Sample records for variable resolution model

  1. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    NASA Astrophysics Data System (ADS)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  2. A variable resolution nonhydrostatic global atmospheric semi-implicit semi-Lagrangian model

    NASA Astrophysics Data System (ADS)

    Pouliot, George Antoine

    2000-10-01

    The objective of this project is to develop a variable-resolution finite difference adiabatic global nonhydrostatic semi-implicit semi-Lagrangian (SISL) model based on the fully compressible nonhydrostatic atmospheric equations. To achieve this goal, a three-dimensional variable resolution dynamical core was developed and tested. The main characteristics of the dynamical core can be summarized as follows: Spherical coordinates were used in a global domain. A hydrostatic/nonhydrostatic switch was incorporated into the dynamical equations to use the fully compressible atmospheric equations. A generalized horizontal variable resolution grid was developed and incorporated into the model. For a variable resolution grid, in contrast to a uniform resolution grid, the order of accuracy of finite difference approximations is formally lost but remains close to the order of accuracy associated with the uniform resolution grid provided the grid stretching is not too significant. The SISL numerical scheme was implemented for the fully compressible set of equations. In addition, the generalized minimum residual (GMRES) method with restart and preconditioner was used to solve the three-dimensional elliptic equation derived from the discretized system of equations. The three-dimensional momentum equation was integrated in vector-form to incorporate the metric terms in the calculations of the trajectories. Using global re-analysis data for a specific test case, the model was compared to similar SISL models previously developed. Reasonable agreement between the model and the other independently developed models was obtained. The Held-Suarez test for dynamical cores was used for a long integration and the model was successfully integrated for up to 1200 days. Idealized topography was used to test the variable resolution component of the model. Nonhydrostatic effects were simulated at grid spacings of 400 meters with idealized topography and uniform flow. Using a high-resolution topographic data set and the variable resolution grid, sets of experiments with increasing resolution were performed over specific regions of interest. Using realistic initial conditions derived from re-analysis fields, nonhydrostatic effects were significant for grid spacings on the order of 0.1 degrees with orographic forcing. If the model code was adapted for use in a message passing interface (MPI) on a parallel supercomputer today, it was estimated that a global grid spacing of 0.1 degrees would be achievable for a global model. In this case, nonhydrostatic effects would be significant for most areas. A variable resolution grid in a global model provides a unified and flexible approach to many climate and numerical weather prediction problems. The ability to configure the model from very fine to very coarse resolutions allows for the simulation of atmospheric phenomena at different scales using the same code. We have developed a dynamical core illustrating the feasibility of using a variable resolution in a global model.

  3. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability

    NASA Astrophysics Data System (ADS)

    Rackow, T.; Goessling, H. F.; Jung, T.; Sidorenko, D.; Semmler, T.; Barbi, D.; Handorf, D.

    2018-04-01

    This study forms part II of two papers describing ECHAM6-FESOM, a newly established global climate model with a unique multi-resolution sea ice-ocean component. While part I deals with the model description and the mean climate state, here we examine the internal climate variability of the model under constant present-day (1990) conditions. We (1) assess the internal variations in the model in terms of objective variability performance indices, (2) analyze variations in global mean surface temperature and put them in context to variations in the observed record, with particular emphasis on the recent warming slowdown, (3) analyze and validate the most common atmospheric and oceanic variability patterns, (4) diagnose the potential predictability of various climate indices, and (5) put the multi-resolution approach to the test by comparing two setups that differ only in oceanic resolution in the equatorial belt, where one ocean mesh keeps the coarse 1° resolution applied in the adjacent open-ocean regions and the other mesh is gradually refined to 0.25°. Objective variability performance indices show that, in the considered setups, ECHAM6-FESOM performs overall favourably compared to five well-established climate models. Internal variations of the global mean surface temperature in the model are consistent with observed fluctuations and suggest that the recent warming slowdown can be explained as a once-in-one-hundred-years event caused by internal climate variability; periods of strong cooling in the model (`hiatus' analogs) are mainly associated with ENSO-related variability and to a lesser degree also to PDO shifts, with the AMO playing a minor role. Common atmospheric and oceanic variability patterns are simulated largely consistent with their real counterparts. Typical deficits also found in other models at similar resolutions remain, in particular too weak non-seasonal variability of SSTs over large parts of the ocean and episodic periods of almost absent deep-water formation in the Labrador Sea, resulting in overestimated North Atlantic SST variability. Concerning the influence of locally (isotropically) increased resolution, the ENSO pattern and index statistics improve significantly with higher resolution around the equator, illustrating the potential of the novel unstructured-mesh method for global climate modeling.

  4. High-resolution regional climate model evaluation using variable-resolution CESM over California

    NASA Astrophysics Data System (ADS)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine-scale processes. This assessment is also relevant for addressing the scale limitation of current RCMs or VRGCMs when next-generation model resolution increases to ~10km and beyond.

  5. Arctic storms simulated in atmospheric general circulation models under uniform high, uniform low, and variable resolutions

    NASA Astrophysics Data System (ADS)

    Roesler, E. L.; Bosler, P. A.; Taylor, M.

    2016-12-01

    The impact of strong extratropical storms on coastal communities is large, and the extent to which storms will change with a warming Arctic is unknown. Understanding storms in reanalysis and in climate models is important for future predictions. We know that the number of detected Arctic storms in reanalysis is sensitive to grid resolution. To understand Arctic storm sensitivity to resolution in climate models, we describe simulations designed to identify and compare Arctic storms at uniform low resolution (1 degree), at uniform high resolution (1/8 degree), and at variable resolution (1 degree to 1/8 degree). High-resolution simulations resolve more fine-scale structure and extremes, such as storms, in the atmosphere than a uniform low-resolution simulation. However, the computational cost of running a globally uniform high-resolution simulation is often prohibitive. The variable resolution tool in atmospheric general circulation models permits regional high-resolution solutions at a fraction of the computational cost. The storms are identified using the open-source search algorithm, Stride Search. The uniform high-resolution simulation has over 50% more storms than the uniform low-resolution and over 25% more storms than the variable resolution simulations. Storm statistics from each of the simulations is presented and compared with reanalysis. We propose variable resolution as a cost-effective means of investigating physics/dynamics coupling in the Arctic environment. Future work will include comparisons with observed storms to investigate tuning parameters for high resolution models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7402 A

  6. A downscaling scheme for atmospheric variables to drive soil-vegetation-atmosphere transfer models

    NASA Astrophysics Data System (ADS)

    Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C.

    2010-09-01

    For driving soil-vegetation-transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called `deterministic' part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.

  7. Analyzing and leveraging self-similarity for variable resolution atmospheric models

    NASA Astrophysics Data System (ADS)

    O'Brien, Travis; Collins, William

    2015-04-01

    Variable resolution modeling techniques are rapidly becoming a popular strategy for achieving high resolution in a global atmospheric models without the computational cost of global high resolution. However, recent studies have demonstrated a variety of resolution-dependent, and seemingly artificial, features. We argue that the scaling properties of the atmosphere are key to understanding how the statistics of an atmospheric model should change with resolution. We provide two such examples. In the first example we show that the scaling properties of the cloud number distribution define how the ratio of resolved to unresolved clouds should increase with resolution. We show that the loss of resolved clouds, in the high resolution region of variable resolution simulations, with the Community Atmosphere Model version 4 (CAM4) is an artifact of the model's treatment of condensed water (this artifact is significantly reduced in CAM5). In the second example we show that the scaling properties of the horizontal velocity field, combined with the incompressibility assumption, necessarily result in an intensification of vertical mass flux as resolution increases. We show that such an increase is present in a wide variety of models, including CAM and the regional climate models of the ENSEMBLES intercomparision. We present theoretical arguments linking this increase to the intensification of precipitation with increasing resolution.

  8. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas

    2018-04-01

    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  9. A Study on the Effects of Spatial Scale on Snow Process in Hyper-Resolution Hydrological Modelling over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.

    2017-12-01

    Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.

  10. Effects of model spatial resolution on ecohydrologic predictions and their sensitivity to inter-annual climate variability

    Treesearch

    Kyongho Son; Christina Tague; Carolyn Hunsaker

    2016-01-01

    The effect of fine-scale topographic variability on model estimates of ecohydrologic responses to climate variability in California’s Sierra Nevada watersheds has not been adequately quantified and may be important for supporting reliable climate-impact assessments. This study tested the effect of digital elevation model (DEM) resolution on model accuracy and estimates...

  11. HPC Aspects of Variable-Resolution Global Climate Modeling using a Multi-scale Convection Parameterization

    EPA Science Inventory

    High performance computing (HPC) requirements for the new generation variable grid resolution (VGR) global climate models differ from that of traditional global models. A VGR global model with 15 km grids over the CONUS stretching to 60 km grids elsewhere will have about ~2.5 tim...

  12. Two-Point Turbulence Closure Applied to Variable Resolution Modeling

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.; Rubinstein, Robert

    2011-01-01

    Variable resolution methods have become frontline CFD tools, but in order to take full advantage of this promising new technology, more formal theoretical development is desirable. Two general classes of variable resolution methods can be identified: hybrid or zonal methods in which RANS and LES models are solved in different flow regions, and bridging or seamless models which interpolate smoothly between RANS and LES. This paper considers the formulation of bridging methods using methods of two-point closure theory. The fundamental problem is to derive a subgrid two-equation model. We compare and reconcile two different approaches to this goal: the Partially Integrated Transport Model, and the Partially Averaged Navier-Stokes method.

  13. Evaluation of a Mesoscale Convective System in Variable-Resolution CESM

    NASA Astrophysics Data System (ADS)

    Payne, A. E.; Jablonowski, C.

    2017-12-01

    Warm season precipitation over the Southern Great Plains (SGP) follows a well observed diurnal pattern of variability, peaking at night-time, due to the eastward propagation of mesoscale convection systems that develop over the eastern slopes of the Rockies in the late afternoon. While most climate models are unable to adequately capture the organization of convection and characteristic pattern of precipitation over this region, models with high enough resolution to explicitly resolve convection show improvement. However, high resolution simulations are computationally expensive and, in the case of regional climate models, are subject to boundary conditions. Newly developed variable resolution global climate models strike a balance between the benefits of high-resolution regional climate models and the large-scale dynamics of global climate models and low computational cost. Recently developed parameterizations that are insensitive to the model grid scale provide a way to improve model performance. Here, we present an evaluation of the newly available Cloud Layers Unified by Binormals (CLUBB) parameterization scheme in a suite of variable-resolution CESM simulations with resolutions ranging from 110 km to 7 km within a regionally refined region centered over the SGP Atmospheric Radiation Measurement (ARM) site. Simulations utilize the hindcast approach developed by the Department of Energy's Cloud-Associated Parameterizations Testbed (CAPT) for the assessment of climate models. We limit our evaluation to a single mesoscale convective system that passed over the region on May 24, 2008. The effects of grid-resolution on the timing and intensity of precipitation, as well as, on the transition from shallow to deep convection are assessed against ground-based observations from the SGP ARM site, satellite observations and ERA-Interim reanalysis.

  14. Alleviating tropical Atlantic sector biases in the Kiel climate model by enhancing horizontal and vertical atmosphere model resolution: climatology and interannual variability

    NASA Astrophysics Data System (ADS)

    Harlaß, Jan; Latif, Mojib; Park, Wonsun

    2018-04-01

    We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel climate model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the intertropical convergence zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.

  15. Simulation of climatology and Interannual Variability of Spring Persistent Rains by Meteorological Research Institute Model: Impacts of different horizontal resolutions

    NASA Astrophysics Data System (ADS)

    Li, Puxi; Zhou, Tianjun; Zou, Liwei

    2016-04-01

    The authors evaluated the performance of Meteorological Research Institute (MRI) AGCM3.2 models in the simulations of climatology and interannual variability of the Spring Persistent Rains (SPR) over southeastern China. The possible impacts of different horizontal resolutions were also investigated based on the experiments with three different horizontal resolutions (i.e., 120, 60, and 20km). The model could reasonably reproduce the main rainfall center over southeastern China in boreal spring under the three different resolutions. In comparison with 120 simulation, it revealed that 60km and 20km simulations show the superiority in simulating rainfall centers anchored by the Nanling-Wuyi Mountains, but overestimate rainfall intensity. Water vapor budget diagnosis showed that, the 60km and 20km simulations tended to overestimate the water vapor convergence over southeastern China, which leads to wet biases. In the aspect of interannual variability of SPR, the model could reasonably reproduce the anomalous lower-tropospheric anticyclone in the western North Pacific (WNPAC) and positive precipitation anomalies over southeastern China in El Niño decaying spring. Compared with the 120km resolution, the large positive biases are substantially reduced in the mid and high resolution models which evidently improve the simulation of horizontal moisture advection in El Niño decaying spring. We highlight the importance of developing high resolution climate model as it could potentially improve the climatology and interannual variability of SPR.

  16. A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England

    NASA Astrophysics Data System (ADS)

    Komurcu, M.; Huber, M.

    2016-12-01

    Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate change impacts assessments for New England. We present results focusing on future changes in New England extreme events.

  17. On representation of temporal variability in electricity capacity planning models

    DOE PAGES

    Merrick, James H.

    2016-08-23

    This study systematically investigates how to represent intra-annual temporal variability in models of optimum electricity capacity investment. Inappropriate aggregation of temporal resolution can introduce substantial error into model outputs and associated economic insight. The mechanisms underlying the introduction of this error are shown. How many representative periods are needed to fully capture the variability is then investigated. For a sample dataset, a scenario-robust aggregation of hourly (8760) resolution is possible in the order of 10 representative hours when electricity demand is the only source of variability. The inclusion of wind and solar supply variability increases the resolution of the robustmore » aggregation to the order of 1000. A similar scale of expansion is shown for representative days and weeks. These concepts can be applied to any such temporal dataset, providing, at the least, a benchmark that any other aggregation method can aim to emulate. Finally, how prior information about peak pricing hours can potentially reduce resolution further is also discussed.« less

  18. On representation of temporal variability in electricity capacity planning models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrick, James H.

    This study systematically investigates how to represent intra-annual temporal variability in models of optimum electricity capacity investment. Inappropriate aggregation of temporal resolution can introduce substantial error into model outputs and associated economic insight. The mechanisms underlying the introduction of this error are shown. How many representative periods are needed to fully capture the variability is then investigated. For a sample dataset, a scenario-robust aggregation of hourly (8760) resolution is possible in the order of 10 representative hours when electricity demand is the only source of variability. The inclusion of wind and solar supply variability increases the resolution of the robustmore » aggregation to the order of 1000. A similar scale of expansion is shown for representative days and weeks. These concepts can be applied to any such temporal dataset, providing, at the least, a benchmark that any other aggregation method can aim to emulate. Finally, how prior information about peak pricing hours can potentially reduce resolution further is also discussed.« less

  19. High resolution modeling in urban hydrology: comparison between two modeling approaches and their sensitivity to high rainfall variability

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Bompard, Philippe; Schertzer, Daniel

    2015-04-01

    Urban water management is becoming increasingly complex, due to the rapid increase of impervious areas, and the potential effects of climate change. The large amount of water generated in a very short period of time and the limited capacity of sewer systems increase the vulnerability of urban environments to flooding risk and make it necessary to implement specific devices in order to handle the volume of water generated. This complex situation in urban environments makes the use of hydrological models as well as the implementation of more accurate and reliable tools for flow and rainfall measurements essential for a good pluvial network management, the use of decision support tools such as real-time radar forecasting system, the developpement of general public communication and warning systems, and the implementation of management strategy participate on limiting the flood damages. The very high spatial variability characteristic of urban environments makes it necessary to integrate the variability of physical properties and precipitation at fine scales in modeling processes, suggesting a high resolution modeling approach. In this paper we suggest a comparison between two modeling approaches and their sensitivity to small-scale rainfall variability on a 2.15 km2 urban area located in the County of Val-de-Marne (South-East of Paris, France). The first model used in this study is CANOE, which is a semi-distributed model widely used in France by practitioners for urban hydrology and urban water management. Two configurations of this model are be used in this study, the first one integrate 9 sub-catchments with sizes range from (1ha to 76ha), in the second configuration, the spatial resolution of this model has been improved with 45 sub-catchments with sizes range from (1ha to 14ha), the aim is to see how the semi-distributed model resolution affects it sensitivity to rainfall variability. The second model is Multi-Hydro fully distributed model developed at the Ecole des Ponts ParisTech. It is an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. Multi-Hydro has been set up at two resolutions, 10m and 5m. The validation of these two models is performed using 5 rainfall events that occurred between 2010 and 2013. Radar data comes from the Météo-France radar mosaic and the resolution is 1 km in space and 5 min in time. Raingauge and flow measurements data comes from the General Council of Val-de-Marne County. In this validation part, the hydrological responses given by two models and the different configurations are compared to flow measurements. It appears that CANOE gives better results than Multi-Hydro model, especially when using raingauge data. For some events, we noticed that model responses given when using raingauge and radar data are different, suggesting a sign of sensitivity to the spatial variability of rainfall. 10 high-resolution rainfall events are used in the second part to study the sensitivity of each modeling approach to high rainfall variability. Radar data was available at four spatial resolutions (100, 200, 500 and 1000m) and two temporal resolutions (1min and 5min), for each event, two rainfall directions (parallel and perpendicular) are used, meaning that 16 hydrological responses are simulated for each event and the variability within it analyzed. First results suggest that the fully distributed model is more sensitive to high rainfall variability than the semi-distributed one, the increase of both hydrological model spatial resolution improves their sensitivity to rainfall variability. This study highlights some technical challenges facing the high-resolution modeling, especially the difficulty to obtain reliable input data at an acceptable resolution and also the high computation time noticed particularly for the semi-distributed model making it difficult to use it in real time. The authors greatly acknowledge partial financial support from the project RainGain (http://www.raingain.eu) of the EU Interreg program.

  20. Climate simulations and projections with a super-parameterized climate model

    DOE PAGES

    Stan, Cristiana; Xu, Li

    2014-07-01

    The mean climate and its variability are analyzed in a suite of numerical experiments with a fully coupled general circulation model in which subgrid-scale moist convection is explicitly represented through embedded 2D cloud-system resolving models. Control simulations forced by the present day, fixed atmospheric carbon dioxide concentration are conducted using two horizontal resolutions and validated against observations and reanalyses. The mean state simulated by the higher resolution configuration has smaller biases. Climate variability also shows some sensitivity to resolution but not as uniform as in the case of mean state. The interannual and seasonal variability are better represented in themore » simulation at lower resolution whereas the subseasonal variability is more accurate in the higher resolution simulation. The equilibrium climate sensitivity of the model is estimated from a simulation forced by an abrupt quadrupling of the atmospheric carbon dioxide concentration. The equilibrium climate sensitivity temperature of the model is 2.77 °C, and this value is slightly smaller than the mean value (3.37 °C) of contemporary models using conventional representation of cloud processes. As a result, the climate change simulation forced by the representative concentration pathway 8.5 scenario projects an increase in the frequency of severe droughts over most of the North America.« less

  1. Climate SPHINX: High-resolution present-day and future climate simulations with an improved representation of small-scale variability

    NASA Astrophysics Data System (ADS)

    Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Subramanian, Aneesh; Weisheimer, Antje; Christensen, Hannah; Juricke, Stephan; Palmer, Tim

    2016-04-01

    The PRACE Climate SPHINX project investigates the sensitivity of climate simulations to model resolution and stochastic parameterization. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in 30-years climate integrations as a function of model resolution (from 80km up to 16km for the atmosphere). The experiments include more than 70 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), using RCP8.5 CMIP5 forcing. A total amount of 20 million core hours will be used at end of the project (March 2016) and about 150 TBytes of post-processed data will be available to the climate community. Preliminary results show a clear improvement in the representation of climate variability over the Euro-Atlantic following resolution increase. More specifically, the well-known atmospheric blocking negative bias over Europe is definitely resolved. High resolution runs also show improved fidelity in representation of tropical variability - such as the MJO and its propagation - over the low resolution simulations. It is shown that including stochastic parameterization in the low resolution runs help to improve some of the aspects of the MJO propagation further. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).

  2. Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walko, Robert

    2016-11-07

    The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of themore » atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.« less

  3. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new paradigm would represent a revolution in numerical modelling that could be of great benefit to the world.

  4. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  5. Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project.

    NASA Astrophysics Data System (ADS)

    Sperber, K. R.; Palmer, T. N.

    1996-11-01

    The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall variability was also best reproduced. However, for all regions the skill was less than that of the ECMWF model.The relationships of the all-India and Sahel rainfall/SST teleconnections with horizontal resolution, convection scheme closure, and numerics have been evaluated. Models with resolution T42 performed more poorly than lower-resolution models. The higher resolution models were predominantly spectral. At low resolution, spectral versus gridpoint numerics performed with nearly equal verisimilitude. At low resolution, moisture convergence closure was slightly more preferable than other convective closure techniques. At high resolution, the models that used moisture convergence closure performed very poorly, suggesting that moisture convergence may be problematic for models with horizontal resolution T42.

  6. An evaluation of the variable-resolution CESM for modeling California's climate: Evaluation of VR-CESM for Modeling California's Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xingying; Rhoades, Alan M.; Ullrich, Paul A.

    In this paper, the recently developed variable-resolution option within the Community Earth System Model (VR-CESM) is assessed for long-term regional climate modeling of California at 0.25° (~ 28 km) and 0.125° (~ 14 km) horizontal resolutions. The mean climatology of near-surface temperature and precipitation is analyzed and contrasted with reanalysis, gridded observational data sets, and a traditional regional climate model (RCM)—the Weather Research and Forecasting (WRF) model. Statistical metrics for model evaluation and tests for differential significance have been extensively applied. VR-CESM tended to produce a warmer summer (by about 1–3°C) and overestimated overall winter precipitation (about 25%–35%) compared tomore » reference data sets when sea surface temperatures were prescribed. Increasing resolution from 0.25° to 0.125° did not produce a statistically significant improvement in the model results. By comparison, the analogous WRF climatology (constrained laterally and at the sea surface by ERA-Interim reanalysis) was ~1–3°C colder than the reference data sets, underestimated precipitation by ~20%–30% at 27 km resolution, and overestimated precipitation by ~ 65–85% at 9 km. Overall, VR-CESM produced comparable statistical biases to WRF in key climatological quantities. Moreover, this assessment highlights the value of variable-resolution global climate models (VRGCMs) in capturing fine-scale atmospheric processes, projecting future regional climate, and addressing the computational expense of uniform-resolution global climate models.« less

  7. An evaluation of the variable-resolution CESM for modeling California's climate: Evaluation of VR-CESM for Modeling California's Climate

    DOE PAGES

    Huang, Xingying; Rhoades, Alan M.; Ullrich, Paul A.; ...

    2016-03-01

    In this paper, the recently developed variable-resolution option within the Community Earth System Model (VR-CESM) is assessed for long-term regional climate modeling of California at 0.25° (~ 28 km) and 0.125° (~ 14 km) horizontal resolutions. The mean climatology of near-surface temperature and precipitation is analyzed and contrasted with reanalysis, gridded observational data sets, and a traditional regional climate model (RCM)—the Weather Research and Forecasting (WRF) model. Statistical metrics for model evaluation and tests for differential significance have been extensively applied. VR-CESM tended to produce a warmer summer (by about 1–3°C) and overestimated overall winter precipitation (about 25%–35%) compared tomore » reference data sets when sea surface temperatures were prescribed. Increasing resolution from 0.25° to 0.125° did not produce a statistically significant improvement in the model results. By comparison, the analogous WRF climatology (constrained laterally and at the sea surface by ERA-Interim reanalysis) was ~1–3°C colder than the reference data sets, underestimated precipitation by ~20%–30% at 27 km resolution, and overestimated precipitation by ~ 65–85% at 9 km. Overall, VR-CESM produced comparable statistical biases to WRF in key climatological quantities. Moreover, this assessment highlights the value of variable-resolution global climate models (VRGCMs) in capturing fine-scale atmospheric processes, projecting future regional climate, and addressing the computational expense of uniform-resolution global climate models.« less

  8. Application of multi-scale wavelet entropy and multi-resolution Volterra models for climatic downscaling

    NASA Astrophysics Data System (ADS)

    Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, Venkataramana

    2018-01-01

    This study proposes a wavelet-based multi-resolution modeling approach for statistical downscaling of GCM variables to mean monthly precipitation for five locations at Krishna Basin, India. Climatic dataset from NCEP is used for training the proposed models (Jan.'69 to Dec.'94) and are applied to corresponding CanCM4 GCM variables to simulate precipitation for the validation (Jan.'95-Dec.'05) and forecast (Jan.'06-Dec.'35) periods. The observed precipitation data is obtained from the India Meteorological Department (IMD) gridded precipitation product at 0.25 degree spatial resolution. This paper proposes a novel Multi-Scale Wavelet Entropy (MWE) based approach for clustering climatic variables into suitable clusters using k-means methodology. Principal Component Analysis (PCA) is used to obtain the representative Principal Components (PC) explaining 90-95% variance for each cluster. A multi-resolution non-linear approach combining Discrete Wavelet Transform (DWT) and Second Order Volterra (SoV) is used to model the representative PCs to obtain the downscaled precipitation for each downscaling location (W-P-SoV model). The results establish that wavelet-based multi-resolution SoV models perform significantly better compared to the traditional Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) based frameworks. It is observed that the proposed MWE-based clustering and subsequent PCA, helps reduce the dimensionality of the input climatic variables, while capturing more variability compared to stand-alone k-means (no MWE). The proposed models perform better in estimating the number of precipitation events during the non-monsoon periods whereas the models with clustering without MWE over-estimate the rainfall during the dry season.

  9. Impact of Resolution on the Representation of Precipitation Variability Associated With the ITCZ

    NASA Astrophysics Data System (ADS)

    De Benedetti, Marc; Moore, G. W. K.

    2017-12-01

    The Intertropical Convergence Zone (ITCZ) is responsible for most of the weather and climate in equatorial regions along with many tropical-midlatitude interactions. It is therefore important to understand how models represent its structure and variability. Most ITCZ-associated precipitation is convective, making it unclear how horizontal resolution impacts its representation. To assess this, we introduce a novel technique that involves calculation of the precipitation field's decorrelation length scale (DCLS) using model data sets that share a common lineage with horizontal resolutions from 16 to 160 km. All resolutions captured the ITCZ's mean structure; however, imprints of topography, such as Hawaii and sea surface temperature, including the variability associated with upwelling cold water off the coast of South America, are more clearly represented at higher resolutions. The DCLS analysis indicates that there are changes in the spatial variability of the ITCZ's precipitation that are not reflected in its mean structure, thus confirming its utility as a diagnostic.

  10. Simulating the Agulhas system in global ocean models - nesting vs. multi-resolution unstructured meshes

    NASA Astrophysics Data System (ADS)

    Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey

    2018-01-01

    Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.

  11. A Variable Resolution Atmospheric General Circulation Model for a Megasite at the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Dennis, L.; Roesler, E. L.; Guba, O.; Hillman, B. R.; McChesney, M.

    2016-12-01

    The Atmospheric Radiation Measurement (ARM) climate research facility has three siteslocated on the North Slope of Alaska (NSA): Barrrow, Oliktok, and Atqasuk. These sites, incombination with one other at Toolik Lake, have the potential to become a "megasite" whichwould combine observational data and high resolution modeling to produce high resolutiondata products for the climate community. Such a data product requires high resolutionmodeling over the area of the megasite. We present three variable resolution atmosphericgeneral circulation model (AGCM) configurations as potential alternatives to stand-alonehigh-resolution regional models. Each configuration is based on a global cubed-sphere gridwith effective resolution of 1 degree, with a refinement in resolution down to 1/8 degree overan area surrounding the ARM megasite. The three grids vary in the size of the refined areawith 13k, 9k, and 7k elements. SquadGen, NCL, and GIMP are used to create the grids.Grids vary based upon the selection of areas of refinement which capture climate andweather processes that may affect a proposed NSA megasite. A smaller area of highresolution may not fully resolve climate and weather processes before they reach the NSA,however grids with smaller areas of refinement have a significantly reduced computationalcost compared with grids with larger areas of refinement. Optimal size and shape of thearea of refinement for a variable resolution model at the NSA is investigated.

  12. Variable-Resolution Ensemble Climatology Modeling of Sierra Nevada Snowpack within the Community Earth System Model (CESM)

    NASA Astrophysics Data System (ADS)

    Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.; Levy, M.; Taylor, M.

    2014-12-01

    Snowpack is crucial for the western USA, providing around 75% of the total fresh water supply (Cayan et al., 1996) and buffering against seasonal aridity impacts on agricultural, ecosystem, and urban water demands. The resilience of the California water system is largely dependent on natural stores provided by snowpack. This resilience has shown vulnerabilities due to anthropogenic global climate change. Historically, the northern Sierras showed a net decline of 50-75% in snow water equivalent (SWE) while the southern Sierras showed a net accumulation of 30% (Mote et al., 2005). Future trends of SWE highlight that western USA SWE may decline by 40-70% (Pierce and Cayan, 2013), snowfall may decrease by 25-40% (Pierce and Cayan, 2013), and more winter storms may tend towards rain rather than snow (Bales et al., 2006). The volatility of Sierran snowpack presents a need for scientific tools to help water managers and policy makers assess current and future trends. A burgeoning tool to analyze these trends comes in the form of variable-resolution global climate modeling (VRGCM). VRGCMs serve as a bridge between regional and global models and provide added resolution in areas of need, eliminate lateral boundary forcings, provide model runtime speed up, and utilize a common dynamical core, physics scheme and sub-grid scale parameterization package. A cubed-sphere variable-resolution grid with 25 km horizontal resolution over the western USA was developed for use in the Community Atmosphere Model (CAM) within the Community Earth System Model (CESM). A 25-year three-member ensemble climatology (1980-2005) is presented and major snowpack metrics such as SWE, snow depth, snow cover, and two-meter surface temperature are assessed. The ensemble simulation is also compared to observational, reanalysis, and WRF model datasets. The variable-resolution model provides a mechanism for reaching towards non-hydrostatic scales and simulations are currently being developed with refined nests of 12.5km resolution over California.

  13. Final Report: Closeout of the Award NO. DE-FG02-98ER62618 (M.S. Fox-Rabinovitz, P.I.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox-Rabinovitz, M. S.

    The final report describes the study aimed at exploring the variable-resolution stretched-grid (SG) approach to decadal regional climate modeling using advanced numerical techniques. The obtained results have shown that variable-resolution SG-GCMs using stretched grids with fine resolution over the area(s) of interest, is a viable established approach to regional climate modeling. The developed SG-GCMs have been extensively used for regional climate experimentation. The SG-GCM simulations are aimed at studying the U.S. regional climate variability with an emphasis on studying anomalous summer climate events, the U.S. droughts and floods.

  14. Statistical analysis of corn yields responding to climate variability at various spatio-temporal resolutions

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Lin, T.

    2017-12-01

    Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.

  15. Dengue: recent past and future threats

    PubMed Central

    Rogers, David J.

    2015-01-01

    This article explores four key questions about statistical models developed to describe the recent past and future of vector-borne diseases, with special emphasis on dengue: (1) How many variables should be used to make predictions about the future of vector-borne diseases?(2) Is the spatial resolution of a climate dataset an important determinant of model accuracy?(3) Does inclusion of the future distributions of vectors affect predictions of the futures of the diseases they transmit?(4) Which are the key predictor variables involved in determining the distributions of vector-borne diseases in the present and future?Examples are given of dengue models using one, five or 10 meteorological variables and at spatial resolutions of from one-sixth to two degrees. Model accuracy is improved with a greater number of descriptor variables, but is surprisingly unaffected by the spatial resolution of the data. Dengue models with a reduced set of climate variables derived from the HadCM3 global circulation model predictions for the 1980s are improved when risk maps for dengue's two main vectors (Aedes aegypti and Aedes albopictus) are also included as predictor variables; disease and vector models are projected into the future using the global circulation model predictions for the 2020s, 2040s and 2080s. The Garthwaite–Koch corr-max transformation is presented as a novel way of showing the relative contribution of each of the input predictor variables to the map predictions. PMID:25688021

  16. Scales of variability of black carbon plumes and their dependence on resolution of ECHAM6-HAM

    NASA Astrophysics Data System (ADS)

    Weigum, Natalie; Stier, Philip; Schutgens, Nick; Kipling, Zak

    2015-04-01

    Prediction of the aerosol effect on climate depends on the ability of three-dimensional numerical models to accurately estimate aerosol properties. However, a limitation of traditional grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid-boxes, which can lead to discrepancies between observations and aerosol models. The aim of this study is to understand how a global climate model's (GCM) inability to resolve sub-grid scale variability affects simulations of important aerosol features. This problem is addressed by comparing observed black carbon (BC) plume scales from the HIPPO aircraft campaign to those simulated by ECHAM-HAM GCM, and testing how model resolution affects these scales. This study additionally investigates how model resolution affects BC variability in remote and near-source regions. These issues are examined using three different approaches: comparison of observed and simulated along-flight-track plume scales, two-dimensional autocorrelation analysis, and 3-dimensional plume analysis. We find that the degree to which GCMs resolve variability can have a significant impact on the scales of BC plumes, and it is important for models to capture the scales of aerosol plume structures, which account for a large degree of aerosol variability. In this presentation, we will provide further results from the three analysis techniques along with a summary of the implication of these results on future aerosol model development.

  17. Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS-CAM4 variable-resolution simulations

    DOE PAGES

    Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby; ...

    2016-10-22

    Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less

  18. Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS-CAM4 variable-resolution simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, Koichi; Lu, Jian; Leung, L. Ruby

    Impacts of regional grid refinement on large-scale circulations (“upscale effects”) were detected in a previous study that used the Model for Prediction Across Scales-Atmosphere coupled to the physics parameterizations of the Community Atmosphere Model version 4. The strongest upscale effect was identified in the Southern Hemisphere jet during austral winter. This study examines the detailed underlying processes by comparing two simulations at quasi-uniform resolutions of 30 and 120 km to three variable-resolution simulations in which the horizontal grids are regionally refined to 30 km in North America, South America, or Asia from 120 km elsewhere. In all the variable-resolution simulations,more » precipitation increases in convective areas inside the high-resolution domains, as in the reference quasi-uniform high-resolution simulation. With grid refinement encompassing the tropical Americas, the increased condensational heating expands the local divergent circulations (Hadley cell) meridionally such that their descending branch is shifted poleward, which also pushes the baroclinically unstable regions, momentum flux convergence, and the eddy-driven jet poleward. This teleconnection pathway is not found in the reference high-resolution simulation due to a strong resolution sensitivity of cloud radiative forcing that dominates the aforementioned teleconnection signals. The regional refinement over Asia enhances Rossby wave sources and strengthens the upper level southerly flow, both facilitating the cross-equatorial propagation of stationary waves. Evidence indicates that this teleconnection pathway is also found in the reference high-resolution simulation. Lastly, the result underlines the intricate diagnoses needed to understand the upscale effects in global variable-resolution simulations, with implications for science investigations using the computationally efficient modeling framework.« less

  19. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  20. Spatial scaling of net primary productivity using subpixel landcover information

    NASA Astrophysics Data System (ADS)

    Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.

    2008-10-01

    Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.

  1. Spatial Statistical and Modeling Strategy for Inventorying and Monitoring Ecosystem Resources at Multiple Scales and Resolution Levels

    Treesearch

    Robin M. Reich; C. Aguirre-Bravo; M.S. Williams

    2006-01-01

    A statistical strategy for spatial estimation and modeling of natural and environmental resource variables and indicators is presented. This strategy is part of an inventory and monitoring pilot study that is being carried out in the Mexican states of Jalisco and Colima. Fine spatial resolution estimates of key variables and indicators are outputs that will allow the...

  2. Estimating urban ground-level PM10 using MODIS 3km AOD product and meteorological parameters from WRF model

    NASA Astrophysics Data System (ADS)

    Ghotbi, Saba; Sotoudeheian, Saeed; Arhami, Mohammad

    2016-09-01

    Satellite remote sensing products of AOD from MODIS along with appropriate meteorological parameters were used to develop statistical models and estimate ground-level PM10. Most of previous studies obtained meteorological data from synoptic weather stations, with rather sparse spatial distribution, and used it along with 10 km AOD product to develop statistical models, applicable for PM variations in regional scale (resolution of ≥10 km). In the current study, meteorological parameters were simulated with 3 km resolution using WRF model and used along with the rather new 3 km AOD product (launched in 2014). The resulting PM statistical models were assessed for a polluted and largely variable urban area, Tehran, Iran. Despite the critical particulate pollution problem, very few PM studies were conducted in this area. The issue of rather poor direct PM-AOD associations existed, due to different factors such as variations in particles optical properties, in addition to bright background issue for satellite data, as the studied area located in the semi-arid areas of Middle East. Statistical approach of linear mixed effect (LME) was used, and three types of statistical models including single variable LME model (using AOD as independent variable) and multiple variables LME model by using meteorological data from two sources, WRF model and synoptic stations, were examined. Meteorological simulations were performed using a multiscale approach and creating an appropriate physic for the studied region, and the results showed rather good agreements with recordings of the synoptic stations. The single variable LME model was able to explain about 61%-73% of daily PM10 variations, reflecting a rather acceptable performance. Statistical models performance improved through using multivariable LME and incorporating meteorological data as auxiliary variables, particularly by using fine resolution outputs from WRF (R2 = 0.73-0.81). In addition, rather fine resolution for PM estimates was mapped for the studied city, and resulting concentration maps were consistent with PM recordings at the existing stations.

  3. North Atlantic Tropical Cyclones: historical simulations and future changes with the new high-resolution Arpege AGCM.

    NASA Astrophysics Data System (ADS)

    Pilon, R.; Chauvin, F.; Palany, P.; Belmadani, A.

    2017-12-01

    A new version of the variable high-resolution Meteo-France Arpege atmospheric general circulation model (AGCM) has been developed for tropical cyclones (TC) studies, with a focus on the North Atlantic basin, where the model horizontal resolution is 15 km. Ensemble historical AMIP (Atmospheric Model Intercomparison Project)-type simulations (1965-2014) and future projections (2020-2080) under the IPCC (Intergovernmental Panel on Climate Change) representative concentration pathway (RCP) 8.5 scenario have been produced. TC-like vortices tracking algorithm is used to investigate TC activity and variability. TC frequency, genesis, geographical distribution and intensity are examined. Historical simulations are compared to best-track and reanalysis datasets. Model TC frequency is generally realistic but tends to be too high during the rst decade of the historical simulations. Biases appear to originate from both the tracking algorithm and model climatology. Nevertheless, the model is able to simulate extremely well intense TCs corresponding to category 5 hurricanes in the North Atlantic, where grid resolution is highest. Interaction between developing TCs and vertical wind shear is shown to be contributing factor for TC variability. Future changes in TC activity and properties are also discussed.

  4. A Global 3D P-Velocity Model of the Earth’s Crust and Mantle for Improved Event Location -- SALSA3D

    DTIC Science & Technology

    2010-09-01

    incorporates variable resolution in both the geographic and radial dimensions. For our starting model, we use a simplified two layer crustal model derived from... crustal model derived from the Crust 2.0 model over a uniform AK135 mantle. Sufficient damping is used to reduce velocity adjustments so that ray path...upper mantle, and a third tessellation with variable resolution to all crustal layers. The crustal tessellation (not shown) has 2° triangles in oceanic

  5. Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core

    NASA Astrophysics Data System (ADS)

    Tolstykh, Mikhail; Shashkin, Vladimir; Fadeev, Rostislav; Goyman, Gordey

    2017-05-01

    SL-AV (semi-Lagrangian, based on the absolute vorticity equation) is a global hydrostatic atmospheric model. Its latest version, SL-AV20, provides global operational medium-range weather forecast with 20 km resolution over Russia. The lower-resolution configurations of SL-AV20 are being tested for seasonal prediction and climate modeling. The article presents the model dynamical core. Its main features are a vorticity-divergence formulation at the unstaggered grid, high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude-longitude grid with variable resolution in latitude. The accuracy of SL-AV20 numerical solutions using a reduced lat-lon grid and the variable resolution in latitude is tested with two idealized test cases. Accuracy and stability of SL-AV20 in the presence of the orography forcing are tested using the mountain-induced Rossby wave test case. The results of all three tests are in good agreement with other published model solutions. It is shown that the use of the reduced grid does not significantly affect the accuracy up to the 25 % reduction in the number of grid points with respect to the regular grid. Variable resolution in latitude allows us to improve the accuracy of a solution in the region of interest.

  6. The effect of bathymetric filtering on nearshore process model results

    USGS Publications Warehouse

    Plant, N.G.; Edwards, K.L.; Kaihatu, J.M.; Veeramony, J.; Hsu, L.; Holland, K.T.

    2009-01-01

    Nearshore wave and flow model results are shown to exhibit a strong sensitivity to the resolution of the input bathymetry. In this analysis, bathymetric resolution was varied by applying smoothing filters to high-resolution survey data to produce a number of bathymetric grid surfaces. We demonstrate that the sensitivity of model-predicted wave height and flow to variations in bathymetric resolution had different characteristics. Wave height predictions were most sensitive to resolution of cross-shore variability associated with the structure of nearshore sandbars. Flow predictions were most sensitive to the resolution of intermediate scale alongshore variability associated with the prominent sandbar rhythmicity. Flow sensitivity increased in cases where a sandbar was closer to shore and shallower. Perhaps the most surprising implication of these results is that the interpolation and smoothing of bathymetric data could be optimized differently for the wave and flow models. We show that errors between observed and modeled flow and wave heights are well predicted by comparing model simulation results using progressively filtered bathymetry to results from the highest resolution simulation. The damage done by over smoothing or inadequate sampling can therefore be estimated using model simulations. We conclude that the ability to quantify prediction errors will be useful for supporting future data assimilation efforts that require this information.

  7. Sharpening method of satellite thermal image based on the geographical statistical model

    NASA Astrophysics Data System (ADS)

    Qi, Pengcheng; Hu, Shixiong; Zhang, Haijun; Guo, Guangmeng

    2016-04-01

    To improve the effectiveness of thermal sharpening in mountainous regions, paying more attention to the laws of land surface energy balance, a thermal sharpening method based on the geographical statistical model (GSM) is proposed. Explanatory variables were selected from the processes of land surface energy budget and thermal infrared electromagnetic radiation transmission, then high spatial resolution (57 m) raster layers were generated for these variables through spatially simulating or using other raster data as proxies. Based on this, the local adaptation statistical relationship between brightness temperature (BT) and the explanatory variables, i.e., the GSM, was built at 1026-m resolution using the method of multivariate adaptive regression splines. Finally, the GSM was applied to the high-resolution (57-m) explanatory variables; thus, the high-resolution (57-m) BT image was obtained. This method produced a sharpening result with low error and good visual effect. The method can avoid the blind choice of explanatory variables and remove the dependence on synchronous imagery at visible and near-infrared bands. The influences of the explanatory variable combination, sampling method, and the residual error correction on sharpening results were analyzed deliberately, and their influence mechanisms are reported herein.

  8. Design and testing of a novel multi-stroke micropositioning system with variable resolutions.

    PubMed

    Xu, Qingsong

    2014-02-01

    Multi-stroke stages are demanded in micro-/nanopositioning applications which require smaller and larger motion strokes with fine and coarse resolutions, respectively. This paper presents the conceptual design of a novel multi-stroke, multi-resolution micropositioning stage driven by a single actuator for each working axis. It eliminates the issue of the interference among different drives, which resides in conventional multi-actuation stages. The stage is devised based on a fully compliant variable stiffness mechanism, which exhibits unequal stiffnesses in different strokes. Resistive strain sensors are employed to offer variable position resolutions in the different strokes. To quantify the design of the motion strokes and coarse/fine resolution ratio, analytical models are established. These models are verified through finite-element analysis simulations. A proof-of-concept prototype XY stage is designed, fabricated, and tested to demonstrate the feasibility of the presented ideas. Experimental results of static and dynamic testing validate the effectiveness of the proposed design.

  9. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

    NASA Astrophysics Data System (ADS)

    Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.

    2018-01-01

    We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.

  10. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    NASA Astrophysics Data System (ADS)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2014-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  11. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    NASA Astrophysics Data System (ADS)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2013-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using NCEP/NCAR re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally-refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  12. What model resolution is required in climatological downscaling over complex terrain?

    NASA Astrophysics Data System (ADS)

    El-Samra, Renalda; Bou-Zeid, Elie; El-Fadel, Mutasem

    2018-05-01

    This study presents results from the Weather Research and Forecasting (WRF) model applied for climatological downscaling simulations over highly complex terrain along the Eastern Mediterranean. We sequentially downscale general circulation model results, for a mild and wet year (2003) and a hot and dry year (2010), to three local horizontal resolutions of 9, 3 and 1 km. Simulated near-surface hydrometeorological variables are compared at different time scales against data from an observational network over the study area comprising rain gauges, anemometers, and thermometers. The overall performance of WRF at 1 and 3 km horizontal resolution was satisfactory, with significant improvement over the 9 km downscaling simulation. The total yearly precipitation from WRF's 1 km and 3 km domains exhibited < 10% bias with respect to observational data. The errors in minimum and maximum temperatures were reduced by the downscaling, along with a high-quality delineation of temperature variability and extremes for both the 1 and 3 km resolution runs. Wind speeds, on the other hand, are generally overestimated for all model resolutions, in comparison with observational data, particularly on the coast (up to 50%) compared to inland stations (up to 40%). The findings therefore indicate that a 3 km resolution is sufficient for the downscaling, especially that it would allow more years and scenarios to be investigated compared to the higher 1 km resolution at the same computational effort. In addition, the results provide a quantitative measure of the potential errors for various hydrometeorological variables.

  13. Simulation of Anomalous Regional Climate Events with a Variable Resolution Stretched Grid GCM

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.

    1999-01-01

    The stretched-grid approach provides an efficient down-scaling and consistent interactions between global and regional scales due to using one variable-resolution model for integrations. It is a workable alternative to the widely used nested-grid approach introduced over a decade ago as a pioneering step in regional climate modeling. A variable-resolution General Circulation Model (GCM) employing a stretched grid, with enhanced resolution over the US as the area of interest, is used for simulating two anomalous regional climate events, the US summer drought of 1988 and flood of 1993. The special mode of integration using a stretched-grid GCM and data assimilation system is developed that allows for imitating the nested-grid framework. The mode is useful for inter-comparison purposes and for underlining the differences between these two approaches. The 1988 and 1993 integrations are performed for the two month period starting from mid May. Regional resolutions used in most of the experiments is 60 km. The major goal and the result of the study is obtaining the efficient down-scaling over the area of interest. The monthly mean prognostic regional fields for the stretched-grid integrations are remarkably close to those of the verifying analyses. Simulated precipitation patterns are successfully verified against gauge precipitation observations. The impact of finer 40 km regional resolution is investigated for the 1993 integration and an example of recovering subregional precipitation is presented. The obtained results show that the global variable-resolution stretched-grid approach is a viable candidate for regional and subregional climate studies and applications.

  14. Efficient Approaches for Propagating Hydrologic Forcing Uncertainty: High-Resolution Applications Over the Western United States

    NASA Astrophysics Data System (ADS)

    Hobbs, J.; Turmon, M.; David, C. H.; Reager, J. T., II; Famiglietti, J. S.

    2017-12-01

    NASA's Western States Water Mission (WSWM) combines remote sensing of the terrestrial water cycle with hydrological models to provide high-resolution state estimates for multiple variables. The effort includes both land surface and river routing models that are subject to several sources of uncertainty, including errors in the model forcing and model structural uncertainty. Computational and storage constraints prohibit extensive ensemble simulations, so this work outlines efficient but flexible approaches for estimating and reporting uncertainty. Calibrated by remote sensing and in situ data where available, we illustrate the application of these techniques in producing state estimates with associated uncertainties at kilometer-scale resolution for key variables such as soil moisture, groundwater, and streamflow.

  15. PBSM3D: A finite volume, scalar-transport blowing snow model for use with variable resolution meshes

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Wayand, N. E.; Pomeroy, J. W.; Wheater, H. S.; Spiteri, R. J.

    2017-12-01

    Blowing snow redistribution results in heterogeneous snowcovers that are ubiquitous in cold, windswept environments. Capturing this spatial and temporal variability is important for melt and runoff simulations. Point scale blowing snow transport models are difficult to apply in fully distributed hydrological models due to landscape heterogeneity and complex wind fields. Many existing distributed snow transport models have empirical wind flow and/or simplified wind direction algorithms that perform poorly in calculating snow redistribution where there are divergent wind flows, sharp topography, and over large spatial extents. Herein, a steady-state scalar transport model is discretized using the finite volume method (FVM), using parameterizations from the Prairie Blowing Snow Model (PBSM). PBSM has been applied in hydrological response units and grids to prairie, arctic, glacier, and alpine terrain and shows a good capability to represent snow redistribution over complex terrain. The FVM discretization takes advantage of the variable resolution mesh in the Canadian Hydrological Model (CHM) to ensure efficient calculations over small and large spatial extents. Variable resolution unstructured meshes preserve surface heterogeneity but result in fewer computational elements versus high-resolution structured (raster) grids. Snowpack, soil moisture, and streamflow observations were used to evaluate CHM-modelled outputs in a sub-arctic and an alpine basin. Newly developed remotely sensed snowcover indices allowed for validation over large basins. CHM simulations of snow hydrology were improved by inclusion of the blowing snow model. The results demonstrate the key role of snow transport processes in creating pre-melt snowcover heterogeneity and therefore governing post-melt soil moisture and runoff generation dynamics.

  16. Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model

    USGS Publications Warehouse

    Ganju, Neil K.; Lentz, Steven J.; Kirincich, Anthony R.; Farrar, J. Thomas

    2011-01-01

    Inner-shelf circulation is governed by the interaction between tides, baroclinic forcing, winds, waves, and frictional losses; the mean circulation ultimately governs exchange between the coast and ocean. In some cases, oscillatory tidal currents interact with bathymetric features to generate a tidally rectified flow. Recent observational and modeling efforts in an overlapping domain centered on the Martha's Vineyard Coastal Observatory (MVCO) provided an opportunity to investigate the spatial and temporal complexity of circulation on the inner shelf. ADCP and surface radar observations revealed a mean circulation pattern that was highly variable in the alongshore and cross-shore directions. Nested modeling incrementally improved representation of the mean circulation as grid resolution increased and indicated tidal rectification as the generation mechanism of a counter-clockwise gyre near the MVCO. The loss of model skill with decreasing resolution is attributed to insufficient representation of the bathymetric gradients (Δh/h), which is important for representing nonlinear interactions between currents and bathymetry. The modeled momentum balance was characterized by large spatial variability of the pressure gradient and horizontal advection terms over short distances, suggesting that observed inner-shelf momentum balances may be confounded. Given the available observational and modeling data, this work defines the spatially variable mean circulation and its formation mechanism—tidal rectification—and illustrates the importance of model resolution for resolving circulation and constituent exchange near the coast. The results of this study have implications for future observational and modeling studies near the MVCO and other inner-shelf locations with alongshore bathymetric variability.

  17. Internal variability of a dynamically downscaled climate over North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Bessac, Julie; Kotamarthi, Rao

    This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 km and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemblemore » during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late 21st century. However, the IV is larger than the projected changes in precipitation for the mid- and late 21st century.« less

  18. Internal variability of a dynamically downscaled climate over North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Bessac, Julie; Kotamarthi, Rao

    This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble duringmore » the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.« less

  19. Internal variability of a dynamically downscaled climate over North America

    NASA Astrophysics Data System (ADS)

    Wang, Jiali; Bessac, Julie; Kotamarthi, Rao; Constantinescu, Emil; Drewniak, Beth

    2018-06-01

    This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.

  20. Internal variability of a dynamically downscaled climate over North America

    NASA Astrophysics Data System (ADS)

    Wang, Jiali; Bessac, Julie; Kotamarthi, Rao; Constantinescu, Emil; Drewniak, Beth

    2017-09-01

    This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.

  1. Sahra integrated modeling approach to address water resources management in semi-arid river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, E. P.; Gupta, Hoshin V.; Brookshire, David S.

    Water resources decisions in the 21Sf Century that will affect allocation of water for economic and environmental will rely on simulations from integrated models of river basins. These models will not only couple natural systems such as surface and ground waters, but will include economic components that can assist in model assessments of river basins and bring the social dimension to the decision process. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated models to assess impacts of climate variability and land use change on water resources inmore » semi-arid river basins. The objectives of this paper are to describe the SAHRA integrated modeling approach and to describe the linkage between social and natural sciences in these models. Water resources issues that arise from climate variability or land use change may require different resolution models to answer different questions. For example, a question related to streamflow may not need a high-resolution model whereas a question concerning the source and nature of a pollutant will. SAHRA has taken a multiresolution approach to integrated model development because one cannot anticipate the questions in advance, and the computational and data resources may not always be available or needed for the issue to be addressed. The coarsest resolution model is based on dynamic simulation of subwatersheds or river reaches. This model resolution has the advantage of simplicity and social factors are readily incorporated. Users can readily take this model (and they have) and examine the effects of various management strategies such as increased cost of water. The medium resolution model is grid based and uses variable grid cells of 1-12 km. The surface hydrology is more physically based using basic equations for energy and water balance terms, and modules are being incorporated that will simulate engineering components such as reservoirs or irrigation diversions and economic features such as variable demand. The fine resolution model is viewed as a tool to examine basin response using best available process models. The fine resolution model operates on a grid cell size of 100 m or less, which is consistent with the scale that our process knowledge has developed. The fine resolution model couples atmosphere, surface water and groundwater modules using high performance computing. The medium and fine resolution models are not expected at this time to be operated by users as opposed to the coarse resolution model. One of the objectives of the SAHRA integrated modeling task is to present results in a manner that can be used by those making decisions. The application of these models within SAHRA is driven by a scenario analysis and a place location. The place is the Rio Grande from its headwaters in Colorado to the New Mexico-Texas border. This provides a focus for model development and an attempt to see how the results from the various models relate. The scenario selected by SAHRA is the impact of a 1950's style drought using 1990's population and land use on Rio Grande water resources including surface and groundwater. The same climate variables will be used to drive all three models so that comparison will be based on how the three resolutions partition and route water through the river basin. Aspects of this scenario will be discussed and initial model simulation will be presented. The issue of linking economic modules into the modeling effort will be discussed and the importance of feedback from the social and economic modules to the natural science modules will be reviewed.« less

  2. Scale dependency of regional climate modeling of current and future climate extremes in Germany

    NASA Astrophysics Data System (ADS)

    Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver

    2017-11-01

    A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.

  3. Implications of complete watershed soil moisture measurements to hydrologic modeling

    NASA Technical Reports Server (NTRS)

    Engman, E. T.; Jackson, T. J.; Schmugge, T. J.

    1983-01-01

    A series of six microwave data collection flights for measuring soil moisture were made over a small 7.8 square kilometer watershed in southwestern Minnesota. These flights were made to provide 100 percent coverage of the basin at a 400 m resolution. In addition, three flight lines were flown at preselected areas to provide a sample of data at a higher resolution of 60 m. The low level flights provide considerably more information on soil moisture variability. The results are discussed in terms of reproducibility, spatial variability and temporal variability, and their implications for hydrologic modeling.

  4. HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke A.; Teuling, Adriaan J.; Torfs, Paul J. J. F.; Uijlenhoet, Remko; Mizukami, Naoki; Clark, Martyn P.

    2016-03-01

    A meta-analysis on 192 peer-reviewed articles reporting on applications of the variable infiltration capacity (VIC) model in a distributed way reveals that the spatial resolution at which the model is applied has increased over the years, while the calibration and validation time interval has remained unchanged. We argue that the calibration and validation time interval should keep pace with the increase in spatial resolution in order to resolve the processes that are relevant at the applied spatial resolution. We identified six time concepts in hydrological models, which all impact the model results and conclusions. Process-based model evaluation is particularly relevant when models are applied at hyper-resolution, where stakeholders expect credible results both at a high spatial and temporal resolution.

  5. HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models

    NASA Astrophysics Data System (ADS)

    Melsen, L. A.; Teuling, A. J.; Torfs, P. J. J. F.; Uijlenhoet, R.; Mizukami, N.; Clark, M. P.

    2015-12-01

    A meta-analysis on 192 peer-reviewed articles reporting applications of the Variable Infiltration Capacity (VIC) model in a distributed way reveals that the spatial resolution at which the model is applied has increased over the years, while the calibration and validation time interval has remained unchanged. We argue that the calibration and validation time interval should keep pace with the increase in spatial resolution in order to resolve the processes that are relevant at the applied spatial resolution. We identified six time concepts in hydrological models, which all impact the model results and conclusions. Process-based model evaluation is particularly relevant when models are applied at hyper-resolution, where stakeholders expect credible results both at a high spatial and temporal resolution.

  6. Constraining regional scale carbon budgets at the US West Coast using a high-resolution atmospheric inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Michalak, A. M.; Vickers, D.; Turner, D.; Law, B.

    2009-04-01

    The study presented is embedded within the NACP (North American Carbon Program) West Coast project ORCA2, which aims at determining the regional carbon balance of the US states Oregon, California and Washington. Our work specifically focuses on the effect of disturbance history and climate variability, aiming at improving our understanding of e.g. drought stress and stand age on carbon sources and sinks in complex terrain with fine-scale variability in land cover types. The ORCA2 atmospheric inverse modeling approach has been set up to capture flux variability on the regional scale at high temporal and spatial resolution. Atmospheric transport is simulated coupling the mesoscale model WRF (Weather Research and Forecast) with the STILT (Stochastic Time Inverted Lagrangian Transport) footprint model. This setup allows identifying sources and sinks that influence atmospheric observations with highly resolved mass transport fields and realistic turbulent mixing. Terrestrial biosphere carbon fluxes are simulated at spatial resolutions of up to 1km and subdaily timesteps, considering effects of ecoregion, land cover type and disturbance regime on the carbon budgets. Our approach assimilates high-precision atmospheric CO2 concentration measurements and eddy-covariance data from several sites throughout the model domain, as well as high-resolution remote sensing products (e.g. LandSat, MODIS) and interpolated surface meteorology (DayMet, SOGS, PRISM). We present top-down modeling results that have been optimized using Bayesian inversion, reflecting the information on regional scale carbon processes provided by the network of high-precision CO2 observations. We address the level of detail (e.g. spatial and temporal resolution) that can be resolved by top-down modeling on the regional scale, given the uncertainties introduced by various sources for model-data mismatch. Our results demonstrate the importance of accurate modeling of carbon-water coupling, with the representation of water availability and drought stress playing a dominant role to capture spatially variable CO2 exchange rates in a region characterized by strong climatic gradients.

  7. An advanced stochastic weather generator for simulating 2-D high-resolution climate variables

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2017-07-01

    A new stochastic weather generator, Advanced WEather GENerator for a two-dimensional grid (AWE-GEN-2d) is presented. The model combines physical and stochastic approaches to simulate key meteorological variables at high spatial and temporal resolution: 2 km × 2 km and 5 min for precipitation and cloud cover and 100 m × 100 m and 1 h for near-surface air temperature, solar radiation, vapor pressure, atmospheric pressure, and near-surface wind. The model requires spatially distributed data for the calibration process, which can nowadays be obtained by remote sensing devices (weather radar and satellites), reanalysis data sets and ground stations. AWE-GEN-2d is parsimonious in terms of computational demand and therefore is particularly suitable for studies where exploring internal climatic variability at multiple spatial and temporal scales is fundamental. Applications of the model include models of environmental systems, such as hydrological and geomorphological models, where high-resolution spatial and temporal meteorological forcing is crucial. The weather generator was calibrated and validated for the Engelberg region, an area with complex topography in the Swiss Alps. Model test shows that the climate variables are generated by AWE-GEN-2d with a level of accuracy that is sufficient for many practical applications.

  8. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2018-06-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  9. Local-scale changes in mean and heavy precipitation in Western Europe, climate change or internal variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.

    2017-09-01

    High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.

  10. Spatial Structure of a Braided River: Metric Resolution Hydrodynamic Modeling Reveals What SWOT Might See

    NASA Astrophysics Data System (ADS)

    Schubert, J.; Sanders, B. F.; Andreadis, K.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting features, including a high degree of variability in the water depth and velocity and lesser variability in the free-surface profile and river discharge. Hydraulic control sections are also revealed, and shown to depend on flow stage. Reach-averaging of model output is applied to study the macro-scale balance of forces in this system, and the scales at which such a force balance is appropriate. We find that the reach-average slope exhibits a declining reach-length dependence with increasing reach length, up to reach lengths of 1 km. Hence, 1 km appears to be the minimum appropriate length for reach-averaging, and at this scale, a diffusive-wave momentum balance is a reasonable approximation suitable for emerging models of discharge estimation that rely only on SWOT-observable river properties (width, height, slope, etc.).

  11. Simulation of population-based commuter exposure to NO₂ using different air pollution models.

    PubMed

    Ragettli, Martina S; Tsai, Ming-Yi; Braun-Fahrländer, Charlotte; de Nazelle, Audrey; Schindler, Christian; Ineichen, Alex; Ducret-Stich, Regina E; Perez, Laura; Probst-Hensch, Nicole; Künzli, Nino; Phuleria, Harish C

    2014-05-12

    We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland), and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2) as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD) NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m(-3), range: 21-61) than with a dispersion model with a lower resolution (39 ± 5 µg m(-3); range: 24-51), and a land use regression model (41 ± 5 µg m(-3); range: 24-54). Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas.

  12. Variability along the Atlantic water pathway in the forced Norwegian Earth System Model

    NASA Astrophysics Data System (ADS)

    Langehaug, H. R.; Sandø, A. B.; Årthun, M.; Ilıcak, M.

    2018-03-01

    The growing attention on mechanisms that can provide predictability on interannual-to-decadal time scales, makes it necessary to identify how well climate models represent such mechanisms. In this study we use a high (0.25° horizontal grid) and a medium (1°) resolution version of a forced global ocean-sea ice model, utilising the Norwegian Earth System Model, to assess the impact of increased ocean resolution. Our target is the simulation of temperature and salinity anomalies along the pathway of warm Atlantic water in the subpolar North Atlantic and the Nordic Seas. Although the high resolution version has larger biases in general at the ocean surface, the poleward propagation of thermohaline anomalies is better resolved in this version, i.e., the time for an anomaly to travel northward is more similar to observation based estimates. The extent of these anomalies can be rather large in both model versions, as also seen in observations, e.g., stretching from Scotland to northern Norway. The easternmost branch into the Nordic and Barents Seas, carrying warm Atlantic water, is also improved by higher resolution, both in terms of mean heat transport and variability in thermohaline properties. A more detailed assessment of the link between the North Atlantic Ocean circulation and the thermohaline anomalies at the entrance of the Nordic Seas reveals that the high resolution is more consistent with mechanisms that are previously published. This suggests better dynamics and variability in the subpolar region and the Nordic Seas in the high resolution compared to the medium resolution. This is most likely due a better representation of the mean circulation in the studied region when using higher resolution. As the poleward propagation of ocean heat anomalies is considered to be a key source of climate predictability, we recommend that similar methodology presented herein should be performed on coupled climate models that are used for climate prediction.

  13. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.

  14. Virtual mission stage I: Implications of a spaceborne surface water mission

    NASA Astrophysics Data System (ADS)

    Clark, E. A.; Alsdorf, D. E.; Bates, P.; Wilson, M. D.; Lettenmaier, D. P.

    2004-12-01

    The interannual and interseasonal variability of the land surface water cycle depend on the distribution of surface water in lakes, wetlands, reservoirs, and river systems; however, measurements of hydrologic variables are sparsely distributed, even in industrialized nations. Moreover, the spatial extent and storage variations of lakes, reservoirs, and wetlands are poorly known. We are developing a virtual mission to demonstrate the feasibility of observing surface water extent and variations from a spaceborne platform. In the first stage of the virtual mission, on which we report here, surface water area and fluxes are emulated using simulation modeling over three continental scale river basins, including the Ohio River, the Amazon River and an Arctic river. The Variable Infiltration Capacity (VIC) macroscale hydrologic model is used to simulate evapotranspiration, soil moisture, snow accumulation and ablation, and runoff and streamflow over each basin at one-eighth degree resolution. The runoff from this model is routed using a linear transfer model to provide input to a much more detailed flow hydraulics model. The flow hydraulics model then routes runoff through various channel and floodplain morphologies at a 250 m spatial and 20 second temporal resolution over a 100 km by 500 km domain. This information is used to evaluate trade-offs between spatial and temporal resolutions of a hypothetical high resolution spaceborne altimeter by synthetically sampling the resultant model-predicted water surface elevations.

  15. Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Leung, L. Ruby; Zhao, Chun; Hagos, Samson

    2017-03-01

    Simulating summer precipitation is a significant challenge for climate models that rely on cumulus parameterizations to represent moist convection processes. Motivated by recent advances in computing that support very high-resolution modeling, this study aims to systematically evaluate the effects of model resolution and convective parameterizations across the gray zone resolutions. Simulations using the Weather Research and Forecasting model were conducted at grid spacings of 36 km, 12 km, and 4 km for two summers over the conterminous U.S. The convection-permitting simulations at 4 km grid spacing are most skillful in reproducing the observed precipitation spatial distributions and diurnal variability. Notable differences are found between simulations with the traditional Kain-Fritsch (KF) and the scale-aware Grell-Freitas (GF) convection schemes, with the latter more skillful in capturing the nocturnal timing in the Great Plains and North American monsoon regions. The GF scheme also simulates a smoother transition from convective to large-scale precipitation as resolution increases, resulting in reduced sensitivity to model resolution compared to the KF scheme. Nonhydrostatic dynamics has a positive impact on precipitation over complex terrain even at 12 km and 36 km grid spacings. With nudging of the winds toward observations, we show that the conspicuous warm biases in the Southern Great Plains are related to precipitation biases induced by large-scale circulation biases, which are insensitive to model resolution. Overall, notable improvements in simulating summer rainfall and its diurnal variability through convection-permitting modeling and scale-aware parameterizations suggest promising venues for improving climate simulations of water cycle processes.

  16. Observational breakthroughs lead the way to improved hydrological predictions

    NASA Astrophysics Data System (ADS)

    Lettenmaier, Dennis P.

    2017-04-01

    New data sources are revolutionizing the hydrological sciences. The capabilities of hydrological models have advanced greatly over the last several decades, but until recently model capabilities have outstripped the spatial resolution and accuracy of model forcings (atmospheric variables at the land surface) and the hydrologic state variables (e.g., soil moisture; snow water equivalent) that the models predict. This has begun to change, as shown in two examples here: soil moisture and drought evolution over Africa as predicted by a hydrology model forced with satellite-derived precipitation, and observations of snow water equivalent at very high resolution over a river basin in California's Sierra Nevada.

  17. Exploring the impacts of physics and resolution on aqua-planet simulations from a nonhydrostatic global variable-resolution modeling framework: IMPACTS OF PHYSICS AND RESOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chun; Leung, L. Ruby; Park, Sang-Hun

    Advances in computing resources are gradually moving regional and global numerical forecasting simulations towards sub-10 km resolution, but global high resolution climate simulations remain a challenge. The non-hydrostatic Model for Prediction Across Scales (MPAS) provides a global framework to achieve very high resolution using regional mesh refinement. Previous studies using the hydrostatic version of MPAS (H-MPAS) with the physics parameterizations of Community Atmosphere Model version 4 (CAM4) found notable resolution dependent behaviors. This study revisits the resolution sensitivity using the non-hydrostatic version of MPAS (NH-MPAS) with both CAM4 and CAM5 physics. A series of aqua-planet simulations at global quasi-uniform resolutionsmore » ranging from 240 km to 30 km and global variable resolution simulations with a regional mesh refinement of 30 km resolution over the tropics are analyzed, with a primary focus on the distinct characteristics of NH-MPAS in simulating precipitation, clouds, and large-scale circulation features compared to H-MPAS-CAM4. The resolution sensitivity of total precipitation and column integrated moisture in NH-MPAS is smaller than that in H-MPAS-CAM4. This contributes importantly to the reduced resolution sensitivity of large-scale circulation features such as the inter-tropical convergence zone and Hadley circulation in NH-MPAS compared to H-MPAS. In addition, NH-MPAS shows almost no resolution sensitivity in the simulated westerly jet, in contrast to the obvious poleward shift in H-MPAS with increasing resolution, which is partly explained by differences in the hyperdiffusion coefficients used in the two models that influence wave activity. With the reduced resolution sensitivity, simulations in the refined region of the NH-MPAS global variable resolution configuration exhibit zonally symmetric features that are more comparable to the quasi-uniform high-resolution simulations than those from H-MPAS that displays zonal asymmetry in simulations inside the refined region. Overall, NH-MPAS with CAM5 physics shows less resolution sensitivity compared to CAM4. These results provide a reference for future studies to further explore the use of NH-MPAS for high-resolution climate simulations in idealized and realistic configurations.« less

  18. Modeling and measurement of the detector presampling MTF of a variable resolution x-ray CT scanner.

    PubMed

    Melnyk, Roman; DiBianca, Frank A

    2007-03-01

    The detector presampling modulation transfer function (MTF) of a 576-channel variable resolution x-ray (VRX) computed tomography (CT) scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner's field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner's pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase in the cutoff frequency of the detector presampling MTF from 1.39 to 43.38 cycles/mm as the FOV of the VRX CT scanner decreases from 32 to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1-8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner.

  19. Modeling and measurement of the detector presampling MTF of a variable resolution x-ray CT scanner

    PubMed Central

    Melnyk, Roman; DiBianca, Frank A.

    2007-01-01

    The detector presampling MTF of a 576-channel variable resolution x-ray (VRX) CT scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner’s field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner’s pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase in the cutoff frequency of the detector presampling MTF from 1.39 cy/mm to 43.38 cy/mm as the FOV of the VRX CT scanner decreases from 32 cm to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1–8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner. PMID:17369872

  20. Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    NASA Astrophysics Data System (ADS)

    Yu, Karen; Jacob, Daniel J.; Fisher, Jenny A.; Kim, Patrick S.; Marais, Eloise A.; Miller, Christopher C.; Travis, Katherine R.; Zhu, Lei; Yantosca, Robert M.; Sulprizio, Melissa P.; Cohen, Ron C.; Dibb, Jack E.; Fried, Alan; Mikoviny, Tomas; Ryerson, Thomas B.; Wennberg, Paul O.; Wisthaler, Armin

    2016-04-01

    Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO) or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2). We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25° × 0.3125°, 2° × 2.5°, 4° × 5°) to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25° × 0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25° × 0.3125° resolution (54 %) than at coarser resolution (59 %). The cumulative probability distribution functions (CDFs) of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes) are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy) changing little across model resolutions. Model concentrations in the lower free troposphere are also insensitive to grid resolution. The overall low sensitivity of modeled concentrations to grid resolution implies that coarse resolution is adequate when modeling continental boundary layer chemistry for global applications.

  1. A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)

    Treesearch

    Glen E. Liston; Kelly Elder

    2006-01-01

    An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...

  2. Verification of High Resolution Soil Moisture and Latent Heat in Germany

    NASA Astrophysics Data System (ADS)

    Samaniego, L. E.; Warrach-Sagi, K.; Zink, M.; Wulfmeyer, V.

    2012-12-01

    Improving our understanding of soil-land-surface-atmosphere feedbacks is fundamental to make reliable predictions of water and energy fluxes on land systems influenced by anthropogenic activities. Estimating, for instance, which would be the likely consequences of changing climatic regimes on water availability and crop yield, requires of high resolution soil moisture. Modeling it at large-scales, however, is difficult and uncertain because of the interplay between state variables and fluxes and the significant parameter uncertainty of the predicting models. At larger scales, the sub-grid variability of the variables involved and the nonlinearity of the processes complicate the modeling exercise even further because parametrization schemes might be scale dependent. Two contrasting modeling paradigms (WRF/Noah-MP and mHM) were employed to quantify the effects of model and data complexity on soil moisture and latent heat over Germany. WRF/Noah-MP was forced ERA-interim on the boundaries of the rotated CORDEX-Grid (www.meteo.unican.es/wiki/cordexwrf) with a spatial resolution of 0.11o covering Europe during the period from 1989 to 2009. Land cover and soil texture were represented in WRF/Noah-MP with 1×1~km MODIS images and a single horizon, coarse resolution European-wide soil map with 16 soil texture classes, respectively. To ease comparison, the process-based hydrological model mHM was forced with daily precipitation and temperature fields generated by WRF during the same period. The spatial resolution of mHM was fixed at 4×4~km. The multiscale parameter regionalization technique (MPR, Samaniego et al. 2010) was embedded in mHM to be able to estimate effective model parameters using hyper-resolution input data (100×100~km) obtained from Corine land cover and detailed soil texture fields for various horizons comprising 72 soil texture classes for Germany, among other physiographical variables. mHM global parameters, in contrast with those of Noah-MP, were obtained by closing the water balance over major river basins in Germany. Simulated soil moisture and latent heat flux were also evaluated at several eddy covariance sites in Germany. Comparison of monthly soil moisture and latent heat fields obtained with both models over Germany exhibited significant differences, which are mainly attributed to the subgrid variability of key model parameters such as porosity and aerodynamic resistance. Comparison of soil moisture fields obtained with WRF/Noah-MP and mHM forced with grided metereological observations (German Meteorological Service) showed that the differences between both models are mainly due to a combination of precipitation bias and different soil texture resolution. However, EOF analyses indicate that CORDEX results start recovering structures due to soil and vegetation properties. This experiment clearly highlighted the importance of hyper resolution input data to address these challenge. High resolution mHM simulations also indicate that the parametric uncertainty of land surface models is significant, and should not be neglected if a model is to be employed for application at regional scales, e.g. for drought monitoring.

  3. Multi-platform validation of a high-resolution model in the Western Mediterranean Sea: insight into spatial-temporal variability

    NASA Astrophysics Data System (ADS)

    Aguiar, Eva; Mourre, Baptiste; Heslop, Emma; Juza, Mélanie; Escudier, Romain; Tintoré, Joaquín

    2017-04-01

    This study focuses on the validation of the high resolution Western Mediterranean Operational model (WMOP) developed at SOCIB, the Balearic Islands Coastal Observing and Forecasting System. The Mediterranean Sea is often seen as a small scale ocean laboratory where energetic eddies, fronts and circulation features have important ecological consequences. The Medclic project is a program between "La Caixa" Foundation and SOCIB which aims at characterizing and forecasting the "oceanic weather" in the Western Mediterranean Sea, specifically investigating the interactions between the general circulation and mesoscale processes. We use a WMOP 2009-2015 free run hindcast simulation and available observational datasets (altimetry, moorings and gliders) to both assess the numerical simulation and investigate the ocean variability. WMOP has a 2-km spatial resolution and uses CMEMS Mediterranean products as initial and boundary conditions, with surface forcing from the high-resolution Spanish Meteorological Agency model HIRLAM. Different aspects of the spatial and temporal variability in the model are validated from local to regional and basin scales: (1) the principal axis of variability of the surface circulation using altimetry and moorings along the Iberian coast, (2) the inter-annual changes of the surface flows incorporating also glider data, (3) the propagation of mesoscale eddies formed in the Algerian sub-basin using altimetry, and (4) the statistical properties of eddies (number, rotation, size) applying an eddy tracker detection method in the Western Mediterranean Sea. With these key points evaluated in the model, EOF analysis of sea surface height maps are used to investigate spatial patterns of variability associated with eddies, gyres and the basis-scale circulation and so gain insight into the interconnections between sub-basins, as well as the interactions between physical processes at different scales.

  4. Regional model simulations of New Zealand climate

    NASA Astrophysics Data System (ADS)

    Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.

    1998-03-01

    Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.

  5. Fine-scale application of WRF-CAM5 during a dust storm episode over East Asia: Sensitivity to grid resolutions and aerosol activation parameterizations

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhang, Yang; Zhang, Xin; Fan, Jiwen; Leung, L. Ruby; Zheng, Bo; Zhang, Qiang; He, Kebin

    2018-03-01

    An advanced online-coupled meteorology and chemistry model WRF-CAM5 has been applied to East Asia using triple-nested domains at different grid resolutions (i.e., 36-, 12-, and 4-km) to simulate a severe dust storm period in spring 2010. Analyses are performed to evaluate the model performance and investigate model sensitivity to different horizontal grid sizes and aerosol activation parameterizations and to examine aerosol-cloud interactions and their impacts on the air quality. A comprehensive model evaluation of the baseline simulations using the default Abdul-Razzak and Ghan (AG) aerosol activation scheme shows that the model can well predict major meteorological variables such as 2-m temperature (T2), water vapor mixing ratio (Q2), 10-m wind speed (WS10) and wind direction (WD10), and shortwave and longwave radiation across different resolutions with domain-average normalized mean biases typically within ±15%. The baseline simulations also show moderate biases for precipitation and moderate-to-large underpredictions for other major variables associated with aerosol-cloud interactions such as cloud droplet number concentration (CDNC), cloud optical thickness (COT), and cloud liquid water path (LWP) due to uncertainties or limitations in the aerosol-cloud treatments. The model performance is sensitive to grid resolutions, especially for surface meteorological variables such as T2, Q2, WS10, and WD10, with the performance generally improving at finer grid resolutions for those variables. Comparison of the sensitivity simulations with an alternative (i.e., the Fountoukis and Nenes (FN) series scheme) and the default (i.e., AG scheme) aerosol activation scheme shows that the former predicts larger values for cloud variables such as CDNC and COT across all grid resolutions and improves the overall domain-average model performance for many cloud/radiation variables and precipitation. Sensitivity simulations using the FN series scheme also have large impacts on radiations, T2, precipitation, and air quality (e.g., decreasing O3) through complex aerosol-radiation-cloud-chemistry feedbacks. The inclusion of adsorptive activation of dust particles in the FN series scheme has similar impacts on the meteorology and air quality but to lesser extent as compared to differences between the FN series and AG schemes. Compared to the overall differences between the FN series and AG schemes, impacts of adsorptive activation of dust particles can contribute significantly to the increase of total CDNC (∼45%) during dust storm events and indicate their importance in modulating regional climate over East Asia.

  6. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    NASA Astrophysics Data System (ADS)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  7. Scale effect challenges in urban hydrology highlighted with a Fully Distributed Model and High-resolution rainfall data

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2017-04-01

    Nowadays, there is a growing interest on small-scale rainfall information, provided by weather radars, to be used in urban water management and decision-making. Therefore, an increasing interest is in parallel devoted to the development of fully distributed and grid-based models following the increase of computation capabilities, the availability of high-resolution GIS information needed for such models implementation. However, the choice of an appropriate implementation scale to integrate the catchment heterogeneity and the whole measured rainfall variability provided by High-resolution radar technologies still issues. This work proposes a two steps investigation of scale effects in urban hydrology and its effects on modeling works. In the first step fractal tools are used to highlight the scale dependency observed within distributed data used to describe the catchment heterogeneity, both the structure of the sewer network and the distribution of impervious areas are analyzed. Then an intensive multi-scale modeling work is carried out to understand scaling effects on hydrological model performance. Investigations were conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model was implemented at 17 spatial resolutions ranging from 100 m to 5 m and modeling investigations were performed using both rain gauge rainfall information as well as high resolution X band radar data in order to assess the sensitivity of the model to small scale rainfall variability. Results coming out from this work demonstrate scale effect challenges in urban hydrology modeling. In fact, fractal concept highlights the scale dependency observed within distributed data used to implement hydrological models. Patterns of geophysical data change when we change the observation pixel size. The multi-scale modeling investigation performed with Multi-Hydro model at 17 spatial resolutions confirms scaling effect on hydrological model performance. Results were analyzed at three ranges of scales identified in the fractal analysis and confirmed in the modeling work. The sensitivity of the model to small-scale rainfall variability was discussed as well.

  8. Multi-scale coupled modelling of waves and currents on the Catalan shelf.

    NASA Astrophysics Data System (ADS)

    Grifoll, M.; Warner, J. C.; Espino, M.; Sánchez-Arcilla, A.

    2012-04-01

    Catalan shelf circulation is characterized by a background along-shelf flow to the southwest (including some meso-scale features) plus episodic storm driven patterns. To investigate these dynamics, a coupled multi-scale modeling system is applied to the Catalan shelf (North-western Mediterranean Sea). The implementation consists of a set of increasing-resolution nested models, based on the circulation model ROMS and the wave model SWAN as part of the COAWST modeling system, covering from the slope and shelf region (~1 km horizontal resolution) down to a local area around Barcelona city (~40 m). The system is initialized with MyOcean products in the coarsest outer domain, and uses atmospheric forcing from other sources for the increasing resolution inner domains. Results of the finer resolution domains exhibit improved agreement with observations relative to the coarser model results. Several hydrodynamic configurations were simulated to determine dominant forcing mechanisms and hydrodynamic processes that control coastal scale processes. The numerical results reveal that the short term (hours to days) inner-shelf variability is strongly influenced by local wind variability, while sea-level slope, baroclinic effects, radiation stresses and regional circulation constitute second-order processes. Additional analysis identifies the significance of shelf/slope exchange fluxes, river discharge and the effect of the spatial resolution of the atmospheric fluxes.

  9. Spatial Variability in Column CO2 Inferred from High Resolution GEOS-5 Global Model Simulations: Implications for Remote Sensing and Inversions

    NASA Technical Reports Server (NTRS)

    Ott, L.; Putman, B.; Collatz, J.; Gregg, W.

    2012-01-01

    Column CO2 observations from current and future remote sensing missions represent a major advancement in our understanding of the carbon cycle and are expected to help constrain source and sink distributions. However, data assimilation and inversion methods are challenged by the difference in scale of models and observations. OCO-2 footprints represent an area of several square kilometers while NASA s future ASCENDS lidar mission is likely to have an even smaller footprint. In contrast, the resolution of models used in global inversions are typically hundreds of kilometers wide and often cover areas that include combinations of land, ocean and coastal areas and areas of significant topographic, land cover, and population density variations. To improve understanding of scales of atmospheric CO2 variability and representativeness of satellite observations, we will present results from a global, 10-km simulation of meteorology and atmospheric CO2 distributions performed using NASA s GEOS-5 general circulation model. This resolution, typical of mesoscale atmospheric models, represents an order of magnitude increase in resolution over typical global simulations of atmospheric composition allowing new insight into small scale CO2 variations across a wide range of surface flux and meteorological conditions. The simulation includes high resolution flux datasets provided by NASA s Carbon Monitoring System Flux Pilot Project at half degree resolution that have been down-scaled to 10-km using remote sensing datasets. Probability distribution functions are calculated over larger areas more typical of global models (100-400 km) to characterize subgrid-scale variability in these models. Particular emphasis is placed on coastal regions and regions containing megacities and fires to evaluate the ability of coarse resolution models to represent these small scale features. Additionally, model output are sampled using averaging kernels characteristic of OCO-2 and ASCENDS measurement concepts to create realistic pseudo-datasets. Pseudo-data are averaged over coarse model grid cell areas to better understand the ability of measurements to characterize CO2 distributions and spatial gradients on both short (daily to weekly) and long (monthly to seasonal) time scales

  10. Bayesian model for matching the radiometric measurements of aerospace and field ocean color sensors.

    PubMed

    Salama, Mhd Suhyb; Su, Zhongbo

    2010-01-01

    A Bayesian model is developed to match aerospace ocean color observation to field measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R(2) > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors.

  11. Investigation of Primary School Teachers' Conflict Resolution Skills in Terms of Different Variable

    ERIC Educational Resources Information Center

    Bayraktar, Hatice Vatansever; Yilmaz, Kamile Özge

    2016-01-01

    In this study, it is aimed to determine the level of conflict resolution skills of primary school teachers and whether they vary by different variables. The study was organised in accordance with the scanning model. The universe of the study consists of primary school teachers working at 14 primary schools, two from each of the seven geographical…

  12. Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models

    PubMed Central

    Ragettli, Martina S.; Tsai, Ming-Yi; Braun-Fahrländer, Charlotte; de Nazelle, Audrey; Schindler, Christian; Ineichen, Alex; Ducret-Stich, Regina E.; Perez, Laura; Probst-Hensch, Nicole; Künzli, Nino; Phuleria, Harish C.

    2014-01-01

    We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland), and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2) as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD) NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m−3, range: 21–61) than with a dispersion model with a lower resolution (39 ± 5 µg m−3; range: 24–51), and a land use regression model (41 ± 5 µg m−3; range: 24–54). Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas. PMID:24823664

  13. Modeling Above-Ground Biomass Across Multiple Circum-Arctic Tundra Sites Using High Spatial Resolution Remote Sensing

    NASA Astrophysics Data System (ADS)

    Räsänen, Aleksi; Juutinen, Sari; Aurela, Mika; Virtanen, Tarmo

    2017-04-01

    Biomass is one of the central bio-geophysical variables in Earth observation for tracking plant productivity, and flow of carbon, nutrients, and water. Most of the satellite based biomass mapping exercises in Arctic environments have been performed by using rather coarse spatial resolution data, e.g. Landsat and AVHRR which have spatial resolutions of 30 m and >1 km, respectively. While the coarse resolution images have high temporal resolution, they are incapable of capturing the fragmented nature of tundra environment and fine-scale changes in vegetation and carbon exchange patterns. Very high spatial resolution (VHSR, spatial resolution 0.5-2 m) satellite images have the potential to detect environmental variables with an ecologically sound spatial resolution. The usage of VHSR images has, nevertheless, been modest so far in biomass modeling in the Arctic. Our objectives were to use VHSR for predicting above ground biomass in tundra landscapes, evaluate whether a common predictive model can be applied across circum-Arctic tundra and peatland sites having different types of vegetation, and produce knowledge on distribution of plant functional types (PFT) in these sites. Such model development is dependent on ground-based surveys of vegetation with the same spatial resolution and extent with the VHSR images. In this study, we conducted ground-based surveys of vegetation composition and biomass in four different arctic tundra or peatland areas located in Russia, Canada, and Finland. First, we sorted species into PFTs and developed PFT-specific models to predict biomass on the basis of non-destructive measurements (cover, height). Second, we predicted overall biomass on landscape scale by combinations of single bands and vegetation indices of very high resolution satellite images (QuickBird or WorldView-2 images of the eight sites). We compared area-specific empirical regression models and common models that were applied across all sites. We found that NDVI was usually the highest scoring spectral indices in explaining biomass distribution with good explanatory power. Furthermore, models which had more than one explanatory variable had higher explanatory power than models with a single index. The dissimilarity between common and site-specific model estimates was, however, high and data indicates that variation in vegetation properties and its impact on spectral reflectance needs to be acknowledged. Our work produced knowledge on above-ground biomass distribution and contribution of PFTs across circum-Arctic low-growth landscapes and will contribute to developing space-borne vegetation monitoring schemes utilizing VHSR satellite images.

  14. Modeling photovoltaic diffusion: an analysis of geospatial datasets

    NASA Astrophysics Data System (ADS)

    Davidson, Carolyn; Drury, Easan; Lopez, Anthony; Elmore, Ryan; Margolis, Robert

    2014-07-01

    This study combines address-level residential photovoltaic (PV) adoption trends in California with several types of geospatial information—population demographics, housing characteristics, foreclosure rates, solar irradiance, vehicle ownership preferences, and others—to identify which subsets of geospatial information are the best predictors of historical PV adoption. Number of rooms, heating source and house age were key variables that had not been previously explored in the literature, but are consistent with the expected profile of a PV adopter. The strong relationship provided by foreclosure indicators and mortgage status have less of an intuitive connection to PV adoption, but may be highly correlated with characteristics inherent in PV adopters. Next, we explore how these predictive factors and model performance varies between different Investor Owned Utility (IOU) regions in California, and at different spatial scales. Results suggest that models trained with small subsets of geospatial information (five to eight variables) may provide similar explanatory power as models using hundreds of geospatial variables. Further, the predictive performance of models generally decreases at higher resolution, i.e., below ZIP code level since several geospatial variables with coarse native resolution become less useful for representing high resolution variations in PV adoption trends. However, for California we find that model performance improves if parameters are trained at the regional IOU level rather than the state-wide level. We also find that models trained within one IOU region are generally representative for other IOU regions in CA, suggesting that a model trained with data from one state may be applicable in another state.

  15. The need to consider temporal variability when modelling exchange at the sediment-water interface

    USGS Publications Warehouse

    Rosenberry, Donald O.

    2011-01-01

    Most conceptual or numerical models of flows and processes at the sediment-water interface assume steady-state conditions and do not consider temporal variability. The steady-state assumption is required because temporal variability, if quantified at all, is usually determined on a seasonal or inter-annual scale. In order to design models that can incorporate finer-scale temporal resolution we first need to measure variability at a finer scale. Automated seepage meters that can measure flow across the sediment-water interface with temporal resolution of seconds to minutes were used in a variety of settings to characterize seepage response to rainfall, wind, and evapotranspiration. Results indicate that instantaneous seepage fluxes can be much larger than values commonly reported in the literature, although seepage does not always respond to hydrological processes. Additional study is needed to understand the reasons for the wide range and types of responses to these hydrologic and atmospheric events.

  16. Range expansion through fragmented landscapes under a variable climate

    PubMed Central

    Bennie, Jonathan; Hodgson, Jenny A; Lawson, Callum R; Holloway, Crispin TR; Roy, David B; Brereton, Tom; Thomas, Chris D; Wilson, Robert J

    2013-01-01

    Ecological responses to climate change may depend on complex patterns of variability in weather and local microclimate that overlay global increases in mean temperature. Here, we show that high-resolution temporal and spatial variability in temperature drives the dynamics of range expansion for an exemplar species, the butterfly Hesperia comma. Using fine-resolution (5 m) models of vegetation surface microclimate, we estimate the thermal suitability of 906 habitat patches at the species' range margin for 27 years. Population and metapopulation models that incorporate this dynamic microclimate surface improve predictions of observed annual changes to population density and patch occupancy dynamics during the species' range expansion from 1982 to 2009. Our findings reveal how fine-scale, short-term environmental variability drives rates and patterns of range expansion through spatially localised, intermittent episodes of expansion and contraction. Incorporating dynamic microclimates can thus improve models of species range shifts at spatial and temporal scales relevant to conservation interventions. PMID:23701124

  17. High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Kollet, S. J.; Qu, W.; Vereecken, H.

    2017-04-01

    The prediction of the spatial and temporal variability of land surface states and fluxes with land surface models at high spatial resolution is still a challenge. This study compares simulation results using TerrSysMP including a 3D variably saturated groundwater flow model (ParFlow) coupled to the Community Land Model (CLM) of a 38 ha managed grassland head-water catchment in the Eifel (Germany), with soil water content (SWC) measurements from a wireless sensor network, actual evapotranspiration recorded by lysimeters and eddy covariance stations and discharge observations. TerrSysMP was discretized with a 10 × 10 m lateral resolution, variable vertical resolution (0.025-0.575 m), and the following parameterization strategies of the subsurface soil hydraulic parameters: (i) completely homogeneous, (ii) homogeneous parameters for different soil horizons, (iii) different parameters for each soil unit and soil horizon and (iv) heterogeneous stochastic realizations. Hydraulic conductivity and Mualem-Van Genuchten parameters in these simulations were sampled from probability density functions, constructed from either (i) soil texture measurements and Rosetta pedotransfer functions (ROS), or (ii) estimated soil hydraulic parameters by 1D inverse modelling using shuffle complex evolution (SCE). The results indicate that the spatial variability of SWC at the scale of a small headwater catchment is dominated by topography and spatially heterogeneous soil hydraulic parameters. The spatial variability of the soil water content thereby increases as a function of heterogeneity of soil hydraulic parameters. For lower levels of complexity, spatial variability of the SWC was underrepresented in particular for the ROS-simulations. Whereas all model simulations were able to reproduce the seasonal evapotranspiration variability, the poor discharge simulations with high model bias are likely related to short-term ET dynamics and the lack of information about bedrock characteristics and an on-site drainage system in the uncalibrated model. In general, simulation performance was better for the SCE setups. The SCE-simulations had a higher inverse air entry parameter resulting in SWC dynamics in better correspondence with data than the ROS simulations during dry periods. This illustrates that small scale measurements of soil hydraulic parameters cannot be transferred to the larger scale and that interpolated 1D inverse parameter estimates result in an acceptable performance for the catchment.

  18. From AWE-GEN to AWE-GEN-2d: a high spatial and temporal resolution weather generator

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2016-04-01

    A new weather generator, AWE-GEN-2d (Advanced WEather GENerator for 2-Dimension grid) is developed following the philosophy of combining physical and stochastic approaches to simulate meteorological variables at high spatial and temporal resolution (e.g. 2 km x 2 km and 5 min for precipitation and cloud cover and 100 m x 100 m and 1 h for other variables variable (temperature, solar radiation, vapor pressure, atmospheric pressure and near-surface wind). The model is suitable to investigate the impacts of climate variability, temporal and spatial resolutions of forcing on hydrological, ecological, agricultural and geomorphological impacts studies. Using appropriate parameterization the model can be used in the context of climate change. Here we present the model technical structure of AWE-GEN-2d, which is a substantial evolution of four preceding models (i) the hourly-point scale Advanced WEather GENerator (AWE-GEN) presented by Fatichi et al. (2011, Adv. Water Resour.) (ii) the Space-Time Realizations of Areal Precipitation (STREAP) model introduced by Paschalis et al. (2013, Water Resour. Res.), (iii) the High-Resolution Synoptically conditioned Weather Generator developed by Peleg and Morin (2014, Water Resour. Res.), and (iv) the Wind-field Interpolation by Non Divergent Schemes presented by Burlando et al. (2007, Boundary-Layer Meteorol.). The AWE-GEN-2d is relatively parsimonious in terms of computational demand and allows generating many stochastic realizations of current and projected climates in an efficient way. An example of model application and testing is presented with reference to a case study in the Wallis region, a complex orography terrain in the Swiss Alps.

  19. The Navy’s Application of Ocean Forecasting to Decision Support

    DTIC Science & Technology

    2014-09-01

    Prediction Center (OPC) website for graphics or the National Operational Model Archive and Distribution System ( NOMADS ) for data files. Regional...inputs: » GLOBE = Global Land One-km Base Elevation » WVS = World Vector Shoreline » DBDB2 = Digital Bathymetry Data Base 2 minute resolution » DBDBV... Digital Bathymetry Data Base variable resolution Oceanography | Vol. 27, No.3130 Very High-Resolution Coastal Circulation Models Nearshore

  20. The Canadian Hydrological Model (CHM): A multi-scale, variable-complexity hydrological model for cold regions

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2016-12-01

    There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.

  1. Quantification of marine aerosol subgrid variability and its correlation with clouds based on high-resolution regional modeling: Quantifying Aerosol Subgrid Variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guangxing; Qian, Yun; Yan, Huiping

    One limitation of most global climate models (GCMs) is that with the horizontal resolutions they typically employ, they cannot resolve the subgrid variability (SGV) of clouds and aerosols, adding extra uncertainties to the aerosol radiative forcing estimation. To inform the development of an aerosol subgrid variability parameterization, here we analyze the aerosol SGV over the southern Pacific Ocean simulated by the high-resolution Weather Research and Forecasting model coupled to Chemistry. We find that within a typical GCM grid, the aerosol mass subgrid standard deviation is 15% of the grid-box mean mass near the surface on a 1 month mean basis.more » The fraction can increase to 50% in the free troposphere. The relationships between the sea-salt mass concentration, meteorological variables, and sea-salt emission rate are investigated in both the clear and cloudy portion. Under clear-sky conditions, marine aerosol subgrid standard deviation is highly correlated with the standard deviations of vertical velocity, cloud water mixing ratio, and sea-salt emission rates near the surface. It is also strongly connected to the grid box mean aerosol in the free troposphere (between 2 km and 4 km). In the cloudy area, interstitial sea-salt aerosol mass concentrations are smaller, but higher correlation is found between the subgrid standard deviations of aerosol mass and vertical velocity. Additionally, we find that decreasing the model grid resolution can reduce the marine aerosol SGV but strengthen the correlations between the aerosol SGV and the total water mixing ratio (sum of water vapor, cloud liquid, and cloud ice mixing ratios).« less

  2. Landscape risk factors for Lyme disease in the eastern broadleaf forest province of the Hudson River valley and the effect of explanatory data classification resolution.

    PubMed

    Messier, Kyle P; Jackson, Laura E; White, Jennifer L; Hilborn, Elizabeth D

    2015-01-01

    This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity) and aggregate classes (e.g., forest, developed). Percent of each landcover type, median income, and centroid coordinates were calculated by census tract. Regression results from individual and aggregate variable models were compared with the dispersion parameter-based R(2) (Rα(2)) and AIC. The maximum Rα(2) was 0.82 and 0.83 for the best aggregate and individual model, respectively. The AICs for the best models differed by less than 0.5%. The aggregate model variables included forest, developed, agriculture, agriculture-squared, y-coordinate, y-coordinate-squared, income and income-squared. The individual model variables included deciduous forest, deciduous forest-squared, developed low intensity, pasture, y-coordinate, y-coordinate-squared, income, and income-squared. Results indicate that regional landscape models for Lyme disease rate are robust to NLCD landcover classification resolution. Published by Elsevier Ltd.

  3. Spatial variability of intake fractions for Canadian emission scenarios: a comparison between three resolution scales.

    PubMed

    Manneh, Rima; Margni, Manuele; Deschênes, Louise

    2010-06-01

    Spatially differentiated intake fractions (iFs) linked to Canadian emissions of toxic organic chemicals were developed using the multimedia and multipathways fate and exposure model IMPACT 2002. The fate and exposure of chemicals released to the Canadian environment were modeled with a single regional mass-balance model and three models that provided multiple mass-balance regions within Canada. These three models were based on the Canadian subwatersheds (172 zones), ecozones (15 zones), and provinces (13 zones). Releases of 32 organic chemicals into water and air were considered. This was done in order to (i) assess and compare the spatial variability of iFs within and across the three levels of regionalization and (ii) compare the spatial iFs to nonspatial ones. Results showed that iFs calculated using the subwatershed resolution presented a higher spatial variability (up to 10 orders of magnitude for emissions into water) than the ones based on the ecozones and provinces, implying that higher spatial resolution could potentially reduce uncertainty in iFs and, therefore, increase the discriminating power when assessing and comparing toxic releases for known emission locations. Results also indicated that, for an unknown emission location, a model with high spatial resolution such as the subwatershed model could significantly improve the accuracy of a generic iF. Population weighted iFs span up to 3 orders of magnitude compared to nonspatial iFs calculated by the one-box model. Less significant differences were observed when comparing spatial versus nonspatial iFs from the ecozones and provinces, respectively.

  4. Bayesian Model for Matching the Radiometric Measurements of Aerospace and Field Ocean Color Sensors

    PubMed Central

    Salama, Mhd. Suhyb; Su, Zhongbo

    2010-01-01

    A Bayesian model is developed to match aerospace ocean color observation to field measurements and derive the spatial variability of match-up sites. The performance of the model is tested against populations of synthesized spectra and full and reduced resolutions of MERIS data. The model derived the scale difference between synthesized satellite pixel and point measurements with R2 > 0.88 and relative error < 21% in the spectral range from 400 nm to 695 nm. The sub-pixel variabilities of reduced resolution MERIS image are derived with less than 12% of relative errors in heterogeneous region. The method is generic and applicable to different sensors. PMID:22163615

  5. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    USGS Publications Warehouse

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the study of the potential impacts of climate change.

  6. High resolution climate scenarios for snowmelt modelling in small alpine catchments

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Peleg, N.; Burlando, P.; Jonas, T.

    2017-12-01

    Snow in the Alps is affected by climate change with regard to duration, timing and amount. This has implications with respect to important societal issues as drinking water supply or hydropower generation. In Switzerland, the latter received a lot of attention following the political decision to phase out of nuclear electricity production. An increasing number of authorization requests for small hydropower plants located in small alpine catchments was observed in the recent years. This situation generates ecological conflicts, while the expected climate change poses a threat to water availability thus putting at risk investments in such hydropower plants. Reliable high-resolution climate scenarios are thus required, which account for small-scale processes to achieve realistic predictions of snowmelt runoff and its variability in small alpine catchments. We therefore used a novel model chain by coupling a stochastic 2-dimensional weather generator (AWE-GEN-2d) with a state-of-the-art energy balance snow cover model (FSM). AWE-GEN-2d was applied to generate ensembles of climate variables at very fine temporal and spatial resolution, thus providing all climatic input variables required for the energy balance modelling. The land-surface model FSM was used to describe spatially variable snow cover accumulation and melt processes. The FSM was refined to allow applications at very high spatial resolution by specifically accounting for small-scale processes, such as a subgrid-parametrization of snow covered area or an improved representation of forest-snow processes. For the present study, the model chain was tested for current climate conditions using extensive observational dataset of different spatial and temporal coverage. Small-scale spatial processes such as elevation gradients or aspect differences in the snow distribution were evaluated using airborne LiDAR data. 40-year of monitoring data for snow water equivalent, snowmelt and snow-covered area for entire Switzerland was used to verify snow distribution patterns at coarser spatial and temporal scale. The ability of the model chain to reproduce current climate conditions in small alpine catchments makes this model combination an outstanding candidate to produce high resolution climate scenarios of snowmelt in small alpine catchments.

  7. Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations

    NASA Astrophysics Data System (ADS)

    Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang

    2018-05-01

    Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.

  8. High resolution simulations of a variable HH jet

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; de Colle, F.; Kajdič, P.; Esquivel, A.; Cantó, J.

    2007-04-01

    Context: In many papers, the flows in Herbig-Haro (HH) jets have been modeled as collimated outflows with a time-dependent ejection. In particular, a supersonic variability of the ejection velocity leads to the production of "internal working surfaces" which (for appropriate forms of the time-variability) can produce emitting knots that resemble the chains of knots observed along HH jets. Aims: In this paper, we present axisymmetric simulations of an "internal working surface" in a radiative jet (produced by an ejection velocity variability). We concentrate on a given parameter set (i.e., on a jet with a constante ejection density, and a sinusoidal velocity variability with a 20 yr period and a 40 km s-1 half-amplitude), and carry out a study of the behaviour of the solution for increasing numerical resolutions. Methods: In our simulations, we solve the gasdynamic equations together with a 17-species atomic/ionic network, and we are therefore able to compute emission coefficients for different emission lines. Results: We compute 3 adaptive grid simulations, with 20, 163 and 1310 grid points (at the highest grid resolution) across the initial jet radius. From these simulations we see that successively more complex structures are obtained for increasing numerical resolutions. Such an effect is seen in the stratifications of the flow variables as well as in the predicted emission line intensity maps. Conclusions: .We find that while the detailed structure of an internal working surface depends on resolution, the predicted emission line luminosities (integrated over the volume of the working surface) are surprisingly stable. This is definitely good news for the future computation of predictions from radiative jet models for carrying out comparisons with observations of HH objects.

  9. Enhancing SMAP Soil Moisture Retrievals via Superresolution Techniques

    NASA Astrophysics Data System (ADS)

    Beale, K. D.; Ebtehaj, A. M.; Romberg, J. K.; Bras, R. L.

    2017-12-01

    Soil moisture is a key state variable that modulates land-atmosphere interactions and its high-resolution global scale estimates are essential for improved weather forecasting, drought prediction, crop management, and the safety of troop mobility. Currently, NASA's Soil Moisture Active/Passive (SMAP) satellite provides a global picture of soil moisture variability at a resolution of 36 km, which is prohibitive for some hydrologic applications. The goal of this research is to enhance the resolution of SMAP passive microwave retrievals by a factor of 2 to 4 using modern superresolution techniques that rely on the knowledge of high-resolution land surface models. In this work, we explore several super-resolution techniques including an empirical dictionary method, a learned dictionary method, and a three-layer convolutional neural network. Using a year of global high-resolution land surface model simulations as training set, we found that we are able to produce high-resolution soil moisture maps that outperform the original low-resolution observations both qualitatively and quantitatively. In particular, on a patch-by-patch basis we are able to produce estimates of high-resolution soil moisture maps that improve on the original low-resolution patches by on average 6% in terms of mean-squared error, and 14% in terms of the structural similarity index.

  10. High-resolution mapping and modelling of surface albedo in Norwegian boreal forests: from remotely sensed data to predictions

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Hu, Xiangping; Vezhapparambu, Sajith; Stromman, Anders

    2017-04-01

    Surface albedo, a key parameter of the Earth's climate system, has high variability in space, time, and land cover and its parameterization is among the most important variables in climate models. The lack of extensive estimates for model improvement is one of the main limitations for accurately quantifying the influence of surface albedo changes on the planetary radiation balance. We use multi-year satellite retrievals of MODIS surface albedo (MCD43A3), high resolution land cover maps, and meteorological records to characterize albedo variations in Norway across latitude, seasons, land cover type, and topography. We then use this dataset to elaborate semi-empirical models to predict albedo values as a function of tree species, age, volume and climate variables like temperature and snow water equivalents (SWE). Given the complexity of the dataset and model formulation, we apply an innovative non-linear programming approach simultaneously coupled with linear un-mixing. The MODIS albedo products are at a resolution of about 500 m and 8 days. The land cover maps provide vegetation structure information on relative abundance of tree species, age, and biomass volumes at 16 m resolution (for both deciduous and coniferous species). Daily observations of meteorological information on air temperature and SWE are produced at 1 km resolution from interpolation of meteorological weather stations in Norway. These datasets have different resolution and projection, and are harmonized by identifying, for each MODIS pixel, the intersecting land cover polygons and the percentage area of the MODIS pixel represented by each land cover type. We then filter the subplots according to the following criteria: i) at least 96% of the total pixel area is covered by a single land cover class (either forest or cropland); ii) if forest area, at least 98% of the forest area is covered by spruce, deciduous or pine. Forested pixels are then categorized as spruce, deciduous, or pine dominant if the fraction of the respective tree species is greater than 75%. Results show averages of albedo estimates for forests and cropland depicting spatial (along a latitudinal gradient) and temporal (daily, monthly, and seasonal) variations across Norway. As the case study region is a country with heterogeneous topography, we also study the sensitivity of the albedo estimates to the slope and aspect of the terrain. The mathematical programming approach uses a variety of functional forms, constraints and variables, leading to many different model outputs. There are several models with relatively high performances, allowing for a flexibility in the model selection, with different model variants suitable for different situations. This approach produces albedo predictions at the same resolution of the land cover dataset (16 m, notably higher than the MODIS estimates), can incorporate changes in climate conditions, and is robust to cross-validation between different locations. By integrating satellite measurements and high-resolution vegetation maps, we can thus produce semi-empirical models that can predict albedo values for boreal forests using a variety of input variables representing climate and/or vegetation structure. Further research can explore the possible advantages of its implementation in land surface schemes over existing approaches.

  11. Remote sensing of the Canadian Arctic: Modelling biophysical variables

    NASA Astrophysics Data System (ADS)

    Liu, Nanfeng

    It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic overestimation of 0.08, which was attributed to PAR absorption by soil that could not be excluded from the fAPAR calculation. This research clearly demonstrates that high spectral and spatial resolution remote sensing VIs can be used to successfully model Arctic biophysical variables. The methods and results presented in this research provided a guide for future studies aiming to model other Arctic biophysical variables through remote sensing data.

  12. Impact of temporal upscaling and chemical transport model horizontal resolution on reducing ozone exposure misclassification

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William

    2017-10-01

    We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.

  13. Nonlinear responses of southern African rainfall to forcing from Atlantic SST in a high-resolution regional climate model

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes remote SST anomalies.

  14. Non-Gaussian Multi-resolution Modeling of Magnetosphere-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Fan, M.; Paul, D.; Lee, T. C. M.; Matsuo, T.

    2016-12-01

    The most dynamic coupling between the magnetosphere and ionosphere occurs in the Earth's polar atmosphere. Our objective is to model scale-dependent stochastic characteristics of high-latitude ionospheric electric fields that originate from solar wind magnetosphere-ionosphere interactions. The Earth's high-latitude ionospheric electric field exhibits considerable variability, with increasing non-Gaussian characteristics at decreasing spatio-temporal scales. Accurately representing the underlying stochastic physical process through random field modeling is crucial not only for scientific understanding of the energy, momentum and mass exchanges between the Earth's magnetosphere and ionosphere, but also for modern technological systems including telecommunication, navigation, positioning and satellite tracking. While a lot of efforts have been made to characterize the large-scale variability of the electric field in the context of Gaussian processes, no attempt has been made so far to model the small-scale non-Gaussian stochastic process observed in the high-latitude ionosphere. We construct a novel random field model using spherical needlets as building blocks. The double localization of spherical needlets in both spatial and frequency domains enables the model to capture the non-Gaussian and multi-resolutional characteristics of the small-scale variability. The estimation procedure is computationally feasible due to the utilization of an adaptive Gibbs sampler. We apply the proposed methodology to the computational simulation output from the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) magnetosphere model. Our non-Gaussian multi-resolution model results in characterizing significantly more energy associated with the small-scale ionospheric electric field variability in comparison to Gaussian models. By accurately representing unaccounted-for additional energy and momentum sources to the Earth's upper atmosphere, our novel random field modeling approach will provide a viable remedy to the current numerical models' systematic biases resulting from the underestimation of high-latitude energy and momentum sources.

  15. TopoSCALE v.1.0: downscaling gridded climate data in complex terrain

    NASA Astrophysics Data System (ADS)

    Fiddes, J.; Gruber, S.

    2014-02-01

    Simulation of land surface processes is problematic in heterogeneous terrain due to the the high resolution required of model grids to capture strong lateral variability caused by, for example, topography, and the lack of accurate meteorological forcing data at the site or scale it is required. Gridded data products produced by atmospheric models can fill this gap, however, often not at an appropriate spatial resolution to drive land-surface simulations. In this study we describe a method that uses the well-resolved description of the atmospheric column provided by climate models, together with high-resolution digital elevation models (DEMs), to downscale coarse-grid climate variables to a fine-scale subgrid. The main aim of this approach is to provide high-resolution driving data for a land-surface model (LSM). The method makes use of an interpolation of pressure-level data according to topographic height of the subgrid. An elevation and topography correction is used to downscale short-wave radiation. Long-wave radiation is downscaled by deriving a cloud-component of all-sky emissivity at grid level and using downscaled temperature and relative humidity fields to describe variability with elevation. Precipitation is downscaled with a simple non-linear lapse and optionally disaggregated using a climatology approach. We test the method in comparison with unscaled grid-level data and a set of reference methods, against a large evaluation dataset (up to 210 stations per variable) in the Swiss Alps. We demonstrate that the method can be used to derive meteorological inputs in complex terrain, with most significant improvements (with respect to reference methods) seen in variables derived from pressure levels: air temperature, relative humidity, wind speed and incoming long-wave radiation. This method may be of use in improving inputs to numerical simulations in heterogeneous and/or remote terrain, especially when statistical methods are not possible, due to lack of observations (i.e. remote areas or future periods).

  16. Effect of climate data on simulated carbon and nitrogen balances for Europe

    NASA Astrophysics Data System (ADS)

    Blanke, Jan Hendrik; Lindeskog, Mats; Lindström, Johan; Lehsten, Veiko

    2016-05-01

    In this study, we systematically assess the spatial variability in carbon and nitrogen balance simulations related to the choice of global circulation models (GCMs), representative concentration pathways (RCPs), spatial resolutions, and the downscaling methods used as calculated with LPJ-GUESS. We employed a complete factorial design and performed 24 simulations for Europe with different climate input data sets and different combinations of these four factors. Our results reveal that the variability in simulated output in Europe is moderate with 35.6%-93.5% of the total variability being common among all combinations of factors. The spatial resolution is the most important factor among the examined factors, explaining 1.5%-10.7% of the total variability followed by GCMs (0.3%-7.6%), RCPs (0%-6.3%), and downscaling methods (0.1%-4.6%). The higher-order interactions effect that captures nonlinear relations between the factors and random effects is pronounced and accounts for 1.6%-45.8% to the total variability. The most distinct hot spots of variability include the mountain ranges in North Scandinavia and the Alps, and the Iberian Peninsula. Based on our findings, we advise to conduct the application of models such as LPJ-GUESS at a reasonably high spatial resolution which is supported by the model structure. There is no notable gain in simulations of ecosystem carbon and nitrogen stocks and fluxes from using regionally downscaled climate in preference to bias-corrected, bilinearly interpolated CMIP5 projections.

  17. A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.

    2000-01-01

    The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.

  18. High resolution simulations of aerosol microphysics in a global and regionally nested chemical transport model

    NASA Astrophysics Data System (ADS)

    Adams, P. J.; Marks, M.

    2015-12-01

    The aerosol indirect effect is the largest source of forcing uncertainty in current climate models. This effect arises from the influence of aerosols on the reflective properties and lifetimes of clouds, and its magnitude depends on how many particles can serve as cloud droplet formation sites. Assessing levels of this subset of particles (cloud condensation nuclei, or CCN) requires knowledge of aerosol levels and their global distribution, size distributions, and composition. A key tool necessary to advance our understanding of CCN is the use of global aerosol microphysical models, which simulate the processes that control aerosol size distributions: nucleation, condensation/evaporation, and coagulation. Previous studies have found important differences in CO (Chen, D. et al., 2009) and ozone (Jang, J., 1995) modeled at different spatial resolutions, and it is reasonable to believe that short-lived, spatially-variable aerosol species will be similarly - or more - susceptible to model resolution effects. The goal of this study is to determine how CCN levels and spatial distributions change as simulations are run at higher spatial resolution - specifically, to evaluate how sensitive the model is to grid size, and how this affects comparisons against observations. Higher resolution simulations are necessary supports for model/measurement synergy. Simulations were performed using the global chemical transport model GEOS-Chem (v9-02). The years 2008 and 2009 were simulated at 4ox5o and 2ox2.5o globally and at 0.5ox0.667o over Europe and North America. Results were evaluated against surface-based particle size distribution measurements from the European Supersites for Atmospheric Aerosol Research project. The fine-resolution model simulates more spatial and temporal variability in ultrafine levels, and better resolves topography. Results suggest that the coarse model predicts systematically lower ultrafine levels than does the fine-resolution model. Significant differences are also evident with respect to model-measurement comparisons, and will be discussed.

  19. Monsoon Variability in the Arabian Sea from Enhanced and Standard Horizontal Resolution Coupled Climate Models.

    NASA Astrophysics Data System (ADS)

    McClean, J.; Veneziani, C.; Maltrud, M. E.; Taylor, M.; Bader, D. C.; Branstetter, M. L.; Evans, K. J.; Mahajan, S.

    2016-02-01

    The circulation of the upper ocean in the Arabian Sea switches direction seasonally due to the change in direction of the prevailing winds associated with the Indian Monsoon. Predictability of the monsoon circulation, however, is uncertain due to incomplete understanding of the physical processes operating on the monsoon and other time scales, particularly interannual and intraseasonal. We use the Community Earth System Model (CESM) with enhanced horizontal resolution in each of its components relative to standard coupled climate model resolution, to better understand these time scale interactions. A standard resolution CESM counterpart is used to assess how horizontal resolution impacts the depiction of these processes. In the enhanced resolution case, 0.25° Community Atmosphere Model 5 (CAM5) is coupled to, among other components, the tripolar nominal 0.1° Parallel Ocean Program 2 (POP2). The fine resolution CESM simulation was run for 85 years; constant 1850 preindustrial forcing was used throughout the run, allowing us to isolate internal variability of the coupled system. Model parameters were adjusted ("tuned") to produce an acceptably small top of the atmosphere radiation imbalance. The reversal of the Somali Current (SC), the western boundary current off northeast Africa, has typically been associated with that of the monsoon. The SC reverses from southwestward in boreal winter to northeastward in summer; coastal upwelling is induced by the summer monsoonal winds. Recently it has been shown from new observations that the SC starts to reverse prior to the monsoon switch. Westward propagating Rossby waves have been implicated as responsible for the early SC reversal. We will discuss the sequencing of remote and local forcing on the timing of the spring inter-monsoonal switch in the direction of the SC and the appearance of the Great Whirl off the Oman Coast. Particularly, we consider how the Indian Ocean Dipole (IOD) acts to modify the seasonal strength and variability of the western boundary current system including upwelling. We look for a connection between interannual upwelling variability and that of rainfall off the west coast of India. As well, we examine changes due to the IOD in the upper ocean temperature and salinity structure along the Rossby wave propagation route in the Arabian Sea.

  20. Assessment of the effects of horizontal grid resolution on long ...

    EPA Pesticide Factsheets

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) conducts research in support of EPA’s mission to protect human health and the environment.

  1. Evaluating MODIS snow products for modelling snowmelt runoff: case study of the Rio Grande headwaters

    USDA-ARS?s Scientific Manuscript database

    Snow-covered area (SCA) is a key variable in the Snowmelt-Runoff Model (SRM). Landsat Thematic Mapper (TM) or Operational Land Imager (OLI) provide remotely sensed data at an appropriate spatial resolution for mapping SCA in small headwater basins, but the temporal resolution of the data is low and ...

  2. Regional sea level variability in a high-resolution global coupled climate model

    NASA Astrophysics Data System (ADS)

    Palko, D.; Kirtman, B. P.

    2016-12-01

    The prediction of trends at regional scales is essential in order to adapt to and prepare for the effects of climate change. However, GCMs are unable to make reliable predictions at regional scales. The prediction of local sea level trends is particularly critical. The main goal of this research is to utilize high-resolution (HR) (0.1° resolution in the ocean) coupled model runs of CCSM4 to analyze regional sea surface height (SSH) trends. Unlike typical, lower resolution (1.0°) GCM runs these HR runs resolve features in the ocean, like the Gulf Stream, which may have a large effect on regional sea level. We characterize the variability of regional SSH along the Atlantic coast of the US using tide gauge observations along with fixed radiative forcing runs of CCSM4 and HR interactive ensemble runs. The interactive ensemble couples an ensemble mean atmosphere with a single ocean realization. This coupling results in a 30% decrease in the strength of the Atlantic meridional overturning circulation; therefore, the HR interactive ensemble is analogous to a HR hosing experiment. By characterizing the variability in these high-resolution GCM runs and observations we seek to understand what processes influence coastal SSH along the Eastern Coast of the United States and better predict future SLR.

  3. Resolution of ab initio shapes determined from small-angle scattering.

    PubMed

    Tuukkanen, Anne T; Kleywegt, Gerard J; Svergun, Dmitri I

    2016-11-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models.

  4. Resolution of ab initio shapes determined from small-angle scattering

    PubMed Central

    Tuukkanen, Anne T.; Kleywegt, Gerard J.; Svergun, Dmitri I.

    2016-01-01

    Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nucleic acids and complexes in solution. However, no quantitative resolution measure is available for SAS-derived models, which significantly hampers their validation and further use. Here, a method is derived for resolution assessment for ab initio shape reconstruction from scattering data. The inherent variability of the ab initio shapes is utilized and it is demonstrated how their average Fourier shell correlation function is related to the model resolution. The method is validated against simulated data for proteins with known high-resolution structures and its efficiency is demonstrated in applications to experimental data. It is proposed that henceforth the resolution be reported in publications and depositions of ab initio SAS models. PMID:27840683

  5. Seasonal and spatial variation in broadleaf forest model parameters

    NASA Astrophysics Data System (ADS)

    Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.

    2009-04-01

    Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and vapour pressure deficit.

  6. Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 1: Method.

    PubMed

    Norris, Peter M; da Silva, Arlindo M

    2016-07-01

    A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC.

  7. Monte Carlo Bayesian Inference on a Statistical Model of Sub-Gridcolumn Moisture Variability Using High-Resolution Cloud Observations. Part 1: Method

    NASA Technical Reports Server (NTRS)

    Norris, Peter M.; Da Silva, Arlindo M.

    2016-01-01

    A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC.

  8. Monte Carlo Bayesian inference on a statistical model of sub-gridcolumn moisture variability using high-resolution cloud observations. Part 1: Method

    PubMed Central

    Norris, Peter M.; da Silva, Arlindo M.

    2018-01-01

    A method is presented to constrain a statistical model of sub-gridcolumn moisture variability using high-resolution satellite cloud data. The method can be used for large-scale model parameter estimation or cloud data assimilation. The gridcolumn model includes assumed probability density function (PDF) intra-layer horizontal variability and a copula-based inter-layer correlation model. The observables used in the current study are Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-top pressure, brightness temperature and cloud optical thickness, but the method should be extensible to direct cloudy radiance assimilation for a small number of channels. The algorithm is a form of Bayesian inference with a Markov chain Monte Carlo (MCMC) approach to characterizing the posterior distribution. This approach is especially useful in cases where the background state is clear but cloudy observations exist. In traditional linearized data assimilation methods, a subsaturated background cannot produce clouds via any infinitesimal equilibrium perturbation, but the Monte Carlo approach is not gradient-based and allows jumps into regions of non-zero cloud probability. The current study uses a skewed-triangle distribution for layer moisture. The article also includes a discussion of the Metropolis and multiple-try Metropolis versions of MCMC. PMID:29618847

  9. A dynamic aerodynamic resistance approach to calculate high resolution sensible heat fluxes in urban areas

    NASA Astrophysics Data System (ADS)

    Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William

    2017-04-01

    Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.

  10. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    2016-11-14

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  11. Application of Climate Assessment Tool (CAT) to estimate climate variability impacts on nutrient loading from local watersheds

    Treesearch

    Ying Ouyang; Prem B. Parajuli; Gary Feng; Theodor D. Leininger; Yongshan Wan; Padmanava Dash

    2018-01-01

    A vast amount of future climate scenario datasets, created by climate models such as general circulation models (GCMs), have been used in conjunction with watershed models to project future climate variability impact on hydrological processes and water quality. However, these low spatial-temporal resolution datasets are often difficult to downscale spatially and...

  12. Improving spatio-temporal model estimation of satellite-derived PM2.5 concentrations: Implications for public health

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Al-Hamdan, M. Z.; Crosson, W. L.; Yang, C. A.; Coffield, S. R.

    2017-12-01

    Satellite-derived environmental data, available in a range of spatio-temporal scales, are contributing to the growing use of health impact assessments of air pollution in the public health sector. Models developed using correlation of Moderate Resolution Imaging Spectrometer (MODIS) Aerosol Optical Depth (AOD) with ground measurements of fine particulate matter less than 2.5 microns (PM2.5) are widely applied to measure PM2.5 spatial and temporal variability. In the public health sector, associations of PM2.5 with respiratory and cardiovascular diseases are often investigated to quantify air quality impacts on these health concerns. In order to improve predictability of PM2.5 estimation using correlation models, we have included meteorological variables, higher-resolution AOD products and instantaneous PM2.5 observations into statistical estimation models. Our results showed that incorporation of high-resolution (1-km) Multi-Angle Implementation of Atmospheric Correction (MAIAC)-generated MODIS AOD, meteorological variables and instantaneous PM2.5 observations improved model performance in various parts of California (CA), USA, where single variable AOD-based models showed relatively weak performance. In this study, we further asked whether these improved models actually would be more successful for exploring associations of public health outcomes with estimated PM2.5. To answer this question, we geospatially investigated model-estimated PM2.5's relationship with respiratory and cardiovascular diseases such as asthma, high blood pressure, coronary heart disease, heart attack and stroke in CA using health data from the Centers for Disease Control and Prevention (CDC)'s Wide-ranging Online Data for Epidemiologic Research (WONDER) and the Behavioral Risk Factor Surveillance System (BRFSS). PM2.5 estimation from these improved models have the potential to improve our understanding of associations between public health concerns and air quality.

  13. City scale pollen concentration variability

    NASA Astrophysics Data System (ADS)

    van der Molen, Michiel; van Vliet, Arnold; Krol, Maarten

    2016-04-01

    Pollen are emitted in the atmosphere both in the country-side and in cities. Yet the majority of the population is exposed to pollen in cities. Allergic reactions may be induced by short-term exposure to pollen. This raises the question how variable pollen concentration in cities are in temporally and spatially, and how much of the pollen in cities are actually produced in the urban region itself. We built a high resolution (1 × 1 km) pollen dispersion model based on WRF-Chem to study a city's pollen budget and the spatial and temporal variability in concentration. It shows that the concentrations are highly variable, as a result of source distribution, wind direction and boundary layer mixing, as well as the release rate as a function of temperature, turbulence intensity and humidity. Hay Fever Forecasts based on such high resolution emission and physical dispersion modelling surpass traditional hay fever warning methods based on temperature sum methods. The model gives new insights in concentration variability, personal and community level exposure and prevention. The model will be developped into a new forecast tool to serve allergic people to minimize their exposure and reduce nuisance, coast of medication and sick leave. This is an innovative approach in hay fever warning systems.

  14. Mesosacle eddies in a high resolution OGCM and coupled ocean-atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, H.; Lin, P.

    2017-12-01

    The present study described high-resolution climate modeling efforts including oceanic, atmospheric and coupled general circulation model (GCM) at the state key laboratory of numerical modeling for atmospheric sciences and geophysical fluid dynamics (LASG), Institute of Atmospheric Physics (IAP). The high-resolution OGCM is established based on the latest version of the LASG/IAP Climate system Ocean Model (LICOM2.1), but its horizontal resolution and vertical resolution are increased to 1/10° and 55 layers, respectively. Forced by the surface fluxes from the reanalysis and observed data, the model has been integrated for approximately more than 80 model years. Compared with the simulation of the coarse-resolution OGCM, the eddy-resolving OGCM not only better simulates the spatial-temporal features of mesoscale eddies and the paths and positions of western boundary currents but also reproduces the large meander of the Kuroshio Current and its interannual variability. Another aspect, namely, the complex structures of equatorial Pacific currents and currents in the coastal ocean of China, are better captured due to the increased horizontal and vertical resolution. Then we coupled the high resolution OGCM to NCAR CAM4 with 25km resolution, in which the mesoscale air-sea interaction processes are better captured.

  15. A New Formulation for Fresh Snow Density over Antarctica for the regional climate model Modèle Atmosphérique Régionale (MAR).

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Datta, R.; Fettweis, X.; Agosta, C.

    2015-12-01

    Surface-layer snow density is important to processes contributing to surface mass balance, but is highly variable over Antarctica due to a wide range of near-surface climate conditions over the continent. Formulations for fresh snow density have typically either used fixed values or been modeled empirically using field data that is limited to specific seasons or regions. There is also currently limited work exploring how the sensitivity to fresh snow density in regional climate models varies with resolution. Here, we present a new formulation compiled from (a) over 1600 distinct density profiles from multiple sources across Antarctica and (b) near-surface variables from the regional climate model Modèle Atmosphérique Régionale (MAR). Observed values represent coastal areas as well as the plateau, in both West and East Antarctica (although East Antarctica is dominant). However, no measurements are included from the Antarctic Peninsula, which is both highly topographically variable and extends to lower latitudes than the remainder of the continent. In order to assess the applicability of this fresh snow density formulation to the Antarctic Peninsula at high resolutions, a version of MAR is run for several years both at low-resolution at the continental scale and at a high resolution for the Antarctic Peninsula alone. This setup is run both with and without the new fresh density formulation to quantify the sensitivity of the energy balance and SMB components to fresh snow density. Outputs are compared with near-surface atmospheric variables available from AWS stations (provided by the University of Wisconsin Madison) as well as net accumulation values from the SAMBA database (provided from the Laboratoire de Glaciologie et Géophysique de l'Environnement).

  16. Spectral characteristics of mid-latitude continental convection from a global variable-resolution Voronoi-mesh atmospheric model

    NASA Astrophysics Data System (ADS)

    Wong, M.; Skamarock, W. C.

    2015-12-01

    Global numerical weather forecast tests were performed using the global nonhydrostatic atmospheric model, Model for Prediction Across Scales (MPAS), for the NOAA Storm Prediction Center 2015 Spring Forecast Experiment (May 2015) and the Plains Elevated Convection at Night (PECAN) field campaign (June to mid-July 2015). These two sets of forecasts were performed on 50-to-3 km and 15-to-3 km smoothly-varying horizontal meshes, respectively. Both variable-resolution meshes have nominal convection-permitting 3-km grid spacing over the entire continental US. Here we evaluate the limited-area (vs. global) spectra from these NWP simulations. We will show the simulated spectral characteristics of total kinetic energy, vertical velocity variance, and precipitation during these spring and summer periods when diurnal continental convection is most active over central US. Spectral characteristics of a high-resolution global 3-km simulation (essentially no nesting) from the 20 May 2013 Moore, OK tornado case are also shown. These characteristics include spectral scaling, shape, and anisotropy, as well as the effective resolution of continental convection representation in MPAS.

  17. Accounting for sub-pixel variability of clouds and/or unresolved spectral variability, as needed, with generalized radiative transfer theory

    DOE PAGES

    Davis, Anthony B.; Xu, Feng; Collins, William D.

    2015-03-01

    Atmospheric hyperspectral VNIR sensing struggles with sub-pixel variability of clouds and limited spectral resolution mixing molecular lines. Our generalized radiative transfer model addresses both issues with new propagation kernels characterized by power-law decay in space.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  19. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO 2 emissions

    DOE PAGES

    Feng, Sha; Lauvaux, Thomas; Newman, Sally; ...

    2016-07-22

    Megacities are major sources of anthropogenic fossil fuel CO 2 (FFCO 2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km 2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO 2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO 2 emission product, Hestia-LA, to simulate atmospheric CO 2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We evaluated multiple WRF configurations, selecting one that minimizedmore » errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO 2 emission products to evaluate the impact of the spatial resolution of the CO 2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO 2 concentrations. We find that high spatial resolution in the fossil fuel CO 2 emissions is more important than in the atmospheric model to capture CO 2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO 2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO 2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO 2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO 2 emissions monitoring in the LA megacity requires FFCO 2 emissions modelling with ~1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.« less

  20. Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO 2 emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Sha; Lauvaux, Thomas; Newman, Sally

    Megacities are major sources of anthropogenic fossil fuel CO 2 (FFCO 2) emissions. The spatial extents of these large urban systems cover areas of 10 000 km 2 or more with complex topography and changing landscapes. We present a high-resolution land–atmosphere modelling system for urban CO 2 emissions over the Los Angeles (LA) megacity area. The Weather Research and Forecasting (WRF)-Chem model was coupled to a very high-resolution FFCO 2 emission product, Hestia-LA, to simulate atmospheric CO 2 concentrations across the LA megacity at spatial resolutions as fine as ~1 km. We evaluated multiple WRF configurations, selecting one that minimizedmore » errors in wind speed, wind direction, and boundary layer height as evaluated by its performance against meteorological data collected during the CalNex-LA campaign (May–June 2010). Our results show no significant difference between moderate-resolution (4 km) and high-resolution (1.3 km) simulations when evaluated against surface meteorological data, but the high-resolution configurations better resolved planetary boundary layer heights and vertical gradients in the horizontal mean winds. We coupled our WRF configuration with the Vulcan 2.2 (10 km resolution) and Hestia-LA (1.3 km resolution) fossil fuel CO 2 emission products to evaluate the impact of the spatial resolution of the CO 2 emission products and the meteorological transport model on the representation of spatiotemporal variability in simulated atmospheric CO 2 concentrations. We find that high spatial resolution in the fossil fuel CO 2 emissions is more important than in the atmospheric model to capture CO 2 concentration variability across the LA megacity. Finally, we present a novel approach that employs simultaneous correlations of the simulated atmospheric CO 2 fields to qualitatively evaluate the greenhouse gas measurement network over the LA megacity. Spatial correlations in the atmospheric CO 2 fields reflect the coverage of individual measurement sites when a statistically significant number of sites observe emissions from a specific source or location. We conclude that elevated atmospheric CO 2 concentrations over the LA megacity are composed of multiple fine-scale plumes rather than a single homogenous urban dome. Furthermore, we conclude that FFCO 2 emissions monitoring in the LA megacity requires FFCO 2 emissions modelling with ~1 km resolution because coarser-resolution emissions modelling tends to overestimate the observational constraints on the emissions estimates.« less

  1. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model

    NASA Astrophysics Data System (ADS)

    Jungclaus, J. H.; Fischer, N.; Haak, H.; Lohmann, K.; Marotzke, J.; Matei, D.; Mikolajewicz, U.; Notz, D.; von Storch, J. S.

    2013-06-01

    MPI-ESM is a new version of the global Earth system model developed at the Max Planck Institute for Meteorology. This paper describes the ocean state and circulation as well as basic aspects of variability in simulations contributing to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The performance of the ocean/sea-ice model MPIOM, coupled to a new version of the atmosphere model ECHAM6 and modules for land surface and ocean biogeochemistry, is assessed for two model versions with different grid resolution in the ocean. The low-resolution configuration has a nominal resolution of 1.5°, whereas the higher resolution version features a quasiuniform, eddy-permitting global resolution of 0.4°. The paper focuses on important oceanic features, such as surface temperature and salinity, water mass distribution, large-scale circulation, and heat and freshwater transports. In general, these integral quantities are simulated well in comparison with observational estimates, and improvements in comparison with the predecessor system are documented; for example, for tropical variability and sea ice representation. Introducing an eddy-permitting grid configuration in the ocean leads to improvements, in particular, in the representation of interior water mass properties in the Atlantic and in the representation of important ocean currents, such as the Agulhas and Equatorial current systems. In general, however, there are more similarities than differences between the two grid configurations, and several shortcomings, known from earlier versions of the coupled model, prevail.

  2. Atmospheric icing of structures: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Ágústsson, H.; Elíasson, Á. J.; Thorsteins, E.; Rögnvaldsson, Ó.; Ólafsson, H.

    2012-04-01

    This study compares observed icing in a test span in complex orography at Hallormsstaðaháls (575 m) in East-Iceland with parameterized icing based on an icing model and dynamically downscaled weather at high horizontal resolution. Four icing events have been selected from an extensive dataset of observed atmospheric icing in Iceland. A total of 86 test-spans have been erected since 1972 at 56 locations in complex terrain with more than 1000 icing events documented. The events used here have peak observed ice load between 4 and 36 kg/m. Most of the ice accretion is in-cloud icing but it may partly be mixed with freezing drizzle and wet snow icing. The calculation of atmospheric icing is made in two steps. First the atmospheric data is created by dynamically downscaling the ECMWF-analysis to high resolution using the non-hydrostatic mesoscale Advanced Research WRF-model. The horizontal resolution of 9, 3, 1 and 0.33 km is necessary to allow the atmospheric model to reproduce correctly local weather in the complex terrain of Iceland. Secondly, the Makkonen-model is used to calculate the ice accretion rate on the conductors based on the simulated temperature, wind, cloud and precipitation variables from the atmospheric data. In general, the atmospheric model correctly simulates the atmospheric variables and icing calculations based on the atmospheric variables correctly identify the observed icing events, but underestimate the load due to too slow ice accretion. This is most obvious when the temperature is slightly below 0°C and the observed icing is most intense. The model results improve significantly when additional observations of weather from an upstream weather station are used to nudge the atmospheric model. However, the large variability in the simulated atmospheric variables results in high temporal and spatial variability in the calculated ice accretion. Furthermore, there is high sensitivity of the icing model to the droplet size and the possibility that some of the icing may be due to freezing drizzle or wet snow instead of in-cloud icing of super-cooled droplets. In addition, the icing model (Makkonen) may not be accurate for the highest icing loads observed.

  3. The unusual suspect: Land use is a key predictor of biodiversity patterns in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Martins, Inês Santos; Proença, Vânia; Pereira, Henrique Miguel

    2014-11-01

    Although land use change is a key driver of biodiversity change, related variables such as habitat area and habitat heterogeneity are seldom considered in modeling approaches at larger extents. To address this knowledge gap we tested the contribution of land use related variables to models describing richness patterns of amphibians, reptiles and passerines in the Iberian Peninsula. We analyzed the relationship between species richness and habitat heterogeneity at two spatial resolutions (i.e., 10 km × 10 km and 50 km × 50 km). Using both ordinary least square and simultaneous autoregressive models, we assessed the relative importance of land use variables, climate variables and topographic variables. We also compare the species-area relationship with a multi-habitat model, the countryside species-area relationship, to assess the role of the area of different types of habitats on species diversity across scales. The association between habitat heterogeneity and species richness varied with the taxa and spatial resolution. A positive relationship was detected for all taxa at a grain size of 10 km × 10 km, but only passerines responded at a grain size of 50 km × 50 km. Species richness patterns were well described by abiotic predictors, but habitat predictors also explained a considerable portion of the variation. Moreover, species richness patterns were better described by a multi-habitat species-area model, incorporating land use variables, than by the classic power model, which only includes area as the single explanatory variable. Our results suggest that the role of land use in shaping species richness patterns goes beyond the local scale and persists at larger spatial scales. These findings call for the need of integrating land use variables in models designed to assess species richness response to large scale environmental changes.

  4. Performance of European chemistry transport models as function of horizontal resolution

    NASA Astrophysics Data System (ADS)

    Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.

    2015-07-01

    Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation procedures at high spatial and temporal resolution are a crucial factor for further model resolution improvements.

  5. Spatial and temporal variability of clouds and precipitation over Germany: multiscale simulations across the "gray zone"

    NASA Astrophysics Data System (ADS)

    Barthlott, C.; Hoose, C.

    2015-11-01

    This paper assesses the resolution dependance of clouds and precipitation over Germany by numerical simulations with the COnsortium for Small-scale MOdeling (COSMO) model. Six intensive observation periods of the HOPE (HD(CP)2 Observational Prototype Experiment) measurement campaign conducted in spring 2013 and 1 summer day of the same year are simulated. By means of a series of grid-refinement resolution tests (horizontal grid spacing 2.8, 1 km, 500, and 250 m), the applicability of the COSMO model to represent real weather events in the gray zone, i.e., the scale ranging between the mesoscale limit (no turbulence resolved) and the large-eddy simulation limit (energy-containing turbulence resolved), is tested. To the authors' knowledge, this paper presents the first non-idealized COSMO simulations in the peer-reviewed literature at the 250-500 m scale. It is found that the kinetic energy spectra derived from model output show the expected -5/3 slope, as well as a dependency on model resolution, and that the effective resolution lies between 6 and 7 times the nominal resolution. Although the representation of a number of processes is enhanced with resolution (e.g., boundary-layer thermals, low-level convergence zones, gravity waves), their influence on the temporal evolution of precipitation is rather weak. However, rain intensities vary with resolution, leading to differences in the total rain amount of up to +48 %. Furthermore, the location of rain is similar for the springtime cases with moderate and strong synoptic forcing, whereas significant differences are obtained for the summertime case with air mass convection. Domain-averaged liquid water paths and cloud condensate profiles are used to analyze the temporal and spatial variability of the simulated clouds. Finally, probability density functions of convection-related parameters are analyzed to investigate their dependance on model resolution and their impact on cloud formation and subsequent precipitation.

  6. Evaluating a Local Ensemble Transform Kalman Filter snow cover data assimilation method to estimate SWE within a high-resolution hydrologic modeling framework across Western US mountainous regions

    NASA Astrophysics Data System (ADS)

    Oaida, C. M.; Andreadis, K.; Reager, J. T., II; Famiglietti, J. S.; Levoe, S.

    2017-12-01

    Accurately estimating how much snow water equivalent (SWE) is stored in mountainous regions characterized by complex terrain and snowmelt-driven hydrologic cycles is not only greatly desirable, but also a big challenge. Mountain snowpack exhibits high spatial variability across a broad range of spatial and temporal scales due to a multitude of physical and climatic factors, making it difficult to observe or estimate in its entirety. Combing remotely sensed data and high resolution hydrologic modeling through data assimilation (DA) has the potential to provide a spatially and temporally continuous SWE dataset at horizontal scales that capture sub-grid snow spatial variability and are also relevant to stakeholders such as water resource managers. Here, we present the evaluation of a new snow DA approach that uses a Local Ensemble Transform Kalman Filter (LETKF) in tandem with the Variable Infiltration Capacity macro-scale hydrologic model across the Western United States, at a daily temporal resolution, and a horizontal resolution of 1.75 km x 1.75 km. The LETKF is chosen for its relative simplicity, ease of implementation, and computational efficiency and scalability. The modeling/DA system assimilates daily MODIS Snow Covered Area and Grain Size (MODSCAG) fractional snow cover over, and has been developed to efficiently calculate SWE estimates over extended periods of time and covering large regional-scale areas at relatively high spatial resolution, ultimately producing a snow reanalysis-type dataset. Here we focus on the assessment of SWE produced by the DA scheme over several basins in California's Sierra Nevada Mountain range where Airborne Snow Observatory data is available, during the last five water years (2013-2017), which include both one of the driest and one of the wettest years. Comparison against such a spatially distributed SWE observational product provides a greater understanding of the model's ability to estimate SWE and SWE spatial variability, and highlights under which conditions snow cover DA can add value in estimating SWE.

  7. Climate downscaling effects on predictive ecological models: a case study for threatened and endangered vertebrates in the southeastern United States

    USGS Publications Warehouse

    Bucklin, David N.; Watling, James I.; Speroterra, Carolina; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.

    2013-01-01

    High-resolution (downscaled) projections of future climate conditions are critical inputs to a wide variety of ecological and socioeconomic models and are created using numerous different approaches. Here, we conduct a sensitivity analysis of spatial predictions from climate envelope models for threatened and endangered vertebrates in the southeastern United States to determine whether two different downscaling approaches (with and without the use of a regional climate model) affect climate envelope model predictions when all other sources of variation are held constant. We found that prediction maps differed spatially between downscaling approaches and that the variation attributable to downscaling technique was comparable to variation between maps generated using different general circulation models (GCMs). Precipitation variables tended to show greater discrepancies between downscaling techniques than temperature variables, and for one GCM, there was evidence that more poorly resolved precipitation variables contributed relatively more to model uncertainty than more well-resolved variables. Our work suggests that ecological modelers requiring high-resolution climate projections should carefully consider the type of downscaling applied to the climate projections prior to their use in predictive ecological modeling. The uncertainty associated with alternative downscaling methods may rival that of other, more widely appreciated sources of variation, such as the general circulation model or emissions scenario with which future climate projections are created.

  8. Changing precipitation in western Europe, climate change or natural variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart

    2017-04-01

    Multi-model RCM-GCM ensembles provide high resolution climate projections, valuable for among others climate impact assessment studies. While the application of multiple models (both GCMs and RCMs) provides a certain robustness with respect to model uncertainty, the interpretation of differences between ensemble members - the combined result of model uncertainty and natural variability of the climate system - is not straightforward. Natural variability is intrinsic to the climate system, and a potentially large source of uncertainty in climate change projections, especially for projections on the local to regional scale. To quantify the natural variability and get a robust estimate of the forced climate change response (given a certain model and forcing scenario), large ensembles of climate model simulations of the same model provide essential information. While for global climate models (GCMs) a number of such large single model ensembles exists and have been analyzed, for regional climate models (RCMs) the number and size of single model ensembles is limited, and the predictability of the forced climate response at the local to regional scale is still rather uncertain. We present a regional downscaling of a 16-member single model ensemble over western Europe and the Alps at a resolution of 0.11 degrees (˜12km), similar to the highest resolution EURO-CORDEX simulations. This 16-member ensemble was generated by the GCM EC-EARTH, which was downscaled with the RCM RACMO for the period 1951-2100. This single model ensemble has been investigated in terms of the ensemble mean response (our estimate of the forced climate response), as well as the difference between the ensemble members, which measures natural variability. We focus on the response in seasonal mean and extreme precipitation (seasonal maxima and extremes with a return period up to 20 years) for the near to far future. For most precipitation indices we can reliably determine the climate change signal, given the applied model chain and forcing scenario. However, the analysis also shows how limited the information in single ensemble members is on the local scale forced climate response, even for high levels of global warming when the forced response has emerged from natural variability. Analysis and application of multi-model ensembles like EURO-CORDEX should go hand-in-hand with single model ensembles, like the one presented here, to be able to correctly interpret the fine-scale information in terms of a forced signal and random noise due to natural variability.

  9. Prescription of land-surface boundary conditions in GISS GCM 2: A simple method based on high-resolution vegetation data bases

    NASA Technical Reports Server (NTRS)

    Matthews, E.

    1984-01-01

    A simple method was developed for improved prescription of seasonal surface characteristics and parameterization of land-surface processes in climate models. This method, developed for the Goddard Institute for Space Studies General Circulation Model II (GISS GCM II), maintains the spatial variability of fine-resolution land-cover data while restricting to 8 the number of vegetation types handled in the model. This was achieved by: redefining the large number of vegetation classes in the 1 deg x 1 deg resolution Matthews (1983) vegetation data base as percentages of 8 simple types; deriving roughness length, field capacity, masking depth and seasonal, spectral reflectivity for the 8 types; and aggregating these surface features from the 1 deg x 1 deg resolution to coarser model resolutions, e.g., 8 deg latitude x 10 deg longitude or 4 deg latitude x 5 deg longitude.

  10. Performance of the WRF model to simulate the seasonal and interannual variability of hydrometeorological variables in East Africa: a case study for the Tana River basin in Kenya

    NASA Astrophysics Data System (ADS)

    Kerandi, Noah Misati; Laux, Patrick; Arnault, Joel; Kunstmann, Harald

    2017-10-01

    This study investigates the ability of the regional climate model Weather Research and Forecasting (WRF) in simulating the seasonal and interannual variability of hydrometeorological variables in the Tana River basin (TRB) in Kenya, East Africa. The impact of two different land use classifications, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the US Geological Survey (USGS) at two horizontal resolutions (50 and 25 km) is investigated. Simulated precipitation and temperature for the period 2011-2014 are compared with Tropical Rainfall Measuring Mission (TRMM), Climate Research Unit (CRU), and station data. The ability of Tropical Rainfall Measuring Mission (TRMM) and Climate Research Unit (CRU) data in reproducing in situ observation in the TRB is analyzed. All considered WRF simulations capture well the annual as well as the interannual and spatial distribution of precipitation in the TRB according to station data and the TRMM estimates. Our results demonstrate that the increase of horizontal resolution from 50 to 25 km, together with the use of the MODIS land use classification, significantly improves the precipitation results. In the case of temperature, spatial patterns and seasonal cycle are well reproduced, although there is a systematic cold bias with respect to both station and CRU data. Our results contribute to the identification of suitable and regionally adapted regional climate models (RCMs) for East Africa.

  11. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    NASA Astrophysics Data System (ADS)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  12. Effect of elevation resolution on evapotranspiration simulations using MODFLOW.

    PubMed

    Kambhammettu, B V N P; Schmid, Wolfgang; King, James P; Creel, Bobby J

    2012-01-01

    Surface elevations represented in MODFLOW head-dependent packages are usually derived from digital elevation models (DEMs) that are available at much high resolution. Conventional grid refinement techniques to simulate the model at DEM resolution increases computational time, input file size, and in many cases are not feasible for regional applications. This research aims at utilizing the increasingly available high resolution DEMs for effective simulation of evapotranspiration (ET) in MODFLOW as an alternative to grid refinement techniques. The source code of the evapotranspiration package is modified by considering for a fixed MODFLOW grid resolution and for different DEM resolutions, the effect of variability in elevation data on ET estimates. Piezometric head at each DEM cell location is corrected by considering the gradient along row and column directions. Applicability of the research is tested for the lower Rio Grande (LRG) Basin in southern New Mexico. The DEM at 10 m resolution is aggregated to resampled DEM grid resolutions which are integer multiples of MODFLOW grid resolution. Cumulative outflows and ET rates are compared at different coarse resolution grids. Results of the analysis conclude that variability in depth-to-groundwater within the MODFLOW cell is a major contributing parameter to ET outflows in shallow groundwater regions. DEM aggregation methods for the LRG Basin have resulted in decreased volumetric outflow due to the formation of a smoothing error, which lowered the position of water table to a level below the extinction depth. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  13. Understanding climate variability and global climate change using high-resolution GCM simulations

    NASA Astrophysics Data System (ADS)

    Feng, Xuelei

    In this study, three climate processes are examined using long-term simulations from multiple climate models with increasing horizontal resolutions. These simulations include the European Center for Medium-range Weather Forecasts (ECMWF) atmospheric general circulation model (AGCM) runs forced with observed sea surface temperatures (SST) (the Athena runs) and a set of coupled ocean-atmosphere seasonal hindcasts (the Minerva runs). Both sets of runs use different AGCM resolutions, the highest at 16 km. A pair of the Community Climate System Model (CCSM) simulations with ocean general circulation model (OGCM) resolutions at 100 and 10 km are also examined. The higher resolution CCSM run fully resolves oceanic mesoscale eddies. The resolution influence on the precipitation climatology over the Gulf Stream (GS) region is first investigated. In the Athena simulations, the resolution increase generates enhanced mean GS precipitation moderately in both large-scale and sub-scale rainfalls in the North Atlantic, with the latter more tightly confined near the oceanic front. However, the non-eddy resolving OGCM in the Minerva runs simulates a weaker oceanic front and weakens the mean GS precipitation response. On the other hand, an increase in CCSM oceanic resolutions from non-eddy-resolving to eddy resolving regimes greatly improves the model's GS precipitation climatology, resulting in both stronger intensity and more realistic structure. Further analyses show that the improvement of the GS precipitation climatology due to resolution increases is caused by the enhanced atmospheric response to an increased SST gradient near the oceanic front, which leads to stronger surface convergence and upper level divergence. Another focus of this study is on the global warming impacts on precipitation characteristic changes using the high-resolution Athena simulations under the SST forcing from the observations and a global warming scenario. As a comparison, results from the coarse resolution simulation are also analyzed to examine the dependence on resolution. The increasing rates of globally averaged precipitation amount for the high and low resolution simulations are 1.7%/K-1 and 1.8%/K-1, respectively. The sensitivities for heavy, moderate, light and drizzle rain are 6.8, -1.2, 0.0, 0.2%/K-1 for low and 6.3, -1.5, 0.4, -0.2%/K -1 for high resolution simulations. The number of rainy days decreases in a warming scenario, by 3.4 and 4.2 day/year-1, respectively. The most sensitive response of 6.3-6.8%/K-1 for the heavy rain approaches that of the 7%/K-1 for the Clausius-Clapeyron scaling limit. During the twenty-first century simulation, the increases in precipitation are larger over high latitude and wet regions in low and mid-latitudes. Over the dry regions, such as the subtropics, the precipitation amount and frequency decrease. There is a higher occurrence of low and heavy rain from the tropics to mid-latitudes at the expense of the decreases in the frequency of moderate rain. In the third part, the inter-annual variability of the northern hemisphere storm tracks is examined. In the Athena simulations, the leading modes of the observed storm track variability are reproduced realistically by all runs. In general, the fluctuations of the model storm tracks in the North Pacific and Atlantic basins are largely independent of each other. Within each basin, the variations are characterized by the intensity change near the climatological center and the meridional shift of the storm track location. These two modes are associated with major teleconnection patterns of the low frequency atmospheric variations. These model results are not sensitive to resolution. Using the Minerva hindcast initialized in November, it is shown that a portion of the winter (December-January) storm track variability is predictable, mainly due to the influences of the atmospheric wave trains induced by the El Nino and Southern Oscillation.

  14. Using LiDAR and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalizations

    USGS Publications Warehouse

    Cook, B.D.; Bolstad, P.V.; Naesset, E.; Anderson, R. Scott; Garrigues, S.; Morisette, J.T.; Nickeson, J.; Davis, K.J.

    2009-01-01

    Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30??m to 1??km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600??ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400??m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine-resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire landscape. Failure to account for wetlands had little impact on landscape-scale estimates, because vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.

  15. Using LIDAR and Quickbird Data to Model Plant Production and Quantify Uncertainties Associated with Wetland Detection and Land Cover Generalizations

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Bolstad, Paul V.; Naesset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J.

    2009-01-01

    Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.

  16. Spatial variability of the Black Sea surface temperature from high resolution modeling and satellite measurements

    NASA Astrophysics Data System (ADS)

    Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady

    2016-04-01

    Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)

  17. Inverse stochastic-dynamic models for high-resolution Greenland ice core records

    NASA Astrophysics Data System (ADS)

    Boers, Niklas; Chekroun, Mickael D.; Liu, Honghu; Kondrashov, Dmitri; Rousseau, Denis-Didier; Svensson, Anders; Bigler, Matthias; Ghil, Michael

    2017-12-01

    Proxy records from Greenland ice cores have been studied for several decades, yet many open questions remain regarding the climate variability encoded therein. Here, we use a Bayesian framework for inferring inverse, stochastic-dynamic models from δ18O and dust records of unprecedented, subdecadal temporal resolution. The records stem from the North Greenland Ice Core Project (NGRIP), and we focus on the time interval 59-22 ka b2k. Our model reproduces the dynamical characteristics of both the δ18O and dust proxy records, including the millennial-scale Dansgaard-Oeschger variability, as well as statistical properties such as probability density functions, waiting times and power spectra, with no need for any external forcing. The crucial ingredients for capturing these properties are (i) high-resolution training data, (ii) cubic drift terms, (iii) nonlinear coupling terms between the δ18O and dust time series, and (iv) non-Markovian contributions that represent short-term memory effects.

  18. GFDL's unified regional-global weather-climate modeling system with variable resolution capability for severe weather predictions and regional climate simulations

    NASA Astrophysics Data System (ADS)

    Lin, S. J.

    2015-12-01

    The NOAA/Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions (e.g., tornado outbreak events and cat-5 hurricanes) and ultra-high-resolution (1-km) regional climate simulations within a consistent global modeling framework. The fundation of this flexible regional-global modeling system is the non-hydrostatic extension of the vertically Lagrangian dynamical core (Lin 2004, Monthly Weather Review) known in the community as FV3 (finite-volume on the cubed-sphere). Because of its flexability and computational efficiency, the FV3 is one of the final candidates of NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched (single) grid capability, a two-way (regional-global) multiple nested grid capability, and the combination of the stretched and two-way nests, so as to make convection-resolving regional climate simulation within a consistent global modeling system feasible using today's High Performance Computing System. One of our main scientific goals is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornadoes using a global model that was originally designed for century long climate simulations. As a unified weather-climate modeling system, we evaluated the performance of the model with horizontal resolution ranging from 1 km to as low as 200 km. In particular, for downscaling studies, we have developed various tests to ensure that the large-scale circulation within the global varaible resolution system is well simulated while at the same time the small-scale can be accurately captured within the targeted high resolution region.

  19. Wave Dissipation over Nearshore Beach Morphology: Insights from High-Resolution LIDAR Observations and the SWASH Wave Model

    NASA Astrophysics Data System (ADS)

    Mulligan, R. P.; Gomes, E.; McNinch, J.; Brodie, K. L.

    2016-02-01

    Numerical modelling of the nearshore zone can be computationally intensive due to the complexity of wave breaking, and the need for high temporal and spatial resolution. In this study we apply the SWASH non-hydrostatic wave-flow model that phase-resolves the free surface and fluid motions in the water column at high resolution. The model is forced using observed directional energy spectra, and results are compared to wave observations during moderate storm events. Observations are collected outside the surf zone using acoustic wave and currents sensors, and inside the surf zone over a 100 m transect using high-resolution LIDAR measurements of the sea surface from a sensor mounted on a tower on the beach dune at the Field Research Facility in Duck, NC. The model is applied to four cases with different wave conditions and bathymetry, and used to predict the spatial variability in wave breaking, and correlation between energy dissipation and morphologic features. Model results compare well with observations of spectral evolution outside the surf zone, and with the remotely sensed observations of wave transformation inside the surf zone. The results indicate the importance of nearshore bars, rip-channels, and larger features (major scour depression under the pier following large waves from Hurricane Irene) on the location of wave breaking and alongshore variability in wave energy dissipation.

  20. The influence of resolution of meteorology, biogeochemical models and fossil fuel emissions on forward and inverse modelling of CO2 exchange over Europe using the network of tall towers.

    NASA Astrophysics Data System (ADS)

    Vermeulen, A.; Verheggen, B.; Pieterse, G.; Haszpra, L.

    2007-12-01

    Tall towers allow us to observe the integrated influence of carbon exchange processes from large areas on the concentrations of CO2. The signal received shows a large variability at diurnal and synoptic timescales. The question remains how high resolutions and how accurate transport models need to be, in order to discriminate the relevant source terms from the atmospheric signal. We will examine the influence of the resolution of (ECMWF) meteorological fields, antropogenic and biogenic fluxes when going from resolutions of 2° to 0.2° lat-lon, using a simple Lagrangian 2D transport model. Model results will be compared to other Eulerian model results and observations at the CHIOTTO/CarboEurope tall tower network in Europe. Biogenic fluxes taken into account are from the FACEM model (Pieterse et al, 2006). Results show that the relative influence of the different CO2 exchange processes is very different at each tower and that higher model resolution clearly pays off in better model performance.

  1. Downscaling scheme to drive soil-vegetation-atmosphere transfer models

    NASA Astrophysics Data System (ADS)

    Schomburg, Annika; Venema, Victor; Lindau, Ralf; Ament, Felix; Simmer, Clemens

    2010-05-01

    The earth's surface is characterized by heterogeneity at a broad range of scales. Weather forecast models and climate models are not able to resolve this heterogeneity at the smaller scales. Many processes in the soil or at the surface, however, are highly nonlinear. This holds, for example, for evaporation processes, where stomata or aerodynamic resistances are nonlinear functions of the local micro-climate. Other examples are threshold dependent processes, e.g., the generation of runoff or the melting of snow. It has been shown that using averaged parameters in the computation of these processes leads to errors and especially biases, due to the involved nonlinearities. Thus it is necessary to account for the sub-grid scale surface heterogeneities in atmospheric modeling. One approach to take the variability of the earth's surface into account is the mosaic approach. Here the soil-vegetation-atmosphere transfer (SVAT) model is run on an explicit higher resolution than the atmospheric part of a coupled model, which is feasible due to generally lower computational costs of a SVAT model compared to the atmospheric part. The question arises how to deal with the scale differences at the interface between the two resolutions. Usually the assumption of a homogeneous forcing for all sub-pixels is made. However, over a heterogeneous surface, usually the boundary layer is also heterogeneous. Thus, by assuming a constant atmospheric forcing again biases in the turbulent heat fluxes may occur due to neglected atmospheric forcing variability. Therefore we have developed and tested a downscaling scheme to disaggregate the atmospheric variables of the lower atmosphere that are used as input to force a SVAT model. Our downscaling scheme consists of three steps: 1) a bi-quadratic spline interpolation of the coarse-resolution field; 2) a "deterministic" part, where relationships between surface and near-surface variables are exploited; and 3) a noise-generation step, in which the still missing, not explained, variance is added as noise. The scheme has been developed and tested based on high-resolution (400 m) model output of the weather forecast (and regional climate) COSMO model. Downscaling steps 1 and 2 reduce the error made by the homogeneous assumption considerably, whereas the third step leads to close agreement of the sub-grid scale variance with the reference. This is, however, achieved at the cost of higher root mean square errors. Thus, before applying the downscaling system to atmospheric data a decision should be made whether the lowest possible errors (apply only downscaling step 1 and 2) or a most realistic sub-grid scale variability (apply also step 3) is desired. This downscaling scheme is currently being implemented into the COSMO model, where it will be used in combination with the mosaic approach. However, this downscaling scheme can also be applied to drive stand-alone SVAT models or hydrological models, which usually also need high-resolution atmospheric forcing data.

  2. OPTIMIZING MODEL PERFORMANCE: VARIABLE SIZE RESOLUTION IN CLOUD CHEMISTRY MODELING. (R826371C005)

    EPA Science Inventory

    Under many conditions size-resolved aqueous-phase chemistry models predict higher sulfate production rates than comparable bulk aqueous-phase models. However, there are special circumstances under which bulk and size-resolved models offer similar predictions. These special con...

  3. Evaluation of fine soil moisture data from the IFloodS (NASA GPM) Ground Validation campaign using a fully-distributed ecohydrological model

    NASA Astrophysics Data System (ADS)

    Bastola, S.; Dialynas, Y. G.; Arnone, E.; Bras, R. L.

    2014-12-01

    The spatial variability of soil, vegetation, topography, and precipitation controls hydrological processes, consequently resulting in high spatio-temporal variability of most of the hydrological variables, such as soil moisture. Limitation in existing measuring system to characterize this spatial variability, and its importance in various application have resulted in a need of reconciling spatially distributed soil moisture evolution model and corresponding measurements. Fully distributed ecohydrological model simulates soil moisture at high resolution soil moisture. This is relevant for range of environmental studies e.g., flood forecasting. They can also be used to evaluate the value of space born soil moisture data, by assimilating them into hydrological models. In this study, fine resolution soil moisture data simulated by a physically-based distributed hydrological model, tRIBS-VEGGIE, is compared with soil moisture data collected during the field campaign in Turkey river basin, Iowa. The soil moisture series at the 2 and 4 inch depth exhibited a more rapid response to rainfall as compared to bottom 8 and 20 inch ones. The spatial variability in two distinct land surfaces of Turkey River, IA, reflects the control of vegetation, topography and soil texture in the characterization of spatial variability. The comparison of observed and simulated soil moisture at various depth showed that model was able to capture the dynamics of soil moisture at a number of gauging stations. Discrepancies are large in some of the gauging stations, which are characterized by rugged terrain and represented, in the model, through large computational units.

  4. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6

    NASA Astrophysics Data System (ADS)

    Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song

    2016-11-01

    Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.

  5. The Challenge of Simulating the Regional Climate over Florida

    NASA Astrophysics Data System (ADS)

    Misra, V.; Mishra, A. K.

    2015-12-01

    In this study we show that the unique geography of the peninsular Florida with close proximity to strong mesoscale surface ocean currents among other factors warrants the use of relatively high resolution climate models to project Florida's hydroclimate. In the absence of such high resolution climate models we highlight the deficiencies of two relatively coarse spatial resolution CMIP5 models with respect to the warm western boundary current of the Gulf Stream. As a consequence it affects the coastal SST and the land-ocean contrast, affecting the rainy summer seasonal precipitation accumulation over peninsular Florida. We also show this through two sensitivity studies conducted with a regional coupled ocean atmosphere model with different bathymetries that dislocate and modulate the strength of the Gulf Stream that locally affects the SST in the two simulations. These studies show that a stronger and more easterly displaced Gulf Stream produces warmer coastal SST's along the Atlantic coast of Florida that enhances the precipitation over peninsular Florida relative to the other regional climate model simulation. However the regional model simulations indicate that variability of wet season rainfall variability in peninsular Florida becomes less dependent on the land-ocean contrast with a stronger Gulf Stream current.

  6. Dynamic Downscaling of Seasonal Simulations over South America.

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu; Dirmeyer, Paul A.; Kirtman, Ben P.

    2003-01-01

    In this paper multiple atmospheric global circulation model (AGCM) integrations at T42 spectral truncation and prescribed sea surface temperature were used to drive regional spectral model (RSM) simulations at 80-km resolution for the austral summer season (January-February-March). Relative to the AGCM, the RSM improves the ensemble mean simulation of precipitation and the lower- and upper-level tropospheric circulation over both tropical and subtropical South America and the neighboring ocean basins. It is also seen that the RSM exacerbates the dry bias over the northern tip of South America and the Nordeste region, and perpetuates the erroneous split intertropical convergence zone (ITCZ) over both the Pacific and Atlantic Ocean basins from the AGCM. The RSM at 80-km horizontal resolution is able to reasonably resolve the Altiplano plateau. This led to an improvement in the mean precipitation over the plateau. The improved resolution orography in the RSM did not substantially change the predictability of the precipitation, surface fluxes, or upper- and lower-level winds in the vicinity of the Andes Mountains from the AGCM. In spite of identical convective and land surface parameterization schemes, the diagnostic quantities, such as precipitation and surface fluxes, show significant differences in the intramodel variability over oceans and certain parts of the Amazon River basin (ARB). However, the prognostic variables of the models exhibit relatively similar model noise structures and magnitude. This suggests that the model physics are in large part responsible for the divergence of the solutions in the two models. However, the surface temperature and fluxes from the land surface scheme of the model [Simplified Simple Biosphere scheme (SSiB)] display comparable intramodel variability, except over certain parts of ARB in the two models. This suggests a certain resilience of predictability in SSiB (over the chosen domain of study) to variations in horizontal resolution. It is seen in this study that the summer precipitation over tropical and subtropical South America is highly unpredictable in both models.

  7. Evaluating hydrography, circulation and transport in a coastal archipelago using a high-resolution 3D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Tuomi, Laura; Miettunen, Elina; Alenius, Pekka; Myrberg, Kai

    2018-04-01

    We used a 3D hydrodynamic model, COHERENS, to simulate the temperature, salinity and currents in an extremely complicated area, the Archipelago Sea in the Baltic Sea. The high-resolution model domain with approximately 460 m resolution was nested inside a coarser resolution ( 3.7 km) grid covering the entire Baltic Sea. The verification of the model results against temperature and salinity measurements showed that the model well captured the seasonal temperature cycle in the surface layer, both in the inner and outer archipelago. In the inner archipelago, the model tended to reproduce higher temperatures in the bottom layer than were measured. The modelled vertical temperature and salinity stratifications were not as pronounced as the measured ones but did describe the overall vertical structure. There was large year-to-year variability in the annual mean surface circulation, both in direction and magnitude. In the deeper channels crossing the Archipelago Sea, there were some year-to-year differences in the magnitudes of the bottom layer currents, but there was very little difference in the directions. These differences were studied by introducing passive tracers into the model through river discharge and as point sources. The results showed that the prevailing wind conditions resulted in southward net transport from the Bothnian Sea towards the Baltic Proper. However, due to the variability in the wind conditions in some years, a significant proportion of transport can also be towards north, from the Baltic Proper to the Bothnian Sea.

  8. Optimisation of an idealised primitive equation ocean model using stochastic parameterization

    NASA Astrophysics Data System (ADS)

    Cooper, Fenwick C.

    2017-05-01

    Using a simple parameterization, an idealised low resolution (biharmonic viscosity coefficient of 5 × 1012 m4s-1 , 128 × 128 grid) primitive equation baroclinic ocean gyre model is optimised to have a much more accurate climatological mean, variance and response to forcing, in all model variables, with respect to a high resolution (biharmonic viscosity coefficient of 8 × 1010 m4s-1 , 512 × 512 grid) equivalent. For example, the change in the climatological mean due to a small change in the boundary conditions is more accurate in the model with parameterization. Both the low resolution and high resolution models are strongly chaotic. We also find that long timescales in the model temperature auto-correlation at depth are controlled by the vertical temperature diffusion parameter and time mean vertical advection and are caused by short timescale random forcing near the surface. This paper extends earlier work that considered a shallow water barotropic gyre. Here the analysis is extended to a more turbulent multi-layer primitive equation model that includes temperature as a prognostic variable. The parameterization consists of a constant forcing, applied to the velocity and temperature equations at each grid point, which is optimised to obtain a model with an accurate climatological mean, and a linear stochastic forcing, that is optimised to also obtain an accurate climatological variance and 5 day lag auto-covariance. A linear relaxation (nudging) is not used. Conservation of energy and momentum is discussed in an appendix.

  9. Predictor variable resolution governs modeled soil types

    USDA-ARS?s Scientific Manuscript database

    Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...

  10. USE OF REMOTELY SENSED DATA FOR PARAMETERIZING AND VALIDATING LAND-USE HYDROLOGIC MODELS

    EPA Science Inventory

    Variability in vegetation greenness was determined for the Galveston Bay watershed using biweekly Normalized Difference Vegetation Index (NDVI) data derived from the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA satellites. NDVI variability was compared with regi...

  11. Unraveling the martian water cycle with high-resolution global climate simulations

    NASA Astrophysics Data System (ADS)

    Pottier, Alizée; Forget, François; Montmessin, Franck; Navarro, Thomas; Spiga, Aymeric; Millour, Ehouarn; Szantai, André; Madeleine, Jean-Baptiste

    2017-07-01

    Global climate modeling of the Mars water cycle is usually performed at relatively coarse resolution (200 - 300km), which may not be sufficient to properly represent the impact of waves, fronts, topography effects on the detailed structure of clouds and surface ice deposits. Here, we present new numerical simulations of the annual water cycle performed at a resolution of 1° × 1° (∼ 60 km in latitude). The model includes the radiative effects of clouds, whose influence on the thermal structure and atmospheric dynamics is significant, thus we also examine simulations with inactive clouds to distinguish the direct impact of resolution on circulation and winds from the indirect impact of resolution via water ice clouds. To first order, we find that the high resolution does not dramatically change the behavior of the system, and that simulations performed at ∼ 200 km resolution capture well the behavior of the simulated water cycle and Mars climate. Nevertheless, a detailed comparison between high and low resolution simulations, with reference to observations, reveal several significant changes that impact our understanding of the water cycle active today on Mars. The key northern cap edge dynamics are affected by an increase in baroclinic wave strength, with a complication of northern summer dynamics. South polar frost deposition is modified, with a westward longitudinal shift, since southern dynamics are also influenced. Baroclinic wave mode transitions are observed. New transient phenomena appear, like spiral and streak clouds, already documented in the observations. Atmospheric circulation cells in the polar region exhibit a large variability and are fine structured, with slope winds. Most modeled phenomena affected by high resolution give a picture of a more turbulent planet, inducing further variability. This is challenging for long-period climate studies.

  12. Multi-Scale Modeling and the Eddy-Diffusivity/Mass-Flux (EDMF) Parameterization

    NASA Astrophysics Data System (ADS)

    Teixeira, J.

    2015-12-01

    Turbulence and convection play a fundamental role in many key weather and climate science topics. Unfortunately, current atmospheric models cannot explicitly resolve most turbulent and convective flow. Because of this fact, turbulence and convection in the atmosphere has to be parameterized - i.e. equations describing the dynamical evolution of the statistical properties of turbulence and convection motions have to be devised. Recently a variety of different models have been developed that attempt at simulating the atmosphere using variable resolution. A key problem however is that parameterizations are in general not explicitly aware of the resolution - the scale awareness problem. In this context, we will present and discuss a specific approach, the Eddy-Diffusivity/Mass-Flux (EDMF) parameterization, that not only is in itself a multi-scale parameterization but it is also particularly well suited to deal with the scale-awareness problems that plague current variable-resolution models. It does so by representing small-scale turbulence using a classic Eddy-Diffusivity (ED) method, and the larger-scale (boundary layer and tropospheric-scale) eddies as a variety of plumes using the Mass-Flux (MF) concept.

  13. Meteorology, Emissions, and Grid Resolution: Effects on Discrete and Probabilistic Model Performance

    EPA Science Inventory

    In this study, we analyze the impacts of perturbations in meteorology and emissions and variations in grid resolution on air quality forecast simulations. The meteorological perturbations con-sidered in this study introduce a typical variability of ~1°C, 250 - 500 m, 1 m/s, and 1...

  14. Inter-annual variability of the Mediterranean thermohaline circulation in Med-CORDEX simulations

    NASA Astrophysics Data System (ADS)

    Vittoria Struglia, Maria; Adani, Mario; Carillo, Adriana; Pisacane, Giovanna; Sannino, Gianmaria; Beuvier, Jonathan; Lovato, Tomas; Sevault, Florence; Vervatis, Vassilios

    2016-04-01

    Recent atmospheric reanalysis products, such as ERA40 and ERA-interim, and their regional dynamical downscaling prompted the HyMeX/Med-CORDEX community to perform hind-cast simulations of the Mediterranean Sea, giving the opportunity to evaluate the response of different ocean models to a realistic inter-annual atmospheric forcing. Ocean numerical modeling studies have been steadily improving over the last decade through hind-cast processing, and are complementary to observations in studying the relative importance of the mechanisms playing a role in ocean variability, either external forcing or internal ocean variability. This work presents a review and an inter-comparison of the most recent hind-cast simulations of the Mediterranean Sea Circulation, produced in the framework of the Med-CORDEX initiative, at resolutions spanning from 1/8° to 1/16°. The richness of the simulations available for this study is exploited to address the effects of increasing resolution, both of models and forcing, the initialization procedure, and the prescription of the atmospheric boundary conditions, which are particularly relevant in order to model a realistic THC, in the perspective of fully coupled regional ocean-atmosphere models. The mean circulation is well reproduced by all the simulations. However, it can be observed that the horizontal resolution of both atmospheric forcing and ocean model plays a fundamental role in the reproduction of some specific features of both sub-basins and important differences can be observed among low and high resolution atmosphere forcing. We analyze the mean circulation on both the long-term and decadal time scale, and the represented inter-annual variability of intermediate and deep water mass formation processes in both the Eastern and Western sub-basins, finding that models agree with observations in correspondence of specific events, such as the 1992-1993 Eastern Mediterranean Transient, and the 2005-2006 event in the Gulf of Lion. Long-term trends of the hydrological properties have been investigated at sub-basin scale and have been interpreted in terms of response to forcing and boundary conditions, detectable differences resulting mainly due either to the different initialization and spin up procedure or to the different prescription of Atlantic boundary conditions.

  15. Impact of resolution on aerosol radiative feedbacks with in online-coupled chemistry/climate simulations (WRF-Chem) for EURO-CORDEX compliant domains

    NASA Astrophysics Data System (ADS)

    López-Romero, Jose Maria; Baró, Rocío; Palacios-Peña, Laura; Jerez, Sonia; Jiménez-Guerrero, Pedro; Montávez, Juan Pedro

    2016-04-01

    Several studies have shown that a high spatial resolution in atmospheric model runs improves the simulation of some meteorological variables, such as precipitation, particularly extreme events and in regions with complex orography [1]. However, increasing model spatial resolution makes the computational time rise exponentially. Hence, very high resolution experiments on large domains can hamper the execution of climatic runs. This problem shoots up when using online-coupled chemistry climate models, making a careful evaluation of improvements versus costs mandatory. Under this umbrella, the objective of this work is to investigate the sensitivity of aerosol radiative feedbacks from online-coupled chemistry regional model simulations to the spatial resolution. For that, the WRF-Chem [2] model is used for a case study to simulate the episode occurring between July 25th and August 15th of 2010. It is characterized by a high loading of atmospheric aerosol particles coming mainly from wildfires over large European regions (Russia, Iberian Peninsula). Three spatial resolutions are used defined for Euro-Cordex compliant domains [3]: 0.44°, 0.22° and 0.11°. Anthropogenic emissions come from TNO databases [4]. The analysis focuses on air quality variables (mainly PM10, PM2.5), meteorological variables (temperature, radiation) and other aerosol optical properties (aerosol optical depth). The CPU time ratio for the different domains is 1 (0.44°), 4(0.22°) and 28(0.11°) (normalized times). Comparison among simulations and observations are analyzed. Preliminary results show the difficulty to justify the much larger computational cost of high-resolution experiments when comparing with observations from a meteorological point of view, despite the finer spatio-temporal detail of the obtained pollutant fields. [1] Prein, A. F. (2014, December). Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits?. In AGU Fall Meeting Abstracts (Vol. 1, p. 3893). [2] Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., & Eder, B. (2005). Fully coupled "online" chemistry within the WRF model. Atmospheric Environment, 39(37), 6957-6975. [3] Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., ... & Georgopoulou, E. (2014). EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 14(2), 563-578. [4] Pouliot, G., Denier van der Gon, H., Kuenen, J., Makar, P., Zhang, J., Moran, M., 2015. Analysis of the emission inventories and model-ready emission datasets of Europe and North America for phase 2 of the AQMEII project. Atmos. Environ. 115, 345-360.

  16. Using Empirical Orthogonal Teleconnections to Analyze Interannual Precipitation Variability in China

    NASA Astrophysics Data System (ADS)

    Stephan, C.; Klingaman, N. P.; Vidale, P. L.; Turner, A. G.; Demory, M. E.; Guo, L.

    2017-12-01

    Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. A consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. It produces known teleconnections, that include high positive correlations with ENSO in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that variability along the southeast coast in winter, in the Yangtze valley in spring, and in eastern China in autumn, are associated with extratropical Rossby wave trains. The same analysis is applied to six climate simulations of the Met Office Unified Model with and without air-sea coupling and at various horizontal resolutions of 40, 90 and 200 km. All simulations reproduce the observed patterns of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are all patterns associated with the observed physical mechanism. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. Finer resolution does not improve the fidelity of these patterns or their associated mechanisms. Evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient; attention must be paid to associated mechanisms.

  17. Predicting Individual Tree and Shrub Species Distributions with Empirically Derived Microclimate Surfaces in a Complex Mountain Ecosystem in Northern Idaho, USA

    NASA Astrophysics Data System (ADS)

    Holden, Z.; Cushman, S.; Evans, J.; Littell, J. S.

    2009-12-01

    The resolution of current climate interpolation models limits our ability to adequately account for temperature variability in complex mountainous terrain. We empirically derive 30 meter resolution models of June-October day and nighttime temperature and April nighttime Vapor Pressure Deficit (VPD) using hourly data from 53 Hobo dataloggers stratified by topographic setting in mixed conifer forests near Bonners Ferry, ID. 66%, of the variability in average June-October daytime temperature is explained by 3 variables (elevation, relative slope position and topographic roughness) derived from 30 meter digital elevation models. 69% of the variability in nighttime temperatures among stations is explained by elevation, relative slope position and topographic dissection (450 meter window). 54% of variability in April nighttime VPD is explained by elevation, soil wetness and the NDVIc derived from Landsat. We extract temperature and VPD predictions at 411 intensified Forest Inventory and Analysis plots (FIA). We use these variables with soil wetness and solar radiation indices derived from a 30 meter DEM to predict the presence and absence of 10 common forest tree species and 25 shrub species. Classification accuracies range from 87% for Pinus ponderosa , to > 97% for most other tree species. Shrub model accuracies are also high with greater than 90% accuracy for the majority of species. Species distribution models based on the physical variables that drive species occurrence, rather than their topographic surrogates, will eventually allow us to predict potential future distributions of these species with warming climate at fine spatial scales.

  18. Surface Variability of Short-wavelength Radiation and Temperature on Exoplanets around M Dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xin; Tian, Feng; Wang, Yuwei

    2017-03-10

    It is a common practice to use 3D General Circulation Models (GCM) with spatial resolution of a few hundred kilometers to simulate the climate of Earth-like exoplanets. The enhanced albedo effect of clouds is especially important for exoplanets in the habitable zones around M dwarfs that likely have fixed substellar regions and substantial cloud coverage. Here, we carry out mesoscale model simulations with 3 km spatial resolution driven by the initial and boundary conditions in a 3D GCM and find that it could significantly underestimate the spatial variability of both the incident short-wavelength radiation and the temperature at planet surface.more » Our findings suggest that mesoscale models with cloud-resolving capability be considered for future studies of exoplanet climate.« less

  19. Reconstructing the 20th century high-resolution climate of the southeastern United States

    NASA Astrophysics Data System (ADS)

    Dinapoli, Steven M.; Misra, Vasubandhu

    2012-10-01

    We dynamically downscale the 20th Century Reanalysis (20CR) to a 10-km grid resolution from 1901 to 2008 over the southeastern United States and the Gulf of Mexico using the Regional Spectral Model. The downscaled data set, which we call theFlorida Climate Institute-Florida State University Land-Atmosphere Reanalysis for theSoutheastern United States at 10-km resolution (FLAReS1.0), will facilitate the study of the effects of low-frequency climate variability and major historical climate events on local hydrology and agriculture. To determine the suitability of the FLAReS1.0 downscaled data set for any subsequent applied climate studies, we compare the annual, seasonal, and diurnal variability of temperature and precipitation in the model to various observation data sets. In addition, we examine the model's depiction of several meteorological phenomena that affect the climate of the region, including extreme cold waves, summer sea breezes and associated convective activity, tropical cyclone landfalls, and midlatitude frontal systems. Our results show that temperature and precipitation variability are well-represented by FLAReS1.0 on most time scales, although systematic biases do exist in the data. FLAReS1.0 accurately portrays some of the major weather phenomena in the region, but the severity of extreme weather events is generally underestimated. The high resolution of FLAReS1.0 makes it more suitable for local climate studies than the coarser 20CR.

  20. Diversity and distribution of deep-sea shrimps in the Ross Sea region of Antarctica.

    PubMed

    Basher, Zeenatul; Bowden, David A; Costello, Mark J

    2014-01-01

    Although decapod crustaceans are widespread in the oceans, only Natantia (shrimps) are common in the Antarctic. Because remoteness, depth and ice cover restrict sampling in the South Ocean, species distribution modelling is a useful tool for evaluating distributions. We used physical specimen and towed camera data to describe the diversity and distribution of shrimps in the Ross Sea region of Antarctica. Eight shrimp species were recorded: Chorismus antarcticus; Notocrangon antarcticus; Nematocarcinus lanceopes; Dendrobranchiata; Pasiphaea scotiae; Pasiphaea cf. ledoyeri; Petalidium sp., and a new species of Lebbeus. For the two most common species, N. antarcticus and N. lanceopes, we used maximum entropy modelling, based on records of 60 specimens and over 1130 observations across 23 sites in depths from 269 m to 3433 m, to predict distributions in relation to environmental variables. Two independent sets of environmental data layers at 0.05° and 0.5° resolution respectively, showed how spatial resolution affected the model. Chorismus antarcticus and N. antarcticus were found only on the continental shelf and upper slopes, while N. lanceopes, Lebbeus n. sp., Dendrobranchiata, Petalidium sp., Pasiphaea cf. ledoyeri, and Pasiphaea scotiae were found on the slopes, seamounts and abyssal plain. The environmental variables that contributed most to models for N. antarcticus were depth, chlorophyll-a concentration, temperature, and salinity, and for N. lanceopes were depth, ice concentration, seabed slope/rugosity, and temperature. The relative ranking, but not the composition of these variables changed in models using different spatial resolutions, and the predicted extent of suitable habitat was smaller in models using the finer-scale environmental layers. Our modelling indicated that shrimps were widespread throughout the Ross Sea region and were thus likely to play important functional role in the ecosystem, and that the spatial resolution of data needs to be considered both in the use of species distribution models.

  1. Diversity and Distribution of Deep-Sea Shrimps in the Ross Sea Region of Antarctica

    PubMed Central

    Basher, Zeenatul; Bowden, David A.; Costello, Mark J.

    2014-01-01

    Although decapod crustaceans are widespread in the oceans, only Natantia (shrimps) are common in the Antarctic. Because remoteness, depth and ice cover restrict sampling in the South Ocean, species distribution modelling is a useful tool for evaluating distributions. We used physical specimen and towed camera data to describe the diversity and distribution of shrimps in the Ross Sea region of Antarctica. Eight shrimp species were recorded: Chorismus antarcticus; Notocrangon antarcticus; Nematocarcinus lanceopes; Dendrobranchiata; Pasiphaea scotiae; Pasiphaea cf. ledoyeri; Petalidium sp., and a new species of Lebbeus. For the two most common species, N. antarcticus and N. lanceopes, we used maximum entropy modelling, based on records of 60 specimens and over 1130 observations across 23 sites in depths from 269 m to 3433 m, to predict distributions in relation to environmental variables. Two independent sets of environmental data layers at 0.05° and 0.5° resolution respectively, showed how spatial resolution affected the model. Chorismus antarcticus and N. antarcticus were found only on the continental shelf and upper slopes, while N. lanceopes, Lebbeus n. sp., Dendrobranchiata, Petalidium sp., Pasiphaea cf. ledoyeri, and Pasiphaea scotiae were found on the slopes, seamounts and abyssal plain. The environmental variables that contributed most to models for N. antarcticus were depth, chlorophyll-a concentration, temperature, and salinity, and for N. lanceopes were depth, ice concentration, seabed slope/rugosity, and temperature. The relative ranking, but not the composition of these variables changed in models using different spatial resolutions, and the predicted extent of suitable habitat was smaller in models using the finer-scale environmental layers. Our modelling indicated that shrimps were widespread throughout the Ross Sea region and were thus likely to play important functional role in the ecosystem, and that the spatial resolution of data needs to be considered both in the use of species distribution models. PMID:25051333

  2. The influence of coarse-scale environmental features on current and predicted future distributions of narrow-range endemic crayfish populations

    USGS Publications Warehouse

    Dyer, Joseph J.; Brewer, Shannon K.; Worthington, Thomas A.; Bergey, Elizabeth A.

    2013-01-01

    1.A major limitation to effective management of narrow-range crayfish populations is the paucity of information on the spatial distribution of crayfish species and a general understanding of the interacting environmental variables that drive current and future potential distributional patterns. 2.Maximum Entropy Species Distribution Modeling Software (MaxEnt) was used to predict the current and future potential distributions of four endemic crayfish species in the Ouachita Mountains. Current distributions were modelled using climate, geology, soils, land use, landform and flow variables thought to be important to lotic crayfish. Potential changes in the distribution were forecast by using models trained on current conditions and projecting onto the landscape predicted under climate-change scenarios. 3.The modelled distribution of the four species closely resembled the perceived distribution of each species but also predicted populations in streams and catchments where they had not previously been collected. Soils, elevation and winter precipitation and temperature most strongly related to current distributions and represented 6587% of the predictive power of the models. Model accuracy was high for all models, and model predictions of new populations were verified through additional field sampling. 4.Current models created using two spatial resolutions (1 and 4.5km2) showed that fine-resolution data more accurately represented current distributions. For three of the four species, the 1-km2 resolution models resulted in more conservative predictions. However, the modelled distributional extent of Orconectes leptogonopodus was similar regardless of data resolution. Field validations indicated 1-km2 resolution models were more accurate than 4.5-km2 resolution models. 5.Future projected (4.5-km2 resolution models) model distributions indicated three of the four endemic species would have truncated ranges with low occurrence probabilities under the low-emission scenario, whereas two of four species would be severely restricted in range under moderatehigh emissions. Discrepancies in the two emission scenarios probably relate to the exclusion of behavioural adaptations from species-distribution models. 6.These model predictions illustrate possible impacts of climate change on narrow-range endemic crayfish populations. The predictions do not account for biotic interactions, migration, local habitat conditions or species adaptation. However, we identified the constraining landscape features acting on these populations that provide a framework for addressing habitat needs at a fine scale and developing targeted and systematic monitoring programmes.

  3. Multiscale landscape genomic models to detect signatures of selection in the alpine plant Biscutella laevigata.

    PubMed

    Leempoel, Kevin; Parisod, Christian; Geiser, Céline; Joost, Stéphane

    2018-02-01

    Plant species are known to adapt locally to their environment, particularly in mountainous areas where conditions can vary drastically over short distances. The climate of such landscapes being largely influenced by topography, using fine-scale models to evaluate environmental heterogeneity may help detecting adaptation to micro-habitats. Here, we applied a multiscale landscape genomic approach to detect evidence of local adaptation in the alpine plant Biscutella laevigata . The two gene pools identified, experiencing limited gene flow along a 1-km ridge, were different in regard to several habitat features derived from a very high resolution (VHR) digital elevation model (DEM). A correlative approach detected signatures of selection along environmental gradients such as altitude, wind exposure, and solar radiation, indicating adaptive pressures likely driven by fine-scale topography. Using a large panel of DEM-derived variables as ecologically relevant proxies, our results highlighted the critical role of spatial resolution. These high-resolution multiscale variables indeed indicate that the robustness of associations between genetic loci and environmental features depends on spatial parameters that are poorly documented. We argue that the scale issue is critical in landscape genomics and that multiscale ecological variables are key to improve our understanding of local adaptation in highly heterogeneous landscapes.

  4. Impacts of precipitation and potential evapotranspiration patterns on downscaling soil moisture in regions with large topographic relief

    NASA Astrophysics Data System (ADS)

    Cowley, Garret S.; Niemann, Jeffrey D.; Green, Timothy R.; Seyfried, Mark S.; Jones, Andrew S.; Grazaitis, Peter J.

    2017-02-01

    Soil moisture can be estimated at coarse resolutions (>1 km) using satellite remote sensing, but that resolution is poorly suited for many applications. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution soil moisture using fine-resolution topographic, vegetation, and soil data to produce fine-resolution (10-30 m) estimates of soil moisture. The EMT+VS model performs well at catchments with low topographic relief (≤124 m), but it has not been applied to regions with larger ranges of elevation. Large relief can produce substantial variations in precipitation and potential evapotranspiration (PET), which might affect the fine-resolution patterns of soil moisture. In this research, simple methods to downscale temporal average precipitation and PET are developed and included in the EMT+VS model, and the effects of spatial variations in these variables on the surface soil moisture estimates are investigated. The methods are tested against ground truth data at the 239 km2 Reynolds Creek watershed in southern Idaho, which has 1145 m of relief. The precipitation and PET downscaling methods are able to capture the main features in the spatial patterns of both variables. The space-time Nash-Sutcliffe coefficients of efficiency of the fine-resolution soil moisture estimates improve from 0.33 to 0.36 and 0.41 when the precipitation and PET downscaling methods are included, respectively. PET downscaling provides a larger improvement in the soil moisture estimates than precipitation downscaling likely because the PET pattern is more persistent through time, and thus more predictable, than the precipitation pattern.

  5. Hydrological Dynamics of Central America: Time-of-Emergence of the Global Warming Signal

    NASA Astrophysics Data System (ADS)

    Imbach, P. A.; Georgiou, S.; Calderer, L.; Coto, A.; Nakaegawa, T.; Chou, S. C.; Lyra, A. A.; Hidalgo, H. G.; Ciais, P.

    2016-12-01

    Central America is among the world's most vulnerable regions to climate variability and change. Country economies are highly dependent on the agricultural sector and over 40 million people's rural livelihoods directly depend on the use of natural resources. Future climate scenarios show a drier outlook (higher temperatures and lower precipitation) over a region where rural livelihoods are already compromised by water availability and climate variability. Previous efforts to validate modelling of the regional hydrology have been based on high resolution (1 km2) equilibrium models (Imbach et al., 2010) or using dynamic models (Variable Infiltration Capacity) with coarse climate forcing (0.5°) (Hidalgo et al., 2013; Maurer et al., 2009). We present here: (i) validation of the hydrological outputs from high-resolution simulations (10 km2) of a dynamic vegetation model (Orchidee), using 7 different sets of model input forcing data, with monthly runoff observations from 182 catchments across Central America; (ii) the first assessments of the region's hydrological variability using the historical simulations (iii) an estimation of the time of emergence of the climate change signal (under the SRES emission scenarios) on the water balance. We found model performance to be comparable with that from studies in other world regions (Yang et al. 2016) when forced with high resolution precipitation data (monthly values at 5 km2, Funk et al. (2015)) and the Climate Research Unit (CRU 3.2, Harris et al. (2014)) dataset of meteorological parameters. Validation results showed a Pearson correlation coefficient ≈ 0.6, general underestimation of runoff of ≈ 60% and variability close to observed values (ratio of standard deviations of ≈ 0.7). Maps of historical runoff are presented to show areas where high runoff variability follows high mean annual runoff, with opposite trends over the Caribbean. Future scenarios show large areas where future maximum water availability will always fall below minus-one standard deviation of the historical values by mid-century. Additionally, our results highlight the time horizon left to develop adaptation strategies to cope with future reductions in water availability.

  6. Kilometric Scale Modeling of the North West European Shelf Seas: Exploring the Spatial and Temporal Variability of Internal Tides

    NASA Astrophysics Data System (ADS)

    Guihou, K.; Polton, J.; Harle, J.; Wakelin, S.; O'Dea, E.; Holt, J.

    2018-01-01

    The North West European Shelf break acts as a barrier to the transport and exchange between the open ocean and the shelf seas. The strong spatial variability of these exchange processes is hard to fully explore using observations, and simulations generally are too coarse to simulate the fine-scale processes over the whole region. In this context, under the FASTNEt program, a new NEMO configuration of the North West European Shelf and Atlantic Margin at 1/60° (˜1.8 km) has been developed, with the objective to better understand and quantify the seasonal and interannual variability of shelf break processes. The capability of this configuration to reproduce the seasonal cycle in SST, the barotropic tide, and fine-resolution temperature profiles is assessed against a basin-scale (1/12°, ˜9 km) configuration and a standard regional configuration (7 km resolution). The seasonal cycle is well reproduced in all configurations though the fine-resolution allows the simulation of smaller scale processes. Time series of temperature at various locations on the shelf show the presence of internal waves with a strong spatiotemporal variability. Spectral analysis of the internal waves reveals peaks at the diurnal, semidiurnal, inertial, and quarter-diurnal bands, which are only realistically reproduced in the new configuration. Tidally induced pycnocline variability is diagnosed in the model and shown to vary with the spring neap cycle with mean displacement amplitudes in excess of 2 m for 30% of the stratified domain. With sufficiently fine resolution, internal tides are shown to be generated at numerous bathymetric features resulting in a complex pycnocline displacement superposition pattern.

  7. Networks for image acquisition, processing and display

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1990-01-01

    The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.

  8. Improving High-Resolution Weather Forecasts Using the Weather Research and Forecasting (WRF) Model with an Updated Kain–Fritsch Scheme

    EPA Science Inventory

    Efforts to improve the prediction accuracy of high-resolution (1–10 km) surface precipitation distribution and variability are of vital importance to local aspects of air pollution, wet deposition, and regional climate. However, precipitation biases and errors can occur at ...

  9. A COMPARISON OF ILLUMINATION GEOMETRY-BASED METHODS FOR TOPOGRAPHIC CORRECTION OF QUICKBIRD IMAGES OF AN UNDULANT AREA

    USDA-ARS?s Scientific Manuscript database

    The high spatial resolution of QuickBird satellite images makes it possible to show spatial variability at fine details. However, the effect of topography-induced illumination variations become more evident, even in moderately sloped areas. Based on a high resolution (1 m) digital elevation model ge...

  10. Analyzing the Effects of Horizontal Resolution on Long-Term Coupled WRF-CMAQ Simulations

    EPA Science Inventory

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. To this end, WRF-CMAQ simulations over the co...

  11. First-Order Model Management With Variable-Fidelity Physics Applied to Multi-Element Airfoil Optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, N. M.; Nielsen, E. J.; Lewis, R. M.; Anderson, W. K.

    2000-01-01

    First-order approximation and model management is a methodology for a systematic use of variable-fidelity models or approximations in optimization. The intent of model management is to attain convergence to high-fidelity solutions with minimal expense in high-fidelity computations. The savings in terms of computationally intensive evaluations depends on the ability of the available lower-fidelity model or a suite of models to predict the improvement trends for the high-fidelity problem, Variable-fidelity models can be represented by data-fitting approximations, variable-resolution models. variable-convergence models. or variable physical fidelity models. The present work considers the use of variable-fidelity physics models. We demonstrate the performance of model management on an aerodynamic optimization of a multi-element airfoil designed to operate in the transonic regime. Reynolds-averaged Navier-Stokes equations represent the high-fidelity model, while the Euler equations represent the low-fidelity model. An unstructured mesh-based analysis code FUN2D evaluates functions and sensitivity derivatives for both models. Model management for the present demonstration problem yields fivefold savings in terms of high-fidelity evaluations compared to optimization done with high-fidelity computations alone.

  12. The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guba, O.; Taylor, M. A.; Ullrich, P. A.

    2014-11-27

    We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable-resolution grids using the shallow-water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance, implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution-dependent coefficient. For the spectral element method with variable-resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity is constructed so that, formore » regions of uniform resolution, it matches the traditional constant-coefficient hyperviscosity. With the tensor hyperviscosity, the large-scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications in which long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less

  13. The spectral element method on variable resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity

    DOE PAGES

    Guba, O.; Taylor, M. A.; Ullrich, P. A.; ...

    2014-06-25

    We evaluate the performance of the Community Atmosphere Model's (CAM) spectral element method on variable resolution grids using the shallow water equations in spherical geometry. We configure the method as it is used in CAM, with dissipation of grid scale variance implemented using hyperviscosity. Hyperviscosity is highly scale selective and grid independent, but does require a resolution dependent coefficient. For the spectral element method with variable resolution grids and highly distorted elements, we obtain the best results if we introduce a tensor-based hyperviscosity with tensor coefficients tied to the eigenvalues of the local element metric tensor. The tensor hyperviscosity ismore » constructed so that for regions of uniform resolution it matches the traditional constant coefficient hyperviscsosity. With the tensor hyperviscosity the large scale solution is almost completely unaffected by the presence of grid refinement. This later point is important for climate applications where long term climatological averages can be imprinted by stationary inhomogeneities in the truncation error. We also evaluate the robustness of the approach with respect to grid quality by considering unstructured conforming quadrilateral grids generated with a well-known grid-generating toolkit and grids generated by SQuadGen, a new open source alternative which produces lower valence nodes.« less

  14. Rainfall variability over southern Africa: an overview of current research using satellite and climate model data

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, satellite-derived rainfall data are used as a basis for undertaking model experiments using a state-of-the-art climate model, run at both high and low spatial resolution. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, a brief overview is given of the authors' research to date, pertaining to southern African rainfall. This covers (i) a description of present-day rainfall variability over southern Africa; (ii) a comparison of model simulated daily rainfall with the satellite-derived dataset; (iii) results from sensitivity testing of the model's domain size; and (iv) results from the idealised SST experiments.

  15. Hyperspectral and multispectral data fusion based on linear-quadratic nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2017-04-01

    This paper proposes three multisharpening approaches to enhance the spatial resolution of urban hyperspectral remote sensing images. These approaches, related to linear-quadratic spectral unmixing techniques, use a linear-quadratic nonnegative matrix factorization (NMF) multiplicative algorithm. These methods begin by unmixing the observable high-spectral/low-spatial resolution hyperspectral and high-spatial/low-spectral resolution multispectral images. The obtained high-spectral/high-spatial resolution features are then recombined, according to the linear-quadratic mixing model, to obtain an unobservable multisharpened high-spectral/high-spatial resolution hyperspectral image. In the first designed approach, hyperspectral and multispectral variables are independently optimized, once they have been coherently initialized. These variables are alternately updated in the second designed approach. In the third approach, the considered hyperspectral and multispectral variables are jointly updated. Experiments, using synthetic and real data, are conducted to assess the efficiency, in spatial and spectral domains, of the designed approaches and of linear NMF-based approaches from the literature. Experimental results show that the designed methods globally yield very satisfactory spectral and spatial fidelities for the multisharpened hyperspectral data. They also prove that these methods significantly outperform the used literature approaches.

  16. Impact of Urbanization on Spatial Variability of Rainfall-A case study of Mumbai city with WRF Model

    NASA Astrophysics Data System (ADS)

    Mathew, M.; Paul, S.; Devanand, A.; Ghosh, S.

    2015-12-01

    Urban precipitation enhancement has been identified over many cities in India by previous studies conducted. Anthropogenic effects such as change in land cover from hilly forest areas to flat topography with solid concrete infrastructures has certain effect on the local weather, the same way the greenhouse gas has on climate change. Urbanization could alter the large scale forcings to such an extent that it may bring about temporal and spatial changes in the urban weather. The present study investigate the physical processes involved in urban forcings, such as the effect of sudden increase in wind velocity travelling through the channel space in between the dense array of buildings, which give rise to turbulence and air mass instability in urban boundary layer and in return alters the rainfall distribution as well as rainfall initiation. A numerical model study is conducted over Mumbai metropolitan city which lies on the west coast of India, to assess the effect of urban morphology on the increase in number of extreme rainfall events in specific locations. An attempt has been made to simulate twenty extreme rainfall events that occurred over the summer monsoon period of the year 2014 using high resolution WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to assess the urban land cover mechanisms that influences precipitation variability over this spatially varying urbanized region. The result is tested against simulations with altered land use. The correlation of precipitation with spatial variability of land use is found using a detailed urban land use classification. The initial and boundary conditions for running the model were obtained from the global model ECMWF(European Centre for Medium Range Weather Forecast) reanalysis data having a horizontal resolution of 0.75 °x 0.75°. The high resolution simulations show significant spatial variability in the accumulated rainfall, within a few kilometers itself. Understanding the spatial variability of precipitation will help in the planning and management of the built environment more efficiently.

  17. Downscaling reanalysis data to high-resolution variables above a glacier surface (Cordillera Blanca, Peru)

    NASA Astrophysics Data System (ADS)

    Hofer, Marlis; Mölg, Thomas; Marzeion, Ben; Kaser, Georg

    2010-05-01

    Recently initiated observation networks in the Cordillera Blanca provide temporally high-resolution, yet short-term atmospheric data. The aim of this study is to extend the existing time series into the past. We present an empirical-statistical downscaling (ESD) model that links 6-hourly NCEP/NCAR reanalysis data to the local target variables, measured at the tropical glacier Artesonraju (Northern Cordillera Blanca). The approach is particular in the context of ESD for two reasons. First, the observational time series for model calibration are short (only about two years). Second, unlike most ESD studies in climate research, we focus on variables at a high temporal resolution (i.e., six-hourly values). Our target variables are two important drivers in the surface energy balance of tropical glaciers; air temperature and specific humidity. The selection of predictor fields from the reanalysis data is based on regression analyses and climatologic considerations. The ESD modelling procedure includes combined empirical orthogonal function and multiple regression analyses. Principal component screening is based on cross-validation using the Akaike Information Criterion as model selection criterion. Double cross-validation is applied for model evaluation. Potential autocorrelation in the time series is considered by defining the block length in the resampling procedure. Apart from the selection of predictor fields, the modelling procedure is automated and does not include subjective choices. We assess the ESD model sensitivity to the predictor choice by using both single- and mixed-field predictors of the variables air temperature (1000 hPa), specific humidity (1000 hPa), and zonal wind speed (500 hPa). The chosen downscaling domain ranges from 80 to 50 degrees west and from 0 to 20 degrees south. Statistical transfer functions are derived individually for different months and times of day (month/hour-models). The forecast skill of the month/hour-models largely depends on month and time of day, ranging from 0 to 0.8, but the mixed-field predictors generally perform better than the single-field predictors. At all time scales, the ESD model shows added value against two simple reference models; (i) the direct use of reanalysis grid point values, and (ii) mean diurnal and seasonal cycles over the calibration period. The ESD model forecast 1960 to 2008 clearly reflects interannual variability related to the El Niño/Southern Oscillation, but is sensitive to the chosen predictor type. So far, we have not assessed the performance of NCEP/NCAR reanalysis data against other reanalysis products. The developed ESD model is computationally cheap and applicable wherever measurements are available for model calibration.

  18. High resolution modeling of a small urban catchment

    NASA Astrophysics Data System (ADS)

    Skouri-Plakali, Ilektra; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    Flooding is one of the most complex issues that urban environments have to deal with. In France, flooding remains the first natural risk with 72% of decrees state of natural disaster issued between October 1982 and mid-November 2014. Flooding is a result of meteorological extremes that are usually aggravated by the hydrological behavior of urban catchments and human factors. The continuing urbanization process is indeed changing the whole urban water cycle by limiting the infiltration and promoting runoff. Urban environments are very complex systems due to their extreme variability, the interference between human activities and natural processes but also the effect of the ongoing urbanization process that changes the landscape and hardly influences their hydrologic behavior. Moreover, many recent works highlight the need to simulate all urban water processes at their specific temporal and spatial scales. However, considering urban catchments heterogeneity still challenging for urban hydrology, even after advances noticed in term of high-resolution data collection and computational resources. This issue is more to be related to the architecture of urban models being used and how far these models are ready to take into account the extreme variability of urban catchments. In this work, high spatio-temporal resolution modeling is performed for a small and well-equipped urban catchment. The aim of this work is to identify urban modeling needs in terms of spatial and temporal resolution especially for a very small urban area (3.7 ha urban catchment located in the Perreux-sur-Marne city at the southeast of Paris) MultiHydro model was selected to carry out this work, it is a physical based and fully distributed model that interacts four existing modules each of them representing a portion of the water cycle in urban environments. MultiHydro was implemented at 10m, 5m and 2m resolution. Simulations were performed at different spatio-temporal resolutions and analyzed with respect to real flow measurements. First Results coming out show improvements obtained in terms of the model performance at high spatio-temporal resolution.

  19. Cross-scale assessment of potential habitat shifts in a rapidly changing climate

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Bella, Elizabeth S.; Carlson, Matthew L.; Graziano, Gino; Lamb, Melinda; Seefeldt, Steven S.; Morisette, Jeffrey T.

    2014-01-01

    We assessed the ability of climatic, environmental, and anthropogenic variables to predict areas of high-risk for plant invasion and consider the relative importance and contribution of these predictor variables by considering two spatial scales in a region of rapidly changing climate. We created predictive distribution models, using Maxent, for three highly invasive plant species (Canada thistle, white sweetclover, and reed canarygrass) in Alaska at both a regional scale and a local scale. Regional scale models encompassed southern coastal Alaska and were developed from topographic and climatic data at a 2 km (1.2 mi) spatial resolution. Models were applied to future climate (2030). Local scale models were spatially nested within the regional area; these models incorporated physiographic and anthropogenic variables at a 30 m (98.4 ft) resolution. Regional and local models performed well (AUC values > 0.7), with the exception of one species at each spatial scale. Regional models predict an increase in area of suitable habitat for all species by 2030 with a general shift to higher elevation areas; however, the distribution of each species was driven by different climate and topographical variables. In contrast local models indicate that distance to right-of-ways and elevation are associated with habitat suitability for all three species at this spatial level. Combining results from regional models, capturing long-term distribution, and local models, capturing near-term establishment and distribution, offers a new and effective tool for highlighting at-risk areas and provides insight on how variables acting at different scales contribute to suitability predictions. The combinations also provides easy comparison, highlighting agreement between the two scales, where long-term distribution factors predict suitability while near-term do not and vice versa.

  20. Quantification of errors induced by temporal resolution on Lagrangian particles in an eddy-resolving model

    NASA Astrophysics Data System (ADS)

    Qin, Xuerong; van Sebille, Erik; Sen Gupta, Alexander

    2014-04-01

    Lagrangian particle tracking within ocean models is an important tool for the examination of ocean circulation, ventilation timescales and connectivity and is increasingly being used to understand ocean biogeochemistry. Lagrangian trajectories are obtained by advecting particles within velocity fields derived from hydrodynamic ocean models. For studies of ocean flows on scales ranging from mesoscale up to basin scales, the temporal resolution of the velocity fields should ideally not be more than a few days to capture the high frequency variability that is inherent in mesoscale features. However, in reality, the model output is often archived at much lower temporal resolutions. Here, we quantify the differences in the Lagrangian particle trajectories embedded in velocity fields of varying temporal resolution. Particles are advected from 3-day to 30-day averaged fields in a high-resolution global ocean circulation model. We also investigate whether adding lateral diffusion to the particle movement can compensate for the reduced temporal resolution. Trajectory errors reveal the expected degradation of accuracy in the trajectory positions when decreasing the temporal resolution of the velocity field. Divergence timescales associated with averaging velocity fields up to 30 days are faster than the intrinsic dispersion of the velocity fields but slower than the dispersion caused by the interannual variability of the velocity fields. In experiments focusing on the connectivity along major currents, including western boundary currents, the volume transport carried between two strategically placed sections tends to increase with increased temporal averaging. Simultaneously, the average travel times tend to decrease. Based on these two bulk measured diagnostics, Lagrangian experiments that use temporal averaging of up to nine days show no significant degradation in the flow characteristics for a set of six currents investigated in more detail. The addition of random-walk-style diffusion does not mitigate the errors introduced by temporal averaging for large-scale open ocean Lagrangian simulations.

  1. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2016-04-01

    In climate simulations, the impacts of the sub-grid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the sub-grid variability in a computationally inexpensive manner. This presentation shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition, by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a non-zero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference PD Williams, NJ Howe, JM Gregory, RS Smith, and MM Joshi (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, under revision.

  2. Distributed modelling of water resources in the Lower Jordan River Basin - from present day variability to suitability for new water sources

    NASA Astrophysics Data System (ADS)

    Gunkel, Anne; Lange, Jens

    2010-05-01

    The Middle East is characterized by a high temporal and spatial variability of rainfall. As a result, water resources are not reliable and severe drought events are frequent, worsening the natural water scarcity. Single high magnitude events may dominate the water balance of entire seasons - a fact that is poorly represented in the assessments of available water resources that are normally based on long term averages. Therefore, a distributed hydrological model with a high temporal and spatial resolution is applied to the Lower Jordan River basin (LJRB). The focus is hereby to capture the variability of rainfall and to investigate how this signal is amplified in the hydrological cycle in this arid and semi arid environment. Rainfall variability is addressed through a volume scanning rainfall radar providing precipitation data with a resolution of 5 minutes for entire seasons that serves as input to a conceptual hydrological model. The raw radar data recorded by a C-Band system was pre-corrected by a multiple regression approach prior to regionalization to the LJRB, ground truthing with rainfall station data and conditional merging. Despite certain uncertainties, the data documents the accentuated rainfall variability in the entire LJRB. In order to include the full range of present rainfall variability, one average and two extreme seasons (wet and dry) are studied. Hydrological modelling is undertaken with a new modelling tool created by coupling two hydrological models, TRAIN and ZIN, complementing each other in respect to the addressed processes and water fluxes. The resulting modelling tool enables conceptual modelling of the processes relevant for semi-arid / arid environments with a high temporal and spatial resolution. The model is applied to the large scale LJRB (16,000 km²) in order to simulate all components of the water balance for three rainy seasons representing the present climate variability. Under given conditions of low data availability, the results give a basin wide view on the availability of surface water resources without human intervention with a high resolution in time (5 min) and space (up to 250 x 250 m²). The scarcity of water resources in many areas within the region is illustrated and detailed maps of the water balance components reveal spatial pattern of water availability characterizing the different potentials of regions or sub basins for water management options. Moreover, comparing different climate conditions provides valuable information for water management, including insights into the relation between green and blue water. For instance, runoff generation and percolation react stronger to changes in precipitation than evapotranspiration and the changes in runoff and percolation are considerably higher than the differences in rainfall between the three years. This amplification of rainfall variability by the hydrological cycle is significant for water management. Based on the results for current conditions, the impact of different scenarios and management options is analyzed, e.g. the effect of land use changes or the suitability of different regions for rainwater harvesting, one of the urgently needed new water sources.

  3. Variability of hydrological extreme events in East Asia and their dynamical control: a comparison between observations and two high-resolution global climate models

    NASA Astrophysics Data System (ADS)

    Freychet, N.; Duchez, A.; Wu, C.-H.; Chen, C.-A.; Hsu, H.-H.; Hirschi, J.; Forryan, A.; Sinha, B.; New, A. L.; Graham, T.; Andrews, M. B.; Tu, C.-Y.; Lin, S.-J.

    2017-02-01

    This work investigates the variability of extreme weather events (drought spells, DS15, and daily heavy rainfall, PR99) over East Asia. It particularly focuses on the large scale atmospheric circulation associated with high levels of the occurrence of these extreme events. Two observational datasets (APHRODITE and PERSIANN) are compared with two high-resolution global climate models (HiRAM and HadGEM3-GC2) and an ensemble of other lower resolution climate models from CMIP5. We first evaluate the performance of the high resolution models. They both exhibit good skill in reproducing extreme events, especially when compared with CMIP5 results. Significant differences exist between the two observational datasets, highlighting the difficulty of having a clear estimate of extreme events. The link between the variability of the extremes and the large scale circulation is investigated, on monthly and interannual timescales, using composite and correlation analyses. Both extreme indices DS15 and PR99 are significantly linked to the low level wind intensity over East Asia, i.e. the monsoon circulation. It is also found that DS15 events are strongly linked to the surface temperature over the Siberian region and to the land-sea pressure contrast, while PR99 events are linked to the sea surface temperature anomalies over the West North Pacific. These results illustrate the importance of the monsoon circulation on extremes over East Asia. The dependencies on of the surface temperature over the continent and the sea surface temperature raise the question as to what extent they could affect the occurrence of extremes over tropical regions in future projections.

  4. THE EFFECTS OF HABITAT RESOLUTION ON MODELS OF AVIAN DIVERSITY AND DISTRIBUTIONS: A COMPARISON OF TWO LAND-COVER CLASSIFICATIONS

    EPA Science Inventory

    The quantification of pattern is a key element of landscape analyses. One aspect of this quantification of particular importance to landscape ecologists regards the classification of continuous variables to produce categorical variables such as land-cover type or elevation strat...

  5. Impact of earthquake source complexity and land elevation data resolution on tsunami hazard assessment and fatality estimation

    NASA Astrophysics Data System (ADS)

    Muhammad, Ario; Goda, Katsuichiro

    2018-03-01

    This study investigates the impact of model complexity in source characterization and digital elevation model (DEM) resolution on the accuracy of tsunami hazard assessment and fatality estimation through a case study in Padang, Indonesia. Two types of earthquake source models, i.e. complex and uniform slip models, are adopted by considering three resolutions of DEMs, i.e. 150 m, 50 m, and 10 m. For each of the three grid resolutions, 300 complex source models are generated using new statistical prediction models of earthquake source parameters developed from extensive finite-fault models of past subduction earthquakes, whilst 100 uniform slip models are constructed with variable fault geometry without slip heterogeneity. The results highlight that significant changes to tsunami hazard and fatality estimates are observed with regard to earthquake source complexity and grid resolution. Coarse resolution (i.e. 150 m) leads to inaccurate tsunami hazard prediction and fatality estimation, whilst 50-m and 10-m resolutions produce similar results. However, velocity and momentum flux are sensitive to the grid resolution and hence, at least 10-m grid resolution needs to be implemented when considering flow-based parameters for tsunami hazard and risk assessments. In addition, the results indicate that the tsunami hazard parameters and fatality number are more sensitive to the complexity of earthquake source characterization than the grid resolution. Thus, the uniform models are not recommended for probabilistic tsunami hazard and risk assessments. Finally, the findings confirm that uncertainties of tsunami hazard level and fatality in terms of depth, velocity and momentum flux can be captured and visualized through the complex source modeling approach. From tsunami risk management perspectives, this indeed creates big data, which are useful for making effective and robust decisions.

  6. Cognitive declines in healthy aging: evidence from multiple aspects of interference resolution.

    PubMed

    Pettigrew, Corinne; Martin, Randi C

    2014-06-01

    The present study tested the hypothesis that older adults show age-related deficits in interference resolution, also referred to as inhibitory control. Although oftentimes considered as a unitary aspect of executive function, various lines of work support the notion that interference resolution may be better understood as multiple constructs, including resistance to proactive interference (PI) and response-distractor inhibition (e.g., Friedman & Miyake, 2004). Using this dichotomy, the present study assessed whether older adults (relative to younger adults) show impaired performance across both, 1, or neither of these interference resolution constructs. To do so, we used multiple tasks to tap each construct and examined age effects at both the single task and latent variable levels. Older adults consistently demonstrated exaggerated interference effects across resistance to PI tasks. Although the results for the response-distractor inhibition tasks were less consistent at the individual task level analyses, age effects were evident on multiple tasks, as well as at the latent variable level. However, results of the latent variable modeling suggested declines in interference resolution are best explained by variance that is common to the 2 interference resolution constructs measured herein. Furthermore, the effect of age on interference resolution was found to be both distinct from declines in working memory, and independent of processing speed. These findings suggest multiple cognitive domains are independently sensitive to age, but that declines in the interference resolution constructs measured herein may originate from a common cause. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  7. Ocean Color Products Supporting the Assessment of Good Environmental Status: Development of a Spatial Distribution Model for the Seagrass Posidonia Oceanica (L.) Delille, 1813

    NASA Astrophysics Data System (ADS)

    Zucchetta, M.; Taji, M. A.; Mangin, A.; Pastres, R.

    2015-12-01

    Posidonia oceanica (L.) Delile, 1813 is a seagrass species endemic to the Mediterranean Sea, which is considered as one of the key habitats of the coastal areas. This species forms large meadows sensitive to several anthropogenic pressures, that can be regarded as indicators of environment quality in coastal environments and its distributional patterns should be take into account when evaluating the Environmental Status following the Ecosystem approach promoted by the Mediterranean Action Plan of UNEP and the EU Marine Strategy Framework Directive (2008/56/EC). The aim of this study was to develop a Species Distribution Model for P. oceanica, to be applied to the whole Mediterranean North African coast, in order to obtain an estimation of the potential distribution of this species in the region to be considered as an indicator for the assessment of good Environmental Status. As the study area is a data-poor zone with regard to seagrass distribution (i.e. only for some areas detailed distribution maps are available), the Species Distribution Model (SDM) was calibrated using high resolution data from 5 Mediterranean sites, located in Italy and Spain and validated using available data from the North African coast. Usually, when developing SDMs species occupancy data is available at coarser resolution than the information of environmental variables, and thus has to be downscaled at the appropriate grain to be coupled to the environmental conditions. Tackling the case of P. oceanica we had to face the opposite problem: the quality (in terms of resolution) of the information on seagrass distribution is generally very high compared to the environmental data available over large scale in marine domains (e.g. global bathymetry data). The high resolution application and the model transfer (from calibration areas to North African coast) was possible taking advantage of Ocean Color products: the probability of presence of the species in a given area was modelled using a binomial generalized linear model as a function of the bathymetry and some water characteristics mainly obtained from satellite data. Full resolution (c.a. 300m) Medium Resolution Imaging Spectrometer (MERIS) sensor imagery have been processed in order to extract a set of environmental variables to be coupled to seagrass distribution in the areas used to calibrate the model and for the whole North Africa coast (i.e. model application area). For the period 2003-2011 we processed data of: 1) the diffuse attenuation coefficient 2) coloured dissolved organic matter 3) Particle backscatter at 443nm; 4) Euphotic depth, estimated considering the coefficient of extinction of light; 5) Euphotic depth/ depth ratio, combining the estimation of euphotic depth with the bathymetry. Other variables have been resampled at MERIS full resolution, like data obtained from Moderate Resolution Imaging Spectroradiometer (MODIS; Sea Surface Temperature and Photosynthetically Available Radiation) or by model simulation (e.g. water salinity). The fitted model suggests that water transparency plays a major role, but also other variables, such as salinity and photosynthetically available radiation at surface, are important at larger spatial scales in explaining meadows distribution. The availability of high resolution time-series of input data allowed us to apply the validated model to the whole NA coast. Using model predictions to identify areas with suitable conditions for P. oceanica, it was possible to develop an indicator of potential habitat use and to define baseline reference conditions, necessary for the assessment of Good Environmental Status in Mediterranean coastal waters. This work shows how the Ocean and Land Colour Instrument (OLCI) within the Sentinel-3 mission can be exploited - thanks to the way opened by MERIS - to carry out the operational monitoring needed for the implementation of the UNEP MAP and EU MSFD Ecosystem Approach to the integrated management of land, water and living resources.

  8. Impacts of rainfall spatial variability on hydrogeological response

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, Gonzalo; Jódar, Jorge; Navarro, Vicente; Slooten, Luit Jan; Carrera, Jesús; Gupta, Hoshin V.

    2015-02-01

    There is currently no general consensus on how the spatial variability of rainfall impacts and propagates through complex hydrogeological systems. Most studies to date have focused on the effects of rainfall spatial variability (RSV) on river discharge, while paying little attention to other important aspects of system response. Here, we study the impacts of RSV on several responses of a hydrological model of an overexploited system. To this end, we drive a spatially distributed hydrogeological model for the semiarid Upper Guadiana basin in central Spain with stochastic daily rainfall fields defined at three different spatial resolutions (fine → 2.5 km × 2.5 km, medium → 50 km × 50 km, large → lumped). This enables us to investigate how (i) RSV at different spatial resolutions, and (ii) rainfall uncertainty, are propagated through the hydrogeological model of the system. Our results demonstrate that RSV has a significant impact on the modeled response of the system, by specifically affecting groundwater recharge and runoff generation, and thereby propagating through to various other related hydrological responses (river discharge, river-aquifer exchange, groundwater levels). These results call into question the validity of management decisions made using hydrological models calibrated or forced with spatially lumped rainfall.

  9. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD

    PubMed Central

    Lorenz, David J.; Nieto-Lugilde, Diego; Blois, Jessica L.; Fitzpatrick, Matthew C.; Williams, John W.

    2016-01-01

    Increasingly, ecological modellers are integrating paleodata with future projections to understand climate-driven biodiversity dynamics from the past through the current century. Climate simulations from earth system models are necessary to this effort, but must be debiased and downscaled before they can be used by ecological models. Downscaling methods and observational baselines vary among researchers, which produces confounding biases among downscaled climate simulations. We present unified datasets of debiased and downscaled climate simulations for North America from 21 ka BP to 2100AD, at 0.5° spatial resolution. Temporal resolution is decadal averages of monthly data until 1950AD, average climates for 1950–2005 AD, and monthly data from 2010 to 2100AD, with decadal averages also provided. This downscaling includes two transient paleoclimatic simulations and 12 climate models for the IPCC AR5 (CMIP5) historical (1850–2005), RCP4.5, and RCP8.5 21st-century scenarios. Climate variables include primary variables and derived bioclimatic variables. These datasets provide a common set of climate simulations suitable for seamlessly modelling the effects of past and future climate change on species distributions and diversity. PMID:27377537

  10. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD.

    PubMed

    Lorenz, David J; Nieto-Lugilde, Diego; Blois, Jessica L; Fitzpatrick, Matthew C; Williams, John W

    2016-07-05

    Increasingly, ecological modellers are integrating paleodata with future projections to understand climate-driven biodiversity dynamics from the past through the current century. Climate simulations from earth system models are necessary to this effort, but must be debiased and downscaled before they can be used by ecological models. Downscaling methods and observational baselines vary among researchers, which produces confounding biases among downscaled climate simulations. We present unified datasets of debiased and downscaled climate simulations for North America from 21 ka BP to 2100AD, at 0.5° spatial resolution. Temporal resolution is decadal averages of monthly data until 1950AD, average climates for 1950-2005 AD, and monthly data from 2010 to 2100AD, with decadal averages also provided. This downscaling includes two transient paleoclimatic simulations and 12 climate models for the IPCC AR5 (CMIP5) historical (1850-2005), RCP4.5, and RCP8.5 21st-century scenarios. Climate variables include primary variables and derived bioclimatic variables. These datasets provide a common set of climate simulations suitable for seamlessly modelling the effects of past and future climate change on species distributions and diversity.

  11. Optimizing variable radius plot size and LiDAR resolution to model standing volume in conifer forests

    Treesearch

    Ram Kumar Deo; Robert E. Froese; Michael J. Falkowski; Andrew T. Hudak

    2016-01-01

    The conventional approach to LiDAR-based forest inventory modeling depends on field sample data from fixed-radius plots (FRP). Because FRP sampling is cost intensive, combining variable-radius plot (VRP) sampling and LiDAR data has the potential to improve inventory efficiency. The overarching goal of this study was to evaluate the integration of LiDAR and VRP data....

  12. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6

    DOE PAGES

    Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; ...

    2016-11-22

    Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relativelymore » few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950–2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. Lastly, HighResMIP thereby focuses on one of the CMIP6 broad questions, “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.« less

  13. Mesoscale Circulation Variability from Five years of Quasi-continuous Glider Observations and Numerical Simulation at a Key Sub-basin 'Choke' Point.

    NASA Astrophysics Data System (ADS)

    Heslop, E. E.; Mourre, B.; Juza, M.; Troupin, C.; Escudier, R.; Torner, M.; Tintore, J.

    2016-02-01

    Quasi-continuous glider observations over 5 years have uniquely characterised a high frequency variability in the circulation through the Ibiza Channel, an important `choke' point in the Western Mediterranean Sea. This `choke' point governs the basin/sub-basin scale circulation and the north/south exchanges of different water masses. The resulting multi-scale variability impacts the regional shelf and open ocean ecosystems, including the spawning grounds of Atlantic bluefin tuna. Through the unique glider record we show the relevance of the weekly/mesoscale variability, which is of same order as the previously established seasonal and inter-annual variability. To understand the drivers of this variability we combine the glider data with numerical simulations (WMOP) and altimetry. Two key drivers are identified; extreme winter events, which cause the formation of a cold winter mode water (Winter Intermediate Water) in the shelf areas to the north of the Ibiza Channel, and mesoscale activity, which to the north produce channel `blocking' eddies and to the south intermittent and vigorous flows of fresher `Atlantic' waters through the Ibiza Channel. Results from the 2 km resolution WMOP are compared with the high-resolution (2 - 3 km.) glider data, giving insight into model validation across different scales, for both circulation and water masses. There is an emerging consensus that gliders can uniquely access critical time and length scales and in this study gliders complement existing satellite measurements and models, while opening up new capabilities for multidisciplinary, autonomous and high-resolution ocean observation.

  14. A variable resolution right TIN approach for gridded oceanographic data

    NASA Astrophysics Data System (ADS)

    Marks, David; Elmore, Paul; Blain, Cheryl Ann; Bourgeois, Brian; Petry, Frederick; Ferrini, Vicki

    2017-12-01

    Many oceanographic applications require multi resolution representation of gridded data such as for bathymetric data. Although triangular irregular networks (TINs) allow for variable resolution, they do not provide a gridded structure. Right TINs (RTINs) are compatible with a gridded structure. We explored the use of two approaches for RTINs termed top-down and bottom-up implementations. We illustrate why the latter is most appropriate for gridded data and describe for this technique how the data can be thinned. While both the top-down and bottom-up approaches accurately preserve the surface morphology of any given region, the top-down method of vertex placement can fail to match the actual vertex locations of the underlying grid in many instances, resulting in obscured topology/bathymetry. Finally we describe the use of the bottom-up approach and data thinning in two applications. The first is to provide thinned, variable resolution bathymetry data for tests of storm surge and inundation modeling, in particular hurricane Katrina. Secondly we consider the use of the approach for an application to an oceanographic data grid of 3-D ocean temperature.

  15. Decadal Variability of Temperature and Salinity in the Northwest Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Mishonov, A. V.; Seidov, D.; Reagan, J. R.; Boyer, T.; Parsons, A. R.

    2017-12-01

    There are only a few regions in the World Ocean where the density of observations collected over the past 60 years is sufficient for reliable data mapping with spatial resolutions finer than one-degree. The Northwest Atlantic basin is one such regions where a spatial resolution of gridded temperature and salinity fields, comparable to those generated by eddy-resolving numerical models of ocean circulation, has recently becomes available. Using the new high-resolution Northwest Atlantic Regional Climatology, built on quarter-degree and one-tenth-degree resolution fields, we analyzed decadal variability and trends of temperature and salinity over 60 years in the Northwest Atlantic, and two 30-year ocean climates of 1955-1984 and 1985-2012 to evaluate the oceanic climate shift in this region. The 30-year climate shift is demonstrated using an innovative 3-D visualization of temperature and salinity. Spatial and temporal variability of heat accumulation found in previous research of the entire North Atlantic Ocean persists in the Northwest Atlantic Ocean. Salinity changes between two 30-year climates were also computed and are discussed.

  16. A 12-year (1987-1998) Ensemble Simulation of the US Climate with a Variable Resolution Stretched Grid GCM

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.

    2002-01-01

    The variable-resolution stretched-grid (SG) GEOS (Goddard Earth Observing System) GCM has been used for limited ensemble integrations with a relatively coarse, 60 to 100 km, regional resolution over the U.S. The experiments have been run for the 12-year period, 1987-1998, that includes the recent ENSO cycles. Initial conditions 1-2 days apart are used for ensemble members. The goal of the experiments is analyzing the long-term SG-GCM ensemble integrations in terms of their potential in reducing the uncertainties of regional climate simulation while producing realistic mesoscales. The ensemble integration results are analyzed for both prognostic and diagnostic fields. A special attention is devoted to analyzing the variability of precipitation over the U.S. The internal variability of the SG-GCM has been assessed. The ensemble means appear to be closer to the verifying analyses than the individual ensemble members. The ensemble means capture realistic mesoscale patterns, especially those of induced by orography. Two ENSO cycles have been analyzed in terms their impact on the U.S. climate, especially on precipitation. The ability of the SG-GCM simulations to produce regional climate anomalies has been confirmed. However, the optimal size of the ensembles depending on fine regional resolution used, is still to be determined. The SG-GCM ensemble simulations are performed as a preparation or a preliminary stage for the international SGMIP (Stretched-Grid Model Intercomparison Project) that is under way with participation of the major centers and groups employing the SG-approach for regional climate modeling.

  17. Why inputs matter: Selection of climatic variables for species distribution modelling in the Himalayan region

    NASA Astrophysics Data System (ADS)

    Bobrowski, Maria; Schickhoff, Udo

    2017-04-01

    Betula utilis is a major constituent of alpine treeline ecotones in the western and central Himalayan region. The objective of this study is to provide first time analysis of the potential distribution of Betula utilis in the subalpine and alpine belts of the Himalayan region using species distribution modelling. Using Generalized Linear Models (GLM) we aim at examining climatic factors controlling the species distribution under current climate conditions. Furthermore we evaluate the prediction ability of climate data derived from different statistical methods. GLMs were created using least correlated bioclimatic variables derived from two different climate models: 1) interpolated climate data (i.e. Worldclim, Hijmans et al., 2005) and 2) quasi-mechanistical statistical downscaling (i.e. Chelsa; Karger et al., 2016). Model accuracy was evaluated by the ability to predict the potential species distribution range. We found that models based on variables of Chelsa climate data had higher predictive power, whereas models using Worldclim climate data consistently overpredicted the potential suitable habitat for Betula utilis. Although climatic variables of Worldclim are widely used in modelling species distribution, our results suggest to treat them with caution when remote regions like the Himalayan mountains are in focus. Unmindful usage of climatic variables for species distribution models potentially cause misleading projections and may lead to wrong implications and recommendations for nature conservation. References: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N., Linder, H.P. & Kessler, M. (2016) Climatologies at high resolution for the earth land surface areas. arXiv:1607.00217 [physics].

  18. Exploring a Variable-Resolution Approach for Simulating Regional Climate in the Rocky Mountain Region Using the VR-CESM

    NASA Astrophysics Data System (ADS)

    Wu, Chenglai; Liu, Xiaohong; Lin, Zhaohui; Rhoades, Alan M.; Ullrich, Paul A.; Zarzycki, Colin M.; Lu, Zheng; Rahimi-Esfarjani, Stefan R.

    2017-10-01

    The reliability of climate simulations and projections, particularly in the regions with complex terrains, is greatly limited by the model resolution. In this study we evaluate the variable-resolution Community Earth System Model (VR-CESM) with a high-resolution (0.125°) refinement over the Rocky Mountain region. The VR-CESM results are compared with observations, as well as CESM simulation at a quasi-uniform 1° resolution (UNIF) and Canadian Regional Climate Model version 5 (CRCM5) simulation at a 0.11° resolution. We find that VR-CESM is effective at capturing the observed spatial patterns of temperature, precipitation, and snowpack in the Rocky Mountains with the performance comparable to CRCM5, while UNIF is unable to do so. VR-CESM and CRCM5 simulate better the seasonal variations of precipitation than UNIF, although VR-CESM still overestimates winter precipitation whereas CRCM5 and UNIF underestimate it. All simulations distribute more winter precipitation along the windward (west) flanks of mountain ridges with the greatest overestimation in VR-CESM. VR-CESM simulates much greater snow water equivalent peaks than CRCM5 and UNIF, although the peaks are still 10-40% less than observations. Moreover, the frequency of heavy precipitation events (daily precipitation ≥ 25 mm) in VR-CESM and CRCM5 is comparable to observations, whereas the same events in UNIF are an order of magnitude less frequent. In addition, VR-CESM captures the observed occurrence frequency and seasonal variation of rain-on-snow days and performs better than UNIF and CRCM5. These results demonstrate the VR-CESM's capability in regional climate modeling over the mountainous regions and its promising applications for climate change studies.

  19. Daily and 3-hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Mu, M.; Randerson, J. T.; vanderWerf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003.2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS) ]derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top ]down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  20. Estimation of Atlantic-Mediterranean netflow variability

    NASA Astrophysics Data System (ADS)

    Guerreiro, Catarina; Peliz, Alvaro; Miranda, Pedro

    2016-04-01

    The exchanges at the Strait of Gibraltar are extremely difficult to measure due to the strong temporal and across-strait variabilities; yet the Atlantic inflow into the Mediterranean is extremely important both for climate and to ecosystems. Most of the published numerical modeling studies do not resolve the Strait of Gibraltar realistically. Models that represent the strait at high resolution focus primarily in high frequency dynamics, whereas long-term dynamics are studied in low resolution model studies, and for that reason the Strait dynamics are poorly resolved. Estimating the variability of the exchanges requires long term and high-resolutions studies, thus an improved simulation with explicit and realistic representation of the Strait is necessary. On seasonal to inter-annual timescales the flow is essentially driven by the net evaporation contribution and consequently realistic fields of precipitation and evaporation are necessary for model setup. A comparison between observations, reanalysis and combined products shows ERA-Interim Reanalysis has the most suitable product for Mediterranean Sea. Its time and space variability are in close agreement with NOC 1.1 for the common period (1980 - 1993) and also with evaporation from OAFLUX (1989 - 2014). Subinertial fluctuations, periods from days to a few months, are the second most energetic, after tides, and are the response to atmospheric pressure fluctuations and local winds. Atmospheric pressure fluctuations in the Mediterranean cause sea level oscillations that induce a barotropic flow through the Strait. Candela's analytical model has been used to quantify this response in later studies, though comparison with observations points to an underestimation of the flow at strait. An improved representation of this term contribution to the Atlantic - Mediterranean exchange must be achieved on longer time-scales. We propose a new simulation for the last 36 years (1979 - 2014) for the Mediterranean - Atlantic domain with explicit representation of the Strait. The simulations are performed using the Regional Ocean Modeling System (ROMS) and forced with the different contributions of the freshwater budget, sea level pressure fluctuations and winds from ERA-Interim Reanalysis. The model of sea level pressure induced barotropic fluctuations simulates the barotropic variability at the Strait of Gibraltar for the last decades.

  1. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    NASA Astrophysics Data System (ADS)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon (SOC), as essential input variable, was predicted by measured soil samples and associated to STD of the upper 30 cm. The comprehensive and high-resolution (4x4 m) soil profile information (up to 2 m soil depth) were then used to initialise a soil process model (Carbon and Nitrogen Dynamics - CANDY) for soil functional modelling (daily steps of matter fluxes, soil temperature and water balances). Our study was conducted on a practical field (~32,000 m²) of an agricultural farm in Central Germany with Chernozem soils under arid conditions (average rainfall < 550 mm). This soil region is known to have differences in soil structure mainly occurring within the subsoil, since topsoil conditions are described as homogenous. The modelled soil functions considered local climate information and practical farming activities. Results show, as expected, distinguished functional variability, both on spatial and temporal resolution for subsoil evident structures, e.g. visible differences for available water capacity within 0-100 cm but homogenous conditions for the topsoil.

  2. The Liverpool Bay Coastal Observatory

    NASA Astrophysics Data System (ADS)

    Howarth, Michael John; O'Neill, Clare K.; Palmer, Matthew R.

    2010-05-01

    A pre-operational Coastal Observatory has been functioning since August 2002 in Liverpool Bay, Irish Sea. Its rationale is to develop the science underpinning the ecosystem based approach to marine management, including distinguishing between natural and man-made variability, with particular emphasis on eutrophication and predicting responses of a coastal sea to climate change. Liverpool Bay has strong tidal mixing, receives fresh water principally from the Dee, Mersey and Ribble estuaries, each with different catchment influences, and has enhanced levels of nutrients. Horizontal and vertical density gradients are variable both in space and time. The challenge is to understand and model accurately this variable region which is turbulent, turbid, receives enhanced nutrients and is productive. The Observatory has three components, for each of which the goal is some (near) real-time operation - measurements; coupled 3-D hydrodynamic, wave and ecological models; a data management and web-based data delivery system which provides free access to the data, http://cobs.pol.ac.uk. The integrated measurements are designed to test numerical models and have as a major objective obtaining multi-year records, covering tidal, event (storm / calm / bloom), seasonal and interannual time scales. The four main strands on different complementary space or time scales are:- a) fixed point time series (in situ and shore-based); very good temporal and very poor spatial resolution. These include tide gauges; a meteorological station on Hilbre Island at the mouth of the Dee; two in situ sites, one by the Mersey Bar, measuring waves and the vertical structure of current, temperature and salinity. A CEFAS SmartBuoy whose measurements include surface nutrients is deployed at the Mersey Bar site. b) regular (nine times per year) spatial water column surveys on a 9 km grid; good vertical resolution for some variables, limited spatial coverage and resolution, and limited temporal resolution. The measurements include nutrients and on board pCO2. c) HF radar for surface currents and waves; very good temporal resolution, limited spatial resolution (4 km grid) and range (~75 km). d) an instrumented ferry between Birkenhead and Dublin; along track 100 m resolution, crossing there and back most days. These are supplemented by weekly composite (because of cloud cover) satellite images of sea surface temperature, suspended sediment and chlorophyll; excellent horizontal resolution for surface properties, poor temporal coverage. A suite of coupled 3-D hydrodynamic, wave and ecological models forced by forecast meteorology is being developed. The model domains are nested from a 12 km grid ocean / shelf domain, 1.8 km Irish Sea and finally to 180 m for Liverpool Bay. Making real time forecasts for comparison with measurements is difficult since the forecast is only as good as the forcing data, for instance the meteorology should be on spatial and temporal scales comparable with the oceanographic models' and real-time river flow data is needed (climatological mean data are not good enough, especially for local models). The Observatory's design naturally involved compromises where model predictions can help, for instance should the detailed coverage be wider, including more of the Irish Sea, and / or should it extend closer to the shore, where biologically activity is greater? How many cruises should there be per year - nine visits will over-sample for a well defined seasonal cycle, such as temperature, but not for a variable with a more unpredictable or shorter time scale, such as salinity or phytoplankton? After seven years the main scientific challenges remain both to understand the processes and to translate this into predictive models whose accuracy has been quantified. The challenges relate to physics (salinity, circulation in Liverpool Bay, the flow through the Irish Sea, flushing events); the role of sediments in the optical characteristics of the water column; the ecosystem and eutrophication.

  3. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, Christiane

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less

  4. Assessment of the effects of horizontal grid resolution on long-term air quality trends using coupled WRF-CMAQ simulations

    EPA Science Inventory

    The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental Uni...

  5. Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models

    USDA-ARS?s Scientific Manuscript database

    Spatio-temporal variability of soil moisture (') is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time ' monitoring methods. This restricted the comprehensive and intensive examination of ' dynamic...

  6. Evaluating kriging as a tool to improve moderate resolution maps of forest biomass

    Treesearch

    Elizabeth A. Freeman; Gretchen G. Moisen

    2007-01-01

    The USDA Forest Service, Forest Inventory and Analysis program (FIA) recently produced a nationwide map of forest biomass by modeling biomass collected on forest inventory plots as nonparametric functions of moderate resolution satellite data and other environmental variables using Cubist software. Efforts are underway to develop methods to enhance this initial map. We...

  7. Climatological Modeling of Monthly Air Temperature and Precipitation in Egypt through GIS Techniques

    NASA Astrophysics Data System (ADS)

    El Kenawy, A.

    2009-09-01

    This paper describes a method for modeling and mapping four climatic variables (maximum temperature, minimum temperature, mean temperature and total precipitation) in Egypt using a multiple regression approach implemented in a GIS environment. In this model, a set of variables including latitude, longitude, elevation within a distance of 5, 10 and 15 km, slope, aspect, distance to the Mediterranean Sea, distance to the Red Sea, distance to the Nile, ratio between land and water masses within a radius of 5, 10, 15 km, the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Normalized Difference Temperature Index (NDTI) and reflectance are included as independent variables. These variables were integrated as raster layers in MiraMon software at a spatial resolution of 1 km. Climatic variables were considered as dependent variables and averaged from quality controlled and homogenized 39 series distributing across the entire country during the period of (1957-2006). For each climatic variable, digital and objective maps were finally obtained using the multiple regression coefficients at monthly, seasonal and annual timescale. The accuracy of these maps were assessed through cross-validation between predicted and observed values using a set of statistics including coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean bias Error (MBE) and D Willmott statistic. These maps are valuable in the sense of spatial resolution as well as the number of observatories involved in the current analysis.

  8. High-resolution modelling of waves, currents and sediment transport in the Catalan Sea.

    NASA Astrophysics Data System (ADS)

    Sánchez-Arcilla, Agustín; Grifoll, Manel; Pallares, Elena; Espino, Manuel

    2013-04-01

    In order to investigate coastal shelf dynamics, a sequence of high resolution multi-scale models have been implemented for the Catalan shelf (North-western Mediterranean Sea). The suite consists of a set of increasing-resolution nested models, based on the circulation model ROMS (Regional Ocean Modelling System), the wave model SWAN (Simulation Waves Nearshore) and the sediment transport model CSTM (Community Sediment Transport Model), covering different ranges of spatial (from ~1 km at shelf-slope regions to ~40 m around river mouth or local beaches) and temporal scales (from storms events to seasonal variability). Contributions in the understanding of local processes such as along-shelf dynamics in the inner-shelf, sediment dispersal from the river discharge or bi-directional wave-current interactions under different synoptic conditions and resolution have been obtained using the Catalan Coast as a pilot site. Numerical results have been compared with "ad-hoc" intensive field campaigns, data from observational models and remote sensing products. The results exhibit acceptable agreement with observations and the investigation has allowed developing generic knowledge and more efficient (process-based) strategies for the coastal and shelf management.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solarmore » modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  10. Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge

    NASA Astrophysics Data System (ADS)

    Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.

    2017-01-01

    Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.

  11. Uncertainty Propagation of Non-Parametric-Derived Precipitation Estimates into Multi-Hydrologic Model Simulations

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. A. E.; Nikolopoulos, E. I.; Anagnostou, E. N.

    2017-12-01

    Quantifying the uncertainty of global precipitation datasets is beneficial when using these precipitation products in hydrological applications, because precipitation uncertainty propagation through hydrologic modeling can significantly affect the accuracy of the simulated hydrologic variables. In this research the Iberian Peninsula has been used as the study area with a study period spanning eleven years (2000-2010). This study evaluates the performance of multiple hydrologic models forced with combined global rainfall estimates derived based on a Quantile Regression Forests (QRF) technique. In QRF technique three satellite precipitation products (CMORPH, PERSIANN, and 3B42 (V7)); an atmospheric reanalysis precipitation and air temperature dataset; satellite-derived near-surface daily soil moisture data; and a terrain elevation dataset are being utilized in this study. A high-resolution, ground-based observations driven precipitation dataset (named SAFRAN) available at 5 km/1 h resolution is used as reference. Through the QRF blending framework the stochastic error model produces error-adjusted ensemble precipitation realizations, which are used to force four global hydrological models (JULES (Joint UK Land Environment Simulator), WaterGAP3 (Water-Global Assessment and Prognosis), ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) and SURFEX (Stands for Surface Externalisée) ) to simulate three hydrologic variables (surface runoff, subsurface runoff and evapotranspiration). The models are forced with the reference precipitation to generate reference-based hydrologic simulations. This study presents a comparative analysis of multiple hydrologic model simulations for different hydrologic variables and the impact of the blending algorithm on the simulated hydrologic variables. Results show how precipitation uncertainty propagates through the different hydrologic model structures to manifest in reduction of error in hydrologic variables.

  12. Horizontal Residual Mean Circulation: Evaluation of Spatial Correlations in Coarse Resolution Ocean Models

    NASA Astrophysics Data System (ADS)

    Li, Y.; McDougall, T. J.

    2016-02-01

    Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.

  13. Data for Figures and Tables in Journal Article Assessment of the Effects of Horizontal Grid Resolution on Long-Term Air Quality Trends using Coupled WRF-CMAQ Simulations, doi:10.1016/j.atmosenv.2016.02.036

    EPA Pesticide Factsheets

    The dataset represents the data depicted in the Figures and Tables of a Journal Manuscript with the following abstract: The objective of this study is to determine the adequacy of using a relatively coarse horizontal resolution (i.e. 36 km) to simulate long-term trends of pollutant concentrations and radiation variables with the coupled WRF-CMAQ model. WRF-CMAQ simulations over the continental United State are performed over the 2001 to 2010 time period at two different horizontal resolutions of 12 and 36 km. Both simulations used the same emission inventory and model configurations. Model results are compared both in space and time to assess the potential weaknesses and strengths of using coarse resolution in long-term air quality applications. The results show that the 36 km and 12 km simulations are comparable in terms of trends analysis for both pollutant concentrations and radiation variables. The advantage of using the coarser 36 km resolution is a significant reduction of computational cost, time and storage requirement which are key considerations when performing multiple years of simulations for trend analysis. However, if such simulations are to be used for local air quality analysis, finer horizontal resolution may be beneficial since it can provide information on local gradients. In particular, divergences between the two simulations are noticeable in urban, complex terrain and coastal regions.This dataset is associated with the following publication

  14. Effect of small-molecule modification on single-cell pharmacokinetics of PARP inhibitors.

    PubMed

    Thurber, Greg M; Reiner, Thomas; Yang, Katherine S; Kohler, Rainer H; Weissleder, Ralph

    2014-04-01

    The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging, given the complex tumor microenvironment including intra- and intertumor heterogeneity. The difficulty in studying this distribution is even more significant for small-molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small-molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model.

  15. Effect of Small Molecule Modification on Single Cell Pharmacokinetics of PARP Inhibitors

    PubMed Central

    Thurber, Greg M.; Reiner, Thomas; Yang, Katherine S; Kohler, Rainer; Weissleder, Ralph

    2014-01-01

    The heterogeneous delivery of drugs in tumors is an established process contributing to variability in treatment outcome. Despite the general acceptance of variable delivery, the study of the underlying causes is challenging given the complex tumor microenvironment including intra- and inter-tumor heterogeneity. The difficulty in studying this distribution is even more significant for small molecule drugs where radiolabeled compounds or mass spectrometry detection lack the spatial and temporal resolution required to quantify the kinetics of drug distribution in vivo. In this work, we take advantage of the synthesis of fluorescent drug conjugates that retain their target binding but are designed with different physiochemical and thus pharmacokinetic properties. Using these probes, we followed the drug distribution in cell culture and tumor xenografts with temporal resolution of seconds and subcellular spatial resolution. These measurements, including in vivo permeability of small molecule drugs, can be used directly in predictive pharmacokinetic models for the design of therapeutics and companion imaging agents as demonstrated by a finite element model. PMID:24552776

  16. Modelling the distribution of chickens, ducks, and geese in China

    USGS Publications Warehouse

    Prosser, Diann J.; Wu, Junxi; Ellis, Erie C.; Gale, Fred; Van Boeckel, Thomas P.; Wint, William; Robinson, Tim; Xiao, Xiangming; Gilbert, Marius

    2011-01-01

    Global concerns over the emergence of zoonotic pandemics emphasize the need for high-resolution population distribution mapping and spatial modelling. Ongoing efforts to model disease risk in China have been hindered by a lack of available species level distribution maps for poultry. The goal of this study was to develop 1 km resolution population density models for China's chickens, ducks, and geese. We used an information theoretic approach to predict poultry densities based on statistical relationships between poultry census data and high-resolution agro-ecological predictor variables. Model predictions were validated by comparing goodness of fit measures (root mean square error and correlation coefficient) for observed and predicted values for 1/4 of the sample data which were not used for model training. Final output included mean and coefficient of variation maps for each species. We tested the quality of models produced using three predictor datasets and 4 regional stratification methods. For predictor variables, a combination of traditional predictors for livestock mapping and land use predictors produced the best goodness of fit scores. Comparison of regional stratifications indicated that for chickens and ducks, a stratification based on livestock production systems produced the best results; for geese, an agro-ecological stratification produced best results. However, for all species, each method of regional stratification produced significantly better goodness of fit scores than the global model. Here we provide descriptive methods, analytical comparisons, and model output for China's first high resolution, species level poultry distribution maps. Output will be made available to the scientific and public community for use in a wide range of applications from epidemiological studies to livestock policy and management initiatives.

  17. Modelling the distribution of chickens, ducks, and geese in China

    PubMed Central

    Prosser, Diann J.; Wu, Junxi; Ellis, Erle C.; Gale, Fred; Van Boeckel, Thomas P.; Wint, William; Robinson, Tim; Xiao, Xiangming; Gilbert, Marius

    2011-01-01

    Global concerns over the emergence of zoonotic pandemics emphasize the need for high-resolution population distribution mapping and spatial modelling. Ongoing efforts to model disease risk in China have been hindered by a lack of available species level distribution maps for poultry. The goal of this study was to develop 1 km resolution population density models for China’s chickens, ducks, and geese. We used an information theoretic approach to predict poultry densities based on statistical relationships between poultry census data and high-resolution agro-ecological predictor variables. Model predictions were validated by comparing goodness of fit measures (root mean square error and correlation coefficient) for observed and predicted values for ¼ of the sample data which was not used for model training. Final output included mean and coefficient of variation maps for each species. We tested the quality of models produced using three predictor datasets and 4 regional stratification methods. For predictor variables, a combination of traditional predictors for livestock mapping and land use predictors produced the best goodness of fit scores. Comparison of regional stratifications indicated that for chickens and ducks, a stratification based on livestock production systems produced the best results; for geese, an agro-ecological stratification produced best results. However, for all species, each method of regional stratification produced significantly better goodness of fit scores than the global model. Here we provide descriptive methods, analytical comparisons, and model output for China’s first high resolution, species level poultry distribution maps. Output will be made available to the scientific and public community for use in a wide range of applications from epidemiological studies to livestock policy and management initiatives. PMID:21765567

  18. Development of fine-resolution analyses and expanded large-scale forcing properties. Part I: Methodology and evaluation

    DOE PAGES

    Li, Zhijin; Vogelmann, Andrew M.; Feng, Sha; ...

    2015-01-20

    We produce fine-resolution, three-dimensional fields of meteorological and other variables for the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Southern Great Plains site. The Community Gridpoint Statistical Interpolation system is implemented in a multiscale data assimilation (MS-DA) framework that is used within the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. The MS-DA algorithm uses existing reanalysis products and constrains fine-scale atmospheric properties by assimilating high-resolution observations. A set of experiments show that the data assimilation analysis realistically reproduces the intensity, structure, and time evolution of clouds and precipitation associated with a mesoscale convective system.more » Evaluations also show that the large-scale forcing derived from the fine-resolution analysis has an overall accuracy comparable to the existing ARM operational product. For enhanced applications, the fine-resolution fields are used to characterize the contribution of subgrid variability to the large-scale forcing and to derive hydrometeor forcing, which are presented in companion papers.« less

  19. Coupling high-resolution hydraulic and hydrologic models for flash flood forecasting and inundation mapping in urban areas - A case study for the City of Fort Worth

    NASA Astrophysics Data System (ADS)

    Nazari, B.; Seo, D.; Cannon, A.

    2013-12-01

    With many diverse features such as channels, pipes, culverts, buildings, etc., hydraulic modeling in urban areas for inundation mapping poses significant challenges. Identifying the practical extent of the details to be modeled in order to obtain sufficiently accurate results in a timely manner for effective emergency management is one of them. In this study we assess the tradeoffs between model complexity vs. information content for decision making in applying high-resolution hydrologic and hydraulic models for real-time flash flood forecasting and inundation mapping in urban areas. In a large urban area such as the Dallas-Fort Worth Metroplex (DFW), there exists very large spatial variability in imperviousness depending on the area of interest. As such, one may expect significant sensitivity of hydraulic model results to the resolution and accuracy of hydrologic models. In this work, we present the initial results from coupling of high-resolution hydrologic and hydraulic models for two 'hot spots' within the City of Fort Worth for real-time inundation mapping.

  20. Climate-based archetypes for the environmental fate assessment of chemicals.

    PubMed

    Ciuffo, Biagio; Sala, Serenella

    2013-11-15

    Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits that influence their spatial variability. This hypothesis was tested by comparing the variability of the output of MAPPE for four different climatic zones on four different continents for four different chemicals (which represent different combinations of physical and chemical properties). Results showed the high suitability of climate-based archetypes in assessing the impacts of chemicals released in air. However, further research work is still necessary to test these findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The dependence on atmospheric resolution of ENSO and related East Asian-western North Pacific summer climate variability in a coupled model

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhao, Guijie; Huang, Gang; Wang, Pengfei; Yan, Bangliang

    2017-08-01

    The authors present results for El Niño-Southern Oscillation (ENSO) and East Asian-western North Pacific climate variability simulated in a new version high-resolution coupled model (ICM.V2) developed at the Center for Monsoon System Research of the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. The analyses are based on the last 100-year output of a 1000-year simulation. Results are compared to an earlier version of the same coupled model (ICM.V1), reanalysis, and observations. The two versions of ICM have similar physics but different atmospheric resolution. The simulated climatological mean states show marked improvement over many regions, especially the tropics in ICM.V2 compared to those in ICM.V1. The common bias in the cold tongue has reduced, and the warm biases along the ocean boundaries have improved as well. With improved simulation of ENSO, including its period and strength, the ENSO-related western North Pacific summer climate variability becomes more realistic compared to the observations. The simulated East Asian summer monsoon anomalies in the El Niño decaying summer are substantially more realistic in ICM.V2, which might be related to a better simulation of the Indo-Pacific Ocean capacitor (IPOC) effect and Pacific decadal oscillation (PDO).

  2. Polybrominated Diphenyl Ethers in Residential Dust: Sources of Variability

    PubMed Central

    Whitehead, Todd P.; Brown, F. Reber; Metayer, Catherine; Park, June-Soo; Does, Monique; Petreas, Myrto X.; Buffler, Patricia A.; Rappaport, Stephen M.

    2013-01-01

    We characterized the sources of variability for polybrominated diphenyl ethers (PBDEs) in residential dust and provided guidance for investigators who plan to use residential dust to assess exposure to PBDEs. We collected repeat dust samples from 292 households in the Northern California Childhood Leukemia Study during two sampling rounds (from 2001–2007 and during 2010) using household vacuum cleaners and measured 22 PBDEs using high resolution gas chromatography-high resolution mass spectrometry. Median concentrations for individual PBDEs ranged from <0.1–2,500 ng per g of dust. For each of eight representative PBDEs, we used a random-effects model to apportion total variance into regional variability (0–11%), intra-regional between-household variability (17–50%), within-household variability over time (38–74%), and within-sample variability (0–23%) and we used a mixed-effects model to identify determinants of PBDE levels. Regional differences in PBDE dust levels were associated with residential characteristics that differed by region, including the presence of furniture with exposed or crumbling foam and the recent installation of carpets in the residence. Intra-regional differences between households were associated with neighborhood urban density, racial and ethnic characteristics, and to a lesser extent, income. For some PBDEs, a decreasing time trend explained a modest fraction of the within-household variability; however, most of the within-household variability was unaccounted for by our mixed-effects models. Our findings indicate that it may be feasible to use residential dust for retrospective assessment of PBDE exposures in studies of children’s health (e.g., the Northern California Childhood Leukemia Study). PMID:23628589

  3. The Future of Wind Energy in California: Future Projections in Variable-Resolution CESM

    NASA Astrophysics Data System (ADS)

    Wang, M.; Ullrich, P. A.; Millstein, D.; Collier, C.

    2017-12-01

    This study focuses on the wind energy characterization and future projection at five primary wind turbine sites in California. Historical (1980-2000) and mid-century (2030-2050) simulations were produced using the Variable-Resolution Community Earth System Model (VR-CESM) to analyze the trends and variations in wind energy under climate change. Datasets from Det Norske Veritas Germanischer Llyod (DNV GL), MERRA-2, CFSR, NARR, as well as surface observational data were used for model validation and comparison. Significant seasonal wind speed changes under RCP8.5 were detected from several wind farm sites. Large-scale patterns were then investigated to analyze the synoptic-scale impact on localized wind change. The agglomerative clustering method was applied to analyze and group different wind patterns. The associated meteorological background of each cluster was investigated to analyze the drivers of different wind patterns. This study improves the characterization of uncertainty around the magnitude and variability in space and time of California's wind resources in the near future, and also enhances understanding of the physical mechanisms related to the trends in wind resource variability.

  4. Investigating the impact of diurnal cycle of SST on the intraseasonal and climate variability

    NASA Astrophysics Data System (ADS)

    Tseng, W. L.; Hsu, H. H.; Chang, C. W. J.; Keenlyside, N. S.; Lan, Y. Y.; Tsuang, B. J.; Tu, C. Y.

    2016-12-01

    The diurnal cycle is a prominent feature of our climate system and the most familiar example of externally forced variability. Despite this it remains poorly simulated in state-of-the-art climate models. A particular problem is the diurnal cycle in sea surface temperature (SST), which is a key variable in air-sea heat flux exchange. In most models the diurnal cycle in SST is not well resolved, due to insufficient vertical resolution in the upper ocean mixed-layer and insufficiently frequent ocean-atmosphere coupling. Here, we coupled a 1-dimensional ocean model (SIT) to two atmospheric general circulation model (ECHAM5 and CAM5). In particular, we focus on improving the representations of the diurnal cycle in SST in a climate model, and investigate the role of the diurnal cycle in climate and intraseasonal variability.

  5. Eigenspace perturbations for structural uncertainty estimation of turbulence closure models

    NASA Astrophysics Data System (ADS)

    Jofre, Lluis; Mishra, Aashwin; Iaccarino, Gianluca

    2017-11-01

    With the present state of computational resources, a purely numerical resolution of turbulent flows encountered in engineering applications is not viable. Consequently, investigations into turbulence rely on various degrees of modeling. Archetypal amongst these variable resolution approaches would be RANS models in two-equation closures, and subgrid-scale models in LES. However, owing to the simplifications introduced during model formulation, the fidelity of all such models is limited, and therefore the explicit quantification of the predictive uncertainty is essential. In such scenario, the ideal uncertainty estimation procedure must be agnostic to modeling resolution, methodology, and the nature or level of the model filter. The procedure should be able to give reliable prediction intervals for different Quantities of Interest, over varied flows and flow conditions, and at diametric levels of modeling resolution. In this talk, we present and substantiate the Eigenspace perturbation framework as an uncertainty estimation paradigm that meets these criteria. Commencing from a broad overview, we outline the details of this framework at different modeling resolution. Thence, using benchmark flows, along with engineering problems, the efficacy of this procedure is established. This research was partially supported by NNSA under the Predictive Science Academic Alliance Program (PSAAP) II, and by DARPA under the Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) project (technical monitor: Dr Fariba Fahroo).

  6. High-frequency and meso-scale winter sea-ice variability in the Southern Ocean in a high-resolution global ocean model

    NASA Astrophysics Data System (ADS)

    Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger

    2018-03-01

    This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.

  7. File Specification for the 7-km GEOS-5 Nature Run, Ganymed Release Non-Hydrostatic 7-km Global Mesoscale Simulation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo M.; Putman, William; Nattala, J.

    2014-01-01

    This document describes the gridded output files produced by a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2006 produced with the non-hydrostatic version of GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic sources. A description of the GEOS-5 model configuration used for this simulation can be found in Putman et al. (2014). The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (approximately 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625 deg grid that approximately matches the native cubed-sphere resolution, and another 0.5 deg reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model's native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. Information of the model surface representation can be found in Appendix B. The GEOS-5 product is organized into file collections that are described in detail in Appendix C. Additional details about variables listed in this file specification can be found in a separate document, the GEOS-5 File Specification Variable Definition Glossary. Documentation about the current access methods for products described in this document can be found on the GEOS-5 Nature Run portal: http://gmao.gsfc.nasa.gov/projects/G5NR. Information on the scientific quality of this simulation will appear in a forthcoming NASA Technical Report Series on Global Modeling and Data Assimilation to be available from http://gmao.gsfc.nasa.gov/pubs/tm/.

  8. A model of regional primary production for use with coarse resolution satellite data

    NASA Technical Reports Server (NTRS)

    Prince, S. D.

    1991-01-01

    A model of crop primary production, which was originally developed to relate the amount of absorbed photosynthetically active radiation (APAR) to net production in field studies, is discussed in the context of coarse resolution regional remote sensing of primary production. The model depends on an approximately linear relationship between APAR and the normalized difference vegetation index. A more comprehensive form of the conventional model is shown to be necessary when different physiological types of plants or heterogeneous vegetation types occur within the study area. The predicted variable in the new model is total assimilation (net production plus respiration) rather than net production alone or harvest yield.

  9. Adaptive Blending of Model and Observations for Automated Short-Range Forecasting: Examples from the Vancouver 2010 Olympic and Paralympic Winter Games

    NASA Astrophysics Data System (ADS)

    Bailey, Monika E.; Isaac, George A.; Gultepe, Ismail; Heckman, Ivan; Reid, Janti

    2014-01-01

    An automated short-range forecasting system, adaptive blending of observations and model (ABOM), was tested in real time during the 2010 Vancouver Olympic and Paralympic Winter Games in British Columbia. Data at 1-min time resolution were available from a newly established, dense network of surface observation stations. Climatological data were not available at these new stations. This, combined with output from new high-resolution numerical models, provided a unique and exciting setting to test nowcasting systems in mountainous terrain during winter weather conditions. The ABOM method blends extrapolations in time of recent local observations with numerical weather predictions (NWP) model predictions to generate short-range point forecasts of surface variables out to 6 h. The relative weights of the model forecast and the observation extrapolation are based on performance over recent history. The average performance of ABOM nowcasts during February and March 2010 was evaluated using standard scores and thresholds important for Olympic events. Significant improvements over the model forecasts alone were obtained for continuous variables such as temperature, relative humidity and wind speed. The small improvements to forecasts of variables such as visibility and ceiling, subject to discontinuous changes, are attributed to the persistence component of ABOM.

  10. Analysis and High-Resolution Modeling of Tropical Cyclogenesis During the TCS-08 and TPARC Field Campaign

    DTIC Science & Technology

    2014-10-13

    synoptic and dynamic aspects of cyclogenesis, a multi-nested WRF model (with 2 km resolution in the innermost mesh) will be used to simulate both...intraseasonal and interannual variability of TC activity in the WNP. For the data assimilation task, WRF 3DVar assimilation system will be employed...simulated using WRF . This genesis is associated with Rossby wave energy dispersion of a pre- existing TC Bills (2000). Using the reanalysis data as an

  11. Analysis of the variability of extra-tropical cyclones at the regional scale for the coasts of Northern Germany and investigation of their coastal impacts

    NASA Astrophysics Data System (ADS)

    Schaaf, Benjamin; Feser, Frauke

    2015-04-01

    The evaluation of long-term changes in wind speeds is very important for the coastal areas and the protection measures. Therefor the wind variability at the regional scale for the coast of Northern Germany shall be analysed. In order to derive changes in storminess it is essential to analyse long, homogeneous meteorological time series. Wind measurements often suffer from inconsistencies which arise from changes in instrumentation, observation method, or station location. Reanalysis data take into account such inhomogeneities of observation data and convert these measurements into a consistent, gridded data set with the same grid spacing and time intervals. This leads to a smooth, homogeneous data set, but with relatively low resolution (about 210 km for the longest reanalysis data set, the NCEP reanalysis starting in 1948). Therefore a high-resolution regional atmospheric model will be used to bring these reanalyses to a higher resolution, using in addition to a dynamical downscaling approach the spectral nudging technique. This method 'nudges' the large spatial scales of the regional climate model towards the reanalysis, while the smaller spatial scales are left unchanged. It was applied successfully in a number of applications, leading to realistic atmospheric weather descriptions of the past. With the regional climate model COSMO-CLM a very high-resolution data set was calculated for the last 67 years, the period from 1948 until now. The model area is North Germany with the coastal area of the North sea and parts of the Baltic sea. This is one of the first model simulations on climate scale with a very high resolution of 2.8 km, so even small scale effects can be detected. With this hindcast-simulation there are numerous options of evaluation. One can create wind climatologies for regional areas such as for the metropolitan region of Hamburg. Otherwise one can investigate individual storms in a case study. With a filtering and tracking program the course of individual storms can be tracked and compared with observations. Also statistical studies can be done and one can calculate percentiles, return periods and other different extreme value statistic variables. Later, with a further nesting simulation, the resolution can be reduced to 1 km for individual areas of interest to analyse small islands (as Foehr or Amrum) and their effects on the atmospheric flow more closely.

  12. Atmospheric component of the MPI-M Earth System Model: ECHAM6

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Giorgetta, Marco; Esch, Monika; Mauritsen, Thorsten; Crueger, Traute; Rast, Sebastian; Salzmann, Marc; Schmidt, Hauke; Bader, Jürgen; Block, Karoline; Brokopf, Renate; Fast, Irina; Kinne, Stefan; Kornblueh, Luis; Lohmann, Ulrike; Pincus, Robert; Reichler, Thomas; Roeckner, Erich

    2013-06-01

    ECHAM6, the sixth generation of the atmospheric general circulation model ECHAM, is described. Major changes with respect to its predecessor affect the representation of shortwave radiative transfer, the height of the model top. Minor changes have been made to model tuning and convective triggering. Several model configurations, differing in horizontal and vertical resolution, are compared. As horizontal resolution is increased beyond T63, the simulated climate improves but changes are incremental; major biases appear to be limited by the parameterization of small-scale physical processes, such as clouds and convection. Higher vertical resolution in the middle atmosphere leads to a systematic reduction in temperature biases in the upper troposphere, and a better representation of the middle atmosphere and its modes of variability. ECHAM6 represents the present climate as well as, or better than, its predecessor. The most marked improvements are evident in the circulation of the extratropics. ECHAM6 continues to have a good representation of tropical variability. A number of biases, however, remain. These include a poor representation of low-level clouds, systematic shifts in major precipitation features, biases in the partitioning of precipitation between land and sea (particularly in the tropics), and midlatitude jets that appear to be insufficiently poleward. The response of ECHAM6 to increasing concentrations of greenhouse gases is similar to that of ECHAM5. The equilibrium climate sensitivity of the mixed-resolution (T63L95) configuration is between 2.9 and 3.4 K and is somewhat larger for the 47 level model. Cloud feedbacks and adjustments contribute positively to warming from increasing greenhouse gases.

  13. Does objective cluster analysis serve as a useful precursor to seasonal precipitation prediction at local scale? Application to western Ethiopia

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Moges, Semu; Block, Paul

    2018-01-01

    Prediction of seasonal precipitation can provide actionable information to guide management of various sectoral activities. For instance, it is often translated into hydrological forecasts for better water resources management. However, many studies assume homogeneity in precipitation across an entire study region, which may prove ineffective for operational and local-level decisions, particularly for locations with high spatial variability. This study proposes advancing local-level seasonal precipitation predictions by first conditioning on regional-level predictions, as defined through objective cluster analysis, for western Ethiopia. To our knowledge, this is the first study predicting seasonal precipitation at high resolution in this region, where lives and livelihoods are vulnerable to precipitation variability given the high reliance on rain-fed agriculture and limited water resources infrastructure. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances in prediction skill and resolution, as compared with previous studies. The statistical model improves versus the non-clustered case or dynamical models for a number of specific clusters in northwestern Ethiopia, with clusters having regional average correlation and ranked probability skill score (RPSS) values of up to 0.5 and 33 %, respectively. The general skill (after bias correction) of the two best-performing dynamical models over the entire study region is superior to that of the statistical models, although the dynamical models issue predictions at a lower resolution and the raw predictions require bias correction to guarantee comparable skills.

  14. A new synoptic scale resolving global climate simulation using the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana

    2014-12-01

    High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."

  15. EXAMINATION OF MODEL PREDICTIONS AT DIFFERENT HORIZONTAL GRID RESOLUTIONS

    EPA Science Inventory

    While fluctuations in meteorological and air quality variables occur on a continuum of spatial scales, the horizontal grid spacing of coupled meteorological and photochemical models sets a lower limit on the spatial scales that they can resolve. However, both computational costs ...

  16. The use of a high resolution model in a private environment.

    NASA Astrophysics Data System (ADS)

    van Dijke, D.; Malda, D.

    2009-09-01

    The commercial organisation MeteoGroup uses high resolution modelling for multiple purposes. MeteoGroup uses the Weather Research and Forecasting Model (WRF®1). WRF is used in the operational environment of several MeteoGroup companies across Europe. It is also used in hindcast studies, for example hurricane tracking, wind climate computation and deriving boundary conditions for air quality models. A special operational service was set up for our tornado chasing team that uses high resolution flexible WRF data to chase for super cells and tornados in the USA during spring. Much effort is put into the development and improvement of the pre- and post-processing of the model. At MeteoGroup the static land-use data has been extended and adjusted to improve temperature and wind forecasts. The system has been modified such that sigma level input data from the global ECMWF model can be used for initialisation. By default only pressure level data could be used. During the spin-up of the model synoptical observations are nudged. A program to adjust possible initialisation errors of several surface parameters in coastal areas has been implemented. We developed an algorithm that computes cloud fractions using multiple direct model output variables. Forecasters prefer to use weather codes for their daily forecasts to detect severe weather. For this usage we developed model weather codes using a variety of direct model output and our own derived variables. 1 WRF® is a registered trademark of the University Corporation for Atmospheric Research (UCAR)

  17. Novel detector design for reducing intercell x-ray cross-talk in the variable resolution x-ray CT scanner: a Monte Carlo study.

    PubMed

    Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib

    2011-03-01

    The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.

  18. Intercomparison of Downscaling Methods on Hydrological Impact for Earth System Model of NE United States

    NASA Astrophysics Data System (ADS)

    Yang, P.; Fekete, B. M.; Rosenzweig, B.; Lengyel, F.; Vorosmarty, C. J.

    2012-12-01

    Atmospheric dynamics are essential inputs to Regional-scale Earth System Models (RESMs). Variables including surface air temperature, total precipitation, solar radiation, wind speed and humidity must be downscaled from coarse-resolution, global General Circulation Models (GCMs) to the high temporal and spatial resolution required for regional modeling. However, this downscaling procedure can be challenging due to the need to correct for bias from the GCM and to capture the spatiotemporal heterogeneity of the regional dynamics. In this study, the results obtained using several downscaling techniques and observational datasets were compared for a RESM of the Northeast Corridor of the United States. Previous efforts have enhanced GCM model outputs through bias correction using novel techniques. For example, the Climate Impact Research at Potsdam Institute developed a series of bias-corrected GCMs towards the next generation climate change scenarios (Schiermeier, 2012; Moss et al., 2010). Techniques to better represent the heterogeneity of climate variables have also been improved using statistical approaches (Maurer, 2008; Abatzoglou, 2011). For this study, four downscaling approaches to transform bias-corrected HADGEM2-ES Model output (daily at .5 x .5 degree) to the 3'*3'(longitude*latitude) daily and monthly resolution required for the Northeast RESM were compared: 1) Bilinear Interpolation, 2) Daily bias-corrected spatial downscaling (D-BCSD) with Gridded Meteorological Datasets (developed by Abazoglou 2011), 3) Monthly bias-corrected spatial disaggregation (M-BCSD) with CRU(Climate Research Unit) and 4) Dynamic Downscaling based on Weather Research and Forecast (WRF) model. Spatio-temporal analysis of the variability in precipitation was conducted over the study domain. Validation of the variables of different downscaling methods against observational datasets was carried out for assessment of the downscaled climate model outputs. The effects of using the different approaches to downscale atmospheric variables (specifically air temperature and precipitation) for use as inputs to the Water Balance Model (WBMPlus, Vorosmarty et al., 1998;Wisser et al., 2008) for simulation of daily discharge and monthly stream flow in the Northeast US for a 100-year period in the 21st century were also assessed. Statistical techniques especially monthly bias-corrected spatial disaggregation (M-BCSD) showed potential advantage among other methods for the daily discharge and monthly stream flow simulation. However, Dynamic Downscaling will provide important complements to the statistical approaches tested.

  19. Update of global TC simulations using a variable resolution non-hydrostatic model

    NASA Astrophysics Data System (ADS)

    Park, S. H.

    2017-12-01

    Using in a variable resolution meshes in MPAS during 2017 summer., Tropical cyclone (TC) forecasts are simulated. Two physics suite are tested to explore performance and bias of each physics suite for TC forecasting. A WRF physics suite is selected from experience on weather forecasting and CAM (Community Atmosphere Model) physics is taken from a AMIP type climate simulation. Based on the last year results from CAM5 physical parameterization package and comparing with WRF physics, we investigated a issue with intensity bias using updated version of CAM physics (CAM6). We also compared these results with coupled version of TC simulations. During this talk, TC structure will be compared specially around of boundary layer and investigate their relationship between TC intensity and different physics package.

  20. Thermodynamics of adaptive molecular resolution

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.

    2016-11-01

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U(1)-U(0). The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al., J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as `real' thermodynamic variables. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  1. Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.

    2015-01-01

    NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.

  2. Coping with pregnancy resolution among never-married women.

    PubMed

    Bracken, Michael B; Klerman, Lorraine V; Bracken, Maryann

    1978-04-01

    The Janis-Mann model of decision-making provides the theoretical orientation for empirical analyses of decisions to deliver or abort in matched samples of never-married women. Results focus on four variables: happiness about pregnancy; initial acceptance of delivery or abortion; ease of decision-making; and satisfaction with final choice. Path analyses summarize findings, which are discussed in terms of conflict resolution strategies.

  3. Spatial Variability of Wet Troposphere Delays Over Inland Water Bodies

    NASA Astrophysics Data System (ADS)

    Mehran, Ali; Clark, Elizabeth A.; Lettenmaier, Dennis P.

    2017-11-01

    Satellite radar altimetry has enabled the study of water levels in large lakes and reservoirs at a global scale. The upcoming Surface Water and Ocean Topography (SWOT) satellite mission (scheduled launch 2020) will simultaneously measure water surface extent and elevation at an unprecedented accuracy and resolution. However, SWOT retrieval accuracy will be affected by a number of factors, including wet tropospheric delay—the delay in the signal's passage through the atmosphere due to atmospheric water content. In past applications, the wet tropospheric delay over large inland water bodies has been corrected using atmospheric moisture profiles based on atmospheric reanalysis data at relatively coarse (tens to hundreds of kilometers) spatial resolution. These products cannot resolve subgrid variations in wet tropospheric delays at the spatial resolutions (of 1 km and finer) that SWOT is intended to resolve. We calculate zenith wet tropospheric delays (ZWDs) and their spatial variability from Weather Research and Forecasting (WRF) numerical weather prediction model simulations at 2.33 km spatial resolution over the southwestern U.S., with attention in particular to Sam Rayburn, Ray Hubbard, and Elephant Butte Reservoirs which have width and length dimensions that are of order or larger than the WRF spatial resolution. We find that spatiotemporal variability of ZWD over the inland reservoirs depends on climatic conditions at the reservoir location, as well as distance from ocean, elevation, and surface area of the reservoir, but that the magnitude of subgrid variability (relative to analysis and reanalysis products) is generally less than 10 mm.

  4. Prognosis of Electrical Faults in Permanent Magnet AC Machines using the Hidden Markov Model

    DTIC Science & Technology

    2010-11-10

    time resolution and high frequency resolution Tiling is variable Wigner Ville Distribution Defined as W (t, ω) = ∫ s(t + τ 2 )s∗(t − τ 2 )e−jωτdτ...smoothed version of the Wigner distribution Amount of smoothing is controlled by σ Smoothing comes with a tradeoff of reduced resolution UNCLAS: Dist A...the Wigner or Choi-Williams distributions Although for Wigner and Choi-Williams distributions the probabilities are close for the early fault

  5. Orographic precipitation at global and regional scales: Observational uncertainty and evaluation of 25-km global model simulations

    NASA Astrophysics Data System (ADS)

    Schiemann, Reinhard; Roberts, Charles J.; Bush, Stephanie; Demory, Marie-Estelle; Strachan, Jane; Vidale, Pier Luigi; Mizielinski, Matthew S.; Roberts, Malcolm J.

    2015-04-01

    Precipitation over land exhibits a high degree of variability due to the complex interaction of the precipitation generating atmospheric processes with coastlines, the heterogeneous land surface, and orography. Global general circulation models (GCMs) have traditionally had very limited ability to capture this variability on the mesoscale (here ~50-500 km) due to their low resolution. This has changed with recent investments in resolution and ensembles of multidecadal climate simulations of atmospheric GCMs (AGCMs) with ~25 km grid spacing are becoming increasingly available. Here, we evaluate the mesoscale precipitation distribution in one such set of simulations obtained in the UPSCALE (UK on PrACE - weather-resolving Simulations of Climate for globAL Environmental risk) modelling campaign with the HadGEM-GA3 AGCM. Increased model resolution also poses new challenges to the observational datasets used to evaluate models. Global gridded data products such as those provided by the Global Precipitation Climatology Project (GPCP) are invaluable for assessing large-scale features of the precipitation distribution but may not sufficiently resolve mesoscale structures. In the absence of independent estimates, the intercomparison of different observational datasets may be the only way to get some insight into the uncertainties associated with these observations. Here, we focus on mid-latitude continental regions where observations based on higher-density gauge networks are available in addition to the global data sets: Europe/the Alps, South and East Asia, and the continental US. The ability of GCMs to represent mesoscale variability is of interest in its own right, as climate information on this scale is required by impact studies. An additional motivation for the research proposed here arises from continuing efforts to quantify the components of the global radiation budget and water cycle. Recent estimates based on radiation measurements suggest that the global mean precipitation/evaporation may be up to 10 Wm-2 (about 0.35 mm day-1) larger than the estimate obtained from GPCP. While the main part of this discrepancy is thought to be due to the underestimation of remotely-sensed ocean precipitation, there is also considerable uncertainty about 'unobserved' precipitation over land, in particular in the form of snow in regions of high latitude/altitude. We aim to contribute to this discussion, at least at a qualitative level, by considering case studies of how area-averaged mountain precipitation is represented in different observational datasets and by HadGEM3-GA3 at different resolutions. Our results show that the AGCM simulates considerably more orographic precipitation at higher resolution. We find this at the global scale both for the winter and summer hemispheres, as well as in several case studies in mid-latitude regions. Gridded observations based on gauge measurements generally capture the mesoscale spatial variability of precipitation, but differ strongly from one another in the magnitude of area-averaged precipitation, so that they are of very limited use for evaluating this aspect of the modelled climate. We are currently conducting a sensitivity experiment (coarse-grained orography in high-resolution HadGEM3) to further investigate the resolution sensitivity seen in the model.

  6. Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qing; Leung, Lai-Yung R.; Rauscher, Sara

    This study investigates the resolution dependency of precipitation extremes in an aqua-planet framework. Strong resolution dependency of precipitation extremes is seen over both tropics and extra-tropics, and the magnitude of this dependency also varies with dynamical cores. Moisture budget analyses based on aqua-planet simulations with the Community Atmosphere Model (CAM) using the Model for Prediction Across Scales (MPAS) and High Order Method Modeling Environment (HOMME) dynamical cores but the same physics parameterizations suggest that during precipitation extremes moisture supply for surface precipitation is mainly derived from advective moisture convergence. The resolution dependency of precipitation extremes mainly originates from advective moisturemore » transport in the vertical direction. At most vertical levels over the tropics and in the lower atmosphere over the subtropics, the vertical eddy transport of mean moisture field dominates the contribution to precipitation extremes and its resolution dependency. Over the subtropics, the source of moisture, its associated energy, and the resolution dependency during extremes are dominated by eddy transport of eddies moisture at the mid- and upper-troposphere. With both MPAS and HOMME dynamical cores, the resolution dependency of the vertical advective moisture convergence is mainly explained by dynamical changes (related to vertical velocity or omega), although the vertical gradients of moisture act like averaging kernels to determine the sensitivity of the overall resolution dependency to the changes in omega at different vertical levels. The natural reduction of variability with coarser resolution, represented by areal data averaging (aggregation) effect, largely explains the resolution dependency in omega. The thermodynamic changes, which likely result from non-linear feedback in response to the large dynamical changes, are small compared to the overall changes in dynamics (omega). However, after excluding the data aggregation effect in omega, thermodynamic changes become relatively significant in offsetting the effect of dynamics leading to reduce differences between the simulated and aggregated results. Compared to MPAS, the simulated stronger vertical motion with HOMME also results in larger resolution dependency. Compared to the simulation at fine resolution, the vertical motion during extremes is insufficiently resolved/parameterized at the coarser resolution even after accounting for the natural reduction in variability with coarser resolution, and this is more distinct in the simulation with HOMME. To reduce uncertainties in simulated precipitation extremes, future development in cloud parameterizations must address their sensitivity to spatial resolution as well as dynamical cores.« less

  7. Progress in Modeling Global Atmospheric CO2 Fluxes and Transport: Results from Simulations with Diurnal Fluxes

    NASA Technical Reports Server (NTRS)

    Collatz, G. James; Kawa, R.

    2007-01-01

    Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.

  8. Rainfall variability and extremes over southern Africa: assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.

  9. High-resolution grids of hourly meteorological variables for Germany

    NASA Astrophysics Data System (ADS)

    Krähenmann, S.; Walter, A.; Brienen, S.; Imbery, F.; Matzarakis, A.

    2018-02-01

    We present a 1-km2 gridded German dataset of hourly surface climate variables covering the period 1995 to 2012. The dataset comprises 12 variables including temperature, dew point, cloud cover, wind speed and direction, global and direct shortwave radiation, down- and up-welling longwave radiation, sea level pressure, relative humidity and vapour pressure. This dataset was constructed statistically from station data, satellite observations and model data. It is outstanding in terms of spatial and temporal resolution and in the number of climate variables. For each variable, we employed the most suitable gridding method and combined the best of several information sources, including station records, satellite-derived data and data from a regional climate model. A module to estimate urban heat island intensity was integrated for air and dew point temperature. Owing to the low density of available synop stations, the gridded dataset does not capture all variations that may occur at a resolution of 1 km2. This applies to areas of complex terrain (all the variables), and in particular to wind speed and the radiation parameters. To achieve maximum precision, we used all observational information when it was available. This, however, leads to inhomogeneities in station network density and affects the long-term consistency of the dataset. A first climate analysis for Germany was conducted. The Rhine River Valley, for example, exhibited more than 100 summer days in 2003, whereas in 1996, the number was low everywhere in Germany. The dataset is useful for applications in various climate-related studies, hazard management and for solar or wind energy applications and it is available via doi: 10.5676/DWD_CDC/TRY_Basis_v001.

  10. DEM Based Modeling: Grid or TIN? The Answer Depends

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Moreno, H. A.

    2015-12-01

    The availability of petascale supercomputing power has enabled process-based hydrological simulations on large watersheds and two-way coupling with mesoscale atmospheric models. Of course with increasing watershed scale come corresponding increases in watershed complexity, including wide ranging water management infrastructure and objectives, and ever increasing demands for forcing data. Simulations of large watersheds using grid-based models apply a fixed resolution over the entire watershed. In large watersheds, this means an enormous number of grids, or coarsening of the grid resolution to reduce memory requirements. One alternative to grid-based methods is the triangular irregular network (TIN) approach. TINs provide the flexibility of variable resolution, which allows optimization of computational resources by providing high resolution where necessary and low resolution elsewhere. TINs also increase required effort in model setup, parameter estimation, and coupling with forcing data which are often gridded. This presentation discusses the costs and benefits of the use of TINs compared to grid-based methods, in the context of large watershed simulations within the traditional gridded WRF-HYDRO framework and the new TIN-based ADHydro high performance computing watershed simulator.

  11. A new method to assess the added value of high-resolution regional climate simulations: application to the EURO-CORDEX dataset

    NASA Astrophysics Data System (ADS)

    Soares, P. M. M.; Cardoso, R. M.

    2017-12-01

    Regional climate models (RCM) are used with increasing resolutions pursuing to represent in an improved way regional to local scale atmospheric phenomena. The EURO-CORDEX simulations at 0.11° and simulations exploiting finer grid spacing approaching the convective-permitting regimes are representative examples. The climate runs are computationally very demanding and do not always show improvements. These depend on the region, variable and object of study. The gains or losses associated with the use of higher resolution in relation to the forcing model (global climate model or reanalysis), or to different resolution RCM simulations, is known as added value. Its characterization is a long-standing issue, and many different added-value measures have been proposed. In the current paper, a new method is proposed to assess the added value of finer resolution simulations, in comparison to its forcing data or coarser resolution counterparts. This approach builds on a probability density function (PDF) matching score, giving a normalised measure of the difference between diverse resolution PDFs, mediated by the observational ones. The distribution added value (DAV) is an objective added value measure that can be applied to any variable, region or temporal scale, from hindcast or historical (non-synchronous) simulations. The DAVs metric and an application to the EURO-CORDEX simulations, for daily temperatures and precipitation, are here presented. The EURO-CORDEX simulations at both resolutions (0.44o,0.11o) display a clear added value in relation to ERA-Interim, with values around 30% in summer and 20% in the intermediate seasons, for precipitation. When both RCM resolutions are directly compared the added value is limited. The regions with the larger precipitation DAVs are areas where convection is relevant, e.g. Alps and Iberia. When looking at the extreme precipitation PDF tail, the higher resolution improvement is generally greater than the low resolution for seasons and regions. For temperature, the added value is smaller. AcknowledgmentsThe authors wish to acknowledge SOLAR (PTDC/GEOMET/7078/2014) and FCT UID/GEO/50019/ 2013 (Instituto Dom Luiz) projects.

  12. Online dynamical downscaling of temperature and precipitation within the iLOVECLIM model (version 1.1)

    NASA Astrophysics Data System (ADS)

    Quiquet, Aurélien; Roche, Didier M.; Dumas, Christophe; Paillard, Didier

    2018-02-01

    This paper presents the inclusion of an online dynamical downscaling of temperature and precipitation within the model of intermediate complexity iLOVECLIM v1.1. We describe the following methodology to generate temperature and precipitation fields on a 40 km × 40 km Cartesian grid of the Northern Hemisphere from the T21 native atmospheric model grid. Our scheme is not grid specific and conserves energy and moisture in the same way as the original climate model. We show that we are able to generate a high-resolution field which presents a spatial variability in better agreement with the observations compared to the standard model. Although the large-scale model biases are not corrected, for selected model parameters, the downscaling can induce a better overall performance compared to the standard version on both the high-resolution grid and on the native grid. Foreseen applications of this new model feature include the improvement of ice sheet model coupling and high-resolution land surface models.

  13. Assessment of summer rainfall forecast skill in the Intra-Americas in GFDL high and low-resolution models

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Lakshmi; Muñoz, Ángel G.; Vecchi, Gabriel A.; Msadek, Rym; Wittenberg, Andrew T.; Stern, Bill; Gudgel, Rich; Zeng, Fanrong

    2018-05-01

    The Caribbean low-level jet (CLLJ) is an important component of the atmospheric circulation over the Intra-Americas Sea (IAS) which impacts the weather and climate both locally and remotely. It influences the rainfall variability in the Caribbean, Central America, northern South America, the tropical Pacific and the continental Unites States through the transport of moisture. We make use of high-resolution coupled and uncoupled models from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the simulation of the CLLJ and its teleconnections and further compare with low-resolution models. The high-resolution coupled model FLOR shows improvements in the simulation of the CLLJ and its teleconnections with rainfall and SST over the IAS compared to the low-resolution coupled model CM2.1. The CLLJ is better represented in uncoupled models (AM2.1 and AM2.5) forced with observed sea-surface temperatures (SSTs), emphasizing the role of SSTs in the simulation of the CLLJ. Further, we determine the forecast skill for observed rainfall using both high- and low-resolution predictions of rainfall and SSTs for the July-August-September season. We determine the role of statistical correction of model biases, coupling and horizontal resolution on the forecast skill. Statistical correction dramatically improves area-averaged forecast skill. But the analysis of spatial distribution in skill indicates that the improvement in skill after statistical correction is region dependent. Forecast skill is sensitive to coupling in parts of the Caribbean, Central and northern South America, and it is mostly insensitive over North America. Comparison of forecast skill between high and low-resolution coupled models does not show any dramatic difference. However, uncoupled models show improvement in the area-averaged skill in the high-resolution atmospheric model compared to lower resolution model. Understanding and improving the forecast skill over the IAS has important implications for highly vulnerable nations in the region.

  14. Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes

    NASA Astrophysics Data System (ADS)

    Mewes, Benjamin; Hilbich, Christin; Delaloye, Reynald; Hauck, Christian

    2017-12-01

    Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity). Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison.

  15. Generation of High Resolution Land Surface Parameters in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Coleman, A. M.; Wigmosta, M. S.; Leung, L.; Huang, M.; Li, H.

    2010-12-01

    The Community Land Model (CLM) is the land surface model used for the Community Atmosphere Model (CAM) and the Community Climate System Model (CCSM). It examines the physical, chemical, and biological processes across a variety of spatial and temporal scales. Currently, efforts are being made to improve the spatial resolution of the CLM, in part, to represent finer scale hydrologic characteristics. Current land surface parameters of CLM4.0, in particular plant functional types (PFT) and leaf area index (LAI), are generated from MODIS and calculated at a 0.05 degree resolution. These MODIS-derived land surface parameters have also been aggregated to coarser resolutions (e.g., 0.5, 1.0 degrees). To evaluate the response of CLM across various spatial scales, higher spatial resolution land surface parameters need to be generated. In this study we examine the use of Landsat TM/ETM+ imagery and data fusion techniques for generating land surface parameters at a 1km resolution within the Pacific Northwest United States. . Land cover types and PFTs are classified based on Landsat multi-season spectral information, DEM, National Land Cover Database (NLCD) and the USDA-NASS Crop Data Layer (CDL). For each PFT, relationships between MOD15A2 high quality LAI values, Landsat-based vegetation indices, climate variables, terrain, and laser-altimeter derived vegetation height are used to generate monthly LAI values at a 30m resolution. The high-resolution PFT and LAI data are aggregated to create a 1km model grid resolution. An evaluation and comparison of CLM land surface response at both fine and moderate scale is presented.

  16. A stochastical event-based continuous time step rainfall generator based on Poisson rectangular pulse and microcanonical random cascade models

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Niebisch, Michael; Zha, Tingting; Schümberg, Sabine; Müller, Hannes; Maurer, Thomas; Hinz, Christoph

    2017-04-01

    Rainfall variability within a storm is of major importance for fast hydrological processes, e.g. surface runoff, erosion and solute dissipation from surface soils. To investigate and simulate the impacts of within-storm variabilities on these processes, long time series of rainfall with high resolution are required. Yet, observed precipitation records of hourly or higher resolution are in most cases available only for a small number of stations and only for a few years. To obtain long time series of alternating rainfall events and interstorm periods while conserving the statistics of observed rainfall events, the Poisson model can be used. Multiplicative microcanonical random cascades have been widely applied to disaggregate rainfall time series from coarse to fine temporal resolution. We present a new coupling approach of the Poisson rectangular pulse model and the multiplicative microcanonical random cascade model that preserves the characteristics of rainfall events as well as inter-storm periods. In the first step, a Poisson rectangular pulse model is applied to generate discrete rainfall events (duration and mean intensity) and inter-storm periods (duration). The rainfall events are subsequently disaggregated to high-resolution time series (user-specified, e.g. 10 min resolution) by a multiplicative microcanonical random cascade model. One of the challenges of coupling these models is to parameterize the cascade model for the event durations generated by the Poisson model. In fact, the cascade model is best suited to downscale rainfall data with constant time step such as daily precipitation data. Without starting from a fixed time step duration (e.g. daily), the disaggregation of events requires some modifications of the multiplicative microcanonical random cascade model proposed by Olsson (1998): Firstly, the parameterization of the cascade model for events of different durations requires continuous functions for the probabilities of the multiplicative weights, which we implemented through sigmoid functions. Secondly, the branching of the first and last box is constrained to preserve the rainfall event durations generated by the Poisson rectangular pulse model. The event-based continuous time step rainfall generator has been developed and tested using 10 min and hourly rainfall data of four stations in North-Eastern Germany. The model performs well in comparison to observed rainfall in terms of event durations and mean event intensities as well as wet spell and dry spell durations. It is currently being tested using data from other stations across Germany and in different climate zones. Furthermore, the rainfall event generator is being applied in modelling approaches aimed at understanding the impact of rainfall variability on hydrological processes. Reference Olsson, J.: Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrology and Earth System Sciences, 2, 19.30

  17. Multi-Decadal Variability in the Bering Sea: A Synthesis of Model Results and Observations from 1948 to the Present

    DTIC Science & Technology

    2013-12-01

    stated that the development and use of high-resolution Arctic climate and systems models are important stepping stones for dedicated studies of...W., J. L. Clement Kinney, D. C. Marble , and J. Jakacki, 2008: Towards eddy resolving models of the Arctic Ocean: Ocean Modeling in an Eddying

  18. Long-term hydrometeorological trends in the Midwest region based on a century long gridded hydrometeorological dataset and simulations from a macro-scale hydrology model

    NASA Astrophysics Data System (ADS)

    Chiu, C. M.; Hamlet, A. F.

    2014-12-01

    Climate change is likely to impact the Great Lakes region and Midwest region via changes in Great Lakes water levels, agricultural impacts, river flooding, urban stormwater impacts, drought, water temperature, and impacts to terrestrial and aquatic ecosystems. Self-consistent and temporally homogeneous long-term data sets of precipitation and temperature over the entire Great Lakes region and Midwest regions are needed to provide inputs to hydrologic models, assess historical trends in hydroclimatic variables, and downscale global and regional-scale climate models. To support these needs a new hybrid gridded meteorological forcing dataset at 1/16 degree resolution based on data from co-op station records, the U. S Historical Climatology Network (HCN) , the Historical Canadian Climate Database (HCCD), and Precipitation Regression on Independent Slopes Method (PRISM) has been assembled over the Great Lakes and Midwest region from 1915-2012 at daily time step. These data were then used as inputs to the macro-scale Variable Infiltration Capacity (VIC) hydrology model, implemented over the Midwest and Great Lakes region at 1/16 degree resolution, to produce simulated hydrologic variables that are amenable to long-term trend analysis. Trends in precipitation and temperature from the new meteorological driving data sets, as well as simulated hydrometeorological variables such as snowpack, soil moisture, runoff, and evaporation over the 20th century are presented and discussed.

  19. Spatial heterogeneity of leaf area index across scales from simulation and remote sensing

    NASA Astrophysics Data System (ADS)

    Reichenau, Tim G.; Korres, Wolfgang; Montzka, Carsten; Schneider, Karl

    2016-04-01

    Leaf area index (LAI, single sided leaf area per ground area) influences mass and energy exchange of vegetated surfaces. Therefore LAI is an input variable for many land surface schemes of coupled large scale models, which do not simulate LAI. Since these models typically run on rather coarse resolution grids, LAI is often inferred from coarse resolution remote sensing. However, especially in agriculturally used areas, a grid cell of these products often covers more than a single land-use. In that case, the given LAI does not apply to any single land-use. Therefore, the overall spatial heterogeneity in these datasets differs from that on resolutions high enough to distinguish areas with differing land-use. Detailed process-based plant growth models simulate LAI for separate plant functional types or specific species. However, limited availability of observations causes reduced spatial heterogeneity of model input data (soil, weather, land-use). Since LAI is strongly heterogeneous in space and time and since processes depend on LAI in a nonlinear way, a correct representation of LAI spatial heterogeneity is also desirable on coarse resolutions. The current study assesses this issue by comparing the spatial heterogeneity of LAI from remote sensing (RapidEye) and process-based simulations (DANUBIA simulation system) across scales. Spatial heterogeneity is assessed by analyzing LAI frequency distributions (spatial variability) and semivariograms (spatial structure). Test case is the arable land in the fertile loess plain of the Rur catchment near the Germany-Netherlands border.

  20. Bayesian Techniques for Comparing Time-dependent GRMHD Simulations to Variable Event Horizon Telescope Observations

    NASA Astrophysics Data System (ADS)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan; Medeiros, Lia; Özel, Feryal; Psaltis, Dimitrios

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore the robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.

  1. BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore themore » robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.« less

  2. Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data

    USDA-ARS?s Scientific Manuscript database

    The rapid evolution of high performance computing technology has allowed for the development of extremely detailed models of the urban and natural environment. Although models can now represent sub-meter-scale variability in environmental geometry, model users are often unable to specify the geometr...

  3. Spatial models reveal the microclimatic buffering capacity of old-growth forests

    Treesearch

    Sarah J. K. Frey; Adam S. Hadley; Sherri L. Johnson; Mark Schulze; Julia A. Jones; Matthew. G. Betts

    2016-01-01

    Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by...

  4. Comparing large-scale hydrological model predictions with observed streamflow in the Pacific Northwest: effects of climate and groundwater

    Treesearch

    Mohammad Safeeq; Guillaume S. Mauger; Gordon E. Grant; Ivan Arismendi; Alan F. Hamlet; Se-Yeun Lee

    2014-01-01

    Assessing uncertainties in hydrologic models can improve accuracy in predicting future streamflow. Here, simulated streamflows using the Variable Infiltration Capacity (VIC) model at coarse (1/16°) and fine (1/120°) spatial resolutions were evaluated against observed streamflows from 217 watersheds. In...

  5. Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in the EC-Earth global climate model

    NASA Astrophysics Data System (ADS)

    Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Christensen, Hannah M.; Juricke, Stephan; Subramanian, Aneesh; Watson, Peter A. G.; Weisheimer, Antje; Palmer, Tim N.

    2017-03-01

    The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), together with coupled transient runs (1850-2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate - specifically the Madden-Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).

  6. How does mesoscale impact deep convection? Answers from ensemble Northwestern Mediterranean Sea simulations.

    NASA Astrophysics Data System (ADS)

    Waldman, Robin; Herrmann, Marine; Somot, Samuel; Arsouze, Thomas; Benshila, Rachid; Bosse, Anthony; Chanut, Jérôme; Giordani, Hervé; Pennel, Romain; Sevault, Florence; Testor, Pierre

    2017-04-01

    Ocean deep convection is a major process of interaction between surface and deep ocean. The Gulf of Lions is a well-documented deep convection area in the Mediterranean Sea, and mesoscale dynamics is a known factor impacting this phenomenon. However, previous modelling studies don't allow to address the robustness of its impact with respect to the physical configuration and ocean intrinsic variability. In this study, the impact of mesoscale on ocean deep convection in the Gulf of Lions is investigated using a multi-resolution ensemble simulation of the northwestern Mediterranean sea. The eddy-permitting Mediterranean model NEMOMED12 (6km resolution) is compared to its eddy-resolving counterpart with the 2-way grid refinement AGRIF in the northwestern Mediterranean (2km resolution). We focus on the well-documented 2012-2013 period and on the multidecadal timescale (1979-2013). The impact of mesoscale on deep convection is addressed in terms of its mean and variability, its impact on deep water transformations and on associated dynamical structures. Results are interpreted by diagnosing regional mean and eddy circulation and using buoyancy budgets. We find a mean inhibition of deep convection by mesoscale with large interannual variability. It is associated with a large impact on mean and transient circulation and a large air-sea flux feedback.

  7. Effects of climate change on phenology in two French LTER (Alps and Brittany) for the period 1998-2009

    NASA Astrophysics Data System (ADS)

    Perrimond, B.; Bigot, S.; Quénol, H.; Spielgelberger, T.; Baudry, J.

    2012-04-01

    Climate and vegetation are linked all over the world. In this study, we work on a seasonal weather classification based on air temperature and precipitation to deduce a link with different phenological stage (greening up, senescence, ...) over a 12 year period (1998-2009) for two different domains in France (Alps and Brittany). In temperate land, the main climatic variable with a potential effect on vegetation is the mean temperature followed by the rainfall deficit. A better understanding in season and their climatic characteristic is need to establish link between climate and phenology; so a weather classification is proposed based on empirical orthogonal functions and ascending hierarchical classification on atmospheric variables. This classification allows us to exhibit the inter-annual and intra-seasonal climatic spatiotemporal variability for both experimental site. Relationships between climate and phenology consist in a comparison between advance and delay in phenological stage and weather type issue from the classification. Experiment field are two french Long Term Ecological Research (LTER). The first one (LTER 'Alps' ) have mountain characteristics about 1000 to 4780 m ASL, ~65% of forest occupation ; the second one (LTER Armorique) is an Atlantic coastal landscape, 0-360 m ASL, ~70% of agricultural field. Climatic data are SAFRAN-France reanalysis which are developed to run SVAT model and come from the French meteorological service 'Météo-France'. All atmospheric variable needed to run a hydrological model are available (air temperature, rainfall/snowfall, wind speed, relative humidity, incoming/outcoming radiation) at a 8-8 km2 space resolution and with a daily time resolution. The phenological data are extracted from SPOT-VGT product 1-1 km2 space resolution and 10 days time resolution) by time series analysis process. Such of study is particularly important to understand relationships between environmental and ecological variables and it will allow to better predict ecological reaction under climate change constraint.

  8. Short-term to seasonal variability in factors driving primary productivity in a shallow estuary: Implications for modeling production

    NASA Astrophysics Data System (ADS)

    Canion, Andy; MacIntyre, Hugh L.; Phipps, Scott

    2013-10-01

    The inputs of primary productivity models may be highly variable on short timescales (hourly to daily) in turbid estuaries, but modeling of productivity in these environments is often implemented with data collected over longer timescales. Daily, seasonal, and spatial variability in primary productivity model parameters: chlorophyll a concentration (Chla), the downwelling light attenuation coefficient (kd), and photosynthesis-irradiance response parameters (Pmchl, αChl) were characterized in Weeks Bay, a nitrogen-impacted shallow estuary in the northern Gulf of Mexico. Variability in primary productivity model parameters in response to environmental forcing, nutrients, and microalgal taxonomic marker pigments were analysed in monthly and short-term datasets. Microalgal biomass (as Chla) was strongly related to total phosphorus concentration on seasonal scales. Hourly data support wind-driven resuspension as a major source of short-term variability in Chla and light attenuation (kd). The empirical relationship between areal primary productivity and a combined variable of biomass and light attenuation showed that variability in the photosynthesis-irradiance response contributed little to the overall variability in primary productivity, and Chla alone could account for 53-86% of the variability in primary productivity. Efforts to model productivity in similar shallow systems with highly variable microalgal biomass may benefit the most by investing resources in improving spatial and temporal resolution of chlorophyll a measurements before increasing the complexity of models used in productivity modeling.

  9. A semi-urban case study of small scale variability of rainfall and run-off, with C- and X-band radars and the fully distributed hydrological model Multi-Hydro

    NASA Astrophysics Data System (ADS)

    Alves de Souza, Bianca; da Silva Rocha Paz, Igor; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    The complexity of urban hydrology results both from that of urban systems and the extreme rainfall variability. The latter can display strongly localised rain cells that can be extremely damaging when hitting vulnerable parts of urban systems. This paper investigates this complexity on a semi-urban sub-catchment - located in Massy (South of Paris, France) - of the Bievre river, which is known for its frequent flashfloods. Advanced geo-processing techniques were used to find the ideal pixel size for this 6.326km2 basin. C-band and X-band radar data are multifractally downscaled at various resolutions and input to the fully distributed hydrological model Multi-Hydro. The latter has been developed at Ecole des Ponts ParisTech. It integrates validated modules dealing with surface flow, saturated and unsaturated surface flow, and sewer flow. The C-band radar is located in Trappes, approx. 21km East of the catchment, is operated by Méteo-France and has a resolution of 1km x 1km x 5min. The X-band radar operated by Ecole des Ponts Paris Tech on its campus has a resolution of 125m x 125m x 3.4min. The performed multifractal downscaling enables both the generation of large ensemble realizations and easy change of resolution (e.g. down to 10 m in the present study). This in turn allows a detailed analysis of the impacts of small scale variability and the required resolution to obtain accurate simulations, therefore predictions. This will be shown on two rainy episodes over the chosen sub-catchment of the Bievre river.

  10. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River

    PubMed Central

    Radinger, Johannes; Wolter, Christian; Kail, Jochem

    2015-01-01

    Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species’ presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the importance of considering habitat at spatial scales larger than the sampling site, and (iii) that the importance of (river morphological) habitat characteristics differs depending on the spatial scale. PMID:26569119

  11. Generating High Resolution Climate Scenarios Through Regional Climate Modelling Over Southern Africa

    NASA Astrophysics Data System (ADS)

    Ndhlovu, G. Z.; Woyessa, Y. E.; Vijayaraghavan, S.

    2017-12-01

    limate change has impacted the global environment and the Continent of Africa, especially Southern Africa, regarded as one of the most vulnerable regions in Africa, has not been spared from these impacts. Global Climate Models (GCMs) with coarse horizontal resolutions of 150-300 km do not provide sufficient details at the local basin scale due to mismatch between the size of river basins and the grid cell of the GCM. This makes it difficult to apply the outputs of GCMs directly to impact studies such as hydrological modelling. This necessitates the use of regional climate modelling at high resolutions that provide detailed information at regional and local scales to study both climate change and its impacts. To this end, an experiment was set up and conducted with PRECIS, a regional climate model, to generate climate scenarios at a high resolution of 25km for the local region in Zambezi River basin of Southern Africa. The major input data used included lateral and surface boundary conditions based on the GCMs. The data is processed, analysed and compared with CORDEX climate change project data generated for Africa. This paper, highlights the major differences of the climate scenarios generated by PRECIS Model and CORDEX Project for Africa and further gives recommendations for further research on generation of climate scenarios. The climatic variables such as precipitation and temperatures have been analysed for flood and droughts in the region. The paper also describes the setting up and running of an experiment using a high-resolution PRECIS model. In addition, a description has been made in running the model and generating the output variables on a sub basin scale. Regional climate modelling which provides information on climate change impact may lead to enhanced understanding of adaptive water resources management. Understanding the regional climate modelling results on sub basin scale is the first step in analysing complex hydrological processes and a basis for designing of adaptation and mitigation strategies in the region. Key words: Climate change, regional climate modelling, hydrological processes, extremes, scenarios [1] Corresponding author: Email:gndhlovu@cut.ac.za Tel:+27 (0) 51 507 3072

  12. The Solomon Sea eddy activity from a 1/36° regional model

    NASA Astrophysics Data System (ADS)

    Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques

    2013-04-01

    In the South West Pacific, the Solomon Sea exhibits the highest levels of eddy kinetic energy but relatively little is known about the eddy activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the warm pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale eddies are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this eddy activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows eddies to be automatically detected and tracked, thus providing some basic eddy properties. The preliminary results show that two main and distinct types of eddies are detected. Eddies in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as eddies and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is expected to provide observations of small-scale sea level variability, spectral analysis is performed from the 1/36° resolution realistic model in order to characterize the finer scale signals in the Solomon sea region. The preliminary SSH spectral analysis shows a k-4 slope, in good agreement with the suface quasigeostrophic (SQG) turbulence theory. Keywords: Solomon Sea; meso-scale activity; eddy detection, tracking and properties; wavenumber spectrum.

  13. Continuous data assimilation for downscaling large-footprint soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Altaf, Muhammad U.; Jana, Raghavendra B.; Hoteit, Ibrahim; McCabe, Matthew F.

    2016-10-01

    Soil moisture is a key component of the hydrologic cycle, influencing processes leading to runoff generation, infiltration and groundwater recharge, evaporation and transpiration. Generally, the measurement scale for soil moisture is found to be different from the modeling scales for these processes. Reducing this mismatch between observation and model scales in necessary for improved hydrological modeling. An innovative approach to downscaling coarse resolution soil moisture data by combining continuous data assimilation and physically based modeling is presented. In this approach, we exploit the features of Continuous Data Assimilation (CDA) which was initially designed for general dissipative dynamical systems and later tested numerically on the incompressible Navier-Stokes equation, and the Benard equation. A nudging term, estimated as the misfit between interpolants of the assimilated coarse grid measurements and the fine grid model solution, is added to the model equations to constrain the model's large scale variability by available measurements. Soil moisture fields generated at a fine resolution by a physically-based vadose zone model (HYDRUS) are subjected to data assimilation conditioned upon coarse resolution observations. This enables nudging of the model outputs towards values that honor the coarse resolution dynamics while still being generated at the fine scale. Results show that the approach is feasible to generate fine scale soil moisture fields across large extents, based on coarse scale observations. Application of this approach is likely in generating fine and intermediate resolution soil moisture fields conditioned on the radiometerbased, coarse resolution products from remote sensing satellites.

  14. Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals

    NASA Technical Reports Server (NTRS)

    Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel

    2014-01-01

    To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.

  15. Searching for the right scale in catchment hydrology: the effect of soil spatial variability in simulated states and fluxes

    NASA Astrophysics Data System (ADS)

    Baroni, Gabriele; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine

    2017-04-01

    The advances in computer science and the availability of new detailed data-sets have led to a growing number of distributed hydrological models applied to finer and finer grid resolutions for larger and larger catchment areas. It was argued, however, that this trend does not necessarily guarantee better understanding of the hydrological processes or it is even not necessary for specific modelling applications. In the present study, this topic is further discussed in relation to the soil spatial heterogeneity and its effect on simulated hydrological state and fluxes. To this end, three methods are developed and used for the characterization of the soil heterogeneity at different spatial scales. The methods are applied at the soil map of the upper Neckar catchment (Germany), as example. The different soil realizations are assessed regarding their impact on simulated state and fluxes using the distributed hydrological model mHM. The results are analysed by aggregating the model outputs at different spatial scales based on the Representative Elementary Scale concept (RES) proposed by Refsgaard et al. (2016). The analysis is further extended in the present study by aggregating the model output also at different temporal scales. The results show that small scale soil variabilities are not relevant when the integrated hydrological responses are considered e.g., simulated streamflow or average soil moisture over sub-catchments. On the contrary, these small scale soil variabilities strongly affect locally simulated states and fluxes i.e., soil moisture and evapotranspiration simulated at the grid resolution. A clear trade-off is also detected by aggregating the model output by spatial and temporal scales. Despite the scale at which the soil variabilities are (or are not) relevant is not universal, the RES concept provides a simple and effective framework to quantify the predictive capability of distributed models and to identify the need for further model improvements e.g., finer resolution input. For this reason, the integration in this analysis of all the relevant input factors (e.g., precipitation, vegetation, geology) could provide a strong support for the definition of the right scale for each specific model application. In this context, however, the main challenge for a proper model assessment will be the correct characterization of the spatio- temporal variability of each input factor. Refsgaard, J.C., Højberg, A.L., He, X., Hansen, A.L., Rasmussen, S.H., Stisen, S., 2016. Where are the limits of model predictive capabilities?: Representative Elementary Scale - RES. Hydrol. Process. doi:10.1002/hyp.11029

  16. Thermodynamics of adaptive molecular resolution.

    PubMed

    Delgado-Buscalioni, R

    2016-11-13

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  17. Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2010-01-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.

  18. Impacts of high resolution model downscaling in coastal regions

    NASA Astrophysics Data System (ADS)

    Bricheno, Lucy; Wolf, Judith

    2013-04-01

    With model development and cheaper computational resources ocean forecasts are becoming readily available, high resolution coastal forecasting is now a reality. This can only be achieved, however, by downscaling global or basin-scale products such as the MyOcean reanalyses and forecasts. These model products have resolution ranging from 1/16th - 1/4 degree, which are often insufficient for coastal scales, but can provide initialisation and boundary data. We present applications of downscaling the MyOcean products for use in shelf-seas and the nearshore. We will address the question 'Do coastal predictions improve with higher resolution modelling?' with a few focused examples, while also discussing what is meant by an improved result. Increasing resolution appears to be an obvious route for getting more accurate forecasts in operational coastal models. However, when models resolve finer scales, this may lead to the introduction of high-frequency variability which is not necessarily deterministic. Thus a flow may appear more realistic by generating eddies but the simple statistics like rms error and correlation may become less good because the model variability is not exactly in phase with the observations (Hoffman et al., 1995). By deciding on a specific process to simulate (rather than concentrating on reducing rms error) we can better assess the improvements gained by downscaling. In this work we will select two processes which are dominant in our case-study site: Liverpool Bay. Firstly we consider the magnitude and timing of a peak in tide-surge elevations, by separating out the event into timing (or displacement) and intensity (or amplitude) errors. The model can thus be evaluated on how well it predicts the timing and magnitude of the surge. The second important characteristic of Liverpool Bay is the position of the freshwater front. To evaluate model performance in this case, the location, sharpness, and temperature difference across the front will be considered. We will show that by using intelligent metrics designed with a physical process in mind, we can learn more about model performance than by considering 'bulk' statistics alone. R. M. Hoffman and Z. Liu and J-F. Louic and C. Grassotti (1995) 'Distortion Representation of Forecast Errors' Monthly Weather Review 123: 2758-2770

  19. Century long observation constrained global dynamic downscaling and hydrologic implication

    NASA Astrophysics Data System (ADS)

    Kim, H.; Yoshimura, K.; Chang, E.; Famiglietti, J. S.; Oki, T.

    2012-12-01

    It has been suggested that greenhouse gas induced warming climate causes the acceleration of large scale hydrologic cycles, and, indeed, many regions on the Earth have been suffered by hydrologic extremes getting more frequent. However, historical observations are not able to provide enough information in comprehensive manner to understand their long-term variability and/or global distributions. In this study, a century long high resolution global climate data is developed in order to break through existing limitations. 20th Century Reanalysis (20CR) which has relatively low spatial resolution (~2.0°) and longer term availability (140 years) is dynamically downscaled into global T248 (~0.5°) resolution using Experimental Climate Prediction Center (ECPC) Global Spectral Model (GSM) by spectral nudging data assimilation technique. Also, Global Precipitation Climatology Centre (GPCC) and Climate Research Unit (CRU) observational data are adopted to reduce model dependent uncertainty. Downscaled product successfully represents realistic geographical detail keeping low frequency signal in mean state and spatiotemporal variability, while previous bias correction method fails to reproduce high frequency variability. Newly developed data is used to investigate how long-term large scale terrestrial hydrologic cycles have been changed globally and how they have been interacted with various climate modes, such as El-Niño Southern Oscillation (ENSO) and Atlantic Multidecadal Oscillation (AMO). As a further application, it will be used to provide atmospheric boundary condition of multiple land surface models in the Global Soil Wetness Project Phase 3 (GSWP3).

  20. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2017-04-01

    In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid variability in a computationally inexpensive manner. This study shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference Williams PD, Howe NJ, Gregory JM, Smith RS, and Joshi MM (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, 29, 8763-8781. http://dx.doi.org/10.1175/JCLI-D-15-0746.1

  1. Forward modelling of global gravity fields with 3D density structures and an application to the high-resolution ( 2 km) gravity fields of the Moon

    NASA Astrophysics Data System (ADS)

    Šprlák, M.; Han, S.-C.; Featherstone, W. E.

    2017-12-01

    Rigorous modelling of the spherical gravitational potential spectra from the volumetric density and geometry of an attracting body is discussed. Firstly, we derive mathematical formulas for the spatial analysis of spherical harmonic coefficients. Secondly, we present a numerically efficient algorithm for rigorous forward modelling. We consider the finite-amplitude topographic modelling methods as special cases, with additional postulates on the volumetric density and geometry. Thirdly, we implement our algorithm in the form of computer programs and test their correctness with respect to the finite-amplitude topography routines. For this purpose, synthetic and realistic numerical experiments, applied to the gravitational field and geometry of the Moon, are performed. We also investigate the optimal choice of input parameters for the finite-amplitude modelling methods. Fourth, we exploit the rigorous forward modelling for the determination of the spherical gravitational potential spectra inferred by lunar crustal models with uniform, laterally variable, radially variable, and spatially (3D) variable bulk density. Also, we analyse these four different crustal models in terms of their spectral characteristics and band-limited radial gravitation. We demonstrate applicability of the rigorous forward modelling using currently available computational resources up to degree and order 2519 of the spherical harmonic expansion, which corresponds to a resolution of 2.2 km on the surface of the Moon. Computer codes, a user manual and scripts developed for the purposes of this study are publicly available to potential users.

  2. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.

    2013-12-01

    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  3. Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?

    NASA Astrophysics Data System (ADS)

    Hewitt, Helene T.; Bell, Michael J.; Chassignet, Eric P.; Czaja, Arnaud; Ferreira, David; Griffies, Stephen M.; Hyder, Pat; McClean, Julie L.; New, Adrian L.; Roberts, Malcolm J.

    2017-12-01

    As the importance of the ocean in the weather and climate system is increasingly recognised, operational systems are now moving towards coupled prediction not only for seasonal to climate timescales but also for short-range forecasts. A three-way tension exists between the allocation of computing resources to refine model resolution, the expansion of model complexity/capability, and the increase of ensemble size. Here we review evidence for the benefits of increased ocean resolution in global coupled models, where the ocean component explicitly represents transient mesoscale eddies and narrow boundary currents. We consider lessons learned from forced ocean/sea-ice simulations; from studies concerning the SST resolution required to impact atmospheric simulations; and from coupled predictions. Impacts of the mesoscale ocean in western boundary current regions on the large-scale atmospheric state have been identified. Understanding of air-sea feedback in western boundary currents is modifying our view of the dynamics in these key regions. It remains unclear whether variability associated with open ocean mesoscale eddies is equally important to the large-scale atmospheric state. We include a discussion of what processes can presently be parameterised in coupled models with coarse resolution non-eddying ocean models, and where parameterizations may fall short. We discuss the benefits of resolution and identify gaps in the current literature that leave important questions unanswered.

  4. Random Initialisation of the Spectral Variables: an Alternate Approach for Initiating Multivariate Curve Resolution Alternating Least Square (MCR-ALS) Analysis.

    PubMed

    Kumar, Keshav

    2017-11-01

    Multivariate curve resolution alternating least square (MCR-ALS) analysis is the most commonly used curve resolution technique. The MCR-ALS model is fitted using the alternate least square (ALS) algorithm that needs initialisation of either contribution profiles or spectral profiles of each of the factor. The contribution profiles can be initialised using the evolve factor analysis; however, in principle, this approach requires that data must belong to the sequential process. The initialisation of the spectral profiles are usually carried out using the pure variable approach such as SIMPLISMA algorithm, this approach demands that each factor must have the pure variables in the data sets. Despite these limitations, the existing approaches have been quite a successful for initiating the MCR-ALS analysis. However, the present work proposes an alternate approach for the initialisation of the spectral variables by generating the random variables in the limits spanned by the maxima and minima of each spectral variable of the data set. The proposed approach does not require that there must be pure variables for each component of the multicomponent system or the concentration direction must follow the sequential process. The proposed approach is successfully validated using the excitation-emission matrix fluorescence data sets acquired for certain fluorophores with significant spectral overlap. The calculated contribution and spectral profiles of these fluorophores are found to correlate well with the experimental results. In summary, the present work proposes an alternate way to initiate the MCR-ALS analysis.

  5. The challenges associated with applying global models in heterogeneous landscapes: A case study using MOD17 GPP estimates in Hawaii

    NASA Astrophysics Data System (ADS)

    Kimball, H.; Selmants, P. C.; Running, S. W.; Moreno, A.; Giardina, C. P.

    2016-12-01

    In this study we evaluate the influence of spatial data product accuracy and resolution on the application of global models for smaller scale heterogeneous landscapes. In particular, we assess the influence of locally specific land cover and high-resolution climate data products on estimates of Gross Primary Production (GPP) for the Hawaiian Islands using the MOD17 model. The MOD17 GPP algorithm uses a measure of the fraction of absorbed photosynthetically active radiation from the National Aeronautics and Space Administration's Earth Observation System. This direct measurement is combined with global land cover (500-m resolution) and climate models ( 1/2-degree resolution) to estimate GPP. We first compared the alignment between the global land cover model used in MOD17 with a Hawaii specific land cover data product. We found that there was a 51.6% overall agreement between the two land cover products. We then compared four MOD17 GPP models: A global model that used the global land cover and low-resolution global climate data products, a model produced using the Hawaii specific land cover and low-resolution global climate data products, a model with global land cover and high-resolution climate data products, and finally, a model using both Hawaii specific land cover and high-resolution climate data products. We found that including either the Hawaii specific land cover or the high-resolution Hawaii climate data products with MOD17 reduced overall estimates of GPP by 8%. When both were used, GPP estimates were reduced by 16%. The reduction associated with land cover is explained by a reduction of the total area designated as evergreen broad leaf forest and an increase in the area designated as barren or sparsely vegetated in the Hawaii land cover product as compared to the global product. The climate based reduction is explained primarily by the spatial resolution and distribution of solar radiation in the Hawaiian Islands. This study highlights the importance of accuracy and resolution when applying global models to highly variable landscapes and provides an estimate of the influence of land cover and climate data products on estimates of GPP using MOD17.

  6. Efficient multi-objective calibration of a computationally intensive hydrologic model with parallel computing software in Python

    USDA-ARS?s Scientific Manuscript database

    With enhanced data availability, distributed watershed models for large areas with high spatial and temporal resolution are increasingly used to understand water budgets and examine effects of human activities and climate change/variability on water resources. Developing parallel computing software...

  7. Global 30m Height Above the Nearest Drainage

    NASA Astrophysics Data System (ADS)

    Donchyts, Gennadii; Winsemius, Hessel; Schellekens, Jaap; Erickson, Tyler; Gao, Hongkai; Savenije, Hubert; van de Giesen, Nick

    2016-04-01

    Variability of the Earth surface is the primary characteristics affecting the flow of surface and subsurface water. Digital elevation models, usually represented as height maps above some well-defined vertical datum, are used a lot to compute hydrologic parameters such as local flow directions, drainage area, drainage network pattern, and many others. Usually, it requires a significant effort to derive these parameters at a global scale. One hydrological characteristic introduced in the last decade is Height Above the Nearest Drainage (HAND): a digital elevation model normalized using nearest drainage. This parameter has been shown to be useful for many hydrological and more general purpose applications, such as landscape hazard mapping, landform classification, remote sensing and rainfall-runoff modeling. One of the essential characteristics of HAND is its ability to capture heterogeneities in local environments, difficult to measure or model otherwise. While many applications of HAND were published in the academic literature, no studies analyze its variability on a global scale, especially, using higher resolution DEMs, such as the new, one arc-second (approximately 30m) resolution version of SRTM. In this work, we will present the first global version of HAND computed using a mosaic of two DEMS: 30m SRTM and Viewfinderpanorama DEM (90m). The lower resolution DEM was used to cover latitudes above 60 degrees north and below 56 degrees south where SRTM is not available. We compute HAND using the unmodified version of the input DEMs to ensure consistency with the original elevation model. We have parallelized processing by generating a homogenized, equal-area version of HydroBASINS catchments. The resulting catchment boundaries were used to perform processing using 30m resolution DEM. To compute HAND, a new version of D8 local drainage directions as well as flow accumulation were calculated. The latter was used to estimate river head by incorporating fixed and variable thresholding methods. The resulting HAND dataset was analyzed regarding its spatial variability and to assess the global distribution of the main landform types: valley, ecotone, slope, and plateau. The method used to compute HAND was implemented using PCRaster software, running on Google Compute Engine platform running under Ubuntu Linux. The Google Earth Engine was used to perform mosaicing and clipping of the original DEMs as well as to provide access to the final product. The effort took about three months of computing time on eight core CPU virtual machine.

  8. Variability in Tropospheric Ozone over China Derived from Assimilated GOME-2 Ozone Profiles

    NASA Astrophysics Data System (ADS)

    van Peet, J. C. A.; van der A, R. J.; Kelder, H. M.

    2016-08-01

    A tropospheric ozone dataset is derived from assimilated GOME-2 ozone profiles for 2008. Ozone profiles are retrieved with the OPERA algorithm, using the optimal estimation method. The retrievals are done on a spatial resolution of 160×160 km on 16 layers ranging from the surface up to 0.01 hPa. By using the averaging kernels in the data assimilation, the algorithm maintains the high resolution vertical structures of the model, while being constrained by observations with a lower vertical resolution.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meehl, G A; Covey, C; McAvaney, B

    The Coupled Model Intercomparison Project (CMIP) is designed to allow study and intercomparison of multi-model simulations of present-day and future climate. The latter are represented by idealized forcing of compounded 1% per year CO2 increase to the time of CO2 doubling near year 70 in simulations with global coupled models that contain, typically, components representing atmosphere, ocean, sea ice and land surface. Results from CMIP diagnostic subprojects were presented at the Second CMIP Workshop held at the Max Planck Institute for Meteorology in Hamburg, Germany, in September, 2003. Significant progress in diagnosing and understanding results from global coupled models hasmore » been made since the First CMIP Workshop in Melbourne, Australia in 1998. For example, the issue of flux adjustment is slowly fading as more and more models obtain stable multi-century surface climates without them. El Nino variability, usually about half the observed amplitude in the previous generation of coupled models, is now more accurately simulated in the present generation of global coupled models, though there are still biases in simulating the patterns of maximum variability. Typical resolutions of atmospheric component models contained in coupled models is now usually around 2.5 degrees latitude-longitude, with the ocean components often having about twice the atmospheric model resolution, with even higher resolution in the equatorial tropics. Some new-generation coupled models have atmospheric model resolutions of around 1.5 degrees latitude-longitude. Modeling groups now routinely run the CMIP control and 1% CO2 simulations in addition to 20th and 21st century climate simulations with a variety of forcings (e.g. volcanoes, solar variability, anthropogenic sulfate aerosols, ozone, and greenhouse gases (GHGs), with the anthropogenic forcings for future climate as well). However, persistent systematic errors noted in previous generations of global coupled models still are present in the present generation (e.g. over-extensive equatorial Pacific cold tongue, double ITCZ). This points to the next challenge for the global coupled climate modeling community. Planning and imminent commencement of the IPCC Fourth Assessment Report (AR4) has prompted rapid coupled model development, which will lead to an expanded CMIP-like activity to collect and analyze results for the control, 1% CO2, 20th, 21st and 22nd century simulations performed for the AR4. The international climate community is encouraged to become involved in this analysis effort, and details are provided below in how to do so.« less

  10. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa.

    PubMed

    Ebhuoma, Osadolor; Gebreslasie, Michael

    2016-06-14

    Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of Knowledge(SM) databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical/climatic setting, the stage of malaria elimination continuum, the characteristics of the RS variables and the analytical approach, which in turn, would support the channeling of intervention resources sustainably.

  11. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa

    PubMed Central

    Ebhuoma, Osadolor; Gebreslasie, Michael

    2016-01-01

    Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of KnowledgeSM databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical/climatic setting, the stage of malaria elimination continuum, the characteristics of the RS variables and the analytical approach, which in turn, would support the channeling of intervention resources sustainably. PMID:27314369

  12. Further influence of the eastern boundary on the seasonal variability of the Atlantic Meridional Overturning Circulation at 26N

    NASA Astrophysics Data System (ADS)

    Baehr, Johanna; Schmidt, Christian

    2016-04-01

    The seasonal cycle of the Atlantic Meridional Overturning Circulation (AMOC) at 26.5 N has been shown to arise predominantly from sub-surface density variations at the Eastern boundary. Here, we suggest that these sub-surface density variations have their origin in the seasonal variability of the Canary Current system, in particular the Poleward Undercurrent (PUC). We use a high-resolution ocean model (STORM) for which we show that the seasonal variability resembles observations for both sub-surface density variability and meridional transports. In particular, the STORM model simulation density variations at the eastern boundary show seasonal variations reaching down to well over 1000m, a pattern that most model simulations systematically underestimate. We find that positive wind stress curl anomalies in late summer and already within one degree off the eastern boundary result -through water column stretching- in strong transport anomlies in PUC in fall, coherent down to 1000m depth. Simultaneously with a westward propagation of these transport anomalies, we find in winter a weak PUC between 200 m and 500m, and southward transports between 600m and 1300m. This variability is in agreement with the observationally-based suggestion of a seasonal reversal of the meridional transports at intermediate depths. Our findings extend earlier studies which suggested that the seasonal variability at of the meridional transports across 26N is created by changes in the basin-wide thermocline through wind-driven upwelling at the eastern boundary analyzing wind stress curl anomalies 2 degrees off the eastern boundary. Our results suggest that the investigation of AMOC variability and particular its seasonal cycle modulations require the analysis of boundary wind stress curl and the upper ocean transports within 1 degree off the eastern boundary. These findings also implicate that without high-resolution coverage of the eastern boundary, coarser model simulation might not fully represent the AMOC's seasonal variability.

  13. DNA strand displacement system running logic programs.

    PubMed

    Rodríguez-Patón, Alfonso; Sainz de Murieta, Iñaki; Sosík, Petr

    2014-01-01

    The paper presents a DNA-based computing model which is enzyme-free and autonomous, not requiring a human intervention during the computation. The model is able to perform iterated resolution steps with logical formulae in conjunctive normal form. The implementation is based on the technique of DNA strand displacement, with each clause encoded in a separate DNA molecule. Propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps. The potential of the model is demonstrated also by its theoretical capability of solving SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Multi-region statistical shape model for cochlear implantation

    NASA Astrophysics Data System (ADS)

    Romera, Jordi; Kjer, H. Martin; Piella, Gemma; Ceresa, Mario; González Ballester, Miguel A.

    2016-03-01

    Statistical shape models are commonly used to analyze the variability between similar anatomical structures and their use is established as a tool for analysis and segmentation of medical images. However, using a global model to capture the variability of complex structures is not enough to achieve the best results. The complexity of a proper global model increases even more when the amount of data available is limited to a small number of datasets. Typically, the anatomical variability between structures is associated to the variability of their physiological regions. In this paper, a complete pipeline is proposed for building a multi-region statistical shape model to study the entire variability from locally identified physiological regions of the inner ear. The proposed model, which is based on an extension of the Point Distribution Model (PDM), is built for a training set of 17 high-resolution images (24.5 μm voxels) of the inner ear. The model is evaluated according to its generalization ability and specificity. The results are compared with the ones of a global model built directly using the standard PDM approach. The evaluation results suggest that better accuracy can be achieved using a regional modeling of the inner ear.

  15. Modeling circulation patterns induced by spatial cross-shore wind variability in a small-size coastal embayment

    NASA Astrophysics Data System (ADS)

    Cerralbo, Pablo; Espino, Manuel; Grifoll, Manel

    2016-08-01

    This contribution shows the importance of the cross-shore spatial wind variability in the water circulation in a small-sized micro-tidal bay. The hydrodynamic wind response at Alfacs Bay (Ebro River delta, NW Mediterranean Sea) is investigated with a numerical model (ROMS) supported by in situ observations. The wind variability observed in meteorological measurements is characterized with meteorological model (WRF) outputs. From the hydrodynamic simulations of the bay, the water circulation response is affected by the cross-shore wind variability, leading to water current structures not observed in the homogeneous-wind case. If the wind heterogeneity response is considered, the water exchange in the longitudinal direction increases significantly, reducing the water exchange time by around 20%. Wind resolutions half the size of the bay (in our case around 9 km) inhibit cross-shore wind variability, which significantly affects the resultant circulation pattern. The characteristic response is also investigated using idealized test cases. These results show how the wind curl contributes to the hydrodynamic response in shallow areas and promotes the exchange between the bay and the open sea. Negative wind curl is related to the formation of an anti-cyclonic gyre at the bay's mouth. Our results highlight the importance of considering appropriate wind resolution even in small-scale domains (such as bays or harbors) to characterize the hydrodynamics, with relevant implications in the water exchange time and the consequent water quality and ecological parameters.

  16. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin.

    PubMed

    Ghanta, Sindhu; Jordan, Michael I; Kose, Kivanc; Brooks, Dana H; Rajadhyaksha, Milind; Dy, Jennifer G

    2017-01-01

    Segmenting objects of interest from 3D data sets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution, and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, the shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance, and unknown locations. The driving application that inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear, and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease, and cancer usually start. Detecting the DEJ is challenging, because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped "peaks and valleys." In addition, RCM imaging resolution, contrast, and intensity vary with depth. Thus, a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with shape priors and performs inference using Gibbs sampling. Experimental results show that the proposed unsupervised model is able to automatically detect the DEJ with physiologically relevant accuracy in the range 10- 20 μm .

  17. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin

    PubMed Central

    Ghanta, Sindhu; Jordan, Michael I.; Kose, Kivanc; Brooks, Dana H.; Rajadhyaksha, Milind; Dy, Jennifer G.

    2016-01-01

    Segmenting objects of interest from 3D datasets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance and unknown locations. The driving application which inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease and cancer usually start. Detecting the DEJ is challenging because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped “peaks and valleys”. In addition, RCM imaging resolution, contrast and intensity vary with depth. Thus a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with shape priors and performs inference using Gibbs sampling. Experimental results show that the proposed unsupervised model is able to automatically detect the DEJ with physiologically relevant accuracy in the range 10 – 20µm. PMID:27723590

  18. Cloudy Windows: What GCM Ensembles, Reanalyses and Observations Tell Us About Uncertainty in Greenland's Future Climate and Surface Melting

    NASA Astrophysics Data System (ADS)

    Reusch, D. B.

    2016-12-01

    Any analysis that wants to use a GCM-based scenario of future climate benefits from knowing how much uncertainty the GCM's inherent variability adds to the development of climate change predictions. This is extra relevant in the polar regions due to the potential of global impacts (e.g., sea level rise) from local (ice sheet) climate changes such as more frequent/intense surface melting. High-resolution, regional-scale models using GCMs for boundary/initial conditions in future scenarios inherit a measure of GCM-derived externally-driven uncertainty. We investigate these uncertainties for the Greenland ice sheet using the 30-member CESM1.0-CAM5-BGC Large Ensemble (CESMLE) for recent (1981-2000) and future (2081-2100, RCP 8.5) decades. Recent simulations are skill-tested against the ERA-Interim reanalysis and AWS observations with results informing future scenarios. We focus on key variables influencing surface melting through decadal climatologies, nonlinear analysis of variability with self-organizing maps (SOMs), regional-scale modeling (Polar WRF), and simple melt models. Relative to the ensemble average, spatially averaged climatological July temperature anomalies over a Greenland ice-sheet/ocean domain are mostly between +/- 0.2 °C. The spatial average hides larger local anomalies of up to +/- 2 °C. The ensemble average itself is 2 °C cooler than ERA-Interim. SOMs extend our diagnostics by providing a concise, objective summary of model variability as a set of generalized patterns. For CESMLE, the SOM patterns summarize the variability of multiple realizations of climate. Changes in pattern frequency by ensemble member show the influence of initial conditions. For example, basic statistical analysis of pattern frequency yields interquartile ranges of 2-4% for individual patterns across the ensemble. In climate terms, this tells us about climate state variability through the range of the ensemble, a potentially significant source of melt-prediction uncertainty. SOMs can also capture the different trajectories of climate due to intramodel variability over time. Polar WRF provides higher resolution regional modeling with improved, polar-centric model physics. Simple melt models allow us to characterize impacts of the upstream uncertainties on estimates of surface melting.

  19. Stochastic Ocean Eddy Perturbations in a Coupled General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Howe, N.; Williams, P. D.; Gregory, J. M.; Smith, R. S.

    2014-12-01

    High-resolution ocean models, which are eddy permitting and resolving, require large computing resources to produce centuries worth of data. Also, some previous studies have suggested that increasing resolution does not necessarily solve the problem of unresolved scales, because it simply introduces a new set of unresolved scales. Applying stochastic parameterisations to ocean models is one solution that is expected to improve the representation of small-scale (eddy) effects without increasing run-time. Stochastic parameterisation has been shown to have an impact in atmosphere-only models and idealised ocean models, but has not previously been studied in ocean general circulation models. Here we apply simple stochastic perturbations to the ocean temperature and salinity tendencies in the low-resolution coupled climate model, FAMOUS. The stochastic perturbations are implemented according to T(t) = T(t-1) + (ΔT(t) + ξ(t)), where T is temperature or salinity, ΔT is the corresponding deterministic increment in one time step, and ξ(t) is Gaussian noise. We use high-resolution HiGEM data coarse-grained to the FAMOUS grid to provide information about the magnitude and spatio-temporal correlation structure of the noise to be added to the lower resolution model. Here we present results of adding white and red noise, showing the impacts of an additive stochastic perturbation on mean climate state and variability in an AOGCM.

  20. Daily and Hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  1. Assessing the competing roles of model resolution and meteorological forcing fidelity in hyperresolution simulations of snowpack and streamflow in the southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Gochis, D. J.; Dugger, A. L.; Karsten, L. R.; Barlage, M. J.; Sampson, K. M.; Yu, W.; Pan, L.; McCreight, J. L.; Howard, K.; Busto, J.; Deems, J. S.

    2017-12-01

    Hydrometeorological processes vary over comparatively short length scales in regions of complex terrain such as the southern Rocky Mountains. Changes in temperature, precipitation, wind and solar radiation can vary significantly across elevation gradients, terrain landform and land cover conditions throughout the region. Capturing such variability in hydrologic models can necessitate the utilization of so-called `hyper-resolution' spatial meshes with effective element spacings of less than 100m. However, it is often difficult to obtain meteorological forcings of high quality in such regions at those resolutions which can result in significant uncertainty in fundamental in hydrologic model inputs. In this study we examine the comparative influences of meteorological forcing data fidelity and spatial resolution on seasonal simulations of snowpack evolution, runoff and streamflow in a set of high mountain watersheds in southern Colorado. We utilize the operational, NOAA National Water Model configuration of the community WRF-Hydro system as a baseline and compare against it, additional model scenarios with differing specifications of meteorological forcing data, with and without topographic downscaling adjustments applied, with and without experimental high resolution radar derived precipitation estimates and with WRF-Hydro configurations of progressively finer spatial resolution. The results suggest significant influence from and importance of meteorological downscaling techniques in controlling spatial distributions of meltout and runoff timing. The use of radar derived precipitation exhibits clear sensitivity on hydrologic simulation skill compared with the use of coarser resolution, background precipitation analyses. Advantages and disadvantages of the utilization of progressively higher resolution model configurations both in terms of computational requirements and model fidelity are also discussed.

  2. Simulation and optimization of a dc SQUID with finite capacitance

    NASA Astrophysics Data System (ADS)

    de Waal, V. J.; Schrijner, P.; Llurba, R.

    1984-02-01

    This paper deals with the calculations of the noise and the optimization of the energy resolution of a dc SQUID with finite junction capacitance. Up to now noise calculations of dc SQUIDs were performed using a model without parasitic capacitances across the Josephson junctions. As the capacitances limit the performance of the SQUID, for a good optimization one must take them into account. The model consists of two coupled nonlinear second-order differential equations. The equations are very suitable for simulation with an analog circuit. We implemented the model on a hybrid computer. The noise spectrum from the model is calculated with a fast Fourier transform. A calculation of the energy resolution for one set of parameters takes about 6 min of computer time. Detailed results of the optimization are given for products of inductance and temperature of LT=1.2 and 5 nH K. Within a range of β and β c between 1 and 2, which is optimum, the energy resolution is nearly independent of these variables. In this region the energy resolution is near the value calculated without parasitic capacitances. Results of the optimized energy resolution are given as a function of LT between 1.2 and 10 mH K.

  3. High Resolution Global Climate Modeling with GEOS-5: Intense Precipitation, Convection and Tropical Cyclones on Seasonal Time-Scales.

    NASA Technical Reports Server (NTRS)

    Putnam, WilliamM.

    2011-01-01

    In 2008 the World Modeling Summit for Climate Prediction concluded that "climate modeling will need-and is ready-to move to fundamentally new high-resolution approaches to capitalize on the seamlessness of the weather-climate continuum." Following from this, experimentation with very high-resolution global climate modeling has gained enhanced priority within many modeling groups and agencies. The NASA Goddard Earth Observing System model (GEOS-5) has been enhanced to provide a capability for the execution at the finest horizontal resolutions POS,SIOle with a global climate model today. Using this high-resolution, non-hydrostatic version of GEOS-5, we have developed a unique capability to explore the intersection of weather and climate within a seamless prediction system. Week-long weather experiments, to mUltiyear climate simulations at global resolutions ranging from 3.5- to 14-km have demonstrated the predictability of extreme events including severe storms along frontal systems, extra-tropical storms, and tropical cyclones. The primary benefits of high resolution global models will likely be in the tropics, with better predictions of the genesis stages of tropical cyclones and of the internal structure of their mature stages. Using satellite data we assess the accuracy of GEOS-5 in representing extreme weather phenomena, and their interaction within the global climate on seasonal time-scales. The impacts of convective parameterization and the frequency of coupling between the moist physics and dynamics are explored in terms of precipitation intensity and the representation of deep convection. We will also describe the seasonal variability of global tropical cyclone activity within a global climate model capable of representing the most intense category 5 hurricanes.

  4. Analysis of Numerical Weather Predictions of Reference Evapotranspiration and Precipitation

    NASA Astrophysics Data System (ADS)

    Bughici, Theodor; Lazarovitch, Naftali; Fredj, Erick; Tas, Eran

    2017-04-01

    This study attempts to improve the forecast skill of the evapotranspiration (ET0) and Precipitation for the purpose of crop irrigation management over Israel using the Weather Research and Forecasting (WRF) Model. Optimized crop irrigation, in term of timing and quantities, decreases water and agrochemicals demand. Crop water demands depend on evapotranspiration and precipitation. The common method for computing reference evapotranspiration, for agricultural needs, ET0, is according to the FAO Penman-Monteith equation. The weather variables required for ET0 calculation (air temperature, relative humidity, wind speed and solar irradiance) are estimated by the WRF model. The WRF Model with two-way interacting domains at horizontal resolutions of 27, 9 and 3 km is used in the study. The model prediction was performed in an hourly time resolution and a 3 km spatial resolution, with forecast lead-time of up to four days. The WRF prediction of these variables have been compared against measurements from 29 meteorological stations across Israel for the year 2013. The studied area is small but with strong climatic gradient, diverse topography and variety of synoptic conditions. The forecast skill that was used for forecast validation takes into account the prediction bias, mean absolute error and root mean squared error. The forecast skill of the variables was almost robust to lead time, except for precipitation. The forecast skill was tested across stations with respect to topography and geographic location and for all stations with respect to seasonality and synoptic weather system determined by employing a semi-objective synoptic systems classification to the forecasted days. It was noticeable that forecast skill of some of the variables was deteriorated by seasonality and topography. However, larger impacts in the ET0 skill scores on the forecasted day are achieved by a synoptic based forecast. These results set the basis for increasing the robustness of ET0 to synoptic effects and for more precise crop irrigation over Israel.

  5. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment

    NASA Astrophysics Data System (ADS)

    Vivoni, Enrique R.; Mascaro, Giuseppe; Mniszewski, Susan; Fasel, Patricia; Springer, Everett P.; Ivanov, Valeriy Y.; Bras, Rafael L.

    2011-10-01

    SummaryA major challenge in the use of fully-distributed hydrologic models has been the lack of computational capabilities for high-resolution, long-term simulations in large river basins. In this study, we present the parallel model implementation and real-world hydrologic assessment of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). Our parallelization approach is based on the decomposition of a complex watershed using the channel network as a directed graph. The resulting sub-basin partitioning divides effort among processors and handles hydrologic exchanges across boundaries. Through numerical experiments in a set of nested basins, we quantify parallel performance relative to serial runs for a range of processors, simulation complexities and lengths, and sub-basin partitioning methods, while accounting for inter-run variability on a parallel computing system. In contrast to serial simulations, the parallel model speed-up depends on the variability of hydrologic processes. Load balancing significantly improves parallel speed-up with proportionally faster runs as simulation complexity (domain resolution and channel network extent) increases. The best strategy for large river basins is to combine a balanced partitioning with an extended channel network, with potential savings through a lower TIN resolution. Based on these advances, a wider range of applications for fully-distributed hydrologic models are now possible. This is illustrated through a set of ensemble forecasts that account for precipitation uncertainty derived from a statistical downscaling model.

  6. Biophysical Variables Retrieval Over Russian Winter Wheat Fields Using Medium Resolution

    NASA Astrophysics Data System (ADS)

    d'Andrimont, Raphael; Waldner, Francois; Bartalev, Sergey; Plotnikov, Dmitry; Kleschenko, Alexander; Virchenko, Oleg; de Wit, Allard; Roerink, Gerbert; Defourny, Pierre

    2013-12-01

    Winter wheat production in the Russian Federation represents one of the sources of uncertainty for the international commodity market. In particular, adverse weather conditions may induce winter kill resulting in large yields' losses. Improving the monitoring of winter- wheat in Russia with a focus on winter-kill damage and its impacts on yield is thus a key challenge.This paper presents the methods and the results of the biophysical variables retrieval on a daily basis as an input for crop growth modeling at parcel level over a 10-years period (2003-2012) in the Russian context. The field campaigns carried out on 2 sites in the Tula region from 2010 to 2012 shows that it is possible to characterize the spatial and temporal variability at pixel, field and regional scale using medium resolution sensors (MODIS) over Russian fields.

  7. A multi-resolution analysis of lidar-DTMs to identify geomorphic processes from characteristic topographic length scales

    NASA Astrophysics Data System (ADS)

    Sangireddy, H.; Passalacqua, P.; Stark, C. P.

    2013-12-01

    Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic processes. Also, we explore the variability in hillslope length scales as a function of hillslope diffusivity coefficients and critical shear stress in natural landscapes and show that we can infer signatures of dominant geomorphic processes by analyzing characteristic topographic length scales present in topography. References: Beven, K. and Kirkby, M. J.: A physically based variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43-69, 1979 Howard, A. D. (1994). A detachment-limited model of drainage basin evolution.Water resources research, 30(7), 2261-2285. Passalacqua, P., Do Trung, T., Foufoula Georgiou, E., Sapiro, G., & Dietrich, W. E. (2010). A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. Journal of Geophysical. Research: Earth Surface (2003-2012), 115(F1). Sangireddy, H., Passalacqua, P., Stark, C.P.(2012). Multi-resolution estimation of lidar-DTM surface flow metrics to identify characteristic topographic length scales, EP13C-0859: AGU Fall meeting 2012. Stark, C. P., & Stark, G. J. (2001). A channelization model of landscape evolution. American Journal of Science, 301(4-5), 486-512. Tucker, G. E., Catani, F., Rinaldo, A., & Bras, R. L. (2001). Statistical analysis of drainage density from digital terrain data. Geomorphology, 36(3), 187-202.

  8. Can we improve streamflow simulation by using higher resolution rainfall information?

    NASA Astrophysics Data System (ADS)

    Lobligeois, Florent; Andréassian, Vazken; Perrin, Charles

    2013-04-01

    The catchment response to rainfall is the interplay between space-time variability of precipitation, catchment characteristics and antecedent hydrological conditions. Precipitation dominates the high frequency hydrological response, and its simulation is thus dependent on the way rainfall is represented. One of the characteristics which distinguishes distributed from lumped models is their ability to represent explicitly the spatial variability of precipitation and catchment characteristics. The sensitivity of runoff hydrographs to the spatial variability of forcing data has been a major concern of researchers over the last three decades. However, although the literature on the relationship between spatial rainfall and runoff response is abundant, results are contrasted and sometimes contradictory. Several studies concluded that including information on rainfall spatial distribution improves discharge simulation (e.g. Ajami et al., 2004, among others) whereas other studies showed the lack of significant improvement in simulations with better information on rainfall spatial pattern (e.g. Andréassian et al., 2004, among others). The difficulties to reach a clear consensus is mainly due to the fact that each modeling study is implemented only on a few catchments whereas the impact of the spatial distribution of rainfall on runoff is known to be catchment and event characteristics-dependent. Many studies are virtual experiments and only compare flow simulations, which makes it difficult to reach conclusions transposable to real-life case studies. Moreover, the hydrological rainfall-runoff models differ between the studies and the parameterization strategies sometimes tend to advantage the distributed approach (or the lumped one). Recently, Météo-France developed a rainfall reanalysis over the whole French territory at the 1-kilometer resolution and the hourly time step over a 10-year period combining radar data and raingauge measurements: weather radar data were corrected and adjusted with both hourly and daily raingauge data. Based on this new high resolution product, we propose a framework to evaluate the improvements in streamflow simulation by using higher resolution rainfall information. Semi-distributed modelling is performed for different spatial resolution of precipitation forcing: from lumped to semi-distributed simulations. Here we do not work on synthetic (simulated) streamflow, but with actual measurements, on a large set of 181 French catchments representing a variety of size and climate. The rainfall-runoff model is re-calibrated for each resolution of rainfall spatial distribution over a 5-year sub-period and evaluated on the complementary sub-period in validation mode. The results are analysed by catchment classes based on catchment area and for various types of rainfall events based on the spatial variability of precipitation. References Ajami, N. K., Gupta, H. V, Wagener, T. & Sorooshian, S. (2004) Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1-4), 112-135. Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C. & Loumagne, C. (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research 40(5), 1-9.

  9. Rainfall variability and extremes over southern Africa: Assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. The paper will conclude by discussing the user needs of satellite rainfall retrievals from a climate change modelling prospective.

  10. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Andrew W; Leung, Lai R; Sridhar, V

    Six approaches for downscaling climate model outputs for use in hydrologic simulation were evaluated, with particular emphasis on each method's ability to produce precipitation and other variables used to drive a macroscale hydrology model applied at much higher spatial resolution than the climate model. Comparisons were made on the basis of a twenty-year retrospective (1975–1995) climate simulation produced by the NCAR-DOE Parallel Climate Model (PCM), and the implications of the comparison for a future (2040–2060) PCM climate scenario were also explored. The six approaches were made up of three relatively simple statistical downscaling methods – linear interpolation (LI), spatial disaggregationmore » (SD), and bias-correction and spatial disaggregation (BCSD) – each applied to both PCM output directly (at T42 spatial resolution), and after dynamical downscaling via a Regional Climate Model (RCM – at ½-degree spatial resolution), for downscaling the climate model outputs to the 1/8-degree spatial resolution of the hydrological model. For the retrospective climate simulation, results were compared to an observed gridded climatology of temperature and precipitation, and gridded hydrologic variables resulting from forcing the hydrologic model with observations. The most significant findings are that the BCSD method was successful in reproducing the main features of the observed hydrometeorology from the retrospective climate simulation, when applied to both PCM and RCM outputs. Linear interpolation produced better results using RCM output than PCM output, but both methods (PCM-LI and RCM-LI) lead to unacceptably biased hydrologic simulations. Spatial disaggregation of the PCM output produced results similar to those achieved with the RCM interpolated output; nonetheless, neither PCM nor RCM output was useful for hydrologic simulation purposes without a bias-correction step. For the future climate scenario, only the BCSD-method (using PCM or RCM) was able to produce hydrologically plausible results. With the BCSD method, the RCM-derived hydrology was more sensitive to climate change than the PCM-derived hydrology.« less

  11. Observations and Models of Highly Intermittent Phytoplankton Distributions

    PubMed Central

    Mandal, Sandip; Locke, Christopher; Tanaka, Mamoru; Yamazaki, Hidekatsu

    2014-01-01

    The measurement of phytoplankton distributions in ocean ecosystems provides the basis for elucidating the influences of physical processes on plankton dynamics. Technological advances allow for measurement of phytoplankton data to greater resolution, displaying high spatial variability. In conventional mathematical models, the mean value of the measured variable is approximated to compare with the model output, which may misinterpret the reality of planktonic ecosystems, especially at the microscale level. To consider intermittency of variables, in this work, a new modelling approach to the planktonic ecosystem is applied, called the closure approach. Using this approach for a simple nutrient-phytoplankton model, we have shown how consideration of the fluctuating parts of model variables can affect system dynamics. Also, we have found a critical value of variance of overall fluctuating terms below which the conventional non-closure model and the mean value from the closure model exhibit the same result. This analysis gives an idea about the importance of the fluctuating parts of model variables and about when to use the closure approach. Comparisons of plot of mean versus standard deviation of phytoplankton at different depths, obtained using this new approach with real observations, give this approach good conformity. PMID:24787740

  12. Process-level improvements in CMIP5 models and their impact on tropical variability, the Southern Ocean, and monsoons

    NASA Astrophysics Data System (ADS)

    Lauer, Axel; Jones, Colin; Eyring, Veronika; Evaldsson, Martin; Hagemann, Stefan; Mäkelä, Jarmo; Martin, Gill; Roehrig, Romain; Wang, Shiyu

    2018-01-01

    The performance of updated versions of the four earth system models (ESMs) CNRM, EC-Earth, HadGEM, and MPI-ESM is assessed in comparison to their predecessor versions used in Phase 5 of the Coupled Model Intercomparison Project. The Earth System Model Evaluation Tool (ESMValTool) is applied to evaluate selected climate phenomena in the models against observations. This is the first systematic application of the ESMValTool to assess and document the progress made during an extensive model development and improvement project. This study focuses on the South Asian monsoon (SAM) and the West African monsoon (WAM), the coupled equatorial climate, and Southern Ocean clouds and radiation, which are known to exhibit systematic biases in present-day ESMs. The analysis shows that the tropical precipitation in three out of four models is clearly improved. Two of three updated coupled models show an improved representation of tropical sea surface temperatures with one coupled model not exhibiting a double Intertropical Convergence Zone (ITCZ). Simulated cloud amounts and cloud-radiation interactions are improved over the Southern Ocean. Improvements are also seen in the simulation of the SAM and WAM, although systematic biases remain in regional details and the timing of monsoon rainfall. Analysis of simulations with EC-Earth at different horizontal resolutions from T159 up to T1279 shows that the synoptic-scale variability in precipitation over the SAM and WAM regions improves with higher model resolution. The results suggest that the reasonably good agreement of modeled and observed mean WAM and SAM rainfall in lower-resolution models may be a result of unrealistic intensity distributions.

  13. Regional Climate Simulation with a Variable Resolution Stretched Grid GCM: The Regional Down-Scaling Effects

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Suarez, Max; Sawyer, William; Govindaraju, Ravi C.

    1999-01-01

    The results obtained with the variable resolution stretched grid (SG) GEOS GCM (Goddard Earth Observing System General Circulation Models) are discussed, with the emphasis on the regional down-scaling effects and their dependence on the stretched grid design and parameters. A variable resolution SG-GCM and SG-DAS using a global stretched grid with fine resolution over an area of interest, is a viable new approach to REGIONAL and subregional CLIMATE studies and applications. The stretched grid approach is an ideal tool for representing regional to global scale interactions. It is an alternative to the widely used nested grid approach introduced a decade ago as a pioneering step in regional climate modeling. The GEOS SG-GCM is used for simulations of the anomalous U.S. climate events of 1988 drought and 1993 flood, with enhanced regional resolution. The height low level jet, precipitation and other diagnostic patterns are successfully simulated and show the efficient down-scaling over the area of interest the U.S. An imitation of the nested grid approach is performed using the developed SG-DAS (Data Assimilation System) that incorporates the SG-GCM. The SG-DAS is run with withholding data over the area of interest. The design immitates the nested grid framework with boundary conditions provided from analyses. No boundary condition buffer is needed for the case due to the global domain of integration used for the SG-GCM and SG-DAS. The experiments based on the newly developed versions of the GEOS SG-GCM and SG-DAS, with finer 0.5 degree (and higher) regional resolution, are briefly discussed. The major aspects of parallelization of the SG-GCM code are outlined. The KEY OBJECTIVES of the study are: 1) obtaining an efficient DOWN-SCALING over the area of interest with fine and very fine resolution; 2) providing CONSISTENT interactions between regional and global scales including the consistent representation of regional ENERGY and WATER BALANCES; 3) providing a high computational efficiency for future SG-GCM and SG-DAS versions using PARALLEL codes.

  14. High Resolution Forecasts in the Florida Straits: Predicting the Modulations of the Florida Current and Connectivity Around South Florida and Cuba

    NASA Astrophysics Data System (ADS)

    Kourafalou, V.; Kang, H.; Perlin, N.; Le Henaff, M.; Lamkin, J. T.

    2016-02-01

    Connectivity around the South Florida coastal regions and between South Florida and Cuba are largely influenced by a) local coastal processes and b) circulation in the Florida Straits, which is controlled by the larger scale Florida Current variability. Prediction of the physical connectivity is a necessary component for several activities that require ocean forecasts, such as oil spills, fisheries research, search and rescue. This requires a predictive system that can accommodate the intense coastal to offshore interactions and the linkages to the complex regional circulation. The Florida Straits, South Florida and Florida Keys Hybrid Coordinate Ocean Model is such a regional ocean predictive system, covering a large area over the Florida Straits and the adjacent land areas, representing both coastal and oceanic processes. The real-time ocean forecast system is high resolution ( 900m), embedded in larger scale predictive models. It includes detailed coastal bathymetry, high resolution/high frequency atmospheric forcing and provides 7-day forecasts, updated daily (see: http://coastalmodeling.rsmas.miami.edu/). The unprecedented high resolution and coastal details of this system provide value added on global forecasts through downscaling and allow a variety of applications. Examples will be presented, focusing on the period of a 2015 fisheries cruise around the coastal areas of Cuba, where model predictions helped guide the measurements on biophysical connectivity, under intense variability of the mesoscale eddy field and subsequent Florida Current meandering.

  15. Accounting for downscaling and model uncertainty in fine-resolution seasonal climate projections over the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, Ali; Moradkhani, Hamid; Rana, Arun

    2018-01-01

    Climate change is expected to have severe impacts on natural systems as well as various socio-economic aspects of human life. This has urged scientific communities to improve the understanding of future climate and reduce the uncertainties associated with projections. In the present study, ten statistically downscaled CMIP5 GCMs at 1/16th deg. spatial resolution from two different downscaling procedures are utilized over the Columbia River Basin (CRB) to assess the changes in climate variables and characterize the associated uncertainties. Three climate variables, i.e. precipitation, maximum temperature, and minimum temperature, are studied for the historical period of 1970-2000 as well as future period of 2010-2099, simulated with representative concentration pathways of RCP4.5 and RCP8.5. Bayesian Model Averaging (BMA) is employed to reduce the model uncertainty and develop a probabilistic projection for each variable in each scenario. Historical comparison of long-term attributes of GCMs and observation suggests a more accurate representation for BMA than individual models. Furthermore, BMA projections are used to investigate future seasonal to annual changes of climate variables. Projections indicate significant increase in annual precipitation and temperature, with varied degree of change across different sub-basins of CRB. We then characterized uncertainty of future projections for each season over CRB. Results reveal that model uncertainty is the main source of uncertainty, among others. However, downscaling uncertainty considerably contributes to the total uncertainty of future projections, especially in summer. On the contrary, downscaling uncertainty appears to be higher than scenario uncertainty for precipitation.

  16. Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates

    NASA Astrophysics Data System (ADS)

    Marra, Francesco; Morin, Efrat

    2018-02-01

    Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.

  17. Assessing Greater Sage-Grouse Selection of Brood-Rearing Habitat Using Remotely-Sensed Imagery: Can Readily Available High-Resolution Imagery Be Used to Identify Brood-Rearing Habitat Across a Broad Landscape?

    PubMed

    Westover, Matthew; Baxter, Jared; Baxter, Rick; Day, Casey; Jensen, Ryan; Petersen, Steve; Larsen, Randy

    2016-01-01

    Greater sage-grouse populations have decreased steadily since European settlement in western North America. Reduced availability of brood-rearing habitat has been identified as a limiting factor for many populations. We used radio-telemetry to acquire locations of sage-grouse broods from 1998 to 2012 in Strawberry Valley, Utah. Using these locations and remotely-sensed NAIP (National Agricultural Imagery Program) imagery, we 1) determined which characteristics of brood-rearing habitat could be used in widely available, high resolution imagery 2) assessed the spatial extent at which sage-grouse selected brood-rearing habitat, and 3) created a predictive habitat model to identify areas of preferred brood-rearing habitat. We used AIC model selection to evaluate support for a list of variables derived from remotely-sensed imagery. We examined the relationship of these explanatory variables at three spatial extents (45, 200, and 795 meter radii). Our top model included 10 variables (percent shrub, percent grass, percent tree, percent paved road, percent riparian, meters of sage/tree edge, meters of riparian/tree edge, distance to tree, distance to transmission lines, and distance to permanent structures). Variables from each spatial extent were represented in our top model with the majority being associated with the larger (795 meter) spatial extent. When applied to our study area, our top model predicted 75% of naïve brood locations suggesting reasonable success using this method and widely available NAIP imagery. We encourage application of our methodology to other sage-grouse populations and species of conservation concern.

  18. Discovering variable fractional orders of advection-dispersion equations from field data using multi-fidelity Bayesian optimization

    NASA Astrophysics Data System (ADS)

    Pang, Guofei; Perdikaris, Paris; Cai, Wei; Karniadakis, George Em

    2017-11-01

    The fractional advection-dispersion equation (FADE) can describe accurately the solute transport in groundwater but its fractional order has to be determined a priori. Here, we employ multi-fidelity Bayesian optimization to obtain the fractional order under various conditions, and we obtain more accurate results compared to previously published data. Moreover, the present method is very efficient as we use different levels of resolution to construct a stochastic surrogate model and quantify its uncertainty. We consider two different problem set ups. In the first set up, we obtain variable fractional orders of one-dimensional FADE, considering both synthetic and field data. In the second set up, we identify constant fractional orders of two-dimensional FADE using synthetic data. We employ multi-resolution simulations using two-level and three-level Gaussian process regression models to construct the surrogates.

  19. Air Quality Forecasts Using the NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua; hide

    2018-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  20. Very high resolution surface mass balance over Greenland modeled by the regional climate model MAR with a downscaling technique

    NASA Astrophysics Data System (ADS)

    Kittel, Christoph; Lang, Charlotte; Agosta, Cécile; Prignon, Maxime; Fettweis, Xavier; Erpicum, Michel

    2016-04-01

    This study presents surface mass balance (SMB) results at 5 km resolution with the regional climate MAR model over the Greenland ice sheet. Here, we use the last MAR version (v3.6) where the land-ice module (SISVAT) using a high resolution grid (5km) for surface variables is fully coupled while the MAR atmospheric module running at a lower resolution of 10km. This online downscaling technique enables to correct near-surface temperature and humidity from MAR by a gradient based on elevation before forcing SISVAT. The 10 km precipitation is not corrected. Corrections are stronger over the ablation zone where topography presents more variations. The model has been force by ERA-Interim between 1979 and 2014. We will show the advantages of using an online SMB downscaling technique in respect to an offline downscaling extrapolation based on local SMB vertical gradients. Results at 5 km show a better agreement with the PROMICE surface mass balance data base than the extrapolated 10 km MAR SMB results.

  1. Modeling the spatio-temporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape: Modeling Archive

    DOE Data Explorer

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; Mills, Richard T.; Thornton, Peter E.; Iversen, Colleen M.; Romanovsky, Vladimir

    2016-01-27

    This Modeling Archive is in support of an NGEE Arctic discussion paper under review and available at http://www.the-cryosphere-discuss.net/tc-2016-29/. Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to atmosphere under warming climate. Ice--wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. The microtopography plays a critical role in regulating the fine scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behaviour under current as well as changing climate. We present here an end-to-end effort for high resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites at Barrow, Alaska spanning across low to transitional to high-centered polygon and representative of broad polygonal tundra landscape. A multi--phase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using high resolution LiDAR DEM, microtopographic features of the landscape were characterized and represented in the high resolution model mesh. Best available soil data from field observations and literature was utilized to represent the complex hetogeneous subsurface in the numerical model. This data collection provides the complete set of input files, forcing data sets and computational meshes for simulations using PFLOTRAN for four sites at Barrow Environmental Observatory. It also document the complete computational workflow for this modeling study to allow verification, reproducibility and follow up studies.

  2. Modeling Spatial and Temporal Variability in Ammonia Emissions from Agricultural Fertilization

    NASA Astrophysics Data System (ADS)

    Balasubramanian, S.; Koloutsou-Vakakis, S.; Rood, M. J.

    2013-12-01

    Ammonia (NH3), is an important component of the reactive nitrogen cycle and a precursor to formation of atmospheric particulate matter (PM). Predicting regional PM concentrations and deposition of nitrogen species to ecosystems requires representative emission inventories. Emission inventories have traditionally been developed using top down approaches and more recently from data assimilation based on satellite and ground based ambient concentrations and wet deposition data. The National Emission Inventory (NEI) indicates agricultural fertilization as the predominant contributor (56%) to NH3 emissions in Midwest USA, in 2002. However, due to limited understanding of the complex interactions between fertilizer usage, farm practices, soil and meteorological conditions and absence of detailed statistical data, such emission estimates are currently based on generic emission factors, time-averaged temporal factors and coarse spatial resolution. Given the significance of this source, our study focuses on developing an improved NH3 emission inventory for agricultural fertilization at finer spatial and temporal scales for air quality modeling studies. Firstly, a high-spatial resolution 4 km x 4 km NH3 emission inventory for agricultural fertilization has been developed for Illinois by modifying spatial allocation of emissions based on combining crop-specific fertilization rates with cropland distribution in the Sparse Matrix Operator Kernel Emissions model. Net emission estimates of our method are within 2% of NEI, since both methods are constrained by fertilizer sales data. However, we identified localized crop-specific NH3 emission hotspots at sub-county resolutions absent in NEI. Secondly, we have adopted the use of the DeNitrification-DeComposition (DNDC) Biogeochemistry model to simulate the physical and chemical processes that control volatilization of nitrogen as NH3 to the atmosphere after fertilizer application and resolve the variability at the hourly scale. Representative temporal factors are being developed to capture crop-specific NH3 emission variability by combining knowledge of local crop management practices with high resolution cropland and soil maps. This improved spatially and temporally dependent NH3 emission inventory for agricultural fertilization is being prepared as a direct input to a state of the art air quality model to evaluate the effects of agricultural fertilization on regional air quality and atmospheric deposition of reactive nitrogen species.

  3. Does surface roughness dominate biophysical forcing of land use and land cover change in the eastern United States?

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Tawfik, A. B.; Ouimette, A.; Lepine, L. C.; Ollinger, S. V.; Bonan, G. B.; Zarzycki, C. M.; Novick, K. A.

    2016-12-01

    Changes in land use, land cover, or both promote changes in surface temperature that can amplify or dampen long-term trends driven by natural and anthropogenic climate change by modifying the surface energy budget, primarily through differences in albedo, evapotranspiration, and aerodynamic roughness. Recent advances in variable resolution global models provide the tools necessary to investigate local and global impacts of land use and land cover change by embedding a high-resolution grid over areas of interest in a seamless and computationally efficient manner. Here, we used two eddy covariance tower clusters in the Eastern US (University of New Hampshire UNH and Duke Forest) to validate simulation of surface energy fluxes and properties by the uncoupled Community Land Model (PTCLM4.5) and coupled land-atmosphere Variable-Resolution Community Earth System Model (VR-CESM1.3). Surface energy fluxes and properties are generally well captured by the models for grassland sites, however forested sites tend to underestimate latent heat and overestimate sensible heat flux. Surface roughness emerged as the dominant biophysical forcing factor affecting surface temperature in the eastern United States, generally leading to warmer nighttime temperatures and cooler daytime temperatures. However, the sign and magnitude of the roughness effect on surface temperature was highly sensitive to the calculation of aerodynamic resistance to heat transfer.

  4. Spatial Heterodyne Observations of Water (SHOW) vapour in the upper troposphere and lower stratosphere from a high altitude aircraft: Modelling and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Langille, J. A.; Letros, D.; Zawada, D.; Bourassa, A.; Degenstein, D.; Solheim, B.

    2018-04-01

    A spatial heterodyne spectrometer (SHS) has been developed to measure the vertical distribution of water vapour in the upper troposphere and the lower stratosphere with a high vertical resolution (∼500 m). The Spatial Heterodyne Observations of Water (SHOW) instrument combines an imaging system with a monolithic field-widened SHS to observe limb scattered sunlight in a vibrational band of water (1363 nm-1366 nm). The instrument has been optimized for observations from NASA's ER-2 aircraft as a proof-of-concept for a future low earth orbit satellite deployment. A robust model has been developed to simulate SHOW ER-2 limb measurements and retrievals. This paper presents the simulation of the SHOW ER-2 limb measurements along a hypothetical flight track and examines the sensitivity of the measurement and retrieval approach. Water vapour fields from an Environment and Climate Change Canada forecast model are used to represent realistic spatial variability along the flight path. High spectral resolution limb scattered radiances are simulated using the SASKTRAN radiative transfer model. It is shown that the SHOW instrument onboard the ER-2 is capable of resolving the water vapour variability in the UTLS from approximately 12 km - 18 km with ±1 ppm accuracy. Vertical resolutions between 500 m and 1 km are feasible. The along track sampling capability of the instrument is also discussed.

  5. Towards a high resolution, integrated hydrology model of North America.

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.

    2015-12-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  6. Analyzing Variability in Landscape Nutrient Loading Using Spatially-Explicit Maps in the Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.

    2017-12-01

    Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.

  7. Critical scales to explain urban hydrological response: an application in Cranbrook, London

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-Claire; Gaitan, Santiago; Ochoa Rodriguez, Susana; van de Giesen, Nick

    2018-04-01

    Rainfall variability in space and time, in relation to catchment characteristics and model complexity, plays an important role in explaining the sensitivity of hydrological response in urban areas. In this work we present a new approach to classify rainfall variability in space and time and we use this classification to investigate rainfall aggregation effects on urban hydrological response. Nine rainfall events, measured with a dual polarimetric X-Band radar instrument at the CAESAR site (Cabauw Experimental Site for Atmospheric Research, NL), were aggregated in time and space in order to obtain different resolution combinations. The aim of this work was to investigate the influence that rainfall and catchment scales have on hydrological response in urban areas. Three dimensionless scaling factors were introduced to investigate the interactions between rainfall and catchment scale and rainfall input resolution in relation to the performance of the model. Results showed that (1) rainfall classification based on cluster identification well represents the storm core, (2) aggregation effects are stronger for rainfall than flow, (3) model complexity does not have a strong influence compared to catchment and rainfall scales for this case study, and (4) scaling factors allow the adequate rainfall resolution to be selected to obtain a given level of accuracy in the calculation of hydrological response.

  8. Inferential consequences of modeling rather than measuring snow accumulation in studies of animal ecology

    USGS Publications Warehouse

    Cross, Paul C.; Klaver, Robert W.; Brennan, Angela; Creel, Scott; Beckmann, Jon P.; Higgs, Megan D.; Scurlock, Brandon M.

    2013-01-01

    Abstract. It is increasingly common for studies of animal ecology to use model-based predictions of environmental variables as explanatory or predictor variables, even though model prediction uncertainty is typically unknown. To demonstrate the potential for misleading inferences when model predictions with error are used in place of direct measurements, we compared snow water equivalent (SWE) and snow depth as predicted by the Snow Data Assimilation System (SNODAS) to field measurements of SWE and snow depth. We examined locations on elk (Cervus canadensis) winter ranges in western Wyoming, because modeled data such as SNODAS output are often used for inferences on elk ecology. Overall, SNODAS predictions tended to overestimate field measurements, prediction uncertainty was high, and the difference between SNODAS predictions and field measurements was greater in snow shadows for both snow variables compared to non-snow shadow areas. We used a simple simulation of snow effects on the probability of an elk being killed by a predator to show that, if SNODAS prediction uncertainty was ignored, we might have mistakenly concluded that SWE was not an important factor in where elk were killed in predatory attacks during the winter. In this simulation, we were interested in the effects of snow at finer scales (2) than the resolution of SNODAS. If bias were to decrease when SNODAS predictions are averaged over coarser scales, SNODAS would be applicable to population-level ecology studies. In our study, however, averaging predictions over moderate to broad spatial scales (9–2200 km2) did not reduce the differences between SNODAS predictions and field measurements. This study highlights the need to carefully evaluate two issues when using model output as an explanatory variable in subsequent analysis: (1) the model’s resolution relative to the scale of the ecological question of interest and (2) the implications of prediction uncertainty on inferences when using model predictions as explanatory or predictor variables.

  9. Moderate effect of damming the Romaine River (Quebec, Canada) on coastal plankton dynamics

    NASA Astrophysics Data System (ADS)

    Senneville, Simon; Schloss, Irene R.; St-Onge Drouin, Simon; Bélanger, Simon; Winkler, Gesche; Dumont, Dany; Johnston, Patricia; St-Onge, Isabelle

    2018-04-01

    Rivers' damming disrupts the seasonal cycle of freshwater and nutrient inputs into the marine system, which can lead to changes in coastal plankton dynamics. Here we use a 3-D 5-km resolution coupled biophysical model and downscale it to a 400-m resolution to simulate the effect of damming the Romaine River in Québec, Canada, which discharges on average 327 m3 s-1 of freshwater into the northern Gulf of St. Lawrence. Model results are compared with environmental data obtained from 2 buoys and in situ sampling near the Romaine River mouth during the 2013 spring-summer period. Noteworthy improvements are made to the light attenuation parametrization and the trophic links of the biogeochemical model. The modelled variables reproduced most of the observed levels of variability. Comparisons between natural and regulated discharge simulation show differences in primary production and in the dominance of plankton groups in the Romaine River plume. The maximum increase in primary production when averaged over the inner part of Mingan Archipelago is 41%, but 7.1% when the primary production anomaly is averaged from March to September.

  10. The Effect of Rainfall Measurement Technique and Its Spatiotemporal Resolution on Discharge Predictions in the Netherlands

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Brauer, C.; Overeem, A.; Sassi, M.; Rios Gaona, M. F.

    2014-12-01

    Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of these spatiotemporal resolutions on discharge simulations in lowland catchments by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in a freely draining lowland catchment and a polder with controlled water levels. We used rain gauge networks with automatic (hourly resolution but low spatial density) and manual gauges (high spatial density but daily resolution). Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. We also investigated the effect of spatiotemporal resolution with a high-resolution X-band radar data set for catchments with different sizes. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. When catchments are divided into sub-catchments, rainfall spatial variability can become more important, especially during convective rainfall events, leading to spatially varying catchment wetness and spatially varying contribution of quick flow routes. Improving rainfall measurements and their spatiotemporal resolution can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.

  11. First-Order Frameworks for Managing Models in Engineering Optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natlia M.; Lewis, Robert Michael

    2000-01-01

    Approximation/model management optimization (AMMO) is a rigorous methodology for attaining solutions of high-fidelity optimization problems with minimal expense in high- fidelity function and derivative evaluation. First-order AMMO frameworks allow for a wide variety of models and underlying optimization algorithms. Recent demonstrations with aerodynamic optimization achieved three-fold savings in terms of high- fidelity function and derivative evaluation in the case of variable-resolution models and five-fold savings in the case of variable-fidelity physics models. The savings are problem dependent but certain trends are beginning to emerge. We give an overview of the first-order frameworks, current computational results, and an idea of the scope of the first-order framework applicability.

  12. A Variable-Resolution Stretched-Grid General Circulation Model and Data Assimilation System with Multiple Areas of Interest: Studying the Anomalous Regional Climate Events of 1998

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence; Govindaraju, Ravi C.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The new stretched-grid design with multiple (four) areas of interest, one at each global quadrant, is implemented into both a stretched-grid GCM (general circulation model) and a stretched-grid data assimilation system (DAS). The four areas of interest include: the U.S./Northern Mexico, the El Nino area/Central South America, India/China, and the Eastern Indian Ocean/Australia. Both the stretched-grid GCM and DAS annual (November 1997 through December 1998) integrations are performed with 50 km regional resolution. The efficient regional down-scaling to mesoscales is obtained for each of the four areas of interest while the consistent interactions between regional and global scales and the high quality of global circulation, are preserved. This is the advantage of the stretched-grid approach. The global variable resolution DAS incorporating the stretched-grid GCM has been developed and tested as an efficient tool for producing regional analyses and diagnostics with enhanced mesoscale resolution. The anomalous regional climate events of 1998 that occurred over the U.S., Mexico, South America, China, India, African Sahel, and Australia are investigated in both simulation and data assimilation modes. Tree assimilated products are also used, along with gauge precipitation data, for validating the simulation results. The obtained results show that the stretched-grid GCM and DAS are capable of producing realistic high quality simulated and assimilated products at mesoscale resolution for regional climate studies and applications.

  13. Prediction of Indian Summer-Monsoon Onset Variability: A Season in Advance.

    PubMed

    Pradhan, Maheswar; Rao, A Suryachandra; Srivastava, Ankur; Dakate, Ashish; Salunke, Kiran; Shameera, K S

    2017-10-27

    Monsoon onset is an inherent transient phenomenon of Indian Summer Monsoon and it was never envisaged that this transience can be predicted at long lead times. Though onset is precipitous, its variability exhibits strong teleconnections with large scale forcing such as ENSO and IOD and hence may be predictable. Despite of the tremendous skill achieved by the state-of-the-art models in predicting such large scale processes, the prediction of monsoon onset variability by the models is still limited to just 2-3 weeks in advance. Using an objective definition of onset in a global coupled ocean-atmosphere model, it is shown that the skillful prediction of onset variability is feasible under seasonal prediction framework. The better representations/simulations of not only the large scale processes but also the synoptic and intraseasonal features during the evolution of monsoon onset are the comprehensions behind skillful simulation of monsoon onset variability. The changes observed in convection, tropospheric circulation and moisture availability prior to and after the onset are evidenced in model simulations, which resulted in high hit rate of early/delay in monsoon onset in the high resolution model.

  14. Quantifying the importance of spatial resolution and other factors through global sensitivity analysis of a flood inundation model

    NASA Astrophysics Data System (ADS)

    Thomas Steven Savage, James; Pianosi, Francesca; Bates, Paul; Freer, Jim; Wagener, Thorsten

    2016-11-01

    Where high-resolution topographic data are available, modelers are faced with the decision of whether it is better to spend computational resource on resolving topography at finer resolutions or on running more simulations to account for various uncertain input factors (e.g., model parameters). In this paper we apply global sensitivity analysis to explore how influential the choice of spatial resolution is when compared to uncertainties in the Manning's friction coefficient parameters, the inflow hydrograph, and those stemming from the coarsening of topographic data used to produce Digital Elevation Models (DEMs). We apply the hydraulic model LISFLOOD-FP to produce several temporally and spatially variable model outputs that represent different aspects of flood inundation processes, including flood extent, water depth, and time of inundation. We find that the most influential input factor for flood extent predictions changes during the flood event, starting with the inflow hydrograph during the rising limb before switching to the channel friction parameter during peak flood inundation, and finally to the floodplain friction parameter during the drying phase of the flood event. Spatial resolution and uncertainty introduced by resampling topographic data to coarser resolutions are much more important for water depth predictions, which are also sensitive to different input factors spatially and temporally. Our findings indicate that the sensitivity of LISFLOOD-FP predictions is more complex than previously thought. Consequently, the input factors that modelers should prioritize will differ depending on the model output assessed, and the location and time of when and where this output is most relevant.

  15. High Resolution Aerosol Data from MODIS Satellite for Urban Air Quality Studies

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Tang, C.; Schwartz, J.; Koutrakis, P.

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not suitable for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(sub 2.5) as measured by the 27 EPA ground monitoring stations was investigated. These results were also compared to conventional MODIS 10 km AOD retrievals (MOD04) for the same days and locations. The coefficients of determination for MOD04 and for MAIAC are R(exp 2) =0.45 and 0.50 respectively, suggested that AOD is a reasonably good proxy for PM(sub 2.5) ground concentrations. Finally, we studied the relationship between PM(sub 2.5) and AOD at the intra-urban scale (10 km) in Boston. The fine resolution results indicated spatial variability in particle concentration at a sub-10 kilometer scale. A local analysis for the Boston area showed that the AOD-PM(sub 2.5) relationship does not depend on relative humidity and air temperatures below approximately 7 C. The correlation improves for temperatures above 7 - 16 C. We found no dependence on the boundary layer height except when the former was in the range 250-500 m. Finally, we apply a mixed effects model approach to MAIAC aerosol optical depth (AOD) retrievals from MODIS to predict PM(sub 2.5) concentrations within the greater Boston area. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations (out-of-sample R(exp 2) of 0.86). Therefore, adjustment for the daily variability in the AOD-PM(sub 2.5) relationship provides a means for obtaining spatially-resolved PM(sub 2.5) concentrations.

  16. On the Lack of Stratospheric Dynamical Variability in Low-top Versions of the CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Charlton-Perez, Andrew J.; Baldwin, Mark P.; Birner, Thomas; Black, Robert X.; Butler, Amy H.; Calvo, Natalia; Davis, Nicholas A.; Gerber, Edwin P.; Gillett, Nathan; Hardiman, Steven; hide

    2013-01-01

    We describe the main differences in simulations of stratospheric climate and variability by models within the fifth Coupled Model Intercomparison Project (CMIP5) that have a model top above the stratopause and relatively fine stratospheric vertical resolution (high-top), and those that have a model top below the stratopause (low-top). Although the simulation of mean stratospheric climate by the two model ensembles is similar, the low-top model ensemble has very weak stratospheric variability on daily and interannual time scales. The frequency of major sudden stratospheric warming events is strongly underestimated by the low-top models with less than half the frequency of events observed in the reanalysis data and high-top models. The lack of stratospheric variability in the low-top models affects their stratosphere-troposphere coupling, resulting in short-lived anomalies in the Northern Annular Mode, which do not produce long-lasting tropospheric impacts, as seen in observations. The lack of stratospheric variability, however, does not appear to have any impact on the ability of the low-top models to reproduce past stratospheric temperature trends. We find little improvement in the simulation of decadal variability for the high-top models compared to the low-top, which is likely related to the fact that neither ensemble produces a realistic dynamical response to volcanic eruptions.

  17. Detection and Attribution of Regional Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bala, G; Mirin, A

    2007-01-19

    We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and oceanmore » circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.« less

  18. Trends in soil moisture and real evapotranspiration in Douro River for the period 1980-2010

    NASA Astrophysics Data System (ADS)

    García-Valdecasas-Ojeda, Matilde; de Franciscis, Sebastiano; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    This study analyzes the evolution of different hydrological variables, such as soil moisture and real evapotranspiration, for the last 30 years, in the Douro Basin, the most extensive basin in the Iberian Peninsula. The different components of the real evaporation, connected to the soil moisture content, can be important when analyzing the intensity of droughts and heat waves, and particularly relevant for the study of the climate change impacts. The real evapotranspiration and soil moisture data are provided by simulations obtained using the Variable Infiltration Capacity (VIC) hydrological model. This model is a large-scale hydrologic model and allows estimates of different variables in the hydrological system of a basin. Land surface is modeled as a grid of large and uniform cells with sub-grid heterogeneity (e.g. land cover), while water influx is local, only depending from the interaction between grid cells and local atmosphere environment. Observational data of temperature and precipitation from Spain02 dataset are used as input variables for VIC model. The simulations have a spatial resolution of about 9 km, and the analysis is carried out on a seasonal time-scale. Additionally, we compare these results with those obtained from a dynamical downscaling driven by ERA-Interim data using the Weather Research and Forecasting (WRF) model, with the same spatial resolution. The results obtained from Spain02 data show a decrease in soil moisture at different parts of the basin during spring and summer, meanwhile soil moisture seems to be increased for autumn. No significant changes are found for real evapotranspiration. Keywords: real evapotranspiration, soil moisture, Douro Basin, trends, VIC, WRF. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  19. High-resolution station-based diurnal ionospheric total electron content (TEC) from dual-frequency GPS observations

    NASA Astrophysics Data System (ADS)

    ćepni, Murat S.; Potts, Laramie V.; Miima, John B.

    2013-09-01

    electron content (TEC) estimates derived from Global Navigation Satellite System (GNSS) signal delays provide a rich source of information about the Earth's ionosphere. Networks of Global Positioning System (GPS) receivers data can be used to represent the ionosphere by a Global Ionospheric Map (GIM). Data input for GIMs is dual-frequency GNSS-only or a mixture of GNSS and altimetry observations. Parameterization of GNSS-only GIMs approaches the ionosphere as a single-layer model (SLM) to determine GPS TEC models over a region. Limitations in GNSS-only GIM TEC are due largely to the nonhomogenous global distribution of GPS tracking stations with large data gaps over the oceans. The utility of slant GPS ionospheric-induced path delays for high temporal resolution from a single-station data rate offers better representation of TEC over a small region. A station-based vertical TEC (TECV) approach modifies the traditional single-layer model (SLM) GPS TEC method by introducing a zenith angle weighting (ZAW) filter to capture signal delays from mostly near-zenith satellite passes. Comparison with GIMs shows the station-dependent TEC (SD-TEC) model exhibits robust performance under variable space weather conditions. The SD-TEC model was applied to investigate ionospheric TEC variability during the geomagnetic storm event of 9 March 2012 at midlatitude station NJJJ located in New Jersey, USA. The high temporal resolution TEC results suggest TEC production and loss rate differences before, during, and after the storm.

  20. [Air pollution in an urban area nearby the Rome-Ciampino city airport].

    PubMed

    Di Menno di Bucchianico, Alessandro; Cattani, Giorgio; Gaeta, Alessandra; Caricchia, Anna Maria; Troiano, Francesco; Sozzi, Roberto; Bolignano, Andrea; Sacco, Fabrizio; Damizia, Sesto; Barberini, Silvia; Caleprico, Roberta; Fabozzi, Tina; Ancona, Carla; Ancona, Laura; Cesaroni, Giulia; Forastiere, Francesco; Gobbi, Gian Paolo; Costabile, Francesca; Angelini, Federico; Barnaba, Francesca; Inglessis, Marco; Tancredi, Francesco; Palumbo, Lorenzo; Fontana, Luca; Bergamaschi, Antonio; Iavicoli, Ivo

    2014-01-01

    to assess air pollution spatial and temporal variability in the urban area nearby the Ciampino International Airport (Rome) and to investigate the airport-related emissions contribute. the study domain was a 64 km2 area around the airport. Two fifteen-day monitoring campaigns (late spring, winter) were carried out. Results were evaluated using several runs outputs of an airport-related sources Lagrangian particle model and a photochemical model (the Flexible Air quality Regional Model, FARM). both standard and high time resolution air pollutant concentrations measurements: CO, NO, NO2, C6H6, mass and number concentration of several PM fractions. 46 fixed points (spread over the study area) of NO2 and volatile organic compounds concentrations (fifteen days averages); deterministic models outputs. standard time resolution measurements, as well as model outputs, showed the airport contribution to air pollution levels being little compared to the main source in the area (i.e. vehicular traffic). However, using high time resolution measurements, peaks of particles associated with aircraft takeoff (total number concentration and soot mass concentration), and landing (coarse mass concentration) were observed, when the site measurement was downwind to the runway. the frequently observed transient spikes associated with aircraft movements could lead to a not negligible contribute to ultrafine, soot and coarse particles exposure of people living around the airport. Such contribute and its spatial and temporal variability should be investigated when assessing the airports air quality impact.

  1. A Physically Based Runoff Routing Model for Land Surface and Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Wigmosta, Mark S.; Wu, Huan

    2013-06-13

    A new physically based runoff routing model, called the Model for Scale Adaptive River Transport (MOSART), has been developed to be applicable across local, regional, and global scales. Within each spatial unit, surface runoff is first routed across hillslopes and then discharged along with subsurface runoff into a ‘‘tributary subnetwork’’ before entering the main channel. The spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way across different spatial resolutions. All model parameters are physically based, and only a small subset requires calibration.MOSART has been applied to the Columbia River basinmore » at 1/ 168, 1/ 88, 1/ 48, and 1/ 28 spatial resolutions and was evaluated using naturalized or observed streamflow at a number of gauge stations. MOSART is compared to two other routing models widely used with land surface models, the River Transport Model (RTM) in the Community Land Model (CLM) and the Lohmann routing model, included as a postprocessor in the Variable Infiltration Capacity (VIC) model package, yielding consistent performance at multiple resolutions. MOSART is further evaluated using the channel velocities derived from field measurements or a hydraulic model at various locations and is shown to be capable of producing the seasonal variation and magnitude of channel velocities reasonably well at different resolutions. Moreover, the impacts of spatial resolution on model simulations are systematically examined at local and regional scales. Finally, the limitations ofMOSART and future directions for improvements are discussed.« less

  2. Integration of airborne LiDAR data and voxel-based ray tracing to determine high-resolution solar radiation dynamics at the forest floor: implications for improving stand-scale distributed snowmelt models

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.

    2012-12-01

    Forest architecture dictates sub-canopy solar irradiance and the resulting patterns can vary seasonally and over short spatial distances. These radiation dynamics are thought to have significant implications on snowmelt processes, regional hydrology, and remote sensing signatures. The variability calls into question many assumptions inherent in traditional canopy models (e.g. Beer's Law) when applied at high resolution (i.e. 1 m). We present a method of estimating solar canopy transmissivity using airborne LiDAR data. The canopy structure is represented in 3-D voxel space (i.e. a cubic discretization of a 3-D domain analogous to a pixel representation of a 2-D space). The solar direct beam canopy transmissivity (DBT) is estimated with a ray-tracing algorithm and the diffuse component is estimated from LiDAR-derived effective LAI. Results from one year at five-minute temporal and 1 m spatial resolutions are presented from Sequoia National Park. Compared to estimates from 28 hemispherical photos, the ray-tracing model estimated daily mean DBT with a 10% average error, while the errors from a Beer's-type DBT estimate exceeded 20%. Compared to the ray-tracing estimates, the Beer's-type transmissivity method was unable to resolve complex spatial patterns resulting from canopy gaps, individual tree canopies and boles, and steep variable terrain. The snowmelt model SNOWPACK was applied at locations of ultrasonic snow depth sensors. Two scenarios were tested; 1) a nominal case where canopy model parameters were obtained from hemispherical photographs, and 2) an explicit scenario where the model was modified to accept LiDAR-derived time-variant DBT. The bulk canopy treatment was generally unable to simulate the sub-canopy snowmelt dynamics observed at the depth sensor locations. The explicit treatment reduced error in the snow disappearance date by one week and both positive and negative melt-season SWE biases were reduced. The results highlight the utility of LiDAR canopy measurements and physically based snowmelt models to simulate spatially distributed stand- and slope-scale snowmelt dynamics at resolutions necessary to capture the inherent underlying variability.iDAR-derived solar direct beam canopy transmissivity computed as the daily average for March 1st and May 1st.

  3. Representing soil moisture - precipitation feedbacks in the Sahel: spatial scale and parameterisation

    NASA Astrophysics Data System (ADS)

    Taylor, C.; Birch, C.; Parker, D.; Guichard, F.; Nikulin, G.; Dixon, N.

    2013-12-01

    Land surface properties influence the life cycle of convective systems across West Africa via space-time variability in sensible and latent heat fluxes. Previous observational and modelling studies have shown that areas with strong mesoscale variability in vegetation cover or soil moisture induce coherent structures in the daytime planetary boundary layer. In particular, horizontal gradients in sensible heat flux can induce convergence zones which favour the initiation of deep convection. A recent study based on satellite data (Taylor et al. 2011), illustrated the climatological importance of soil moisture gradients in the initiation of long-lived Mesoscale Convective Systems (MCS) in the Sahel. Here we provide a unique assessment of how models of different spatial resolutions represent soil moisture - precipitation feedbacks in the region, and compare their behaviour to observations. Specifically we examine whether the inability of large-scale models to capture the observed preference for afternoon rain over drier soil in semi-arid regions [Taylor et al., 2012] is due to inadequate spatial resolution and/or systematic bias in convective parameterisations. Firstly, we use a convection-permitting simulation at 4km resolution to explore the underlying mechanisms responsible for soil moisture controls on daytime convective initiation in the Sahel. The model reproduces very similar spatial structure as the observations in terms of antecedent soil moisture in the vicinity of a large sample of convective initiations. We then examine how this same model, run at coarser resolution, simulates the feedback of soil moisture on daily rainfall. In particular we examine the impact of switching on the convective parameterisation on rainfall persistence, and compare the findings with 10 regional climate models (RCMs). Finally, we quantify the impact of the feedback on dry-spell return times using a simple statistical model. The results highlight important weaknesses in convective parameterisations which are likely to impact land surface sensitivity studies and hydroclimatic variability on certain time and space scales. Taylor, C.M., Gounou, A., Guichard, F., Harris, P.P., Ellis, R.J.,Couvreux, F., and M. De Kauwe. 2011, Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns, Nature Geoscience, 4, 430-433, doi:10.1038/ngeo1173 Taylor, C.M., de Jeu, R.A.M., Guichard, F., Harris, P.P, and W.A. Dorigo. 2012, Afternoon rain more likely over drier soils, Nature, 489, 423-426, doi:10.1038/nature11377

  4. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and maximum temperature), beyond which the yields were negatively affected. These results are now being used for further regional-scale yield analysis as the aforementioned framework is adaptable to multiple geographic regions and crop types.

  5. Tropical Cyclones, Hurricanes, and Climate: NASA's Global Cloud-Scale Simulations and New Observations that Characterize the Lifecycle of Hurricanes

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    One of the primary interests of Global Change research is the impact of climate changes and climate variability on extreme weather events, such as intense tropical storms and hurricanes. Atmospheric climate models run at resolutions of global weather models have been used to study the impact of climate variability, as seen in sea surface temperatures, on the frequency and intensity of tropical cyclones. NASA's Goddard Earth Observing System Model, version 5 (GEOS-5) in ensembles run at 50 km resolution has been able to reproduce the interannual variations of tropical cyclone frequency seen in nature. This, and other global models, have found it much more difficult to reproduce the interannual changes in intensity, a result that reflects the inability of the models to simulate the intensities of the most extreme storms. Better representation of the structures of cyclones requires much higher resolution models. Such improved representation is also fundamental to making best use of satellite observations. In collaboration with NOAA's Geophysical Fluid Dynamics Laboratory, GEOS-5 now has the capability of running at much higher resolution to better represent cloud-scale resolutions. Global simulations at cloud-permitting resolutions (10- to 3.5-km) allows for the development of realistic tropical cyclones from tropical storm 119 km/hr winds) to category 5 (>249km1hr winds) intensities. GEOS-5 has produced realistic rain-band and eye-wall structures in tropical cyclones that can be directly analyzed against satellite observations. For the first time a global climate model is capable of representing realistic intensity and track variability on a seasonal scale across basins. GEOS-5 is also used in assimilation mode to test the impact of NASA's observations on tropical cyclone forecasts. One such test, for tropical cyclone Nargis in the Indian Ocean in May 2008, showed that observations from Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU-A) on Aqua substantially reduced forecast track errors. Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. SA is also bringing several state of the art instruments in recent field campaigns to peer under the clouds and study the inner workings of the tropical storms. With the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth science field experiment in 2010 that includes the Global Hawk Unmanned Airborne System (UAS) configured with a suite of in situ and remote sensing instruments that are observing and characterizing the lifecycle of hurricanes, we expect significant improvement in our understanding of the track and intensification processes with the assimilation of the satellite and field campaign observations of meteorological parameters in the numerical prediction models.

  6. Role of resolution in regional climate change projections over China

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Wang, Guiling; Gao, Xuejie

    2017-11-01

    This paper investigates the sensitivity of projected future climate changes over China to the horizontal resolution of a regional climate model RegCM4.4 (RegCM), using RCP8.5 as an example. Model validation shows that RegCM performs better in reproducing the spatial distribution and magnitude of present-day temperature, precipitation and climate extremes than the driving global climate model HadGEM2-ES (HadGEM, at 1.875° × 1.25° degree resolution), but little difference is found between the simulations at 50 and 25 km resolutions. Comparison with observational data at different resolutions confirmed the added value of the RCM and finer model resolutions in better capturing the probability distribution of precipitation. However, HadGEM and RegCM at both resolutions project a similar pattern of significant future warming during both winter and summer, and a similar pattern of winter precipitation changes including dominant increase in most areas of northern China and little change or decrease in the southern part. Projected precipitation changes in summer diverge among the three models, especially over eastern China, with a general increase in HadGEM, little change in RegCM at 50 km, and a mix of increase and decrease in RegCM at 25 km resolution. Changes of temperature-related extremes (annual total number of daily maximum temperature > 25 °C, the maximum value of daily maximum temperature, the minimum value of daily minimum temperature in the three simulations especially in the two RegCM simulations are very similar to each other; so are the precipitation-related extremes (maximum consecutive dry days, maximum consecutive 5-day precipitation and extremely wet days' total amount). Overall, results from this study indicate a very low sensitivity of projected changes in this region to model resolution. While fine resolution is critical for capturing the spatial variability of the control climate, it may not be as important for capturing the climate response to homogeneous forcing (in this case greenhouse gas concentration changes).

  7. Vertical resolution of baroclinic modes in global ocean models

    NASA Astrophysics Data System (ADS)

    Stewart, K. D.; Hogg, A. McC.; Griffies, S. M.; Heerdegen, A. P.; Ward, M. L.; Spence, P.; England, M. H.

    2017-05-01

    Improvements in the horizontal resolution of global ocean models, motivated by the horizontal resolution requirements for specific flow features, has advanced modelling capabilities into the dynamical regime dominated by mesoscale variability. In contrast, the choice of the vertical grid remains a subjective choice, and it is not clear that efforts to improve vertical resolution adequately support their horizontal counterparts. Indeed, considering that the bulk of the vertical ocean dynamics (including convection) are parameterized, it is not immediately obvious what the vertical grid is supposed to resolve. Here, we propose that the primary purpose of the vertical grid in a hydrostatic ocean model is to resolve the vertical structure of horizontal flows, rather than to resolve vertical motion. With this principle we construct vertical grids based on their abilities to represent baroclinic modal structures commensurate with the theoretical capabilities of a given horizontal grid. This approach is designed to ensure that the vertical grids of global ocean models complement (and, importantly, to not undermine) the resolution capabilities of the horizontal grid. We find that for z-coordinate global ocean models, at least 50 well-positioned vertical levels are required to resolve the first baroclinic mode, with an additional 25 levels per subsequent mode. High-resolution ocean-sea ice simulations are used to illustrate some of the dynamical enhancements gained by improving the vertical resolution of a 1/10° global ocean model. These enhancements include substantial increases in the sea surface height variance (∼30% increase south of 40°S), the barotropic and baroclinic eddy kinetic energies (up to 200% increase on and surrounding the Antarctic continental shelf and slopes), and the overturning streamfunction in potential density space (near-tripling of the Antarctic Bottom Water cell at 65°S).

  8. Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.

    2017-06-01

    Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and air-sea heat exchanges, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and air-sea heat exchanges. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between sea surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-eddy (fast fluctuations) components. We find that the eddy flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and air-sea latent heat exchanges. This result suggests that oceanic mesoscale advection supports warm SST anomalies that in turn feed surface heat flux. We identify anticyclonic warm-core circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These warm anomalies are sustained by eddy heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.

  9. Test of High-resolution Global and Regional Climate Model Projections

    NASA Astrophysics Data System (ADS)

    Stenchikov, Georgiy; Nikulin, Grigory; Hansson, Ulf; Kjellström, Erik; Raj, Jerry; Bangalath, Hamza; Osipov, Sergey

    2014-05-01

    In scope of CORDEX project we have simulated the past (1975-2005) and future (2006-2050) climates using the GFDL global high-resolution atmospheric model (HIRAM) and the Rossby Center nested regional model RCA4 for the Middle East and North Africa (MENA) region. Both global and nested runs were performed with roughly the same spatial resolution of 25 km in latitude and longitude, and were driven by the 2°x2.5°-resolution fields from GFDL ESM2M IPCC AR5 runs. The global HIRAM simulations could naturally account for interaction of regional processes with the larger-scale circulation features like Indian Summer Monsoon, which is lacking from regional model setup. Therefore in this study we specifically address the consistency of "global" and "regional" downscalings. The performance of RCA4, HIRAM, and ESM2M is tested based on mean, extreme, trends, seasonal and inter-annual variability of surface temperature, precipitation, and winds. The impact of climate change on dust storm activity, extreme precipitation and water resources is specifically addressed. We found that the global and regional climate projections appear to be quite consistent for the modeled period and differ more significantly from ESM2M than between each other.

  10. Seasonal variability of the Canary Current: A numerical study

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Colas, Francois; Molemaker, Jeroen; Shchepetkin, Alexander F.; Troupin, Charles; McWilliams, James C.; Sangrã, Pablo

    2011-06-01

    A high-resolution numerical model study of the Canary Basin in the northeast subtropical Atlantic Ocean is presented. A long-term climatological solution from the Regional Oceanic Modeling System (ROMS) reveals mesoscale variability associated with the Azores and Canary Current systems, the northwest African coastal upwelling, and the Canary Island archipelago. The primary result concerns the Canary Current (CanC) which, in the solution, transports ˜3 Sv southward in line with observations. The simulated CanC has a well-defined path with pronounced seasonal variability. This variability is shown to be mediated by the westward passage of two large annually excited counterrotating anomalous structures that originate at the African coast. The anomalies have a sea surface expression, permitting their validation using altimetry and travel at the phase speed of baroclinic planetary (Rossby) waves. The role of nearshore wind stress curl variability as a generating mechanism for the anomalies is confirmed through a sensitivity experiment forced by low-resolution winds. The resulting circulation is weak in comparison to the base run, but the propagating anomalies are still discernible, so we cannot discount a further role in their generation being played by annual reversals of the large-scale boundary flow that are known to occur along the African margin. An additional sensitivity experiment, where the Azores Current is removed by closing the Strait of Gibraltar presents the same anomalies and CanC behavior as the base run, suggesting that the CanC is rather insensitive to upstream variability from the Azores Current.

  11. Clouds in ECMWF's 30 KM Resolution Global Atmospheric Forecast Model (TL639)

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Morcrette, J. J.

    1999-01-01

    Global models of the general circulation of the atmosphere resolve a wide range of length scales, and in particular cloud structures extend from planetary scales to the smallest scales resolvable, now down to 30 km in state-of-the-art models. Even the highest resolution models do not resolve small-scale cloud phenomena seen, for example, in Landsat and other high-resolution satellite images of clouds. Unresolved small-scale disturbances often grow into larger ones through non-linear processes that transfer energy upscale. Understanding upscale cascades is of crucial importance in predicting current weather, and in parameterizing cloud-radiative processes that control long term climate. Several movie animations provide examples of the temporal and spatial variation of cloud fields produced in 4-day runs of the forecast model at the European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, England, at particular times and locations of simultaneous measurement field campaigns. model resolution is approximately 30 km horizontally (triangular truncation TL639) with 31 vertical levels from surface to stratosphere. Timestep of the model is about 10 minutes, but animation frames are 3 hours apart, at timesteps when the radiation is computed. The animations were prepared from an archive of several 4-day runs at the highest available model resolution, and archived at ECMWF. Cloud, wind and temperature fields in an approximately 1000 km X 1000 km box were retrieved from the archive, then approximately 60 Mb Vis5d files were prepared with the help of Graeme Kelly of ECMWF, and were compressed into MPEG files each less than 3 Mb. We discuss the interaction of clouds and radiation in the model, and compare the variability of cloud liquid as a function of scale to that seen in cloud observations made in intensive field campaigns. Comparison of high-resolution global runs to cloud-resolving models, and to lower resolution climate models is leading to better understanding of the upscale cascade and suggesting new cloud-radiation parameterizations for climate models.

  12. Projecting 21st Century Snowpack Trends in the Western United States using Variable-Resolution CESM

    NASA Astrophysics Data System (ADS)

    Rhoades, A.; Huang, X.; Zarzycki, C. M.; Ullrich, P. A.

    2015-12-01

    The western USA is integrally reliant upon winter season snowpack, which supplies 3/4 of the region's fresh water and buffers against seasonal aridity on agricultural, ecosystem, and urban water demands. By the end of the 21st century, western USA snowpack (SWE) could decline by 40-70%, snowfall by 25-40%, more winter storms could tend towards rain rather than snow, and the peak timing of snowmelt will shift several weeks earlier in the season. Further, there has been evidence that mountain ranges could face more accelerated warming (elevational dependent warming) due to climate change. These future trends have largely been derived from global climate models (CMIP5) which can't resolve some of the more relatively narrow mountain ranges, like the California Sierra Nevada, in great detail. Therefore, due to the importance of orographic uplift on weather fronts, eastern Pacific sea-surface temperature anomalies, atmospheric river events, and mesoscale convective systems, high-resolution global scale modeling techniques are necessary to properly resolve western USA mountain range climatology. Variable-resolution global climate models (VRGCMs) are a promising next-generation technique to analyze both past and future hydroclimatic trends in the region. VRGCMs serve as a bridge between regional and global models by allowing for high-resolution in areas of interest, eliminate lateral boundary forcings (and resultant model biases), allow for more dynamically inclusive large-scale climate teleconnections, and require smaller simulation times and lower data storage demand (compared to conventional global models). This presentation focuses on validating these next-generation models as well as projecting future climate change scenario impacts on several of the western USA's key hydroclimate metrics (e.g., two-meter surface temperature, snow cover, snow water equivalent, and snowfall) to inform water managers and policy makers and offer resilience to climate change impacts facing the region.

  13. Wind, Circulation, and Topographic Effects on Alongshore Phytoplankton Variability in the California Current

    NASA Astrophysics Data System (ADS)

    Fiechter, Jerome; Edwards, Christopher A.; Moore, Andrew M.

    2018-04-01

    A physical-biogeochemical model is used to produce a retrospective analysis at 3-km resolution of alongshore phytoplankton variability in the California Current during 1988-2010. The simulation benefits from downscaling a regional circulation reanalysis, which provides improved physical ocean state estimates in the high-resolution domain. The emerging pattern is one of local upwelling intensification in response to increased alongshore wind stress in the lee of capes, modulated by alongshore meanders in the geostrophic circulation. While stronger upwelling occurs near most major topographic features, substantial increases in phytoplankton biomass only ensue where local circulation patterns are conducive to on-shelf retention of upwelled nutrients. Locations of peak nutrient delivery and chlorophyll accumulation also exhibit interannual variability and trends noticeably larger than the surrounding shelf regions, thereby suggesting that long-term planktonic ecosystem response in the California Current exhibits a significant local scale (O(100 km)) alongshore component.

  14. Hierarchical Bayesian spatial models for predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large inventory datasets

    USGS Publications Warehouse

    Finley, Andrew O.; Banerjee, Sudipto; Cook, Bruce D.; Bradford, John B.

    2013-01-01

    In this paper we detail a multivariate spatial regression model that couples LiDAR, hyperspectral and forest inventory data to predict forest outcome variables at a high spatial resolution. The proposed model is used to analyze forest inventory data collected on the US Forest Service Penobscot Experimental Forest (PEF), ME, USA. In addition to helping meet the regression model's assumptions, results from the PEF analysis suggest that the addition of multivariate spatial random effects improves model fit and predictive ability, compared with two commonly applied modeling approaches. This improvement results from explicitly modeling the covariation among forest outcome variables and spatial dependence among observations through the random effects. Direct application of such multivariate models to even moderately large datasets is often computationally infeasible because of cubic order matrix algorithms involved in estimation. We apply a spatial dimension reduction technique to help overcome this computational hurdle without sacrificing richness in modeling.

  15. Predicting Power Outages Using Multi-Model Ensemble Forecasts

    NASA Astrophysics Data System (ADS)

    Cerrai, D.; Anagnostou, E. N.; Yang, J.; Astitha, M.

    2017-12-01

    Power outages affect every year millions of people in the United States, affecting the economy and conditioning the everyday life. An Outage Prediction Model (OPM) has been developed at the University of Connecticut for helping utilities to quickly restore outages and to limit their adverse consequences on the population. The OPM, operational since 2015, combines several non-parametric machine learning (ML) models that use historical weather storm simulations and high-resolution weather forecasts, satellite remote sensing data, and infrastructure and land cover data to predict the number and spatial distribution of power outages. A new methodology, developed for improving the outage model performances by combining weather- and soil-related variables using three different weather models (WRF 3.7, WRF 3.8 and RAMS/ICLAMS), will be presented in this study. First, we will present a performance evaluation of each model variable, by comparing historical weather analyses with station data or reanalysis over the entire storm data set. Hence, each variable of the new outage model version is extracted from the best performing weather model for that variable, and sensitivity tests are performed for investigating the most efficient variable combination for outage prediction purposes. Despite that the final variables combination is extracted from different weather models, this ensemble based on multi-weather forcing and multi-statistical model power outage prediction outperforms the currently operational OPM version that is based on a single weather forcing variable (WRF 3.7), because each model component is the closest to the actual atmospheric state.

  16. Evaluation of a 12-km Satellite-Era Reanalysis of Surface Mass Balance for the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Cullather, R. I.; Nowicki, S.; Zhao, B.; Max, S.

    2016-12-01

    The recent contribution to sea level change from the Greenland Ice Sheet is thought to be strongly driven by surface processes including melt and runoff. Global reanalyses are potential means of reconstructing the historical time series of ice sheet surface mass balance (SMB), but lack spatial resolution needed to resolve ablation areas along the periphery of the ice sheet. In this work, the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) is used to examine the spatial and temporal variability of surface melt over the Greenland Ice Sheet. MERRA-2 is produced for the period 1980 to the present at a grid spacing of ½° latitude by ⅝° longitude, and includes snow hydrology processes including compaction, meltwater percolation and refreezing, runoff, and a prognostic surface albedo. The configuration of the MERRA-2 system allows for the background model - the Goddard Earth Observing System model, version 5 (GEOS-5) - to be carried in phase space through analyzed states via the computation of analysis increments, a capability referred to as "replay". Here, a MERRA-2 replay integration is conducted in which atmospheric forcing fields are interpolated and adjusted to sub- atmospheric grid-scale resolution. These adjustments include lapse-rate effects on temperature, humidity, precipitation, and other atmospheric variables that are known to have a strong elevation dependency over ice sheets. The surface coupling is performed such that mass and energy are conserved. The atmospheric forcing influences the surface representation, which operates on land surface tiles with an approximate 12-km spacing. This produces a high-resolution, downscaled SMB which is interactively coupled to the reanalysis model. We compare the downscaled SMB product with other reanalyses, regional climate model values, and a second MERRA-2 replay in which the background model has been replaced with a 12-km, non-hydrostatic version of GEOS-5. The assessment focuses on regional changes in SMB and SMB components, the identification of changes and temporal variability in the SMB equilibrium line, and the relation between SMB and other climate variables related to general circulation.

  17. The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation

    PubMed Central

    Thompson, David W. J.; van den Broeke, Michiel R.

    2017-01-01

    Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. PMID:29398735

  18. A Bayesian Measurment Error Model for Misaligned Radiographic Data

    DOE PAGES

    Lennox, Kristin P.; Glascoe, Lee G.

    2013-09-06

    An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error inmore » addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.« less

  19. Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6

    NASA Astrophysics Data System (ADS)

    Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.

    2017-01-01

    This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.

  20. Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States

    NASA Astrophysics Data System (ADS)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2018-02-01

    This study uses Weather Research and Forecast (WRF) model to evaluate the performance of six dynamical downscaled decadal historical simulations with 12-km resolution for a large domain (7200 × 6180 km) that covers most of North America. The initial and boundary conditions are from three global climate models (GCMs) and one reanalysis data. The GCMs employed in this study are the Geophysical Fluid Dynamics Laboratory Earth System Model with Generalized Ocean Layer Dynamics component, Community Climate System Model, version 4, and the Hadley Centre Global Environment Model, version 2-Earth System. The reanalysis data is from the National Centers for Environmental Prediction-US. Department of Energy Reanalysis II. We analyze the effects of bias correcting, the lateral boundary conditions and the effects of spectral nudging. We evaluate the model performance for seven surface variables and four upper atmospheric variables based on their climatology and extremes for seven subregions across the United States. The results indicate that the simulation's performance depends on both location and the features/variable being tested. We find that the use of bias correction and/or nudging is beneficial in many situations, but employing these when running the RCM is not always an improvement when compared to the reference data. The use of an ensemble mean and median leads to a better performance in measuring the climatology, while it is significantly biased for the extremes, showing much larger differences than individual GCM driven model simulations from the reference data. This study provides a comprehensive evaluation of these historical model runs in order to make informed decisions when making future projections.

  1. Collimator optimization and collimator-detector response compensation in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    The collimator is the primary factor that determines the spatial resolution and noise tradeoff in myocardial perfusion SPECT images. In this paper, the goal was to find the collimator that optimizes the image quality in terms of a perfusion defect detection task. Since the optimal collimator could depend on the level of approximation of the collimator-detector response (CDR) compensation modeled in reconstruction, we performed this optimization for the cases of modeling the full CDR (including geometric, septal penetration and septal scatter responses), the geometric CDR, or no model of the CDR. We evaluated the performance on the detection task using three model observers. Two observers operated on data in the projection domain: the Ideal Observer (IO) and IO with Model-Mismatch (IO-MM). The third observer was an anthropomorphic Channelized Hotelling Observer (CHO), which operated on reconstructed images. The projection-domain observers have the advantage that they are computationally less intensive. The IO has perfect knowledge of the image formation process, i.e. it has a perfect model of the CDR. The IO-MM takes into account the mismatch between the true (complete and accurate) model and an approximate model, e.g. one that might be used in reconstruction. We evaluated the utility of these projection domain observers in optimizing instrumentation parameters. We investigated a family of 8 parallel-hole collimators, spanning a wide range of resolution and sensitivity tradeoffs, using a population of simulated projection (for the IO and IO-MM) and reconstructed (for the CHO) images that included background variability. We simulated anterolateral and inferior perfusion defects with variable extents and severities. The area under the ROC curve was estimated from the IO, IO-MM, and CHO test statistics and served as the figure-of-merit. The optimal collimator for the IO had a resolution of 9-11 mm FWHM at 10 cm, which is poorer resolution than typical collimators used for MPS. When the IO-MM and CHO used a geometric or no model of the CDR, the optimal collimator shifted toward higher resolution than that obtained using the IO and the CHO with full CDR modeling. With the optimal collimator, the IO-MM and CHO using geometric modeling gave similar performance to full CDR modeling. Collimators with poorer resolution were optimal when CDR modeling was used. The agreement of rankings between the IO-MM and CHO confirmed that the IO-MM is useful for optimization tasks when model mismatch is present due to its substantially reduced computational burden compared to the CHO.

  2. The Discrepancy Between Measured and Modeled Downwelling Solar Irradiance at the Ground: Dependence on Water Vapor

    NASA Technical Reports Server (NTRS)

    Pilewski, P.; Rabbette, M.; Bergstrom, R.; Marquez, J.; Schmid, B.; Russell, P. B.

    2000-01-01

    Moderate resolution spectra of the downwelling solar irradiance at the ground in north central Oklahoma were measured during the Department of Energy Atmospheric Radiation Measurement Program Intensive Observation Period in the fall of 1997. Spectra obtained under-cloud-free conditions were compared with calculations using a coarse resolution radiative transfer model to examine the dependency of model-measurement bias on water vapor. It was found that the bias was highly correlated with water vapor and increased at a rate of 9 Wm per cm of water. The source of the discrepancy remains undetermined because of the complex dependencies of other variables, most notably aerosol optical depth, on water vapor.

  3. The Discrepancy Between Measured and Modeled Downwelling Solar Irradiance at the Ground: Dependence on Water Vapor

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Rabbette, M.; Bergstrom, R.; Marquez, J.; Schmid, B.; Russell, P. B.

    2000-01-01

    Moderate resolution spectra of the downwelling solar irradiance at the ground in north central Oklahoma were measured during the Department of Energy Atmospheric Radiation Measurement Program Intensive Observation Period in the fall of 1997. Spectra obtained under cloud-free conditions were compared with calculations using a coarse resolution radiative transfer model to examine the dependency of model-measurement bias on water vapor. It was found that the bias was highly correlated with water vapor and increased at a rate of 9 Wm(exp -2) per cm of water. The source of the discrepancy remains undetermined because of the complex dependencies of other variables, most notably aerosol optical depth, on water vapor.

  4. Grid vs Mesh: The case of Hyper-resolution Modeling in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Grimley, L. E.; Tijerina, D.; Khanam, M.; Tiernan, E. D.; Frazier, N.; Ogden, F. L.; Steinke, R. C.; Maxwell, R. M.; Cohen, S.

    2017-12-01

    In this study, the relative performance of ADHydro and GSSHA was analyzed for a small and large rainfall event in an urban watershed called Dead Run near Baltimore, Maryland. ADHydro is a physics-based, distributed, hydrologic model that uses an unstructured mesh and operates in a high performance computing environment. The Gridded Surface/Subsurface Hydrological Analysis (GSSHA) model, which is maintained by the US Army Corps of Engineers, is a physics-based, distributed, hydrologic model that incorporates subsurface utilities and uses a structured mesh. A large portion of the work served as alpha-testing of ADHydro, which is under development by the CI-WATER modeling team at the University of Wyoming. Triangular meshes at variable resolutions were created to assess the sensitivity of ADHydro to changes in resolution and test the model's ability to handle a complicated urban routing network with structures present. ADHydro was compared with GSSHA which does not have the flexibility of an unstructured grid but does incorporate the storm drainage network. The modelled runoff hydrographs were compared to observed United States Geological Survey (USGS) stream gage data. The objective of this study was to analyze the effects of mesh type and resolution using ADHydro and GSSHA in simulations of an urban watershed.

  5. Topographic models for predicting malaria vector breeding habitats: potential tools for vector control managers.

    PubMed

    Nmor, Jephtha C; Sunahara, Toshihiko; Goto, Kensuke; Futami, Kyoko; Sonye, George; Akweywa, Peter; Dida, Gabriel; Minakawa, Noboru

    2013-01-16

    Identification of malaria vector breeding sites can enhance control activities. Although associations between malaria vector breeding sites and topography are well recognized, practical models that predict breeding sites from topographic information are lacking. We used topographic variables derived from remotely sensed Digital Elevation Models (DEMs) to model the breeding sites of malaria vectors. We further compared the predictive strength of two different DEMs and evaluated the predictability of various habitat types inhabited by Anopheles larvae. Using GIS techniques, topographic variables were extracted from two DEMs: 1) Shuttle Radar Topography Mission 3 (SRTM3, 90-m resolution) and 2) the Advanced Spaceborne Thermal Emission Reflection Radiometer Global DEM (ASTER, 30-m resolution). We used data on breeding sites from an extensive field survey conducted on an island in western Kenya in 2006. Topographic variables were extracted for 826 breeding sites and for 4520 negative points that were randomly assigned. Logistic regression modelling was applied to characterize topographic features of the malaria vector breeding sites and predict their locations. Model accuracy was evaluated using the area under the receiver operating characteristics curve (AUC). All topographic variables derived from both DEMs were significantly correlated with breeding habitats except for the aspect of SRTM. The magnitude and direction of correlation for each variable were similar in the two DEMs. Multivariate models for SRTM and ASTER showed similar levels of fit indicated by Akaike information criterion (3959.3 and 3972.7, respectively), though the former was slightly better than the latter. The accuracy of prediction indicated by AUC was also similar in SRTM (0.758) and ASTER (0.755) in the training site. In the testing site, both SRTM and ASTER models showed higher AUC in the testing sites than in the training site (0.829 and 0.799, respectively). The predictability of habitat types varied. Drains, foot-prints, puddles and swamp habitat types were most predictable. Both SRTM and ASTER models had similar predictive potentials, which were sufficiently accurate to predict vector habitats. The free availability of these DEMs suggests that topographic predictive models could be widely used by vector control managers in Africa to complement malaria control strategies.

  6. Multi-scale modelling to evaluate building energy consumption at the neighbourhood scale.

    PubMed

    Mauree, Dasaraden; Coccolo, Silvia; Kaempf, Jérôme; Scartezzini, Jean-Louis

    2017-01-01

    A new methodology is proposed to couple a meteorological model with a building energy use model. The aim of such a coupling is to improve the boundary conditions of both models with no significant increase in computational time. In the present case, the Canopy Interface Model (CIM) is coupled with CitySim. CitySim provides the geometrical characteristics to CIM, which then calculates a high resolution profile of the meteorological variables. These are in turn used by CitySim to calculate the energy flows in an urban district. We have conducted a series of experiments on the EPFL campus in Lausanne, Switzerland, to show the effectiveness of the coupling strategy. First, measured data from the campus for the year 2015 are used to force CIM and to evaluate its aptitude to reproduce high resolution vertical profiles. Second, we compare the use of local climatic data and data from a meteorological station located outside the urban area, in an evaluation of energy use. In both experiments, we demonstrate the importance of using in building energy software, meteorological variables that account for the urban microclimate. Furthermore, we also show that some building and urban forms are more sensitive to the local environment.

  7. Multi-scale modelling to evaluate building energy consumption at the neighbourhood scale

    PubMed Central

    Coccolo, Silvia; Kaempf, Jérôme; Scartezzini, Jean-Louis

    2017-01-01

    A new methodology is proposed to couple a meteorological model with a building energy use model. The aim of such a coupling is to improve the boundary conditions of both models with no significant increase in computational time. In the present case, the Canopy Interface Model (CIM) is coupled with CitySim. CitySim provides the geometrical characteristics to CIM, which then calculates a high resolution profile of the meteorological variables. These are in turn used by CitySim to calculate the energy flows in an urban district. We have conducted a series of experiments on the EPFL campus in Lausanne, Switzerland, to show the effectiveness of the coupling strategy. First, measured data from the campus for the year 2015 are used to force CIM and to evaluate its aptitude to reproduce high resolution vertical profiles. Second, we compare the use of local climatic data and data from a meteorological station located outside the urban area, in an evaluation of energy use. In both experiments, we demonstrate the importance of using in building energy software, meteorological variables that account for the urban microclimate. Furthermore, we also show that some building and urban forms are more sensitive to the local environment. PMID:28880883

  8. Downscaling Coarse Scale Microwave Soil Moisture Product using Machine Learning

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, P.; Moradkhani, H.; Yan, H.

    2016-12-01

    Soil moisture (SM) is a key variable in partitioning and examining the global water-energy cycle, agricultural planning, and water resource management. It is also strongly coupled with climate change, playing an important role in weather forecasting and drought monitoring and prediction, flood modeling and irrigation management. Although satellite retrievals can provide an unprecedented information of soil moisture at a global-scale, the products might be inadequate for basin scale study or regional assessment. To improve the spatial resolution of SM, this work presents a novel approach based on Machine Learning (ML) technique that allows for downscaling of the satellite soil moisture to fine resolution. For this purpose, the SMAP L-band radiometer SM products were used and conditioned on the Variable Infiltration Capacity (VIC) model prediction to describe the relationship between the coarse and fine scale soil moisture data. The proposed downscaling approach was applied to a western US basin and the products were compared against the available SM data from in-situ gauge stations. The obtained results indicated a great potential of the machine learning technique to derive the fine resolution soil moisture information that is currently used for land data assimilation applications.

  9. Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution

    Treesearch

    Robert M. Scheller; James B. Domingo; Brian R. Sturtevant; Jeremy S. Williams; Arnold Rudy; Eric J. Gustafson; David J. Mladenoff

    2007-01-01

    We introduce LANDIS-II, a landscape model designed to simulate forest succession and disturbances. LANDIS-II builds upon and preserves the functionality of previous LANDIS forest landscape simulation models. LANDIS-II is distinguished by the inclusion of variable time steps for different ecological processes; our use of a rigorous development and testing process used...

  10. Sediment delivery modeling in practice: Comparing the effects of watershed characteristics and data resolution across hydroclimatic regions.

    PubMed

    Hamel, Perrine; Falinski, Kim; Sharp, Richard; Auerbach, Daniel A; Sánchez-Canales, María; Dennedy-Frank, P James

    2017-02-15

    Geospatial models are commonly used to quantify sediment contributions at the watershed scale. However, the sensitivity of these models to variation in hydrological and geomorphological features, in particular to land use and topography data, remains uncertain. Here, we assessed the performance of one such model, the InVEST sediment delivery model, for six sites comprising a total of 28 watersheds varying in area (6-13,500km 2 ), climate (tropical, subtropical, mediterranean), topography, and land use/land cover. For each site, we compared uncalibrated and calibrated model predictions with observations and alternative models. We then performed correlation analyses between model outputs and watershed characteristics, followed by sensitivity analyses on the digital elevation model (DEM) resolution. Model performance varied across sites (overall r 2 =0.47), but estimates of the magnitude of specific sediment export were as or more accurate than global models. We found significant correlations between metrics of sediment delivery and watershed characteristics, including erosivity, suggesting that empirical relationships may ultimately be developed for ungauged watersheds. Model sensitivity to DEM resolution varied across and within sites, but did not correlate with other observed watershed variables. These results were corroborated by sensitivity analyses performed on synthetic watersheds ranging in mean slope and DEM resolution. Our study provides modelers using InVEST or similar geospatial sediment models with practical insights into model behavior and structural uncertainty: first, comparison of model predictions across regions is possible when environmental conditions differ significantly; second, local knowledge on the sediment budget is needed for calibration; and third, model outputs often show significant sensitivity to DEM resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Spatiotemporal variability of biogenic terpenoid emissions in Pearl River Delta, China, with high-resolution land-cover and meteorological data

    NASA Astrophysics Data System (ADS)

    Wang, Xuemei; Situ, Shuping; Guenther, Alex; Chen, Fei; Wu, Zhiyong; Xia, Beicheng; Wang, Tijian

    2011-04-01

    This study intended to provide 4-km gridded, hourly, year-long, regional estimates of terpenoid emissions in the Pearl River Delta (PRD), China. It combined Thematic Mapper images and local-survey data to characterize plant functional types, and used observed emission potential of biogenic volatile organic compounds (BVOC) from local plant species and high-resolution meteorological outputs from the MM5 model to constrain the MEGAN BVOC-emission model. The estimated annual emissions for isoprene, monoterpene and sesquiterpene are 95.55 × 106 kg C, 117.35 × 106 kg C and 9.77 × 106 kg C, respectively. The results show strong variabilities of terpenoid emissions spanning diurnal and seasonal time scales, which are mainly distributed in the remote areas (with more vegetation and less economic development) in PRD. Using MODIS PFTs data reduced terpenoid emissions by 27% in remote areas. Using MEGAN-model default emission factors led to a 24% increase in BVOC emission. The model errors of temperature and radiation in MM5 output were used to assess impacts of uncertainties in meteorological forcing on emissions: increasing (decreasing) temperature and downward shortwave radiation produces more (less) terpenoid emissions for July and January. Strong temporal variability of terpenoid emissions leads to enhanced ozone formation during midday in rural areas where the anthropogenic VOC emissions are limited.

  12. FUEL3-D: A Spatially Explicit Fractal Fuel Distribution Model

    Treesearch

    Russell A. Parsons

    2006-01-01

    Efforts to quantitatively evaluate the effectiveness of fuels treatments are hampered by inconsistencies between the spatial scale at which fuel treatments are implemented and the spatial scale, and detail, with which we model fire and fuel interactions. Central to this scale inconsistency is the resolution at which variability within the fuel bed is considered. Crown...

  13. Comparing SMAP to Macro-scale and Hyper-resolution Land Surface Models over Continental U. S.

    NASA Astrophysics Data System (ADS)

    Pan, Ming; Cai, Xitian; Chaney, Nathaniel; Wood, Eric

    2016-04-01

    SMAP sensors collect moisture information in top soil at the spatial resolution of ~40 km (radiometer) and ~1 to 3 km (radar, before its failure in July 2015). Such information is extremely valuable for understanding various terrestrial hydrologic processes and their implications on human life. At the same time, soil moisture is a joint consequence of numerous physical processes (precipitation, temperature, radiation, topography, crop/vegetation dynamics, soil properties, etc.) that happen at a wide range of scales from tens of kilometers down to tens of meters. Therefore, a full and thorough analysis/exploration of SMAP data products calls for investigations at multiple spatial scales - from regional, to catchment, and to field scales. Here we first compare the SMAP retrievals to the Variable Infiltration Capacity (VIC) macro-scale land surface model simulations over the continental U. S. region at 3 km resolution. The forcing inputs to the model are merged/downscaled from a suite of best available data products including the NLDAS-2 forcing, Stage IV and Stage II precipitation, GOES Surface and Insolation Products, and fine elevation data. The near real time VIC simulation is intended to provide a source of large scale comparisons at the active sensor resolution. Beyond the VIC model scale, we perform comparisons at 30 m resolution against the recently developed HydroBloks hyper-resolution land surface model over several densely gauged USDA experimental watersheds. Comparisons are also made against in-situ point-scale observations from various SMAP Cal/Val and field campaign sites.

  14. A Global 3D P-Velocity Model of the Earth’s Crust and Mantle for Improved Event Location

    DTIC Science & Technology

    2011-09-01

    starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and Crust 2.0 model everywhere else, over a...geographic and radial dimensions. For our starting model, we use a simplified layer crustal model derived from the NNSA Unified model in Eurasia and...tessellation with 4° triangles to the transition zone and upper mantle, and a third tessellation with variable resolution to all crustal layers. The

  15. Objective tropical cyclone extratropical transition detection in high-resolution reanalysis and climate model data

    DOE PAGES

    Zarzycki, Colin M.; Thatcher, Diana R.; Jablonowski, Christiane

    2017-01-22

    This paper describes an objective technique for detecting the extratropical transition (ET) of tropical cyclones (TCs) in high-resolution gridded climate data. The algorithm is based on previous observational studies using phase spaces to define the symmetry and vertical thermal structure of cyclones. Storm tracking is automated, allowing for direct analysis of climate data. Tracker performance in the North Atlantic is assessed using 23 years of data from the variable-resolution Community Atmosphere Model (CAM) at two different resolutions (DX 55 km and 28 km), the Climate Forecast System Reanalysis (CFSR, DX 38 km), and the ERA-Interim Reanalysis (ERA-I, DX 80 km).more » The mean spatiotemporal climatologies and seasonal cycles of objectively detected ET in the observationally constrained CFSR and ERA-I are well matched to previous observational studies, demonstrating the capability of the scheme to adequately find events. High resolution CAM reproduces TC and ET statistics that are in general agreement with reanalyses. One notable model bias, however, is significantly longer time between ET onset and ET completion in CAM, particularly for TCs that lose symmetry prior to developing a cold-core structure and becoming extratropical cyclones, demonstrating the capability of this method to expose model biases in simulated cyclones beyond the tropical phase.« less

  16. Modeling high resolution space-time variations in energy demand/CO2 emissions of human inhabited landscapes in the United States under a changing climate

    NASA Astrophysics Data System (ADS)

    Godbole, A. V.; Gurney, K. R.

    2010-12-01

    With urban and exurban areas now accounting for more than 50% of the world's population, projected to increase 20% by 2050 (UN World Urbanization Prospects, 2009), urban-climate interactions are of renewed interest to the climate change scientific community (Karl et. al, 1988; Kalnay and Cai, 2003; Seto and Shepherd, 2009). Until recently, climate modeling efforts treated urban-human systems as independent of the earth system. With studies pointing to the disproportionately large influence of urban areas on their surrounding environment (Small et. al, 2010), modeling efforts have begun to explicitly account for urban processes in land models, like the CLM 4.0 urban layer, for example (Oleson.et. al, 2008, 2010). A significant portion of the urban energy demand comes from the space heating and cooling requirement of the residential and commercial sectors - as much as 51% (DOE, RECS 2005) and 11% (Belzer, D. 2006) respectively, in the United States. Thus, these sectors are both responsible for a significant fraction of fossil fuel CO2 emissions and will be influenced by a changing climate through changes in energy use and energy supply planning. This points to the possibility of interactive processes and feedbacks with the climate system. Space conditioning energy demand is strongly driven by external air temperature (Ruth, M. et.al, 2006) in addition to other socio-economic variables such as building characteristics (age of structure, activity cycle, weekend/weekday usage profile), occupant characteristics (age of householder, household income) and energy prices (Huang, 2006; Santin et. al, 2009; Isaac and van Vuuren, 2009). All of these variables vary both in space and time. Projections of climate change have begun to simulate changes in temperature at much higher resolution than in the past (Diffenbaugh et. al, 2005). Hence, in order to understand how climate change and variability will potentially impact energy use/emissions and energy planning, these two components of the human-climate system must be coupled in climate modeling efforts to better understand the impacts and feedbacks. To implement modeling strategies for coupling the human and climate systems, their interactions must first be examined in greater detail at high spatial and temporal resolutions. This work attempts to quantify the impact of high resolution variations in projected climate change on energy use/emissions in the United States. We develop a predictive model for the space heating component of residential and commercial energy demand by leveraging results from the high resolution fossil fuel CO2 inventory of the Vulcan Project (Gurney et al., 2009). This predictive model is driven by high resolution temperature data from the RegCM3 model obtained by implementing a downscaling algorithm (Chow and Levermore, 2007). We will present the energy use/emissions in both the space and time domain from two different predictive models highlighting strengths and weaknesses in both. Furthermore, we will explore high frequency variations in the projected temperature field and how these might place potentially large burdens on energy supply and delivery.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melnyk, Roman; DiBianca, Frank A.

    The detector presampling modulation transfer function (MTF) of a 576-channel variable resolution x-ray (VRX) computed tomography (CT) scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner's field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner's pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase inmore » the cutoff frequency of the detector presampling MTF from 1.39 to 43.38 cycles/mm as the FOV of the VRX CT scanner decreases from 32 to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1-8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner.« less

  18. Can Regional Climate Models be used in the assessment of vulnerability and risk caused by extreme events?

    NASA Astrophysics Data System (ADS)

    Nunes, Ana

    2015-04-01

    Extreme meteorological events played an important role in catastrophic occurrences observed in the past over densely populated areas in Brazil. This motived the proposal of an integrated system for analysis and assessment of vulnerability and risk caused by extreme events in urban areas that are particularly affected by complex topography. That requires a multi-scale approach, which is centered on a regional modeling system, consisting of a regional (spectral) climate model coupled to a land-surface scheme. This regional modeling system employs a boundary forcing method based on scale-selective bias correction and assimilation of satellite-based precipitation estimates. Scale-selective bias correction is a method similar to the spectral nudging technique for dynamical downscaling that allows internal modes to develop in agreement with the large-scale features, while the precipitation assimilation procedure improves the modeled deep-convection and drives the land-surface scheme variables. Here, the scale-selective bias correction acts only on the rotational part of the wind field, letting the precipitation assimilation procedure to correct moisture convergence, in order to reconstruct South American current climate within the South American Hydroclimate Reconstruction Project. The hydroclimate reconstruction outputs might eventually produce improved initial conditions for high-resolution numerical integrations in metropolitan regions, generating more reliable short-term precipitation predictions, and providing accurate hidrometeorological variables to higher resolution geomorphological models. Better representation of deep-convection from intermediate scales is relevant when the resolution of the regional modeling system is refined by any method to meet the scale of geomorphological dynamic models of stability and mass movement, assisting in the assessment of risk areas and estimation of terrain stability over complex topography. The reconstruction of past extreme events also helps the development of a system for decision-making, regarding natural and social disasters, and reducing impacts. Numerical experiments using this regional modeling system successfully modeled severe weather events in Brazil. Comparisons with the NCEP Climate Forecast System Reanalysis outputs were made at resolutions of about 40- and 25-km of the regional climate model.

  19. High-Resolution Assimilation of GRACE Terrestrial Water Storage Observations to Represent Local-Scale Water Table Depths

    NASA Astrophysics Data System (ADS)

    Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.

    2017-12-01

    Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at fine scales that are required for local water management. In addition, Open Loop and GRACE-assimilation simulations of water table depth were compared to in-situ data over the state of California, derived from observation wells operated/maintained by the U.S. Geological Service.

  20. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

    PubMed Central

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028

  1. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    PubMed

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  2. Modeling the Distribution of African Savanna Elephants in Kruger National Park: AN Application of Multi-Scale GLOBELAND30 Data

    NASA Astrophysics Data System (ADS)

    Xu, W.; Hays, B.; Fayrer-Hosken, R.; Presotto, A.

    2016-06-01

    The ability of remote sensing to represent ecologically relevant features at multiple spatial scales makes it a powerful tool for studying wildlife distributions. Species of varying sizes perceive and interact with their environment at differing scales; therefore, it is important to consider the role of spatial resolution of remotely sensed data in the creation of distribution models. The release of the Globeland30 land cover classification in 2014, with its 30 m resolution, presents the opportunity to do precisely that. We created a series of Maximum Entropy distribution models for African savanna elephants (Loxodonta africana) using Globeland30 data analyzed at varying resolutions. We compared these with similarly re-sampled models created from the European Space Agency's Global Land Cover Map (Globcover). These data, in combination with GIS layers of topography and distance to roads, human activity, and water, as well as elephant GPS collar data, were used with MaxEnt software to produce the final distribution models. The AUC (Area Under the Curve) scores indicated that the models created from 600 m data performed better than other spatial resolutions and that the Globeland30 models generally performed better than the Globcover models. Additionally, elevation and distance to rivers seemed to be the most important variables in our models. Our results demonstrate that Globeland30 is a valid alternative to the well-established Globcover for creating wildlife distribution models. It may even be superior for applications which require higher spatial resolution and less nuanced classifications.

  3. Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales

    NASA Technical Reports Server (NTRS)

    Knowland, E. Emma; Keller, Christoph; Nielsen, J. Eric; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Cook, Melanie; Liu, Junhua; hide

    2017-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  4. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    DOE PAGES

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; ...

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less

  5. Sensitivity of Hydrologic Extremes to Spatial Resolution of Meteorological Forcings: A Case Study of the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Kao, S. C.; Naz, B. S.; Gangrade, S.; Ashfaq, M.; Rastogi, D.

    2016-12-01

    The magnitude and frequency of hydroclimate extremes are projected to increase in the conterminous United States (CONUS) with significant implications for future water resource planning and flood risk management. Nevertheless, apart from the change of natural environment, the choice of model spatial resolution could also artificially influence the features of simulated extremes. To better understand how the spatial resolution of meteorological forcings may affect hydroclimate projections, we test the runoff sensitivity using the Variable Infiltration Capacity (VIC) model that was calibrated for each CONUS 8-digit hydrologic unit (HUC8) at 1/24° ( 4km) grid resolution. The 1980-2012 gridded Daymet and PRISM meteorological observations are used to conduct the 1/24° resolution control simulation. Comparative simulations are achieved by smoothing the 1/24° forcing into 1/12° and 1/8° resolutions which are then used to drive the VIC model for the CONUS. In addition, we also test how the simulated high and low runoff conditions would react to change in precipitation (±10%) and temperature (+1°C). The results are further analyzed for various types of hydroclimate extremes across different watersheds in the CONUS. This work helps us understand the sensitivity of simulated runoff to different spatial resolutions of climate forcings and also its sensitivity to different watershed sizes and characteristics of extreme events in the future climate conditions.

  6. Identifying suitable sites for Florida panther reintroduction

    USGS Publications Warehouse

    Thatcher, Cindy A.; van Manen, Frank T.; Clark, Joseph D.

    2006-01-01

    A major objective of the 1995 Florida Panther (Puma concolor cory) Recovery Plan is the establishment of 2 additional panther populations within the historic range. Our goal was to identify prospective sites for Florida panther reintroduction within the historic range based on quantitative landscape assessments. First, we delineated 86 panther home ranges using telemetry data collected from 1981 to 2001 in south Florida to develop a Mahalanobis distance (D2) habitat model, using 4 anthropogenic variables and 3 landscape variables mapped at a 500-m resolution. From that analysis, we identified 9 potential reintroduction sites of sufficient size to support a panther population. We then developed a similar D2 model at a higher spatial resolution to quantify the area of favorable panther habitat at each site. To address potential for the population to expand, we calculated the amount of favorable habitat adjacent to each prospective reintroduction site within a range of dispersal distances of female panthers. We then added those totals to the contiguous patches to estimate the total amount of effective panther habitat at each site. Finally, we developed an expert-assisted model to rank and incorporate potentially important habitat variables that were not appropriate for our empirical analysis (e.g., area of public lands, livestock density). Anthropogenic factors heavily influenced both the landscape and the expert-assisted models. Of the 9 areas we identified, the Okefenokee National Wildlife Refuge, Ozark National Forest, and Felsenthal National Wildlife Refuge regions had the highest combination of effective habitat area and expert opinion scores. Sensitivity analyses indicated that variability among key model parameters did not affect the high ranking of those sites. Those sites should be considered as starting points for the field evaluation of potential reintroduction sites.

  7. Hydrologic scales, cloud variability, remote sensing, and models: Implications for forecasting snowmelt and streamflow

    USGS Publications Warehouse

    Simpson, James J.; Dettinger, M.D.; Gehrke, F.; McIntire, T.J.; Hufford, Gary L.

    2004-01-01

    Accurate prediction of available water supply from snowmelt is needed if the myriad of human, environmental, agricultural, and industrial demands for water are to be satisfied, especially given legislatively imposed conditions on its allocation. Robust retrievals of hydrologic basin model variables (e.g., insolation or areal extent of snow cover) provide several advantages over the current operational use of either point measurements or parameterizations to help to meet this requirement. Insolation can be provided at hourly time scales (or better if needed during rapid melt events associated with flooding) and at 1-km spatial resolution. These satellite-based retrievals incorporate the effects of highly variable (both in space and time) and unpredictable cloud cover on estimates of insolation. The insolation estimates are further adjusted for the effects of basin topography using a high-resolution digital elevation model prior to model input. Simulations of two Sierra Nevada rivers in the snowmelt seasons of 1998 and 1999 indicate that even the simplest improvements in modeled insolation can improve snowmelt simulations, with 10%-20% reductions in root-mean-square errors. Direct retrieval of the areal extent of snow cover may mitigate the need to rely entirely on internal calculations of this variable, a reliance that can yield large errors that are difficult to correct until long after the season is complete and that often leads to persistent underestimates or overestimates of the volumes of the water to operational reservoirs. Agencies responsible for accurately predicting available water resources from the melt of snowpack [e.g., both federal (the National Weather Service River Forecast Centers) and state (the California Department of Water Resources)] can benefit by incorporating concepts developed herein into their operational forecasting procedures. ?? 2004 American Meteorological Society.

  8. Estimating Ground-Level PM(sub 2.5) Concentrations in the Southeastern United States Using MAIAC AOD Retrievals and a Two-Stage Model

    NASA Technical Reports Server (NTRS)

    Hu, Xuefei; Waller, Lance A.; Lyapustin, Alexei; Wang, Yujie; Al-Hamdan, Mohammad Z.; Crosson, William L.; Estes, Maurice G., Jr.; Estes, Sue M.; Quattrochi, Dale A.; Puttaswamy, Sweta Jinnagara; hide

    2013-01-01

    Previous studies showed that fine particulate matter (PM(sub 2.5), particles smaller than 2.5 micrometers in aerodynamic diameter) is associated with various health outcomes. Ground in situ measurements of PM(sub 2.5) concentrations are considered to be the gold standard, but are time-consuming and costly. Satellite-retrieved aerosol optical depth (AOD) products have the potential to supplement the ground monitoring networks to provide spatiotemporally-resolved PM(sub 2.5) exposure estimates. However, the coarse resolutions (e.g., 10 km) of the satellite AOD products used in previous studies make it very difficult to estimate urban-scale PM(sub 2.5) characteristics that are crucial to population-based PM(sub 2.5) health effects research. In this paper, a new aerosol product with 1 km spatial resolution derived by the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was examined using a two-stage spatial statistical model with meteorological fields (e.g., wind speed) and land use parameters (e.g., forest cover, road length, elevation, and point emissions) as ancillary variables to estimate daily mean PM(sub 2.5) concentrations. The study area is the southeastern U.S., and data for 2003 were collected from various sources. A cross validation approach was implemented for model validation. We obtained R(sup 2) of 0.83, mean prediction error (MPE) of 1.89 micrograms/cu m, and square root of the mean squared prediction errors (RMSPE) of 2.73 micrograms/cu m in model fitting, and R(sup 2) of 0.67, MPE of 2.54 micrograms/cu m, and RMSPE of 3.88 micrograms/cu m in cross validation. Both model fitting and cross validation indicate a good fit between the dependent variable and predictor variables. The results showed that 1 km spatial resolution MAIAC AOD can be used to estimate PM(sub 2.5) concentrations.

  9. A global distributed basin morphometric dataset

    NASA Astrophysics Data System (ADS)

    Shen, Xinyi; Anagnostou, Emmanouil N.; Mei, Yiwen; Hong, Yang

    2017-01-01

    Basin morphometry is vital information for relating storms to hydrologic hazards, such as landslides and floods. In this paper we present the first comprehensive global dataset of distributed basin morphometry at 30 arc seconds resolution. The dataset includes nine prime morphometric variables; in addition we present formulas for generating twenty-one additional morphometric variables based on combination of the prime variables. The dataset can aid different applications including studies of land-atmosphere interaction, and modelling of floods and droughts for sustainable water management. The validity of the dataset has been consolidated by successfully repeating the Hack's law.

  10. Development of a transient, lumped hydrologic model for geomorphologic units in a geomorphology based rainfall-runoff modelling framework

    NASA Astrophysics Data System (ADS)

    Vannametee, E.; Karssenberg, D.; Hendriks, M. R.; de Jong, S. M.; Bierkens, M. F. P.

    2010-05-01

    We propose a modelling framework for distributed hydrological modelling of 103-105 km2 catchments by discretizing the catchment in geomorphologic units. Each of these units is modelled using a lumped model representative for the processes in the unit. Here, we focus on the development and parameterization of this lumped model as a component of our framework. The development of the lumped model requires rainfall-runoff data for an extensive set of geomorphological units. Because such large observational data sets do not exist, we create artificial data. With a high-resolution, physically-based, rainfall-runoff model, we create artificial rainfall events and resulting hydrographs for an extensive set of different geomorphological units. This data set is used to identify the lumped model of geomorphologic units. The advantage of this approach is that it results in a lumped model with a physical basis, with representative parameters that can be derived from point-scale measurable physical parameters. The approach starts with the development of the high-resolution rainfall-runoff model that generates an artificial discharge dataset from rainfall inputs as a surrogate of a real-world dataset. The model is run for approximately 105 scenarios that describe different characteristics of rainfall, properties of the geomorphologic units (i.e. slope gradient, unit length and regolith properties), antecedent moisture conditions and flow patterns. For each scenario-run, the results of the high-resolution model (i.e. runoff and state variables) at selected simulation time steps are stored in a database. The second step is to develop the lumped model of a geomorphological unit. This forward model consists of a set of simple equations that calculate Hortonian runoff and state variables of the geomorphologic unit over time. The lumped model contains only three parameters: a ponding factor, a linear reservoir parameter, and a lag time. The model is capable of giving an appropriate representation of the transient rainfall-runoff relations that exist in the artificial data set generated with the high-resolution model. The third step is to find the values of empirical parameters in the lumped forward model using the artificial dataset. For each scenario of the high-resolution model run, a set of lumped model parameters is determined with a fitting method using the corresponding time series of state variables and outputs retrieved from the database. Thus, the parameters in the lumped model can be estimated by using the artificial data set. The fourth step is to develop an approach to assign lumped model parameters based upon the properties of the geomorphological unit. This is done by finding relationships between the measurable physical properties of geomorphologic units (i.e. slope gradient, unit length, and regolith properties) and the lumped forward model parameters using multiple regression techniques. In this way, a set of lumped forward model parameters can be estimated as a function of morphology and physical properties of the geomorphologic units. The lumped forward model can then be applied to different geomorphologic units. Finally, the performance of the lumped forward model is evaluated; the outputs of the lumped forward model are compared with the results of the high-resolution model. Our results show that the lumped forward model gives the best estimates of total discharge volumes and peak discharges when rain intensities are not significantly larger than the infiltration capacities of the units and when the units are small with a flat gradient. Hydrograph shapes are fairly well reproduced for most cases except for flat and elongated units with large runoff volumes. The results of this study provide a first step towards developing low-dimensional models for large ungauged basins.

  11. Mapping Spatial Variability in Health and Wealth Indicators in Accra, Ghana Using High Spatial Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Engstrom, R.; Ashcroft, E.

    2014-12-01

    There has been a tremendous amount of research conducted that examines disparities in health and wealth of persons between urban and rural areas however, relatively little research has been undertaken to examine variations within urban areas. A major limitation to elucidating differences with urban areas is the lack of social and demographic data at a sufficiently high spatial resolution to determine these differences. Generally the only available data that contain this information are census data which are collected at most every ten years and are often difficult to obtain at a high enough spatial resolution to allow for examining in depth variability in health and wealth indicators at high spatial resolutions, especially in developing countries. High spatial resolution satellite imagery may be able to provide timely and synoptic information that is related to health and wealth variability within a city. In this study we use two dates of Quickbird imagery (2003 and 2010) classified into the vegetation-impervious surface-soil (VIS) model introduced by Ridd (1995). For 2003 we only have partial coverage of the city, while for 2010 we have a mosaic, which covers the entire city of Accra, Ghana. Variations in the VIS values represent the physical variations within the city and these are compared to variations in economic, and/or sociodemographic data derived from the 2000 Ghanaian census at two spatial resolutions, the enumeration area (approximately US Census Tract) and the neighborhood for the city. Results indicate a significant correlation between both vegetation and impervious surface to type of cooking fuel used in the household, population density, housing density, availability of sewers, cooking space usage, and other variables. The correlations are generally stronger at the neighborhood level and the relationships are stable through time and space. Overall, the results indicate that information derived from high resolution satellite data is related to indicators of health and wealth within a developing world city and that the even if the imagery is collected 10 years after the census information, the relationships are still significant.

  12. Intraindividual Variability in Executive Functions but Not Speed of Processing or Conflict Resolution Predicts Performance Differences in Gait Speed in Older Adults

    PubMed Central

    Mahoney, Jeannette; Verghese, Joe

    2014-01-01

    Background. The relationship between executive functions (EF) and gait speed is well established. However, with the exception of dual tasking, the key components of EF that predict differences in gait performance have not been determined. Therefore, the current study was designed to determine whether processing speed, conflict resolution, and intraindividual variability in EF predicted variance in gait performance in single- and dual-task conditions. Methods. Participants were 234 nondemented older adults (mean age 76.48 years; 55% women) enrolled in a community-based cohort study. Gait speed was assessed using an instrumented walkway during single- and dual-task conditions. The flanker task was used to assess EF. Results. Results from the linear mixed effects model showed that (a) dual-task interference caused a significant dual-task cost in gait speed (estimate = 35.99; 95% CI = 33.19–38.80) and (b) of the cognitive predictors, only intraindividual variability was associated with gait speed (estimate = −.606; 95% CI = −1.11 to −.10). In unadjusted analyses, the three EF measures were related to gait speed in single- and dual-task conditions. However, in fully adjusted linear regression analysis, only intraindividual variability predicted performance differences in gait speed during dual tasking (B = −.901; 95% CI = −1.557 to −.245). Conclusion. Among the three EF measures assessed, intraindividual variability but not speed of processing or conflict resolution predicted performance differences in gait speed. PMID:24285744

  13. Image reconstructions from super-sampled data sets with resolution modeling in PET imaging.

    PubMed

    Li, Yusheng; Matej, Samuel; Metzler, Scott D

    2014-12-01

    Spatial resolution in positron emission tomography (PET) is still a limiting factor in many imaging applications. To improve the spatial resolution for an existing scanner with fixed crystal sizes, mechanical movements such as scanner wobbling and object shifting have been considered for PET systems. Multiple acquisitions from different positions can provide complementary information and increased spatial sampling. The objective of this paper is to explore an efficient and useful reconstruction framework to reconstruct super-resolution images from super-sampled low-resolution data sets. The authors introduce a super-sampling data acquisition model based on the physical processes with tomographic, downsampling, and shifting matrices as its building blocks. Based on the model, we extend the MLEM and Landweber algorithms to reconstruct images from super-sampled data sets. The authors also derive a backprojection-filtration-like (BPF-like) method for the super-sampling reconstruction. Furthermore, they explore variant methods for super-sampling reconstructions: the separate super-sampling resolution-modeling reconstruction and the reconstruction without downsampling to further improve image quality at the cost of more computation. The authors use simulated reconstruction of a resolution phantom to evaluate the three types of algorithms with different super-samplings at different count levels. Contrast recovery coefficient (CRC) versus background variability, as an image-quality metric, is calculated at each iteration for all reconstructions. The authors observe that all three algorithms can significantly and consistently achieve increased CRCs at fixed background variability and reduce background artifacts with super-sampled data sets at the same count levels. For the same super-sampled data sets, the MLEM method achieves better image quality than the Landweber method, which in turn achieves better image quality than the BPF-like method. The authors also demonstrate that the reconstructions from super-sampled data sets using a fine system matrix yield improved image quality compared to the reconstructions using a coarse system matrix. Super-sampling reconstructions with different count levels showed that the more spatial-resolution improvement can be obtained with higher count at a larger iteration number. The authors developed a super-sampling reconstruction framework that can reconstruct super-resolution images using the super-sampling data sets simultaneously with known acquisition motion. The super-sampling PET acquisition using the proposed algorithms provides an effective and economic way to improve image quality for PET imaging, which has an important implication in preclinical and clinical region-of-interest PET imaging applications.

  14. A Semiquantitative Framework for Gene Regulatory Networks: Increasing the Time and Quantitative Resolution of Boolean Networks

    PubMed Central

    Kerkhofs, Johan; Geris, Liesbet

    2015-01-01

    Boolean models have been instrumental in predicting general features of gene networks and more recently also as explorative tools in specific biological applications. In this study we introduce a basic quantitative and a limited time resolution to a discrete (Boolean) framework. Quantitative resolution is improved through the employ of normalized variables in unison with an additive approach. Increased time resolution stems from the introduction of two distinct priority classes. Through the implementation of a previously published chondrocyte network and T helper cell network, we show that this addition of quantitative and time resolution broadens the scope of biological behaviour that can be captured by the models. Specifically, the quantitative resolution readily allows models to discern qualitative differences in dosage response to growth factors. The limited time resolution, in turn, can influence the reachability of attractors, delineating the likely long term system behaviour. Importantly, the information required for implementation of these features, such as the nature of an interaction, is typically obtainable from the literature. Nonetheless, a trade-off is always present between additional computational cost of this approach and the likelihood of extending the model’s scope. Indeed, in some cases the inclusion of these features does not yield additional insight. This framework, incorporating increased and readily available time and semi-quantitative resolution, can help in substantiating the litmus test of dynamics for gene networks, firstly by excluding unlikely dynamics and secondly by refining falsifiable predictions on qualitative behaviour. PMID:26067297

  15. Towards a high resolution, integrated hydrology model of North America: Diagnosis of feedbacks between groundwater and land energy fluxes at continental scales.

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed; Condon, Laura

    2016-04-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Model results suggest that partitioning of plant transpiration to bare soil evaporation is a function of water table depth and later groundwater flow. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  16. Measurement and modeling of moist processes

    NASA Technical Reports Server (NTRS)

    Cotton, William; Starr, David; Mitchell, Kenneth; Fleming, Rex; Koch, Steve; Smith, Steve; Mailhot, Jocelyn; Perkey, Don; Tripoli, Greg

    1993-01-01

    The keynote talk summarized five years of work simulating observed mesoscale convective systems with the RAMS (Regional Atmospheric Modeling System) model. Excellent results are obtained when simulating squall line or other convective systems that are strongly forced by fronts or other lifting mechanisms. Less highly forced systems are difficult to model. The next topic in this colloquium was measurement of water vapor and other constituents of the hydrologic cycle. Impressive accuracy was shown measuring water vapor with both the airborne DIAL (Differential Absorption Lidar) system and the the ground-based Raman Lidar. NMC's plans for initializing land water hydrology in mesoscale models was presented before water vapor measurement concepts for GCIP were discussed. The subject of using satellite data to provide mesoscale moisture and wind analyses was next. Recent activities in modeling of moist processes in mesoscale systems was reported on. These modeling activities at the Canadian Atmospheric Environment Service (AES) used a hydrostatic, variable-resolution grid model. Next the spatial resolution effects of moisture budgets was discussed; in particular, the effects of temporal resolution on heat and moisture budgets for cumulus parameterization. The conclusion of this colloquium was on modeling scale interaction processes.

  17. Structural identifiability of cyclic graphical models of biological networks with latent variables.

    PubMed

    Wang, Yulin; Lu, Na; Miao, Hongyu

    2016-06-13

    Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and is thus of higher resolution in comparison with many existing approaches. Overall, this study provides a basis for systematic examination and refinement of graphical models of biological networks from the identifiability point of view, and it has a significant potential to be extended to more complex network structures or high-dimensional systems.

  18. Improving sea level simulation in Mediterranean regional climate models

    NASA Astrophysics Data System (ADS)

    Adloff, Fanny; Jordà, Gabriel; Somot, Samuel; Sevault, Florence; Arsouze, Thomas; Meyssignac, Benoit; Li, Laurent; Planton, Serge

    2017-08-01

    For now, the question about future sea level change in the Mediterranean remains a challenge. Previous climate modelling attempts to estimate future sea level change in the Mediterranean did not meet a consensus. The low resolution of CMIP-type models prevents an accurate representation of important small scales processes acting over the Mediterranean region. For this reason among others, the use of high resolution regional ocean modelling has been recommended in literature to address the question of ongoing and future Mediterranean sea level change in response to climate change or greenhouse gases emissions. Also, it has been shown that east Atlantic sea level variability is the dominant driver of the Mediterranean variability at interannual and interdecadal scales. However, up to now, long-term regional simulations of the Mediterranean Sea do not integrate the full sea level information from the Atlantic, which is a substantial shortcoming when analysing Mediterranean sea level response. In the present study we analyse different approaches followed by state-of-the-art regional climate models to simulate Mediterranean sea level variability. Additionally we present a new simulation which incorporates improved information of Atlantic sea level forcing at the lateral boundary. We evaluate the skills of the different simulations in the frame of long-term hindcast simulations spanning from 1980 to 2012 analysing sea level variability from seasonal to multidecadal scales. Results from the new simulation show a substantial improvement in the modelled Mediterranean sea level signal. This confirms that Mediterranean mean sea level is strongly influenced by the Atlantic conditions, and thus suggests that the quality of the information in the lateral boundary conditions (LBCs) is crucial for the good modelling of Mediterranean sea level. We also found that the regional differences inside the basin, that are induced by circulation changes, are model-dependent and thus not affected by the LBCs. Finally, we argue that a correct configuration of LBCs in the Atlantic should be used for future Mediterranean simulations, which cover hindcast period, but also for scenarios.

  19. Mesoscale Effects on Carbon Export: A Global Perspective

    NASA Astrophysics Data System (ADS)

    Harrison, Cheryl S.; Long, Matthew C.; Lovenduski, Nicole S.; Moore, Jefferson K.

    2018-04-01

    Carbon export from the surface to the deep ocean is a primary control on global carbon budgets and is mediated by plankton that are sensitive to physical forcing. Earth system models generally do not resolve ocean mesoscale circulation (O(10-100) km), scales that strongly affect transport of nutrients and plankton. The role of mesoscale circulation in modulating export is evaluated by comparing global ocean simulations conducted at 1° and 0.1° horizontal resolution. Mesoscale resolution produces a small reduction in globally integrated export production (<2%) however, the impact on local export production can be large (±50%), with compensating effects in different ocean basins. With mesoscale resolution, improved representation of coastal jets block off-shelf transport, leading to lower export in regions where shelf-derived nutrients fuel production. Export is further reduced in these regions by resolution of mesoscale turbulence, which restricts the spatial area of production. Maximum mixed layer depths are narrower and deeper across the Subantarctic at higher resolution, driving locally stronger nutrient entrainment and enhanced summer export production. In energetic regions with seasonal blooms, such as the Subantarctic and North Pacific, internally generated mesoscale variability drives substantial interannual variation in local export production. These results suggest that biogeochemical tracer dynamics show different sensitivities to transport biases than temperature and salinity, which should be considered in the formulation and validation of physical parameterizations. Efforts to compare estimates of export production from observations and models should account for large variability in space and time expected for regions strongly affected by mesoscale circulation.

  20. Robust Hydrological Forecasting for High-resolution Distributed Models Using a Unified Data Assimilation Approach

    NASA Astrophysics Data System (ADS)

    Hernandez, F.; Liang, X.

    2017-12-01

    Reliable real-time hydrological forecasting, to predict important phenomena such as floods, is invaluable to the society. However, modern high-resolution distributed models have faced challenges when dealing with uncertainties that are caused by the large number of parameters and initial state estimations involved. Therefore, to rely on these high-resolution models for critical real-time forecast applications, considerable improvements on the parameter and initial state estimation techniques must be made. In this work we present a unified data assimilation algorithm called Optimized PareTo Inverse Modeling through Inverse STochastic Search (OPTIMISTS) to deal with the challenge of having robust flood forecasting for high-resolution distributed models. This new algorithm combines the advantages of particle filters and variational methods in a unique way to overcome their individual weaknesses. The analysis of candidate particles compares model results with observations in a flexible time frame, and a multi-objective approach is proposed which attempts to simultaneously minimize differences with the observations and departures from the background states by using both Bayesian sampling and non-convex evolutionary optimization. Moreover, the resulting Pareto front is given a probabilistic interpretation through kernel density estimation to create a non-Gaussian distribution of the states. OPTIMISTS was tested on a low-resolution distributed land surface model using VIC (Variable Infiltration Capacity) and on a high-resolution distributed hydrological model using the DHSVM (Distributed Hydrology Soil Vegetation Model). In the tests streamflow observations are assimilated. OPTIMISTS was also compared with a traditional particle filter and a variational method. Results show that our method can reliably produce adequate forecasts and that it is able to outperform those resulting from assimilating the observations using a particle filter or an evolutionary 4D variational method alone. In addition, our method is shown to be efficient in tackling high-resolution applications with robust results.

  1. Air-Sea Interaction Processes in Low and High-Resolution Coupled Climate Model Simulations for the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Porto da Silveira, I.; Zuidema, P.; Kirtman, B. P.

    2017-12-01

    The rugged topography of the Andes Cordillera along with strong coastal upwelling, strong sea surface temperatures (SST) gradients and extensive but geometrically-thin stratocumulus decks turns the Southeast Pacific (SEP) into a challenge for numerical modeling. In this study, hindcast simulations using the Community Climate System Model (CCSM4) at two resolutions were analyzed to examine the importance of resolution alone, with the parameterizations otherwise left unchanged. The hindcasts were initialized on January 1 with the real-time oceanic and atmospheric reanalysis (CFSR) from 1982 to 2003, forming a 10-member ensemble. The two resolutions are (0.1o oceanic and 0.5o atmospheric) and (1.125o oceanic and 0.9o atmospheric). The SST error growth in the first six days of integration (fast errors) and those resulted from model drift (saturated errors) are assessed and compared towards evaluating the model processes responsible for the SST error growth. For the high-resolution simulation, SST fast errors are positive (+0.3oC) near the continental borders and negative offshore (-0.1oC). Both are associated with a decrease in cloud cover, a weakening of the prevailing southwesterly winds and a reduction of latent heat flux. The saturated errors possess a similar spatial pattern, but are larger and are more spatially concentrated. This suggests that the processes driving the errors already become established within the first week, in contrast to the low-resolution simulations. These, instead, manifest too-warm SSTs related to too-weak upwelling, driven by too-strong winds and Ekman pumping. Nevertheless, the ocean surface tends to be cooler in the low-resolution simulation than the high-resolution due to a higher cloud cover. Throughout the integration, saturated SST errors become positive and could reach values up to +4oC. These are accompanied by upwelling dumping and a decrease in cloud cover. High and low resolution models presented notable differences in how SST errors variability drove atmospheric changes, especially because the high resolution is sensitive to resurgence regions. This allows the model to resolve cloud heights and establish different radiative feedbacks.

  2. The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drover, Damion, Ryan

    2011-12-01

    One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would thereforemore » be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a laser altimetry remote sensing method, obtained from the USDA Forest Service at Savannah River Site. The specific DEM resolutions were chosen because they are common grid cell sizes (10m, 30m, and 50m) used in mapping for management applications and in research. The finer resolutions (2m and 5m) were chosen for the purpose of determining how finer resolutions performed compared with coarser resolutions at predicting wetness and related soil attributes. The wetness indices were compared across DEMs and with each other in terms of quantile and distribution differences, then in terms of how well they each correlated with measured soil attributes. Spatial and non-spatial analyses were performed, and predictions using regression and geostatistics were examined for efficacy relative to each DEM resolution. Trends in the raw data and analysis results were also revealed.« less

  3. Overview of Proposal on High Resolution Climate Model Simulations of Recent Hurricane and Typhoon Activity: The Impact of SSTs and the Madden Julian Oscillation

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Kang, In-Sik; Reale, Oreste

    2009-01-01

    This talk gives an update on the progress and further plans for a coordinated project to carry out and analyze high-resolution simulations of tropical storm activity with a number of state-of-the-art global climate models. Issues addressed include, the mechanisms by which SSTs control tropical storm. activity on inter-annual and longer time scales, the modulation of that activity by the Madden Julian Oscillation on sub-seasonal time scales, as well as the sensitivity of the results to model formulation. The project also encourages companion coarser resolution runs to help assess resolution dependence, and. the ability of the models to capture the large-scale and long-terra changes in the parameters important for hurricane development. Addressing the above science questions is critical to understanding the nature of the variability of the Asian-Australian monsoon and its regional impacts, and thus CLIVAR RAMP fully endorses the proposed tropical storm simulation activity. The project is open to all interested organizations and investigators, and the results from the runs will be shared among the participants, as well as made available to the broader scientific community for analysis.

  4. Interannual Variability of the Patagonian Shelf Circulation and Cross-Shelf Exchange

    NASA Astrophysics Data System (ADS)

    Combes, V.; Matano, R. P.

    2016-02-01

    Observational studies have already established the general mean circulation and hydrographic characteristics of the Patagonian shelf waters using data from in situ observation, altimetry and more recently from the Aquarius satellite sea surface salinity, but the paucity of those data in time or below the surface leave us with an incomplete picture of the shelf circulation and of its variability. This study discusses the variability of the Patagonian central shelf circulation and off-shelf transport using a high-resolution model experiment for the period 1979-2012. The model solution shows high skill in reproducing the best-known aspects of the shelf and deep-ocean circulations. This study links the variability of the central shelf circulation and off-shelf transport to the wind variability, southern shelf transport variability and large-scale current variability. We find that while the inner and central shelf circulation are principally wind driven, the contribution of the Brazil/Malvinas Confluence (BMC) variability becomes important in the outer shelf and along the shelf break. The model also indicates that whereas the location of the off-shelf transport is controlled by the BMC, its variability is modulated by the southern shelf transport. The variability of the subtropical shelf front, where the fresh southern shelf waters encounters the saline northern shelf waters, is also presented in this study.

  5. High-resolution numerical approximation of traffic flow problems with variable lanes and free-flow velocities.

    PubMed

    Zhang, Peng; Liu, Ru-Xun; Wong, S C

    2005-05-01

    This paper develops macroscopic traffic flow models for a highway section with variable lanes and free-flow velocities, that involve spatially varying flux functions. To address this complex physical property, we develop a Riemann solver that derives the exact flux values at the interface of the Riemann problem. Based on this solver, we formulate Godunov-type numerical schemes to solve the traffic flow models. Numerical examples that simulate the traffic flow around a bottleneck that arises from a drop in traffic capacity on the highway section are given to illustrate the efficiency of these schemes.

  6. The CSIRO Mk3L climate system model v1.0 coupled to the CABLE land surface scheme v1.4b: evaluation of the control climatology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiafu; Phipps, S.J.; Pitman, A.J.

    The CSIRO Mk3L climate system model, a reduced-resolution coupled general circulation model, has previously been described in this journal. The model is configured for millennium scale or multiple century scale simulations. This paper reports the impact of replacing the relatively simple land surface scheme that is the default parameterisation in Mk3L with a sophisticated land surface model that simulates the terrestrial energy, water and carbon balance in a physically and biologically consistent way. An evaluation of the new model s near-surface climatology highlights strengths and weaknesses, but overall the atmospheric variables, including the near-surface air temperature and precipitation, are simulatedmore » well. The impact of the more sophisticated land surface model on existing variables is relatively small, but generally positive. More significantly, the new land surface scheme allows an examination of surface carbon-related quantities including net primary productivity which adds significantly to the capacity of Mk3L. Overall, results demonstrate that this reduced-resolution climate model is a good foundation for exploring long time scale phenomena. The addition of the more sophisticated land surface model enables an exploration of important Earth System questions including land cover change and abrupt changes in terrestrial carbon storage.« less

  7. Crop Yield Simulations Using Multiple Regional Climate Models in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D.; Kafatos, M.; Kim, S.; Kim, J.; Walko, R. L.

    2013-12-01

    Agricultural productivity (described by crop yield) is strongly dependent on climate conditions determined by meteorological parameters (e.g., temperature, rainfall, and solar radiation). California is the largest producer of agricultural products in the United States, but crops in associated arid and semi-arid regions live near their physiological limits (e.g., in hot summer conditions with little precipitation). Thus, accurate climate data are essential in assessing the impact of climate variability on agricultural productivity in the Southwestern United States and other arid regions. To address this issue, we produced simulated climate datasets and used them as input for the crop production model. For climate data, we employed two different regional climate models (WRF and OLAM) using a fine-resolution (8km) grid. Performances of the two different models are evaluated in a fine-resolution regional climate hindcast experiment for 10 years from 2001 to 2010 by comparing them to the North American Regional Reanalysis (NARR) dataset. Based on this comparison, multi-model ensembles with variable weighting are used to alleviate model bias and improve the accuracy of crop model productivity over large geographic regions (county and state). Finally, by using a specific crop-yield simulation model (APSIM) in conjunction with meteorological forcings from the multi-regional climate model ensemble, we demonstrate the degree to which maize yields are sensitive to the regional climate in the Southwestern United States.

  8. The QBO in Two GISS Global Climate Models: 1. Generation of the QBO

    NASA Technical Reports Server (NTRS)

    Rind, David; Jonas, Jeffrey A.; Balachandra, Nambath; Schmidt, Gavin A.; Lean, Judith

    2014-01-01

    The adjustment of parameterized gravity waves associated with model convection and finer vertical resolution has made possible the generation of the quasi-biennial oscillation (QBO) in two Goddard Institute for Space Studies (GISS) models, GISS Middle Atmosphere Global Climate Model III and a climate/middle atmosphere version of Model E2. Both extend from the surface to 0.002 hPa, with 2deg × 2.5deg resolution and 102 layers. Many realistic features of the QBO are simulated, including magnitude and variability of its period and amplitude. The period itself is affected by the magnitude of parameterized convective gravity wave momentum fluxes and interactive ozone (which also affects the QBO amplitude and variability), among other forcings. Although varying sea surface temperatures affect the parameterized momentum fluxes, neither aspect is responsible for the modeled variation in QBO period. Both the parameterized and resolved waves act to produce the respective easterly and westerly wind descent, although their effect is offset in altitude at each level. The modeled and observed QBO influences on tracers in the stratosphere, such as ozone, methane, and water vapor are also discussed. Due to the link between the gravity wave parameterization and the models' convection, and the dependence on the ozone field, the models may also be used to investigate how the QBO may vary with climate change.

  9. High Resolution Habitat Suitability Modelling For Restricted-Range Hawaiian Alpine Arthropod Species

    NASA Astrophysics Data System (ADS)

    Stephenson, N. M.

    2016-12-01

    Mapping potentially suitable habitat is critical for effective species conservation and management but can be challenging in areas exhibiting complex heterogeneity. An approach that combines non-intrusive spatial data collection techniques and field data can lead to a better understanding of landscapes and species distributions. Nysius wekiuicola, commonly known as the wēkiu bug, is the most studied arthropod species endemic to the Maunakea summit in Hawai`i, yet details about its geographic distribution and habitat use remain poorly understood. To predict the geographic distribution of N. wekiuicola, MaxEnt habitat suitability models were generated from a diverse set of input variables, including fifteen years of species occurrence data, high resolution digital elevation models, surface mineralogy maps derived from hyperspectral remote sensing, and climate data. Model results indicate that elevation (78.2 percent), and the presence of nanocrystalline hematite surface minerals (13.7 percent) had the highest influence, with lesser contributions from aspect, slope, and other surface mineral classes. Climatic variables were not included in the final analysis due to auto-correlation and coarse spatial resolution. Biotic factors relating to predation and competition also likely dictate wēkiu bug capture patterns and influence our results. The wēkiu bug range and habitat suitability models generated as a result of this study will be directly incorporated into management and restoration goals for the summit region and can also be adapted for other arthropod species present, leading to a more holistic understanding of metacommunity dynamics. Key words: Microhabitat, Structure from Motion, Lidar, MaxEnt, Habitat Suitability

  10. The effects of temporal variability of mixed layer depth on primary productivity around Bermuda

    NASA Technical Reports Server (NTRS)

    Bissett, W. Paul; Meyers, Mark B.; Walsh, John J.; Mueller-Karger, Frank E.

    1994-01-01

    Temporal variations in primary production and surface chlorophyll concentrations, as measured by ship and satellite around Bermuda, were simulated with a numerical model. In the upper 450 m of the water column, population dynamics of a size-fractionated phytoplankton community were forced by daily changes of wind, light, grazing stress, and nutrient availability. The temporal variations of production and chlorophyll were driven by changes in nutrient introduction to the euphotic zone due to both high- and low-frequency changes of the mixed layer depth within 32 deg-34 deg N, 62 deg-64 deg W between 1979 and 1984. Results from the model derived from high-frequency (case 1) changes in the mixed layer depth showed variations in primary production and peak chlorophyll concentrations when compared with results from the model derived from low-frequency (case 2) mixed layer depth changes. Incorporation of size-fractionated plankton state variables in the model led to greater seasonal resolution of measured primary production and vertical chlorophyll profiles. The findings of this study highlight the possible inadequacy of estimating primary production in the sea from data of low-frequency temporal resolution and oversimplified biological simulations.

  11. Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations.

    NASA Astrophysics Data System (ADS)

    López López, Patricia; Wanders, Niko; Sutanudjaja, Edwin; Renzullo, Luigi; Sterk, Geert; Schellekens, Jaap; Bierkens, Marc

    2015-04-01

    The coarse spatial resolution of global hydrological models (typically > 0.25o) often limits their ability to resolve key water balance processes for many river basins and thus compromises their suitability for water resources management, especially when compared to locally-tunes river models. A possible solution to the problem may be to drive the coarse resolution models with high-resolution meteorological data as well as to assimilate ground-based and remotely-sensed observations of key water cycle variables. While this would improve the modelling resolution of the global model, the impact of prediction accuracy remains largely an open question. In this study we investigated the impact that assimilating streamflow and satellite soil moisture observations have on global hydrological model estimation, driven by coarse- and high-resolution meteorological observations, for the Murrumbidgee river basin in Australia. The PCR-GLOBWB global hydrological model is forced with downscaled global climatological data (from 0.5o downscaled to 0.1o resolution) obtained from the WATCH Forcing Data (WFDEI) and local high resolution gauging station based gridded datasets (0.05o), sourced from the Australian Bureau of Meteorology. Downscaled satellite derived soil moisture (from 0.5o downscaled to 0.1o resolution) from AMSR-E and streamflow observations collected from 25 gauging stations are assimilated using an ensemble Kalman filter. Several scenarios are analysed to explore the added value of data assimilation considering both local and global climatological data. Results show that the assimilation of streamflow observations result in the largest improvement of the model estimates. The joint assimilation of both streamflow and downscaled soil moisture observations leads to further improved in streamflow simulations (10% reduction in RMSE), mainly in the headwater catchments (up to 10,000 km2). Results also show that the added contribution of data assimilation, for both soil moisture and streamflow, is more pronounced when the global meteorological data are used to force the models. This is caused by the higher uncertainty and coarser resolution of the global forcing. This study demonstrates that it is possible to improve hydrological simulations forced by coarse resolution meteorological data with downscaled satellite soil moisture and streamflow observations and bring them closer to a hydrological model forced with local climatological data. These findings are important in light of the efforts that are currently done to go to global hyper-resolution modelling and can significantly help to advance this research.

  12. Weather extremes in very large, high-resolution ensembles: the weatherathome experiment

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Rosier, S.; Massey, N.; Rye, C.; Bowery, A.; Miller, J.; Otto, F.; Jones, R.; Wilson, S.; Mote, P.; Stone, D. A.; Yamazaki, Y. H.; Carrington, D.

    2011-12-01

    Resolution and ensemble size are often seen as alternatives in climate modelling. Models with sufficient resolution to simulate many classes of extreme weather cannot normally be run often enough to assess the statistics of rare events, still less how these statistics may be changing. As a result, assessments of the impact of external forcing on regional climate extremes must be based either on statistical downscaling from relatively coarse-resolution models, or statistical extrapolation from 10-year to 100-year events. Under the weatherathome experiment, part of the climateprediction.net initiative, we have compiled the Met Office Regional Climate Model HadRM3P to run on personal computer volunteered by the general public at 25 and 50km resolution, embedded within the HadAM3P global atmosphere model. With a global network of about 50,000 volunteers, this allows us to run time-slice ensembles of essentially unlimited size, exploring the statistics of extreme weather under a range of scenarios for surface forcing and atmospheric composition, allowing for uncertainty in both boundary conditions and model parameters. Current experiments, developed with the support of Microsoft Research, focus on three regions, the Western USA, Europe and Southern Africa. We initially simulate the period 1959-2010 to establish which variables are realistically simulated by the model and on what scales. Our next experiments are focussing on the Event Attribution problem, exploring how the probability of various types of extreme weather would have been different over the recent past in a world unaffected by human influence, following the design of Pall et al (2011), but extended to a longer period and higher spatial resolution. We will present the first results of the unique, global, participatory experiment and discuss the implications for the attribution of recent weather events to anthropogenic influence on climate.

  13. A diagnostic model for chronic hypersensitivity pneumonitis

    PubMed Central

    Johannson, Kerri A; Elicker, Brett M; Vittinghoff, Eric; Assayag, Deborah; de Boer, Kaïssa; Golden, Jeffrey A; Jones, Kirk D; King, Talmadge E; Koth, Laura L; Lee, Joyce S; Ley, Brett; Wolters, Paul J; Collard, Harold R

    2017-01-01

    The objective of this study was to develop a diagnostic model that allows for a highly specific diagnosis of chronic hypersensitivity pneumonitis using clinical and radiological variables alone. Chronic hypersensitivity pneumonitis and other interstitial lung disease cases were retrospectively identified from a longitudinal database. High-resolution CT scans were blindly scored for radiographic features (eg, ground-glass opacity, mosaic perfusion) as well as the radiologist’s diagnostic impression. Candidate models were developed then evaluated using clinical and radiographic variables and assessed by the cross-validated C-statistic. Forty-four chronic hypersensitivity pneumonitis and eighty other interstitial lung disease cases were identified. Two models were selected based on their statistical performance, clinical applicability and face validity. Key model variables included age, down feather and/or bird exposure, radiographic presence of ground-glass opacity and mosaic perfusion and moderate or high confidence in the radiographic impression of chronic hypersensitivity pneumonitis. Models were internally validated with good performance, and cut-off values were established that resulted in high specificity for a diagnosis of chronic hypersensitivity pneumonitis. PMID:27245779

  14. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    PubMed

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. An ensemble Kalman filter with a high-resolution atmosphere-ocean coupled model for tropical cyclone forecasts

    NASA Astrophysics Data System (ADS)

    Kunii, M.; Ito, K.; Wada, A.

    2015-12-01

    An ensemble Kalman filter (EnKF) using a regional mesoscale atmosphere-ocean coupled model was developed to represent the uncertainties of sea surface temperature (SST) in ensemble data assimilation strategies. The system was evaluated through data assimilation cycle experiments over a one-month period from July to August 2014, during which a tropical cyclone as well as severe rainfall events occurred. The results showed that the data assimilation cycle with the coupled model could reproduce SST distributions realistically even without updating SST and salinity during the data assimilation cycle. Therefore, atmospheric variables and radiation applied as a forcing to ocean models can control oceanic variables to some extent in the current data assimilation configuration. However, investigations of the forecast error covariance estimated in EnKF revealed that the correlation between atmospheric and oceanic variables could possibly lead to less flow-dependent error covariance for atmospheric variables owing to the difference in the time scales between atmospheric and oceanic variables. A verification of the analyses showed positive impacts of applying the ocean model to EnKF on precipitation forecasts. The use of EnKF with the coupled model system captured intensity changes of a tropical cyclone better than it did with an uncoupled atmosphere model, even though the impact on the track forecast was negligibly small.

  16. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe - Part 1: Model description and evaluation of meteorological predictions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sartelet, K.; Wu, S.-Y.; Seigneur, C.

    2013-02-01

    Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e. the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID) are conducted over western Europe. Part 1 describes the background information for the model comparison and simulation design, as well as the application of WRF for January and July 2001 over triple-nested domains in western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°. Six simulated meteorological variables (i.e. temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients of major meteorological variables. While the domainwide performance of T2, Q2, RH2, and WD10 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in WS10 and Precip even at 0.025°. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and subgrid-scale meteorological phenomena, due to inaccuracies in model initialization parameterization (e.g. lack of soil temperature and moisture nudging), limitations in the physical parameterizations of the planetary boundary layer (e.g. cloud microphysics, cumulus parameterizations, and ice nucleation treatments) as well as limitations in surface heat and moisture budget parameterizations (e.g. snow-related processes, subgrid-scale surface roughness elements, and urban canopy/heat island treatments and CO2 domes). While the use of finer grid resolutions of 0.125° and 0.025° shows some improvement for WS10, Precip, and some mesoscale events (e.g. strong forced convection and heavy precipitation), it does not significantly improve the overall statistical performance for all meteorological variables except for Precip. These results indicate a need to further improve the model representations of the above parameterizations at all scales.

  17. Climate Modeling: Ocean Cavities below Ice Shelves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Mark Roger

    The Accelerated Climate Model for Energy (ACME), a new initiative by the U.S. Department of Energy, includes unstructured-mesh ocean, land-ice, and sea-ice components using the Model for Prediction Across Scales (MPAS) framework. The ability to run coupled high-resolution global simulations efficiently on large, high-performance computers is a priority for ACME. Sub-ice shelf ocean cavities are a significant new capability in ACME, and will be used to better understand how changing ocean temperature and currents influence glacial melting and retreat. These simulations take advantage of the horizontal variable-resolution mesh and adaptive vertical coordinate in MPAS-Ocean, in order to place high resolutionmore » below ice shelves and near grounding lines.« less

  18. Is substrate composition a suitable predictor for deep-water coral occurrence on fine scales?

    NASA Astrophysics Data System (ADS)

    Bennecke, Swaantje; Metaxas, Anna

    2017-06-01

    Species distribution modelling can be applied to identify potentially suitable habitat for species with largely unknown distributions, such as many deep-water corals. Important variables influencing species occurrence in the deep sea, e.g. substrate composition, are often not included in these modelling approaches because high-resolution data are unavailable. We investigated the relationship between substrate composition and the occurrence of the two deep-water octocoral species Primnoa resedaeformis and Paragorgia arborea, which require hard substrate for attachment. On a scale of 10s of metres, we analysed images of the seafloor taken at two locations inside the Northeast Channel Coral Conservation Area in the Northwest Atlantic. We interpolated substrate composition over the sampling areas and determined the contribution of substrate classes, depth and slope to describe habitat suitability using maximum entropy modelling (Maxent). Substrate composition was similar at both sites - dominated by pebbles in a matrix of sand (>80%) with low percentages of suitable substrate for coral occurrence. Coral abundance was low at site 1 (0.9 colonies of P. resedaeformis per 100 m2) and high at site 2 (63 colonies of P. resedaeformis per 100 m2) indicating that substrate alone is not sufficient to explain varying patterns in coral occurrence. Spatial interpolations of substrate classes revealed the difficulty to accurately resolve sparsely distributed boulders (3-5% of substrate). Boulders were by far the most important variable in the habitat suitability model (HSM) for P. resedaeformis at site 1, indicating the fundamental influence of a substrate class that is the least abundant. At site 2, HSMs identified cobbles and sand/pebble as the most important variables for habitat suitability. However, substrate classes were correlated making it difficult to determine the influence of individual variables. To provide accurate information on habitat suitability for the two coral species, substrate composition needs to be quantified so that small fractions (<20% contribution of certain substrate class) of suitable substrate are resolved. While the collection and analysis of high-resolution data is costly and spatially limited, the required resolution is unlikely to be achieved in coarse-scale interpolations of substrate data.

  19. Streamflow simulation for continental-scale river basins

    NASA Astrophysics Data System (ADS)

    Nijssen, Bart; Lettenmaier, Dennis P.; Liang, Xu; Wetzel, Suzanne W.; Wood, Eric F.

    1997-04-01

    A grid network version of the two-layer variable infiltration capacity (VIC-2L) macroscale hydrologic model is described. VIC-2L is a hydrologically based soil- vegetation-atmosphere transfer scheme designed to represent the land surface in numerical weather prediction and climate models. The grid network scheme allows streamflow to be predicted for large continental rivers. Off-line (observed and estimated surface meteorological and radiative forcings) applications of the model to the Columbia River (1° latitude-longitude spatial resolution) and Delaware River (0.5° resolution) are described. The model performed quite well in both applications, reproducing the seasonal hydrograph and annual flow volumes to within a few percent. Difficulties in reproducing observed streamflow in the arid portion of the Snake River basin are attributed to groundwater-surface water interactions, which are not modeled by VIC-2L.

  20. Hydrologic impacts of land cover variability and change at seasonal to decadal time scales over North America, 1992-2016

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Vivoni, E. R.

    2017-12-01

    Land cover variability and change have been shown to influence the terrestrial hydrologic cycle by altering the partitioning of moisture and energy fluxes. However, the magnitude and directionality of the relationship between land cover and surface hydrology has been shown to vary substantially across regions. Here, we provide an assessment of the impacts of land cover change on hydrologic processes at seasonal (vegetation phenology) to decadal scales (land cover conversion) in the United States and Mexico. To this end, we combine time series of remotely-sensed land surface characteristics with land cover maps for different decades as input to the Variable Infiltration Capacity hydrologic model. Land surface characteristics (leaf area index, surface albedo, and canopy fraction derived from normalized difference vegetation index) were obtained from the Moderate Resolution Imaging Spectrometer (MODIS) at 8-day intervals over the period 2000-2016. Land cover maps representing conditions in 1992, 2001, and 2011 were derived by homogenizing the National Land Cover Database over the US and the INEGI Series I through V maps over Mexico. An additional map covering all of North America was derived from the most frequent land cover class observed in each pixel of the MODIS MOD12Q1 product during 2001-2013. Land surface characteristics were summarized over land cover fractions at 1/16 degree (6 km) resolution. For each land cover map, hydrologic simulations were conducted that covered the period 1980-2013, using the best-available, hourly meteorological forcings at a similar spatial resolution. Based on these simulations, we present a comparison of the contributions of land cover change and climate variability at seasonal to decadal scales on the hydrologic and energy budgets, identifying the dominant components through time and space. This work also offers a valuable dataset on land cover variability and its hydrologic response for continental-scale assessments and modeling.

  1. PP-SWAT: A phython-based computing software for efficient multiobjective callibration of SWAT

    USDA-ARS?s Scientific Manuscript database

    With enhanced data availability, distributed watershed models for large areas with high spatial and temporal resolution are increasingly used to understand water budgets and examine effects of human activities and climate change/variability on water resources. Developing parallel computing software...

  2. AUTOMATED PRODUCTION OF SEAGRASS MAPS FROM SIDESCAN SONAR IMAGERY: ACCURACY, VARIABILITY AND PATCH RESOLUTION

    EPA Science Inventory

    Maps of seagrass beds are useful for monitoring estuarine condition, managing habitats, and modeling estuarine processes. We recently developed inexpensive methods for collecting and classifying sidescan sonar (SSS) imagery for seagrass presence in turbid waters as shallow as 1-...

  3. Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States Climate Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.

    This study uses Weather Research and Forecast (WRF) model to evaluate the performance of six dynamical downscaled decadal historical simulations with 12-km resolution for a large domain (7200 x 6180 km) that covers most of North America. The initial and boundary conditions are from three global climate models (GCMs) and one reanalysis data. The GCMs employed in this study are the Geophysical Fluid Dynamics Laboratory Earth System Model with Generalized Ocean Layer Dynamics component, Community Climate System Model, version 4, and the Hadley Centre Global Environment Model, version 2-Earth System. The reanalysis data is from the National Centers for Environmentalmore » Prediction-US. Department of Energy Reanalysis II. We analyze the effects of bias correcting, the lateral boundary conditions and the effects of spectral nudging. We evaluate the model performance for seven surface variables and four upper atmospheric variables based on their climatology and extremes for seven subregions across the United States. The results indicate that the simulation’s performance depends on both location and the features/variable being tested. We find that the use of bias correction and/or nudging is beneficial in many situations, but employing these when running the RCM is not always an improvement when compared to the reference data. The use of an ensemble mean and median leads to a better performance in measuring the climatology, while it is significantly biased for the extremes, showing much larger differences than individual GCM driven model simulations from the reference data. This study provides a comprehensive evaluation of these historical model runs in order to make informed decisions when making future projections.« less

  4. Development and field validation of a regional, management-scale habitat model: A koala Phascolarctos cinereus case study.

    PubMed

    Law, Bradley; Caccamo, Gabriele; Roe, Paul; Truskinger, Anthony; Brassil, Traecey; Gonsalves, Leroy; McConville, Anna; Stanton, Matthew

    2017-09-01

    Species distribution models have great potential to efficiently guide management for threatened species, especially for those that are rare or cryptic. We used MaxEnt to develop a regional-scale model for the koala Phascolarctos cinereus at a resolution (250 m) that could be used to guide management. To ensure the model was fit for purpose, we placed emphasis on validating the model using independently-collected field data. We reduced substantial spatial clustering of records in coastal urban areas using a 2-km spatial filter and by modeling separately two subregions separated by the 500-m elevational contour. A bias file was prepared that accounted for variable survey effort. Frequency of wildfire, soil type, floristics and elevation had the highest relative contribution to the model, while a number of other variables made minor contributions. The model was effective in discriminating different habitat suitability classes when compared with koala records not used in modeling. We validated the MaxEnt model at 65 ground-truth sites using independent data on koala occupancy (acoustic sampling) and habitat quality (browse tree availability). Koala bellows ( n  = 276) were analyzed in an occupancy modeling framework, while site habitat quality was indexed based on browse trees. Field validation demonstrated a linear increase in koala occupancy with higher modeled habitat suitability at ground-truth sites. Similarly, a site habitat quality index at ground-truth sites was correlated positively with modeled habitat suitability. The MaxEnt model provided a better fit to estimated koala occupancy than the site-based habitat quality index, probably because many variables were considered simultaneously by the model rather than just browse species. The positive relationship of the model with both site occupancy and habitat quality indicates that the model is fit for application at relevant management scales. Field-validated models of similar resolution would assist in guiding management of conservation-dependent species.

  5. The influence of spatially and temporally high-resolution wind forcing on the power input to near-inertial waves in the ocean

    NASA Astrophysics Data System (ADS)

    Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten

    2013-04-01

    The estimated power required to sustain global general circulation in the ocean is about 2 TW. This power is supplied with wind stress and tides. Energy spectrum shows pronounced maxima at near-inertial frequency. Near-inertial waves excited by high-frequency winds represent an important source for deep ocean mixing since they can propagate into the deep ocean and dissipate far away from the generation sites. The energy input by winds to near-inertial waves has been studied mostly using slab ocean models and wind stress forcing with coarse temporal resolution (e.g. 6-hourly). Slab ocean models lack the ability to reproduce fundamental aspects of kinetic energy balance and systematically overestimate the wind work. Also, slab ocean models do not account the energy used for the mixed layer deepening or the energy radiating downward into the deep ocean. Coarse temporal resolution of the wind forcing strongly underestimates the near-inertial energy. To overcome this difficulty we use an eddy permitting ocean model with high-frequency wind forcing. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45 km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal and temporal resolution. We use high-resolution (1-hourly with 35 km horizontal resolution) and low-resolution winds (6-hourly with 250 km horizontal resolution). We address the following questions: Is the kinetic energy of near-inertial waves enhanced when high-resolution wind forcings are used? If so, is this due to higher level of overall wind variability or higher spatial or temporal resolution of wind forcing? How large is the power of near-inertial waves generated by winds? Our results show that near-inertial waves are enhanced and the near-inertial kinetic energy is two times higher (in the storm track regions 3.5 times higher) when high-resolution winds are used. Filtering high-resolution winds in space and time, the near-inertial kinetic energy reduces. The reduction is faster when a temporal filter is used suggesting that the high-frequency wind forcing is more efficient in generating near-inertial wave energy than the small-scale wind forcing. Using low-resolution wind forcing the wind generated power to near-inertial waves is 0.55 TW. When we use high-resolution wind forcing the result is 1.6 TW meaning that the result increases by 300%.

  6. Identification of Dust Source Regions at High-Resolution and Dynamics of Dust Source Mask over Southwest United States Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Sahoo, S.; Prasad, A. K.; Venkatesh, A. S.; Vukovic, A.; Nickovic, S.

    2015-12-01

    Identification and evaluation of sources of aeolian mineral dust is a critical task in the simulation of dust. Recently, time series of space based multi-sensor satellite images have been used to identify and monitor changes in the land surface characteristics. Modeling of windblown dust requires precise delineation of mineral dust source and its strength that varies over a region as well as seasonal and inter-annual variability due to changes in land use and land cover. Southwest USA is one of the major dust emission prone zone in North American continent where dust is generated from low lying dried-up areas with bare ground surface and they may be scattered or appear as point sources on high resolution satellite images. In the current research, various satellite derived variables have been integrated to produce a high-resolution dust source mask, at grid size of 250 m, using data such as digital elevation model, surface reflectance, vegetation cover, land cover class, and surface wetness. Previous dust source models have been adopted to produce a multi-parameter dust source mask using data from satellites such as Terra (Moderate Resolution Imaging Spectroradiometer - MODIS), and Landsat. The dust source mask model captures the topographically low regions with bare soil surface, dried-up river plains, and lakes which form important source of dust in southwest USA. The study region is also one of the hottest regions of USA where surface dryness, land use (agricultural use), and vegetation cover changes significantly leading to major changes in the areal coverage of potential dust source regions. A dynamic high resolution dust source mask have been produced to address intra-annual change in the aerial extent of bare dry surfaces. Time series of satellite derived data have been used to create dynamic dust source masks. A new dust source mask at 16 day interval allows enhanced detection of potential dust source regions that can be employed in the dust emission and transport pathways models for better estimation of emission of dust during dust storms, particulate air pollution, public health risk assessment tools and decision support systems.

  7. On the Representation of Subgrid Microtopography Effects in Process-based Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Jan, A.; Painter, S. L.; Coon, E. T.

    2017-12-01

    Increased availability of high-resolution digital elevation are enabling process-based hydrologic modeling on finer and finer scales. However, spatial variability in surface elevation (microtopography) exists below the scale of a typical hyper-resolution grid cell and has the potential to play a significant role in water retention, runoff, and surface/subsurface interactions. Though the concept of microtopographic features (depressions, obstructions) and the associated implications on flow and discharge are well established, representing those effects in watershed-scale integrated surface/subsurface hydrology models remains a challenge. Using the complex and coupled hydrologic environment of the Arctic polygonal tundra as an example, we study the effects of submeter topography and present a subgrid model parameterized by small-scale spatial heterogeneities for use in hyper-resolution models with polygons at a scale of 15-20 meters forming the surface cells. The subgrid model alters the flow and storage terms in the diffusion wave equation for surface flow. We compare our results against sub-meter scale simulations (acts as a benchmark for our simulations) and hyper-resolution models without the subgrid representation. The initiation of runoff in the fine-scale simulations is delayed and the recession curve is slowed relative to simulated runoff using the hyper-resolution model with no subgrid representation. Our subgrid modeling approach improves the representation of runoff and water retention relative to models that ignore subgrid topography. We evaluate different strategies for parameterizing subgrid model and present a classification-based method to efficiently move forward to larger landscapes. This work was supported by the Interoperable Design of Extreme-scale Application Software (IDEAS) project and the Next-Generation Ecosystem Experiments-Arctic (NGEE Arctic) project. NGEE-Arctic is supported by the Office of Biological and Environmental Research in the DOE Office of Science.

  8. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    NASA Astrophysics Data System (ADS)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  9. Implementing microscopic charcoal in a global climate-aerosol model

    NASA Astrophysics Data System (ADS)

    Gilgen, Anina; Lohmann, Ulrike; Brügger, Sandra; Adolf, Carole; Ickes, Luisa

    2017-04-01

    Information about past fire activity is crucial to validate fire models and to better understand their deficiencies. Several paleofire records exist, among them ice cores and sediments, which preserve fire tracers like levoglucosan, vanillic acid, or charcoal particles. In this work, we implement microscopic charcoal particles (maximum dimension 10-100 μm) into the global climate-aerosol model ECHAM6.3HAM2.3. Since we are not aware of any reliable estimates of microscopic charcoal emissions, we scaled black carbon emissions from GFAS to capture the charcoal fluxes from a calibration dataset. After that, model results were compared with a validation dataset. The coarse model resolution (T63L31; 1.9°x1.9°) impedes the model to capture local variability of charcoal fluxes. However, variability on the global scale is pronounced due to highly-variable fire emissions. In future, we plan to model charcoal fluxes in the past 1-2 centuries using fire emissions provided from fire models. Furthermore, we intend to compare modelled charcoal fluxes from prescribed fire emissions with those calculated by an interactive fire model.

  10. Moving towards Hyper-Resolution Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Rouf, T.; Maggioni, V.; Houser, P.; Mei, Y.

    2017-12-01

    Developing a predictive capability for terrestrial hydrology across landscapes, with water, energy and nutrients as the drivers of these dynamic systems, faces the challenge of scaling meter-scale process understanding to practical modeling scales. Hyper-resolution land surface modeling can provide a framework for addressing science questions that we are not able to answer with coarse modeling scales. In this study, we develop a hyper-resolution forcing dataset from coarser resolution products using a physically based downscaling approach. These downscaling techniques rely on correlations with landscape variables, such as topography, roughness, and land cover. A proof-of-concept has been implemented over the Oklahoma domain, where high-resolution observations are available for validation purposes. Hourly NLDAS (North America Land Data Assimilation System) forcing data (i.e., near-surface air temperature, pressure, and humidity) have been downscaled to 500m resolution over the study area for 2015-present. Results show that correlation coefficients between the downscaled temperature dataset and ground observations are consistently higher than the ones between the NLDAS temperature data at their native resolution and ground observations. Not only correlation coefficients are higher, but also the deviation around the 1:1 line in the density scatterplots is smaller for the downscaled dataset than the original one with respect to the ground observations. Results are therefore encouraging as they demonstrate that the 500m temperature dataset has a good agreement with the ground information and can be adopted to force the land surface model for soil moisture estimation. The study has been expanded to wind speed and direction, incident longwave and shortwave radiation, pressure, and precipitation. Precipitation is well known to vary dramatically with elevation and orography. Therefore, we are pursuing a downscaling technique based on both topographical and vegetation characteristics.

  11. Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data

    NASA Astrophysics Data System (ADS)

    Moradizadeh, Mina; Saradjian, Mohammad R.

    2018-03-01

    Microwave remote sensing provides a unique capability for soil parameter retrievals. Therefore, various soil parameters estimation models have been developed using brightness temperature (BT) measured by passive microwave sensors. Due to the low resolution of satellite microwave radiometer data, the main goal of this study is to develop a downscaling approach to improve the spatial resolution of soil moisture estimates with the use of higher resolution visible/infrared sensor data. Accordingly, after the soil parameters have been obtained using Simultaneous Land Parameters Retrieval Model algorithm, the downscaling method has been applied to the soil moisture estimations that have been validated against in situ soil moisture data. Advance Microwave Scanning Radiometer-EOS BT data in Soil Moisture Experiment 2003 region in the south and north of Oklahoma have been used to this end. Results illustrated that the soil moisture variability is effectively captured at 5 km spatial scales without a significant degradation of the accuracy.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, Koichi; Leung, Lai-Yung R.; Zhao, Chun

    This study presents a diagnosis of a multi-resolution approach using the Model for Prediction Across Scales - Atmosphere (MPAS-A) for simulating regional climate. Four AMIP experiments are conducted for 1999-2009. In the first two experiments, MPAS-A is configured using global quasi-uniform grids at 120 km and 30 km grid spacing. In the other two experiments, MPAS-A is configured using variable-resolution (VR) mesh with local refinement at 30 km over North America and South America embedded inside a quasi-uniform domain at 120 km elsewhere. Precipitation and related fields in the four simulations are examined to determine how well the VR simulationsmore » reproduce the features simulated by the globally high-resolution model in the refined domain. In previous analyses of idealized aqua-planet simulations, the characteristics of the global high-resolution simulation in moist processes only developed near the boundary of the refined region. In contrast, the AMIP simulations with VR grids are able to reproduce the high-resolution characteristics across the refined domain, particularly in South America. This indicates the importance of finely resolved lower-boundary forcing such as topography and surface heterogeneity for the regional climate, and demonstrates the ability of the MPAS-A VR to replicate the large-scale moisture transport as simulated in the quasi-uniform high-resolution model. Outside of the refined domain, some upscale effects are detected through large-scale circulation but the overall climatic signals are not significant at regional scales. Our results provide support for the multi-resolution approach as a computationally efficient and physically consistent method for modeling regional climate.« less

  13. An Experimental High-Resolution Forecast System During the Vancouver 2010 Winter Olympic and Paralympic Games

    NASA Astrophysics Data System (ADS)

    Mailhot, J.; Milbrandt, J. A.; Giguère, A.; McTaggart-Cowan, R.; Erfani, A.; Denis, B.; Glazer, A.; Vallée, M.

    2014-01-01

    Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM-LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.

  14. Variable Grid Traveltime Tomography for Near-surface Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Cai, A.; Zhang, J.

    2017-12-01

    We present a new algorithm of traveltime tomography for imaging the subsurface with automated variable grids upon geological structures. The nonlinear traveltime tomography along with Tikhonov regularization using conjugate gradient method is a conventional method for near surface imaging. However, model regularization for any regular and even grids assumes uniform resolution. From geophysical point of view, long-wavelength and large scale structures can be reliably resolved, the details along geological boundaries are difficult to resolve. Therefore, we solve a traveltime tomography problem that automatically identifies large scale structures and aggregates grids within the structures for inversion. As a result, the number of velocity unknowns is reduced significantly, and inversion intends to resolve small-scale structures or the boundaries of large-scale structures. The approach is demonstrated by tests on both synthetic and field data. One synthetic model is a buried basalt model with one horizontal layer. Using the variable grid traveltime tomography, the resulted model is more accurate in top layer velocity, and basalt blocks, and leading to a less number of grids. The field data was collected in an oil field in China. The survey was performed in an area where the subsurface structures were predominantly layered. The data set includes 476 shots with a 10 meter spacing and 1735 receivers with a 10 meter spacing. The first-arrival traveltime of the seismogram is picked for tomography. The reciprocal errors of most shots are between 2ms and 6ms. The normal tomography results in fluctuations in layers and some artifacts in the velocity model. In comparison, the implementation of new method with proper threshold provides blocky model with resolved flat layer and less artifacts. Besides, the number of grids reduces from 205,656 to 4,930 and the inversion produces higher resolution due to less unknowns and relatively fine grids in small structures. The variable grid traveltime tomography provides an alternative imaging solution for blocky structures in the subsurface and builds a good starting model for waveform inversion and statics.

  15. Numerical Simulation of The Mediterranean Sea Using Diecast: Interaction Between Basin, Sub-basin and Local Scale Features and Natural Variability.

    NASA Astrophysics Data System (ADS)

    Fernández, V.; Dietrich, D. E.; Haney, R. L.; Tintoré, J.

    In situ and satellite data obtained during the last ten years have shown that the circula- tion in the Mediterranean Sea is extremely complex in space, with significant features ranging from mesoscale to sub-basin and basin scale, and highly variable in time, with mesoscale to seasonal and interannual signals. Also, the steep bottom topography and the variable atmospheric conditions from one sub-basin to another, make the circula- tion to be composed of numerous energetic and narrow coastal currents, density fronts and mesoscale structures that interact at sub-basin scale with the large scale circula- tion. To simulate numerically and better understand these features, besides high grid resolution, a low numerical dispersion and low physical dissipation ocean model is required. We present the results from a 1/8z horizontal resolution numerical simula- tion of the Mediterranean Sea using DieCAST ocean model, which meets the above requirements since it is stable with low general dissipation and uses accurate fourth- order-accurate approximations with low numerical dispersion. The simulations are carried out with climatological surface forcing using monthly mean winds and relax- ation towards climatological values of temperature and salinity. The model reproduces the main features of the large basin scale circulation, as well as the seasonal variabil- ity of sub-basin scale currents that are well documented by observations in straits and channels. In addition, DieCAST brings out natural fronts and eddies that usually do not appear in numerical simulations of the Mediterranean and that lead to a natural interannual variability. The role of this intrinsic variability in the general circulation will be discussed.

  16. Urban slum structure: integrating socioeconomic and land cover data to model slum evolution in Salvador, Brazil.

    PubMed

    Hacker, Kathryn P; Seto, Karen C; Costa, Federico; Corburn, Jason; Reis, Mitermayer G; Ko, Albert I; Diuk-Wasser, Maria A

    2013-10-20

    The expansion of urban slums is a key challenge for public and social policy in the 21st century. The heterogeneous and dynamic nature of slum communities limits the use of rigid slum definitions. A systematic and flexible approach to characterize, delineate and model urban slum structure at an operational resolution is essential to plan, deploy, and monitor interventions at the local and national level. We modeled the multi-dimensional structure of urban slums in the city of Salvador, a city of 3 million inhabitants in Brazil, by integrating census-derived socioeconomic variables and remotely-sensed land cover variables. We assessed the correlation between the two sets of variables using canonical correlation analysis, identified land cover proxies for the socioeconomic variables, and produced an integrated map of deprivation in Salvador at 30 m × 30 m resolution. The canonical analysis identified three significant ordination axes that described the structure of Salvador census tracts according to land cover and socioeconomic features. The first canonical axis captured a gradient from crowded, low-income communities with corrugated roof housing to higher-income communities. The second canonical axis discriminated among socioeconomic variables characterizing the most marginalized census tracts, those without access to sanitation or piped water. The third canonical axis accounted for the least amount of variation, but discriminated between high-income areas with white-painted or tiled roofs from lower-income areas. Our approach captures the socioeconomic and land cover heterogeneity within and between slum settlements and identifies the most marginalized communities in a large, complex urban setting. These findings indicate that changes in the canonical scores for slum areas can be used to track their evolution and to monitor the impact of development programs such as slum upgrading.

  17. Urban slum structure: integrating socioeconomic and land cover data to model slum evolution in Salvador, Brazil

    PubMed Central

    2013-01-01

    Background The expansion of urban slums is a key challenge for public and social policy in the 21st century. The heterogeneous and dynamic nature of slum communities limits the use of rigid slum definitions. A systematic and flexible approach to characterize, delineate and model urban slum structure at an operational resolution is essential to plan, deploy, and monitor interventions at the local and national level. Methods We modeled the multi-dimensional structure of urban slums in the city of Salvador, a city of 3 million inhabitants in Brazil, by integrating census-derived socioeconomic variables and remotely-sensed land cover variables. We assessed the correlation between the two sets of variables using canonical correlation analysis, identified land cover proxies for the socioeconomic variables, and produced an integrated map of deprivation in Salvador at 30 m × 30 m resolution. Results The canonical analysis identified three significant ordination axes that described the structure of Salvador census tracts according to land cover and socioeconomic features. The first canonical axis captured a gradient from crowded, low-income communities with corrugated roof housing to higher-income communities. The second canonical axis discriminated among socioeconomic variables characterizing the most marginalized census tracts, those without access to sanitation or piped water. The third canonical axis accounted for the least amount of variation, but discriminated between high-income areas with white-painted or tiled roofs from lower-income areas. Conclusions Our approach captures the socioeconomic and land cover heterogeneity within and between slum settlements and identifies the most marginalized communities in a large, complex urban setting. These findings indicate that changes in the canonical scores for slum areas can be used to track their evolution and to monitor the impact of development programs such as slum upgrading. PMID:24138776

  18. AMM15: a new high-resolution NEMO configuration for operational simulation of the European north-west shelf

    NASA Astrophysics Data System (ADS)

    Graham, Jennifer A.; O'Dea, Enda; Holt, Jason; Polton, Jeff; Hewitt, Helene T.; Furner, Rachel; Guihou, Karen; Brereton, Ashley; Arnold, Alex; Wakelin, Sarah; Castillo Sanchez, Juan Manuel; Mayorga Adame, C. Gabriela

    2018-02-01

    This paper describes the next-generation ocean forecast model for the European north-west shelf, which will become the basis of operational forecasts in 2018. This new system will provide a step change in resolution and therefore our ability to represent small-scale processes. The new model has a resolution of 1.5 km compared with a grid spacing of 7 km in the current operational system. AMM15 (Atlantic Margin Model, 1.5 km) is introduced as a new regional configuration of NEMO v3.6. Here we describe the technical details behind this configuration, with modifications appropriate for the new high-resolution domain. Results from a 30-year non-assimilative run using the AMM15 domain demonstrate the ability of this model to represent the mean state and variability of the region.

    Overall, there is an improvement in the representation of the mean state across the region, suggesting similar improvements may be seen in the future operational system. However, the reduction in seasonal bias is greater off-shelf than on-shelf. In the North Sea, biases are largely unchanged. Since there has been no change to the vertical resolution or parameterization schemes, performance improvements are not expected in regions where stratification is dominated by vertical processes rather than advection. This highlights the fact that increased horizontal resolution will not lead to domain-wide improvements. Further work is needed to target bias reduction across the north-west shelf region.

  19. Multi-Site and Multi-Variables Statistical Downscaling Technique in the Monsoon Dominated Region of Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2016-04-01

    South Asia is under the severe impacts of changing climate and global warming. The last two decades showed that climate change or global warming is happening and the first decade of 21st century is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C in 2010. Consequently, the spatio-temporal distribution and intensity of precipitation is badly effected and causes floods, cyclones and hurricanes in the region which further have impacts on agriculture, water, health etc. To cope with the situation, it is important to conduct impact assessment studies and take adaptation and mitigation remedies. For impact assessment studies, we need climate variables at higher resolution. Downscaling techniques are used to produce climate variables at higher resolution; these techniques are broadly divided into two types, statistical downscaling and dynamical downscaling. The target location of this study is the monsoon dominated region of Pakistan. One reason for choosing this area is because the contribution of monsoon rains in this area is more than 80 % of the total rainfall. This study evaluates a statistical downscaling technique which can be then used for downscaling climatic variables. Two statistical techniques i.e. quantile regression and copula modeling are combined in order to produce realistic results for climate variables in the area under-study. To reduce the dimension of input data and deal with multicollinearity problems, empirical orthogonal functions will be used. Advantages of this new method are: (1) it is more robust to outliers as compared to ordinary least squares estimates and other estimation methods based on central tendency and dispersion measures; (2) it preserves the dependence among variables and among sites and (3) it can be used to combine different types of distributions. This is important in our case because we are dealing with climatic variables having different distributions over different meteorological stations. The proposed model will be validated by using the (National Centers for Environmental Prediction / National Center for Atmospheric Research) NCEP/NCAR predictors for the period of 1960-1990 and validated for 1990-2000. To investigate the efficiency of the proposed model, it will be compared with the multivariate multiple regression model and with dynamical downscaling climate models by using different climate indices that describe the frequency, intensity and duration of the variables of interest. KEY WORDS: Climate change, Copula, Monsoon, Quantile regression, Spatio-temporal distribution.

  20. Techniques and resources for storm-scale numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Droegemeier, Kelvin; Grell, Georg; Doyle, James; Soong, Su-Tzai; Skamarock, William; Bacon, David; Staniforth, Andrew; Crook, Andrew; Wilhelmson, Robert

    1993-01-01

    The topics discussed include the following: multiscale application of the 5th-generation PSU/NCAR mesoscale model, the coupling of nonhydrostatic atmospheric and hydrostatic ocean models for air-sea interaction studies; a numerical simulation of cloud formation over complex topography; adaptive grid simulations of convection; an unstructured grid, nonhydrostatic meso/cloud scale model; efficient mesoscale modeling for multiple scales using variable resolution; initialization of cloud-scale models with Doppler radar data; and making effective use of future computing architectures, networks, and visualization software.

  1. A Catchment-Based Approach to Modeling Land Surface Processes in a GCM. Part 1; Model Structure

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Suarez, Max J.; Ducharne, Agnes; Stieglitz, Marc; Kumar, Praveen

    2000-01-01

    A new strategy for modeling the land surface component of the climate system is described. The strategy is motivated by an arguable deficiency in most state-of-the-art land surface models (LSMs), namely the disproportionately higher emphasis given to the formulation of one-dimensional, vertical physics relative to the treatment of horizontal heterogeneity in surface properties -- particularly subgrid soil moisture variability and its effects on runoff generation. The new strategy calls for the partitioning of the continental surface into a mosaic of hydrologic catchments, delineated through analysis of high-resolution surface elevation data. The effective "grid" used for the land surface is therefore not specified by the overlying atmospheric grid. Within each catchment, the variability of soil moisture is related to characteristics of the topography and to three bulk soil moisture variables through a well-established model of catchment processes. This modeled variability allows the partitioning of the catchment into several areas representing distinct hydrological regimes, wherein distinct (regime-specific) evaporation and runoff parameterizations are applied. Care is taken to ensure that the deficiencies of the catchment model in regions of little to moderate topography are minimized.

  2. Contribution of high resolution remote sensing data to the modeling of the snow cover the in Atlas Mountains

    NASA Astrophysics Data System (ADS)

    Baba, Wassim; Gascoin, Simon; Hanich, Lahoucine; Kinnard, Christophe

    2017-04-01

    Snow melt from the Atlas Mountains watersheds represent an important water resource for the semi-arid, cultivated, lowlands. Due to the high incoming solar radiation and low precipitation, the spatial-temporal variability of the snowpack is expected to be strongly influenced by the topography. We explore this hypothesis using a distributed energy balance snow model (SnowModel) in the experimental watershed of the Rheraya River in Morocco (225 km2). The digital elevation model (DEM) in SnowModel is used for the computation of the gridded meteorological forcing from the automatic weather stations data. We acquired three Pléiades stereo pairs in to produce an accurate, high resolution DEM of the Rheraya watershed at 4 m posting. Then, the DEM was resampled to different spatial resolutions (8 m, 30 m, 90 m, 250 m and 500 m) to simulate the snowpack evolution over 2008-2009 snow season. As validation data we used a time series of 15 maps of the snow cover area (SCA) from Formosat-2 imagery over the same snow season in the upper Rheraya watershed. These maps have a resolution of 8 m, which enables to capture small-scale variability in the snow cover. We found that the simulations at 90 m, 30 m and 8 m yield similar results at the catchment scale, with significant differences in areas of very steep topography only. From February to April, an overall good agreement was observed between the simulated SCA and the Formosat-2 SCA at 8 m and 90 m. Before the melting season, true positive (TP) column of confusion matrix is close to 1, but it drops to 0.6 during the melting season. Heidke Skill Score is higher than 0.7 for the most of the validation dates and averages 0.8. On the contrary, 500 m simulation underestimates the SCA throughout the snow season and the TP score is always inferior to the one obtained at 8 m and 90 m. We further analyzed the effect of topography by comparing the distribution of meteorological and snowpack variables along north-south and east-west transects. This analysis indicates that the impact of the topography on the simulated SWE and snow melt is mainly driven by changes in the solar radiations and the precipitations.

  3. Current Status and Challenges of Atmospheric Data Assimilation

    NASA Astrophysics Data System (ADS)

    Atlas, R. M.; Gelaro, R.

    2016-12-01

    The issues of modern atmospheric data assimilation are fairly simple to comprehend but difficult to address, involving the combination of literally billions of model variables and tens of millions of observations daily. In addition to traditional meteorological variables such as wind, temperature pressure and humidity, model state vectors are being expanded to include explicit representation of precipitation, clouds, aerosols and atmospheric trace gases. At the same time, model resolutions are approaching single-kilometer scales globally and new observation types have error characteristics that are increasingly non-Gaussian. This talk describes the current status and challenges of atmospheric data assimilation, including an overview of current methodologies, the difficulty of estimating error statistics, and progress toward coupled earth system analyses.

  4. WaterWorld, a spatial hydrological model applied at scales from local to global: key challenges to local application

    NASA Astrophysics Data System (ADS)

    Burke, Sophia; Mulligan, Mark

    2017-04-01

    WaterWorld is a widely used spatial hydrological policy support system. The last user census indicates regular use by 1029 institutions across 141 countries. A key feature of WaterWorld since 2001 is that it comes pre-loaded with all of the required data for simulation anywhere in the world at a 1km or 1 ha resolution. This means that it can be easily used, without specialist technical ability, to examine baseline hydrology and the impacts of scenarios for change or management interventions to support policy formulation, hence its labelling as a policy support system. WaterWorld is parameterised by an extensive global gridded database of more than 600 variables, developed from many sources, since 1998, the so-called simTerra database. All of these data are available globally at 1km resolution and some variables (terrain, land cover, urban areas, water bodies) are available globally at 1ha resolution. If users have access to better data than is pre-loaded, they can upload their own data. WaterWorld is generally applied at the national or basin scale at 1km resolution, or locally (for areas of <10,000km2) at 1ha resolution, though continental (1km resolution) and global (10km resolution) applications are possible so it is a model with local to global applications. WaterWorld requires some 140 maps to run including monthly climate data, land cover and use, terrain, population, water bodies and more. Whilst publically-available terrain and land cover data are now well developed for local scale application, climate and land use data remain a challenge, with most global products being available at 1km or 10km resolution or worse, which is rather coarse for local application. As part of the EartH2Observe project we have used WFDEI (WATCH Forcing Data methodology applied to ERA-Interim data) at 1km resolution to provide an alternative input to WaterWorld's preloaded climate data. Here we examine the impacts of that on key hydrological outputs: water balance, water quality and outline the remaining challenges of using datasets like these for local scale application.

  5. Mechanisms of the 40-70 Day Variability in the Yucatan Channel Volume Transport

    NASA Astrophysics Data System (ADS)

    van Westen, René M.; Dijkstra, Henk A.; Klees, Roland; Riva, Riccardo E. M.; Slobbe, D. Cornelis; van der Boog, Carine G.; Katsman, Caroline A.; Candy, Adam S.; Pietrzak, Julie D.; Zijlema, Marcel; James, Rebecca K.; Bouma, Tjeerd J.

    2018-02-01

    The Yucatan Channel connects the Caribbean Sea with the Gulf of Mexico and is the main outflow region of the Caribbean Sea. Moorings in the Yucatan Channel show high-frequent variability in kinetic energy (50-100 days) and transport (20-40 days), but the physical mechanisms controlling this variability are poorly understood. In this study, we show that the short-term variability in the Yucatan Channel transport has an upstream origin and arises from processes in the North Brazil Current. To establish this connection, we use data from altimetry and model output from several high resolution global models. A significant 40-70 day variability is found in the sea surface height in the North Brazil Current retroflection region with a propagation toward the Lesser Antilles. The frequency of variability is generated by intrinsic processes associated with the shedding of eddies, rather than by atmospheric forcing. This sea surface height variability is able to pass the Lesser Antilles, it propagates westward with the background ocean flow in the Caribbean Sea and finally affects the variability in the Yucatan Channel volume transport.

  6. The resolution sensitivity of the Asian summer monsoon and its inter-model comparison between MRI-AGCM and MetUM

    NASA Astrophysics Data System (ADS)

    Ogata, Tomomichi; Johnson, Stephanie J.; Schiemann, Reinhard; Demory, Marie-Estelle; Mizuta, Ryo; Yoshida, Kohei; Osamu Arakawa

    2017-11-01

    In this study, we compare the resolution sensitivity of the Asian Summer Monsoon (ASM) in two Atmospheric General Circulation Models (AGCMs): the MRI-AGCM and the MetUM. We analyze the MetUM at three different resolutions, N96 (approximately 200-km mesh on the equator), N216 (90-km mesh) and N512 (40-km mesh), and the MRI-AGCM at TL95 (approximately 180-km mesh on the equator), TL319 (60-km mesh), and TL959 (20-km mesh). The MRI-AGCM and the MetUM both show decreasing precipitation over the western Pacific with increasing resolution, but their precipitation responses differ over the Indian Ocean. In MRI-AGCM, a large precipitation increase appears off the equator (5-20°N). In MetUM, this off-equatorial precipitation increase is less significant and precipitation decreases over the equator. Moisture budget analysis demonstrates that a changing in moisture flux convergence at higher resolution is related to the precipitation response. Orographic effects, intra-seasonal variability and the representation of the meridional thermal gradient are explored as possible causes of the resolution sensitivity. Both high-resolution AGCMs (TL959 and N512) can represent steep topography, which anchors the rainfall pattern over south Asia and the Maritime Continent. In MRI-AGCM, representation of low pressure systems in TL959 also contributes to the rainfall pattern. Furthermore, the seasonal evolution of the meridional thermal gradient appears to be more accurate at higher resolution, particularly in the MRI-AGCM. These findings emphasize that the impact of resolution is only robust across the two AGCMs for some features of the ASM, and highlights the importance of multi-model studies of GCM resolution sensitivity.

  7. A framework for global river flood risk assessment

    NASA Astrophysics Data System (ADS)

    Winsemius, H. C.; Van Beek, L. P. H.; Bouwman, A.; Ward, P. J.; Jongman, B.

    2012-04-01

    There is an increasing need for strategic global assessments of flood risks. Such assessments may be required by: (a) International Financing Institutes and Disaster Management Agencies to evaluate where, when, and which investments in flood risk mitigation are most required; (b) (re-)insurers, who need to determine their required coverage capital; and (c) large companies to account for risks of regional investments. In this contribution, we propose a framework for global river flood risk assessment. The framework combines coarse scale resolution hazard probability distributions, derived from global hydrological model runs (typical scale about 0.5 degree resolution) with high resolution estimates of exposure indicators. The high resolution is required because floods typically occur at a much smaller scale than the typical resolution of global hydrological models, and exposure indicators such as population, land use and economic value generally are strongly variable in space and time. The framework therefore estimates hazard at a high resolution ( 1 km2) by using a) global forcing data sets of the current (or in scenario mode, future) climate; b) a global hydrological model; c) a global flood routing model, and d) importantly, a flood spatial downscaling routine. This results in probability distributions of annual flood extremes as an indicator of flood hazard, at the appropriate resolution. A second component of the framework combines the hazard probability distribution with classical flood impact models (e.g. damage, affected GDP, affected population) to establish indicators for flood risk. The framework can be applied with a large number of datasets and models and sensitivities of such choices can be evaluated by the user. The framework is applied using the global hydrological model PCR-GLOBWB, combined with a global flood routing model. Downscaling of the hazard probability distributions to 1 km2 resolution is performed with a new downscaling algorithm, applied on a number of target regions. We demonstrate the use of impact models in these regions based on global GDP, population, and land use maps. In this application, we show sensitivities of the estimated risks with regard to the use of different climate input datasets, decisions made in the downscaling algorithm, and different approaches to establish distributed estimates of GDP and asset exposure to flooding.

  8. Variability of Protein Structure Models from Electron Microscopy.

    PubMed

    Monroe, Lyman; Terashi, Genki; Kihara, Daisuke

    2017-04-04

    An increasing number of biomolecular structures are solved by electron microscopy (EM). However, the quality of structure models determined from EM maps vary substantially. To understand to what extent structure models are supported by information embedded in EM maps, we used two computational structure refinement methods to examine how much structures can be refined using a dataset of 49 maps with accompanying structure models. The extent of structure modification as well as the disagreement between refinement models produced by the two computational methods scaled inversely with the global and the local map resolutions. A general quantitative estimation of deviations of structures for particular map resolutions are provided. Our results indicate that the observed discrepancy between the deposited map and the refined models is due to the lack of structural information present in EM maps and thus these annotations must be used with caution for further applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Understanding The Individual Impacts Of Human Interventions And Climate Change On Hydrologic Variables In India

    NASA Astrophysics Data System (ADS)

    Sharma, T.; Chhabra, S., Jr.; Karmakar, S.; Ghosh, S.

    2015-12-01

    We have quantified the historical climate change and Land Use Land Cover (LULC) change impacts on the hydrologic variables of Indian subcontinent by using Variable Infiltration Capacity (VIC) mesoscale model at 0.5° spatial resolution and daily temporal resolution. The results indicate that the climate change in India has predominating effects on the basic water balance components such as water yield, evapotranspiration and soil moisture. This analysis is with the assumption of naturalised hydrologic cycle, i.e., the impacts of human interventions like construction of controlled (primarily dams, diversions and reservoirs) and water withdrawals structures are not taken into account. The assumption is unrealistic since there are numerous anthropogenic disturbances which result in large changes on vegetation composition and distribution patterns. These activities can directly or indirectly influence the dynamics of water cycle; subsequently affecting the hydrologic processes like plant transpiration, infiltration, evaporation, runoff and sublimation. Here, we have quantified the human interventions by using the reservoir and irrigation module of VIC model which incorporates the irrigation schemes, reservoir characteristics and water withdrawals. The impact of human interventions on hydrologic variables in many grids are found more predominant than climate change and might be detrimental to water resources at regional level. This spatial pattern of impacts will facilitate water manager and planners to design and station hydrologic structures for a sustainable water resources management.

  10. High-resolution spatial databases of monthly climate variables (1961-2010) over a complex terrain region in southwestern China

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Xu, An-Ding; Liu, Hong-Bin

    2015-01-01

    Climate data in gridded format are critical for understanding climate change and its impact on eco-environment. The aim of the current study is to develop spatial databases for three climate variables (maximum, minimum temperatures, and relative humidity) over a large region with complex topography in southwestern China. Five widely used approaches including inverse distance weighting, ordinary kriging, universal kriging, co-kriging, and thin-plate smoothing spline were tested. Root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) showed that thin-plate smoothing spline with latitude, longitude, and elevation outperformed other models. Average RMSE, MAE, and MAPE of the best models were 1.16 °C, 0.74 °C, and 7.38 % for maximum temperature; 0.826 °C, 0.58 °C, and 6.41 % for minimum temperature; and 3.44, 2.28, and 3.21 % for relative humidity, respectively. Spatial datasets of annual and monthly climate variables with 1-km resolution covering the period 1961-2010 were then obtained using the best performance methods. Comparative study showed that the current outcomes were in well agreement with public datasets. Based on the gridded datasets, changes in temperature variables were investigated across the study area. Future study might be needed to capture the uncertainty induced by environmental conditions through remote sensing and knowledge-based methods.

  11. Impact of Variable SST on Simulated Warm Season Precipitation

    NASA Astrophysics Data System (ADS)

    Saleeby, S. M.; Cotton, W. R.

    2007-05-01

    The Colorado State University - Regional Atmospheric Modeling System (CSU-RAMS) is being used to examine the variability in monsoon-related warm season precipitation over Mexico and the United States due to variability in SST. Given recent improvements and increased resolution in satellite derived SSTs it is pertinent to examine the sensitivity of the RAMS model to the variety of SST data sources that are available. In particular, we are examining this dependence across continental scales over the full warm season, as well as across the regional scale centered around the Gulf of California on time scales of individual surge events. In this study we performed an ensemble of simulations that include the 2002, 2003, and 2004 warm seasons with use of the Climatology, Reynold's, AVHRR, and MODIS SSTs. From the seasonal 90-day simulations with 30km grid spacing, it was found that variations in surface latent heat flux are directly linked to differences in SST. Regions with cooler (warmer) SST have decreased (increased) moisture flux from the ocean which is in proportion to the magnitude of the SST difference. Over the eastern Pacific, differences in low-level horizontal moisture flux show a general trend toward reduced fluxes over cooler waters and very little inland impact. Over the Gulf of Mexico, however, there is substantial variability for each dataset comparison, despite having only limited variability among the SST data. Causes of this unexpected variability are not straight-forward. Precipitation impacts are greatest near the southern coast of Mexico and along the Sierra Madres. Precipitation variability over the CONUS is rather chaotic and is limited to areas impacted by the Gulf of Mexico or monsoon convection. Another unexpected outcome is the lack of variability in areas near the northern Gulf of California where SST and latent heat flux variability is a maximum. From the 7-day surge period simulations at 7km grid spacing, we found that SST differences on the higher resolution nested grid reveal fine scale variability that is otherwise smoothed out or unapparent on the coarser grid. Unlike the coarse grid, the latent heat flux, temperature, and moisture transport differences on the fine grid reveal an inland impact. This is likely due to fine scale variability in onshore moisture transport and sea- breeze circulations which may alter monsoonal convection and precipitation. However, only the largest SST differences (spatially and in magnitude) tend to invoke large, coherent responses in moisture flux. The SST variability at high resolution produces relatively large differences in precipitation that are focused along the slopes of the SMO, with a tendency toward greater variability along the western slope adjacent to the coast. The precipitation differences are of fine resolution, with variability of +/- 30 mm (over 5 days) along the length of the SMO. Variability on the fine grid also invokes precipitation changes over AZ/NM that are not resolved on the coarse grid. Vertical cross-sections examined along the GoC during the surge episode revealed variations in the moisture and temperature structure of the surge. The cooler SSTs in the climatological dataset produced the greatest variability compared to the other datasets. The surge produced from climatology SSTs was nearly 5g/kg drier and up to 4°C cooler compared to surges influenced by the SST datasets. The overall northward propagation of the surge appeared unaffected by the SSTs.

  12. Relating Solar Resource Variability to Cloud Type

    NASA Astrophysics Data System (ADS)

    Hinkelman, L. M.; Sengupta, M.

    2012-12-01

    Power production from renewable energy (RE) resources is rapidly increasing. Generation of renewable energy is quite variable since the solar and wind resources that form the inputs are, themselves, inherently variable. There is thus a need to understand the impact of renewable generation on the transmission grid. Such studies require estimates of high temporal and spatial resolution power output under various scenarios, which can be created from corresponding solar resource data. Satellite-based solar resource estimates are the best source of long-term solar irradiance data for the typically large areas covered by transmission studies. As satellite-based resource datasets are generally available at lower temporal and spatial resolution than required, there is, in turn, a need to downscale these resource data. Downscaling in both space and time requires information about solar irradiance variability, which is primarily a function of cloud types and properties. In this study, we analyze the relationship between solar resource variability and satellite-based cloud properties. One-minute resolution surface irradiance data were obtained from a number of stations operated by the National Oceanic and Atmospheric Administration (NOAA) under the Surface Radiation (SURFRAD) and Integrated Surface Irradiance Study (ISIS) networks as well as from NREL's Solar Radiation Research Laboratory (SRRL) in Golden, Colorado. Individual sites were selected so that a range of meteorological conditions would be represented. Cloud information at a nominal 4 km resolution and half hour intervals was derived from NOAA's Geostationary Operation Environmental Satellite (GOES) series of satellites. Cloud class information from the GOES data set was then used to select and composite irradiance data from the measurement sites. The irradiance variability for each cloud classification was characterized using general statistics of the fluxes themselves and their variability in time, as represented by ramps computed for time scales from 10 s to 0.5 hr. The statistical relationships derived using this method will be presented, comparing and contrasting the statistics computed for the different cloud types. The implications for downscaling irradiances from satellites or forecast models will also be discussed.

  13. Processes of 30-90 days sea surface temperature variability in the northern Indian Ocean during boreal summer

    NASA Astrophysics Data System (ADS)

    Vialard, J.; Jayakumar, A.; Gnanaseelan, C.; Lengaigne, M.; Sengupta, D.; Goswami, B. N.

    2012-05-01

    During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against ~0.25 for wind stress) and in observations (0.8 regression coefficient); ~60% of the heat flux variation is due do shortwave radiation and ~40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our ~100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.

  14. Holocene shifts of the southern westerlies across the South Atlantic

    NASA Astrophysics Data System (ADS)

    Voigt, Ines; Chiessi, Cristiano M.; Prange, Matthias; Mulitza, Stefan; Groeneveld, Jeroen; Varma, Vidya; Henrich, Ruediger

    2015-02-01

    The southern westerly winds (SWW) exert a crucial influence over the world ocean and climate. Nevertheless, a comprehensive understanding of the Holocene temporal and spatial evolution of the SWW remains a significant challenge due to the sparsity of high-resolution marine archives and appropriate SWW proxies. Here we present a north-south transect of high-resolution planktonic foraminiferal oxygen isotope records from the western South Atlantic. Our proxy records reveal Holocene migrations of the Brazil-Malvinas Confluence (BMC), a highly sensitive feature for changes in the position and strength of the northern portion of the SWW. Through the tight coupling of the BMC position to the large-scale wind field, the records allow a quantitative reconstruction of Holocene latitudinal displacements of the SWW across the South Atlantic. Our data reveal a gradual poleward movement of the SWW by about 1-1.5° from the early to the mid-Holocene. Afterward, variability in the SWW is dominated by millennial scale displacements on the order of 1° in latitude with no recognizable longer-term trend. These findings are confronted with results from a state-of-the-art transient Holocene climate simulation using a comprehensive coupled atmosphere-ocean general circulation model. Proxy-inferred and modeled SWW shifts compare qualitatively, but the model underestimates both orbitally forced multimillennial and internal millennial SWW variability by almost an order of magnitude. The underestimated natural variability implies a substantial uncertainty in model projections of future SWW shifts.

  15. Mapping current and potential distribution of non-native Prosopis juliflora in the Afar region of Ethiopia

    USGS Publications Warehouse

    Wakie, Tewodros; Evangelista, Paul H.; Jarnevich, Catherine S.; Laituri, Melinda

    2014-01-01

    We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species-occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.

  16. Spectral Generation from the Ames Mars GCM for the Study of Martian Clouds

    NASA Astrophysics Data System (ADS)

    Klassen, David R.; Kahre, Melinda A.; Wolff, Michael J.; Haberle, Robert; Hollingsworth, Jeffery L.

    2017-10-01

    Studies of martian clouds come from two distinct groups of researchers: those modeling the martian system from first principles and those observing Mars from ground-based and orbital platforms. The model-view begins with global circulation models (GCMs) or mesoscale models to track a multitude of state variables over a prescribed set of spatial and temporal resolutions. The state variables can then be processed into distinct maps of derived product variables, such as integrated optical depth of aerosol (e.g., water ice cloud, dust) or column integrated water vapor for comparison to observational results. The observer view begins, typically, with spectral images or imaging spectra, calibrated to some form of absolute units then run through some form of radiative transfer model to also produce distinct maps of derived product variables. Both groups of researchers work to adjust model parameters and assumptions until some level of agreement in derived product variables is achieved. While this system appears to work well, it is in some sense only an implicit confirmation of the model assumptions that attribute to the work from both sides. We have begun a project of testing the NASA Ames Mars GCM and key aerosol model assumptions more directly by taking the model output and creating synthetic TES-spectra from them for comparison to actual raw-reduced TES spectra. We will present some preliminary generated GCM spectra and TES comparisons.

  17. Flexible Energy Scheduling Tool for Integrating Variable Generation | Grid

    Science.gov Websites

    , security-constrained economic dispatch, and automatic generation control programs. DOWNLOAD PAPER Electric commitment, security-constrained economic dispatch, and automatic generation control sub-models. Each sub resolutions and operating strategies can be explored. FESTIV produces not only economic metrics but also

  18. Evaluating Cloud Initialization in a Convection-permit NWP Model

    NASA Astrophysics Data System (ADS)

    Li, Jia; Chen, Baode

    2015-04-01

    In general, to avoid "double counting precipitation" problem, in convection permit NWP models, it was a common practice to turn off convective parameterization. However, if there were not any cloud information in the initial conditions, the occurrence of precipitation could be delayed due to spin-up of cloud field or microphysical variables. In this study, we utilized the complex cloud analysis package from the Advanced Regional Prediction System (ARPS) to adjust the initial states of the model on water substance, such as cloud water, cloud ice, rain water, et al., that is, to initialize the microphysical variables (i.e., hydrometers), mainly based on radar reflectivity observations. Using the Advanced Research WRF (ARW) model, numerical experiments with/without cloud initialization and convective parameterization were carried out at grey-zone resolutions (i.e. 1, 3, and 9 km). The results from the experiments without convective parameterization indicate that model ignition with radar reflectivity can significantly reduce spin-up time and accurately simulate precipitation at the initial time. In addition, it helps to improve location and intensity of predicted precipitation. With grey-zone resolutions (i.e. 1, 3, and 9 km), using the cumulus convective parameterization scheme (without radar data) cannot produce realistic precipitation at the early time. The issues related to microphysical parametrization associated with cloud initialization were also discussed.

  19. Structure and dynamics of the Benguela low-level coastal jet

    NASA Astrophysics Data System (ADS)

    Patricola, Christina M.; Chang, Ping

    2017-10-01

    Generations of coupled atmosphere-ocean general circulation models have been plagued by persistent warm sea surface temperature (SST) biases in the southeastern tropical Atlantic. The SST biases are most severe in the eastern boundary coastal upwelling region and are sensitive to surface wind stress and wind stress curl associated with the Benguela low-level coastal jet (BLLCJ), a southerly jet parallel to the Angola-Namibia coast. However, little has been documented about this atmospheric source of oceanic bias. Here we investigate the characteristics and dynamics of the BLLCJ using observations, reanalyses, and atmospheric model simulations. Satellite wind products and high-resolution reanalyses and models represent the BLLCJ with two near-shore maxima, one near the Angola-Benguela front (ABF) at 17.5°S, and the other near 25-27.5°S, whereas coarse resolution reanalyses and models represent the BLLCJ poorly with a single, broad, more offshore maximum. Model experiments indicate that convex coastal geometry near the ABF supports the preferred location of the BLLCJ northern maximum by supporting conditions for a hydraulic expansion fan. Intraseasonal variability of the BLLCJ is associated with large-scale variability in intensity and location of the South Atlantic subtropical high through modulation of the low-level zonal pressure gradient.

  20. Proceedings of Conference on Variable-Resolution Modeling, Washington, DC, 5-6 May 1992

    DTIC Science & Technology

    1992-05-01

    of powerful new computer architectures for supporting object-oriented computing. Objects, as self -contained data-code packages with orderly...another entity structure. For example, (copy-entstr e:sys- tcm ’ new -system) creates an entity structure named c:new-system that has the same structure...324 Parry, S-H. (1984): A Self -contained Hierarchical Model Construct. In: Systems Analysis and Modeling in Defense (R.K. Huber, Ed.), New York

  1. Comparison of the theoretical and real-world evolutionary potential of a genetic circuit

    NASA Astrophysics Data System (ADS)

    Razo-Mejia, M.; Boedicker, J. Q.; Jones, D.; DeLuna, A.; Kinney, J. B.; Phillips, R.

    2014-04-01

    With the development of next-generation sequencing technologies, many large scale experimental efforts aim to map genotypic variability among individuals. This natural variability in populations fuels many fundamental biological processes, ranging from evolutionary adaptation and speciation to the spread of genetic diseases and drug resistance. An interesting and important component of this variability is present within the regulatory regions of genes. As these regions evolve, accumulated mutations lead to modulation of gene expression, which may have consequences for the phenotype. A simple model system where the link between genetic variability, gene regulation and function can be studied in detail is missing. In this article we develop a model to explore how the sequence of the wild-type lac promoter dictates the fold-change in gene expression. The model combines single-base pair resolution maps of transcription factor and RNA polymerase binding energies with a comprehensive thermodynamic model of gene regulation. The model was validated by predicting and then measuring the variability of lac operon regulation in a collection of natural isolates. We then implement the model to analyze the sensitivity of the promoter sequence to the regulatory output, and predict the potential for regulation to evolve due to point mutations in the promoter region.

  2. Future changes in peak river flows across northern Eurasia as inferred from an ensemble of regional climate projections under the IPCC RCP8.5 scenario

    NASA Astrophysics Data System (ADS)

    Shkolnik, Igor; Pavlova, Tatiana; Efimov, Sergey; Zhuravlev, Sergey

    2018-01-01

    Climate change simulation based on 30-member ensemble of Voeikov Main Geophysical Observatory RCM (resolution 25 km) for northern Eurasia is used to drive hydrological model CaMa-Flood. Using this modeling framework, we evaluate the uncertainties in the future projection of the peak river discharge and flood hazard by 2050-2059 relative to 1990-1999 under IPCC RCP8.5 scenario. Large ensemble size, along with reasonably high modeling resolution, allows one to efficiently sample natural climate variability and increase our ability to predict future changes in the hydrological extremes. It has been shown that the annual maximum river discharge can almost double by the mid-XXI century in the outlets of major Siberian rivers. In the western regions, there is a weak signal in the river discharge and flood hazard, hardly discernible above climate variability. Annual maximum flood area is projected to increase across Siberia mostly by 2-5% relative to the baseline period. A contribution of natural climate variability at different temporal scales to the uncertainty of ensemble prediction is discussed. The analysis shows that there expected considerable changes in the extreme river discharge probability at locations of the key hydropower facilities. This suggests that the extensive impact studies are required to develop recommendations for maintaining regional energy security.

  3. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments

    NASA Technical Reports Server (NTRS)

    Woods, T. N.; Eparvier, F. G.; Hock, R.; Jones, A. R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.; hide

    2010-01-01

    The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth's upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazingincidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.

  4. Analysis of the sensitivity to rainfall spatio-temporal variability of an operational urban rainfall-runoff model in a multifractal framework

    NASA Astrophysics Data System (ADS)

    Gires, A.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.

    2011-12-01

    In large urban areas, storm water management is a challenge with enlarging impervious areas. Many cities have implemented real time control (RTC) of their urban drainage system to either reduce overflow or limit urban contamination. A basic component of RTC is hydraulic/hydrologic model. In this paper we use the multifractal framework to suggest an innovative way to test the sensitivity of such a model to the spatio-temporal variability of its rainfall input. Indeed the rainfall variability is often neglected in urban context, being considered as a non-relevant issue at the scales involve. Our results show that on the contrary the rainfall variability should be taken into account. Universal multifractals (UM) rely on the concept of multiplicative cascade and are a standard tool to analyze and simulate with a reduced number of parameters geophysical processes that are extremely variable over a wide range of scales. This study is conducted on a 3 400 ha urban area located in Seine-Saint-Denis, in the North of Paris (France). We use the operational semi-distributed model that was calibrated by the local authority (Direction Eau et Assainnissement du 93) that is in charge of urban drainage. The rainfall data comes from the C-Band radar of Trappes operated by Météo-France. The rainfall event of February 9th, 2009 was used. A stochastic ensemble approach was implemented to quantify the uncertainty on discharge associated to the rainfall variability occurring at scales smaller than 1 km x 1 km x 5 min that is usually available with C-band radar networks. An analysis of the quantiles of the simulated peak flow showed that the uncertainty exceeds 20 % for upstream links. To evaluate a potential gain from a direct use of the rainfall data available at the resolution of X-band radar, we performed similar analysis of the rainfall fields of the degraded resolution of 9 km x 9 km x 20 min. The results show a clear decrease in uncertainty when the original resolution of C-band radar data is used. This analysis highlights the interest of implementing X-band radars in urban areas. Indeed such radars provide the rainfall data at a hectometric resolution that would enable a better nowcasting and management of storm water. The multifractal properties of the simulated hydrographs were analysed with the help of simulated rainfall fields of resolution 111 m x 111 m x 1 min, lasting 4 hours, and corresponding to a 5 year return period event. On the whole, the discharge exhibits a good scaling behaviour over the range 4 h - 5 min. Both UM parameters tend to be greater for the discharge than for the rainfall. The notion of maximum probable singularity was used to clarify the consequences on the assessment of extremes. It appears that the urban drainage network basically reproduces the extremes, or only slightly damps them, at least in terms of multifractal statistics. The results were obtained with the financial support from the EU FP7 SMARTesT Project and the Chair "Hydrology for Resilient Cities" (sponsored by Veolia) of Ecole des Ponts ParisTech.

  5. Long-term Observations of Intense Precipitation Small-scale Spatial Variability in a Semi-arid Catchment

    NASA Astrophysics Data System (ADS)

    Cropp, E. L.; Hazenberg, P.; Castro, C. L.; Demaria, E. M.

    2017-12-01

    In the southwestern US, the summertime North American Monsoon (NAM) provides about 60% of the region's annual precipitation. Recent research using high-resolution atmospheric model simulations and retrospective predictions has shown that since the 1950's, and more specifically in the last few decades, the mean daily precipitation in the southwestern U.S. during the NAM has followed a decreasing trend. Furthermore, days with more extreme precipitation have intensified. The current work focuses the impact of these long-term changes on the observed small-scale spatial variability of intense precipitation. Since limited long-term high-resolution observational data exist to support such climatological-induced spatial changes in precipitation frequency and intensity, the current work utilizes observations from the USDA-ARS Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona. Within this 150 km^2 catchment over 90 rain gauges have been installed since the 1950s, measuring at sub-hourly resolution. We have applied geospatial analyses and the kriging interpolation technique to identify long-term changes in the spatial and temporal correlation and anisotropy of intense precipitation. The observed results will be compared with the previously model simulated results, as well as related to large-scale variations in climate patterns, such as the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO).

  6. Geostatistics and remote sensing using NOAA-AVHRR satellite imagery as predictive tools in tick distribution and habitat suitability estimations for Boophilus microplus (Acari: Ixodidae) in South America. National Oceanographic and Atmosphere Administration-Advanced Very High Resolution Radiometer.

    PubMed

    Estrada-Peña, A

    1999-02-01

    Remote sensing based on NOAA (National Oceanographic and Atmosphere Administration) satellite imagery was used, together with geostatistics (cokriging) to model the correlation between the temperature and vegetation variables and the distribution of the cattle tick, Boophilus microplus (Canestrini), in the Neotropical region. The results were used to map the B. microplus habitat suitability on a continental scale. A database of B. microplus capture localities was used, which was tabulated with the AVHRR (Advanced Very High Resolution Radiometer) images from the NOAA satellite series. They were obtained at 10 days intervals between 1983 and 1994, with an 8 km resolution. A cokriging system was generated to extrapolate the results. The data for habitat suitability obtained through two vegetation and four temperature variables were strongly correlated with the known distribution of B. microplus (sensitivity 0.91; specificity 0.88) and provide a good estimation of the tick habitat suitability. This model could be used as a guide to the correct interpretation of the distribution limits of B. microplus. It can be also used to prepare eradication campaigns or to make predictions about the effects of global change on the distribution of the parasite.

  7. Statistical Downscaling of WRF-Chem Model: An Air Quality Analysis over Bogota, Colombia

    NASA Astrophysics Data System (ADS)

    Kumar, Anikender; Rojas, Nestor

    2015-04-01

    Statistical downscaling is a technique that is used to extract high-resolution information from regional scale variables produced by coarse resolution models such as Chemical Transport Models (CTMs). The fully coupled WRF-Chem (Weather Research and Forecasting with Chemistry) model is used to simulate air quality over Bogota. Bogota is a tropical Andean megacity located over a high-altitude plateau in the middle of very complex terrain. The WRF-Chem model was adopted for simulating the hourly ozone concentrations. The computational domains were chosen of 120x120x32, 121x121x32 and 121x121x32 grid points with horizontal resolutions of 27, 9 and 3 km respectively. The model was initialized with real boundary conditions using NCAR-NCEP's Final Analysis (FNL) and a 1ox1o (~111 km x 111 km) resolution. Boundary conditions were updated every 6 hours using reanalysis data. The emission rates were obtained from global inventories, namely the REanalysis of the TROpospheric (RETRO) chemical composition and the Emission Database for Global Atmospheric Research (EDGAR). Multiple linear regression and artificial neural network techniques are used to downscale the model output at each monitoring stations. The results confirm that the statistically downscaled outputs reduce simulated errors by up to 25%. This study provides a general overview of statistical downscaling of chemical transport models and can constitute a reference for future air quality modeling exercises over Bogota and other Colombian cities.

  8. Moist Baroclinic Life Cycles in an Idealized Model with Varying Hydrostasy

    NASA Astrophysics Data System (ADS)

    Hsieh, T. L.; Garner, S.; Held, I.

    2016-12-01

    Baroclinic life cycles are simulated in a limited-area model having varying degrees of hydrostasy to examine their interaction with explicitly resolved moist convection. The life cycles are driven by an idealized sea surface temperature field in an f-plane channel, and no convective parameterization is used. The hydrostasy is controlled by rescaling the model equations following the hypohydrostatic rescaling and by changing the resolution. In experiments having the same ratio between the grid spacing and the rescaling factor, the simulated convection is shown to have the same hydrostasy, suggesting that the low resolution models have been rescaled to be as nonhydrostatic as the high resolution model without additional computational cost. The nonhydrostatic convective cells in the rescaled models are found to be wider and slower than those in the unscaled models, consistent with predictions of the similarity theory. For the same resolution, although the wider cells in the rescaled models have better resolved structure, the total latent heating is insensitive to the rescaling factor. This is because latent heating is constrained by long-wave cooling which is found to be insensitive to the model hydrostasy, requiring a non-similarity in the frequency and distribution of convection. Consequently, the resolved nonhydrostatic convection maintains the same stability profile as the unresolved hydrostatic convection, so the statistics of the life cycles are also insensitive to the rescaling factor. The findings suggest that the mean climate and internal variability would be unaffected by the hypohydrostatic rescaling when the self-organization of convection is not important.

  9. Attribution of soil information associated with modeling background clutter

    NASA Astrophysics Data System (ADS)

    Mason, George; Melloh, Rae

    2006-05-01

    This paper examines the attribution of data fields required to generate high resolution soil profiles for support of Computational Test Bed (CTB) used for countermine research. The countermine computational test bed is designed to realistically simulate the geo-environment to support the evaluation of sensors used to locate unexploded ordnance. The goal of the CTB is to derive expected moisture, chemical compounds, and measure heat migration over time, from which we expect to optimize sensor performance. Several tests areas were considered for the collection of soils data to populate the CTB. Collection of bulk soil properties has inherent spatial resolution limits. Novel techniques are therefore required to populate a high resolution model. This paper presents correlations between spatial variability in texture as related to hydraulic permeability and heat transfer properties of the soil. The extracted physical properties are used to exercise models providing a signature of subsurface media and support the simulation of detection by various sensors of buried and surface ordnance.

  10. Intraocular lens based on double-liquid variable-focus lens.

    PubMed

    Peng, Runling; Li, Yifan; Hu, Shuilan; Wei, Maowei; Chen, Jiabi

    2014-01-10

    In this work, the crystalline lens in the Gullstrand-Le Grand human eye model is replaced by a double-liquid variable-focus lens, the structure data of which are based on theoretical analysis and experimental results. When the pseudoaphakic eye is built in Zemax, aspherical surfaces are introduced to the double-liquid variable-focus lens to reduce the axial spherical aberration existent in the system. After optimization, the zoom range of the pseudoaphakic eye greatly exceeds that of normal human eyes, and the spot size on an image plane basically reaches the normal human eye's limit of resolution.

  11. Variability Extraction and Synthesis via Multi-Resolution Analysis using Distribution Transformer High-Speed Power Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamana, Manohar; Mather, Barry A

    A library of load variability classes is created to produce scalable synthetic data sets using historical high-speed raw data. These data are collected from distribution monitoring units connected at the secondary side of a distribution transformer. Because of the irregular patterns and large volume of historical high-speed data sets, the utilization of current load characterization and modeling techniques are challenging. Multi-resolution analysis techniques are applied to extract the necessary components and eliminate the unnecessary components from the historical high-speed raw data to create the library of classes, which are then utilized to create new synthetic load data sets. A validationmore » is performed to ensure that the synthesized data sets contain the same variability characteristics as the training data sets. The synthesized data sets are intended to be utilized in quasi-static time-series studies for distribution system planning studies on a granular scale, such as detailed PV interconnection studies.« less

  12. Can we observe the fronts of the Antarctic Circumpolar Current using GRACE OBP?

    NASA Astrophysics Data System (ADS)

    Makowski, J.; Chambers, D. P.; Bonin, J. A.

    2014-12-01

    The Antarctic Circumpolar Current (ACC) and the Southern Ocean remains one of the most undersampled regions of the world's oceans. The ACC is comprised of four major fronts: the Sub-Tropical Front (STF), the Polar Front (PF), the Sub-Antarctic Front (SAF), and the Southern ACC Front (SACCF). These were initially observed individually from repeat hydrographic sections and their approximate locations globally have been quantified using all available temperature data from the World Ocean and Climate Experiment (WOCE). More recent studies based on satellite altimetry have found that the front positions are more dynamic and have shifted south by up to 1° on average since 1993. Using ocean bottom pressure (OBP) data from the current Gravity Recovery and Climate Experiment (GRACE) we have measured integrated transport variability of the ACC south of Australia. However, differentiation of variability of specific fronts has been impossible due to the necessary smoothing required to reduce noise and correlated errors in the measurements. The future GRACE Follow-on (GFO) mission and the post 2020 GRACE-II mission are expected to produce higher resolution gravity fields with a monthly temporal resolution. Here, we study the resolution and error characteristics of GRACE gravity data that would be required to resolve variations in the front locations and transport. To do this, we utilize output from a high-resolution model of the Southern Ocean, hydrology models, and ice sheet surface mass balance models; add various amounts of random and correlated errors that may be expected from GFO and GRACE-II; and quantify requirements needed for future satellite gravity missions to resolve variations along the ACC fronts.

  13. A high-resolution, regional analysis of stormwater runoff for managed aquifer recharge site assessment

    NASA Astrophysics Data System (ADS)

    Young, K. S.; Fisher, A. T.; Beganskas, S.; Harmon, R. E.; Teo, E. K.; Weir, W. B.; Lozano, S.

    2016-12-01

    Distributed Stormwater Collection-Managed Aquifer Recharge (DSC-MAR) presents a cost-effective method of aquifer replenishment by collecting runoff and infiltrating it into underlying aquifers, but its successful implementation demands thorough knowledge of the distribution and availability of hillslope runoff. We applied a surface hydrology model to analyze the dynamics of hillslope runoff at high resolution (0.1 to 1.0 km2) across the 350 km2 San Lorenzo River Basin (SLRB) watershed, northern Santa Cruz County, CA. We used a 3 m digital elevation model to create a detailed model grid, which we parameterized with high-resolution geologic, hydrologic, and land use data. To analyze hillslope runoff under a range of precipitation regimes, we developed dry, normal, and wet climate scenarios from historic daily precipitation records (1981-2014). Simulation results show high spatial variability of hillslope runoff generation as a function of differences in precipitation and soil and land use conditions, and reveal a consistent increase in the spatial and temporal variability of runoff under wetter climate scenarios. Our results suggest that there may be opportunities to develop successful DSC-MAR projects that provide benefits during all climate scenarios. In the SLRB, our results indicate that annual hillslope runoff generation achieves a target minimum of 100 acre-ft, per 100 acres of drainage area, in approximately 15% of the region during dry climate scenarios and 60% of the region during wet climate scenarios. The high spatial and temporal resolution of our simulation output enables quantification of hillslope runoff at sub-watershed scales, commensurate with the spacing and operation of DSC-MAR. This study demonstrates a viable tool for screening of potential DSC-MAR project sites and assessing project performance under a range of climate and land use scenarios.

  14. The Super Tuesday Outbreak: Forecast Sensitivities to Single-Moment Microphysics Schemes

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.; Lapenta, William M.

    2008-01-01

    Forecast precipitation and radar characteristics are used by operational centers to guide the issuance of advisory products. As operational numerical weather prediction is performed at increasingly finer spatial resolution, convective precipitation traditionally represented by sub-grid scale parameterization schemes is now being determined explicitly through single- or multi-moment bulk water microphysics routines. Gains in forecasting skill are expected through improved simulation of clouds and their microphysical processes. High resolution model grids and advanced parameterizations are now available through steady increases in computer resources. As with any parameterization, their reliability must be measured through performance metrics, with errors noted and targeted for improvement. Furthermore, the use of these schemes within an operational framework requires an understanding of limitations and an estimate of biases so that forecasters and model development teams can be aware of potential errors. The National Severe Storms Laboratory (NSSL) Spring Experiments have produced daily, high resolution forecasts used to evaluate forecast skill among an ensemble with varied physical parameterizations and data assimilation techniques. In this research, high resolution forecasts of the 5-6 February 2008 Super Tuesday Outbreak are replicated using the NSSL configuration in order to evaluate two components of simulated convection on a large domain: sensitivities of quantitative precipitation forecasts to assumptions within a single-moment bulk water microphysics scheme, and to determine if these schemes accurately depict the reflectivity characteristics of well-simulated, organized, cold frontal convection. As radar returns are sensitive to the amount of hydrometeor mass and the distribution of mass among variably sized targets, radar comparisons may guide potential improvements to a single-moment scheme. In addition, object-based verification metrics are evaluated for their utility in gauging model performance and QPF variability.

  15. Georectification and snow classification of webcam images: potential for complementing satellite-derrived snow maps over Switzerland

    NASA Astrophysics Data System (ADS)

    Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan

    2016-04-01

    The spatial and temporal variability of snow cover has a significant impact on climate and environment and is of great socio-economic importance for the European Alps. Satellite remote sensing data is widely used to study snow cover variability and can provide spatially comprehensive information on snow cover extent. However, cloud cover strongly impedes the surface view and hence limits the number of useful snow observations. Outdoor webcam images not only offer unique potential for complementing satellite-derived snow retrieval under cloudy conditions but could also serve as a reference for improved validation of satellite-based approaches. Thousands of webcams are currently connected to the Internet and deliver freely available images with high temporal and spatial resolutions. To exploit the untapped potential of these webcams, a semi-automatic procedure was developed to generate snow cover maps based on webcam images. We used daily webcam images of the Swiss alpine region to apply, improve, and extend existing approaches dealing with the positioning of photographs within a terrain model, appropriate georectification, and the automatic snow classification of such photographs. In this presentation, we provide an overview of the implemented procedure and demonstrate how our registration approach automatically resolves the orientation of a webcam by using a high-resolution digital elevation model and the webcam's position. This allows snow-classified pixels of webcam images to be related to their real-world coordinates. We present several examples of resulting snow cover maps, which have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or not visible from webcams' positions. The procedure is expected to work under almost any weather condition and demonstrates the feasibility of using webcams for the retrieval of high-resolution snow cover information.

  16. Megavoltage computed tomography image guidance with helical tomotherapy in patients with vertebral tumors: analysis of factors influencing interobserver variability.

    PubMed

    Levegrün, Sabine; Pöttgen, Christoph; Jawad, Jehad Abu; Berkovic, Katharina; Hepp, Rodrigo; Stuschke, Martin

    2013-02-01

    To evaluate megavoltage computed tomography (MVCT)-based image guidance with helical tomotherapy in patients with vertebral tumors by analyzing factors influencing interobserver variability, considered as quality criterion of image guidance. Five radiation oncologists retrospectively registered 103 MVCTs in 10 patients to planning kilovoltage CTs by rigid transformations in 4 df. Interobserver variabilities were quantified using the standard deviations (SDs) of the distributions of the correction vector components about the observers' fraction mean. To assess intraobserver variabilities, registrations were repeated after ≥4 weeks. Residual deviations after setup correction due to uncorrectable rotational errors and elastic deformations were determined at 3 craniocaudal target positions. To differentiate observer-related variations in minimizing these residual deviations across the 3-dimensional MVCT from image resolution effects, 2-dimensional registrations were performed in 30 single transverse and sagittal MVCT slices. Axial and longitudinal MVCT image resolutions were quantified. For comparison, image resolution of kilovoltage cone-beam CTs (CBCTs) and interobserver variability in registrations of 43 CBCTs were determined. Axial MVCT image resolution is 3.9 lp/cm. Longitudinal MVCT resolution amounts to 6.3 mm, assessed as full-width at half-maximum of thin objects in MVCTs with finest pitch. Longitudinal CBCT resolution is better (full-width at half-maximum, 2.5 mm for CBCTs with 1-mm slices). In MVCT registrations, interobserver variability in the craniocaudal direction (SD 1.23 mm) is significantly larger than in the lateral and ventrodorsal directions (SD 0.84 and 0.91 mm, respectively) and significantly larger compared with CBCT alignments (SD 1.04 mm). Intraobserver variabilities are significantly smaller than corresponding interobserver variabilities (variance ratio [VR] 1.8-3.1). Compared with 3-dimensional registrations, 2-dimensional registrations have significantly smaller interobserver variability in the lateral and ventrodorsal directions (VR 3.8 and 2.8, respectively) but not in the craniocaudal direction (VR 0.75). Tomotherapy image guidance precision is affected by image resolution and residual deviations after setup correction. Eliminating the effect of residual deviations yields small interobserver variabilities with submillimeter precision in the axial plane. In contrast, interobserver variability in the craniocaudal direction is dominated by the poorer longitudinal MVCT image resolution. Residual deviations after image guidance exist and need to be considered when dose gradients ultimately achievable with image guided radiation therapy techniques are analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Sediment delivery estimates in water quality models altered by resolution and source of topographic data.

    PubMed

    Beeson, Peter C; Sadeghi, Ali M; Lang, Megan W; Tomer, Mark D; Daughtry, Craig S T

    2014-01-01

    Moderate-resolution (30-m) digital elevation models (DEMs) are normally used to estimate slope for the parameterization of non-point source, process-based water quality models. These models, such as the Soil and Water Assessment Tool (SWAT), use the Universal Soil Loss Equation (USLE) and Modified USLE to estimate sediment loss. The slope length and steepness factor, a critical parameter in USLE, significantly affects sediment loss estimates. Depending on slope range, a twofold difference in slope estimation potentially results in as little as 50% change or as much as 250% change in the LS factor and subsequent sediment estimation. Recently, the availability of much finer-resolution (∼3 m) DEMs derived from Light Detection and Ranging (LiDAR) data has increased. However, the use of these data may not always be appropriate because slope values derived from fine spatial resolution DEMs are usually significantly higher than slopes derived from coarser DEMs. This increased slope results in considerable variability in modeled sediment output. This paper addresses the implications of parameterizing models using slope values calculated from DEMs with different spatial resolutions (90, 30, 10, and 3 m) and sources. Overall, we observed over a 2.5-fold increase in slope when using a 3-m instead of a 90-m DEM, which increased modeled soil loss using the USLE calculation by 130%. Care should be taken when using LiDAR-derived DEMs to parameterize water quality models because doing so can result in significantly higher slopes, which considerably alter modeled sediment loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Modeling soil temperature change in Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Debolskiy, M. V.; Nicolsky, D.; Romanovsky, V. E.; Muskett, R. R.; Panda, S. K.

    2017-12-01

    Increasing demand for assessment of climate change-induced permafrost degradation and its consequences promotes creation of high-resolution modeling products of soil temperature changes. This is especially relevant for areas with highly vulnerable warm discontinuous permafrost in the Western Alaska. In this study, we apply ecotype-based modeling approach to simulate high-resolution permafrost distribution and its temporal dynamics in Seward Peninsula, Alaska. To model soil temperature dynamics, we use a transient soil heat transfer model developed at the Geophysical Institute Permafrost Laboratory (GIPL-2). The model solves one dimensional nonlinear heat equation with phase change. The developed model is forced with combination of historical climate and different future scenarios for 1900-2100 with 2x2 km resolution prepared by Scenarios Network for Alaska and Arctic Planning (2017). Vegetation, snow and soil properties are calibrated by ecotype and up-scaled by using Alaska Existing Vegetation Type map for Western Alaska (Flemming, 2015) with 30x30 m resolution provided by Geographic Information Network of Alaska (UAF). The calibrated ecotypes cover over 75% of the study area. We calibrate the model using a data assimilation technique utilizing available observations of air, surface and sub-surface temperatures and snow cover collected by various agencies and research groups (USGS, Geophysical Institute, USDA). The calibration approach takes into account a natural variability between stations in the same ecotype and finds an optimal set of model parameters (snow and soil properties) within the study area. This approach allows reduction in microscale heterogeneity and aggregated soil temperature data from shallow boreholes which is highly dependent on local conditions. As a result of this study we present a series of preliminary high resolution maps for the Seward Peninsula showing changes in the active layer depth and ground temperatures for the current climate and future climate change scenarios.

  19. An analysis of controls on fire activity in boreal Canada: comparing models built with different temporal resolutions

    Treesearch

    Marc-Andre Parisien; Sean A. Parks; Meg A. Krawchuk; John M. Little; Mike D. Flannigan; Lynn M. Gowman; Max A. Moritz

    2014-01-01

    Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of...

  20. Modeling small-scale variability in the composition of goshawk habitat on the Kaibab National Forest

    Treesearch

    Suzanne M. Joy; Robin M. Reich; Richard T. Reynolds

    2000-01-01

    We used field data, topographical information (elevation, slope, aspect, landform), and Landsat Thematic Mapper imagery to model forest vegetative types to a 10-m resolution on the Kaibab National Forest in northern Arizona. Forest types were identified by clustering the field data and then using a decision tree based on the spectral characteristics of a Landsat image...

Top