K; Kopka, Lech H
2011-06-01
It is well known that accelerations during centrifuge training and during flight can provoke cardiac arrhythmias. Our study was designed to investigate both the similarities and differences between heart rhythm disturbances during flights and centrifuge tests. There were 40 asymptomatic, healthy pilots who performed two training flights and were also tested in a human centrifuge according to a program of rapid onset rate acceleration (ROR) and of centrifuge simulation of the actual acceleration experienced in flight (Simulation). During the flight and centrifuge tests ECG was monitored with the Holter method. ECG was examined for heart rhythm changes and disturbances. During flights, premature ventricular contractions (PVCs) were found in 25% of the subjects, premature supraventricular contractions (PSVCs) and PVCs with bigeminy in 5%, and pairs of PVCs in 2.5% of subjects. During the centrifuge tests, PVCs were experienced by 45% of the subjects, PSVCs and pairs of PVCs by 7.5%, and PVCs with bigeminy by 2.5%. Sinus bradycardia was observed during flights and centrifuge tests in 7.5% of subjects. Comparative evaluation of electrocardiographic records in military pilots during flights and centrifuge tests demonstrated that: 1) there were no clinically significant arrhythmias recorded; and 2) the frequency and kind of heart rhythm disturbances during aerobatic flight and its simulation on a centrifuge were not identical and did not occur repetitively in the same persons during equal phases of the tests.
Autobalancing and FDIR for a space-based centrifuge prototype
NASA Technical Reports Server (NTRS)
Wilson, Edward; Mah, Robert W.
2005-01-01
This report summarizes centrifuge-related work performed at the Smart Systems Research Laboratory at NASA Ames Research Center's Computational Sciences Division from 1995 through 2003. The goal is to develop an automated system that will sense an imbalance (both static and dynamic3) in a centrifuge and issue control commands to drive counterweights to eliminate the effects of the imbalance. This autobalancing development began when the ISS centrifuge design was not yet finalized, and was designed to work with the SSRL Centrifuge laboratory prototype, constructed in 1993-1995. Significant differences between that prototype and the current International Space Station (ISS) Centrifuge design are that: the spin axis for the SSRL Centrifuge prototype can translate freely in x and y, but not wobble, whereas the ISS centrifuge spin axis has 3 translational and two rotational degrees of freedom, supported by a vibration 34. The imbalance sensors are strained gauges both in the rotor and the stator, measuring the imbalance forces, whereas the ISS centrifuge uses eddy current displacement sensors to measure the displacements resulting from imbalance. High fidelity autobalancing and FDIR systems (for both counterweights and strain gauges) are developed and tested in MATLAB simulation, for the SSRL Centrifuge configuration. Hardware implementation of the autobalancing technology was begun in 1996, but was terminated due to lack of funding. The project lay dormant until 2001-2002 when the FDIR capability was added.
Latitudinal variation of the solar limb-darkening function
NASA Astrophysics Data System (ADS)
Kroll, Ronald J.
1994-06-01
In an effort to monitor solar limb-darkening variability, the continuum radiation intensity at 550 nm over the outermost 32 arcseconds of the limb is measured at various solar latitudes. Using the Finite Fourier Transform Definition, the edge location of the Sun is determined for a series of scan amplitudes at each of the observed positions. The differential radius is the difference between edge locations for a fixed pair of scan amplitudes, and is a quantity which characterizes the slope of the solar limb-darkening function. Utilizing the differential radius, such observations offer the possibility of revealing a latitudinal variation of the photospheric temperature gradient and could provide clues to the mechanisms and variability of energy transport out of the Sun. These observations began in 1988 with measurements at 24 separate limb positions and include observations since 1990 when 36 positions were observed. The daily differential radius measurements for each position that is free of contamination from solar active regions are weighted according to the corresponding daily variance and averaged to obtain an overall value at each position for the observing season. The results indicate that during the 1991 observing season, there were regions near 20 deg N latitude and 30 deg S latitude on the Sun where the differential radius values were significantly greater than surrounding regions. This suggests that perturbations to the temperature gradient occur in latitudinally localized regions and persist for at least several months. It is shown that this phenomenon could have the same origin as the observed latitudinal variations of surface temperature and could also speak to the question of a lag time between the cycles of irradiation and magnetic variation.
Gibbs, Jenna C; Giangregorio, Lora M; Wong, Andy K O; Josse, Robert G; Cheung, Angela M
2017-10-01
The purpose of this cross-sectional study was to determine how appendicular lean mass index (ALMI), and whole body lean (LMI) and fat mass indices (FMI) associate with estimated bone strength outcomes at the distal radius and tibia in adults aged 40 years and older. Dual energy X-ray absorptiometry (DXA) scans were performed to determine body composition, including whole body lean and fat mass, and appendicular lean mass. ALMI (appendicular lean mass/height 2 ), LMI (lean tissue mass/height 2 ) and FMI (fat mass/height 2 ) were calculated. High-resolution peripheral quantitative computed tomography (HRpQCT) scans were performed to assess bone structural properties at the distal radius and tibia. Using finite element analysis, failure load (N), stiffness (N/mm), ultimate stress (MPa), and cortical-to-trabecular load ratio were estimated from HRpQCT scans. The associations between body composition (ALMI, LMI, FMI) and estimated bone strength were examined using bivariate and multivariable linear regression analyses adjusting for age, sex, and other confounding variables. In 197 participants (127 women; mean±SD, age: 69.5±10.3y, body mass index: 27.95±4.95kg/m 2 , ALMI: 7.31±1.31kg/m 2 ), ALMI and LMI were significantly associated with failure load at the distal radius and tibia (explained 39%-48% of the variance) and remained significant after adjusting for confounding variables and multiple testing (R 2 =0.586-0.645, p<0.001). ALMI, LMI, and FMI did not have significant associations with ultimate stress in our multivariable models. FMI was significantly associated with cortical-to-trabecular load ratio at the distal radius and tibia (explained 6%-12% of the variance) and remained significant after adjusting for confounders and multiple testing (R 2 =0.208-0.243, p<0.001). FMI was no longer significantly associated with failure load after adjusting for confounders. These findings suggest that ALMI and LMI are important determinants of estimated bone strength, particularly failure load, at the distal radius and tibia, and may contribute to preservation of bone strength in middle-to-late adulthood. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
van Loon, Jack J. W. A.; Bücker, N.; Berte, J.; Bok, K.; Bos, J.; Boyle, R.; Bravenoer, N.; Chouker, A.; Clement, G.; Cras, P.; Denise, D.; Eekhoff, M.; Felsenberg, D.; Fong, K.; Fuller, C.; Groen, E.; Heer, M.; Hinghofer-Szalkay, H.; Iwase, S.; Karemaker, J. M.; Linnarsson, D.; Lüthen, C.; Narici, M.; Norsk, P.; Paloski, W.; Rutten, M.; Saggini, R.; Stephan, A.; Ullrich, O.; Vautmans, V.; Wuyts, F.; Young, L.
Over the last decades a significant amount of knowledge has been accumulated on the adap-tation of the human body going into near weightless conditions and on its re-adaptation to 1g Earth conditions after space flight. Ground-based paradigms for microgravity simulation have been developed such as head down tilted bed rest and dry-immersion. In such systems the adaptations to long term immobilization and to head-ward fluid shifts have been studied. Questions we address here are: can long-term ground-based centrifugation help us to under-stand and even predict the adaptations to long-term increased gravity conditions? How does the body adapt to chronic (days, weeks or longer) exposure to a hypergravity environment? And, once the body has fully adapted to a hypergravity environment, how does it re-adapt going from a hypergravity state back to a relatively hypo-gravity condition of 1g, or even going from a centrifuge / hypergravity environment into a bed-rest setting? Can such transitions in well-controlled studies bring us closer to understanding the consequences of gravity transitions that the crews will likely experience going to the Moon or to Mars. Is hypergravity a good model to study the effect of re-entry in gravitational environments after long duration space flight? In an ESA -supported Topical Team we address all organ systems known so far to change directly or indirectly by altered gravity conditions. We will identify to which gravity levels the human body can be exposed for longer periods of time and what protocols could be applied to address the questions at hand. We also identify the technology required to ac-complish such long duration hypergravity and re-adaptation studies. Issues like ethics, safety and required logistics should be addressed. As there is limited experience with exposure of hu-man test subjects to prolonged periods of moderately increased g-forces, unexpected harm may occur. Therefore, the information, disclosure and informed consent procedures need special attention. The final outcome of the Topical Team will be a clear answer about the feasibility of the use of hypergravity as a tool and analogue for space research, and if and how hypergravity studies can provide useful knowledge to support future space flight on the one hand and current medical issues in the ageing population (osteoporosis, cardiovascular diseases, obesity) on the other hand.
Subjective stress factors in centrifuge training for military aircrews.
Lin, Pei-Chun; Wang, Jenhung; Li, Shih-Chin
2012-07-01
This study investigates stress-influence factors perceived by military aircrews undergoing centrifuge training, which lowers the incidence of G-induced loss of consciousness (G-LOC) for the crews of high-performance combat aircrafts. We used questionnaires to assess the subjective stress-influence factors of crews undergoing centrifuge training. Professionals in aviation physiology identified attributes measuring the perceived stress induced by centrifuge training, which were segmented into three constructs by factor analysis, theory lecture, centrifuge equipment, and physical fitness. Considerable interpenetration was discernible between these factors and military rank, age, length of service, flight hours accrued, and type of aircraft piloted. Identifying and quantifying the perceived stressors experienced in human-use centrifuge training enables aviators, astronauts, and air forces of the world to determine which constructs perceptibly increase or alleviate the perceived stress undergone by trainees when partaking in centrifuge training. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Astrophysics Data System (ADS)
An, Zhao; Zhounian, Lai; Peng, Wu; Linlin, Cao; Dazhuan, Wu
2016-07-01
This paper describes the shape optimization of a low specific speed centrifugal pump at the design point. The target pump has already been manually modified on the basis of empirical knowledge. A genetic algorithm (NSGA-II) with certain enhancements is adopted to improve its performance further with respect to two goals. In order to limit the number of design variables without losing geometric information, the impeller is parametrized using the Bézier curve and a B-spline. Numerical simulation based on a Reynolds averaged Navier-Stokes (RANS) turbulent model is done in parallel to evaluate the flow field. A back-propagating neural network is constructed as a surrogate for performance prediction to save computing time, while initial samples are selected according to an orthogonal array. Then global Pareto-optimal solutions are obtained and analysed. The results manifest that unexpected flow structures, such as the secondary flow on the meridian plane, have diminished or vanished in the optimized pump.
Centrifugal compressor controller for minimizing power consumption while avoiding surge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haley, P.F.; Junk, B.S.; Renaud, M.A.
1987-08-18
For use with a variable capacity centrifugal compressor driven by an electric motor, a controller is described for adjusting the capacity of the compressor to satisfy a demand, minimize electric power consumption and avoid a surge condition. The controller consists of: a. means for sensing an operating parameter that is indicative of the capacity of the compressor; b. means for setting a selected setpoint that represents a desired value of the operating parameter; c. surge sensing means for detecting an impending surge by sensing fluctuation in the electric current supplied to the compressor motor, wherein an impending surge is detectedmore » whenever fluctuations in excess of a predetermined amplitude occur in excess of a predetermined frequency; and d. control means, responsive to the operating parameter sensing means, the setpoint setting means, and the surge sensing means, for controlling the compressor, such that its capacity is minimally above a level that would cause a surge condition yet is sufficient to maintain the operating parameter at the setpoint.« less
Shock and Vibration Control of a Golf-Swing Robot at Impacting the Ball
NASA Astrophysics Data System (ADS)
Hoshino, Yohei; Kobayashi, Yukinori
A golf swing robot is a kind of fast motion manipulator with a flexible link. A robot manipulator is greatly affected by Corioli's and centrifugal forces during fast motion. Nonlinearity due to these forces can have an adverse effect on the performance of feedback control. In the same way, ordinary state observers of a linear system cannot accurately estimate the states of nonlinear systems. This paper uses a state observer that considers disturbances to improve the performance of state estimation and feedback control. A mathematical model of the golf robot is derived by Hamilton's principle. A linear quadratic regulator (LQR) that considers the vibration of the club shaft is used to stop the robot during the follow-through action. The state observer that considers disturbances estimates accurate state variables when the disturbances due to Corioli's and centrifugal forces, and impact forces work on the robot. As a result, the performance of the state feedback control is improved. The study compares the results of the numerical simulations with experimental results.
NASA Astrophysics Data System (ADS)
Jabir, M. V.; Apurv Chaitanya, N.; Aadhi, A.; Samanta, G. K.
2016-02-01
The “perfect” vortex is a new class of optical vortex beam having ring radius independent of its topological charge (order). One of the simplest techniques to generate such beams is the Fourier transformation of the Bessel-Gauss beams. The variation in ring radius of such vortices require Fourier lenses of different focal lengths and or complicated imaging setup. Here we report a novel experimental scheme to generate perfect vortex of any ring radius using a convex lens and an axicon. As a proof of principle, using a lens of focal length f = 200 mm, we have varied the radius of the vortex beam across 0.3-1.18 mm simply by adjusting the separation between the lens and axicon. This is also a simple scheme to measure the apex angle of an axicon with ease. Using such vortices we have studied non-collinear interaction of photons having orbital angular momentum (OAM) in spontaneous parametric down-conversion (SPDC) process and observed that the angular spectrum of the SPDC photons are independent of OAM of the pump photons rather depends on spatial profile of the pump beam. In the presence of spatial walk-off effect in nonlinear crystals, the SPDC photons have asymmetric angular spectrum with reducing asymmetry at increasing vortex radius.
21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...
21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...
21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...
21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...
21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...
Novel design and fabrication of a microcentrifuge for biomedical and biochemical applications
NASA Astrophysics Data System (ADS)
Yan, Dong; Xu, Bai; Castracane, James
2003-01-01
In this paper, modeling and simulation of a novel micro-centrifuge for biomedical and biochemical applications is described. The micro-centrifuge that we designed can work not only as a shaker but also as a detector of cell growth, which has great potential applications in bioanalysis. The initial design contains four channels for mixing or collecting of samples by centrifugal force. The rotor, the key component of this device, is actuated using electrostatic force. There are four electrodes on the substrate to actuate the micro-centrifuge rotation around the X-axis (lateral in plane) and the Y-axis (vertical in plane) respectively, and eight pairs of comb drives are used to actuate the micro-centrifuge rotation around the Z-axis (perpendicular to the XY plane). The multiple axis actuation design makes it very flexible to control the micro-centrifuge. Because of its small feature size, the cost of the reagent used for the micro-centrifuge will be greatly reduced. An array of micro-centrifuges will be designed to achieve a fast cycling time. A Finite Element Analysis (FEA) has been completed to analyze the static and dynamic performance of the micro-centrifuge, such as the natural frequencies, tilt angle, and driving voltage. A novel fabrication process using SOI technology has been proposed which is now being developed.
Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique
2017-02-01
The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.
Takagi, M; Ilias, M; Yoshida, T
2000-01-01
The effect of centrifugal force applied for cell separation at the medium change on the growth, metabolism and tissue plasminogen activator (tPA) productivity of Chinese hamster ovary (CHO) cells suspension culture was investigated. The viability of the precipitated cells increased exponentially as the centrifugal force decreased. However, the cell recovery was lower than 91% when centrifugal forces applied for 5 min was less than 67 x g. In cultures incubated for 474 h with 7 medium changes employing centrifugal forces ranging from 67 to 364 x g, a centrifugal force lower than 119 x g resulted in higher specific rates of growth, glucose consumption, and lactate and tPA production during the whole culture period. On the other hand, daily centrifugation at 67 to 537 x g without discarding the supernatant had no effect on the specific rates. The cultures inoculated with cells precipitated at a centrifugal force of 67 x g showed apparently higher specific rates of metabolism compared to those inoculated with cells in the supernatant. The cells in the supernatant and the precipitate obtained following centrifugation at 67 x g have average diameters of 15.5 and 17.4 microm, respectively. The intracellular contents of amino acids, especially nonessential amino acids, of the precipitated cells were markedly higher than those of the cells in the supernatant. These results indicate that large cells with high amino acid content and metabolic activity were selectively retained in the culture by means of centrifugation at low forces such as 67 x g. Consequently, application of a low centrifugal force is recommended for medium change in order to maintain higher specific productivity of suspended mammalian cells in perfusion culture.
Shade, Brandon C; Schiavo, Kellie; Rosenthal, Tami; Connelly, James T; Melchior, Richard W
2016-06-05
Recent advances in blood pump technology have led to an increased use of centrifugal pumps for prolonged extracorporeal membrane oxygenation (ECMO). Data from the Extracorporeal Life Support Organization confirms that many institutions have converted to centrifugal pumps after prior experience with roller pump technology. Centrifugal pump technology is more compact and may generate less heat and hemolysis than a conventional roller pump. Based on the potential advantages of centrifugal pumps, a decision was made institution-wide to convert to centrifugal pump technology in pediatric implementation of ECMO. Based on limited prior experience with centrifugal pumps, a multidisciplinary approach was used to implement this new technology. The new centrifugal pump (Sorin Revolution, Arvada, CO) was intended for ECMO support in the cardiac intensive care unit (CICU), the pediatric intensive care unit (PICU) and the neonatal intensive care unit (NICU). The perfusion team used their knowledge and expertise with centrifugal pumps to create the necessary teaching tools and interactive training sessions for the technical specialists who consisted primarily of registered nurses and respiratory therapists. The first phase consisted of educating all personnel involved in the care of the ECMO patient, followed by patient implementation in the CICU, followed by the PICU and NICU. The institution-wide conversion took several months to complete and was well received among all disciplines in the CICU and PICU. The NICU personnel did use the centrifugal pump circuit, but decided to revert back to using the roller pump technology. A systematic transition from roller pump to centrifugal pump technology with a multidisciplinary team can ensure a safe and successful implementation. © The Author(s) 2016.
Centrifuge Facility for the International Space Station Alpha
NASA Technical Reports Server (NTRS)
Johnson, Catherine C.; Hargens, Alan R.
1994-01-01
The Centrifuge Facility planned for the International Space Station Alpha has under-one considerable redesign over the past year, primarily because the Station is now viewed as a 10 year mission rather than a 30 year mission and because of the need to simply the design to meet budget constraints and a 2000 launch date. The basic elements of the Centrifuge Facility remain the same, i.e., a 2.5 m diameter centrifuge, a micro-g holding unit, plant and animal habitats, a glovebox and a service unit. The centrifuge will still provide the full range of artificial gravity from 0.01 a to 2 - as originally planned; however, the extractor to permit withdrawal of habitats from the centrifuge without stopping the centrifuge has been eliminated. The specimen habitats have also been simplified and are derived from other NASA programs. The Plant Research Unit being developed by the Gravitational Biology Facility will be used to house plants in the Centrifuge Facility. Although not as ambitious as the Centrifuge Facility plant habitat, it will provide much better environmental control and lighting than the current Shuttle based Plant Growth Facility. Similarly, rodents will be housed in the Advanced Animal Habitat being developed for the Shuttle program. The Centrifuge Facility and ISSA will provide the opportunity to perform repeatable, high quality science. The long duration increments available on the Station will permit multigeneration studies on both plants and animals which have not previously been possible. The Centrifuge Facility will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will for the first time permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of micro-g from other 0 environmental factors and to examine artificial gravity as a potential countermeasure for the physical deconditioning observed during spaceflight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenan, B.S.; Greger, N.C.; Hedge, A.M.
1986-07-01
Two forms of the human genital skin fibroblast (GSF) androgen receptor (AR) complexed with (/sup 3/H)17 alpha-methyltrienolone were compared: 1) the intact complex formed in cytosol at 4 C (broken cell or B/C complex); and 2) the complex formed in the whole cell at 37 C (W/C complex). The intact form of the B/C complex was distinguished from partly degraded forms by the gel filtration profile in 0.5 M KCl. The W/C complex was considered to represent the transformed state of the receptor. The W/C complex had a smaller molecular radius than the B/C complex by gel filtration (Kav =more » 0.26-0.28 vs. 0.11-0.18). By low salt density gradient centrifugation, the B/C complex sedimented at 8.8S and the W/C complex at 6.6S. However, in 0.5 M KCl, each sedimented at 5.1S, and they were homogeneous, indicating that the monomeric forms differed markedly in molecular radius, but by only about 20,000 daltons in calculated mol wt (134,500 vs. 114,300 daltons). The complexes were separated from DNA, desalted, and compared by chromatography on DEAE-Sephacel and hydroxylapatite (HAP). The B/C complex bound readily to both column matrices and eluted from each as a sharp homogeneous peak: from DEAE at 172-190 mM KCl and from HAP at 123 mM phosphate. The W/C complex, however, was heterogeneous. One component did not bind to DEAE, and one eluted at 22-40 mM KCl. The W/C complex eluted from HAP as a peak at 42 mM, with a shoulder at 102 mM phosphate. Thus, transformation of the human genital skin fibroblast androgen receptor involves a major decrease in molecular radius and loss of negative charge with a possible loss of a 20,000-dalton macromolecular component.« less
NASA Astrophysics Data System (ADS)
Majczyna, A.; Madej, J.; Różańska, A.; Należyty, M.
2017-06-01
We present a simulation of an X-ray spectrum of a hot neutron star, as would be seen by the LAD detector on board of LOFT satellite. We also compute a grid of theoretical spectra corresponding to a range of effective temperatures Teff and surface gravities log g with values corresponding to compact stars in Type I X-ray bursters. A neutron star with the mass M=1.64 M⊙ and the radius R=11.95 km (which yields the surface gravity log g=14.30 [cgs] and the surface redshift z=0.30) is used in simulation. Accuracy of mass and radius determination by fitting theoretical spectra to the observed one is found to be M=1.64+0.16-0.02 M⊙ and R=11.95+1.57-0.40 km (2σ). The confidence contours for these two variables are narrow but elongated, and therefore the resulting constraints on the EOS cannot be strong. Note, that in this paper we aim to discuss error contours of NS mass and radius, whereas discussion of EOS is beyond the scope of this work.
Centrifugal reciprocating compressor
NASA Technical Reports Server (NTRS)
High, W. H.
1980-01-01
Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.
Centrifugal separators and related devices and methods
Meikrantz, David H [Idaho Falls, ID; Law, Jack D [Pocatello, ID; Garn, Troy G [Idaho Falls, ID; Macaluso, Lawrence L [Carson City, NV; Todd, Terry A [Aberdeen, ID
2012-03-06
Centrifugal separators and related methods and devices are described. More particularly, centrifugal separators comprising a first fluid supply fitting configured to deliver fluid into a longitudinal fluid passage of a rotor shaft and a second fluid supply fitting sized and configured to sealingly couple with the first fluid supply fitting are described. Also, centrifugal separator systems comprising a manifold having a drain fitting and a cleaning fluid supply fitting are described, wherein the manifold is coupled to a movable member of a support assembly. Additionally, methods of cleaning centrifugal separators are described.
Rat growth during chronic centrifugation
NASA Technical Reports Server (NTRS)
Pitts, G. C.; Oyama, J.
1978-01-01
Female weanling rats were chronically centrifuged at 4.15 G with controls at terrestrial gravity. Samples were sacrificed for body composition studies at 0, 28, 63, 105 and 308 days of centrifugation. The centrifuged group approached a significantly lower mature body mass than the controls (251 and 318g) but the rate of approach was the same in both groups. Retirement to 1G on the 60th day resulted in complete recovery. Among individual components muscle, bone, skin, CNS, heart, kidneys, body water and body fat were changed in the centrifuged group. However, an analysis of the growth of individual components relative to growth of the total fat-free compartment revealed that only skin (which increased in mass) was responding to centrifugation per se.
Investigating a hybrid perturbation-Galerkin technique using computer algebra
NASA Technical Reports Server (NTRS)
Andersen, Carl M.; Geer, James F.
1988-01-01
A two-step hybrid perturbation-Galerkin method is presented for the solution of a variety of differential equations type problems which involve a scalar parameter. The resulting (approximate) solution has the form of a sum where each term consists of the product of two functions. The first function is a function of the independent field variable(s) x, and the second is a function of the parameter lambda. In step one the functions of x are determined by forming a perturbation expansion in lambda. In step two the functions of lambda are determined through the use of the classical Bubnov-Gelerkin method. The resulting hybrid method has the potential of overcoming some of the drawbacks of the perturbation and Bubnov-Galerkin methods applied separately, while combining some of the good features of each. In particular, the results can be useful well beyond the radius of convergence associated with the perturbation expansion. The hybrid method is applied with the aid of computer algebra to a simple two-point boundary value problem where the radius of convergence is finite and to a quantum eigenvalue problem where the radius of convergence is zero. For both problems the hybrid method apparently converges for an infinite range of the parameter lambda. The results obtained from the hybrid method are compared with approximate solutions obtained by other methods, and the applicability of the hybrid method to broader problem areas is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serwer, Philip, E-mail: serwer@uthscsa.edu; Wright, Elena T.; Liu, Zheng
DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNAmore » missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.« less
NASA Astrophysics Data System (ADS)
Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.
2016-02-01
The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.
Neighborhood Food Environment, Diet, and Obesity Among Los Angeles County Adults, 2011
Lightstone, Amy S.; Basurto-Davila, Ricardo; Morales, Douglas M.; Sturm, Roland
2015-01-01
Introduction The objective of this study was to examine whether an association exists between the number and type of food outlets in a neighborhood and dietary intake and body mass index (BMI) among adults in Los Angeles County. We also assessed whether this association depends on the geographic size of the food environment. Methods We analyzed data from the 2011 Los Angeles County Health Survey. We created buffers (from 0.25 to 3.0 miles in radius) centered in respondents’ residential addresses and counted the number of food outlets by type in each buffer. Dependent variables were weekly intake of fruits and vegetables, sugar-sweetened beverages, and fast food; BMI; and being overweight (BMI ≥25.0 kg/m2) or obese (BMI ≥30.0 kg/m2). Explanatory variables were the number of outlets classified as fast-food outlets, convenience stores, small food stores, grocery stores, and supermarkets. Regressions were estimated for all sets of explanatory variables and buffer size combinations (150 total effects). Results Only 2 of 150 effects were significant after being adjusted for multiple comparisons. The number of fast-food restaurants in nonwalkable areas (in a 3.0-mile radius) was positively associated with fast-food consumption, and the number of convenience stores in a walkable distance (in a 0.25-mile radius) was negatively associated with obesity. Discussion Little evidence was found for associations between proximity of respondents’ homes to food outlets and dietary intake or BMI among adults in Los Angeles County. A possible explanation for the null finding is that shopping patterns are weakly related to neighborhoods in Los Angeles County because of motorized transportation. PMID:26334715
Neighborhood Food Environment, Diet, and Obesity Among Los Angeles County Adults, 2011.
Mejia, Nelly; Lightstone, Amy S; Basurto-Davila, Ricardo; Morales, Douglas M; Sturm, Roland
2015-09-03
The objective of this study was to examine whether an association exists between the number and type of food outlets in a neighborhood and dietary intake and body mass index (BMI) among adults in Los Angeles County. We also assessed whether this association depends on the geographic size of the food environment. We analyzed data from the 2011 Los Angeles County Health Survey. We created buffers (from 0.25 to 3.0 miles in radius) centered in respondents' residential addresses and counted the number of food outlets by type in each buffer. Dependent variables were weekly intake of fruits and vegetables, sugar-sweetened beverages, and fast food; BMI; and being overweight (BMI ≥25.0 kg/m(2)) or obese (BMI ≥30.0 kg/m(2)). Explanatory variables were the number of outlets classified as fast-food outlets, convenience stores, small food stores, grocery stores, and supermarkets. Regressions were estimated for all sets of explanatory variables and buffer size combinations (150 total effects). Only 2 of 150 effects were significant after being adjusted for multiple comparisons. The number of fast-food restaurants in nonwalkable areas (in a 3.0-mile radius) was positively associated with fast-food consumption, and the number of convenience stores in a walkable distance (in a 0.25-mile radius) was negatively associated with obesity. Little evidence was found for associations between proximity of respondents' homes to food outlets and dietary intake or BMI among adults in Los Angeles County. A possible explanation for the null finding is that shopping patterns are weakly related to neighborhoods in Los Angeles County because of motorized transportation.
75 FR 60485 - NRC Enforcement Policy Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
... centrifuge or laser enrichment facilities. The NRC has issued licenses for two gas centrifuge uranium... significance)). In addition, the radiological and chemical risks of gas centrifuge uranium enrichment...
Nolan, Christine M; Gelbaum, Leslie T; Lyon, L Andrew
2006-10-01
We describe investigations of insulin release from thermoresponsive microgels using variable temperature (1)H NMR. Microgel particles composed of poly(N-isopropylacrylamide) were loaded with the peptide via a swelling technique, and this method was compared to simple equilibrium partitioning. Variable temperature (1)H NMR studies suggest that the swelling loading method results in enhanced entrapment of the peptide versus equilibrium partitioning. A centrifugation-loading assay supports this finding. Pseudo-temperature jump (1)H NMR measurements suggest that the insulin release rate is partially decoupled from microgel collapse. These types of direct release investigations could prove to be useful methods in the future design of controlled macromolecule drug delivery devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section... § 63.5810 What are my options for meeting the standards for open molding and centrifugal casting... (d) of this section to meet the standards for open molding or centrifugal casting operations in Table...
Code of Federal Regulations, 2010 CFR
2010-07-01
... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section... § 63.5810 What are my options for meeting the standards for open molding and centrifugal casting... (d) of this section to meet the standards for open molding or centrifugal casting operations in Table...
Code of Federal Regulations, 2013 CFR
2013-07-01
... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section... Meeting Standards § 63.5810 What are my options for meeting the standards for open molding and centrifugal...) through (d) of this section to meet the standards for open molding or centrifugal casting operations in...
21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood cells...
21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood cells...
21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood cells...
21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood cells...
Applying Separations Science to Waste Problems.
1998-01-01
inert cathode. Centrifugal Contactor for Processing Liquid Radioactive Waste We have developed an annular centrifugal contactor for use in liquid...radioactive waste. The CMT-designed centrifugal contactor has several advantages over other solvent-extraction equipment currently in use. It requires less...Y-12 Plant, Savannah River Site, and Oak Ridge National Laboratory. The benefits that make the centrifugal contactor the equipment of choice in the
Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.
Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum
2016-04-01
Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc.
Mid-infrared interferometric variability of DG Tau: implications for the inner-disk structure .
NASA Astrophysics Data System (ADS)
Ábrahám, P.; Varga, J.; Gabányi, K. É.; Chen, L.; Kóspál, Á.; Ratzka, Th.; van Boekel, R.; Mosoni, L.; Henning, Th.
DG Tau is a low-mass young star whose strongly accreting disk shows a variable 10 mu m silicate feature, that may even turn temporarily from emission to absorption. Aiming to find the physical reason of this variability, we analysed multiepoch VLTI/MIDI interferometric observations. We found that the inner disk within 3 au radius exhibits a 10 mu m absorption feature related to amorphous silicate grains, while the outer disk displays a variable crystalline feature in emission, similar in shape to the spectrum of comet Hale-Bopp. The variability may be related to a fluctuating amount of dusty material above the disk surface, possibly due to turbulence.
Spectroscopy of molecules in very high rotational states using an optical centrifuge.
Yuan, Liwei; Toro, Carlos; Bell, Mack; Mullin, Amy S
2011-01-01
We have developed a high power optical centrifuge for measuring the spectroscopy of molecules in extreme rotational states. The optical centrifuge has a pulse energy that is more than 2 orders of magnitude greater than in earlier instruments. The large pulse energy allows us to drive substantial number densities of molecules to extreme rotational states in order to measure new spectroscopic transitions that are not accessible with traditional methods. Here we demonstrate the use of the optical centrifuge for measuring IR transitions of N2O from states that have been inaccessible until now. In these studies, the optical centrifuge drives N2O molecules into states with J ~ 200 and we use high resolution transient IR probing to measure the appearance of population in states with J = 93-99 that result from collisional cooling of the centrifuged molecules. High resolution Doppler broadened line profile measurements yield information about the rotational and translational energy distributions in the optical centrifuge.
Main, Russell P
2007-01-01
Vertebrate long bone form, at both the gross and the microstructural level, is the result of many interrelated influences. One factor that is considered to have a significant effect on bone form is the mechanical environment experienced by the bone during growth. The work presented here examines the possible relationships between in vivo bone strains, bone geometry and histomorphology in the radii of three age/size groups of domestic goats. In vivo bone strain data were collected from the radii of galloping goats, and the regional cortical distribution of peak axial strain magnitudes, radial and circumferential strain gradients, and longitudinal strain rates related to regional patterns in cortical growth, porosity, remodelling and collagen fibre orientation. Although porosity and remodelling decreased and increased with age, respectively, these features showed no significant regional differences and did not correspond to regional patterns in the mechanical environment. Thicker regions of the radius's cortex were significantly related to high strain levels and higher rates of periosteal, but not endosteal, growth. However, cortical growth and strain environment were not significantly related. Collagen fibre orientation varied regionally, with a higher percentage of transverse fibres in the caudal region of the radius and primarily longitudinal fibres elsewhere, and, although consistent through growth, also did not generally correspond to regional strain patterns. Although strain magnitudes increased during ontogeny and regional strain patterns were variable over the course of a stride, mean regional strain patterns were generally consistent with growth, suggesting that regional growth patterns and histomorphology, in combination with external loads, may play some role in producing a relatively ‘predictable’ strain environment within the radius. It is further hypothesized that the absence of correlation between regional histomorphometric patterns and the measured strain environments is the result of the variable mechanical environment. However, the potential effects of other physiological and mechanical factors, such as skeletal metabolism and adjacent muscle insertions, that can influence the gross and microstructural morphology of the radius during ontogeny, cannot be ignored. PMID:17331177
NASA Astrophysics Data System (ADS)
Butov, Vladimir; Timchenko, Sergey; Ushakov, Ivan; Golovkov, Nikita; Poberezhnikov, Andrey
2018-03-01
Single gas centrifuge (GC) is generally used for the separation of binary mixtures of isotopes. Processes taking place within the centrifuge are complex and non-linear. Their characteristics can change over time with long-term operation due to wear of the main structural elements of the GC construction. The paper is devoted to the determination of basic operation parameters of the centrifuge with the help of neural networks. We have developed a method for determining the parameters of the industrial GC operation by processing statistical data. In this work, we have constructed a neural network that is capable of determining the main hydraulic and separation characteristics of the gas centrifuge, depending on the geometric dimensions of the gas centrifuge, load value, and rotor speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, Jonathan Michael
Balance Probe Monitors were designed, fabricated, installed, and evaluated at Sandia National Laboratories (SNL) for the 22,600 g kg (50,000 g lb) direct drive electromotor driven large centrifuges. These centrifuges provide a high onset/decay rate g environment. The Balance Probe Monitor is physically located near a centrifuge’s Capacitance Probe, a crucial sensor for the centrifuge’s sustainability. The Balance Probe Monitor will validate operability of the centrifuge. Most importantly, it is used for triggering a kill switch under the condition that the centrifuge displacement value exceeds allowed tolerances. During operational conditions, the Capacitance Probe continuously detects the structural displacement of themore » centrifuge and an adjoining AccuMeasure 9000 translates this displacement into an output voltage.« less
Compact range for variable-zone measurements
Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.
1988-08-02
A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.
Compact range for variable-zone measurements
Burnside, Walter D.; Rudduck, Roger C.; Yu, Jiunn S.
1988-01-01
A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector.
Cornelisse, C J; Hermens, W T; Joe, M T; Duijndam, W A; van Duijn, P
1976-11-01
A numerical method was developed for computing the steady-state concentration gradient of a diffusible enzyme reaction product in a membrane-limited compartment of a simplified theoretical cell model. In cytochemical enzyme reactions proceeding according to the metal-capture principle, the local concentration of the primary reaction product is an important factor in the onset of the precipitation process and in the distribution of the final reaction product. The following variables were incorporated into the model: enzyme activity, substrate concentration, Km, diffusion coefficient of substrate and product, particle radius and cell radius. The method was applied to lysosomal acid phosphatase. Numerical values for the variables were estimated from experimental data in the literature. The results show that the calculated phosphate concentrations inside lysosomes are several orders of magnitude lower than the critical concentrations for efficient phosphate capture found in a previous experimental model study. Reasons for this apparent discrepancy are discussed.
McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine
2015-01-01
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.
McNerney, Thomas; Thomas, Anne; Senczuk, Anna; Petty, Krista; Zhao, Xiaoyang; Piper, Rob; Carvalho, Juliane; Hammond, Matthew; Sawant, Satin; Bussiere, Jeanine
2015-01-01
High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed. PMID:25706650
Laminar flow effects in the coil planet centrifuge
NASA Technical Reports Server (NTRS)
Herrmann, F. T.
1984-01-01
The coil planet centrifuge designed by Ito employs flow of a single liquid phase, through a rotating coiled tube in a centrifugal force field, to provide a separation of particles based on sedimentation rates. Mathematical solutions are derived for the linear differential equations governing particle behavior in the coil planet centrifuge device. These solutions are then applied as the basis of a model for optimizing particle separations.
NASA Astrophysics Data System (ADS)
Tian, Jiajin; Su, Jinpeng; Zhou, Kai; Hua, Hongxing
2018-07-01
This paper presents a general formulation for nonlinear vibration analysis of rotating beams. A modified variational method combined with a multi-segment partitioning technique is employed to derive the free and transient vibration behaviors of the rotating beams. The strain energy and kinetic energy functional are formulated based on the order truncation principle of the fully geometrically nonlinear beam theory. The Coriolis effects as well as nonlinear effects due to the coupling of bending-stretching, bending-twist and twist-stretching are taken into account. The present method relaxes the need to explicitly meet the requirements of the boundary conditions for the admissible functions, and allows the use of any linearly independent, complete basis functions as admissible functions for rotating beams. Moreover, the method is readily used to deal with the nonlinear transient vibration problems for rotating beams subjected to dynamic loads. The accuracy, convergence and efficiency of the proposed method are examined by numerical examples. The influences of Coriolis and centrifugal forces on the vibration behaviors of the beams with various hub radiuses and slenderness ratios and rotating at different angular velocities are also investigated.
Dynamics of magnetic flux tubes in an advective flow around a black hole
NASA Astrophysics Data System (ADS)
Deb, Arnab; Giri, Kinsuk; Chakrabarti, Sandip K.
2017-12-01
Entangled magnetic fields entering into an accretion flow would very soon be stretched into a dominant toroidal component due to strong differentially rotating motion inside the accretion disc. This is particularly true for weakly viscous, low angular momentum transonic or advective discs. We study the trajectories of toroidal flux tubes inside a geometrically thick flow that undergoes a centrifugal force supported shock. We also study effects of these flux tubes on the dynamics of the inflow and the outflow. We use a finite difference method (total variation diminishing) for this purpose and specifically focused on whether these flux tubes significantly affect the properties of the outflows such as its collimation and the rate. It is seen that depending upon the cross-sectional radius of the flux tubes that control the drag force, these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surfaces) along the vertical direction. A comparison of results obtained with and without flux tubes show these flux tubes could play a pivotal role in collimation and acceleration of jets and outflows.
NASA Technical Reports Server (NTRS)
Mast, F. W.; Newby, N. J.; Young, L. R.
2002-01-01
The effects of cross-coupled stimuli on the semicircular canals are shown to be influenced by the position of the subject's head with respect to gravity and the axis of rotation, but not by the subject's head position relative to the trunk. Seventeen healthy subjects made head yaw movements out of the horizontal plane while lying on a horizontal platform (MIT short radius centrifuge) rotating at 23 rpm about an earth-vertical axis. The subjects reported the magnitude and duration of the illusory pitch or roll sensations elicited by the cross-coupled rotational stimuli acting on the semicircular canals. The results suggest an influence of head position relative to gravity. The magnitude estimation is higher and the sensation decays more slowly when the head's final position is toward nose-up (gravity in the subject's head x-z-plane) compared to when the head is turned toward the side (gravity in the subject's head y-z-plane). The results are discussed with respect to artificial gravity in space and the possible role of pre-adaptation to cross-coupled angular accelerations on earth.
Meniscus Stability in Rotating Systems
NASA Astrophysics Data System (ADS)
Reichel, Yvonne; Dreyer, Michael
2013-11-01
In this study, the stability of free surfaces of fluid between two rotating coaxial, circular disks is examined. Radially mounted baffles are used to form menisci of equal size. To the center of the upper disk, a tube is connected in which a separate meniscus is formed. Assuming solid-body rotation and ignoring dynamic effects, it is observed that the free surfaces between the disks fail to remain stable once the rotation speed exceeds a critical value. In other words, Rayleigh-Taylor instability ensues when the capillary forces fail to balance centrifugal forces. Dimensionless critical rotation speeds are studied by means of the Surface Evolver via SE-FIT for varied number of baffles, the normalized distance between the disks, and the normalized central tube radius. Drop tower tests are performed to confirm some of the numerical results. The computation also reveals that there are different modes of instability as a function of the relevant parameters. This study was funded by the space agency of the German Aerospace Center with resources of the Federal Ministry of Economics and Technology on the basis of a resolution of the German Bundestag under grant number 50 RL 1320.
NASA Astrophysics Data System (ADS)
Kulp-McDowall, Taylor; Ochs, Ian; Fisch, Nathaniel
2016-10-01
A particle pusher was constructed in MATLAB using a fourth order Runge-Kutta algorithm to investigate the wave-particle interactions within theoretical models of the MCMF. The model simplified to a radial electric field and a magnetic field focused in the z direction. Studies on an average velocity calculation were conducted in order to test the program's behavior in the large radius limit. The results verified that the particle pusher was behaving correctly. Waves were then simulated on the rotating particles with a periodic divergenceless perturbation in the Bz component of the magnetic field. Preliminary runs indicate an agreement of the particle's motion with analytical predictions-ie. cyclic contractions of the doubly rotating particle's gyroradius.The next stage of the project involves the implementation of particle collisions and turbulence within the particle pusher in order to increase its accuracy and applicability. This will allow for a further investigation of the alpha channeling electrode replacement thesis first proposed by Abraham Fetterman in 2011. Made possible by Grants from the Princeton Environmental Institute (PEI) and the Program for Plasma Science and Technology (PPST).
Gas inflow patterns and nuclear rings in barred galaxies
NASA Astrophysics Data System (ADS)
Shen, Juntai; Li, Zhi
2017-06-01
Nuclear rings, dust lanes, and nuclear spirals are common structures in the inner region of barred galaxies, with their shapes and properties linked to the physical parameters of the galaxies. We use high-resolution hydrodynamical simulations to study gas inflow patterns in barred galaxies, with special attention on the nuclear rings. The location and thickness of nuclear ringsare tightly correlated with galactic properties, such as the bar pattern speed and bulge central density, within certain ranges. We identify the backbone of nuclear rings with a major orbital family of bars. The rings form exactly at the radius where the residual angular momentum of inflowing gas balances the centrifugal force. We propose a new simple method to predict the bar pattern speed for barred galaxies possessing a nuclear ring, without actually doing simulations. We apply this method to some real galaxies and find that our predicted bar pattern speed compare reasonably well with other estimates. Our study may have important implications for using nuclear ringsto measure the parameters of real barred galaxies with detailed gas kinematics. We have also extended current hydrodynamical simulations to model gas features in the Milky Way.
Effect of Sustained Human Centrifugation on Autonomic Cardiovascular and Vestibular Function
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; Wood, Scott J.; Brown, Troy E.; Benavides, Edgar W.; Harm, Deborah L.; Rupert, A. H.
2002-01-01
Repeated exposure to +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, both sustained exposure to +Gx and changes in otolith function resulting from the gravitational changes of space flight and parabolic flight may adversely affect autonomic cardiovascular function and orthostatic tolerance. HYPOTHESES: Baroreflex function and orthostatic tolerance are acutely improved by a single sustained (30 min) exposure to +3Gz but not +3Gx. Moreover, after 30 min of +3Gx, any changes that occur in autonomic cardiovascular function will relate commensurately to changes in otolith function. METHODS: Twenty-two healthy human subjects were first exposed to 5 min of +3 Gz centrifugation and then subsequently up to a total of30 min of either +3Gz (n = 15) or +3Gx (n = 7) centrifugation. Tests of autonomic cardiovascular function both before and after both types of centrifugation included: (a) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; (b) carotid-cardiac baroreflex tests; ( c) Valsalva tests; and (d) 30-min head-up tilt (HUT) tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: All four +3Gz subjects who were intolerant to HUT before centrifugation became tolerant to HUT after centrifugation. The operational point of the carotid-cardiac baroreflex and the Valsalva-related baroreflex were also enhanced in the +3Gz group but not in the +3Gx group. No significant vestibular-autonomic relationships were detected, other than a significant vestibular-cerebrovascular interaction reported previously. CONCLUSIONS: A single, sustained exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance whereas a similar exposure to +3 Gx centrifugation appears to have less effect.
Parikh, Harshal R; De, Anuradha S; Baveja, Sujata M
2012-07-01
Physicians and microbiologists have long recognized that the presence of living microorganisms in the blood of a patient carries with it considerable morbidity and mortality. Hence, blood cultures have become critically important and frequently performed test in clinical microbiology laboratories for diagnosis of sepsis. To compare the conventional blood culture method with the lysis centrifugation method in cases of sepsis. Two hundred nonduplicate blood cultures from cases of sepsis were analyzed using two blood culture methods concurrently for recovery of bacteria from patients diagnosed clinically with sepsis - the conventional blood culture method using trypticase soy broth and the lysis centrifugation method using saponin by centrifuging at 3000 g for 30 minutes. Overall bacteria recovered from 200 blood cultures were 17.5%. The conventional blood culture method had a higher yield of organisms, especially Gram positive cocci. The lysis centrifugation method was comparable with the former method with respect to Gram negative bacilli. The sensitivity of lysis centrifugation method in comparison to conventional blood culture method was 49.75% in this study, specificity was 98.21% and diagnostic accuracy was 89.5%. In almost every instance, the time required for detection of the growth was earlier by lysis centrifugation method, which was statistically significant. Contamination by lysis centrifugation was minimal, while that by conventional method was high. Time to growth by the lysis centrifugation method was highly significant (P value 0.000) as compared to time to growth by the conventional blood culture method. For the diagnosis of sepsis, combination of the lysis centrifugation method and the conventional blood culture method with trypticase soy broth or biphasic media is advocable, in order to achieve faster recovery and a better yield of microorganisms.
A simulation study of radial expansion of an electron beam injected into an ionospheric plasma
NASA Technical Reports Server (NTRS)
Koga, J.; Lin, C. S.
1994-01-01
Injections of nonrelativistic electron beams from a finite equipotential conductor into an ionospheric plasma have been simulated using a two-dimensional electrostatic particle code. The purpose of the study is to survey the simulation parameters for understanding the dependence of beam radius on physical variables. The conductor is charged to a high potential when the background plasma density is less than the beam density. Beam electrons attracted by the charged conductor are decelerated to zero velocity near the stagnation point, which is at a few Debye lengths from the conductor. The simulations suggest that the beam electrons at the stagnation point receive a large transverse kick and the beam expands radially thereafter. The buildup of beam electrons at the stagnation point produces a large electrostatic force responsible for the transverse kick. However, for the weak charging cases where the background plasma density is larger than the beam density, the radial expansion mechanism is different; the beam plasma instability is found to be responsible for the radial expansion. The simulations show that the electron beam radius for high spacecraft charging cases is of the order of the beam gyroradius, defined as the beam velocity divided by the gyrofrequency. In the weak charging cases, the beam radius is only a fraction of the beam gyroradius. The parameter survey indicates that the beam radius increases with beam density and decreases with magnetic field and beam velocity. The beam radius normalized by the beam gyroradius is found to scale according to the ratio of the beam electron Debye length to the ambient electron Debye length. The parameter dependence deduced would be useful for interpreting the beam radius and beam density of electron beam injection experiments conducted from rockets and the space shuttle.
PICARD SOL mission, a ground-based facility for long-term solar radius measurement
NASA Astrophysics Data System (ADS)
Meftah, M.; Irbah, A.; Corbard, T.; Morand, F.; Thuillier, G.; Hauchecorne, A.; Ikhlef, R.; Rouze, M.; Renaud, C.; Djafer, D.; Abbaki, S.; Assus, P.; Chauvineau, B.; Cissé, E. M.; Dalaudier, F.; D'Almeida, Eric; Fodil, M.; Laclare, F.; Lesueur, P.; Lin, M.; Marcovici, J. P.; Poiet, G.
2012-09-01
For the last thirty years, ground time series of the solar radius have shown different variations according to different instruments. The origin of these variations may be found in the observer, the instrument, the atmosphere and the Sun. These time series show inconsistencies and conflicting results, which likely originate from instrumental effects and/or atmospheric effects. A survey of the solar radius was initiated in 1975 by F. Laclare, at the Calern site of the Observatoire de la Cˆote d'Azur (OCA). PICARD is an investigation dedicated to the simultaneous measurements of the absolute total and spectral solar irradiance, the solar radius and solar shape, and to the Sun's interior probing by the helioseismology method. The PICARD mission aims to the study of the origin of the solar variability and to the study of the relations between the Sun and the Earth's climate by using modeling. These studies will be based on measurements carried out from orbit and from the ground. PICARD SOL is the ground segment of the PICARD mission to allow a comparison of the solar radius measured in space and on ground. PICARD SOL will enable to understand the influence of the atmosphere on the measured solar radius. The PICARD Sol instrumentation consists of: SODISM II, a replica of SODISM (SOlar Diameter Imager and Surface Mapper), a high resolution imaging telescope, and MISOLFA (Moniteur d'Images SOLaires Franco-Alǵerien), a seeing monitor. Additional instrumentation consists in a Sun photometer, which measures atmospheric aerosol properties, a pyranometer to measure the solar irradiance, a visible camera, and a weather station. PICARD SOL is operating since March 2011. First results from the PICARD SOL mission are briefly reported in this paper.
NASA Astrophysics Data System (ADS)
Galloway, Duncan K.; Psaltis, Dimitrios; Chakrabarty, Deepto; Muno, Michael P.
2003-06-01
We investigate the limitations of thermonuclear X-ray bursts as a distance indicator for the weakly magnetized accreting neutron star 4U 1728-34. We measured the unabsorbed peak flux of 81 bursts in public data from the Rossi X-Ray Timing Explorer (RXTE). The distribution of peak fluxes was bimodal: 66 bursts exhibited photospheric radius expansion (presumably reaching the local Eddington limit) and were distributed about a mean bolometric flux of 9.2×10-8ergscm-2s-1, while the remaining (non-radius expansion) bursts reached 4.5×10-8ergscm-2s-1, on average. The peak fluxes of the radius expansion bursts were not constant, exhibiting a standard deviation of 9.4% and a total variation of 46%. These bursts showed significant correlations between their peak flux and the X-ray colors of the persistent emission immediately prior to the burst. We also found evidence for quasi-periodic variation of the peak fluxes of radius expansion bursts, with a timescale of ~=40 days. The persistent flux observed with RXTE/ASM over 5.8 yr exhibited quasi-periodic variability on a similar timescale. We suggest that these variations may have a common origin in reflection from a warped accretion disk. Once the systematic variation of the peak burst fluxes is subtracted, the residual scatter is only ~=3%, roughly consistent with the measurement uncertainties. The narrowness of this distribution strongly suggests that (1) the radiation from the neutron star atmosphere during radius expansion episodes is nearly spherically symmetric and (2) the radius expansion bursts reach a common peak flux that may be interpreted as a standard candle intensity. Adopting the minimum peak flux for the radius expansion bursts as the Eddington flux limit, we derive a distance for the source of 4.4-4.8 kpc (assuming RNS=10 km), with the uncertainty arising from the probable range of the neutron star mass MNS=1.4-2 Msolar.
NASA Astrophysics Data System (ADS)
Yuan, Feng; Gan, Zhaoming; Narayan, Ramesh; Sadowski, Aleksander; Bu, Defu; Bai, Xue-Ning
2015-05-01
Previous MHD simulations have shown that wind must exist in black hole hot accretion flows. In this paper, we continue our study by investigating the detailed properties of wind and the mechanism of wind production. For this aim, we make use of a 3D general relativistic MHD simulation of hot accretion flows around a Schwarzschild black hole. To distinguish real wind from turbulent outflows, we track the trajectories of the virtual Lagrangian particles from simulation data. We find two types of real outflows, i.e., a jet and a wind. The mass flux of wind is very significant, and its radial profile can be described by {{\\dot{M}}wind}≈ {{\\dot{M}}BH}≤ft( r/20 {{r}s} \\right), with {{\\dot{M}}BH} being the mass accretion rate at the black hole horizon and rs being the Schwarzschild radius. The poloidal wind speed almost remains constant once they are produced, but the flux-weighted wind speed roughly follows {{v}p,wind}(r)≈ 0.25{{v}k}(r), with vk(r) being the Keplerian speed at radius r. The mass flux of the jet is much lower, but the speed is much higher, {{v}p,jet} ˜ (0.3-0.4)c. Consequently, both the energy and momentum fluxes of the wind are much larger than those of the jet. The wind is produced and accelerated primarily by the combination of centrifugal force and magnetic pressure gradient, while the jet is mainly accelerated by the magnetic pressure gradient. Finally, we find that the wind production efficiency {{ɛ }wind}\\equiv {{\\dot{E}}wind}/{{\\dot{M}}BH}{{c}2}˜ 1/1000 is in good agreement with the value required from large-scale galaxy simulations with active galactic nucleus feedback.
Low-density, radiatively inefficient rotating-accretion flow on to a black hole
NASA Astrophysics Data System (ADS)
Inayoshi, Kohei; Ostriker, Jeremiah P.; Haiman, Zoltán; Kuiper, Rolf
2018-05-01
We study low-density axisymmetric accretion flows on to black holes (BHs) with two-dimensional hydrodynamical simulations, adopting the α-viscosity prescription. When the gas angular momentum is low enough to form a rotationally supported disc within the Bondi radius (RB), we find a global steady accretion solution. The solution consists of a rotational equilibrium distribution around r ˜ RB, where the density follows ρ ∝ (1 + RB/r)3/2, surrounding a geometrically thick and optically thin accretion disc at the centrifugal radius RC(
Formation and Atmosphere of Complex Organic Molecules of the HH 212 Protostellar Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chin-Fei; Ho, Paul T. P.; Hirano, Naomi
HH 212 is a nearby (400 pc) Class 0 protostellar system recently found to host a “hamburger”-shaped dusty disk with a radius of ∼60 au, deeply embedded in an infalling-rotating flattened envelope. We have spatially resolved this envelope-disk system with the Atacama Large Millimeter/submillimeter Array at up to ∼16 au (0.″04) resolution. The envelope is detected in HCO{sup +} J = 4–3 down to the dusty disk. Complex organic molecules (COMs) and doubly deuterated formaldehyde (D{sub 2}CO) are detected above and below the dusty disk within ∼40 au of the central protostar. The COMs are methanol (CH{sub 3}OH), deuterated methanolmore » (CH{sub 2}DOH), methyl mercaptan (CH{sub 3}SH), and formamide (NH{sub 2}CHO, a prebiotic precursor). We have modeled the gas kinematics in HCO{sup +} and COMs and found a centrifugal barrier (CB) at a radius of ∼44 au, within which a Keplerian rotating disk is formed. This indicates that HCO{sup +} traces the infalling-rotating envelope down to the CB and COMs trace the atmosphere of a Keplerian rotating disk within the CB. The COMs are spatially resolved for the first time, both radially and vertically, in the atmosphere of a disk in the earliest, Class 0 phase of star formation. Our spatially resolved observations of COMs favor their formation in the disk rather than a rapidly infalling (warm) inner envelope. The abundances and spatial distributions of the COMs provide strong constraints on models of their formation and transport in low-mass star formation.« less
Effect of science laboratory centrifuge of space station environment
NASA Technical Reports Server (NTRS)
Searby, Nancy
1990-01-01
It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.
A Report of Transverse Process Fractures Secondary to the Centrifuge in a Healthy Aviator.
Puderbaugh, Matthew A
2016-07-01
Centrifuge training, while an integral component in pilot training, is not without risks. To date there has never been a reported case of isolated transverse process fractures associated with centrifuge training. A 32-yr-old Flight Surgeon underwent centrifuge training as part of an educational course. She had increasing back pain after exposure to the centrifuge. Follow-up studies showed left L2 and bilateral L3 transverse process fractures. No other contributory causes could be identified except for mild vitamin D deficiency. The etiology, incidence, and treatment of transverse process fractures are examined to better prepare the clinician for the management of these cases. Puderbaugh MA. A report of transverse process fractures secondary to the centrifuge in a healthy aviator. Aerosp Med Hum Perform. 2016; 87(7):655-658.
Drewniak, Michelle; Waterhouse, Chris C M; Lyon, Andrew W; Fenton, Tanis R
2017-12-14
Several case studies report successful recovery from chylothorax while infants were fed low-fat human milk. The reported growth rates were inadequate despite milk supplementation with added medium-chain triglycerides (MCTs). The objective was to determine the effect that various human milk fat separating methods, refrigerated centrifuge, room temperature centrifuge, and refrigeration have on the loss of immunoglobulin A (IgA) and protein in the preparation of low-fat human milk. Protein and IgA were measured in 31 samples of reduced-fat human milk. Reduced-fat breastmilk samples were prepared by separating the fat using 3 methods (refrigerated centrifuge, room temperature centrifuge, and a refrigeration method), followed by lower fat milk extraction by syringe. The refrigeration method decreased IgA concentration by 17% (P = .035) while centrifugation and fat removal from the human milk samples led to a 38% decline in IgA concentration in both the nonrefrigerated and refrigerated centrifuge samples (P < .0001 for both). Protein declined by 11% with refrigeration and fat removal (P < .0001) while centrifugation and fat removal decreased protein concentration by 31% (P < .0001) in both nonrefrigerated centrifuge and refrigerated centrifuge samples. Preparing low-fat human milk for patients with chylothorax decreased the IgA and protein contents. As well as fat (in the form of MCTs), protein likely needs to be supplemented for infants fed low-fat human milk to support adequate growth. © 2017 American Society for Parenteral and Enteral Nutrition.
Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn
2012-08-01
Previous work has identified that non-linear variables calculated from respiratory data vary between sleep states, and that variables derived from the non-linear analytical tool recurrence quantification analysis (RQA) are accurate infant sleep state discriminators. This study aims to apply these discriminators to automatically classify 30 s epochs of infant sleep as REM, non-REM and wake. Polysomnograms were obtained from 25 healthy infants at 2 weeks, 3, 6 and 12 months of age, and manually sleep staged as wake, REM and non-REM. Inter-breath interval data were extracted from the respiratory inductive plethysmograph, and RQA applied to calculate radius, determinism and laminarity. Time-series statistic and spectral analysis variables were also calculated. A nested cross-validation method was used to identify the optimal feature subset, and to train and evaluate a linear discriminant analysis-based classifier. The RQA features radius and laminarity and were reliably selected. Mean agreement was 79.7, 84.9, 84.0 and 79.2 % at 2 weeks, 3, 6 and 12 months, and the classifier performed better than a comparison classifier not including RQA variables. The performance of this sleep-staging tool compares favourably with inter-human agreement rates, and improves upon previous systems using only respiratory data. Applications include diagnostic screening and population-based sleep research.
Compact range for variable-zone measurements
Burnside, W.D.; Rudduck, R.C.; Yu, J.S.
1987-02-27
A compact range for testing antennas or radar targets includes a source for directing energy along a feedline toward a parabolic reflector. The reflected wave is a spherical wave with a radius dependent on the distance of the source from the focal point of the reflector. 2 figs.
Solar cycle dependence of the sun's radius at lambda = 525.0 nm
NASA Technical Reports Server (NTRS)
Ulrich, Roger K.; Bertello, L.
1995-01-01
The Mount Wilson (California) synoptic program of solar magnetic observations scans the solar disk between 1 and 20 times per day. As part of this program, the radius is determined as an average distance between the image center and the point where the intensity in the FeI line at lambda = 525.0 nm drops to 25 percent of its value at the disk's center. The data base of information was analyzed and corrected for effects such as scattered light and atmospheric reflection. The solar variability and the measurement techniques are described. The observation data sets, the corrections made to the data, and the observed variations, are discussed. It is stated that similar spectral lines at lambda = 525.0 nm, which are common in the solar spectrum, probably exhibit similar radius changes. All portions of the sun are weighted equally so that it is concluded that, within spectral lines, the radiating area of the sun is increased at the solar maximum.
Analytical study of striated nozzle flow with small radius of curvature ratio throats
NASA Technical Reports Server (NTRS)
Norton, D. J.; White, R. E.
1972-01-01
An analytical method was developed which is capable of estimating the chamber and throat conditions in a nozzle with a low radius of curvature throat. The method was programmed using standard FORTRAN 4 language and includes chemical equilibrium calculation subprograms (modified NASA Lewis program CEC71) as an integral part. The method determines detailed and gross rocket characteristics in the presence of striated flows and gives detailed results for the motor chamber and throat plane with as many as 20 discrete zones. The method employs a simultaneous solution of the mass, momentum, and energy equations and allows propellant types, 0/F ratios, propellant distribution, nozzle geometry, and injection schemes to be varied so to predict spatial velocity, density, pressure, and other thermodynamic variable distributions in the chamber as well as the throat. Results for small radius of curvature have shown good comparison to experimental results. Both gaseous and liquid injection may be considered with frozen or equilibrium flow calculations.
Bunker, D L J; Pappas, G; Moradi, P; Dowd, M B
2012-01-01
Patients presenting with distal end radius fractures may have concomitant carpal instability due to disruption of the scapholunate ligament. This study examined the incidence of static radiographic signs of carpal instability in patients with distal radial fractures before and after fracture treatment. We performed a retrospective radiographic study of 141 patients presenting to Central Middlesex Hospital, London between January 2002-May 2004 with distal end radius fractures. We used abnormal scapholunate angle as the primary indicator of possible carpal dissociation. Abnormal scapholunate angles were noted in 39% of patients at presentation and 35% of patients after treatment with no statistically significant intra-patient variability. Persistent static radiographic signs of carpal instability are high in this subset of patients. The long-term morbidity of persistent wrist instability may be avoided by early radiological diagnosis with clinical correlation to identify carpal ligament injuries and initiate treatment that addresses both the bony and ligamentous components of the injury.
NASA Astrophysics Data System (ADS)
Livshts, Mikhail A.; Khomyakova, Elena; Evtushenko, Evgeniy G.; Lazarev, Vassili N.; Kulemin, Nikolay A.; Semina, Svetlana E.; Generozov, Edward V.; Govorun, Vadim M.
2015-11-01
Exosomes, small (40-100 nm) extracellular membranous vesicles, attract enormous research interest because they are carriers of disease markers and a prospective delivery system for therapeutic agents. Differential centrifugation, the prevalent method of exosome isolation, frequently produces dissimilar and improper results because of the faulty practice of using a common centrifugation protocol with different rotors. Moreover, as recommended by suppliers, adjusting the centrifugation duration according to rotor K-factors does not work for “fixed-angle” rotors. For both types of rotors - “swinging bucket” and “fixed-angle” - we express the theoretically expected proportion of pelleted vesicles of a given size and the “cut-off” size of completely sedimented vesicles as dependent on the centrifugation force and duration and the sedimentation path-lengths. The proper centrifugation conditions can be selected using relatively simple theoretical estimates of the “cut-off” sizes of vesicles. Experimental verification on exosomes isolated from HT29 cell culture supernatant confirmed the main theoretical statements. Measured by the nanoparticle tracking analysis (NTA) technique, the concentration and size distribution of the vesicles after centrifugation agree with those theoretically expected. To simplify this “cut-off”-size-based adjustment of centrifugation protocol for any rotor, we developed a web-calculator.
Centrifuge workers study. Phase II, completion report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooten, H.D.
1994-09-01
Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey tomore » evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.« less
Proton radius from electron scattering data
NASA Astrophysics Data System (ADS)
Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent; Meekins, David; Norum, Blaine; Sawatzky, Brad
2016-05-01
Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon, and Stanford. Methods: We make use of stepwise regression techniques using the F test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. Results: Starting with the precision, low four-momentum transfer (Q2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q2 data on GE to select functions which extrapolate to high Q2, we find that a Padé (N =M =1 ) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, GE(Q2) =(1+Q2/0.66 GeV2) -2 . Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extremely-low-Q2 data or by use of the Padé approximant for extrapolation using a larger range of data. Thus, based on a purely statistical analysis of electron scattering data, we conclude that the electron scattering results and the muonic hydrogen results are consistent. It is the atomic hydrogen results that are the outliers.
An automatic 14-day paste diet feeder for animals
NASA Technical Reports Server (NTRS)
Vasques, Marilyn; Mulenburg, Jerry; Gundo, Dan; Griffith, Jon
1994-01-01
During a centrifuge experiment, any interruption that requires stopping the centrifuge may influence the results. Centrifuges often must be stopped for animal maintenance (food, water and waste removal), especially in cases of timed feedings. To eliminate the need for stopping the centrifuge while still providing timed feeding, an automatic paste diet feeder was developed. The feeder is based on a constant volume concept and can deliver a predetermined amount of paste diet at specified time intervals. This unit was supported by water delivery and waste collection systems. The entire system performed reliably and maintained the animals well for a continuous centrifugation experiment of 14 days.
NASA Astrophysics Data System (ADS)
Antonopoulou, Evangelia; Rohmann-Shaw, Connor F.; Sykes, Thomas C.; Cayre, Olivier J.; Hunter, Timothy N.; Jimack, Peter K.
2018-03-01
Understanding the sedimentation behaviour of colloidal suspensions is crucial in determining their stability. Since sedimentation rates are often very slow, centrifugation is used to expedite sedimentation experiments. The effect of centrifugal acceleration on sedimentation behaviour is not fully understood. Furthermore, in sedimentation models, interparticle interactions are usually omitted by using the hard-sphere assumption. This work proposes a one-dimensional model for sedimentation using an effective maximum volume fraction, with an extension for sedimentation under centrifugal force. A numerical implementation of the model using an adaptive finite difference solver is described. Experiments with silica suspensions are carried out using an analytical centrifuge. The model is shown to be a good fit with experimental data for 480 nm spherical silica, with the effects of centrifugation at 705 rpm studied. A conversion of data to Earth gravity conditions is proposed, which is shown to recover Earth gravity sedimentation rates well. This work suggests that the effective maximum volume fraction accurately captures interparticle interactions and provides insights into the effect of centrifugation on sedimentation.
Investigation on centrifugal impeller in an axial-radial combined compressor with inlet distortion
NASA Astrophysics Data System (ADS)
Li, Du; Yang, Ce; Zhao, Ben; Zhou, Mi; Qi, Mingxu; Zhang, Jizhong
2011-12-01
Assembling an axial rotor and a stator at centrifugal compressor upstream to build an axial-radial combined compressor could achieve high pressure ratio and efficiency by appropriate size augment. Then upstream potential flow and wake effect appear at centrifugal impeller inlet. In this paper, the axial-radial compressor is unsteadily simulated by three-dimensional Reynolds averaged Navier-Stokes equations with uniform and circumferential distorted total pressure inlet condition to investigate upstream effect on radial rotor. The results show that span-wise nonuniform total pressure distribution is generated and radial and circumferential combined distortion is formed at centrifugal rotor inlet. The upstream stator wake deflects to rotor rotation direction and decreases with blade span increases. Circumferential distortion causes different separated flow formations at different pitch positions. The tip leakage vortex is suppressed in centrifugal blade passages. Under distorted inlet condition, flow direction of centrifugal impeller leading edge upstream varies evidently near hub and shroud but varies slightly at mid-span. In addition, compressor stage inlet distortion produces remarkable effect on blade loading of centrifugal blade both along chordwise and pitchwise.
Centrifugal Compressor Aeroelastic Analysis Code
NASA Astrophysics Data System (ADS)
Keith, Theo G., Jr.; Srivastava, Rakesh
2002-01-01
Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.
Optimizing the separation performance of a gas centrifuge
NASA Astrophysics Data System (ADS)
Wood, H. G.
1997-11-01
Gas centrifuges were originally developed for the enrichment of U^235 from naturally occurring uranium for the purpose of providing fuel for nuclear power reactors and material for nuclear weapons. This required the separation of a binary mixture composed of U^235 and U^238. Since the end of the cold war, a surplus of enriched uranium exists on the world market, but many centrifuge plants exist in numerous countries. These circumstances together with the growing demand for stable isotopes for chemical and physical research and in medical science has led to the exploration of alternate applications of gas centrifuge technology. In order to acieve these multi-component separations, existing centrifuges must be modified or new centrifuges must be designed. In either case, it is important to have models of the internal flow fields to predict the separation performance and algorithms to seek the optimal operating conditions of the centrifuges. Here, we use the Onsager pancake model of the internal flow field, and we present an optimization strategy which exploits a similarity parameter in the pancake model. Numerical examples will be presented.
Two-Dimensional Thermal Boundary Layer Corrections for Convective Heat Flux Gauges
NASA Technical Reports Server (NTRS)
Kandula, Max; Haddad, George
2007-01-01
This work presents a CFD (Computational Fluid Dynamics) study of two-dimensional thermal boundary layer correction factors for convective heat flux gauges mounted in flat plate subjected to a surface temperature discontinuity with variable properties taken into account. A two-equation k - omega turbulence model is considered. Results are obtained for a wide range of Mach numbers (1 to 5), gauge radius ratio, and wall temperature discontinuity. Comparisons are made for correction factors with constant properties and variable properties. It is shown that the variable-property effects on the heat flux correction factors become significant
The Effect of Experimental Variables on Industrial X-Ray Micro-Computed Sensitivity
NASA Technical Reports Server (NTRS)
Roth, Don J.; Rauser, Richard W.
2014-01-01
A study was performed on the effect of experimental variables on radiographic sensitivity (image quality) in x-ray micro-computed tomography images for a high density thin wall metallic cylinder containing micro-EDM holes. Image quality was evaluated in terms of signal-to-noise ratio, flaw detectability, and feature sharpness. The variables included: day-to-day reproducibility, current, integration time, voltage, filtering, number of frame averages, number of projection views, beam width, effective object radius, binning, orientation of sample, acquisition angle range (180deg to 360deg), and directional versus transmission tube.
Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders
NASA Astrophysics Data System (ADS)
Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang
2018-02-01
In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.
1981-01-16
S81-25565 (Feb 1981) --- Expected to be a busy item of flight hardware on the Spacelab Life Sciences (SLS-1) mission is this low-gravity centrifuge. To be flown onboard Columbia for STS-40, the centrifuge is able to simulate several gravity levels (0.5 g, 1.0 g, 1.5 g. and 2.0 g). Blood samples, taken during the flight, will be placed in the centrifuge, fixed for post flight analysis and transferred to a freezer.
Automated cellular sample preparation using a Centrifuge-on-a-Chip.
Mach, Albert J; Kim, Jae Hyun; Arshi, Armin; Hur, Soojung Claire; Di Carlo, Dino
2011-09-07
The standard centrifuge is a laboratory instrument widely used by biologists and medical technicians for preparing cell samples. Efforts to automate the operations of concentration, cell separation, and solution exchange that a centrifuge performs in a simpler and smaller platform have had limited success. Here, we present a microfluidic chip that replicates the functions of a centrifuge without moving parts or external forces. The device operates using a purely fluid dynamic phenomenon in which cells selectively enter and are maintained in microscale vortices. Continuous and sequential operation allows enrichment of cancer cells from spiked blood samples at the mL min(-1) scale, followed by fluorescent labeling of intra- and extra-cellular antigens on the cells without the need for manual pipetting and washing steps. A versatile centrifuge-analogue may open opportunities in automated, low-cost and high-throughput sample preparation as an alternative to the standard benchtop centrifuge in standardized clinical diagnostics or resource poor settings.
[Effect of Parasep® feces centrifuge tube method on detecting schistosome eggs].
Ma, Nian; Zhang, Hua-ming; Liu, Xiong; Xiao, Chuan-yun; Wen, Xiao-hong; Li, Xia; Dong, Li-chun; Cui, Cai-xia; Tu, Zu-wu
2014-08-01
To evaluate the effect of the Parasep® feces centrifuge tube method on detecting schistosome eggs. A total of 803 residents aged from 6-65 years were selected in 2 schistosomiasis endemic villages, Jiangling County, Hubei Province, and their stool samples were collected and detected parallelly by the Kato-Katz technique, nylon silk egg hatching method, and Parasep® feces centrifuge tube method at the same time. Among the 803 people, 15 cases were found of schistosome egg positive, and the positive rate was 1.87%. The positive rates of the Kato-Katz technique, nylon silk egg hatching method, and Parasep® feces centrifuge tube method were 0.75%, 1.49% and 1.12%, respectively. The schistosome eggs got with the Parasep® feces centrifuge tube method were clear and easy to identify. In low endemic areas of schistosomiasis, the Parasep® feces centrifuge tube method can be used as schistosomiasis japonica etiology diagnosis method.
NASA Astrophysics Data System (ADS)
Tejasvi, Ravi; Basu, Suddhasatwa
2017-12-01
A simple method for depositing a thin film of nanomaterial on a substrate using centrifugation technique has been developed, whereby solvent evaporation is prevented and solvent reuse is possible. The centrifuge technique of deposition yields uniform, smooth thin film irrespective of substrate surface texture. The deposited TiO2/eC3N4 film studied, through field emission scanning electron microscope, atomic force microscope, and optical surface profilometer, shows variation in surface roughness on the basis of centrifugation speeds. Initially film coverage improves and surface roughness decreases with the increase in rpm of the centrifuge and the surface roughness slightly increases with further increase in rpm. The photoelectrochemical studies of TiO2/eC3N4 films suggest that the centrifuge technique forms better heterojunctions compared to that by spin coating technique leading to enhanced photoelectrochemical water splitting.
Hemimelic extra toes (Hx) arose spontaneously as a dominant mutation in B10.D2/nSnJ mice in 1967. It specifically affects the appendicular skeleton, causing variable foreshortening of the tibia (radius) and preaxial polydactylism. Early anatomical studies revealed anterior overgr...
Renal Response to Chronic Centrifugation in Rats
NASA Technical Reports Server (NTRS)
Ortiz, Rudy M.; Wang, T. J.; Corbin, B. J.; Wade, C. E.; Hargens, Alan R. (Technical Monitor)
1996-01-01
Previously reported effects of chronic centrifugation on renal function in mammals are contradictory. The present study was conducted as an effort to provide a comprehensive analysis of renal response to chronic centrifugation (12 days at +2 Gz). Sixteen male Sprague-Dawley rats (210-230 g) were used: eight centrifuged (EC) and eight off centrifuge controls (OCC). During centrifugation EC had lower body weight and food consumption. EC showed a decrease (72%) in water intake for the first two days (T1 and T2) followed by significant increases from T4-T6. EC urine output increased two-fold over the first four days, returning to baseline by T9. EC urea excretion was elevated on T3 through T5. Creatinine, Na(+), K(+), and osmolar excretion were lower than OCC over the last four days of the study. Assuming constant plasma osmolarity and creatinine levels, EC free water clearance (C(sub H2O)) was elevated significantly on T4 when the peak urine output was exhibited. EC also had a greater C(sub H2O) over the last four days, associated with a significantly lower osmolar clearance and GFR. The initial diuresis exhibited during centrifugation can be attributed to a reduced water resorption and increased urea excretion. This diuresis was mediated independent of changes in GFR over the first eight days. However, differences in excretion seen after eight days of centrifugation are probably GFR mediated which would imply animals established a new homeostatic setpoint by that time. Centrifugation elicites an acute alteration in fluid homeostasis followed by adaptation within a week.
Effect of 30-min +3 Gz centrifugation on vestibular and autonomic cardiovascular function
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; Wood, Scott J.; Brown, Troy E.; Harm, Deborah L.; Rupert, A. H.
2003-01-01
INTRODUCTION: Repeated exposure to increased +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, it is not known whether such enhancements might also result from a single, more prolonged exposure to increased +Gz. Our study was designed to investigate whether baroreflex function and orthostatic tolerance are acutely improved by a single prolonged exposure to +3 Gz, and moreover, whether changes in autonomic cardiovascular function resulting from exposure to increased +Gz are correlated with changes in otolith function. METHODS: We exposed 15 healthy human subjects to +3 Gz centrifugation for up to 30 min or until symptoms of incipient G-induced loss of consciousness (G-LOC) ensued. Tests of autonomic cardiovascular function both before and after centrifugation included: 1) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; 2) carotid-cardiac baroreflex tests; 3) Valsalva tests; and 4) 30-min head-up tilt tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: Of the 15 subjects who underwent prolonged +3 Gz, 4 were intolerant to 30 min of head-up tilt before centrifugation but became tolerant to such tilt after centrifugation. The Valsalva-related baroreflex as well as a measure of the carotid-cardiac baroreflex were also enhanced after centrifugation. No significant vestibular-autonomic relationships were detected beyond a vestibular-cerebrovascular interaction reported earlier in a subset of seven participants. CONCLUSIONS: A single prolonged exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance.
Effect of centrifugal fractionation protocols on quality and recovery rate of equine sperm.
Edmond, A J; Brinsko, S P; Love, C C; Blanchard, T L; Teague, S R; Varner, D D
2012-03-15
Centrifugal fractionation of semen is commonly done to improve quality of human semen in assisted-reproduction laboratories, allowing sperm separation based on their isopycnic points. Sperm with morphologic abnormalities are often more buoyant, promoting their retention above defined density media, with structurally normal sperm passing through the media following centrifugation. Three experiments were conducted to evaluate the effects of density-medium type, centrifuge-tube size, sperm number, and density-medium volume (column height) on stallion sperm quality and recovery rate in sperm pellets following centrifugation. In all three experiments, equine semen was initially centrifuged to increase sperm concentration. In Experiment 1, semen was layered over continuous or discontinuous gradients. For Experiment 2, semen was layered over three column heights of continuous gradients in 15- or 50-ml conical-bottom tubes. For Experiment 3, increasing sperm numbers were layered over continuous gradient in 15- or 50-ml conical-bottom tubes. Following centrifugation, sperm pellets were evaluated for sperm morphologic quality, motility, DNA integrity, and recovery rate. Centrifugal fractionation improved (P < 0.05) sperm morphology, motility, and DNA integrity, as compared to controls. The continuous gradient increased (P < 0.05) sperm recovery rate relative to the discontinuous gradient, whereas sperm processed in 15-ml tubes yielded higher velocity and higher recovery rates (P < 0.05 for each) than that processed in 50-ml tubes. Sperm recovery rate was not affected (P > 0.05) by column height of gradient. Increasing sperm number subjected to gradient centrifugation decreased (P < 0.05) sperm recovery rate when 15-ml tubes were used. Copyright © 2012 Elsevier Inc. All rights reserved.
River meanders and channel size
Williams, G.P.
1986-01-01
This study uses an enlarged data set to (1) compare measured meander geometry to that predicted by the Langbein and Leopold (1966) theory, (2) examine the frequency distribution of the ratio radius of curvature/channel width, and (3) derive 40 empirical equations (31 of which are original) involving meander and channel size features. The data set, part of which comes from publications by other authors, consists of 194 sites from a large variety of physiographic environments in various countries. The Langbein-Leopold sine-generated-curve theory for predicting radius of curvature agrees very well with the field data (78 sites). The ratio radius of curvature/channel width has a modal value in the range of 2 to 3, in accordance with earlier work; about one third of the 79 values is less than 2.0. The 40 empirical relations, most of which include only two variables, involve channel cross-section dimensions (bankfull area, width, and mean depth) and meander features (wavelength, bend length, radius of curvature, and belt width). These relations have very high correlation coefficients, most being in the range of 0.95-0.99. Although channel width traditionally has served as a scale indicator, bankfull cross-sectional area and mean depth also can be used for this purpose. ?? 1986.
Effects of Artificial Gravity and Bed Rest on Spatial Orientation and Balance Control
NASA Technical Reports Server (NTRS)
Paloski, William H.; Moore, S. T.; Feiveson, A. H.; Taylor, L. C.
2007-01-01
While the vestibular system should be well-adapted to bed rest (a condition it experiences approximately 8/24 hrs each day), questions remain regarding the degree to which repeated exposures to the unusual gravito-inertial force environment of a short-radius centrifuge might affect central processing of vestibular information used in spatial orientation and balance control. Should these functions be impaired by intermittent AG, its feasibility as a counter-measure would be diminished. We, therefore, examined the effects of AG on spatial orientation and balance control in 15 male volunteers before and after 21 days of 6 HDT bed rest (BR). Eight of the subjects were treated with daily 1hr AG exposures (2.5g at the feet; 1.0g at the heart) aboard a short radius (3m) centrifuge, while the other seven served as controls (C). Spatial orientation was assessed by measures of ocular counter-rolling (OCR; rotation of the eye about the line of sight, an otolith-mediated reflex) and subjective visual vertical (SVV; perception of the spatial upright). Both OCR and SVV measurements were made with the subject upright, lying on their left sides, and lying on their right sides. OCR was measured from binocular eye orientation recordings made while the subjects fixated for 10s on a point target directly in front of the face at a distance of 1 m. SVV was assessed by asking subjects (in the dark) to adjust to upright (using a handheld controller) the orientation of a luminous bar randomly perturbed (15) to either side of the vertical meridian. Balance control performance was assessed using a computerized dynamic posturography (CDP) protocol similar to that currently required for all returning crew members. During each session, the subjects completed a combination of trials of sensory organization test (SOT) 2 (eyes closed, fixed platform) and SOT 5 (eyes closed, sway-referenced platform) with and without static and dynamic pitch plane head movements (plus or minus 20 deg., dynamic paced by an audible tone at 0.33Hz). OCR and CDP performance were unaffected by BR and BR+AG; post-BR measures were unchanged from baseline for both AG and C groups. Similarly, BR did not affect SVV in the C group. However, BR+AG disrupted one measure of spatial orientation: SVV error was significantly increased on R+0 and R+1 following BR in the AG group. These results suggest a transient untoward effect on central vestibular processing may accompany repeated exposure to intermittent AG, a potential side-effect that should be studied more closely in future studies.
Adiabatic Field-Free Alignment of Asymmetric Top Molecules with an Optical Centrifuge.
Korobenko, A; Milner, V
2016-05-06
We use an optical centrifuge to align asymmetric top SO_{2} molecules by adiabatically spinning their most polarizable O-O axis. The effective centrifugal potential in the rotating frame confines the sulfur atoms to the plane of the laser-induced rotation, leading to the planar molecular alignment that persists after the molecules are released from the centrifuge. The periodic appearance of the full three-dimensional alignment, typically observed only with linear and symmetric top molecules, is also detected. Together with strong in-plane centrifugal forces, which bend the molecules by up to 10 deg, permanent field-free alignment offers new ways of controlling molecules with laser light.
Mercado, Karla P; Radhakrishnan, Kirthi; Stewart, Kyle; Snider, Lindsay; Ryan, Devin; Haworth, Kevin J
2016-05-01
Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeutic ultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions.
Mercado, Karla P.; Radhakrishnan, Kirthi; Stewart, Kyle; Snider, Lindsay; Ryan, Devin; Haworth, Kevin J.
2016-01-01
Perfluorocarbon droplets that are capable of an ultrasound-mediated phase transition have applications in diagnostic and therapeutic ultrasound. Techniques to modify the droplet size distribution are of interest because of the size-dependent acoustic response of the droplets. Differential centrifugation has been used to isolate specific sizes of microbubbles. In this work, differential centrifugation was employed to isolate droplets with diameters between 1 and 3 μm and 2 and 5 μm from an initially polydisperse distribution. Further, an empirical model was developed for predicting the droplet size distribution following differential centrifugation and to facilitate the selection of centrifugation parameters for obtaining desired size distributions. PMID:27250199
Effects of centrifugation on gonadal and adrenocortical steroids in rats
NASA Technical Reports Server (NTRS)
Kakihana, R.; Butte, J. C.
1980-01-01
Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.
1987-07-14
RD-RISE 368 CENTRIFUGAL AND NUMERICAL MODELING OF BURIED STRUCTURES 1/3 VOLUME 2 DYNAMIC..(U) COLORADO UNIV AT BOULDER DEPT OF CIVIL ENVIRONMENTAL...20332-6448 ELEMENT NO NO. NO ACCESSION NO 61102F 2302 Cl 11 TITLE (Include Security Classification) (U) Centrifugal and Numerical Modeling of Buried ...were buried in a dry sand and tested in the centrifuge to simulate the effects of gravity-induced overburden stresses which played a major role in
Centrifuge separation effect on bacterial indicator reduction in dairy manure.
Liu, Zong; Carroll, Zachary S; Long, Sharon C; Roa-Espinosa, Aicardo; Runge, Troy
2017-04-15
Centrifugation is a commonly applied separation method for manure processing on large farms to separate solids and nutrients. Pathogen reduction is also an important consideration for managing manure. Appropriate treatment reduces risks from pathogen exposure when manure is used as soil amendments or the processed liquid stream is recycled to flush the barn. This study investigated the effects of centrifugation and polymer addition on bacterial indicator removal from the liquid fraction of manure slurries. Farm samples were taken from a manure centrifuge processing system. There were negligible changes of quantified pathogen indicator concentrations in the low-solids centrate compared to the influent slurry. To study if possible improvements could be made to the system, lab scale experiments were performed investigating a range of g-forces and flocculating polymer addition. The results demonstrated that polymer addition had a negligible effect on the indicator bacteria levels when centrifuged at high g forces. However, the higher g force centrifugation was capable of reducing bacterial indicator levels up to two-log 10 in the liquid stream of the manure, although at speeds higher than typical centrifuge operations currently used for manure processing applications. This study suggests manure centrifuge equipment could be redesigned to provide pathogen reduction to meet emerging issues, such as zoonotic pathogen control. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kashiwa, Koichi; Nishimura, Takashi; Saito, Aya; Kubo, Hitoshi; Fukaya, Aoi; Tamai, Hisayoshi; Yambe, Tomoyuki; Kyo, Shunei; Ono, Minoru
2012-06-01
Since left heart bypass or biventricular circulatory assist with an extracorporeal centrifugal pump as a bridge to decision or recovery sometimes requires long-time support, the long-term durability of extracorporeal centrifugal pumps is crucial. The Rotaflow Centrifugal Pump(®) (MAQUET Cardiopulmonary AG, Hirrlingen, Germany) is one of the centrifugal pumps available for long-term use in Japan. However, there have been few reports of left heart bypass or biventricular circulatory support over the mid-term. This is a case report of left heart bypass support with the Rotaflow Centrifugal Pump(®) as a bridge to decision and recovery for an adult patient who could not be weaned from cardiopulmonary bypass and percutaneous cardiopulmonary support after cardiac surgery. We could confirm that the patient's consciousness level was normal; however, the patient could not be weaned from the left heart bypass support lasting 1 month. Therefore, the circulatory assist device was switched to the extracorporeal Nipro ventricular assist device (VAD). This time, left heart bypass support could be maintained for 30 days using a single Rotaflow Centrifugal Pump(®). There were no signs of hemolysis during left heart bypass support. The Rotaflow Centrifugal Pump(®) itself may be used as a device for a bridge to decision or recovery before using a VAD in cardiogenic shock patients.
Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli.
DENNISON, D S
1961-09-01
A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5 degrees /min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell.
The universal function in color dipole model
NASA Astrophysics Data System (ADS)
Jalilian, Z.; Boroun, G. R.
2017-10-01
In this work we review color dipole model and recall properties of the saturation and geometrical scaling in this model. Our primary aim is determining the exact universal function in terms of the introduced scaling variable in different distance than the saturation radius. With inserting the mass in calculation we compute numerically the contribution of heavy productions in small x from the total structure function by the fraction of universal functions and show the geometrical scaling is established due to our scaling variable in this study.
Spectral multigrid methods for the solution of homogeneous turbulence problems
NASA Technical Reports Server (NTRS)
Erlebacher, G.; Zang, T. A.; Hussaini, M. Y.
1987-01-01
New three-dimensional spectral multigrid algorithms are analyzed and implemented to solve the variable coefficient Helmholtz equation. Periodicity is assumed in all three directions which leads to a Fourier collocation representation. Convergence rates are theoretically predicted and confirmed through numerical tests. Residual averaging results in a spectral radius of 0.2 for the variable coefficient Poisson equation. In general, non-stationary Richardson must be used for the Helmholtz equation. The algorithms developed are applied to the large-eddy simulation of incompressible isotropic turbulence.
Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia
2004-01-01
A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.
[Research under reduced gravity. Part II: experiments in variable gravitational fields].
Volkmann, D; Sievers, A
1992-03-01
Recently, the reduced gravitational field of space laboratories, rockets, or satellites in Earth orbits offers a gravitational field which is variable from 10(-4) g to 1 g by the use of centrifuges. Especially with plants, data concerning gravisensitivity are based on experiments with clinostats. First experiments in reduced gravitational fields, however, demonstrate the uncertainty of these results. Thus, the main task of gravitational biologists is to test the validity of results obtained with the aid of clinostats. On this basis it should be possible to find a common mechanism to explain the influence of gravity on organisms. Experiments under reduced gravity in sounding rockets provided new knowledge on the perception of the gravity stimulus in plant cells.
The Solar Neighborhood. XXXII. The Hydrogen Burning Limit
NASA Astrophysics Data System (ADS)
Dieterich, Sergio B.; Henry, Todd J.; Jao, Wei-Chun; Winters, Jennifer G.; Hosey, Altonio D.; Riedel, Adric R.; Subasavage, John P.
2014-05-01
We construct a Hertzsprung-Russell diagram for the stellar/substellar boundary based on a sample of 63 objects ranging in spectral type from M6V to L4. We report newly observed VRI photometry for all 63 objects and new trigonometric parallaxes for 37 objects. The remaining 26 objects have trigonometric parallaxes from the literature. We combine our optical photometry and trigonometric parallaxes with 2MASS and WISE photometry and employ a novel spectral energy distribution fitting algorithm to determine effective temperatures, bolometric luminosities, and radii. Our uncertainties range from ~20 K to ~150 K in temperature, ~0.01 to ~0.06 in log (L/L ⊙) and ~3% to ~10% in radius. We check our methodology by comparing our calculated radii to radii directly measured via long baseline optical interferometry. We find evidence for the local minimum in the radius-temperature and radius-luminosity trends that signals the end of the stellar main sequence and the start of the brown dwarf sequence at T eff ~ 2075 K, log (L/L ⊙) ~ -3.9, and (R/R ⊙) ~ 0.086. The existence of this local minimum is predicted by evolutionary models, but at temperatures ~400 K cooler. The minimum radius happens near the locus of 2MASS J0523-1403, an L2.5 dwarf with V - K = 9.42. We make qualitative arguments as to why the effects of the recent revision in solar abundances accounts for the discrepancy between our findings and the evolutionary models. We also report new color-absolute magnitude relations for optical and infrared colors which are useful for estimating photometric distances. We study the optical variability of all 63 targets and find an overall variability fraction of 36^{+9}_{-7}% at a threshold of 15 mmag in the I band, which is in agreement with previous studies.
Implementation of centrifuge testing of expansive soils for pavement design.
DOT National Transportation Integrated Search
2017-03-01
The novel centrifuge-based method for testing of expansive soils from project 5-6048-01 was implemented into : use for the determination of the Potential Vertical Rise (PVR) of roadways that sit on expansive subgrades. The : centrifuge method was mod...
Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy.
Yang, Darren; Wong, Wesley P
2018-01-01
We present high-throughput single-molecule manipulation using a benchtop centrifuge, overcoming limitations common in other single-molecule approaches such as high cost, low throughput, technical difficulty, and strict infrastructure requirements. An inexpensive and compact Centrifuge Force Microscope (CFM) adapted to a commercial centrifuge enables use by nonspecialists, and integration with DNA nanoswitches facilitates both reliable measurements and repeated molecular interrogation. Here, we provide detailed protocols for constructing the CFM, creating DNA nanoswitch samples, and carrying out single-molecule force measurements.
Isotope Separation in Concurrent Gas Centrifuges
NASA Astrophysics Data System (ADS)
Bogovalov, S. V.; Borman, V. D.
An analytical equation defining separative power of an optimized concurrent gas centrifuge is obtained for an arbitrary binary mixture of isotopes. In the case of the uranium isotopes the equation gives δU= 12.7(V/700 m/s)2(300 K/T)L, kg SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge, T is the temperature. This formula well agrees with an empirical separative power of counter current gas centrifuges.
Centrifugal Size-Separation Sieve for Granular Materials
NASA Technical Reports Server (NTRS)
Walton, Otis (Inventor); Dreyer, Christopher (Inventor); Riedel, Edward (Inventor)
2015-01-01
A centrifugal sieve and method utilizes centrifugal force in rapidly-rotated cylindrical or conical screens as the primary body force contributing to size segregation. Within the centrifugal acceleration field, vibration and/or shearing flows are induced to facilitate size segregation and eventual separation of the fines from the coarse material. Inside a rotating cylindrical or conical screen, a separately-rotated screw auger blade can be used to transport material along the rotating cylinder or conical wall and to induce shearing in the material.
Zolotarev, K V
2012-08-01
The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed.
Gutiérrez-Martínez, Maria del Rosario; Muñoz-Guerrero, Hernán; Alcaína-Miranda, Maria Isabel; Barat, José Manuel
2014-03-01
The salting step in food processes implies the production of large quantities of waste brines, having high organic load, high conductivity, and other pollutants with high oxygen demand. Direct disposal of the residual brine implies salinization of soil and eutrophication of water. Since most of the organic load of the waste brines comes from proteins leaked from the salted product, precipitation of dissolved proteins by acidification and removal by centrifugation is an operation to be used in waste brine cleaning. The aim of this study is optimizing the conditions for carrying out the separation of proteins from waste brines generated in the pork ham salting operation, by studying the influence of pH, centrifugal force, and centrifugation time. Models for determining the removal of proteins depending on the pH, centrifugal force, and time were obtained. The results showed a high efficacy of the proposed treatment for removing proteins, suggesting that this method could be used for waste brine protein removal. The best pH value to be used in an industrial process seems to be 3, while the obtained results indicate that almost 90% of the proteins from the brine can be removed by acidification followed by centrifugation. A further protein removal from the brine should have to be achieved using filtrating techniques, which efficiency could be highly improved as a consequence of the previous treatment through acidification and centrifugation. Waste brines from meat salting have high organic load and electrical conductivity. Proteins can be removed from the waste brine by acidification and centrifugation. The total protein removal can be up to 90% of the initial content of the waste brine. Protein removal is highly dependent on pH, centrifugation rate, and time. © 2014 Institute of Food Technologists®
Quasi-static rotor morphing concepts for rotorcraft performance improvements
NASA Astrophysics Data System (ADS)
Mistry, Mihir
The current research is focused on two separate quasi-static rotor morphing concepts: Variable span and variable camber. Both concepts were analyzed from the perspective of the performance improvements they allow for, as well as their design requirements. The goal of this body of work is to develop a comprehensive understanding of the benefits and implementation challenges of both systems. For the case of the variable span rotor concept, the effects on aircraft performance were evaluated for a UH-60A type aircraft. The parametric analysis included the performance effects of the rotor span and rotor speed variation, both individually as well as in combination. The design space considered the effect of three different gross weights (16000 lbs, 18300 lbs and 24000 lbs), for a window of +/-11% variation of the rotor speed and a range between +17% to --16% of radius variation (about the baseline) for a range of altitudes. The results of the analysis showed that variable span rotors by themselves are capable of reducing the power requirement of the helicopter by up to 20% for high altitude and gross weight conditions. However, when combined with rotor speed variation, it was possible to reduce the overall power required by the aircraft by up to 30%. Complimentary to the performance analysis, an analytical study of actuation concepts for a variable span rotor was also conducted. This study considered the design of two active actuation systems: Hydraulic pistons and threaded rods (jackscrews), and two passive systems which employed the use of an internal spring type restraining device. For all the configurations considered, it was determined that the design requirements could not be satisfied when considering the constraints defined. The performance improvements due to a variable camber system were evaluated for a BO-105 type rotor in hover. The design space considered included three different thrust levels (4800 lbs, 5500 lbs and 6400 lbs) for a range of altitudes and seven different camber distribution schemes (with up to 10 degrees of camber). Based on the analysis it was shown that variable camber was capable of reducing power up 18% for high thrust levels at high altitudes. Furthermore, it was found that a linearly distributed camber configuration, wherein the maximum camber was at the root, showed the best power reduction. For an untwisted blade (which would be advantageous in high speed flight), introducing spanwise camber variation would result in hover performance levels comparable to a twisted blade. Furthermore, the power reductions calculated were shown to be the result of a reduction of induced power due to the shift of the blade lift inboard due to the direct lift increase as a result of camber variation. The variable camber design presented in the current study exploits the warp-twist relationship of open-section beams. To that effect, a unique actuation structure was developed and implemented in a proof-of-concept variable camber prototype which was built using an existing CH-46E blade section. This prototype was shown to be capable of producing up to 18 degrees of distributed camber with a relatively low input warping of up to 0.18 inches. The results from the specifically developed finite element model of the prototype correlated very well with experimental data. The finite element results indicated the requirement of a shear-deformable core for proper camber deformation in the presence of centrifugal and aerodynamic loads.
NASA Technical Reports Server (NTRS)
Macgregor, C.; Csomor, A.
1974-01-01
Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low-thrust, high-performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm, and helirotor pump concepts. The centrifugal pump and the gear pump were selected and these were carried through detailed design and fabrication. Mechanical difficulties were encountered with the gear pump during the preliminary tests in Freon-12. Further testing and development was therefore limited to the centrifugal pump. Tests on the centrifugal pump were conducted in Freon-12 to determine the hydrodynamic performance and in liquid fluorine to demonstrate chemical compatibility.
Influence of the positive prewhirl on the performance of centrifugal pumps with different airfoils
NASA Astrophysics Data System (ADS)
Zhou, C. M.; Wang, H. M.; Huang, X.; Lin, H.
2012-11-01
According to the basic theory of turbomachinery design and inlet guide vanes prewhirl regulation, two different airfoils inlet guide vanes of prewhirl regulation device were designed, the influence of the positive prewhirl to the performance of centrifugal pump were studied based on different airfoils. The results show that, for a single-suction centrifugal pump: Gottingen bowed blade-type inlet guide vane adjustment effect is better than straight blade-type inlet guide; appropriate design of positive prewhirl can elevate the efficiency of centrifugal pumps. Compared with no vane conditions, the efficiency of centrifugal pump with prewhirl vanes has been greatly improved and the power consumption has been reduced significantly, while has little influence on the head.
Propulsive force of Paramecium as revealed by the video centrifuge microscope.
Kuroda, K; Kamiya, N
1989-09-01
Using the video centrifuge microscope we constructed, we observed the behavior of Paramecium cells in a solution of graded densities under centrifugal acceleration. Beyond 300g, they not only gather in the zone where the density is closest to theirs, but also orient themselves with their longitudinal axis parallel to the direction of centrifugation turning their anterior ends toward either centripetal or centrifugal direction. Since all of them retain still active swimming capacity, it is possible to calculate their propulsive force from the difference in density between theirs (1.04 g cm-3) and that of the upper or lower layer which they can reach. The propulsive force of single Paramecium cells thus obtained was calculated to be about 7 x 10(-4) dyn.
Meppelink, Amanda M; Wang, Xing-Hua; Bradica, Gino; Barron, Kathryn; Hiltz, Kathleen; Liu, Xiang-Hong; Goldman, Scott M; Vacanti, Joseph P; Keating, Armand; Hoganson, David M
2016-06-01
The use of bone marrow-derived mesenchymal stromal cells (MSCs) in cell-based therapies is currently being developed for a number of diseases. Thus far, the clinical results have been inconclusive and variable, in part because of the variety of cell isolation procedures and culture conditions used in each study. A new isolation technique that streamlines the method of concentration and demands less time and attention could provide clinical and economic advantages compared with current methodologies. In this study, we evaluated the concentrating capability of an integrated centrifuge-based technology compared with standard Ficoll isolation. MSCs were concentrated from bone marrow aspirate using the new device and the Ficoll method. The isolation capabilities of the device and the growth characteristics, secretome production, and differentiation capacity of the derived cells were determined. The new MSC isolation device concentrated the bone marrow in 90 seconds and resulted in a mononuclear cell yield 10-fold higher and with a twofold increase in cell retention compared with Ficoll. The cells isolated using the device were shown to exhibit similar morphology and functional activity as assessed by growth curves and secretome production compared to the Ficoll-isolated cells. The surface marker and trilineage differentiation profile of the device-isolated cells was consistent with the known profile of MSCs. The faster time to isolation and greater cell yield of the integrated centrifuge-based technology may make this an improved approach for MSC isolation from bone marrow aspirates. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yunshun; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P.
2018-04-01
Nonlinear energy harvesters are frequently considered in preference to linear devices because they can potentially overcome the narrow frequency bandwidth limitations inherent to linear variants; however, the possibility of variable harvesting efficiency is raised for the nonlinear case. This paper proposes a rotational energy harvester which may be fitted into an automobile tyre, with the advantage that it may broaden the rotating frequency bandwidth and simultaneously stabilise high-energy orbit oscillations. By consideration of the centrifugal effects due to rotation, the overall restoring force will potentially be increased for a cantilever implemented within the harvester, and this manifests as an increase in its equivalent elastic stiffness. In addition, this study reveals that the initial potential well barriers become as shallow as those for a bistable system. When the rotational frequency increases beyond an identifiable boundary frequency, the system transforms into one with a potential barrier of a typical monostable system. On this basis, the inter-well motion of the bistable system can provide sufficient kinetic energy so that the cantilever maintains its high-energy orbit oscillation for monostable hardening behaviour. Furthermore, in a vehicle drive experiment, it has been shown that the effective rotating frequency bandwidth can be widened from 15 km/h-25 km/h to 10 km/h-40 km/h. In addition, it is confirmed that the centrifugal effects can improve the harvester performance, producing a mean power of 61 μW at a driving speed of 40 km/h, and this is achieved by stabilising the high-energy orbit oscillations of the rotational harvester.
THE CONSISTENCY OF AMEBA CYTOPLASM AND ITS BEARING ON THE MECHANISM OF AMEBOID MOVEMENT
Allen, Robert D.
1960-01-01
Three species of common, free-living amebae, Amoeba proteus, Amoeba dubia, and Chaos chaos were directly observed and photographed while exposed to a range of centrifugal accelerations in two types of centrifuge microscopes. Cytoplasmic inclusions in all three species are displaced discontinuously (at a variable velocity) in apparently all parts of the cell, suggesting non-Newtonian behavior and/or heterogeneous consistency. The ectoplasm of all species shows the highest yield point of any region in the cell; the posterior ectoplasm is less rigid than that in the anterior part of the cell. The axial part of the endoplasm shows evidence of structure (a sharp viscosity transition if not a true yield point) by its: (a) resistance to the displacement of particles carried in that region of the cell, (b) hindrance to the passage through the cell of inclusions displaced from other regions, and its (c) support without visible back-slip of inclusion being resuspended in the axial endoplasm in a centripetal direction at accelerations as high as 170 g. At this acceleration, each crystal "weighs" the equivalent reduced weight of seven times its volume in gold at 1 g. The only regions of the normal, moving cell which show clear evidence of low apparent viscosity are the "shear zone" (see Fig. 8) and the "recruitment zone." Possible reasons for low apparent viscosity in these regions are discussed. A new scheme of ameba "structure" is presented on the basis of the combined results of velocity profile analysis and the present centrifugation study. PMID:13682546
NASA Astrophysics Data System (ADS)
Doris, Muhamad; Aziz, Fakhra; Alhummiany, Haya; Bawazeer, Tahani; Alsenany, Nourah; Mahmoud, Alaa; Zakaria, Rozalina; Sulaiman, Khaulah; Supangat, Azzuliani
2017-01-01
In this study, low-bandgap polymer poly{[4,4-bis(2-ethylhexyl)-cyclopenta-(2,1- b;3,4- b')dithiophen]-2,6-diyl- alt-(2,1,3-benzothiadiazole)-4,7-diyl} (PCPDTBT) nanostructures have been synthesized via a hard nanoporous alumina template of centrifugal process. Centrifuge has been used to infiltrate the PCPDTBT solution into the nanoporous alumina by varying the rotational speeds. The rotational speed of centrifuge is directly proportional to the infiltration force that penetrates into the nanochannels of the template. By varying the rotational speed of centrifuge, different types of PCPDTBT nanostructures are procured. Infiltration force created during the centrifugal process has been found a dominant factor in tuning the morphological, optical, and structural properties of PCPDTBT nanostructures. The field emission scanning electron microscopy (FESEM) images proved the formation of nanotubes and nanowires. The energy-dispersive X-ray spectroscope (EDX) analysis showed that the nanostructures were composed of PCPDTBT with complete dissolution of the template.
Selvan, D R; Perry, D; Machin, D G; Brown, D J
2014-12-01
Volar plating of distal radius fractures is one of the common procedures performed in trauma surgery. Flexor pollicis longus (FPL) rupture has been described as complication following volar plating of distal radius fractures. The aim of our study was to investigate the possible relation between parameters measured on post-operative radiographs and the occurrence of FPL ruptures. This was a case control study. The post-operative radiographs of 11 FPL rupture, and 22 non-FPL rupture patients were reviewed with respect to fracture reduction and plate position and the various parameters were calculated by five independent people. Logistic regression was used to examine the importance of the variables. We identified two significant factors to predict FPL rupture after volar plating of distal radial fractures. These were radial tilt and plate distance from the joint line. The odds ratio of ruptures was 0.74 (95% CI 0.57-0.95) for every degree of radial tilt <25° and 0.50 (95% CI 0.28-0.88) for every millimetre that the distal end of the plate was away from the volar lip of the distal radius at the wrist joint. Post-operative radiographs could help us predict FPL rupture after distal radius volar plating. The findings also highlight the need for good fracture reduction and thoughtful placement of the volar plate intraoperatively to minimise the risk of FPL tendon rupture. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Davidovich, Hadar; Louzoun, Yoram
2013-05-01
The globalization of modern markets has led to the emergence of competition between producers in ever growing distances. This opens the interesting question in population dynamics of the effect of long-range competition. We here study a model of non-local competition to test the effect of the competition radius on the wealth distribution, using the framework of a stochastic birth-death process, with non-local interactions. We show that this model leads to non-trivial dynamics that can have implications in other domains of physics. Competition is studied in the context of the catalyst induced growth of autocatalytic agents, representing the growth of capital in the presence of investment opportunities. These agents are competing with all other agents in a given radius on growth possibilities. We show that a large scale competition leads to an extreme localization of the agents, where typically a single aggregate of agents can survive within a given competition radius. The survival of these aggregates is determined by the diffusion rates of the agents and the catalysts. For high and low agent diffusion rates, the agent population is always annihilated, while for intermediate diffusion rates, a finite agent population persists. Increasing the catalyst diffusion rate always leads to a decrease in the average agent population density. The extreme localization of the agents leads to the emergence of intermittent fluctuations, when a large aggregate of agents disappear. As the competition radius increases, so does the average agent density and its spatial variance as well as the volatility.
Haraguchi, Yuji; Kagawa, Yuki; Hasegawa, Akiyuki; Kubo, Hirotsugu; Shimizu, Tatsuya
2018-01-18
Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.
Kabei, N; Tuichiya, K; Sakurai, Y
1994-09-01
When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)
Guimarães, A C G; Leivas, F G; Santos, F W; Schwengber, E B; Giotto, A B; Machado, C I U; Gonçalves, C G M; Folchini, N P; Brum, D S
2014-05-01
The objective of this study was to determine the effect of different centrifugation forces in bovine sperm separation by discontinuous Percoll gradients for in vitro fertilization IVF. The semen samples from each bull were pooled or each bull were centrifuged separately and centrifuged in discontinuous Percoll gradients (30, 60 and 90%) at different forces: F1 (9000×g), F2 (6500×g), F3 (4500×g) and F4 (2200×g), according experiment. The sperm samples were evaluated to determine the concentration, motility, vigor, morphology, reactive oxygen species (ROS), integrity of the plasma membrane, lipid peroxidation, antioxidants and embryo development were also evaluated. No difference was observed in the concentration of sperm submitted to different centrifugation forces. The total percentage of motile sperm was increased after centrifugation at F3 and F4, and the ROS production at F1 was greater than the other forces. When the bulls semen were processed individually, no significant differences were observed for the sperm quality parameters between F1 and F4, including lipid peroxidation, antioxidants, cleavage rate and average time to the first cleavage. This work demonstrated for the first time that centrifugation at 2200×g enhanced the sperm penetration and fertilization rates without reducing sperm recovery compared to the typical centrifugation force (9000×g) currently used by the commercial bovine IVF industry. Copyright © 2014 Elsevier B.V. All rights reserved.
Møller, Mette F; Søndergaard, Tove R; Kristensen, Helle T; Münster, Anna-Marie B
2017-09-01
Background Centrifugation of blood samples is an essential preanalytical step in the clinical biochemistry laboratory. Centrifugation settings are often altered to optimize sample flow and turnaround time. Few studies have addressed the effect of altering centrifugation settings on analytical quality, and almost all studies have been done using collection tubes with gel separator. Methods In this study, we compared a centrifugation time of 5 min at 3000 × g to a standard protocol of 10 min at 2200 × g. Nine selected general chemistry and immunochemistry analytes and interference indices were studied in lithium heparin plasma tubes and serum tubes without gel separator. Results were evaluated using mean bias, difference plots and coefficient of variation, compared with maximum allowable bias and coefficient of variation used in laboratory routine quality control. Results For all analytes except lactate dehydrogenase, the results were within the predefined acceptance criteria, indicating that the analytical quality was not compromised. Lactate dehydrogenase showed higher values after centrifugation for 5 min at 3000 × g, mean bias was 6.3 ± 2.2% and the coefficient of variation was 5%. Conclusions We found that a centrifugation protocol of 5 min at 3000 × g can be used for the general chemistry and immunochemistry analytes studied, with the possible exception of lactate dehydrogenase, which requires further assessment.
Enhancement of Otolith Specific Ocular Responses Using Vestibular Stochastic Resonance
NASA Technical Reports Server (NTRS)
Fiedler, Matthew; De Dios, Yiri E.; Esteves, Julie; Galvan, Raquel; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar
2011-01-01
Introduction: Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Our goal is to develop a countermeasure based on vestibular stochastic resonance (SR) that could improve central interpretation of vestibular input and mitigate these risks. SR is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. Methods: Eye movement data were collected from 10 subjects during variable radius centrifugation (VRC). Subjects performed 11 trials of VRC that provided equivalent tilt stimuli from otolith and other graviceptor input without the normal concordant canal cues. Bipolar stochastic electrical stimulation, in the range of 0-1500 microamperes, was applied to the vestibular system using a constant current stimulator through electrodes placed over the mastoid process behind the ears. In the VRC paradigm, subjects were accelerated to 216 deg./s. After the subjects no longer sensed rotation, the chair oscillated along a track at 0.1 Hz to provide tilt stimuli of 10 deg. Eye movements were recorded for 6 cycles while subjects fixated on a target in darkness. Ocular counter roll (OCR) movement was calculated from the eye movement data during periods of chair oscillations. Results: Preliminary analysis of the data revealed that 9 of 10 subjects showed an average increase of 28% in the magnitude of OCR responses to the equivalent tilt stimuli while experiencing vestibular SR. The signal amplitude at which performance was maximized was in the range of 100-900 microamperes. Discussion: These results indicate that stochastic electrical stimulation of the vestibular system can improve otolith specific responses. This will have a significant impact on development of vestibular SR delivery systems to aid recovery of function in astronauts after long-duration spaceflight or in people with balance disorders.
Rapid Jet Precession During the 2015 Outburst of the Black Hole X-ray Binary V404 Cygni
NASA Astrophysics Data System (ADS)
Sivakoff, Gregory R.; Miller-Jones, James; Tetarenko, Alex J.
2017-08-01
In stellar-mass black holes that are orbited by lower-mass companions (black hole low-mass X-ray binaries), the accretion process can undergo dramatic outbursts that can be accompanied by the launching of powerful relativistic jets. We still do not know the exact mechanism responsible for launching these jets, despite decades of research and the importance of determining this mechanism given the clear analogue of accreting super-massive black holes and their jets. The two main models for launching jets involve the extraction of the rotational energy of a spinning black hole (Blandford-Znajek) and the centrifugal acceleration of particles by open magnetic field lines rotating with the accretion flow (Blandford-Payne). Since some relativistic jets are not fully aligned with the angular momentum of the binary's orbit, the inner accretion flow of some black hole X-ray binaries may precess due to frame-dragging by a spinning black hole (Lense-Thirring precession). This precession has been previously observed close to the black hole as second-timescale quasi-periodic (X-ray) variability. In this talk we will present radio-through-sub-mm timing and high-angular resolution radio imaging (including a high-timing resolution movie) of the black hole X-ray binary V404 Cygni during its 2015 outburst. These data show that at the peak of the outburst the relativistic jets in this system were precessing on timescales of hours. We will discuss how rapid precession can be explained by Lense-Thirring precession of a vertically-extended slim disc that is maintained out to a radius of 6 X 1010 cm by a highly super-Eddington accretion rate. This would imply that the jet axis of V404 Cyg is not aligned with the black hole spin. More importantly, this places a key requirement on any model for launching jets, and may favour launching the jet from the rotating magnetic fields threading the disc.
NASA Technical Reports Server (NTRS)
Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.
2009-01-01
Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are... CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Reinforced Plastic Composites..., Table 5 Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC...
NASA Technical Reports Server (NTRS)
Clement, G.; Moore, S. T.; Raphan, T.; Cohen, B.
2001-01-01
During the 1998 Neurolab mission (STS-90), four astronauts were exposed to interaural and head vertical (dorsoventral) linear accelerations of 0.5 g and 1 g during constant velocity rotation on a centrifuge, both on Earth and during orbital space flight. Subjects were oriented either left-ear-out or right-ear-out (Gy centrifugation), or lay supine along the centrifuge arm with their head off-axis (Gz centrifugation). Pre-flight centrifugation, producing linear accelerations of 0.5 g and 1 g along the Gy (interaural) axis, induced illusions of roll-tilt of 20 degrees and 34 degrees for gravito-inertial acceleration (GIA) vector tilts of 27 degrees and 45 degrees , respectively. Pre-flight 0.5 g and 1 g Gz (head dorsoventral) centrifugation generated perceptions of backward pitch of 5 degrees and 15 degrees , respectively. In the absence of gravity during space flight, the same centrifugation generated a GIA that was equivalent to the centripetal acceleration and aligned with the Gy or Gz axes. Perception of tilt was underestimated relative to this new GIA orientation during early in-flight Gy centrifugation, but was close to the GIA after 16 days in orbit, when subjects reported that they felt as if they were 'lying on side'. During the course of the mission, inflight roll-tilt perception during Gy centrifugation increased from 45 degrees to 83 degrees at 1 g and from 42 degrees to 48 degrees at 0.5 g. Subjects felt 'upside-down' during in-flight Gz centrifugation from the first in-flight test session, which reflected the new GIA orientation along the head dorsoventral axis. The different levels of in-flight tilt perception during 0.5 g and 1 g Gy centrifugation suggests that other non-vestibular inputs, including an internal estimate of the body vertical and somatic sensation, were utilized in generating tilt perception. Interpretation of data by a weighted sum of body vertical and somatic vectors, with an estimate of the GIA from the otoliths, suggests that perception weights the sense of the body vertical more heavily early in-flight, that this weighting falls during adaptation to microgravity, and that the decreased reliance on the body vertical persists early post-flight, generating an exaggerated sense of tilt. Since graviceptors respond to linear acceleration and not to head tilt in orbit, it has been proposed that adaptation to weightlessness entails reinterpretation of otolith activity, causing tilt to be perceived as translation. Since linear acceleration during in-flight centrifugation was always perceived as tilt, not translation, the findings do not support this hypothesis.
Management considerations to enhance use of stock ponds by waterfowl broods
Mark A. Rumble; Lester D. Flake
1983-01-01
Use of 36 livestock watering ponds by mallard (Anas playtrhynchos), blue-winged teal (A. discors), and total broods was tested against 32 habitat variables from 1977 and 1978. Pond size, shallow water areas with submersed vegetation, number of natural wetlands in a 1.6-km radius, and emersed vegetation composed of smartweed (
Forest Statistics for Pennsylvania - 1978
Thomas J. Considine; Douglas S. Powell
1980-01-01
A statistical report on the third forest survey of Pennsylvania conducted in 1977 and 1978. Statistical findings are based on data from remeasured 115-acre plots and both remeasured and new 10-point variable-radius plots. The current status of forestland area, timber volume, and annual growth and removals is presented. Timber products output by timber industries, based...
Martian canyons and African rifts: Structural comparisons and implications
NASA Technical Reports Server (NTRS)
Frey, H. V.
1978-01-01
The resistant parts of the canyon walls of the Martian rift complex Valled Marineris were used to infer an earlier, less eroded reconstruction of the major roughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.
The effects of radiation drag on radial, relativistic hydromagnetic winds
NASA Technical Reports Server (NTRS)
Li, Zhi-Yun; Begelman, Mitchell C.; Chiueh, Tzihong
1992-01-01
The effects of drag on an idealized relativistic MHD wind of radial geometry are studied. The astrophysical motivation is to understand the effects of radiation drag on the dynamics of a jet or wind passing through the intense radiation field of an accreting compact object. From a critical point analysis, it is found that a slow magnetosonic point can appear in a dragged flow even in the absence of gravitational force, as a result of a balance between the drag force and the combination of thermal pressure and centrifugal forces. As in the undragged case, the Alfven point does not impose any constraints on the flow. Although it is formally possible for a dragged flow to possess more than one fast magnetosonic point, it is shown that this is unlikely in practice. In the limit of a 'cold', centrifugally driven flow, it is shown that the fast magnetosonic point moves to infinite radius, just as in the drag-free case. For a given mass flux, the total energy output carried to infinity, and the final partition between the kinetic energy and the Poynting flux, are the same for the dragged and the drag-free flows. The main effects of radiation drag are to increase the amount of energy and angular momentum extracted from the source and to redistribute the regions where acceleration occurs in the flow. This is accomplished through the storage and release of magnetic energy, as a result of additional winding and compression of the field caused by the action of the drag. For a relativistic wind, the dissipated energy can exceed the final kinetic energy of the flow and may be comparable to the total flow energy (which is dominated by Poynting flux). The energy lost to radiation drag will appear as a Doppler-boosted beam of scattered radiation, which could dominate the background radiation if the flow is well-collimated.
Preliminary characterization of Thy-1.1 and Ag-B antigens from rat tissues solubilized in detergents
Letarte-Muirhead, Michelle; Acton, Ronald T.; Williams, Alan F.
1974-01-01
1. A radioactive binding assay for Thy-1.1 alloantigen which functions in the presence of detergents was established by using glutaraldehyde-fixed thymocytes as target cells. Thy-1.1 activity in detergent extracts was then assayed by measuring inhibition of the binding assay. 2. Solubilization of Thy-1.1 from whole thymocytes, and their membranes by a large number of non-ionic detergents and deoxycholate was studied. In the same extracts Ag-B(4) histocompatibility antigenic activities were measured. With the exception of Nonidet P-40, the detergents did not affect the antigenicity of Thy-1.1, but only Lubrol-PX and deoxycholate gave effective solubilization as measured by activity remaining in the supernatant after centrifugation at 200000g for 40min. With Ag-B(4) antigen, Triton X-100, Triton X-67 and Nonidet P-40 gave effective solubilization as well as Lubrol-PX and deoxycholate. Solubilization of Thy-1.1 activity from leukaemia cells and a brain homogenate was also studied, but none of the non-ionic detergents gave satisfactory results with these tissues. 3. Extracts from thymocyte membranes were further examined by gel filtration and sucrose gradient centrifugation. The Thy-1.1 activity behaved as a single component in deoxycholate with a density similar to that of a globular protein, but in Lubrol-PX the antigen was contained in a low-density complex. In Lubrol-PX extracts Ag-B(4) was also found in aggregates not observed in deoxycholate. 4. The s20,w values for Thy-1.1 and Ag-B(4) antigens in deoxycholate were 2.4 and 4.4, and v̄ values were 0.70 and 0.75 respectively. The Stokes radius observed for Thy-1.1 was 3.1nm and for Ag-B(4) 5.3nm. By using these values the molecular weights for the antigen–detergent complexes were calculated to be 28000 for Thy-1.1 and 100000 for Ag-B(4). PMID:4219284
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Gundo, D. P.; Watenpaugh, D. E.; Mulenburg, G. M.; Mckenzie, M. A.; Looft-Wilson, R.; Hargens, A. R.
1997-01-01
In addition to extensive use of lower extremity physical exercise training as a countermeasure for the work capacity component of spaceflight deconditioning, some form of additional head-to-foot (+Gz) gravitational (orthostatic) stress may be required to further attenuate or prevent the signs and symptoms (nausea, vertigo, instability, fatigue) of the general reentry syndrome (GRS) that can reduce astronaut performance during landing. Orthostatic (head-to-foot) stress can be induced by standing, by lower body negative pressure, and by +Gz acceleration. One important question is whether acceleration training alone or with concurrent leg exercise would provide sufficient additive stimulation to attenuate the GRS. Use of a new human-powered centrifuge may be the answer. Thus, the purpose for this study was to compare heart rate (HR), i.e., a stress response during human-powered acceleration, in four men (35-62 yr) and two women (30-31 yr) during exercise acceleration versus passive acceleration (by an off-board operator) at 100% (maximal acceleration = A(max)), and at 25%, 50%, and 75% of A(max). Mean (+/-SE) A(max) was 43.7 +/- 1.3 rpm (+3.9 +/- 0.2Gz). Mean HR at exercise A(max) was 189 +/- 13 b/min (50-70 sec run time), and 142 +/- 22 b/min at passive A(max) (40-70 sec run time). Regression of mean HR on the various +Gz levels indicated explained variance (correlations squared) of r(exp 2) = 0.88 (exercise) and r(exp 2) = 0.96 (passive): exercise HR of 107 +/- 4 (25%) to 189 +/- 13 (100%) b/min were 43-50 b/min higher (p less than 0.05) than comparable passive HR of 64 +/- 2 to 142 +/- 22 b/min. Thus, exercise adds significant physiological stress during +Gz acceleration. Inflight use of this combined exercise and acceleration countermeasure may maintain work capacity as well as normalize acceleration and orthostatic tolerances which could attenuate or perhaps eliminate the GRS.
Parametric study of power absorption from electromagnetic waves by small ferrite spheres
NASA Technical Reports Server (NTRS)
Englert, Gerald W.
1989-01-01
Algebraic expressions in terms of elementary mathematical functions are derived for power absorption and dissipation by eddy currents and magnetic hysteresis in ferrite spheres. Skin depth is determined by using a variable inner radius in descriptive integral equations. Numerical results are presented for sphere diameters less than one wavelength. A generalized power absorption parameter for both eddy currents and hysteresis is expressed in terms of the independent parameters involving wave frequency, sphere radius, resistivity, and complex permeability. In general, the hysteresis phenomenon has a greater sensitivity to these independent parameters than do eddy currents over the ranges of independent parameters studied herein. Working curves are presented for obtaining power losses from input to the independent parameters.
Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn
2013-05-01
Breathing dynamics vary between infant sleep states, and are likely to exhibit non-linear behaviour. This study applied the non-linear analytical tool recurrence quantification analysis (RQA) to 400 breath interval periods of REM and N-REM sleep, and then using an overlapping moving window. The RQA variables were different between sleep states, with REM radius 150% greater than N-REM radius, and REM laminarity 79% greater than N-REM laminarity. RQA allowed the observation of temporal variations in non-linear breathing dynamics across a night's sleep at 30s resolution, and provides a basis for quantifying changes in complex breathing dynamics with physiology and pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Apparatus for centrifugal separation of coal particles
Dickie, William; Cavallaro, Joseph A.; Killmeyer, Richard P.
1991-01-01
A gravimetric cell for centrifugal separation of fine coal by density has a cylindrical body and a butterfly valve or other apparatus for selectively sealing the body radially across the approximate center of the cylinder. A removable top is provided which seals the cylinder in the centrifuge and in unvented areas.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... County, ID, Notification of Proposed Production Activity, AREVA Enrichment Services, LLC, (Gas Centrifuge... being requested for the storage, manipulation, assembly and installation of gas centrifuge production... pipework, centrifuge floor-mounting elements, UF6 pipework/fittings, parts of cascades, vacuum pumps, UF6...
View of new centrifuge at Flight Acceleration Facility
NASA Technical Reports Server (NTRS)
1966-01-01
View of the new centrifuge at the Manned Spacecraft Center (MSC), located in the Flight Acceleration Facility, bldg 29. The 50-ft. arm can swing the three man gondola to create g-forces astronauts will experience during controlled flight and during reentry. The centrifuge was designed primarily for training Apollo astronauts.
Centripetal/Centrifugal Family Style of Families with Aggressive and Non-Aggressive Boys.
ERIC Educational Resources Information Center
Hurst, Duane F.; And Others
Research on family interaction has characterized family style on centripetal and centrifugal dimensions, representing opposing natures with their own continua. Centripetal forces produce binding, or a prolonged process of separation of parent and child; centrifugal forces preciptate expelling, or hastened separation and premature autonomy. To…
Centrifuge advances using HTS magnetic bearings
NASA Astrophysics Data System (ADS)
Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.
2001-05-01
Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.
Coats, Brandon W; Sharp, M Keith
2010-03-01
One proposed method to overcome postflight orthostatic intolerance is for astronauts to undergo inflight centrifugation. Cardiovascular responses were compared between centrifuge and gravitational conditions using a seven-compartment cardiovascular model. Vascular resistance, heart rate, and stroke volume values were adopted from literature, while compartmental volumes and compliances were derived from impedance plethysmography of subjects (n=8) riding on a centrifuge. Three different models were developed to represent the typical male subject who completed a 10-min postflight stand test ("male finisher"), "non-finishing male" and "female" (all non-finishers). A sensitivity analysis found that both cardiac output and arterial pressure were most sensitive to total blood volume. Simulated stand tests showed that female astronauts were more susceptible to orthostatic intolerance due to lower initial blood pressure and higher pressure threshold for presyncope. Rates of blood volume loss by capillary filtration were found to be equivalent in female and male non-finishers, but four times smaller in male finishers. For equivalent times to presyncope during centrifugation as those during constant gravity, lower G forces at the level of the heart were required. Centrifuge G levels to match other cardiovascular parameters varied depending on the parameter, centrifuge arm length, and the gravity level being matched.
NASA Astrophysics Data System (ADS)
Dirican, Mahmut; Zhang, Xiangwu
2016-09-01
Natural abundance and low cost of sodium resources bring forward the sodium-ion batteries as a promising alternative to widely-used lithium-ion batteries. However, insufficient energy density and low cycling stability of current sodium-ion batteries hinder their practical use for next-generation smart power grid and stationary storage applications. Electrospun carbon microfibers have recently been introduced as a high-performance anode material for sodium-ion batteries. However, electrospinning is not feasible for mass production of carbon microfibers due to its complex processing condition, low production rate and high cost. Herein, we report centrifugal spinning, a high-rate and low-cost microfiber production method, as an alternative approach to electrospinning for carbon microfiber production and introduce centrifugally-spun carbon microfibers (CMFs) and porous carbon microfibers (PCMFs) as anode materials for sodium-ion batteries. Electrochemical performance results indicated that the highly porous nature of centrifugally-spun PCMFs led to increased Na+ storage capacity and improved cycling stability. The reversible capacity of centrifugally-spun PCMF anodes at the 200th cycle was 242 mAh g-1, which was much higher than that of centrifugally-spun CMFs (143 mAh g-1). The capacity retention and coulombic efficiency of the centrifugally-spun PCMF anodes were 89.0% and 99.9%, respectively, even at the 200th cycle.
Analogue scale modelling of extensional tectonic processes using a large state-of-the-art centrifuge
NASA Astrophysics Data System (ADS)
Park, Heon-Joon; Lee, Changyeol
2017-04-01
Analogue scale modelling of extensional tectonic processes such as rifting and basin opening has been numerously conducted. Among the controlling factors, gravitational acceleration (g) on the scale models was regarded as a constant (Earth's gravity) in the most of the analogue model studies, and only a few model studies considered larger gravitational acceleration by using a centrifuge (an apparatus generating large centrifugal force by rotating the model at a high speed). Although analogue models using a centrifuge allow large scale-down and accelerated deformation that is derived by density differences such as salt diapir, the possible model size is mostly limited up to 10 cm. A state-of-the-art centrifuge installed at the KOCED Geotechnical Centrifuge Testing Center, Korea Advanced Institute of Science and Technology (KAIST) allows a large surface area of the scale-models up to 70 by 70 cm under the maximum capacity of 240 g-tons. Using the centrifuge, we will conduct analogue scale modelling of the extensional tectonic processes such as opening of the back-arc basin. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number 2014R1A6A3A04056405).
Synchronization of Mammalian Cells and Nuclei by Centrifugal Elutriation.
Banfalvi, Gaspar
2017-01-01
Synchronized populations of large numbers of cells can be obtained by centrifugal elutriation on the basis of sedimentation properties of small round particles, with minimal perturbation of cellular functions. The physical characteristics of cell size and sedimentation velocity are operative in the technique of centrifugal elutriation also known as counterstreaming centrifugation. The elutriator is an advanced device for increasing the sedimentation rate to yield enhanced resolution of cell separation. A random population of cells is introduced into the elutriation chamber of an elutriator rotor running in a specially designed centrifuge. By increasing step-by-step the flow rate of the elutriation fluid, successive populations of relatively homogeneous cell size can be removed from the elutriation chamber and used as synchronized subpopulations. For cell synchronization by centrifugal elutriation, early log S phase cell populations are most suitable where most of the cells are in G1 and S phase (>80 %). Apoptotic cells can be found in the early elutriation fractions belonging to the sub-Go window. Protocols for the synchronization of nuclei of murine pre-B cells and high-resolution centrifugal elutriation of CHO cells are given. The verification of purity and cell cycle positions of cells in elutriated fractions includes the measurement of DNA synthesis by [ 3 H]-thymidine incorporation and DNA content by propidium iodide flow cytometry.
NASA Astrophysics Data System (ADS)
Pierazzo, E.; Artemieva, N.; Asphaug, E.; Baldwin, E. C.; Cazamias, J.; Coker, R.; Collins, G. S.; Crawford, D. A.; Davison, T.; Elbeshausen, D.; Holsapple, K. A.; Housen, K. R.; Korycansky, D. G.; Wünnemann, K.
2008-12-01
Over the last few decades, rapid improvement of computer capabilities has allowed impact cratering to be modeled with increasing complexity and realism, and has paved the way for a new era of numerical modeling of the impact process, including full, three-dimensional (3D) simulations. When properly benchmarked and validated against observation, computer models offer a powerful tool for understanding the mechanics of impact crater formation. This work presents results from the first phase of a project to benchmark and validate shock codes. A variety of 2D and 3D codes were used in this study, from commercial products like AUTODYN, to codes developed within the scientific community like SOVA, SPH, ZEUS-MP, iSALE, and codes developed at U.S. National Laboratories like CTH, SAGE/RAGE, and ALE3D. Benchmark calculations of shock wave propagation in aluminum-on-aluminum impacts were performed to examine the agreement between codes for simple idealized problems. The benchmark simulations show that variability in code results is to be expected due to differences in the underlying solution algorithm of each code, artificial stability parameters, spatial and temporal resolution, and material models. Overall, the inter-code variability in peak shock pressure as a function of distance is around 10 to 20%. In general, if the impactor is resolved by at least 20 cells across its radius, the underestimation of peak shock pressure due to spatial resolution is less than 10%. In addition to the benchmark tests, three validation tests were performed to examine the ability of the codes to reproduce the time evolution of crater radius and depth observed in vertical laboratory impacts in water and two well-characterized aluminum alloys. Results from these calculations are in good agreement with experiments. There appears to be a general tendency of shock physics codes to underestimate the radius of the forming crater. Overall, the discrepancy between the model and experiment results is between 10 and 20%, similar to the inter-code variability.
Life sciences biomedical research planning for Space Station
NASA Technical Reports Server (NTRS)
Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine
1987-01-01
The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.
Proton radius from electron scattering data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent
Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon and Stanford. Methods: We make use of stepwise regression techniques using the F-test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate errormore » estimates. Results: Starting with the precision, low four-momentum transfer (Q 2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F-test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q 2 data on G E to select functions which extrapolate to high Q 2, we find that a Pad´e (N = M = 1) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, G E(Q 2) = (1 + Q 2/0.66 GeV 2) -2. Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extreme low-Q 2 data or by use of the Pad´e approximant for extrapolation using a larger range of data. Thus, based on a purely statistical analysis of electron scattering data, we conclude that the electron scattering result and the muonic hydrogen result are consistent. Lastly, it is the atomic hydrogen results that are the outliers.« less
Proton radius from electron scattering data
Higinbotham, Douglas W.; Kabir, Al Amin; Lin, Vincent; ...
2016-05-31
Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon and Stanford. Methods: We make use of stepwise regression techniques using the F-test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate errormore » estimates. Results: Starting with the precision, low four-momentum transfer (Q 2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F-test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q 2 data on G E to select functions which extrapolate to high Q 2, we find that a Pad´e (N = M = 1) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, G E(Q 2) = (1 + Q 2/0.66 GeV 2) -2. Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extreme low-Q 2 data or by use of the Pad´e approximant for extrapolation using a larger range of data. Thus, based on a purely statistical analysis of electron scattering data, we conclude that the electron scattering result and the muonic hydrogen result are consistent. Lastly, it is the atomic hydrogen results that are the outliers.« less
Plastic deformation of tubular crystals by dislocation glide.
Beller, Daniel A; Nelson, David R
2016-09-01
Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.
Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles
NASA Technical Reports Server (NTRS)
Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Bhutiani, P. K.; Vogt, P. G.
1984-01-01
The experimental and analytical results of a scale model simulated flight acoustic exploratory investigation of high radius ratio coannular plug nozzles with inverted velocity and temperature profiles are summarized. Six coannular plug nozzle configurations and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. It was found that in simulate flight, the high radius ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass struts will not significantly affect the acousticn noise reduction features of a General Electric type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insights into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further benificial research efforts.
Investigating the Effect of Approach Angle and Nose Radius on Surface Quality of Inconel 718
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Singh, Dilbag; Kalsi, Nirmal S.
2017-11-01
This experimental work presents a surface quality evaluation of a Nickel-Cr-Fe based Inconel 718 superalloy, which has many applications in the aero engine and turbine components. However, during machining, the early wear of tool leads to decrease in surface quality. The coating on cutting tool plays a significant role in increasing the wear resistance and life of the tool. In this work, the aim is to study the surface quality of Inconel 718 with TiAlN-coated carbide tools. Influence of various geometrical parameters (tool nose radius, approach angle) and machining variables (cutting velocity, feed rate) on the quality of machined surface (surface roughness) was determined by using central composite design (CCD) matrix. The mathematical model of the same was developed. Analysis of variance was used to find the significance of the parameters. Results showed that the tool nose radius and feed were the main active factors. The present experiment accomplished that TiAlN-coated carbide inserts result in better surface quality as compared with uncoated carbide inserts.
Plastic deformation of tubular crystals by dislocation glide
NASA Astrophysics Data System (ADS)
Beller, Daniel A.; Nelson, David R.
2016-09-01
Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.
NASA Technical Reports Server (NTRS)
Lau, A.; Ramirez, J.; Melson, E.; Moran, M.; Baer, L.; Arnaud, S.; Wade, C.; Girten, B.; Dalton, Bonnie (Technical Monitor)
2001-01-01
The effects of 14 days of increased gravitational load, and the absence of adrenal stress hormones on total body bone mineral content (BMC) were examined in male Sprague-Dawley rats. Centrifugation at 2 Gs (2G) was used to increase the gravitational load, and bilateral adrenalectomy (ADX) was used to eliminate the production of adrenal stress hormones. Stationary groups at 1 G (1G) and sham operated (SHAM) animals served as controls. Thirty rats (n=6 or 8) made up the four experimental groups (1G SHAM, 1G ADX, 2G SHAM and 2G ADX). BMC was assessed by dual energy x-ray absorptiometry (DXA) which was performed to determine the total body bone mineral content, and also through bone ashing of the left femur and the left humerus. Activity was determined through biotelemetry, also body mass and food intake were measured. Multi-factorial analysis of variance (MANCOVA) and Newman Keuls post hoc tests were used to analyze significant effects (p is less than 0.05) for the primary variables. Results from both DXA and the ashed femur indicated that BMC decreased significantly with increased G for both the SHAM and ADX groups. The BMC determined by DXA for the 1G ADX group was also significantly lower than the 1G SHAM group, however the 2G SHAM and 2G ADX groups were not significantly different. However, the bone ashing results showed the femur differed significantly only between the rates of centrifugation and not between the ADX and SHAM. The humerus showed no significant difference between any of the groups. There was a significant decrease in body mass with increased G and there was no ADX effect on body mass. When DXA BMC was normalized for body mass changes, there were no significant group differences. However, with bone ashing, the femur BMC/BW still showed significant difference between rates of centrifugation, with the 2G group being lower. Activity level decreased with body mass, and food intake data showed there was significant hypophagia during the first few days of centrifugation. Urine calcium was measured and was found decrease at the start of centrifugation for the 2G groups and rise to a level higher than that of the stationary groups. Finally, the correlation between BW and BMC was determined to be highly correlated (r = .71). These results suggest that the decrease in total body BMC seen with hypergravity may be based to a large extent on the differences in body mass induced by the 2G load.
NASA Technical Reports Server (NTRS)
Sadoff, Melvin; McFadden, Norman M.; Heinle, Donovan R.
1961-01-01
As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human pilots in coping with the wide range of vehicle dynamics and the control problems covered in this study. It was shown that pilot-response characteristics, deduced by the analog-pilot method, could be related to pilot opinion. Possible application of these results for predicting flight-control problems was illustrated by means of an example control-problem analysis. The results of a brief evaluation of a pencil-type side-arm controller in the centrifuge showed a considerable improvement in the pilots' ability to cope with high-frequency, low-damping dynamics, compared to results obtained with the center stick. This improvement with the pencil controller was attributed primarily to a marked reduction in the adverse effects of large and exaggerated pitching and longitudinal accelerations on pilot control precision.
Effects of different centrifugation conditions on clinical chemistry and Immunology test results.
Minder, Elisabeth I; Schibli, Adrian; Mahrer, Dagmar; Nesic, Predrag; Plüer, Kathrin
2011-05-10
The effect of centrifugation time of heparinized blood samples on clinical chemistry and immunology results has rarely been studied. WHO guideline proposed a 15 min centrifugation time without citing any scientific publications. The centrifugation time has a considerable impact on the turn-around-time. We investigated 74 parameters in samples from 44 patients on a Roche Cobas 6000 system, to see whether there was a statistical significant difference in the test results among specimens centrifuged at 2180 g for 15 min, at 2180 g for 10 min or at 1870 g for 7 min, respectively. Two tubes with different plasma separators (both Greiner Bio-One) were used for each centrifugation condition. Statistical comparisons were made by Deming fit. Tubes with different separators showed identical results in all parameters. Likewise, excellent correlations were found among tubes to which different centrifugation conditions were applied. Fifty percent of the slopes lay between 0.99 and 1.01. Only 3.6 percent of the statistical tests results fell outside the significance level of p < 0.05, which was less than the expected 5%. This suggests that the outliers are the result of random variation and the large number of statistical tests performed. Further, we found that our data are sufficient not to miss a biased test (beta error) with a probability of 0.10 to 0.05 in most parameters. A centrifugation time of either 7 or 10 min provided identical test results compared to the time of 15 min as proposed by WHO under the conditions used in our study.
Effects of different centrifugation conditions on clinical chemistry and Immunology test results
2011-01-01
Background The effect of centrifugation time of heparinized blood samples on clinical chemistry and immunology results has rarely been studied. WHO guideline proposed a 15 min centrifugation time without citing any scientific publications. The centrifugation time has a considerable impact on the turn-around-time. Methods We investigated 74 parameters in samples from 44 patients on a Roche Cobas 6000 system, to see whether there was a statistical significant difference in the test results among specimens centrifuged at 2180 g for 15 min, at 2180 g for 10 min or at 1870 g for 7 min, respectively. Two tubes with different plasma separators (both Greiner Bio-One) were used for each centrifugation condition. Statistical comparisons were made by Deming fit. Results Tubes with different separators showed identical results in all parameters. Likewise, excellent correlations were found among tubes to which different centrifugation conditions were applied. Fifty percent of the slopes lay between 0.99 and 1.01. Only 3.6 percent of the statistical tests results fell outside the significance level of p < 0.05, which was less than the expected 5%. This suggests that the outliers are the result of random variation and the large number of statistical tests performed. Further, we found that our data are sufficient not to miss a biased test (beta error) with a probability of 0.10 to 0.05 in most parameters. Conclusion A centrifugation time of either 7 or 10 min provided identical test results compared to the time of 15 min as proposed by WHO under the conditions used in our study. PMID:21569233
Potential Application of Centrifuges to Protect the CNS in Space and on Earth.
Hashimoto, Makoto; Ho, Gilbert; Shimizu, Yuka; Sugama, Shuei; Takenouchi, Takato; Waragai, Masaaki; Wei, Jianshe; Takamatsu, Yoshiki
2018-01-01
Centrifuges are the principal means of generating physiological hypergravity and have been used for many medical purposes, including the therapy of psychiatric diseases and evaluation of vestibular system in the pilots. In particular, modern centrifuges have evolved into mechanically sophisticated precision instruments compared to primitive ones in old times, indicating that centrifuges might possess great potential in modern medicine. Indeed, studies are in progress to apply centrifuges to musculoskeletal degenerative diseases, such as osteoporosis and sarcopenia. Given that the agingrelated diseases are manifested under microgravity conditions, including astronauts and the bed-ridden elderly, it is reasonable to speculate that centrifuge-induced hypergravity may counteract the progression of these diseases. Such a view may also be important for neurodegenerative diseases for which the radical treatments are yet to be established. Therefore, the main objective of this paper is to discuss a potential therapeutic use of centrifuges for protection against the central nervous system (CNS) disorders, both in space and on Earth. Mechanistically hypergravity may exert stimulatory effects on preconditioning, chaperone expression, synapse plasticity, and growth and differentiation in the nervous system. Furthermore, hypergravity may suppress the progress of type II diabetes mellitus (T2DM), leading to inhibition of T2DM-triggered CNS disorders, including neurodegenerative diseases, ischemia and depression. Moreover, it is possible that hypergravity may counteract the neurodegeneration in hippocampus induced by the microgravity conditions and psychiatric diseases. Collectively, further investigations are warranted to demonstrate that centrifuge-induced hypergravity may be beneficial for the therapy of the CNS disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Özkan, Sezai; Mellema, Jos J.; Ring, David; Chen, Neal C.
2017-01-01
Background: To examine whether interobserver reliability, decision-making, and confidence in decision-making in the treatment of distal radius fractures changes if radiographs are viewed on a messenger application on a mobile phone compared to a standard DICOM viewer. Methods: Radiographs of distal radius fractures were presented to surgeons on either a smart phone using a mobile messenger application or a laptop using a DICOM viewer application. Twenty observers participated: 10 (50%) were randomly assigned to the DICOM viewer group and 10 (50%) to the mobile messenger group. Each observer was asked to evaluate the cases and (1) classify the fracture type according to the AO classification, (2) recommend operative or conservative treatment and (3) rate their confidence about this decision. Results: There was no significant difference in interobserver reliability for AO classification and recommendation for surgery for distal radius fractures in both groups. The percentage of recommendation for surgery was significantly higher in the messenger application group compared to the DICOM viewer group (89% versus 78%, P=0.019) and the confidence for treatment decision was significantly higher in the mobile messenger group compared to the DICOM viewer group (8.9 versus 7.9, P=0.026). Conclusion: Messenger applications on mobile phones could facilitate remote decision-making for patients with distal radius fractures, but should be used with caution. PMID:29226202
NASA Technical Reports Server (NTRS)
Debes, John H.; Hoard, D. W.; Kilic, Mukremin; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin; Kirkpatrick, J. Davy; Griffith, Roger L.
2011-01-01
With the launch of the Wide-Field Infrared Survey Explorer (WISE), a new era of detecting planetary debris around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED survey will be sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs and covering a large fraction of known WDs detected with the SDSS DR4 WD catalog. In this paper, we report an initial result of the WIRED survey, the detection of the heavily polluted hydrogen WD (spectral type DAZ) GALEX Jl93156.S-KlI1745 at 3.35 and 4.6/Lm. We find that the excess is consistent with either a narrow dusty ring with an inner radius of 29 RWD. outer radius of 40 RWD, and a face-on inclination, or a disk with an inclination of 70 , an inner radius of 23 RWD. and an outer radius of 80 RWD. We also report initial optical spectroscopic monitoring of several metal lines present in the photosphere and find no variability in the line strengths or radial velocities of the lines. We rule out all but planetary mass companions to GALEXl931 out to 0.5 AU.
Chen, Ming-Wen; Li, Lin-Yan; Guo, Hui-Min
2017-08-28
The dynamics of nucleation and growth of a particle affected by anisotropic surface tension in the ternary alloy melt is studied. The uniformly valid asymptotic solution for temperature field, concentration field, and interface evolution of nucleation and particle growth is obtained by means of the multiple variable expansion method. The asymptotic solution reveals the critical radius of nucleation in the ternary alloy melt and an inward melting mechanism of the particle induced by the anisotropic effect of surface tension. The critical radius of nucleation is dependent on isotropic surface tension, temperature undercooling, and constitutional undercooling in the ternary alloy melt, and the solute diffusion melt decreases the critical radius of nucleation. Immediately after a nucleus forms in the initial stage of solidification, the anisotropic effect of surface tension makes some parts of its interface grow inward while some parts grow outward. Until the inward melting attains a certain distance (which is defined as "the melting depth"), these parts of interface start to grow outward with other parts. The interface of the particle evolves into an ear-like deformation, whose inner diameter may be less than two times the critical radius of nucleation within a short time in the initial stage of solidification. The solute diffusion in the ternary alloy melt decreases the effect of anisotropic surface tension on the interface deformation.
Knežević, Josip; Kodvanj, Janoš; Čukelj, Fabijan; Pamuković, Frane; Pavić, Arsen
2017-11-01
To compare the finite element models of two different composite radius fracture patterns, reduced and stabilised with four different fixed-angle dorsal plates during axial, dorsal and volar loading conditions. Eight different plastic models representing four AO/ASIF type 23-A3 distal radius fractures and four AO/ASIF 23-C2 distal radius fractures were obtained and fixed each with 1 of 4 methods: a standard dorsal non-anatomical fixed angle T-plate (3.5mm Dorsal T-plate, Synthes), anatomical fixed-angle double plates (2.4mm LCP Dorsal Distal Radius, Synthes), anatomical fixed angle T-plate (2.4mm Acu-Loc Dorsal Plate, Acumed) or anatomical variable-angle dorsal T-plate (3.5mm, Dorsal Plate, Zrinski). Composite radius with plate and screws were scanned with a 3D optical scanner and later processed in Abaqus Software to generate the finite element model. All models were axially loaded at 3 points (centrally, volarly and dorsally) with 50 N forces to avoid the appearance of plastic deformations of the models. Total displacements at the end of the bone and the stresses in the bones and plates were determined and compared. Maximal von Mises stress in bone for 3-part fracture models was very similar to that in 2-part fracture models. The biggest difference between models and the largest displacements were seen during volar loading. The stresses in all models were the highest above the fracture gap. The best performance in all parameters tested was with the Zrinski plate and the most modest results were with the Synthes T-plate. There was no significant difference between 2-part (AO/ASIF type 23-A3) and 3-part (AO/ASIF 23-C2) fracture models. Maximal stresses in the plates appeared above the fracture gap; therefore, it is worth considering the development of plates without screw holes above the gap. © 2017 Elsevier Ltd. All rights reserved.
METHOD OF CENTRIFUGE OPERATION
Cohen, K.
1960-05-10
A method of isotope separation is described in which two streams are flowed axially of, and countercurrently through, a cylindrical centrifuge bowl. Under the influence of a centrifugal field, the light fraction is concentrated in a stream flowing through the central portion of the bowl, whereas the heavy fraction is concentrated in a stream at the periphery thereof.
ERIC Educational Resources Information Center
Best, Richard A.
An introductory description of the use of centrifuges in the process of volume reduction is provided in this lesson. Three basic centrifuges, their theory of operation, quality of cake and centrate, and operational control testing are discussed. The lesson includes an instructor's guide and student workbook. The instructor's guide contains a…
Code of Federal Regulations, 2013 CFR
2013-07-01
... monitoring requirements for my storage vessel or centrifugal compressor affected facility? 60.5417 Section 60... requirements for my storage vessel or centrifugal compressor affected facility? You must meet the applicable... standards for your storage vessel or centrifugal compressor affected facility. (a) You must install and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... monitoring requirements for my storage vessel or centrifugal compressor affected facility? 60.5417 Section 60... requirements for my storage vessel or centrifugal compressor affected facility? You must meet the applicable... standards for your storage vessel or centrifugal compressor affected facility. (a) For each control device...
NASA low speed centrifugal compressor
NASA Technical Reports Server (NTRS)
Hathaway, Michael D.
1990-01-01
The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.
Centrifugal techniques for measuring saturated hydraulic conductivity
Nimmo, John R.; Mello, Karen A.
1991-01-01
Centrifugal force is an alternative to large pressure gradients for the measurement of low values of saturated hydraulic conductivity (Ksat). With a head of water above a porous medium in a centrifuge bucket, both constant-head and falling-head measurements are practical at forces up to at least 1800 times normal gravity. Darcy's law applied to the known centrifugal potential leads to simple formulas for Ksat that are analogous to those used in the standard gravity-driven constant- and falling-head methods. Both centrifugal methods were tested on several fine-textured samples of soil and ceramic with Ksat between about 10−10 and 10−9 m/s. The results were compared to falling-head gravity measurements. The comparison shows most measurements agreeing to within 20% for a given sample, much of the variation probably resulting from run-to-run changes in sample structure. The falling-head centrifuge method proved to be especially simple in design and operation and was more accurate than the constant-head method. With modified apparatus, Ksat measurements less than 10−10 m/s should be attainable.
Joseph, Adrian; Kenty, Brian; Mollet, Michael; Hwang, Kenneth; Rose, Steven; Goldrick, Stephen; Bender, Jean; Farid, Suzanne S.
2016-01-01
ABSTRACT In the production of biopharmaceuticals disk‐stack centrifugation is widely used as a harvest step for the removal of cells and cellular debris. Depth filters followed by sterile filters are often then employed to remove residual solids remaining in the centrate. Process development of centrifugation is usually conducted at pilot‐scale so as to mimic the commercial scale equipment but this method requires large quantities of cell culture and significant levels of effort for successful characterization. A scale‐down approach based upon the use of a shear device and a bench‐top centrifuge has been extended in this work towards a preparative methodology that successfully predicts the performance of the continuous centrifuge and polishing filters. The use of this methodology allows the effects of cell culture conditions and large‐scale centrifugal process parameters on subsequent filtration performance to be assessed at an early stage of process development where material availability is limited. Biotechnol. Bioeng. 2016;113: 1934–1941. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26927621
RBC-/Cr-51/ half-life and albumin turnover in growing Beagle dogs during chronic radial acceleration
NASA Technical Reports Server (NTRS)
Beckman, D. A.; Evans, J. W.; Oyama, J.
1979-01-01
The effects of chronic centrifugation on growing Beagle dogs exposed to -2 or -2.6 Gx on albumin and RBC turnover rates, albumin concentration and space, and total blood volume were determined and compared with caged and run control of animals. Albumin-(I-125) and autologous RBC-(Cr-51) preparations were injected into all dogs at day 82 of the centrifugation periods, and the disappearance curves were determined by successive bleedings of the animals over the next 35 d, during which the centrifugation was continued. There were no differences in albumin turnover rates or space. Two populations of RBCs were found in both centrifugated groups, one with a normal half-life of 27 + or - 1 S.E.M. d, and one with a significantly (p less than 0.01) shorter half-life of 15 + or - 2 S.E.M. d. An absolute polycythemia was also observed in both centrifuged groups. The results suggest that chronic centrifugation acts through some as-yet unknown mechanism to affect RBC population kinetics.
NASA Technical Reports Server (NTRS)
Moyer, E. L.; Al-Shayeb, B.; Baer, L. A.; Ronca, A. E.
2016-01-01
Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hyper-gravity demonstrated significantly increased (8-15%) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported a similar outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes and the plasma of animals treated with our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats.
Detecting the gravitational sensitivity of Paramecium caudatum using magnetic forces
NASA Astrophysics Data System (ADS)
Guevorkian, Karine; Valles, James M., Jr.
2006-03-01
Under normal conditions, Paramecium cells regulate their swimming speed in response to the pN level mechanical force of gravity. This regulation, known as gravikinesis, is more pronounced when the external force is increased by methods such as centrifugation. Here we present a novel technique that simulates gravity fields using the interactions between strong inhomogeneous magnetic fields and cells. We are able to achieve variable gravities spanning from 10xg to -8xg; where g is earth's gravity. Our experiments show that the swimming speed regulation of Paramecium caudatum to magnetically simulated gravity is a true physiological response. In addition, they reveal a maximum propulsion force for paramecia. This advance establishes a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.
AGT100 turbomachinery. [for automobiles
NASA Technical Reports Server (NTRS)
Tipton, D. L.; Mckain, T. F.
1982-01-01
High-performance turbomachinery components have been designed and tested for the AGT100 automotive engine. The required wide range of operation coupled with the small component size, compact packaging, and low cost of production provide significant aerodynamic challenges. Aerodynamic design and development testing of the centrifugal compressor and two radial turbines are described. The compressor achieved design flow, pressure ratio, and surge margin on the initial build. Variable inlet guide vanes have proven effective in modulating flow capacity and in improving part-speed efficiency. With optimum use of the variable inlet guide vanes, the initial efficiency goals have been demonstrated in the critical idle-to-70% gasifier speed range. The gasifier turbine exceeded initial performance goals and demonstrated good performance over a wide range. The radial power turbine achieved 'developed' efficiency goals on the first build.
25. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...
25. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, Unknown. Supplied by Honolulu Iron Works, Honolulu, Hawaii, 1879, 1881. View: After sugar was granulated and cooled it had to be dried and drained, completely separating the sugar crystals from the molasses. Revolving at 1200 rpm the inner basket drove the molasses outward into the stationary outer basket leaving dried sugar behind. The steam engine counter-shaft at the left was belt driven and belts running from the counter-shaft pulleys to the centrifugals' base-pulleys provided the necessary power. Part of the clutch system which moved the belt from a moving to a stationary pulley, thus turning the centrifugals on and off, is seen in Between the counter-shaft and the centrifugals. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Advanced Noise Control Fan: A 20-Year Retrospective
NASA Technical Reports Server (NTRS)
Sutliff, Dan
2016-01-01
The ANCF test bed is used for evaluating fan noise reduction concepts, developing noise measurement technologies, and providing a database for Aero-acoustic code development. Rig Capabilities: 4 foot 16 bladed rotor @ 2500 rpm, Auxiliary air delivery system (3 lbm/sec @ 6/12 psi), Variable configuration (rotor pitch angle, stator count/position, duct length), synthetic acoustic noise generation (tone/broadband). Measurement Capabilities: 112 channels dynamic data system, Unique rotating rake mode measuremen, Farfield (variable radius), Duct wall microphones, Stator vane microphones, Two component CTA w/ traversing, ESP for static pressures.
Ground-Based Telescope Parametric Cost Model
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes
2004-01-01
A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.
Centrifugal microfluidic platforms: advanced unit operations and applications.
Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N
2015-10-07
Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as liquid transport, metering, mixing and valving. The available unit operations cover the entire range of automated liquid handling requirements and enable efficient miniaturization, parallelization, and integration of assays.
Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands
NASA Astrophysics Data System (ADS)
Wang, Qiangqiang; Zhang, Lifeng; Sridhar, Seetharaman
2016-08-01
During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment during centrifugal continuous casting, will be performed.
Effect of acute exposure to hypergravity (GX vs. GZ) on dynamic cerebral autoregulation
NASA Technical Reports Server (NTRS)
Serrador, J. M.; Wood, S. J.; Picot, P. A.; Stein, F.; Kassam, M. S.; Bondar, R. L.; Rupert, A. H.; Schlegel, T. T.
2001-01-01
We examined the effects of 30 min of exposure to either +3GX (front-to-back) or +GZ (head-to-foot) centrifugation on cerebrovascular responses to 80 degrees head-up tilt (HUT) in 14 healthy individuals. Both before and after +3 GX or +3 GZ centrifugation, eye-level blood pressure (BP(eye)), end tidal PCO2 (PET(CO2)), mean cerebral flow velocity (CFV) in the middle cerebral artery (transcranial Doppler ultrasound), cerebral vascular resistance (CVR), and dynamic cerebral autoregulatory gain (GAIN) were measured with subjects in the supine position and during subsequent 80 degrees HUT for 30 min. Mean BP(eye) decreased with HUT in both the GX (n = 7) and GZ (n = 7) groups (P < 0.001), with the decrease being greater after centrifugation only in the GZ group (P < 0.05). PET(CO2) also decreased with HUT in both groups (P < 0.01), but the absolute level of decrease was unaffected by centrifugation. CFV decreased during HUT more significantly after centrifugation than before centrifugation in both groups (P < 0.02). However, these greater decreases were not associated with greater increases in CVR. In the supine position after centrifugation compared with before centrifugation, GAIN increased in both groups (P < 0.05, suggesting an autoregulatory deficit), with the change being correlated to a measure of otolith function (the linear vestibulo-ocular reflex) in the GX group (r = 0.76, P < 0.05) but not in the GZ group (r = 0.24, P = 0.60). However, GAIN was subsequently restored to precentrifugation levels during postcentrifugation HUT (i.e., as BP(eye) decreased), suggesting that both types of centrifugation resulted in a leftward shift of the cerebral autoregulation curve. We speculate that this leftward shift may have been due to vestibular activation (especially during +GX) or potentially to an adaptation to reduced cerebral perfusion pressure during +GZ.
Effect of density gradient centrifugation on reactive oxygen species in human semen.
Takeshima, Teppei; Yumura, Yasushi; Kuroda, Shinnosuke; Kawahara, Takashi; Uemura, Hiroji; Iwasaki, Akira
2017-06-01
Density gradient centrifugation can separate motile sperm from immotile sperm and other cells for assisted reproduction, but may also remove antioxidants from seminal plasma, resulting in oxidative stress. Therefore, we investigated reactive oxygen species (ROS) concentrations and distribution in semen before and after density gradient centrifugation. We assessed semen volume, sperm concentration, sperm motility, and ROS levels before and after density gradient centrifugation (300 x g for 20 minutes) in 143 semen samples from 118 patients. The ROS removal rate was evaluated in ROS-positive samples and ROS formation rate in ROS-negative samples. Thirty-eight of 143 untreated samples (26.6%) were ROS-positive; sperm motility was significantly lower in these samples than in ROS-negative samples (p < 0.05). After density gradient centrifugation, only seven of the 38 ROS-positive samples (18.42%) exhibited a ROS-positive lower layer (containing motile sperm) with a ROS removal rate of 81.58%, whereas the upper layer was ROS-positive in 24 samples (63.16%). In the ROS-negative group (n = 105), ROS was detected in 19 samples after centrifugation (18.10%, ROS generation rate), of which 18 were ROS-positive only in the upper layer or interface and the other was ROS-positive in both layers. Density gradient centrifugation can separate motile sperm from immotile sperm as well as remove ROS (including newly generated ROS). This data supports the view that density gradient centrifugation can select motile spermatozoa without enhancing oxidative stress. ROS: reactive oxygen species; SOD: superoxide dismutase; GPx: glutathione peroxidase; DNA: deoxyribonucleic acid; DGC: density gradient centrifugation; IUI: intrauterine insemination; IVF: in vitro fertilization; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; EDTA: ethylenediaminetetraacetic acid; HTF: HEPES-buffered human tubal fluid; IMSI: intracytoplasmic morphologically selected sperm injection; SMAS: sperm motility analyzing system; CASA: computer-assisted semen analyzer; WHO: World Health Organization.
Artificial Gravity Research Project
NASA Technical Reports Server (NTRS)
Kamman, Michelle R.; Paloski, William H.
2005-01-01
Protecting the health, safety, and performance of exploration-class mission crews against the physiological deconditioning resulting from long-term weightlessness during transit and long-term hypogravity during surface operations will require effective, multi-system countermeasures. Artificial gravity (AG), which would replace terrestrial gravity with inertial forces generated by rotating the transit vehicle or by a human centrifuge device within the transit vehicle or surface habitat, has long been considered a potential solution. However, despite its attractiveness as an efficient, multi-system countermeasure and its potential for improving the environment and simplifying operational activities (e.g., WCS, galley, etc.), much still needs to be learned regarding the human response to rotating environments before AG can be successfully implemented. This paper will describe our approach for developing and implementing a rigorous AG Research Project to address the key biomedical research questions that must be answered before developing effective AG countermeasure implementation strategies for exploration-class missions. The AG Research Project will be performed at JSC, ARC, extramural academic and government research venues, and international partner facilities maintained by DLR and IMBP. The Project includes three major ground-based human research subprojects that will lead to flight testing of intermittent short-radius AG in ISS crewmembers after 201 0, continuous long-radius AG in CEV crews transiting to and from the Moon, and intermittent short-radius AG plus exercise in lunar habitats. These human ground-based subprojects include: 1) a directed, managed international short-radius project to investigate the multi-system effectiveness of intermittent AG in human subjects deconditioned by bed rest, 2) a directed, managed long-radius project to investigate the capacity of humans to live and work for extended periods in rotating environments, and 3) a focused, investigator-initiated project to investigate system-specific adaptation to and from rotating environments. The AG Research Project also includes two major animal research subprojects: 1) a directed, managed ground-based subproject using rodents and, possibly, sub-human primates, to address mechanistic issues that cannot be studied in humans, to rapidly develop higher sample numbers than can be achieved in the human subprojects, and to establish feasible parameter operating bands to reduce the breadth of the human subprojects, and 2) a flight subproject using rodents to estimate the physiological effects of long term exposure to hypogravity and to investigate the effects of contamination by terrestrial gravity in estimating AG effectiveness. The animal flight subproject would be performed aboard ISS using the CAM module in approximately the 2008-201 1 timeframe. The paper will first present an overview of the key biomedical research questions to be answered. It will then describe the overall approaches to be utilized in developing and implementing the AG Research Project, including definition of the intended scientific research, management and development approaches, identification of roles and responsibilities, risk management, and definition of project deliverables. The primary focus of the paper will be on the first of the three ground-based human research subprojects, since it is the only one currently in development and is scheduled to start active subject investigations in April of 2005.
Dohan Ehrenfest, David M; Pinto, Nelson R; Pereda, Andrea; Jiménez, Paula; Corso, Marco Del; Kang, Byung-Soo; Nally, Mauricio; Lanata, Nicole; Wang, Hom-Lay; Quirynen, Marc
2018-03-01
L-PRF (leukocyte- and platelet-rich fibrin) is one of the four families of platelet concentrates for surgical use and is widely used in oral and maxillofacial regenerative therapies. The first objective of this article was to evaluate the mechanical vibrations appearing during centrifugation in four models of commercially available table-top centrifuges used to produce L-PRF and the impact of the centrifuge characteristics on the cell and fibrin architecture of a L-PRF clot and membrane. The second objective of this article was to evaluate how changing some parameters of the L-PRF protocol may influence its biological signature, independently from the characteristics of the centrifuge. In the first part, four different commercially available centrifuges were used to produce L-PRF, following the original L-PRF production method (glass-coated plastic tubes, 400 g force, 12 minutes). The tested systems were the original L-PRF centrifuge (Intra-Spin, Intra-Lock, the only CE and FDA cleared system for the preparation of L-PRF) and three other laboratory centrifuges (not CE/FDA cleared for L-PRF): A-PRF 12 (Advanced PRF, Process), LW-UPD8 (LW Scientific) and Salvin 1310 (Salvin Dental). Each centrifuge was opened for inspection, two accelerometers were installed (one radial, one vertical), and data were collected with a spectrum analyzer in two configurations (full-load or half load). All clots and membranes were collected into a sterile surgical box (Xpression kit, Intra-Lock). The exact macroscopic (weights, sizes) and microscopic (photonic and scanning electron microscopy SEM) characteristics of the L-PRF produced with these four different machines were evaluated. In the second part, venous blood was taken in two groups, respectively, Intra-Spin 9 ml glass-coated plastic tubes (Intra-Lock) and A-PRF 10 ml glass tubes (Process). Tubes were immediately centrifuged at 2700 rpm (around 400 g) during 12 minutes to produce L-PRF or at 1500 rpm during 14 minutes to produce A-PRF. All centrifugations were done using the original L-PRF centrifuge (Intra-Spin), as recommended by the two manufacturers. Half of the membranes were placed individually in culture media and transferred in a new tube at seven experimental times (up to 7 days). The releases of transforming growth factor β-1 (TGFβ-1), platelet derived growth factor AB (PDGF-AB), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2) were quantified using ELISA kits at these seven experimental times. The remaining membranes were used to evaluate the initial quantity of growth factors of the L-PRF and A-PRF membranes, through forcible extraction. Very significant differences in the level of vibrations at each rotational speed were observed between the four tested centrifuges. The original L-PRF centrifuge (Intra-Spin) was by far the most stable machine in all configurations and always remained under the threshold of resonance, unlike the three other tested machines. At the classical speed of production of L-PRF, the level of undesirable vibrations on the original centrifuge was between 4.5 and 6 times lower than with other centrifuges. Intra-Spin showed the lowest temperature of the tubes. A-PRF and Salvin were both associated with a significant increase in temperature in the tube. Intra-Spin produced the heaviest clot and quantity of exudate among the four techniques. A-PRF and LW produced much lighter, shorter and narrower clots and membranes than the two other centrifuges. Light microscopy analysis showed relatively similar features for all L-PRF types (concentration of cell bodies in the first half). However, SEM illustrated considerable differences between samples. The original Intra-Spin L-PRF showed a strongly polymerized thick fibrin matrix and all cells appeared alive with a normal shape, including the textured surface aspect of activated lymphocytes. The A-PRF, Salvin and LW PRF-like membranes presented a lightly polymerized slim fibrin gel and most of the visible cell bodies appeared destroyed (squashed or shrunk). In the second part of this study, the slow release of the three tested growth factors from original L-PRF membranes was significantly stronger (more than twice stronger, p<0.001) at all experimental times than the release from A-PRF membranes. No trace of BMP2 could be detected in the A-PRF. A slow release of BMP2 was detected during at least 7 days in the original L-PRF. Moreover, the original L-PRF clots and membranes (produced with 9 mL blood) were always significantly larger than the A-PRF (produced with 10 mL blood). The A-PRF membranes dissolved in vitro after less than 3 days, while the L-PRF membrane remained in good shape during at least 7 days. Each centrifuge has its clear own profile of vibrations depending on the rotational speed, and the centrifuge characteristics are directly impacting the architecture and cell content of a L-PRF clot. This result may reveal a considerable flaw in all the PRP/PRF literature, as this parameter was never considered. The original L-PRF clot (Intra-Spin) presented very specific characteristics, which appeared distorted when using centrifuges with a higher vibration level. A-PRF, LW and Salvin centrifuges produced PRF-like materials with a damaged and almost destroyed cell population through the standard protocol, and it is therefore impossible to classify these products in the L-PRF family. Moreover, when using the same centrifuge, the original L-PRF protocol allowed producing larger clots/membranes and a more intense release of growth factors (biological signature at least twice stronger) than the modified A-PRF protocol. Both protocols are therefore significantly different, and the clinical and experimental results from the original L-PRF shall not be extrapolated to the A-PRF. Finally, the comparison between the total released amounts and the initial content of the membrane (after forcible extraction) highlighted that the leukocytes living in the fibrin matrix are involved in the production of significant amounts of growth factors. The centrifuge characteristics and centrifugation protocols impact significantly and dramatically the cells, growth factors and fibrin architecture of L-PRF.
Rotating stall simulation for axial and centrifugal compressors
NASA Astrophysics Data System (ADS)
Halawa, Taher; Gadala, Mohamed S.
2017-05-01
This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.
Increased mitogenic response in lymphocytes from chronically centrifuged mice
NASA Technical Reports Server (NTRS)
Mueller, Otfried; Hunzinger, E.; Cogoli, Augusto; Bechler, B.; Lee, J.; Moore, J.; Duke, J.
1990-01-01
The effects upon the mitogenic response of splenic lymphocytes when exposing mice to prolonged hypergravity conditions (3.5 G for 1 year) were studied. Cultures of splenic lymphocytes isolated from both centrifuged and control (1 G) animals were stimulated with Concanavalin A and the response measured using both morphological and biochemical means. Lymphocytes obtained from centrifuged mice exhibited much higher activation rates (as measured by the incorporation of H-3 thymidine) and larger cell aggregates consisting of more lymphoblasts and mitotic figures than those observed in non centrifuged control animals. Isolated splenic lymphocytes thus appear to have been conditioned by hypergravity state.
Centrifugal Sieve for Gravity-Level-Independent Size Segregation of Granular Materials
NASA Technical Reports Server (NTRS)
Walton, Otis R.; Dreyer, Christopher; Riedel, Edward
2013-01-01
Conventional size segregation or screening in batch mode, using stacked vibrated screens, is often a time-consuming process. Utilization of centrifugal force instead of gravity as the primary body force can significantly shorten the time to segregate feedstock into a set of different-sized fractions. Likewise, under reduced gravity or microgravity, a centrifugal sieve system would function as well as it does terrestrially. When vibratory and mechanical blade sieving screens designed for terrestrial conditions were tested under lunar gravity conditions, they did not function well. The centrifugal sieving design of this technology overcomes the issues that prevented sieves designed for terrestrial conditions from functioning under reduced gravity. These sieves feature a rotating outer (cylindrical or conical) screen wall, rotating fast enough for the centrifugal forces near the wall to hold granular material against the rotating screen. Conventional centrifugal sieves have a stationary screen and rapidly rotating blades that shear the granular solid near the stationary screen, and effect the sieving process assisted by the airflow inside the unit. The centrifugal sieves of this new design may (or may not) have an inner blade or blades, moving relative to the rotating wall screen. Some continuous flow embodiments would have no inner auger or blades, but achieve axial motion through vibration. In all cases, the shearing action is gentler than conventional centrifugal sieves, which have very high velocity differences between the stationary outer screen and the rapidly rotating blades. The new design does not depend on airflow in the sieving unit, so it will function just as well in vacuum as in air. One advantage of the innovation for batch sieving is that a batch-mode centrifugal sieve may accomplish the same sieving operation in much less time than a conventional stacked set of vibrated screens (which utilize gravity as the primary driving force for size separation). In continuous mode, the centrifugal sieves can provide steady streams of fine and coarse material separated from a mixed feedstock flow stream. The centrifugal sieves can be scaled to any desired size and/or mass flow rate. Thus, they could be made in sizes suitable for small robotic exploratory missions, or for semi-permanent processing of regolith for extraction of volatiles of minerals. An advantage of the continuous-mode system is that it can be made with absolutely no gravity flow components for feeding material into, or for extracting the separated size streams from, the centrifugal sieve. Thus, the system is capable of functioning in a true microgravity environment. Another advantage of the continuous-mode system is that some embodiments of the innovation have no internal blades or vanes, and thus, can be designed to handle a very wide range of feedstock sizes, including occasional very large oversized pieces, without jamming or seizing up.
Effect of Centrifuge Temperature on Routine Coagulation Tests.
Yazar, Hayrullah; Özdemir, Fatma; Köse, Elif
2018-01-01
This study investigated the effects of cooled and standard centrifuges on the results of coagulation tests to examine the effects of centrifugation temperature. Equal-volume blood samples from each patient were collected at the same time intervals and subjected to standard (25°C) and cooled centrifugation (2-4°C). Subsequently, the prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, and D-dimer values were determined in runs with the same lot numbers in the same coagulation device using the Dia-PT R (PT and INR), Dia-PTT-liquid (aPTT), Dia-FIB (fibrinogen), and Dia-D-dimer kits, respectively. The study enrolled 771 participants. The PT was significantly (p < 0.018) higher in participants on anticoagulant therapy. The respective median values of the test parameters determined using the standard and cooled centrifuges were as follows: PT 10.30 versus 10.50 s; PT (INR) 1.04 versus 1.09 s; APTT 28.90 versus 29.40 s; fibrinogen 321.5 versus 322.1 mg/dL; and D-dimer 179.5 versus 168.7 µg FEU/mL. There were significant differences (p < 0.001) in the parameters between the values obtained with the standard and cooled centrifuges. Centrifuge temperature can have a significant effect on the results of coagulation tests. However, broad and specific disease-based studies are needed. © 2018 S. Karger AG, Basel.
Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S
2011-07-15
Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.
Sédille-Mostafaie, Nazanin; Engler, Hanna; Lutz, Susanne; Korte, Wolfgang
2013-06-01
Laboratories today face increasing pressure to automate operations due to increasing workloads and the need to reduce expenditure. Few studies to date have focussed on the laboratory automation of preanalytical coagulation specimen processing. In the present study, we examined whether a clinical chemistry automation protocol meets the preanalytical requirements for the analyses of coagulation. During the implementation of laboratory automation, we began to operate a pre- and postanalytical automation system. The preanalytical unit processes blood specimens for chemistry, immunology and coagulation by automated specimen processing. As the production of platelet-poor plasma is highly dependent on optimal centrifugation, we examined specimen handling under different centrifugation conditions in order to produce optimal platelet deficient plasma specimens. To this end, manually processed models centrifuged at 1500 g for 5 and 20 min were compared to an automated centrifugation model at 3000 g for 7 min. For analytical assays that are performed frequently enough to be targets for full automation, Passing-Bablok regression analysis showed close agreement between different centrifugation methods, with a correlation coefficient between 0.98 and 0.99 and a bias between -5% and +6%. For seldom performed assays that do not mandate full automation, the Passing-Bablok regression analysis showed acceptable to poor agreement between different centrifugation methods. A full automation solution is suitable and can be recommended for frequent haemostasis testing.
New methods and media for the centrifugation of honey bee (Hymenoptera: Apidae) drone semen.
Wegener, Jakob; May, Tanja; Kamp, Günter; Bienefeld, Kaspar
2014-02-01
Centrifugation of Apis mellifera L. drone semen is a necessary step in the homogenization of semen pools for the enlargement of the effective breeding population, as well as in the collection of semen by the so-called washing technique. It is also of interest for the removal of cryoprotectants after cryopreservation. The adoption of methods involving semen centrifugation has been hampered by their damaging effect to sperm. Here, we tested four new diluents as well as three additives (catalase, hen egg yolk, and a protease inhibitor), using sperm motility and dual fluorescent staining as indicators of semen quality. Three of the new diluents significantly reduced motility losses after centrifugation, as compared with the literature standard. Values of motility and propidium iodide negativity obtained with two of these diluents were not different from those measured with untreated semen. The least damaging diluent, a citrate-HEPES buffer containing trehalose, was then tested in an insemination experiment with centrifuged semen. Most queens receiving this semen produced normal brood, and the number of sperm reaching the storage organ of the queen was not significantly different from that in queens receiving untreated semen. These results could improve the acceptance of techniques involving the centrifugation of drone semen. The diluent used in the insemination experiment could also serve as semen extender for applications not involving centrifugation.
Monte Carlo approaches to sampling forested tracts with lines or points
Harry T. Valentine; Jeffrey H. Gove; Timothy G. Gregoire
2001-01-01
Several line- and point-based sampling methods can be employed to estimate the aggregate dimensions of trees standing on a forested tract or pieces of coarse woody debris lying on the forest floor. Line methods include line intersect sampling, horizontal line sampling, and transect relascope sampling; point methods include variable- and fixed-radius plot sampling, and...
Boundary pint corrections for variable radius plots - simulation results
Margaret Penner; Sam Otukol
2000-01-01
The boundary plot problem is encountered when a forest inventory plot includes two or more forest conditions. Depending on the correction method used, the resulting estimates can be biased. The various correction alternatives are reviewed. No correction, area correction, half sweep, and toss-back methods are evaluated using simulation on an actual data set. Based on...
Bond of Reinforcemen Under Controlled Confinement.
1991-06-01
motivated the design of a new testing device and specimen that allow for the control and measurement of the four variables identified. STEEL-CONCRETE... Ps4 At r = r, the internal radius of the concrete cylinder increases by: Arc = rs(a t - ic Or)/Ec (5) r r(1 - Vc) + r2(1 -[) -2 rc P/pp] (6) --2
The forest resources of Maryland
Douglas S. Powell; Neal P. Kingsley
1980-01-01
The findings in this statistical and analytical report of the third forest survey of Maryland, completed in 1976, are based on remeasured 1/5 acre plots and both remeasured and new 10-point variable radius plots. The present status and trends in forest-land area, timber volume, and annual growth and removals are discussed. Timber products output by forest industries,...
Forest Statistics for Ohio--1979
Donald F. Dennis; Thomas W. Birch; Thomas W. Birch
1981-01-01
A statistical report on the third forest survey of Ohio conducted in 1978 and 1979. Statistical findings are based on data from remeasured and new 10-point variable radius plots. The current status of forest-land area, timber volume, and annual growth and removals is presented. Timber products output by timber industries, based on a 1978 updated canvass of...
Forest statistics for New York--1980
Thomas J., Jr. Considine; Thomas S. Frieswyk; Thomas S. Frieswyk
1982-01-01
A statistical report on the third forest survey of New York conducted in 1978 and 1979. Statistical findings are based on data from remeasured and new 10-point variable-radius plots. The current status of forest-land area, timber volume, and annual growth and removals is presented. Timber products output by timber industries, based on a 1979 updated canvass of...
Hahs, Charles A.; Burbage, Charles H.
1984-01-01
The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.
Hahs, C.A.; Rurbage, C.H.
1982-03-17
The invention is pneumatically operated valve assembly for simulatenously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two on the lines so closed. The value assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.