Speed control system for an access gate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bzorgi, Fariborz M
2012-03-20
An access control apparatus for an access gate. The access gate typically has a rotator that is configured to rotate around a rotator axis at a first variable speed in a forward direction. The access control apparatus may include a transmission that typically has an input element that is operatively connected to the rotator. The input element is generally configured to rotate at an input speed that is proportional to the first variable speed. The transmission typically also has an output element that has an output speed that is higher than the input speed. The input element and the outputmore » element may rotate around a common transmission axis. A retardation mechanism may be employed. The retardation mechanism is typically configured to rotate around a retardation mechanism axis. Generally the retardation mechanism is operatively connected to the output element of the transmission and is configured to retard motion of the access gate in the forward direction when the first variable speed is above a control-limit speed. In many embodiments the transmission axis and the retardation mechanism axis are substantially co-axial. Some embodiments include a freewheel/catch mechanism that has an input connection that is operatively connected to the rotator. The input connection may be configured to engage an output connection when the rotator is rotated at the first variable speed in a forward direction and configured for substantially unrestricted rotation when the rotator is rotated in a reverse direction opposite the forward direction. The input element of the transmission is typically operatively connected to the output connection of the freewheel/catch mechanism.« less
Idling speed control system of an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, M.; Ishii, M.; Kako, H.
1986-09-16
This patent describes an idling speed control system of an internal combustion engine comprising: a valve device which controls the amount of intake air for the engine; an actuator which includes an electric motor for variably controlling the opening of the value device; rotation speed detector means for detecting the rotation speed of the engine; idling condition detector means for detecting the idling condition of the engine; feedback control means responsive to the detected output of the idling condition detector means for generating feedback control pulses to intermittently drive the electric motor so that the detected rotation speed of themore » engine under the idling condition may converge into a target idling rotation speed; and control means responsive to the output of detector means that detects an abnormally low rotation speed of the engine detected by the rotation speed detector means for generating control pulses that do not overlap the feedback control pulses to drive the electric motor in a predetermined direction.« less
Description of the 3 MW SWT-3 wind turbine at San Gorgonio Pass, California
NASA Technical Reports Server (NTRS)
Rybak, S. C.
1982-01-01
The SWT-3 wind turbine, a microprocessor controlled three bladed variable speed upwind machine with a 3MW rating that is presently operational and undergoing system testing, is discussed. The tower, a rigid triangular truss configuration, is rotated about its vertical axis to position the wind turbine into the prevailing wind. The blades rotate at variable speed in order to maintain an optimum 6 to 1 tip speed ratio between cut in and fated wind velocity, thereby maximizing power extraction from the wind. Rotor variable speed is implemented by the use of a hydrostatic transmission consisting of fourteen fixed displacement pumps operating in conjunction with eighteen variable displacement motors. Full blade pitch with on-off hydraulic actuation is used to maintain 3MW of output power.
NASA Astrophysics Data System (ADS)
Wang, Tianyang; Liang, Ming; Li, Jianyong; Cheng, Weidong; Li, Chuan
2015-10-01
The interfering vibration signals of a gearbox often represent a challenging issue in rolling bearing fault detection and diagnosis, particularly under unknown variable rotational speed conditions. Though some methods have been proposed to remove the gearbox interfering signals based on their discrete frequency nature, such methods may not work well under unknown variable speed conditions. As such, we propose a new approach to address this issue. The new approach consists of three main steps: (a) adaptive gear interference removal, (b) fault characteristic order (FCO) based fault detection, and (c) rotational-order-sideband (ROS) based fault type identification. For gear interference removal, an enhanced adaptive noise cancellation (ANC) algorithm has been developed in this study. The new ANC algorithm does not require an additional accelerometer to provide reference input. Instead, the reference signal is adaptively constructed from signal maxima and instantaneous dominant meshing multiple (IDMM) trend. Key ANC parameters such as filter length and step size have also been tailored to suit the variable speed conditions, The main advantage of using ROS for fault type diagnosis is that it is insusceptible to confusion caused by the co-existence of bearing and gear rotational frequency peaks in the identification of the bearing fault characteristic frequency in the FCO sub-order region. The effectiveness of the proposed method has been demonstrated using both simulation and experimental data. Our experimental study also indicates that the proposed method is applicable regardless whether the bearing and gear rotational speeds are proportional to each other or not.
Propeller rotation noise due to torque and thrust
NASA Technical Reports Server (NTRS)
Deming, Arthur F
1940-01-01
Sound pressure of the first four harmonics of rotation from a full-scale two-blade propeller were measured and are compared with values calculated from theory. The comparison is made (1) for the space distribution with constant tip speed and (2) for fixed space angles with variable tip speed. A relation for rotation noise from an element of radius developed by Gutin is given showing the effect of number of blades on the rotation noise.
Röijezon, Ulrik; Djupsjöbacka, Mats; Björklund, Martin; Häger-Ross, Charlotte; Grip, Helena; Liebermann, Dario G
2010-09-27
Assessment of sensorimotor function is useful for classification and treatment evaluation of neck pain disorders. Several studies have investigated various aspects of cervical motor functions. Most of these have involved slow or self-paced movements, while few have investigated fast cervical movements. Moreover, the reliability of assessment of fast cervical axial rotation has, to our knowledge, not been evaluated before. Cervical kinematics was assessed during fast axial head rotations in 118 women with chronic nonspecific neck pain (NS) and compared to 49 healthy controls (CON). The relationship between cervical kinematics and symptoms, self-rated functioning and fear of movement was evaluated in the NS group. A sub-sample of 16 NS and 16 CON was re-tested after one week to assess the reliability of kinematic variables. Six cervical kinematic variables were calculated: peak speed, range of movement, conjunct movements and three variables related to the shape of the speed profile. Together, peak speed and conjunct movements had a sensitivity of 76% and a specificity of 78% in discriminating between NS and CON, of which the major part could be attributed to peak speed (NS: 226 ± 88°/s and CON: 348 ± 92°/s, p < 0.01). Peak speed was slower in NS compared to healthy controls and even slower in NS with comorbidity of low-back pain. Associations were found between reduced peak speed and self-rated difficulties with running, performing head movements, car driving, sleeping and pain. Peak speed showed reasonably high reliability, while the reliability for conjunct movements was poor. Peak speed of fast cervical axial rotations is reduced in people with chronic neck pain, and even further reduced in subjects with concomitant low back pain. Fast cervical rotation test seems to be a reliable and valid tool for assessment of neck pain disorders on group level, while a rather large between subject variation and overlap between groups calls for caution in the interpretation of individual assessments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romberger, Jeff
An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol.
ERIC Educational Resources Information Center
Semay, Claude; Lo Bue, Francesco; Mélin, Soizic; Michel, Francis
2018-01-01
In 1849, Hippolyte Fizeau determined the speed of light in a famous experiment. The idea was to measure the time taken for a pulse of light to travel between an intense light source and a mirror about 8 km away. A rotating cogwheel with 720 notches, that could be rotated at a variable speed, was used to chop the light beam and determine the flight…
Sukumar, Prabakar; Padmanaban, Sriram; Jeevanandam, Prakash; Syam Kumar, S.A.; Nagarajan, Vivekanandan
2011-01-01
Aim In this study, the dosimetric properties of the electronic portal imaging device were examined and the quality assurance testing of Volumetric Modulated Arc Therapy was performed. Background RapidArc involves the variable dose rate, leaf speed and the gantry rotation. The imager was studied for the effects like dose, dose rate, field size, leaf speed and sag during gantry rotation. Materials and methods A Varian RapidArc machine equipped with 120 multileaf collimator and amorphous silicon detector was used for the study. The characteristics that are variable in RapidArc treatment were studied for the portal imager. The accuracy of a dynamic multileaf collimator position at different gantry angles and during gantry rotation was examined using the picket fence test. The control of the dose rate and gantry speed was verified using a test field irradiating seven strips of the same dose with different dose rate and gantry speeds. The control over leaf speed during arc was verified by irradiating four strips of different leaf speeds with the same dose in each strip. To verify the results, the RapidArc test procedure was compared with the X-Omat film and verified for a period of 6 weeks using EPID. Results The effect of gantry rotation on leaf accuracy was minimal. The dose in segments showed good agreement with mean deviation of 0.8% for dose rate control and 1.09% for leaf speed control over different gantry speeds. Conclusion The results provided a precise control of gantry speed, dose rate and leaf speeds during RapidArc delivery and were consistent over 6 weeks. PMID:24376989
2010-01-01
Background Assessment of sensorimotor function is useful for classification and treatment evaluation of neck pain disorders. Several studies have investigated various aspects of cervical motor functions. Most of these have involved slow or self-paced movements, while few have investigated fast cervical movements. Moreover, the reliability of assessment of fast cervical axial rotation has, to our knowledge, not been evaluated before. Methods Cervical kinematics was assessed during fast axial head rotations in 118 women with chronic nonspecific neck pain (NS) and compared to 49 healthy controls (CON). The relationship between cervical kinematics and symptoms, self-rated functioning and fear of movement was evaluated in the NS group. A sub-sample of 16 NS and 16 CON was re-tested after one week to assess the reliability of kinematic variables. Six cervical kinematic variables were calculated: peak speed, range of movement, conjunct movements and three variables related to the shape of the speed profile. Results Together, peak speed and conjunct movements had a sensitivity of 76% and a specificity of 78% in discriminating between NS and CON, of which the major part could be attributed to peak speed (NS: 226 ± 88 °/s and CON: 348 ± 92 °/s, p < 0.01). Peak speed was slower in NS compared to healthy controls and even slower in NS with comorbidity of low-back pain. Associations were found between reduced peak speed and self-rated difficulties with running, performing head movements, car driving, sleeping and pain. Peak speed showed reasonably high reliability, while the reliability for conjunct movements was poor. Conclusions Peak speed of fast cervical axial rotations is reduced in people with chronic neck pain, and even further reduced in subjects with concomitant low back pain. Fast cervical rotation test seems to be a reliable and valid tool for assessment of neck pain disorders on group level, while a rather large between subject variation and overlap between groups calls for caution in the interpretation of individual assessments. PMID:20875135
Sukumprasertsri, Monton; Unrean, Pornkamol; Pimsamarn, Jindarat; Kitsubun, Panit; Tongta, Anan
2013-03-01
In this study, we compared the performance of two control systems, fuzzy logic control (FLC) and conventional control (CC). The control systems were applied for controlling temperature and substrate moisture content in a solidstate fermentation for the biosynthesis of amylase and protease enzymes by Aspergillus oryzae. The fermentation process was achieved in a 200 L rotating drum bioreactor. Three factors affecting temperature and moisture content in the solid-state fermentation were considered. They were inlet air velocity, speed of the rotating drum bioreactor, and spray water addition. The fuzzy logic control system was designed using four input variables: air velocity, substrate temperature, fermentation time, and rotation speed. The temperature was controlled by two variables, inlet air velocity and rotational speed of bioreactor, while the moisture content was controlled by spray water. Experimental results confirmed that the FLC system could effectively control the temperature and moisture content of substrate better than the CC system, resulting in an increased enzyme production by A. oryzae. Thus, the fuzzy logic control is a promising control system that can be applied for enhanced production of enzymes in solidstate fermentation.
Newton Algorithms for Analytic Rotation: An Implicit Function Approach
ERIC Educational Resources Information Center
Boik, Robert J.
2008-01-01
In this paper implicit function-based parameterizations for orthogonal and oblique rotation matrices are proposed. The parameterizations are used to construct Newton algorithms for minimizing differentiable rotation criteria applied to "m" factors and "p" variables. The speed of the new algorithms is compared to that of existing algorithms and to…
Development of a frequency-separated knob with variable change rates by rotation speed.
Kim, Huhn; Ham, Dong-Han
2014-11-01
The principle of frequency separation is a design method to display different information or feedback in accordance with the frequency of interaction between users and systems. This principle can be usefully applied to the design of knobs. Particularly, their rotation speed can be a meaningful criterion for applying the principle. Hence a knob can be developed, which shows change rates varying depending on its rotation speed. Such a knob would be more efficient than conventional knobs with constant change rate. We developed a prototype of frequency-separated knobs that has different combinations of the number of rotation speed steps and the size of the variation of change rate. With this prototype, we conducted an experiment to examine whether a speed frequency-separated knob enhances users' task performance. The results showed that the newly designed knob was effective in enhancing task performance, and that task efficiency was the best when its change rate increases exponentially and its rotation speed has three steps. We conducted another experiment to investigate how a more rapid exponential increase of change rate and a more number of steps of rotation speed influence users' task performance. The results showed that merely increasing both the size of the variation of change rates and the number of speed steps did not result in better task performance. Although two experimental results cannot easily be generalized to other contexts, they still offer practical information useful for designing a speed frequency-separated knob in various consumer electronics and control panels of industrial systems. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Camp, Christopher L; Tubbs, Travis G; Fleisig, Glenn S; Dines, Joshua S; Dines, David M; Altchek, David W; Dowling, Brittany
2017-11-01
Likely due to the high level of strain exerted across the elbow during the throwing motion, elbow injuries are on the rise in baseball. To identify at-risk athletes and guide postinjury return-to-throw programs, a better understanding of the variables that influence elbow varus torque is desired. To describe the within-subject relationship between elbow varus torque and arm slot and arm rotation in professional baseball pitchers. Descriptive laboratory study. A total of 81 professional pitchers performed 82,000 throws while wearing a motusBASEBALL sensor and sleeve. These throws represented a combination of throw types, such as warm-up/catch, structured long-toss, bullpen throwing from a mound, and live game activity. Variables recorded for each throw included arm slot (angle of the forearm relative to the ground at ball release), arm speed (maximal rotational velocity of the forearm), arm rotation (maximal external rotation of the throwing arm relative to the ground), and elbow varus torque. Linear mixed-effects models and likelihood ratio tests were used to estimate the relationship between elbow varus torque and arm slot, arm speed, and arm rotation within individual pitchers. All 3 metrics-arm slot (χ 2 = 428, P < .001), arm speed (χ 2 = 57,683, P < .001), and arm rotation (χ 2 = 1392, P < .001)-were found to have a significant relationship with elbow varus torque. Within individual athletes, a 1-N.m increase in elbow varus torque was associated with a 13° decrease in arm slot, a 116 deg/s increase in arm speed, and an 8° increase in arm rotation. Elbow varus torque increased significantly as pitchers increased their arm rotation during the arm cocking phase, increased the rotational velocity of their arm during the arm acceleration phase of throwing, and decreased arm slot at ball release. Thus, shoulder flexibility, arm speed, and elbow varus torque (and likely injury risk) are interrelated and should be considered collectively when treating pitchers. It is well established that elbow varus torque is related to ulnar collateral ligament injuries in overhead throwers. This study describes the relationship of arm slot, arm speed, and arm rotation to elbow varus torque in an attempt to identify modifiable risk factors for injury.
Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking.
Mirelman, Anat; Bernad-Elazari, Hagar; Nobel, Tomer; Thaler, Avner; Peruzzi, Agnese; Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M
2015-01-01
Healthy walking is characterized by pronounced arm swing and axial rotation. Aging effects on gait speed, stride length and stride time variability have been previously reported, however, less is known about aging effects on arm swing and axial rotation and their relationship to age-associated gait changes during usual walking and during more challenging conditions like dual tasking. Sixty healthy adults between the ages of 30-77 were included in this study designed to address this gap. Lightweight body fixed sensors were placed on each wrist and lower back. Participants walked under 3 walking conditions each of 1 minute: 1) comfortable speed, 2) walking while serially subtracting 3's (Dual Task), 3) walking at fast speed. Aging effects on arm swing amplitude, range, symmetry, jerk and axial rotation amplitude and jerk were compared between decades of age (30-40; 41-50; 51-60; 61-77 years). As expected, older adults walked slower (p = 0.03) and with increased stride variability (p = 0.02). Arm swing amplitude decreased with age under all conditions (p = 0.04). In the oldest group, arm swing decreased during dual task and increased during the fast walking condition (p<0.0001). Similarly, arm swing asymmetry increased during the dual task in the older groups (p<0.004), but not in the younger groups (p = 0.67). Significant differences between groups and within conditions were observed in arm swing jerk (p<0.02), axial rotation amplitude (p<0.02) and axial jerk (p<0.001). Gait speed, arm swing amplitude of the dominant arm, arm swing asymmetry and axial rotation jerk were all independent predictors of age in a multivariate model. These findings suggest that the effects of gait speed and dual tasking on arm swing and axial rotation during walking are altered among healthy older adults. Follow-up work is needed to examine if these effects contribute to reduced stability in aging.
Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking
Mirelman, Anat; Bernad-Elazari, Hagar; Nobel, Tomer; Thaler, Avner; Peruzzi, Agnese; Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M.
2015-01-01
Healthy walking is characterized by pronounced arm swing and axial rotation. Aging effects on gait speed, stride length and stride time variability have been previously reported, however, less is known about aging effects on arm swing and axial rotation and their relationship to age-associated gait changes during usual walking and during more challenging conditions like dual tasking. Sixty healthy adults between the ages of 30–77 were included in this study designed to address this gap. Lightweight body fixed sensors were placed on each wrist and lower back. Participants walked under 3 walking conditions each of 1 minute: 1) comfortable speed, 2) walking while serially subtracting 3’s (Dual Task), 3) walking at fast speed. Aging effects on arm swing amplitude, range, symmetry, jerk and axial rotation amplitude and jerk were compared between decades of age (30–40; 41–50; 51–60; 61–77 years). As expected, older adults walked slower (p = 0.03) and with increased stride variability (p = 0.02). Arm swing amplitude decreased with age under all conditions (p = 0.04). In the oldest group, arm swing decreased during dual task and increased during the fast walking condition (p<0.0001). Similarly, arm swing asymmetry increased during the dual task in the older groups (p<0.004), but not in the younger groups (p = 0.67). Significant differences between groups and within conditions were observed in arm swing jerk (p<0.02), axial rotation amplitude (p<0.02) and axial jerk (p<0.001). Gait speed, arm swing amplitude of the dominant arm, arm swing asymmetry and axial rotation jerk were all independent predictors of age in a multivariate model. These findings suggest that the effects of gait speed and dual tasking on arm swing and axial rotation during walking are altered among healthy older adults. Follow-up work is needed to examine if these effects contribute to reduced stability in aging. PMID:26305896
Miller, Jr., William H.
1976-01-01
A remotely operable sampler is provided for obtaining variable percentage samples of nuclear fuel particles and the like for analyses. The sampler has a rotating cup for a sample collection chamber designed so that the effective size of the sample inlet opening to the cup varies with rotational speed. Samples of a desired size are withdrawn from a flowing stream of particles without a deterrent to the flow of remaining particles.
A computer-vision-based rotating speed estimation method for motor bearing fault diagnosis
NASA Astrophysics Data System (ADS)
Wang, Xiaoxian; Guo, Jie; Lu, Siliang; Shen, Changqing; He, Qingbo
2017-06-01
Diagnosis of motor bearing faults under variable speed is a problem. In this study, a new computer-vision-based order tracking method is proposed to address this problem. First, a video recorded by a high-speed camera is analyzed with the speeded-up robust feature extraction and matching algorithm to obtain the instantaneous rotating speed (IRS) of the motor. Subsequently, an audio signal recorded by a microphone is equi-angle resampled for order tracking in accordance with the IRS curve, through which the frequency-domain signal is transferred to an angular-domain one. The envelope order spectrum is then calculated to determine the fault characteristic order, and finally the bearing fault pattern is determined. The effectiveness and robustness of the proposed method are verified with two brushless direct-current motor test rigs, in which two defective bearings and a healthy bearing are tested separately. This study provides a new noninvasive measurement approach that simultaneously avoids the installation of a tachometer and overcomes the disadvantages of tacholess order tracking methods for motor bearing fault diagnosis under variable speed.
NASA Astrophysics Data System (ADS)
Österlind, Tomas; Kari, Leif; Nicolescu, Cornel Mihai
2017-02-01
Rotor vibration and stationary displacement patterns observed in rotating machineries subject to local harmonic excitation are analysed for improved understanding and dynamic characterization. The analysis stresses the importance of coordinate transformation between rotating and stationary frame of reference for accurate results and estimation of dynamic properties. A generic method which can be used for various rotor applications such as machine tool spindle and turbo machinery vibration is presented. The phenomenon shares similarities with stationary waves in rotating disks though focuses on vibration in shafts. The paper further proposes a graphical tool, the displacement map, which can be used for selection of stable rotational speed for rotating machinery. The results are validated through simulation of dynamic response of a milling cutter, which is a typical example of a variable speed rotor operating under different load conditions.
Bruggeman, Hugo; Piuneu, Vadzim S; Rieser, John J; Pick, Herbert L
2009-10-01
When turning without vision or audition, people tend to perceive their locomotion as a change in heading relative to objects in the remembered surroundings. Such perception of self-rotation depends on sensitivity to information for movement from biomechanical activity of the locomotor system or from inertial activation of the vestibular and postural systems. The authors report 3 experiments that investigated the relative contributions of biomechanical and inertial information to perceiving the speed of self-rotation. Using a circular treadmill, the proportions of the 2 sources of proprioceptive information were varied, creating walking conditions with a constant rate of biomechanical activity but with variable speeds of rotation relative to inertial space. The results reveal stable individual differences in sensitivity to information for the perception of locomotion. Just more than half of the participants based their perceived speed of self-rotation on biomechanical information, whereas the others based theirs on inertial information. PsycINFO Database Record (c) 2009 APA, all rights reserved.
Turbine Engine Control Synthesis. Volume 1. Optimal Controller Synthesis and Demonstration
1975-03-01
Nomenclature (Continued) Symbol Deseription M Matrix (of Table 12) M Mach number N Rotational speed, rpm N ’ Nonlinear rotational speed, rpm P Power lever... P Pressure, N /m 2; bfh/ft 2 PLA Power lever angle PR = PT3/PT2 Pressure ratio ( P Power, ft-lbf/sec Q Matrix (of Table 30) R Universal gas constant, 53...function, i = 1, 2, 3, ... in Inlet n Stage number designation out Outlet p Variable associated with particle s Static condition _se Static condition
Variable force, eddy-current or magnetic damper
NASA Technical Reports Server (NTRS)
Cunningham, R. E. (Inventor)
1985-01-01
An object of the invention is to provide variable damping for resonant vibrations which may occur at different rotational speeds in the range of rpms in which a rotating machine is operated. A variable force damper in accordance with the invention includes a rotating mass carried on a shaft which is supported by a bearing in a resilient cage. The cage is attached to a support plate whose rim extends into an annular groove in a housing. Variable damping is effected by tabs of electrically conducting nonmagnetic material which extend radially from the cage. The tabs at an index position lie between the pole face of respective C shaped magnets. The magnets are attached by cantilever spring members to the housing.
Gas turbine engine fuel control
NASA Technical Reports Server (NTRS)
Gold, H. S. (Inventor)
1973-01-01
A variable orifice system is described that is responsive to compressor inlet pressure and temperature, compressor discharge pressure and rotational speed of a gas-turbine engine. It is incorporated into a hydraulic circuit that includes a zero gradient pump driven at a speed proportional to the speed of the engine. The resulting system provides control of fuel rate for starting, steady running, acceleration and deceleration under varying altitudes and flight speeds.
Simulating the dynamic behavior of a vertical axis wind turbine operating in unsteady conditions
NASA Astrophysics Data System (ADS)
Battisti, L.; Benini, E.; Brighenti, A.; Soraperra, G.; Raciti Castelli, M.
2016-09-01
The present work aims at assessing the reliability of a simulation tool capable of computing the unsteady rotational motion and the associated tower oscillations of a variable speed VAWT immersed in a coherent turbulent wind. As a matter of fact, since the dynamic behaviour of a variable speed turbine strongly depends on unsteady wind conditions (wind gusts), a steady state approach can't accurately catch transient correlated issues. The simulation platform proposed here is implemented using a lumped mass approach: the drive train is described by resorting to both the polar inertia and the angular position of rotating parts, also considering their speed and acceleration, while rotor aerodynamic is based on steady experimental curves. The ultimate objective of the presented numerical platform is the simulation of transient phenomena, driven by turbulence, occurring during rotor operation, with the aim of supporting the implementation of efficient and robust control algorithms.
Stage effects on stalling and recovery of a high-speed 10-stage axial-flow compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copenhaver, W.W.
1988-01-01
Results of a high-speed 10-stage axial-flow compressor test involving overall compressor and individual stage performance while stalling and operating in quasi-steady rotating stall are described. Test procedures and data-acquisition methods used to obtain the dynamic stalling and quasi-steady in-stall data are explained. Unstalled and in-stall time-averaged data obtained from the compressor operating at five different shaft speeds and one off-schedule variable vane condition are presented. Effects of compressor speed and variable geometry on overall compressor in-stall pressure rise and hysteresis extent are illustrated through the use of quasi-steady-stage temperature rise and pressure-rise characteristics. Results indicate that individual stage performance duringmore » overall compressor rotating stall operation varies considerably throughout the length of the compressor. The measured high-speed 10-stage test compressor individual stage pressure and temperature characteristics were input into a stage-by-stage dynamic compressor performance model. Comparison of the model results and measured pressures provided the additional validation necessary to demonstrate the model's ability to predict high-speed multistage compressor stalling and in-stall performance.« less
Acoustic measurements on aerofoils moving in a circle at high speed
NASA Technical Reports Server (NTRS)
Wright, S. E.; Crosby, W.; Lee, D. L.
1982-01-01
Features of the test apparatus, research objectives and sample test results at the Stanford University rotor aerodynamics and noise facility are described. A steel frame equipped to receive lead shot for damping vibrations supports the drive shaft for rotor blade elements. Sleeve bearings are employed to assure quietness, and a variable speed ac motor produces the rotations. The test stand can be configured for horizontal or vertical orientation of the drive shaft. The entire assembly is housed in an acoustically sealed room. Rotation conditions for hover and large angles of attack can be studied, together with rotational and blade element noises. Research is possible on broad band, discrete frequency, and high speed noise, with measurements taken 3 m from the center of the rotor. Acoustic signatures from Mach 0.3-0.93 trials with a NACA 0012 airfoil are provided.
Wilkes, Donald F.; Purvis, James W.; Miller, A. Keith
1997-01-01
An infinitely variable transmission is capable of operating between a maximum speed in one direction and a minimum speed in an opposite direction, including a zero output angular velocity, while being supplied with energy at a constant angular velocity. Input energy is divided between a first power path carrying an orbital set of elements and a second path that includes a variable speed adjustment mechanism. The second power path also connects with the orbital set of elements in such a way as to vary the rate of angular rotation thereof. The combined effects of power from the first and second power paths are combined and delivered to an output element by the orbital element set. The transmission can be designed to operate over a preselected ratio of forward to reverse output speeds.
NASA Astrophysics Data System (ADS)
Vanyashov, A. D.; Karabanova, V. V.
2017-08-01
A mathematical description of the method for obtaining gas-dynamic characteristics of a centrifugal compressor stage is proposed, taking into account the control action by varying the rotor speed and the angle of rotation of the guide vanes relative to the "basic" characteristic, if the kinematic and dynamic similitude conditions are not met. The formulas of the correction terms for the non-dimensional coefficients of specific work, consumption and efficiency are obtained. A comparative analysis of the calculated gas-dynamic characteristics of a high-pressure centrifugal stage with experimental data is performed.
NASA Astrophysics Data System (ADS)
Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.
2017-02-01
Nowadays, the vibration analysis of rotating machine signals is a well-established methodology, rooted on powerful tools offered, in particular, by the theory of cyclostationary (CS) processes. Among them, the squared envelope spectrum (SES) is probably the most popular to detect random CS components which are typical symptoms, for instance, of rolling element bearing faults. Recent researches are shifted towards the extension of existing CS tools - originally devised in constant speed conditions - to the case of variable speed conditions. Many of these works combine the SES with computed order tracking after some preprocessing steps. The principal object of this paper is to organize these dispersed researches into a structured comprehensive framework. Three original features are furnished. First, a model of rotating machine signals is introduced which sheds light on the various components to be expected in the SES. Second, a critical comparison is made of three sophisticated methods, namely, the improved synchronous average, the cepstrum prewhitening, and the generalized synchronous average, used for suppressing the deterministic part. Also, a general envelope enhancement methodology which combines the latter two techniques with a time-domain filtering operation is revisited. All theoretical findings are experimentally validated on simulated and real-world vibration signals.
Callaway, Sarahann; Glaws, Kate; Mitchell, Melissa; Scerbo, Heather; Voight, Michael; Sells, Pat
2012-06-01
The kinematic sequence of the golf swing is an established principle that occurs in a proximal-to-distal pattern with power generation beginning with rotation of the pelvis. Few studies have correlated the influence of peak pelvis rotation to the skill level of the golfer. Furthermore, minimal research exists on the strength of the gluteal musculature and their ability to generate power during the swing. The purpose of this study was to explore the relationship between peak pelvis rotation, gluteus medius and gluteus maximus strength, and a golfer's handicap. 56 healthy subjects. Each subject was assessed using a hand-held dynamometry device per standardized protocol to determine gluteus maximus and medius strength. The K-vest was placed on the subject with electromagnetic sensors at the pelvis, upper torso, and gloved lead hand to measure the rotational speed at each segment in degrees/second. After K-vest calibration and 5 practice swings, each subject hit 5 golf balls during which time, the sensors measured pelvic rotation speed. A one-way ANOVA was performed to determine the relationships between peak pelvis rotation, gluteus medius and gluteus maximus strength, and golf handicap. A significant difference was found between the following dependent variables and golf handicap: peak pelvis rotation (p=0.000), gluteus medius strength (p=0.000), and gluteus maximus strength (p=0.000). Golfers with a low handicap are more likely to have increased pelvis rotation speed as well as increased gluteus maximus and medius strength when compared to high handicap golfers. The relationships between increased peak pelvis rotation and gluteus maximus and medius strength in low handicap golfers may have implications in designing golf training programs. Further research needs to be conducted in order to further explore these relationships.
VFDs: Are They Electrical Parasites?
ERIC Educational Resources Information Center
Frank, Ned
2013-01-01
Variable Frequency Drives (VFDs) are electronic speed controllers used mainly to modulate and reduce the overall speed and power consumption of an electrical motor. They can be used as soft starters for equipment that has a large rotational mass, thus reducing belt ware and large electrical peaks when starting large pieces of equipment. VFDs have…
NASA Astrophysics Data System (ADS)
Mishra, C.; Samantaray, A. K.; Chakraborty, G.
2016-05-01
Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1
NASA Astrophysics Data System (ADS)
Lekube, J.; Garrido, A. J.; Garrido, I.
2018-03-01
The effects of climate change and global warming reveal the need to find alternative sources of clean energy. In this sense, wave energy power plants, and in particular Oscillating Water Column (OWC) devices, offer a huge potential of energy harnessing. Nevertheless, the conversion systems have not reached a commercially mature stage yet so as to compete with conventional power plants. At this point, the use of new control methods over the existing technology arises as a doable way to improve the efficiency of the system. Due to the non-uniform response that the turbine shows to the rotational speed variation, the speed control of the turbo-generator may offer a feasible solution for efficiency improvement during the energy conversion. In this context, a novel speed control approach for OWC systems is presented in this paper, demonstrating its goodness and affording promising results when particularized to the Mutriku’s wave power plant.
NASA Astrophysics Data System (ADS)
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
Rabby, Reza; Tang, Wei; Reynolds, A. P.
2015-05-13
In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabby, Reza; Tang, Wei; Reynolds, A. P.
In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less
Variable gravity research facility
NASA Technical Reports Server (NTRS)
Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd
1988-01-01
Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.
Method and apparatus for monitoring the rotating frequency of de-energized induction motors
Mikesell, H.E.; Lucy, E.
1998-02-03
The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.
Method and apparatus for monitoring the rotating frequency of de-energized induction motors
Mikesell, Harvey E.; Lucy, Eric
1998-01-01
The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.
NASA Astrophysics Data System (ADS)
Béguin, A.; Nicolet, C.; Hell, J.; Moreira, C.
2017-04-01
The paper explores the improvement in ancillary services that variable speed technologies can provide for the case of an existing pumped storage power plant of 2x210 MVA which conversion from fixed speed to variable speed is investigated with a focus on the power step performances of the units. First two motor-generator variable speed technologies are introduced, namely the Doubly Fed Induction Machine (DFIM) and the Full Scale Frequency Converter (FSFC). Then a detailed numerical simulation model of the investigated power plant used to simulate power steps response and comprising the waterways, the pump-turbine unit, the motor-generator, the grid connection and the control systems is presented. Hydroelectric system time domain simulations are performed in order to determine the shortest response time achievable, taking into account the constraints from the maximum penstock pressure and from the rotational speed limits. It is shown that the maximum instantaneous power step response up and down depends on the hydro-mechanical characteristics of the pump-turbine unit and of the motor-generator speed limits. As a results, for the investigated test case, the FSFC solution offer the best power step response performances.
Influence of rotating wakes on separation in turbine exhaust diffusers
NASA Astrophysics Data System (ADS)
Sieker, Olaf; Seume, Joerg R.
2008-03-01
Highly efficient turbine exhaust diffuser cannot be designed without taking into account the unsteady interactions with the last rotating row of the turbine. Former investigations described in the literature show a very high potential compared to that of other parts of turbomachines for improving the diffuser. A scale model of a typical gas turbine exhaust diffuser is investigated experimentally. To investigate the influence of rotating wakes, measurements without a spoke wheel as well as measurements with a variable-speed rotating cylindrical spoke wheel with 2 mm-or 10 mm-spokes simulating turbine rotor wakes were made. Miniaturized 3-hole pneumatic probes as well as a 2D-Laser-Doppler-Velocimeter (LDV) were used to investigate velocity profiles. 122 static pressure tapings were used to measure several axial and circumferential static pressure distributions. Without a spoke-wheel the annular diffuser separates at the shroud for all swirl configurations. For the measurements with the 2 mm spoke wheel, the separating diffuser was unstable while keeping the test rig operating parameters constant. For a non-rotating 10 mm spoke wheel and at rotational speeds less than 1,000 rpm, the annular diffuser separated at the shroud. In-creasing the rotational speed of the 10mm spoke wheel, flow did not separate at the shroud and much higher pressure recovery than without spoke wheel has achieved.
NASA Astrophysics Data System (ADS)
Cheng, Jilin; Zhang, Lihua; Zhang, Rentian; Gong, Yi; Zhu, Honggeng; Deng, Dongsheng; Feng, Xuesong; Qiu, Jinxian
2010-06-01
A dynamic planning model for optimizing operation of variable speed pumping system, aiming at minimum power consumption, was proposed to achieve economic operation. The No. 4 Jiangdu Pumping Station, a source pumping station in China's Eastern Route of South-to-North Water Diversion Project, is taken as a study case. Since the sump water level of Jiangdu Pumping Station is affected by the tide of Yangtze River, the daily-average heads of the pumping system varies yearly from 3.8m to 7.8m and the tide level difference in one day up to 1.2m. Comparisons of operation electricity cost between optimized variable speed and fixed speed operations of pumping system were made. When the full load operation mode is adopted, whether or not electricity prices in peak-valley periods are considered, the benefits of variable speed operation cannot compensate the energy consumption of the VFD. And when the pumping system operates in part load and the peak-valley electricity prices are considered, the pumping system should cease operation or lower its rotational speed in peak load hours since the electricity price are much higher, and to the contrary the pumping system should raise its rotational speed in valley load hours to pump more water. The computed results show that if the pumping system operates in 80% or 60% loads, the energy consumption cost of specified volume of water will save 14.01% and 26.69% averagely by means of optimal variable speed operation, and the investment on VFD will be paid back in 2 or 3 years. However, if the pumping system operates in 80% or 60% loads and the energy cost is calculated in non peak-valley electricity price, the repayment will be lengthened up to 18 years. In China's S-to-N Water Diversion Project, when the market operation and peak-valley electricity prices are taken into effect to supply water and regulate water levels in regulation reservoirs as Hongzehu Lake, Luomahu Lake, etc. the economic operation of water-diversion pumping stations will be vital, and the adoption of VFDs to achieve optimal operation may be a good choice.
A process for providing positive primary control power by wind turbines
NASA Astrophysics Data System (ADS)
Marschner, V.; Michael, J.; Liersch, J.
2014-12-01
Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.
An oilspill trajectory analysis model with a variable wind deflection angle
Samuels, W.B.; Huang, N.E.; Amstutz, D.E.
1982-01-01
The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.
NASA Astrophysics Data System (ADS)
Güth, Dirk; Erbis, Vadim; Schamoni, Markus; Maas, Jürgen
2014-04-01
High rotational speeds for brakes and clutches based on magnetorheological fluids represent a remaining challenge for the industrial or automotive application. Beside particle centrifugation effects and rotational speed-depending no-load losses, the torque characteristic is an important property that needs to considered in the design process of actuators. Due to missing experimental data for these operating conditions, in this paper the shear rate and flux depending yield stress behavior of magnetorheological uids is experimentally investigated for high rotational speeds or respectively high shear rates. Therefore a brake actuator with variable shear gap heights up to 4 mm is designed, realized and used for the experimental investigation, which are performed for a maximum shear rate of ƴ= 34; 000 s-1 under large magnetic elds. The measurement results point out a strong dependency between shear rate, magnetic ux density and resulting yield stress. For low shear gap heights, a significant reduction in the yield stress up to 10 % can be determined. Additionally the development of Taylor vortices is determined, which will not only occur in viscous case without an applied magnetic field. The measurement results are important for a reliable actuator design which should be used in application with high rotational speeds.
Glaws, Kate; Mitchell, Melissa; Scerbo, Heather; Voight, Michael; Sells, Pat
2012-01-01
Purpose/Hypothesis: The kinematic sequence of the golf swing is an established principle that occurs in a proximal-to-distal pattern with power generation beginning with rotation of the pelvis. Few studies have correlated the influence of peak pelvis rotation to the skill level of the golfer. Furthermore, minimal research exists on the strength of the gluteal musculature and their ability to generate power during the swing. The purpose of this study was to explore the relationship between peak pelvis rotation, gluteus medius and gluteus maximus strength, and a golfer's handicap. Subjects: 56 healthy subjects. Material/Methods: Each subject was assessed using a hand-held dynamometry device per standardized protocol to determine gluteus maximus and medius strength. The K-vest was placed on the subject with electromagnetic sensors at the pelvis, upper torso, and gloved lead hand to measure the rotational speed at each segment in degrees/second. After K-vest calibration and 5 practice swings, each subject hit 5 golf balls during which time, the sensors measured pelvic rotation speed. Results: A one-way ANOVA was performed to determine the relationships between peak pelvis rotation, gluteus medius and gluteus maximus strength, and golf handicap. A significant difference was found between the following dependent variables and golf handicap: peak pelvis rotation (p=0.000), gluteus medius strength (p=0.000), and gluteus maximus strength (p=0.000). Conclusion: Golfers with a low handicap are more likely to have increased pelvis rotation speed as well as increased gluteus maximus and medius strength when compared to high handicap golfers. Clinical Relevance: The relationships between increased peak pelvis rotation and gluteus maximus and medius strength in low handicap golfers may have implications in designing golf training programs. Further research needs to be conducted in order to further explore these relationships. PMID:22666643
A fully superconducting bearing system for flywheel applications
NASA Astrophysics Data System (ADS)
Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.
2016-06-01
A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.
Research on motor rotational speed measurement in regenerative braking system of electric vehicle
NASA Astrophysics Data System (ADS)
Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua
2016-01-01
Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.
NASA Astrophysics Data System (ADS)
Lu, Siliang; Wang, Xiaoxian; He, Qingbo; Liu, Fang; Liu, Yongbin
2016-12-01
Transient signal analysis (TSA) has been proven an effective tool for motor bearing fault diagnosis, but has yet to be applied in processing bearing fault signals with variable rotating speed. In this study, a new TSA-based angular resampling (TSAAR) method is proposed for fault diagnosis under speed fluctuation condition via sound signal analysis. By applying the TSAAR method, the frequency smearing phenomenon is eliminated and the fault characteristic frequency is exposed in the envelope spectrum for bearing fault recognition. The TSAAR method can accurately estimate the phase information of the fault-induced impulses using neither complicated time-frequency analysis techniques nor external speed sensors, and hence it provides a simple, flexible, and data-driven approach that realizes variable-speed motor bearing fault diagnosis. The effectiveness and efficiency of the proposed TSAAR method are verified through a series of simulated and experimental case studies.
Kinematics of the field hockey penalty corner push-in.
Kerr, Rebecca; Ness, Kevin
2006-01-01
The aims of the study were to determine those variables that significantly affect push-in execution and thereby formulate coaching recommendations specific to the push-in. Two 50 Hz video cameras recorded transverse and longitudinal views of push-in trials performed by eight experienced and nine inexperienced male push-in performers. Video footage was digitized for data analysis of ball speed, stance width, drag distance, drag time, drag speed, centre of massy displacement and segment and stick displacements and velocities. Experienced push-in performers demonstrated a significantly greater (p < 0.05) stance width, a significantly greater distance between the ball and the front foot at the start of the push-in and a significantly faster ball speed than inexperienced performers. In addition, the experienced performers showed a significant positive correlation between ball speed and playing experience and tended to adopt a combination of simultaneous and sequential segment rotation to achieve accuracy and fast ball speed. The study yielded the following coaching recommendations for enhanced push-in performance: maximize drag distance by maximizing front foot-ball distance at the start of the push-in; use a combination of simultaneous and sequential segment rotations to optimise both accuracy and ball speed and maximize drag speed.
Wind turbine power tracking using an improved multimodel quadratic approach.
Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier
2010-07-01
In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Functional form for plasma velocity in a rapidly rotating tokamak discharge
Burrell, Keith H.; Chrystal, C. olin
2014-07-25
A recently developed technique using charge exchange spectroscopy determines the ion poloidal rotation in tokamak plasmas from the poloidal variation in the toroidal angular rotation speed. The basis for this technique is the functional form for the plasma velocity calculated from the equilibrium equations. The initial development of this technique utilized the functional form determined for conditions where the ion toroidal rotation speed is much smaller than the ion thermal speed. There are cases, however, where the toroidal rotation can be comparable to the ion thermal speed, especially for high atomic number impurities. Furthermore, the present paper extends the previousmore » analysis to this high rotation speed case and demonstrates how to extract the poloidal rotation speed from measurements of the toroidal angular rotation speed at two points on a flux surface.« less
Wind Velocity and Position Sensor-less Operation for PMSG Wind Generator
NASA Astrophysics Data System (ADS)
Senjyu, Tomonobu; Tamaki, Satoshi; Urasaki, Naomitsu; Uezato, Katsumi; Funabashi, Toshihisa; Fujita, Hideki
Electric power generation using non-conventional sources is receiving considerable attention throughout the world. Wind energy is one of the available non-conventional energy sources. Electrical power generation using wind energy is possible in two ways, viz. constant speed operation and variable speed operation using power electronic converters. Variable speed power generation is attractive, because maximum electric power can be generated at all wind velocities. However, this system requires a rotor speed sensor, for vector control purpose, which increases the cost of the system. To alleviate the need of rotor speed sensor in vector control, we propose a new sensor-less control of PMSG (Permanent Magnet Synchronous Generator) based on the flux linkage. We can estimate the rotor position using the estimated flux linkage. We use a first-order lag compensator to obtain the flux linkage. Furthermore‚we estimate wind velocity and rotation speed using a observer. The effectiveness of the proposed method is demonstrated thorough simulation results.
Design of Intelligent Hydraulic Excavator Control System Based on PID Method
NASA Astrophysics Data System (ADS)
Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong
Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.
NASA Technical Reports Server (NTRS)
Bilwakesh, K. R.; Koch, C. C.; Prince, D. C.
1972-01-01
A 0.5 hub/tip radius ratio compressor stage consisting of a 1500 ft/sec tip speed rotor, a variable camber inlet guide vane and a variable stagger stator was designed and tested with undistorted inlet flow, flow with tip radial distortion, and flow with 90 degrees, one-per-rev, circumferential distortion. At the design speed and design IGV and stator setting the design stage pressure ratio was achieved at a weight within 1% of the design flow. Analytical results on rotor tip shock structure, deviation angle and part-span shroud losses at different operating conditions are presented. The variable geometry blading enabled efficient operation with adequate stall margin at the design condition and at 70% speed. Closing the inlet guide vanes to 40 degrees changed the speed-versus-weight flow relationship along the stall line and thus provided the flexibility of operation at off-design conditions. Inlet flow distortion caused considerable losses in peak efficiency, efficiency on a constant throttle line through design pressure ratio at design speed, stall pressure ratio, and stall margin at the 0 degrees IGV setting and high rotative speeds. The use of the 40 degrees inlet guide vane setting enabled partial recovery of the stall margin over the standard constant throttle line.
Experimental Investigation of Rotating Stall in a Research Multistage Axial Compressor
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Braunscheidel, Edward P.; Welch, Gerard E.
2007-01-01
A collection of experimental data acquired in the NASA low-speed multistage axial compressor while operated in rotating stall is presented in this paper. The compressor was instrumented with high-response wall pressure modules and a static pressure disc probe for in-flow measurement, and a split-fiber probe for simultaneous measurements of velocity magnitude and flow direction. The data acquired to-date have indicated that a single fully developed stall cell rotates about the flow annulus at 50.6% of the rotor speed. The stall phenomenon is substantially periodic at a fixed frequency of 8.29 Hz. It was determined that the rotating stall cell extends throughout the entire compressor, primarily in the axial direction. Spanwise distributions of the instantaneous absolute flow angle, axial and tangential velocity components, and static pressure acquired behind the first rotor are presented in the form of contour plots to visualize different patterns in the outer (midspan to casing) and inner (hub to mid-span) flow annuli during rotating stall. In most of the cases observed, the rotating stall started with a single cell. On occasion, rotating stall started with two emerging stall cells. The root cause of the variable stall cell count is unknown, but is not attributed to operating procedures.
Comparison of split double and triple twists in pair figure skating.
King, Deborah L; Smith, Sarah L; Brown, Michele R; McCrory, Jean L; Munkasy, Barry A; Scheirman, Gary I
2008-05-01
In this study, we compared the kinematic variables of the split triple twist with those of the split double twist to help coaches and scientists understand these landmark pair skating skills. High-speed video was taken during the pair short and free programmes at the 2002 Salt Lake City Winter Olympics and the 2003 International Skating Union Grand Prix Finals. Three-dimensional analyses of 14 split double twists and 15 split triple twists from eleven pairs were completed. In spite of considerable variability in the performance variables among the pairs, the main difference between the split double twists and split triple twists was an increase in rotational rate. While eight of the eleven pairs relied primarily on an increased rotational rate to complete the split triple twist, three pairs employed a combined strategy of increased rotational rate and increased flight time due predominantly to delayed or lower catches. These results were similar to observations of jumps in singles skating for which the extra rotation is typically due to an increase in rotational velocity; increases in flight time come primarily from delayed landings as opposed to additional height during flight. Combining an increase in flight time and rotational rate may be a good strategy for completing the split triple twist in pair skating.
NASA Astrophysics Data System (ADS)
Mukunda, P. G.; Shailesh, Rao A.; Rao, Shrikantha S.
2010-02-01
Although the manner in which the molten metal flows plays a major role in the formation of the uniform cylinder in centrifugal casting, not much information is available on this topic. The flow in the molten metal differs at various rotational speeds, which in turn affects the final casting. In this paper, the influence of the flow of molten metal of hyper eutectic Al-2Si alloys at various rotational speeds is discussed. At an optimum speed of 800 rpm, a uniform cylinder was formed. For the rotational speeds below and above these speeds, an irregular shaped casting was formed, which is mainly due to the influence of melt. Primary á-Al particles were formed in the tube periphery at low rotational speed, and their sizes and shapes were altered with changes in rotational speeds. The wear test for the inner surface of the casting showed better wear properties for the casting prepared at the optimum speed of rotation.
NASA Technical Reports Server (NTRS)
Sanders, Bobby W.; Weir, Lois J.
2008-01-01
A new hypersonic inlet for a turbine-based combined-cycle (TBCC) engine has been designed. This split-flow inlet is designed to provide flow to an over-under propulsion system with turbofan and dual-mode scramjet engines for flight from takeoff to Mach 7. It utilizes a variable-geometry ramp, high-speed cowl lip rotation, and a rotating low-speed cowl that serves as a splitter to divide the flow between the low-speed turbofan and the high-speed scramjet and to isolate the turbofan at high Mach numbers. The low-speed inlet was designed for Mach 4, the maximum mode transition Mach number. Integration of the Mach 4 inlet into the Mach 7 inlet imposed significant constraints on the low-speed inlet design, including a large amount of internal compression. The inlet design was used to develop mechanical designs for two inlet mode transition test models: small-scale (IMX) and large-scale (LIMX) research models. The large-scale model is designed to facilitate multi-phase testing including inlet mode transition and inlet performance assessment, controls development, and integrated systems testing with turbofan and scramjet engines.
NASA Astrophysics Data System (ADS)
Zhang, H. J.; Wang, M.; Zhu, Z.; Zhang, X.; Yu, T.; Wu, Z. Q.
2018-03-01
High-rotation-speed friction stir welding (HRS-FSW) is a promising technique to reduce the welding loads during FSW and thus facilitates the application of FSW for in situ fabrication and repair. In this study, 6061 aluminum alloy was friction stir welded at high-rotation speeds ranging from 3000 to 7000 rpm at a fixed welding speed of 50 mm/min, and the effects of rotation speed on the nugget zone macro- and microstructures were investigated in detail in order to illuminate the process features. Temperature measurements during HRS-FSW indicated that the peak temperature did not increase consistently with rotation speed; instead, it dropped remarkably at 5000 rpm because of the lowering of material shear stress. The nugget size first increased with rotation speed until 5000 rpm and then decreased due to the change of the dominant tool/workpiece contact condition from sticking to sliding. At the rotation speed of 5000 rpm, where the weld material experienced weaker thermal effect and higher-strain-rate plastic deformation, the nugget exhibited relatively small grain size, large textural intensity, and high dislocation density. Consequently, the joint showed superior nugget hardness and simultaneously a slightly low tensile ductility.
Simultaneous measurement of bacterial flagellar rotation rate and swimming speed.
Magariyama, Y; Sugiyama, S; Muramoto, K; Kawagishi, I; Imae, Y; Kudo, S
1995-01-01
Swimming speeds and flagellar rotation rates of individual free-swimming Vibrio alginolyticus cells were measured simultaneously by laser dark-field microscopy at 25, 30, and 35 degrees C. A roughly linear relation between swimming speed and flagellar rotation rate was observed. The ratio of swimming speed to flagellar rotation rate was 0.113 microns, which indicated that a cell progressed by 7% of pitch of flagellar helix during one flagellar rotation. At each temperature, however, swimming speed had a tendency to saturate at high flagellar rotation rate. That is, the cell with a faster-rotating flagellum did not always swim faster. To analyze the bacterial motion, we proposed a model in which the torque characteristics of the flagellar motor were considered. The model could be analytically solved, and it qualitatively explained the experimental results. The discrepancy between the experimental and the calculated ratios of swimming speed to flagellar rotation rate was about 20%. The apparent saturation in swimming speed was considered to be caused by shorter flagella that rotated faster but produced less propelling force. Images FIGURE 1 FIGURE 4 PMID:8580359
Electric propulsion system for wheeled vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, J.A.
1981-11-03
An electric propulsion system for a wheeled vehicle has a generator and motor connected to a drive shaft and an electrical system for charging a battery during all conditions of power transfer from the wheels of the vehicle to the generator to minimize energy required for propulsion. A variable speed power coupling unit connecting the motor to the drive shaft has sprockets revolving about a belt connected sun sprocket with speed control effected by varying the rate of satellite sprocket rotation.
Merfeld, D M; Zupan, L H; Gifford, C A
2001-04-01
All linear accelerometers, including the otolith organs, respond equivalently to gravity and linear acceleration. To investigate how the nervous system resolves this ambiguity, we measured perceived roll tilt and reflexive eye movements in humans in the dark using two different centrifugation motion paradigms (fixed radius and variable radius) combined with two different subject orientations (facing-motion and back-to-motion). In the fixed radius trials, the radius at which the subject was seated was held constant while the rotation speed was changed to yield changes in the centrifugal force. In variable radius trials, the rotation speed was held constant while the radius was varied to yield a centrifugal force that nearly duplicated that measured during the fixed radius condition. The total gravito-inertial force (GIF) measured by the otolith organs was nearly identical in the two paradigms; the primary difference was the presence (fixed radius) or absence (variable radius) of yaw rotational cues. We found that the yaw rotational cues had a large statistically significant effect on the time course of perceived tilt, demonstrating that yaw rotational cues contribute substantially to the neural processing of roll tilt. We also found that the orientation of the subject relative to the centripetal acceleration had a dramatic influence on the eye movements measured during fixed radius centrifugation. Specifically, the horizontal vestibuloocular reflex (VOR) measured in our human subjects was always greater when the subject faced the direction of motion than when the subjects had their backs toward the motion during fixed radius rotation. This difference was consistent with the presence of a horizontal translational VOR response induced by the centripetal acceleration. Most importantly, by comparing the perceptual tilt responses to the eye movement responses, we found that the translational VOR component decayed as the subjective tilt indication aligned with the tilt of the GIF. This was true for both the fixed radius and variable radius conditions even though the time course of the responses was significantly different for these two conditions. These findings are consistent with the hypothesis that the nervous system resolves the ambiguous measurements of GIF into neural estimates of gravity and linear acceleration. More generally, these findings are consistent with the hypothesis that the nervous system uses internal models to process and interpret sensory motor cues.
VARIABILITY IN HOT CARBON-DOMINATED ATMOSPHERE (HOT DQ) WHITE DWARFS: RAPID ROTATION?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kurtis A.; Bierwagen, Michael; Montgomery, M. H.
2016-01-20
Hot white dwarfs (WDs) with carbon-dominated atmospheres (hot DQs) are a cryptic class of WDs. In addition to their deficiency of hydrogen and helium, most of these stars are highly magnetic, and a large fraction vary in luminosity. This variability has been ascribed to nonradial pulsations, but increasing data call this explanation into question. We present studies of short-term variability in seven hot DQ WDs. Three (SDSS J1426+5752, SDSS J2200−0741, and SDSS J2348−0942) were known to be variable. Their photometric modulations are coherent over at least two years, and we find no evidence for variability at frequencies that are notmore » harmonics. We present the first time-series photometry for three additional hot DQs (SDSS J0236−0734, SDSS J1402+3818, and SDSS J1615+4543); none are observed to vary, but the signal-to-noise is low. Finally, we present high speed photometry for SDSS J0005−1002, known to exhibit a 2.1-day photometric variation; we do not observe any short-term variability. Monoperiodicity is rare among pulsating WDs, so we contemplate whether the photometric variability is due to rotation rather than pulsations; similar hypotheses have been raised by other researchers. If the variability is due to rotation, then hot DQ WDs as a class contain many rapid rotators. Given the lack of companions to these stars, the origin of any fast rotation is unclear—both massive progenitor stars and double degenerate merger remnants are possibilities. We end with suggestions of future work that would best clarify the nature of these rare, intriguing objects.« less
Study on fault diagnosis and load feedback control system of combine harvester
NASA Astrophysics Data System (ADS)
Li, Ying; Wang, Kun
2017-01-01
In order to timely gain working status parameters of operating parts in combine harvester and improve its operating efficiency, fault diagnosis and load feedback control system is designed. In the system, rotation speed sensors were used to gather these signals of forward speed and rotation speeds of intermediate shaft, conveying trough, tangential and longitudinal flow threshing rotors, grain conveying auger. Using C8051 single chip microcomputer (SCM) as processor for main control unit, faults diagnosis and forward speed control were carried through by rotation speed ratio analysis of each channel rotation speed and intermediate shaft rotation speed by use of multi-sensor fused fuzzy control algorithm, and these processing results would be sent to touch screen and display work status of combine harvester. Field trials manifest that fault monitoring and load feedback control system has good man-machine interaction and the fault diagnosis method based on rotation speed ratios has low false alarm rate, and the system can realize automation control of forward speed for combine harvester.
Joyce, Christopher; Burnett, Angus; Cochrane, Jodie; Ball, Kevin
2013-06-01
The aims of this study were (i) to determine whether significant three-dimensional (3D) trunk kinematic differences existed between a driver and a five-iron during a golf swing; and (ii) to determine the anthropometric, physiological, and trunk kinematic variables associated with clubhead speed. Trunk range of motion and golf swing kinematic data were collected from 15 low-handicap male golfers (handicap = 2.5 +/- 1.9). Data were collected using a 10-camera motion capture system operating at 250 Hz. Data on clubhead speed and ball velocity were collected using a real-time launch monitor. Paired t-tests revealed nine significant (p < or = 0.0019) between-club differences for golf swing kinematics, namely trunk and lower trunk flexion/extension and lower trunk axial rotation. Multiple regression analyses explained 33.7-66.7% of the variance in clubhead speed for the driver and five-iron, respectively, with both trunk and lower trunk variables showing associations with clubhead speed. Future studies should consider the role of the upper limbs and modifiable features of the golf club in developing clubhead speed for the driver in particular.
Li, Jia; Lu, Hongzhou; Xu, Zhenming; Zhou, Yaohe
2008-06-15
Waste printed circuit board (PCB) is increasing worldwide. The corona electrostatic separation (CES) was an effective and environmental protection way to recycle resource from waste PCBs. The aim of this paper is to analyze the main factor (rotational speed) that affects the efficiency of CES from the point of view of electrostatics and mechanics. A quantitative method for analyzing the affection of rotational speed was studied and the model for separating flat nonmetal particles in waste PCBs was established. The conception of "charging critical rotational speed" and "detaching critical rotational speed" were presented. Experiments with the waste PCBs verified the theoretical model, and the experimental results were in good agreement with the theoretical model. The results indicated that the purity and recycle percentage of materials got a good level when the rotational speed was about 70 rpm and the critical rotational speed of small particles was higher than big particles. The model can guide the definition of operator parameter and the design of CES, which are needed for the development of any new application of the electrostatic separation method.
The conical pendulum: the tethered aeroplane
NASA Astrophysics Data System (ADS)
Mazza, Anthony P.; Metcalf, William E.; Cinson, Anthony D.; Lynch, John J.
2007-01-01
The introductory physics lab curriculum usually has one experiment on uniform circular motion (UCM). Physics departments typically have several variable-speed rotators in storage that, if they work, no longer work well. Replacing these rotators with new ones is costly, especially when they are only used once a year. This article describes how an inexpensive (ap10) tethered aeroplane, powered by a small electric motor, can be used to study UCM. The aeroplane is easy to see and entertaining to watch. For a given string length and air speed, a tethered aeroplane quickly finds a stable, horizontal, circular orbit. Using a digital video (DV) camcorder, VideoPoint Capture, QuickTime player, metre sticks and a stopwatch, data on the aeroplane's motion were obtained. The length of the string was varied from 120 to 340 cm while the air speed ranged from 200 to 480 cm s-1. For each string length and air speed, the period of the orbit and the diameter of the path were carefully measured. Theoretical values of path radii were then calculated using Newton's second law. The agreement between experiment and theory was usually better than 2%.
Synthetic optimization of air turbine for dental handpieces.
Shi, Z Y; Dong, T
2014-01-01
A synthetic optimization of Pelton air turbine in dental handpieces concerning the power output, compressed air consumption and rotation speed in the mean time is implemented by employing a standard design procedure and variable limitation from practical dentistry. The Pareto optimal solution sets acquired by using the Normalized Normal Constraint method are mainly comprised of two piecewise continuous parts. On the Pareto frontier, the supply air stagnation pressure stalls at the lower boundary of the design space, the rotation speed is a constant value within the recommended range from literature, the blade tip clearance insensitive to while the nozzle radius increases with power output and mass flow rate of compressed air to which the residual geometric dimensions are showing an opposite trend within their respective "pieces" compared to the nozzle radius.
Parker, James; Lagerhem, Charlie; Hellström, John; Olsson, M Charlotte
2017-01-01
It has previously been shown that isotonic strength training can improve driver performance among golfers, though few studies have investigated effects of strength training on swing kinematics together with driver performance. In this study we investigated whether isokinetic rotational training could improve driver performance and swing kinematic variables amongst elite golfers. Twenty competitive pre-elite golfers (handicap better than -3.0), 13 men and 7 women, were split into two groups, one group received the isokinetic power training (IK) alongside their normal isotonic pre-season strength-training and the other group continued with their normal isotonic pre-season strength-training regime (IT). The IK group completed 12 sessions of isokinetic power training on a standing rotation exercise (10% body weight at 1 m/s) and barbell squat (25 kg plus 10% body weight at 0.5 m/s). The IT group continued with their normal isotonic pre-season strength-training regime. Participants were tested for rotational power, lower body power, golf swing kinematics, and driver performance before and after a nine-week training period. After the nine-week training period both the IK and the IT groups increased their dominant side rotational force and power (effect sizes between 0.50-0.96) and magnitude based inference indicated that IK had a likely (> 80%) more beneficial increase in dominant side rotational force and power. For swing kinematics, IK had a likely (> 80%) more beneficial improvement in lead arm speed and acceleration compared to the IT group. For driver performance, IK had a possible (65%) beneficial effect on ball speed and likely (78%) beneficial effect on carry distance when compared to IT, whereas neither of the groups improved club head speed. In the present study on pre-elite golfers we found that 9 weeks of isokinetic training increased seated rotational force and power, peak arm speed and arm acceleration, ball speed, and carry distance more compared to isotonic training. Even though isokinetic training did not increase CHS, it did result in greater carry distance.
Hydroelectric power plant with variable flow on drinking water adduction
NASA Astrophysics Data System (ADS)
Deaconu, S. I.; Babău, R.; Popa, G. N.; Gherman, P. L.
2018-01-01
The water feeding system of the urban and rural localities is mainly collected with feed pipes which can have different lengths and different levels. Before using, water must be treated. Since the treatment take place in the tanks, the pressure in the inlet of the station must be diminished. Many times the pressure must be reduced with 5-15 Barr and this is possible using valves, cavils, and so on. The flow capacity of the water consumption is highly fluctuating during one day, depending on the season, etc. This paper presents a method to use the hydroelectric potential of the feed pipes using a hydraulic turbine instead of the classical methods for decreasing the pressure. To avoid the dissipation of water and a good behavior of the power parameters it is used an asynchronous generator (AG) which is coupled at the electrical distribution network through a static frequency converter (SFC). The turbine has a simple structure without the classical devices (used to regulate the turbine blades). The speed of rotation is variable, depending on the necessary flow capacity in the outlet of the treatment station. The most important element of the automation is the static frequency converter (SFC) which allows speeds between 0 and 1.5 of the rated speed of rotation and the flow capacity varies accordingly with it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru
2014-03-01
A flat die pellet mill was used to understand the effect of high levels of feedstock moisture content in the range of 28–38% (w.b.), with die rotational speeds of 40–60 Hz, and preheating temperatures of 30–110 °C on the pelleting characteristics of 4.8 mm screen size ground corn stover using an 8 mm pellet die. The physical properties of the pelletised biomass studied are: (a) pellet moisture content, (b) unit, bulk and tapped density, and (c) durability. Pelletisation experiments were conducted based on central composite design. Analysis of variance (ANOVA) indicated that feedstock moisture content influenced all of the physicalmore » properties at P < 0.001. Pellet moisture content decreased with increase in preheating temperature to about 110 °C and decreasing the feedstock moisture content to about 28% (w.b.). Response surface models developed for quality attributes with respect to process variables has adequately described the process with coefficient of determination (R2) values of >0.88. The other pellet quality attributes such as unit, bulk, tapped density, were maximised at feedstock moisture content of 30–33% (w.b.), die speeds of >50 Hz and preheating temperature of >90 °C. In case of durability a medium moisture content of 33–34% (w.b.) and preheating temperatures of >70 °C and higher die speeds >50 Hz resulted in high durable pellets. It can be concluded from the present study that feedstock moisture content, followed by preheating, and die rotational speed are the interacting process variables influencing pellet moisture content, unit, bulk and tapped density and durability.« less
Uchiyama, Jumpei; Aoki, Shigeru
2015-01-01
To research the detailed mechanism of the lubrication process using the thermal effusivity sensor, the relationships of the lubrication progress with the pattern of powder flow, the rotation speed and the filling level were investigated. The thermal effusivity profile was studied as a function of the number of rotations at various rotation speeds. It was observed that at lower rotation speeds, the profiles of the lubrication progress were almost the same, regardless of the rotation speed. In this region, the highest speed was defined as the critical rotation speed (CRS), which was found to be one of the important factors. The CRS had close relations with avalanche flow in the blender. The first and the second phases were observed in the lubrication process. The first phase was influenced by the CRS and the filling level in the blender. The second phase was influenced by the rotation speed. The mechanism of two-phase process was proposed as a macro progression of the dispersion of the lubricant (first phase) and micro progression of the coating of the powder particles with lubricant (second phase). The accurate monitoring by the thermal effusivity sensor was able to help a better understanding in the lubrication process.
Optimization of gold ore Sumbawa separation using gravity method: Shaking table
NASA Astrophysics Data System (ADS)
Ferdana, Achmad Dhaefi; Petrus, Himawan Tri Bayu Murti; Bendiyasa, I. Made; Prijambada, Irfan Dwidya; Hamada, Fumio; Sachiko, Takahi
2018-04-01
Most of artisanal small gold mining in Indonesia has been using amalgamation method, which caused negative impact to the environment around ore processing area due to the usage of mercury. One of the more environmental-friendly method for gold processing is gravity method. Shaking table is one of separation equipment of gravity method used to increase concentrate based on difference of specific gravity. The optimum concentration result is influenced by several variables, such as rotational speed shaking, particle size and deck slope. In this research, the range of rotational speed shaking was between 100 rpm and 200 rpm, the particle size was between -100 + 200 mesh and -200 + 300 mesh and deck slope was between 3° and 7°. Gold concentration in concentrate was measured by EDX. The result shows that the optimum condition is obtained at a shaking speed of 200 rpm, with a slope of 7° and particle size of -100 + 200 mesh.
NASA Astrophysics Data System (ADS)
Semay, Claude; Lo Bue, Francesco; Mélin, Soizic; Michel, Francis
2018-05-01
In 1849, Hippolyte Fizeau determined the speed of light in a famous experiment. The idea was to measure the time taken for a pulse of light to travel between an intense light source and a mirror about 8 km away. A rotating cogwheel with 720 notches, that could be rotated at a variable speed, was used to chop the light beam and determine the flight time. In 2017, physicists and technicians of the University of Mons in Belgium reproduced the experiment with modern devices to allow members of the public to measure the speed of light themselves. The light source used was a low power laser, and the cogwheel was replaced by an electrically driven chopper, but the general spirit of Fizeau’s experiment was preserved. The exhibition was organised in the belfry of Mons, a baroque-style building classified as a UNESCO World Heritage site. The solutions found for the main problems encountered are presented here to help colleagues intending to reproduce the experiment.
High Rotation Speed Friction Stir Welding for 2014 Aluminum Alloy Thin Sheets
NASA Astrophysics Data System (ADS)
Chen, Shujin; Zhou, Yang; Xue, Junrong; Ni, Ruiyang; Guo, Yue; Dong, Jianghui
2017-03-01
In this study, 2014 aluminum alloy sheets with 1 mm thickness are welded successfully by friction stir welding (FSW) robot under the condition of high rotation speed. When the high rotation speed of 10,000-16,500 rpm is applied, the lower axial pressure (less than 200 N) is obtained, which reduces stiffness requirements for equipment. Welding deformation is inevitable because high rotation speed can easily result in rapid heating rate and uneven heat input. The welding distortion caused by two cooling methods is measured, respectively, by laser range finder. The experimental results show that the welding distortion is smaller under the condition of water cooling. When the rotation speed is up to 15,000 rpm and welding speed 50-170 mm/min, the whole welding process is controllable. Under the higher rotation speed condition, the welding defects disappear gradually and more stable mechanical properties can be obtained up to 75% of base metal (ω = 16,000 rpm, ν = 110 mm/min). The results of different welding parameters demonstrate that the high rotation speed can increase material mixing and reduce the axial force (z force), and it can benefit lightweight sheet welding by using FSW robot.
Study on influence of crack on the blade status using FBGs
NASA Astrophysics Data System (ADS)
Xu, Gang; Liang, Lei; Li, Jianzhi; Mei, Huaping; Li, Hongli; Liu, Yijun
2018-03-01
The status detection for rotating parts is difficult since the sensor is influenced by the rotation in the inflammable, explosive, and strong magnetic environment. Based on the fiber Bragg grating sensing technology, this paper studies the influence of the natural frequency and deformation of a rotor blade affected by the size of crack in the blade. Test results show that the speed of the equipment and blade excited vibration frequency are two main factors or deformation and vibration frequency of the blade. With an increase in the crack depth, the blade deformation is increased while the stimulated natural frequency of the blade is decreased; at a low rotational speed, the deformation is mainly caused by the rotating speed of the blade. On the contrary, the vibration blade itself contributes to the deformation at a high speed. During the process of full speed rotation, the influence of the rotational speed on the blade deformation almost remains the same, and the influence of the natural vibration on blade deformation is increased with an increase in the rotational speed.
Study on influence of crack on the blade status using FBGs
NASA Astrophysics Data System (ADS)
Xu, Gang; Liang, Lei; Li, Jianzhi; Mei, Huaping; Li, Hongli; Liu, Yijun
2017-12-01
The status detection for rotating parts is difficult since the sensor is influenced by the rotation in the inflammable, explosive, and strong magnetic environment. Based on the fiber Bragg grating sensing technology, this paper studies the influence of the natural frequency and deformation of a rotor blade affected by the size of crack in the blade. Test results show that the speed of the equipment and blade excited vibration frequency are two main factors or deformation and vibration frequency of the blade. With an increase in the crack depth, the blade deformation is increased while the stimulated natural frequency of the blade is decreased; at a low rotational speed, the deformation is mainly caused by the rotating speed of the blade. On the contrary, the vibration blade itself contributes to the deformation at a high speed. During the process of full speed rotation, the influence of the rotational speed on the blade deformation almost remains the same, and the influence of the natural vibration on blade deformation is increased with an increase in the rotational speed.
Computer Modeling of a Rotating Detonation Engine in a Rocket Configuration
2015-03-01
than the ambient pressure P0, the nozzle was fully supersonic . If the calculated pressure P9 after the normal shock was less than the ambient...18 Gas Properties...66 vii Nomenclature Variable Definition 3∗ Entrance to RDE 4 RDE exit 8 Nozzle 9 Nozzle exit A Area a Speed of
Experimental study of icing accretion on a rotating conical spinner
NASA Astrophysics Data System (ADS)
Chen, Ningli; Ji, Honghu; Hu, Yaping; Wang, Jian; Cao, Guangzhou
2015-12-01
A reduced scale experiment has been conducted to investigate the icing accretion procedure on a rotating spinner of 60° cone angle. The experiment was carried out in a small scale ice wind tunnel with three different rotating speeds of the spinner. The experimental conditions were determined from the actual icing condition of the spinner of a turbofan engine by using the similarity theory, which considers the rotating effects. The ice thickness on the spinner was got from the image taken by the high speed camera, by image processing. The results of this investigation show that under the experimental condition, ice on the spinner's tip of three different rotating speeds are all glaze ice and about the same thick. However, on the downstream surface of the spinner, ice shape on the rotating spinner is different from that on the stationary spinner. It is uneven glaze ice on the stationary spinner while it is `particle ice' when the rotating speed is 8240 rpm and it is `needle ice' when the rotating speed is 15,200 rpm. The experiment also reveals that when the rotating speed is higher, the ice layer is thicker.
Controllable High-Speed Rotation of Nanowires
NASA Astrophysics Data System (ADS)
Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.
2005-06-01
We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.
Arakawa, Mamoru; Nishimura, Takashi; Takewa, Yoshiaki; Umeki, Akihide; Ando, Masahiko; Kishimoto, Yuichiro; Kishimoto, Satoru; Fujii, Yutaka; Date, Kazuma; Kyo, Shunei; Adachi, Hideo; Tatsumi, Eisuke
2016-06-01
We previously developed a novel control system for a continuous-flow left ventricular assist device (LVAD), the EVAHEART, and demonstrated that sufficient pulsatility can be created by increasing its rotational speed in the systolic phase (pulsatile mode) in a normal heart animal model. In the present study, we assessed this system in its reliability and ability to follow heart rate variability. We implanted an EVAHEART via left thoracotomy into five goats for the Study for Fixed Heart Rate with ventricular pacing at 80, 100, 120 and 140 beats/min and six goats for the Study for native heart rhythm. We tested three modes: the circuit clamp, the continuous mode and the pulsatile mode. In the pulsatile mode, rotational speed was increased during the initial 35 % of the RR interval by automatic control based on the electrocardiogram. Pulsatility was evaluated by pulse pressure and dP/dt max of aortic pressure. As a result, comparing the pulsatile mode with the continuous mode, the pulse pressure was 28.5 ± 5.7 vs. 20.3 ± 7.9 mmHg, mean dP/dt max was 775.0 ± 230.5 vs 442.4 ± 184.7 mmHg/s at 80 bpm in the study for fixed heart rate, respectively (P < 0.05). The system successfully determined the heart rate to be 94.6 % in native heart rhythm. Furthermore, pulse pressure was 41.5 ± 7.9 vs. 27.8 ± 5.6 mmHg, mean dP/dt max was 716.2 ± 133.9 vs 405.2 ± 86.0 mmHg/s, respectively (P < 0.01). In conclusion, our newly developed the pulsatile mode for continuous-flow LVADs reliably provided physiological pulsatility with following heart rate variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghafarian, M.; Ariaei, A., E-mail: ariaei@eng.ui.ac.ir
The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique tomore » solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.« less
Experimental design data for the biosynthesis of citric acid using Central Composite Design method.
Kola, Anand Kishore; Mekala, Mallaiah; Goli, Venkat Reddy
2017-06-01
In the present investigation, we report that statistical design and optimization of significant variables for the microbial production of citric acid from sucrose in presence of filamentous fungi A. niger NCIM 705. Various combinations of experiments were designed with Central Composite Design (CCD) of Response Surface Methodology (RSM) for the production of citric acid as a function of six variables. The variables are; initial sucrose concentration, initial pH of medium, fermentation temperature, incubation time, stirrer rotational speed, and oxygen flow rate. From experimental data, a statistical model for this process has been developed. The optimum conditions reported in the present article are initial concentration of sucrose of 163.6 g/L, initial pH of medium 5.26, stirrer rotational speed of 247.78 rpm, incubation time of 8.18 days, fermentation temperature of 30.06 °C and flow rate of oxygen of 1.35 lpm. Under optimum conditions the predicted maximum citric acid is 86.42 g/L. The experimental validation carried out under the optimal values and reported citric acid to be 82.0 g/L. The model is able to represent the experimental data and the agreement between the model and experimental data is good.
Measurement of instantaneous rotational speed using double-sine-varying-density fringe pattern
NASA Astrophysics Data System (ADS)
Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Peng, Zhike
2018-03-01
Fast and accurate rotational speed measurement is required both for condition monitoring and faults diagnose of rotating machineries. A vision- and fringe pattern-based rotational speed measurement system was proposed to measure the instantaneous rotational speed (IRS) with high accuracy and reliability. A special double-sine-varying-density fringe pattern (DSVD-FP) was designed and pasted around the shaft surface completely and worked as primary angular sensor. The rotational angle could be correctly obtained from the left and right fringe period densities (FPDs) of the DSVD-FP image sequence recorded by a high-speed camera. The instantaneous angular speed (IAS) between two adjacent frames could be calculated from the real-time rotational angle curves, thus, the IRS also could be obtained accurately and efficiently. Both the measurement principle and system design of the novel method have been presented. The influence factors on the sensing characteristics and measurement accuracy of the novel system, including the spectral centrobaric correction method (SCCM) on the FPD calculation, the noise sources introduce by the image sensor, the exposure time and the vibration of the shaft, were investigated through simulations and experiments. The sampling rate of the high speed camera could be up to 5000 Hz, thus, the measurement becomes very fast and the change in rotational speed was sensed within 0.2 ms. The experimental results for different IRS measurements and characterization of the response property of a servo motor demonstrated the high accuracy and fast measurement of the proposed technique, making it attractive for condition monitoring and faults diagnosis of rotating machineries.
A Mathematical Model of Marine Diesel Engine Speed Control System
NASA Astrophysics Data System (ADS)
Sinha, Rajendra Prasad; Balaji, Rajoo
2018-02-01
Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.
Physical characteristics of extrudates from corn flour and dehulled carioca bean flour blend
USDA-ARS?s Scientific Manuscript database
Extruded products were prepared from a corn flour and dehulled carioca bean (Phaseolus vulgaris, L.) flour blend using a single-screw extruder. A central composite rotate design was used to evaluate the effects of extrusion process variables: screw speed (318.9-392.9 rpm), feed moisture (10.9-21.0 g...
Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox
NASA Astrophysics Data System (ADS)
Li, R. N.; Liu, X.; Liu, S. J.
2013-12-01
In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.
Reaction wheels for kinetic energy storage
NASA Astrophysics Data System (ADS)
Studer, P. A.
1984-11-01
In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.
Reaction wheels for kinetic energy storage
NASA Technical Reports Server (NTRS)
Studer, P. A.
1984-01-01
In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.
Measuring Speed Of Rotation With Two Brushless Resolvers
NASA Technical Reports Server (NTRS)
Howard, David E.
1995-01-01
Speed of rotation of shaft measured by use of two brushless shaft-angle resolvers aligned so electrically and mechanically in phase with each other. Resolvers and associated circuits generate voltage proportional to speed of rotation (omega) in both magnitude and sign. Measurement principle exploits simple trigonometric identity.
Smoother Conversion From Helicopter To Airplane
NASA Technical Reports Server (NTRS)
Stroub, Robert H.
1992-01-01
Proposed high-speed rotorcraft converts between rotating-wing flight and fixed-wing flight without high vibration. Functions both while hovering and moving at transonic or low supersonic speeds. Aircraft takes off and hovers like ordinary helicopter. After accelerating to sufficient forward speed for conversion, rotor blades retracted into large, rotating hub fairing. Rotation then stopped. Two blades extended to serve as wings, and aircraft accelerates to its cruising speed.
Brushless tachometer gives speed and direction
NASA Technical Reports Server (NTRS)
Nola, F. J.
1977-01-01
Brushless electronic tachometer measures rotational speed and rotational direction, maintaining accuracy at high or low speeds. Unit is particularly useful in vacuum environments requiring low friction.
Form features provide a cue to the angular velocity of rotating objects
Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul
2013-01-01
As an object rotates, each location on the object moves with an instantaneous linear velocity dependent upon its distance from the center of rotation, while the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different sized objects, as changing the size of an object changes the linear velocity of each location on the object’s surface, while maintaining the object’s angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PMID:23750970
Form features provide a cue to the angular velocity of rotating objects.
Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul
2014-02-01
As an object rotates, each location on the object moves with an instantaneous linear velocity, dependent upon its distance from the center of rotation, whereas the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different-sized objects, as changing the size of an object changes the linear velocity of each location on the object's surface, while maintaining the object's angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high-contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PsycINFO Database Record (c) 2014 APA, all rights reserved.
On the experimental prediction of the stability threshold speed caused by rotating damping
NASA Astrophysics Data System (ADS)
Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.
2016-08-01
An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.
Tunable bistable devices for harvesting energy from spinning wheels
NASA Astrophysics Data System (ADS)
Elhadidi, Mohamed; Helal, Mohammed; Nassar, Omar; Arafa, Mustafa; Zeyada, Yasser
2015-04-01
Bistable systems have recently been employed for vibration energy harvesting owing to their favorable dynamic characteristics and desirable response for wideband excitation. In this paper, we investigate the use of bistable harvesters to extract energy from spinning wheels. The proposed harvester consists of a piezoelectric cantilever beam that is mounted on a rigid spinning hub and carries a tip mass in the form of a permanent magnet. Magnetic repulsion forces from an opposite magnet cause the beam to possess two stable equilibrium positions. Inter-well lead-lag oscillations caused by rotation in a vertical plane provide a good source for energy extraction. The design offers frequency tuning, as the centrifugal forces strain the harvester, thereby increasing its natural frequency to cope with a variable rotational speed. This has applications in self-powered sensors mounted on spinning wheels, such as tire pressure monitoring sensors. An effort is made to select the design parameters to enable the harvester to exhibit favorable inter-well oscillations across a range of rotational speeds for enhanced energy harvesting. Findings of the present work are verified both numerically and experimentally.
Current superimposition variable flux reluctance motor with 8 salient poles
NASA Astrophysics Data System (ADS)
Takahara, Kazuaki; Hirata, Katsuhiro; Niguchi, Noboru; Kohara, Akira
2017-12-01
We propose a current superimposition variable flux reluctance motor for a traction motor of electric vehicles and hybrid electric vehicles, which consists of 10 salient poles in the rotor and 12 slots in the stator. However, iron losses of this motor in high rotation speed ranges is large because the number of salient poles is large. In this paper, we propose a current superimposition variable flux reluctance motor that consists of 8 salient poles and 12 slots. The characteristics of the 10-pole-12-slot and 8-pole-12-slot current superimposition variable flux reluctance motors are compared using finite element analysis under vector control.
Airflows and turbulent flux measurements in mountainous terrain: Part 1. Canopy and local effects
Turnipseed, Andrew A.; Anderson, Dean E.; Blanken, Peter D.; Baugh, William M.; Monson, Russell K.
2003-01-01
We have studied the effects of local topography and canopy structure on turbulent flux measurements at a site located in mountainous terrain within a subalpine, coniferous forest. Our primary aim was to determine whether the complex terrain of the site affects the accuracy of eddy flux measurements from a practical perspective. We observed displacement heights, roughness lengths, spectral peaks, turbulent length scales, and profiles of turbulent intensities that were comparable in magnitude and pattern to those reported for forest canopies in simpler terrain. We conclude that in many of these statistical measures, the local canopy exerts considerably more influence than does topographical complexity. Lack of vertical flux divergence and modeling suggests that the flux footprints for the site are within the standards acceptable for the application of flux statistics. We investigated three different methods of coordinate rotation: double rotation (DR), triple rotation (TR), and planar-fit rotation (PF). Significant variability in rotation angles at low wind speeds was encountered with the commonly used DR and TR methods, as opposed to the PF method, causing some overestimation of the fluxes. However, these differences in fluxes were small when applied to large datasets involving sensible heat and CO2 fluxes. We observed evidence of frequent drainage flows near the ground during stable, stratified conditions at night. Concurrent with the appearance of these flows, we observed a positive bias in the mean vertical wind speed, presumably due to subtle topographic variations inducing a flow convergence below the measurement sensors. In the presence of such drainage flows, advection of scalars and non-zero bias in the mean vertical wind speed can complicate closure of the mass conservation budget at the site.
NASA Astrophysics Data System (ADS)
Verma, Jagesvar; Taiwade, Ravindra V.; Sapate, Sanjay G.; Patil, Awanikumar P.; Dhoble, Ashwinkumar S.
2017-10-01
Microstructure, mechanical properties and corrosion resistance of dissimilar friction stir-welded aluminum and magnesium alloys were investigated by applying three different rotational speeds at two different travel speeds. Sound joints were obtained in all the conditions. The microstructure was examined by an optical and scanning electron microscope, whereas localized chemical information was studied by energy-dispersive spectroscopy. Stir zone microstructure showed mixed bands of Al and Mg with coarse and fine equiaxed grains. Grain size of stir zone reduced compared to base metals, indicated by dynamic recrystallization. More Al patches were observed in the stir zone as rotational speed increased. X-ray diffraction showed the presence of intermetallics in the stir zone. Higher tensile strength and hardness were obtained at a high rotational speed corresponding to low travel speed. Tensile fractured surface indicated brittle nature of joints. Dissimilar friction stir weld joints showed different behaviors in different corrosive environments, and better corrosion resistance was observed at a high rotational speed corresponding to low travel speed (FW3) in a sulfuric and chloride environments. Increasing travel speed did not significantly affect on microstructure, mechanical properties and corrosion resistance as much as the rotational speed.
NASA Astrophysics Data System (ADS)
de Grijs, Richard; Bono, Giuseppe
2017-10-01
As part of an extensive data mining effort, we have compiled a database of 162 Galactic rotation speed measurements at R 0 (the solar Galactocentric distance), {{{\\Theta }}}0. Published between 1927 and 2017 June, this represents the most comprehensive set of {{{\\Theta }}}0 values since the 1985 meta-analysis that led to the last revision of the International Astronomical Union’s recommended Galactic rotation constants. Although we do not find any compelling evidence for the presence of “publication bias” in recent decades, we find clear differences among the {{{\\Theta }}}0 values and the {{{\\Theta }}}0/{R}0 ratios resulting from the use of different tracer populations. Specifically, young tracers (including OB and supergiant stars, masers, Cepheid variables, H II regions, and young open clusters), as well as kinematic measurements of Sgr A* near the Galactic Center, imply a significantly larger Galactic rotation speed at the solar circle and a higher {{{\\Theta }}}0/{R}0 ratio (i.e., {{{\\Theta }}}0=247+/- 3 km s‑1 and {{{\\Theta }}}0/{R}0=29.81+/- 0.32 km s‑1 kpc‑1 statistical uncertainties only) than any of the tracers dominating the Galaxy’s mass budget (i.e., field stars and the H I/CO distributions). Using the latter to be most representative of the bulk of the Galaxy’s matter distribution, we arrive at an updated set of Galactic rotation constants,
Behnajady, Mohammad A; Dadkhah, Hojjat; Eskandarloo, Hamed
2018-04-01
In this study, a horizontally rotating disc recirculated (HRDR) photoreactor equipped with two UV lamps (6 W) was designed and fabricated for photocatalytic removal of p-nitrophenol (PNP). Photocatalyst (TiO 2 ) nanoparticles were immobilized onto a high-density polyethylene (HDPE) disc, and PNP containing solution was allowed to flow (flow rate of 310 mL min -1 ) in radial direction along the surface of the rotating disc illuminated with UV light. The efficiency of direct photolysis and photocatalysis and the effect of rotating speed on the removal of PNP were studied in the HRDR photoreactor. It was found that TiO 2 -P25 nanoparticles are needed for the effective removal of PNP and there was an optimum rotating speed (450 rpm) for the efficient performance of the HRDR photoreactor. Then effects of operational variables on the removal efficiency were optimized using response surface methodology. The results showed that the predicted values of removal efficiency are consistent with experimental results with an R 2 of 0.9656. Optimization results showed that maximum removal percent (82.6%) was achieved in the HRDR photoreactor at the optimum operational conditions. Finally, the reusability of the HRDR photoreactor was evaluated and the results showed high reusability and stability without any significant decrease in the photocatalytic removal efficiency.
Optimization of rotational speed for growing BaFe12O19 thin films using spin coating
NASA Astrophysics Data System (ADS)
Budiawanti, S.; Soegijono, B.; Mudzakir, I.; Suharno, Fadillah, L.
2017-07-01
Barium ferrite (BaFe12O19, BaM) thin films were fabricated by the spin coating of precursors obtained by using a sol-gel method. The effects of the rotational speed on the spin-coating process for growing a BaM thin film were investigated in this study. Coated films were heat-deposited at different rotational speeds ranging from 2000 to 4000 rpm, while the number of layers was set to nine. Further, the effect of the number of layers on the growth of BaM thin films was discussed. For this purpose, we take the layers number 1 to 12 and take the constant rotational speed of 3000 rpm. All the film were characterized using X-Ray diffraction, Scanning Electron microscope, and Energy-dispersive X-Ray spectroscopy and Vibrating Sample Magnetometer. It was found that by increasing the rotational speed the amount of material deposited on the Si substrate decreased. The measured grain size of the BaM thin film was nearly similar for three three different rotational speeds. However, the grain size was found to increase the number of layers.
NASA Astrophysics Data System (ADS)
Meziri, B.; Hamel, M.; Hireche, O.; Hamidou, K.
2016-09-01
There are various matching ways between turbocharger and engine, the variable nozzle turbine is the most significant method. The turbine design must be economic with high efficiency and large capacity over a wide range of operational conditions. These design intents are used in order to decrease thermal load and improve thermal efficiency of the engine. This paper presents an original design method of a variable nozzle vane for mixed flow turbines developed from previous experimental and numerical studies. The new device is evaluated with a numerical simulation over a wide range of rotational speeds, pressure ratios, and different vane angles. The compressible turbulent steady flow is solved using the ANSYS CFX software. The numerical results agree well with experimental data in the nozzleless configuration. In the variable nozzle case, the results show that the turbine performance characteristics are well accepted in different open positions and improved significantly in low speed regime and at low pressure ratio.
Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor
Yuan, Junhua; Fahrner, Karen A.; Turner, Linda; Berg, Howard C.
2010-01-01
Cells of Escherichia coli are able to swim up gradients of chemical attractants by modulating the direction of rotation of their flagellar motors, which spin alternately clockwise (CW) and counterclockwise (CCW). Rotation in either direction has been thought to be symmetric and exhibit the same torques and speeds. The relationship between torque and speed is one of the most important measurable characteristics of the motor, used to distinguish specific mechanisms of motor rotation. Previous measurements of the torque–speed relationship have been made with cells lacking the response regulator CheY that spin their motors exclusively CCW. In this case, the torque declines slightly up to an intermediate speed called the “knee speed” after which it falls rapidly to zero. This result is consistent with a “power-stroke” mechanism for torque generation. Here, we measure the torque–speed relationship for cells that express large amounts of CheY and only spin their motors CW. We find that the torque decreases linearly with speed, a result remarkably different from that for CCW rotation. We obtain similar results for wild-type cells by reexamining data collected in previous work. We speculate that CCW rotation might be optimized for runs, with higher speeds increasing the ability of cells to sense spatial gradients, whereas CW rotation might be optimized for tumbles, where the object is to change cell trajectories. But why a linear torque–speed relationship might be optimum for the latter purpose we do not know. PMID:20615986
Permanent magnet DC motor control by using arduino and motor drive module BTS7960
NASA Astrophysics Data System (ADS)
Syukriyadin, S.; Syahrizal, S.; Mansur, G.; Ramadhan, H. P.
2018-05-01
This study proposes a control system for permanent magnet DC (PMDC) motor. PMDC drive control system has two critical parameters: control and monitoring. Control system includes rotation speed control and direction of rotation of motor using motor drive module BTS7960. The PWM signal has a fixed frequency of waves with varying duty cycles (between 0% and 100%), so the motor rotation can be regulated gradually using a potentiometer already programmed on the Arduino Uno board. The motor rotation direction setting uses the H-bridge circuit method using a 3-way switch to set the direction of forward-reverse rotation of the motor. The monitoring system includes measurements of rotational speed, current, and voltage. Motor rotation speed can be adjusted from the armature voltage settings through the duty cycle PWM setting so that the motor speed can be increased or decreased by the desired duty cycle. From the unload PMDC motor test results it has also been shown that the torque of the motor is relatively constant when there is a change in speed from low rpm to high rpm or vice versa.
A numerical strategy for modelling rotating stall in core compressors
NASA Astrophysics Data System (ADS)
Vahdati, M.
2007-03-01
The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary conditions downstream. Such an approach is representative of modelling an engine.Using a 3D viscous time-accurate flow representation, the front bladerows of a core compressor were modelled in a whole-annulus fashion whereas the rest of bladerows are modelled in a single-passage fashion. The rotating stall behaviour at two different compressor operating points was studied by considering two different variable-vane scheduling conditions for which experimental data were available. Using a model with nine whole-assembly models, the unsteady-flow calculations were conducted on 32-CPUs of a parallel cluster, typical run times being around 3-4 weeks for a grid with about 60 million points. The simulations were conducted over several engine rotations. As observed on the actual development engine, there was no rotating stall for the first scheduling condition while mal-scheduling of the stator vanes created a 12-band rotating stall which excited the 1st flap mode.
Polari, Juan J; Garcí-Aguirre, David; Olmo-García, Lucía; Carrasco-Pancorbo, Alegría; Wang, Selina C
2018-03-01
Crushing is a key step during olive oil extraction. Among commercial crushers, the hammer mill is the most widely used due to its robustness and high throughput. In the present work, the impact of hammer mill rotor speed on extraction yield and overall quality of super-high-density Arbosana olive oils were assessed in an industrial facility. Our results show that increasing the rotor speed from 2400rpm to 3600rpm led to a rise in oil yield of 1.2%, while conserving quality parameters. Sensory analysis showed more pungency with increased rotation speed, while others attributes were unaffected. Volatile compounds showed little variation with the differences in crusher speed; however, total phenols content, two relevant secoiridoids, and triterpenoids levels increased with rotor speed. Hammer mill rotor speed is a processing variable that can be tuned to increase the extraction efficiency and modulate the chemical composition of extra virgin olive oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shaft seal assembly and method
NASA Technical Reports Server (NTRS)
Keba, John E. (Inventor)
2007-01-01
A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.
NASA Technical Reports Server (NTRS)
Hu, Senqi; Stern, Robert M.; Vasey, Michael W.; Koch, Kenneth L.
1989-01-01
Motion sickness symptoms and electrogastrograms (EGGs) were obtained from 60 healthy subjects while they viewed an optokinetic drum rotated at one of four speeds: 15, 30, 60 or 90 deg/s. All subjects experienced vection, illusory self-motion. Motion sickness symptoms increased as drums speed increased up to 60 deg/s. Power, spectral intensity, of the EGG at the tachygastria frequencies (4-9 cpm) was calculated at each drum rotation speed. The correlation between the motion sickness symptoms and the power at 4-9 cpm was significant. Thus, drum rotation speed influenced the spectral power of the EGG at 4-9 cpm, tachygastria, and the intensity of motion sickness symptoms.
Studies on dynamic behavior of rotating mirrors
NASA Astrophysics Data System (ADS)
Li, Jingzhen; Sun, Fengshan; Gong, Xiangdong; Huang, Hongbin; Tian, Jie
2005-02-01
A rotating mirror is a kernel unit in a Miller-type high speed camera, which is both as an imaging element in optical path and as an element to implement ultrahigh speed photography. According to Schardin"s Principle, information capacity of an ultrahigh speed camera with rotating mirror depends on primary wavelength of lighting used by the camera and limit linear velocity on edge of the rotating-mirror: the latter is related to material (including specifications in technology), cross-section shape and lateral structure of rotating mirror. In this manuscript dynamic behavior of high strength aluminium alloy rotating mirrors is studied, from which it is preliminarily shown that an aluminium alloy rotating mirror can be absolutely used as replacement for a steel rotating-mirror or a titanium alloy rotating-mirror in framing photographic systems, and it could be also used as a substitute for a beryllium rotating-mirror in streak photographic systems.
Flow and free running speed characterization of dental air turbine handpieces.
Dyson, J E; Darvell, B W
1999-09-01
Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, yet little work has been reported on their performance. A few studies have been concerned with measurement of speed (i.e. rotation rate), torque and power performance of these devices, but neither investigations of functional relationships between controlling variables nor theory dealing specifically with this class of turbine have been reported. This has hindered the development of satisfactory methods of handpiece specification and of testing dental rotary cutting tools. It was the intention of the present work to remedy that deficiency. Measurements of pressure, temperature, gas flow rate and rotation rate were made with improved accuracy and precision for 14 ball bearing turbine handpieces on several gases. Functional relationships between gas properties, supply pressure, flow rate, turbine design factors and free running speed were identified and equations describing these aspects of behaviour of this class of turbine developed. The rotor radius, through peripheral Mach number, was found to be a major determinant of speed performance. In addition, gas flow was found to be an important limiting factor through the effect of choke. Each dental handpiece can be treated as a simple orifice of a characteristic cross-sectional area. Free running speed can be explained in terms of gas properties and pressure, with allowance for a design-specific performance coefficient.
Disentangling rotational velocity distribution of stars
NASA Astrophysics Data System (ADS)
Curé, Michel; Rial, Diego F.; Cassetti, Julia; Christen, Alejandra
2017-11-01
Rotational speed is an important physical parameter of stars: knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle vsin(i). The problem itself can be described via a Fredhoml integral of the first kind. A new method (Curé et al. 2014) to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities is based on the work of Chandrasekhar & Münch (1950). Another method to obtain the probability distribution function is Tikhonov regularization method (Christen et al. 2016). The proposed methods can be also applied to the mass ratio distribution of extrasolar planets and brown dwarfs (in binary systems, Curé et al. 2015). For stars in a cluster, where all members are gravitationally bounded, the standard assumption that rotational axes are uniform distributed over the sphere is questionable. On the basis of the proposed techniques a simple approach to model this anisotropy of rotational axes has been developed with the possibility to ``disentangling'' simultaneously both the rotational speed distribution and the orientation of rotational axes.
NASA Astrophysics Data System (ADS)
Huang, Huan; Baddour, Natalie; Liang, Ming
2018-02-01
Under normal operating conditions, bearings often run under time-varying rotational speed conditions. Under such circumstances, the bearing vibrational signal is non-stationary, which renders ineffective the techniques used for bearing fault diagnosis under constant running conditions. One of the conventional methods of bearing fault diagnosis under time-varying speed conditions is resampling the non-stationary signal to a stationary signal via order tracking with the measured variable speed. With the resampled signal, the methods available for constant condition cases are thus applicable. However, the accuracy of the order tracking is often inadequate and the time-varying speed is sometimes not measurable. Thus, resampling-free methods are of interest for bearing fault diagnosis under time-varying rotational speed for use without tachometers. With the development of time-frequency analysis, the time-varying fault character manifests as curves in the time-frequency domain. By extracting the Instantaneous Fault Characteristic Frequency (IFCF) from the Time-Frequency Representation (TFR) and converting the IFCF, its harmonics, and the Instantaneous Shaft Rotational Frequency (ISRF) into straight lines, the bearing fault can be detected and diagnosed without resampling. However, so far, the extraction of the IFCF for bearing fault diagnosis is mostly based on the assumption that at each moment the IFCF has the highest amplitude in the TFR, which is not always true. Hence, a more reliable T-F curve extraction approach should be investigated. Moreover, if the T-F curves including the IFCF, its harmonic, and the ISRF can be all extracted from the TFR directly, no extra processing is needed for fault diagnosis. Therefore, this paper proposes an algorithm for multiple T-F curve extraction from the TFR based on a fast path optimization which is more reliable for T-F curve extraction. Then, a new procedure for bearing fault diagnosis under unknown time-varying speed conditions is developed based on the proposed algorithm and a new fault diagnosis strategy. The average curve-to-curve ratios are utilized to describe the relationship of the extracted curves and fault diagnosis can then be achieved by comparing the ratios to the fault characteristic coefficients. The effectiveness of the proposed method is validated by simulated and experimental signals.
NASA Astrophysics Data System (ADS)
Ren, Zhengyi; Huang, Tong; Feng, Jiajia; Zhou, Yuanwei
2018-05-01
In this paper, a 600Wh vertical maglev energy storage flywheel rotor system is taken as a model. The motion equation of a rigid rotor considering the gyroscopic effect and the center of mass offset is obtained by the centroid theorem, and the experimental verification is carried out. Using the state variable method, the Matlab software was used to program and simulate the radial displacement and radial electromagnetic force of the rotor system at each speed. The results show that the established system model is in accordance with the designed 600Wh vertical maglev energy storage flywheel model. The results of the simulation analysis are helpful to further understand the dynamic nature of the flywheel rotor at different transient speeds.
Fei, Ze-yuan; Xu, Yi-feng; Wang, Jie; Fan, Bing-feng; Ma, Xue-jin; Wang, Gang
2018-01-01
Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality. PMID:29515883
Li, Jian; Fei, Ze-Yuan; Xu, Yi-Feng; Wang, Jie; Fan, Bing-Feng; Ma, Xue-Jin; Wang, Gang
2018-02-01
Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality.
NASA Astrophysics Data System (ADS)
Li, Jian; Fei, Ze-yuan; Xu, Yi-feng; Wang, Jie; Fan, Bing-feng; Ma, Xue-jin; Wang, Gang
2018-02-01
Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality.
Singh, Taran Singh Pall; Yusoff, Abdul Halim; Chian, Yap Keat
2015-08-01
In vitro animal cadaveric study. To identify the appropriate rotational speed and safe bone distance from neural tissue during bone burring in spinal surgery. Bone burring is a common step in spinal surgery. Unwanted frictional heat produced during bone burring may result in thermal injury to the bone and adjacent neural structure. One of the important parameters influencing the bone temperature rise during bone burring is rotational speed. This laboratory-based animal study used bovine spine bones, and the tests were conducted using a steel round burr. The bone temperature was measured simultaneously with thermocouple at the distances of 1 mm, 3 mm, and 5 mm from the burring site during the burring process. The bone burring was done with 4 different rotational speeds of 35,000 revolutions per minute (rpm), 45,000 rpm, 65,000 rpm, and 75,000 rpm. This study showed that increasing the rotational speed significantly elevated bone temperature. The threshold temperature of 47°C was reached when bone was burred for 10 seconds, with a rotational speed of 45,000 rpm. The mean bone temperature measured at a distance 1 mm from the burring site for all 4 rotational speeds was always higher than that measured at a distance of 3 mm and 5 mm and this difference was statistically significant (P < 0.001). There was no significant difference between the mean bone temperature measured at a distance of 3 mm and 5 mm (P > 0.05). Taking 47°C as the threshold temperature for causing significant impairment to the regenerative capacity of bone, a rotational speed of lower than 45,000 rpm is preferable so as to minimize thermal injury to bone tissue. We also concluded that a 3-mm distance between the site of burring and the neural tissue is a safe distance. N/A.
Synergic effects of 10°/s constant rotation and rotating background on visual cognitive processing
NASA Astrophysics Data System (ADS)
He, Siyang; Cao, Yi; Zhao, Qi; Tan, Cheng; Niu, Dongbin
In previous studies we have found that constant low-speed rotation facilitated the auditory cognitive process and constant velocity rotation background sped up the perception, recognition and assessment process of visual stimuli. In the condition of constant low-speed rotation body is exposed into a new physical state. In this study the variations of human brain's cognitive process under the complex condition of constant low-speed rotation and visual rotation backgrounds with different speed were explored. 14 university students participated in the ex-periment. EEG signals were recorded when they were performing three different cognitive tasks with increasing mental load, that is no response task, selective switch responses task and selec-tive mental arithmetic task. Rotary chair was used to create constant low-speed10/srotation. Four kinds of background were used in this experiment, they were normal black background and constant 30o /s, 45o /s or 60o /s rotating simulated star background. The P1 and N1 compo-nents of brain event-related potentials (ERP) were analyzed to detect the early visual cognitive processing changes. It was found that compared with task performed under other backgrounds, the posterior P1 and N1 latencies were shortened under 45o /s rotating background in all kinds of cognitive tasks. In the no response task, compared with task performed under black back-ground, the posterior N1 latencies were delayed under 30o /s rotating background. In the selec-tive switch responses task and selective mental arithmetic task, compared with task performed under other background, the P1 latencies were lengthened under 60o /s rotating background, but the average amplitudes of the posterior P1 and N1 were increased. It was suggested that under constant 10/s rotation, the facilitated effect of rotating visual background were changed to an inhibited one in 30o /s rotating background. Under vestibular new environment, not all of the rotating backgrounds accelerated the early process of visual cognition. There is a synergic effect between the effects of constant low-speed rotation and rotating speed of the background. Under certain conditions, they both served to facilitate the visual cognitive processing, and it had been started at the stage when extrastriate cortex perceiving the visual signal. Under the condition of constant low-speed rotation in higher cognitive load tasks, the rapid rotation of the background enhanced the magnitude of the signal transmission in the visual path, making signal to noise ratio increased and a higher signal to noise ratio is clearly in favor of target perception and recognition. This gave rise to the hypothesis that higher cognitive load tasks with higher top-down control had more power in counteracting the inhibition effect of higher velocity rotation background. Acknowledgements: This project was supported by National Natural Science Foundation of China (No. 30670715) and National High Technology Research and Development Program of China (No.2007AA04Z254).
An approximate method for solution to variable moment of inertia problems
NASA Technical Reports Server (NTRS)
Beans, E. W.
1981-01-01
An approximation method is presented for reducing a nonlinear differential equation (for the 'weather vaning' motion of a wind turbine) to an equivalent constant moment of inertia problem. The integrated average of the moment of inertia is determined. Cycle time was found to be the equivalent cycle time if the rotating speed is 4 times greater than the system's minimum natural frequency.
A nano universal joint made from curved double-walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Kun; Cai, Haifang; Shi, Jiao
2015-06-15
A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors aremore » investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp{sup 1} or sp{sup 2} atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp{sup 1} carbon atoms. When they become the new sp{sup 2} atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp{sup 2} atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.« less
A nano universal joint made from curved double-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Cai, Kun; Cai, Haifang; Shi, Jiao; Qin, Qing H.
2015-06-01
A nano universal joint is constructed from curved double-wall carbon nanotubes with a short outer tube as stator and a long inner tube as a rotor. When one end of the rotor is driven (by a rotary motor) to rotate, the same rotational speed but with different rotational direction will be induced at the other end of the rotor. This mechanism makes the joint useful for designing a flexible nanodevice with an adjustable output rotational signal. The motion transmission effect of the universal joint is analyzed using a molecular dynamics simulation approach. In particular, the effects of three factors are investigated. The first factor is the curvature of the stator, which produces a different rotational direction of the rotor at the output end. The second is the bonding conditions of carbon atoms on the adjacent tube ends of the motor and the rotor, sp1 or sp2 atoms, which create different attraction between the motor and the rotor. The third is the rotational speed of the motor, which can be considered as the input signal of the universal joint. It is noted that the rotor's rotational speed is usually the same as that of the motor when the carbon atoms on the adjacent ends of the motor and the rotor are sp1 carbon atoms. When they become the new sp2 atoms, the rotor experiences a jump in rotational speed from a lower value to that of the motor. The mechanism of drops in potential of the motor is revealed. If the carbon atoms on the adjacent ends are sp2 atoms, the rotor rotates more slowly than the motor, whereas the rotational speed is stable when driven by a higher speed motor.
Mixing Study in a Multi-dimensional Motion Mixer
NASA Astrophysics Data System (ADS)
Shah, R.; Manickam, S. S.; Tomei, J.; Bergman, T. L.; Chaudhuri, B.
2009-06-01
Mixing is an important but poorly understood aspect in petrochemical, food, ceramics, fertilizer and pharmaceutical processing and manufacturing. Deliberate mixing of granular solids is an essential operation in the production of industrial powder products usually constituted from different ingredients. The knowledge of particle flow and mixing in a blender is critical to optimize the design and operation. Since performance of the product depends on blend homogeneity, the consequence of variability can be detrimental. A common approach to powder mixing is to use a tumbling blender, which is essentially a hollow vessel horizontally attached to a rotating shaft. This single axis rotary blender is one of the most common batch mixers among in industry, and also finds use in myriad of application as dryers, kilns, coaters, mills and granulators. In most of the rotary mixers the radial convection is faster than axial dispersion transport. This slow dispersive process hinders mixing performance in many blending, drying and coating applications. A double cone mixer is designed and fabricated which rotates around two axes, causing axial mixing competitive to its radial counterpart. Discrete Element Method (DEM) based numerical model is developed to simulate the granular flow within the mixer. Digitally recorded mixing states from experiments are used to fine tune the numerical model. Discrete pocket samplers are also used in the experiments to quantify the characteristics of mixing. A parametric study of the effect of vessel speeds, relative rotational speed (between two axes of rotation), on the granular mixing is investigated by experiments and numerical simulation. Incorporation of dual axis rotation enhances axial mixing by 60 to 85% in comparison to single axis rotation.
NASA Technical Reports Server (NTRS)
Lewis, G. W., Jr.; Urasek, D. C.; Reid, L.
1977-01-01
The overall performance and blade-element performance of a transonic fan stage are presented for two modified test configurations and are compared with the unmodified stage. Tests were conducted with reset stators 2 deg open and reset stators with a rotating grooved stator hub. Detailed radial and circumferential (behind stator) surveys of the flow conditions were made over the stable operating range at rotative speeds of 70, 90, and 100 percent of design speed. Reset stator blade tests indicated a small increase in stage efficiency, pressure ratio, and maximum weight flow at each speed. Performance with reset stators and a rotating, grooved stator hub resulted in an additional increase in stage efficiency and pressure ratio at all speeds. The rotating grooved stator hub reduced hub losses considerably.
Hanhan, O; Orhon, D; Krauth, Kh; Günder, B
2005-01-01
In this study the effect of retention time and rotation speed in the denitrification process in two full-scale rotating biological contactors (RBC) which were operated parallel and fed with municipal wastewater is evaluated. Each rotating biological contactor was covered to prevent oxygen input. The discs were 40% submerged. On the axle of one of the rotating biological contactors lamellas were placed (RBC1). During the experiments the nitrate removal performance of the rotating biological contactor with lamellas was observed to be less than the other (RBC2) since the lamellas caused oxygen diffusion through their movement. The highest nitrate removal observed was 2.06 g/m2.d achieved by a contact time of 28.84 minutes and a recycle flow of 1 l/s. The rotation speed during this set had the constant value of 0.8 min(-1). Nitrate removal efficiency on RBC1 was decreasing with increasing rotation speed. On the rotating biological contactor without lamellas no effect on denitrification could be determined within a speed range from 0.67 to 2.1 min-1. If operated in proper conditions denitrification on RBC is a very suitable alternative for nitrogen removal that can easily fulfil the nutrient limitations in coastal areas due to the rotating biological contactors economical benefits and uncomplicated handling.
NASA Astrophysics Data System (ADS)
Tresser, Shachar; Dolev, Amit; Bucher, Izhak
2018-02-01
High-speed machinery is often designed to pass several "critical speeds", where vibration levels can be very high. To reduce vibrations, rotors usually undergo a mass balancing process, where the machine is rotated at its full speed range, during which the dynamic response near critical speeds can be measured. High sensitivity, which is required for a successful balancing process, is achieved near the critical speeds, where a single deflection mode shape becomes dominant, and is excited by the projection of the imbalance on it. The requirement to rotate the machine at high speeds is an obstacle in many cases, where it is impossible to perform measurements at high speeds, due to harsh conditions such as high temperatures and inaccessibility (e.g., jet engines). This paper proposes a novel balancing method of flexible rotors, which does not require the machine to be rotated at high speeds. With this method, the rotor is spun at low speeds, while subjecting it to a set of externally controlled forces. The external forces comprise a set of tuned, response dependent, parametric excitations, and nonlinear stiffness terms. The parametric excitation can isolate any desired mode, while keeping the response directly linked to the imbalance. A software controlled nonlinear stiffness term limits the response, hence preventing the rotor to become unstable. These forces warrant sufficient sensitivity required to detect the projection of the imbalance on any desired mode without rotating the machine at high speeds. Analytical, numerical and experimental results are shown to validate and demonstrate the method.
Statistical analysis of low frequency vibrations in variable speed wind turbines
NASA Astrophysics Data System (ADS)
Escaler, X.; Mebarki, T.
2013-12-01
The spectral content of the low frequency vibrations in the band from 0 to 10 Hz measured in full scale wind turbines has been statistically analyzed as a function of the whole range of steady operating conditions. Attention has been given to the amplitudes of the vibration peaks and their dependency on rotating speed and power output. Two different wind turbine models of 800 and 2000 kW have been compared. For each model, a sample of units located in the same wind farm and operating during a representative period of time have been considered. A condition monitoring system installed in each wind turbine has been used to register the axial acceleration on the gearbox casing between the intermediate and the high speed shafts. The average frequency spectrum has permitted to identify the vibration signature and the position of the first tower natural frequency in both models. The evolution of the vibration amplitudes at the rotor rotating frequency and its multiples has shown that the tower response is amplified by resonance conditions in one of the models. So, it is concluded that a continuous measurement and control of low frequency vibrations is required to protect the turbines against harmful vibrations of this nature.
Interplay between intrinsic plasma rotation and magnetic island evolution in disruptive discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronchi, G.; Severo, J. H. F.; Salzedas, F.
The behavior of the intrinsic toroidal rotation of the plasma column during the growth and eventual saturation of m/n = 2/1 magnetic islands, triggered by programmed density rise, has been carefully investigated in disruptive discharges in TCABR. The results show that, as the island starts to grow and rotate at a speed larger than that of the plasma column, the angular frequency of the intrinsic toroidal rotation increases and that of the island decreases, following the expectation of synchronization. As the island saturates at a large size, just before a major disruption, the angular speed of the intrinsic rotation decreasesmore » quite rapidly, even though the island keeps still rotating at a reduced speed. This decrease of the toroidal rotation is quite reproducible and can be considered as an indicative of disruption.« less
Variable ratio regenerative braking device
Hoppie, Lyle O.
1981-12-15
Disclosed is a regenerative braking device (10) for an automotive vehicle. The device includes an energy storage assembly (12) having a plurality of rubber rollers (26, 28) mounted for rotation between an input shaft (36) and an output shaft (42), clutches (38, 46) and brakes (40, 48) associated with each shaft, and a continuously variable transmission (22) connectable to a vehicle drivetrain and to the input and output shafts by the respective clutches. The rubber rollers are torsionally stressed to accumulate energy from the vehicle when the input shaft is clutched to the transmission while the brake on the output shaft is applied, and are torsionally relaxed to deliver energy to the vehicle when the output shaft is clutched to the transmission while the brake on the input shaft is applied. The transmission ratio is varied to control the rate of energy accumulation and delivery for a given rotational speed of the vehicle drivetrain.
PI-line-based image reconstruction in helical cone-beam computed tomography with a variable pitch.
Zou, Yu; Pan, Xiaochuan; Xia, Dan; Wang, Ge
2005-08-01
Current applications of helical cone-beam computed tomography (CT) involve primarily a constant pitch where the translating speed of the table and the rotation speed of the source-detector remain constant. However, situations do exist where it may be more desirable to use a helical scan with a variable translating speed of the table, leading a variable pitch. One of such applications could arise in helical cone-beam CT fluoroscopy for the determination of vascular structures through real-time imaging of contrast bolus arrival. Most of the existing reconstruction algorithms have been developed only for helical cone-beam CT with constant pitch, including the backprojection-filtration (BPF) and filtered-backprojection (FBP) algorithms that we proposed previously. It is possible to generalize some of these algorithms to reconstruct images exactly for helical cone-beam CT with a variable pitch. In this work, we generalize our BPF and FBP algorithms to reconstruct images directly from data acquired in helical cone-beam CT with a variable pitch. We have also performed a preliminary numerical study to demonstrate and verify the generalization of the two algorithms. The results of the study confirm that our generalized BPF and FBP algorithms can yield exact reconstruction in helical cone-beam CT with a variable pitch. It should be pointed out that our generalized BPF algorithm is the only algorithm that is capable of reconstructing exactly region-of-interest image from data containing transverse truncations.
Pontaga, Inese; Zidens, Janis
2014-01-01
The aim of the investigation was to: 1) compare shoulder external/internal rotator muscles’ peak torques and average power values and their ratios in the dominant and non-dominant arm; 2) determine correlations between shoulder rotator muscles’ peak torques, average power and ball-throwing speed in handball players. Fourteen 14 to 15-year-old male athletes with injury-free shoulders participated in the study (body height: 176 ± 7 cm, body mass 63 ± 9 kg). The tests were carried out by an isokinetic dynamometer system in the shoulder internal and external rotation movements at angular velocities of 60°/s, 90°/s and 240°/s during concentric contractions. The eccentric external– concentric internal rotator muscle contractions were performed at the velocity of 90°/s. The player threw a ball at maximal speed keeping both feet on the floor. The speed was recorded with reflected light rays. Training in handball does not cause significant side asymmetry in shoulder external/internal rotator muscle peak torques or the average power ratio. Positive correlations between isokinetic characteristics of the shoulder internal and external rotator muscles and ball-throwing speed were determined. The power produced by internal rotator muscles during concentric contractions after eccentric contractions of external rotator muscles was significantly greater in the dominant than in the non-dominant arm. Thus, it may be concluded that the shoulder eccentric external/concentric internal rotator muscle power ratio is significantly greater than this ratio in the concentric contractions of these muscles. PMID:25414738
On the efficiency of small air coil motors
NASA Astrophysics Data System (ADS)
Horowitz, P.
1981-05-01
The efficiency of two types of small ironless motors in the output range of 5 to 500 mW was investigated for use in driving a miniature roller pump for a portable infusion system. One motor has a continuous rotating coil (commutator motor) and one has an oscillating coil. In this case a ratchet and ratchet wheel is needed to generate a rotating motion (ratchet wheel motor). The electromechanical transducer and a mechanical transformation and support system are discussed as well as frictional losses. The influence of the size of the motor is discussed. An expression for the total efficiency is obtained which enables the calculation of the speed of rotation of a certain motor at maximum efficiency for a certain required output. This optimal speed of rotation is hardly influenced by the required speed of rotation at the output shaft of the driving. The transmission, if required, has only a small effect on the optimum speed of rotation of the motor.
ERIC Educational Resources Information Center
Liesefeld, Heinrich René; Fu, Xiaolan; Zimmer, Hubert D.
2015-01-01
A major debate in the mental-rotation literature concerns the question of whether objects are represented holistically during rotation. Effects of object complexity on rotational speed are considered strong evidence against such holistic representations. In Experiment 1, such an effect of object complexity was markedly present. A closer look on…
Evaluating the four-dimensional cone beam computed tomography with varying gantry rotation speed
Maria Das, K J; Mohamed Ali, Shajahan; Agarwal, Arpita; Mishra, Surendra P; Kumar, Shaleen
2016-01-01
Objective: The purpose of this work was to evaluate the four-dimensional cone beam CT (4DCBCT) imaging with different gantry rotation speed. Methods: All the 4DCBCT image acquisitions were carried out in Elekta XVI Symmetry™ system (Elekta AB, Stockholm, Sweden). A dynamic thorax phantom with tumour mimicking inserts of diameter 1, 2 and 3 cm was programmed to simulate the respiratory motion (4 s) of the target. 4DCBCT images were acquired with different gantry rotation speeds (36°, 50°, 75°, 100°, 150° and 200° min−1). Owing to the technical limitation of 4DCBCT system, average cone beam CT (CBCT) images derived from the 10 phases of 4DCBCT were used for the internal target volume (ITV) contouring. ITVs obtained from average CBCT were compared with the four-dimensional CT (4DCT). In addition, the image quality of 4DCBCT was also evaluated for various gantry rotation speeds using Catphan® 600 (The Phantom Laboratory Inc., Salem, NY). Results: Compared to 4DCT, the average CBCT underestimated the ITV. The ITV deviation increased with increasing gantry speed (−10.8% vs −17.8% for 36° and 200° min−1 in 3-cm target) and decreasing target size (−17.8% vs −26.8% for target diameter 3 and 1 cm in 200° min−1). Similarly, the image quality indicators such as spatial resolution, contrast-to-noise ratio and uniformity also degraded with increasing gantry rotation speed. Conclusion: The impact of gantry rotation speed has to be considered when using 4DCBCT for ITV definition. The phantom study demonstrated that 4DCBCT with slow gantry rotation showed better image quality and less ITV deviation. Advances in knowledge: Usually, the gantry rotation period of Elekta 4DCBCT system is kept constant at 4 min (50° min−1) for acquisition, and any attempt of decreasing/increasing the acquisition duration requires careful investigation. In this study, the 4DCBCT images with different gantry rotation speed were evaluated. PMID:26916281
NASA Astrophysics Data System (ADS)
Pishevar, M. R.; Mohandesi, J. Aghazadeh; Omidvar, H.; Safarkhanian, M. A.
2015-10-01
Friction stir welding is suitable for joining series 5000 alloys because no fusion welding problems arise for the alloys in this process. The present study examined the effects of double-pass welding and tool rotational and travel speeds for the second-pass welding on the mechanical and microstructural properties of friction stir lap welding of AA5456 (AlMg5)-H321 (5 mm thickness) and AA5456 (AlMg5)-O (2.5 mm thickness). The first pass of all specimens was performed at a rotational speed of 650 rpm and a travel speed of 50 mm/min. The second pass was performed at rotational speeds of 250, 450, and 650 rpm and travel speeds of 25, 50, and 75 mm/min. The results showed that the second pass changed the grain sizes in the center of the nugget zone compared with the first pass. It was observed that the size of the hooking defect of the double-pass-welded specimens was higher than that for the single-pass-welded specimen. The size of the hooking defect was found to be a function of the rotational and travel speeds. The optimal joint tensile shear properties were achieved at a rotational speed of 250 rpm and travel a speed of 75 mm/min.
NASA Astrophysics Data System (ADS)
Kuosheng, Jiang; Guanghua, Xu; Tangfei, Tao; Lin, Liang; Yi, Wang; Sicong, Zhang; Ailing, Luo
2014-01-01
This paper presents the theory and implementation of a novel sensor system for measuring the angular speed (AS) of a shaft rotating at a very low speed range, nearly zero speed. The sensor system consists mainly of an eccentric sleeve rotating with the shaft on which the angular speed to be measured, and an eddy current displacement sensor to obtain the profile of the sleeve for AS calculation. When the shaft rotates at constant speed the profile will be a pure sinusoidal trace. However, the profile will be a phase modulated signal when the shaft speed is varied. By applying a demodulating procedure, the AS can be obtained in a straightforward manner. The sensor system was validated experimentally based on a gearbox test rig and the result shows that the AS obtained are consistent with that obtained by a conventional encoder. However, the new sensor gives very smooth and stable traces of the AS, demonstrating its higher accuracy and reliability in obtaining the AS of the low speed operations with speed-up and down transients. In addition, the experiment also shows that it is easy and cost-effective to be realised in different applications such as condition monitoring and process control.
Dimension Determination of Precursive Stall Events in a Single Stage High Speed Compressor
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Qammar, Helen K.; Hartley, Tom T.
1996-01-01
This paper presents a study of the dynamics for a single-stage, axial-flow, high speed compressor core, specifically, the NASA Lewis rotor stage 37. Due to the overall blading design for this advanced core compressor, each stage has considerable tip loading and higher speed than most compressor designs, thus, the compressor operates closer to the stall margin. The onset of rotating stall is explained as bifurcations in the dynamics of axial compressors. Data taken from the compressor during a rotating stall event is analyzed. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined during the bifurcations leading to rotating stall. The intent of this study is to examine the behavior of precursive stall events so as to predict the entrance into rotating stall. This information may provide a better means to identify, avoid or control the undesirable event of rotating stall formation in high speed compressor cores.
A novel method of freeform surface grinding with a soft wheel based on industrial robots
NASA Astrophysics Data System (ADS)
Sha, Sheng-chun; Guo, Xiao-ling
2011-08-01
In order to meet the growing demand for high-quality images, optical elements of freeform surface are more and more applied to imaging system. However the fabrication of freeform surface optical elements is much more difficult than that of traditional spherical ones. Recent research on freeform surface manufacture often deals with precision machine tools which have limitations on dimensions and are always expensive. Little has been researched on industrial robots. In this paper, a new method of freeform surface grinding based on industrial robots was found. This method could be applied to both whole surface grinding as well as partial surface grinding. The diameter of lenses to be ground would not be restricted to the machine tool's size. In this method a high-speed-rotating soft wheel was used. The relation between removing amount and grinding time which could be called removing function was established and measured. The machining precision was achieved by means of controlling the grinding time instead of the machine tool or industrial robot itself. There are two main factors affecting the removing function: i).rotating speed of the soft wheel; ii).pressure between the wheel and the work piece. In this paper, two groups of experiments have been conducted. One is the removing function tested at constant rotating speed while under different pressure. The other is that tested under a certain pressure with variable speed. Tables and curves which can show the effect of speed and pressure on the removing efficiency have been obtained. Cause for inaccuracy between experiment data and calculated result according to the theory and the non-linearity in the curves was analyzed. Through these analyses the removing function could be concluded under certain condition including rotating speed and pressure. Finally several experiments were performed to verify the appropriateness of the removing function. It could also be concluded that this method was more efficient in comparison with traditional grinding technology particularly in the aspect of partial surface grinding. This paper also brought up a new idea that this method could be combined with other freeform surface grinding technics to realize a more flexible, efficient, reliable and economical type of optical fabrication. It would become a potential technic especially for partial optical surface grinding and repair.
Research of rotating machinery vibration parameters - Shaft speed relationship
NASA Astrophysics Data System (ADS)
Kostyukov, V. N.; Kostyukov, A. V.; Zaytsev, A. V.; Teterin, A. O.
2017-08-01
The paper considers the relationship between the parameters of the vibration arising in rotating machinery during operation and the shaft speed. The goal of this paper is to determine the dependence of the vibration parameters on the shaft speed for solving applied engineering problems. To properly evaluate the technical condition of bearing assemblies, we should take into account the pattern of the rotating machinery vibration parameters-shaft speed relationship, which will allow creating new diagnostic features, the totality of which will ensure an increased reliability of diagnosis. We took the check for a correlation between the factor and resultative feature parameters as the correlation analysis method. A high pair linear correlation between the diagnostic features (acceleration, velocity, displacement) and the shaft speed was determined on the basis of the check for correlation between the vibration parameters and the shaft speed, and also the linear correlation coefficients can be used to solve the applied engineering problems of diagnosing the bearing assemblies of the rotating machinery.
NASA Astrophysics Data System (ADS)
Ram, Paras; Joshi, Vimal Kumar; Sharma, Kushal; Walia, Mittu; Yadav, Nisha
2016-01-01
An attempt has been made to describe the effects of geothermal viscosity with viscous dissipation on the three dimensional time dependent boundary layer flow of magnetic nanofluids due to a stretchable rotating plate in the presence of a porous medium. The modelled governing time dependent equations are transformed a from boundary value problem to an initial value problem, and thereafter solved by a fourth order Runge-Kutta method in MATLAB with a shooting technique for the initial guess. The influences of mixed temperature, depth dependent viscosity, and the rotation strength parameter on the flow field and temperature field generated on the plate surface are investigated. The derived results show direct impact in the problems of heat transfer in high speed computer disks (Herrero et al. [1]) and turbine rotor systems (Owen and Rogers [2]).
Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich
2014-07-07
In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids-air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction.
Deterministic-random separation in nonstationary regime
NASA Astrophysics Data System (ADS)
Abboud, D.; Antoni, J.; Sieg-Zieba, S.; Eltabach, M.
2016-02-01
In rotating machinery vibration analysis, the synchronous average is perhaps the most widely used technique for extracting periodic components. Periodic components are typically related to gear vibrations, misalignments, unbalances, blade rotations, reciprocating forces, etc. Their separation from other random components is essential in vibration-based diagnosis in order to discriminate useful information from masking noise. However, synchronous averaging theoretically requires the machine to operate under stationary regime (i.e. the related vibration signals are cyclostationary) and is otherwise jeopardized by the presence of amplitude and phase modulations. A first object of this paper is to investigate the nature of the nonstationarity induced by the response of a linear time-invariant system subjected to speed varying excitation. For this purpose, the concept of a cyclo-non-stationary signal is introduced, which extends the class of cyclostationary signals to speed-varying regimes. Next, a "generalized synchronous average'' is designed to extract the deterministic part of a cyclo-non-stationary vibration signal-i.e. the analog of the periodic part of a cyclostationary signal. Two estimators of the GSA have been proposed. The first one returns the synchronous average of the signal at predefined discrete operating speeds. A brief statistical study of it is performed, aiming to provide the user with confidence intervals that reflect the "quality" of the estimator according to the SNR and the estimated speed. The second estimator returns a smoothed version of the former by enforcing continuity over the speed axis. It helps to reconstruct the deterministic component by tracking a specific trajectory dictated by the speed profile (assumed to be known a priori).The proposed method is validated first on synthetic signals and then on actual industrial signals. The usefulness of the approach is demonstrated on envelope-based diagnosis of bearings in variable-speed operation.
Rotating reverse osmosis: a dynamic model for flux and rejection
NASA Technical Reports Server (NTRS)
Lee, S.; Lueptow, R. M.
2001-01-01
Reverse osmosis (RO) is a compact process for the removal of ionic and organic pollutants from contaminated water. However, flux decline and rejection deterioration due to concentration polarization and membrane fouling hinders the application of RO technology. In this study, a rotating cylindrical RO membrane is theoretically investigated as a novel method to reduce polarization and fouling. A dynamic model based on RO membrane transport incorporating concentration polarization is used to predict the performance of rotating RO system. Operating parameters such as rotational speed and transmembrane pressure play an important role in determining the flux and rejection in rotating RO. For a given geometry, a rotational speed sufficient to generate Taylor vortices in the annulus is essential to maintain high flux as well as high rejection. The flux and rejection were calculated for wide range of operating pressures and rotational speeds. c 2001 Elsevier Science B.V. All rights reserved.
Neoclassical poloidal and toroidal rotation in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y.B.; Diamond, P.H.; Groebner, R.J.
1991-08-01
Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite tomore » that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation.« less
NASA Astrophysics Data System (ADS)
Prasetya, A.; Mawadati, A.; Putri, A. M. R.; Petrus, H. T. B. M.
2018-01-01
Comminution is one of crucial steps in gold ore processing used to liberate the valuable minerals from gaunge mineral. This research is done to find the particle size distribution of gold ore after it has been treated through the comminution process in a rod mill with various number of rod and rotational speed that will results in one optimum milling condition. For the initial step, Sumbawa gold ore was crushed and then sieved to pass the 2.5 mesh and retained on the 5 mesh (this condition was taken to mimic real application in artisanal gold mining). Inserting the prepared sample into the rod mill, the observation on effect of rod-number and rotational speed was then conducted by variating the rod number of 7 and 10 while the rotational speed was varied from 60, 85, and 110 rpm. In order to be able to provide estimation on particle distribution of every condition, the comminution kinetic was applied by taking sample at 15, 30, 60, and 120 minutes for size distribution analysis. The change of particle distribution of top and bottom product as time series was then treated using Rosin-Rammler distribution equation. The result shows that the homogenity of particle size and particle size distribution is affected by rod-number and rotational speed. The particle size distribution is more homogeneous by increasing of milling time, regardless of rod-number and rotational speed. Mean size of particles do not change significantly after 60 minutes milling time. Experimental results showed that the optimum condition was achieved at rotational speed of 85 rpm, using rod-number of 7.
Ring rotational speed trend analysis by FEM approach in a Ring Rolling process
NASA Astrophysics Data System (ADS)
Allegri, G.; Giorleo, L.; Ceretti, E.
2018-05-01
Ring Rolling is an advanced local incremental forming technology to fabricate directly precise seamless ring-shape parts with various dimensions and materials. In this process two different deformations occur in order to reduce the width and the height of a preform hollow ring; as results a diameter expansion is obtained. In order to guarantee a uniform deformation, the preform is forced toward the Driver Roll whose aim is to transmit the rotation to the ring. The ring rotational speed selection is fundamental because the higher is the speed the higher will be the axial symmetry of the deformation process. However, it is important to underline that the rotational speed will affect not only the final ring geometry but also the loads and energy needed to produce it. Despite this importance in industrial environment, usually, a constant value for the Driver Roll angular velocity is set so to result in a decreasing trend law for the ring rotational speed. The main risk due to this approach is not fulfilling the axial symmetric constrain (due to the diameter expansion) and to generate a high localized ring section deformation. In order to improve the knowledge about this topic in the present paper three different ring rotational speed trends (constant, linearly increasing and linearly decreasing) were investigated by FEM approach. Results were compared in terms of geometrical and dimensional analysis, loads and energies required.
Modal testing of a rotating wind turbine
NASA Astrophysics Data System (ADS)
Carne, T. G.; Nord, A. R.
1982-11-01
A testing technique was developed to measure the modes of vibration of a rotating vertical-axis wind turbine. This technique was applied to the Sandia Two-Meter Turbine, where the changes in individual modal frequencies as a function of the rotational speed were tracked from 0 rpm (parked) to 600 rpm. During rotational testing, the structural response was measured using a combination of strain gages and accelerometers, passing the signals through slip rings. Excitation of the turbine structure was provided by a scheme which suddenly released a pretensioned cable, thus plucking the turbine as it was rotating at a set speed. In addition to calculating the real modes of the parked turbine, the modes of the rotating turbine were also determined at several rotational speeds. The modes of the rotating system proved to be complex due to centrifugal and Coriolis effects. The modal data for the parked turbine were used to update a finite-element model. Also, the measured modal parameters for the rotating turbine were compared to the analytical results, thus verifying the analytical procedures used to incorporate the effects of the rotating coordinate system.
Arun Dominic, D; Chelliah, Thanga Raj
2014-09-01
To obtain high dynamic performance on induction motor drives (IMD), variable voltage and variable frequency operation has to be performed by measuring speed of rotation and stator currents through sensors and fed back them to the controllers. When the sensors are undergone a fault, the stability of control system, may be designed for an industrial process, is disturbed. This paper studies the negative effects on a 12.5 hp induction motor drives when the field oriented control system is subjected to sensor faults. To illustrate the importance of this study mine hoist load diagram is considered as shaft load of the tested machine. The methods to recover the system from sensor faults are discussed. In addition, the various speed sensorless schemes are reviewed comprehensively. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Snyder, Kelli R; Earl, Jennifer E; O'Connor, Kristian M; Ebersole, Kyle T
2009-01-01
Movement and muscle activity of the hip have been shown to affect movement of the lower extremity, and been related to injury. The purpose of this study was to determine if increased hip strength affects lower extremity mechanics during running. Within subject, repeated measures design. Fifteen healthy women volunteered. Hip abduction and external rotation strength were measured using a hand-held dynamometer. Three-dimensional biomechanical data of the lower extremity were collected during running using a high-speed motion capture system. Measurements were made before, at the mid-point, and after a 6-week strengthening program using closed-chain hip rotation exercises. Joint range of motion (rearfoot eversion, knee abduction, hip adduction, and internal rotation), eversion velocity, eversion angle at heel strike, and peak joint moments (rearfoot inversion, knee abduction, hip abduction, and external rotation) were analyzed using repeated measures analysis of variance (P
Research on the Diesel Engine with Sliding Mode Variable Structure Theory
NASA Astrophysics Data System (ADS)
Ma, Zhexuan; Mao, Xiaobing; Cai, Le
2018-05-01
This study constructed the nonlinear mathematical model of the diesel engine high-pressure common rail (HPCR) system through two polynomial fitting which was treated as a kind of affine nonlinear system. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for affine nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrated that sliding-mode variable structure control algorithm shows favourable control performances which are overcoming the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.
Chen, Chingchi; Degner, Michael W.
2002-11-19
A sensor system for sensing a rotation of a sensing wheel is disclosed. The sensor system has a sensing coil in juxtaposition with the sensing wheel. Moreover, the sensing coil has a sensing coil output signal indicative of the rotational speed of the sensing wheel. Further, a cancellation coil is located remotely from the sensing coil and connected in series therewith. Additionally, the cancellation coil has a cancellation coil output signal indicative of an environmental disturbance which is effecting the sensing coil output signal. The cancellation coil output signal operates to cancel the effects of the environmental disturbance on the sensing coil output signal.
Transverse mixing of ellipsoidal particles in a rotating drum
NASA Astrophysics Data System (ADS)
He, Siyuan; Gan, Jieqing; Pinson, David; Zhou, Zongyan
2017-06-01
Rotating drums are widely used in industry for mixing, milling, coating and drying processes. In the past decades, mixing of granular materials in rotating drums has been extensively investigated, but most of the studies are based on spherical particles. Particle shape has an influence on the flow behaviour and thus mixing behaviour, though the shape effect has as-yet received limited study. In this work, discrete element method (DEM) is employed to study the transverse mixing of ellipsoidal particles in a rotating drum. The effects of aspect ratio and rotating speed on mixing quality and mixing rate are investigated. The results show that mixing index increases exponentially with time for both spheres and ellipsoids. Particles with various aspect ratios are able to reach well-mixed states after sufficient revolutions in the rolling or cascading regime. Ellipsoids show higher mixing rate when rotational speed is set between 25 and 40 rpm. The relationship between mixing rate and aspect ratio of ellipsoids is established, demonstrating that, particles with aspect ratios of 0.5 and 2.0 achieve the highest mixing rates. Increasing rotating speed from 15 rpm to 40 rpm does not necessarily increase the mixing speed of spheres, while monotonous increase is observed for ellipsoids.
Vision-based measurement for rotational speed by improving Lucas-Kanade template tracking algorithm.
Guo, Jie; Zhu, Chang'an; Lu, Siliang; Zhang, Dashan; Zhang, Chunyu
2016-09-01
Rotational angle and speed are important parameters for condition monitoring and fault diagnosis of rotating machineries, and their measurement is useful in precision machining and early warning of faults. In this study, a novel vision-based measurement algorithm is proposed to complete this task. A high-speed camera is first used to capture the video of the rotational object. To extract the rotational angle, the template-based Lucas-Kanade algorithm is introduced to complete motion tracking by aligning the template image in the video sequence. Given the special case of nonplanar surface of the cylinder object, a nonlinear transformation is designed for modeling the rotation tracking. In spite of the unconventional and complex form, the transformation can realize angle extraction concisely with only one parameter. A simulation is then conducted to verify the tracking effect, and a practical tracking strategy is further proposed to track consecutively the video sequence. Based on the proposed algorithm, instantaneous rotational speed (IRS) can be measured accurately and efficiently. Finally, the effectiveness of the proposed algorithm is verified on a brushless direct current motor test rig through the comparison with results obtained by the microphone. Experimental results demonstrate that the proposed algorithm can extract accurately rotational angles and can measure IRS with the advantage of noncontact and effectiveness.
Correction of rotational distortion for catheter-based en face OCT and OCT angiography
Ahsen, Osman O.; Lee, Hsiang-Chieh; Giacomelli, Michael G.; Wang, Zhao; Liang, Kaicheng; Tsai, Tsung-Han; Potsaid, Benjamin; Mashimo, Hiroshi; Fujimoto, James G.
2015-01-01
We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm. PMID:25361133
Mass Distributions Implying Flat Galactic Rotation Curves
ERIC Educational Resources Information Center
Keeports, David
2010-01-01
The rotational speeds of stars in the disc of a spiral galaxy are virtually independent of the distances of the stars from the centre of the galaxy. In common parlance, the stellar speed versus distance plot known as a galactic rotation curve is by observation typically nearly flat. This observation provides strong evidence that most galactic…
On blockage effects for a marine hydrokinetic turbine in free surface proximity
NASA Astrophysics Data System (ADS)
Banerjee, A.; Kolekar, N.
2016-12-01
Experimental investigation was carried out with a three-bladed, constant chord marine hydrokinetic turbine to understand the influence of free surface proximity on blockage effects and near wake flow field. The turbine was placed at various depths of immersion as rotational speeds and flow speeds were varied; thrust and torque data was acquired through a submerged thrust torque sensor positioned in-line with the turbine axis. Blockage effects were quantified in terms of changes in power coefficient and were found to be dependent on flow velocity, rotational speed and blade-tip clearence (from free-surface). Flow acceleration near turbine rotation plane was attributed to blockage offered by the rotor, wake, and free surface deformation; the resulting performance improvements were calculated based on the measured thrust values. In addition, stereoscopic particle imaging velocimetry was carried out in the near-wake region using time-averaged and phase-averaged techniques to understand the mechanism responsible for variation of torque (and power coefficient) with rotational speed and free-surface proximity. Flow vizualisation revealed slower wake propagation for higher rotational velocities and increased assymetry in the wake with increasing free surface proximity. Improved performance at high rotational speed was attributed to enhanced wake blockage; performance enhancements with free-surface proximity was attributed to additional blockage effects caused by free surface deformation.
Charge control microcomputer device for vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morishita, M.; Kouge, S.
1986-10-14
This patent describes a charge control microcomputer device for a vehicle, comprising: speed changing means for transmitting the output torque of an engine. The speed changing means includes a slip clutch means having an output with a variable slippage amount with respect to its input and controlled in accordance with an operating instruction. The speed changing means further includes a speed change gear for changing the rotational speed input thereto at an output thereto, the speed change gear receiving the output of the slip clutch means; a charging generator driven by the output of the speed change gear; a batterymore » charged by an output voltage of the charging generator; a voltage regulator for controlling the output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving data from the engine, to control the engine, the engine data comprising at least an engine speed signal; a charge control microcomputer for processing engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage data from the changing generator; and a display unit for displaying detection data, including fault detection data, form the charge control microcomputer.« less
NASA Technical Reports Server (NTRS)
Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.
1973-01-01
Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.
NASA Astrophysics Data System (ADS)
Moghadam, Danial Ghahremani; Farhangdoost, Khalil; Nejad, Reza Masoudi
2016-06-01
Friction stir welding was conducted on 8-mm-thick plates made of AA2024-T351 aluminum alloy at tool traverse speeds between 8 and 31.5 mm/minutes and tool rotational speed between 400 and 800 rpm. Metallographic analyses and mechanical tests including hardness, tensile, residual stress, and fracture toughness tests were carried out to evaluate the microstructural and mechanical properties of the joints as a function of the process parameters. The finite element simulation of the FSW process was also performed using a thermal model. The hardness test results show that the increase in rotational speed or decrease in traverse speed of the tool would cause a decrease in weld zone hardness. The best tensile properties are obtained at rotational/traverse speed ratio between 20 and 32. Also, the longitudinal residual stress profiles were evaluated by employing X-ray diffraction method. The numerical and experimental results showed that the increase in a traverse or rotational speed would increase the residual stress of the weld zone. From the fracture toughness results, it was found that the welding process decreases the joints fracture toughness 18 to 49 pct with respect to the base metal.
Research on speed control of secondary regulation lifting system of parking equipment
NASA Astrophysics Data System (ADS)
Zang, Faye
2005-12-01
Hydrostatic transmission with secondary regulation is a new kind of hydrostatic transmission that can regenerate inertial and gravitational energy of load. On the basis of an in-depth analysis of the working principles and energy-saving mechanisms of the parking equipment lifting systems with, secondary regulating technology, this paper proposes a method of regenerating a lifting system's inertial energy by controlling rotational speed and reclaiming the gravitational energy by use of a constant rotational speed. Considering large changes of the parameters of lifting systems and then non-linearity, a fuzzy control was adopted to control the lifting system, and a mathematical model of the system was established. By simulation and experiment of the lifting system, the conclusion was reached a lifting system's braking achieved by controlling rotational speed is reliable and stable at a definite speed. It also permits changing the efficiency of recovery by changing the rotational speed. The design power of the lifting system can be chosen in terms of the system's average power, so the system's power can be reduced and energy savings achieved.
Lopes, Hélio P; Ferreira, Alessandra A P; Elias, Carlos N; Moreira, Edson J L; de Oliveira, Júlio C Machado; Siqueira, José F
2009-07-01
During the preparation of curved canals, rotary nickel-titanium (NiTi) instruments are subjected to cyclic fatigue, which can lead to instrument fracture. Although several factors may influence the cyclic fatigue resistance of instruments, the role of the rotational speed remains uncertain. This study was intended to evaluate the effects of rotational speed on the number of cycles to fracture of rotary NiTi instruments. ProTaper Universal instruments F3 and F4 (Maillefer SA, Ballaigues, Switzerland) were used in an artificial curved canal under rotational speeds of 300 rpm or 600 rpm. The artificial canal was made of stainless steel, with an inner diameter of 1.5 mm, total length of 20 mm, and arc at the end with a curvature radius of 6 mm. The arc length was 9.4 mm and 10.6 mm on the straight part. The number of cycles required to fracture was recorded. Fractured surfaces and the helical shafts of the fractured instruments were analyzed by scanning electron microscopy. The results showed approximately a 30% reduction in the observed number of cycles to fracture as rotational speed was increased from 300 to 600 RPM (p < 0.05). The morphology of the fractured surface was always of ductile type, and no plastic deformation was observed on the helical shaft of fractured instruments. The present findings for both F3 and F4 ProTaper instruments revealed that the increase in rotational speed significantly reduced the number of cycles to fracture.
The evaluation of speed skating helmet performance through peak linear and rotational accelerations.
Karton, Clara; Rousseau, Philippe; Vassilyadi, Michael; Hoshizaki, Thomas Blaine
2014-01-01
Like many sports involving high speeds and body contact, head injuries are a concern for short track speed skating athletes and coaches. While the mandatory use of helmets has managed to nearly eliminate catastrophic head injuries such as skull fractures and cerebral haemorrhages, they may not be as effective at reducing the risk of a concussion. The purpose of this study was to evaluate the performance characteristics of speed skating helmets with respect to managing peak linear and peak rotational acceleration, and to compare their performance against other types of helmets commonly worn within the speed skating sport. Commercially available speed skating, bicycle and ice hockey helmets were evaluated using a three-impact condition test protocol at an impact velocity of 4 m/s. Two speed skating helmet models yielded mean peak linear accelerations at a low-estimated probability range for sustaining a concussion for all three impact conditions. Conversely, the resulting mean peak rotational acceleration values were all found close to the high end of a probability range for sustaining a concussion. A similar tendency was observed for the bicycle and ice hockey helmets under the same impact conditions. Speed skating helmets may not be as effective at managing rotational acceleration and therefore may not successfully protect the user against risks associated with concussion injuries.
Rotating samples in FT-RAMAN spectrometers
NASA Astrophysics Data System (ADS)
De Paepe, A. T. G.; Dyke, J. M.; Hendra, P. J.; Langkilde, F. W.
1997-11-01
It is customary to rotate samples in Raman spectroscopy to avoid absorption or sample heating. In FT-Raman experiments the rotation is always shown (typically 30-60 rpm) because higher speeds are thought to generate noise in the spectra. In this article we show that more rapid rotation is possible. A tablet containing maleic acid and one made up of sub-millimetre silica particles with metoprolol succinate as active ingredient were rotated at different speeds, up to 6760 rpm. The FT-Raman spectra were recorded and studied. We conclude that it is perfectly acceptable to rotate samples up to 1500 rpm.
[Gait characteristics of women with fibromyalgia: a premature aging pattern].
Góes, Suelen M; Leite, Neiva; de Souza, Ricardo M; Homann, Diogo; Osiecki, Ana C V; Stefanello, Joice M F; Rodacki, André L F
2014-01-01
Fibromyalgia is a condition which involves chronic pain. Middle-aged individuals with fibromyalgia seem to exhibit changes in gait pattern, which may prematurely expose them to a gait pattern which resembles that found in the elderly population. To determine the 3D spatial (linear and angular) gait parameters of middle-aged women with fibromyalgia and compare to elderly women without this condition. 25 women (10 in the fibromyalgia group and 15 in the elderly group) volunteered to participate in the study. Kinematics was performed using an optoelectronic system, and linear and angular kinematic variables were determined. There was no difference in walking speed, stride length, cadence, hip, knee and ankle joints range of motion between groups, except the pelvic rotation, in which the fibromyalgia group showed greater rotation (P<0.05) compared to the elderly group. Also, there was a negative correlation with pelvic rotation and gluteus pain (r = -0.69; P<0.05), and between pelvic obliquity and greater trochanter pain (r = -0.69; P<0.05) in the fibromyalgia group. Middle-aged women with fibromyalgia showed gait pattern resemblances to elderly, women, which is characterized by reduced lower limb ROM, stride length and walking speed. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Zhang, Yunshun; Zheng, Rencheng; Shimono, Keisuke; Kaizuka, Tsutomu; Nakano, Kimihiko
2016-01-01
The collection of clean power from ambient vibrations is considered a promising method for energy harvesting. For the case of wheel rotation, the present study investigates the effectiveness of a piezoelectric energy harvester, with the application of stochastic resonance to optimize the efficiency of energy harvesting. It is hypothesized that when the wheel rotates at variable speeds, the energy harvester is subjected to on-road noise as ambient excitations and a tangentially acting gravity force as a periodic modulation force, which can stimulate stochastic resonance. The energy harvester was miniaturized with a bistable cantilever structure, and the on-road noise was measured for the implementation of a vibrator in an experimental setting. A validation experiment revealed that the harvesting system was optimized to capture power that was approximately 12 times that captured under only on-road noise excitation and 50 times that captured under only the periodic gravity force. Moreover, the investigation of up-sweep excitations with increasing rotational frequency confirmed that stochastic resonance is effective in optimizing the performance of the energy harvester, with a certain bandwidth of vehicle speeds. An actual-vehicle experiment validates that the prototype harvester using stochastic resonance is capable of improving power generation performance for practical tire application. PMID:27763522
Zhang, Yunshun; Zheng, Rencheng; Shimono, Keisuke; Kaizuka, Tsutomu; Nakano, Kimihiko
2016-10-17
The collection of clean power from ambient vibrations is considered a promising method for energy harvesting. For the case of wheel rotation, the present study investigates the effectiveness of a piezoelectric energy harvester, with the application of stochastic resonance to optimize the efficiency of energy harvesting. It is hypothesized that when the wheel rotates at variable speeds, the energy harvester is subjected to on-road noise as ambient excitations and a tangentially acting gravity force as a periodic modulation force, which can stimulate stochastic resonance. The energy harvester was miniaturized with a bistable cantilever structure, and the on-road noise was measured for the implementation of a vibrator in an experimental setting. A validation experiment revealed that the harvesting system was optimized to capture power that was approximately 12 times that captured under only on-road noise excitation and 50 times that captured under only the periodic gravity force. Moreover, the investigation of up-sweep excitations with increasing rotational frequency confirmed that stochastic resonance is effective in optimizing the performance of the energy harvester, with a certain bandwidth of vehicle speeds. An actual-vehicle experiment validates that the prototype harvester using stochastic resonance is capable of improving power generation performance for practical tire application.
Methods of measurement signal acquisition from the rotational flow meter for frequency analysis
NASA Astrophysics Data System (ADS)
Świsulski, Dariusz; Hanus, Robert; Zych, Marcin; Petryka, Leszek
One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw) rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.
Nonperturbative interpretation of the Bloch vector's path beyond the rotating-wave approximation
NASA Astrophysics Data System (ADS)
Benenti, Giuliano; Siccardi, Stefano; Strini, Giuliano
2013-09-01
The Bloch vector's path of a two-level system exposed to a monochromatic field exhibits, in the regime of strong coupling, complex corkscrew trajectories. By considering the infinitesimal evolution of the two-level system when the field is treated as a classical object, we show that the Bloch vector's rotation speed oscillates between zero and twice the rotation speed predicted by the rotating wave approximation. Cusps appear when the rotation speed vanishes. We prove analytically that in correspondence to cusps the curvature of the Bloch vector's path diverges. On the other hand, numerical data show that the curvature is very large even for a quantum field in the deep quantum regime with mean number of photons n¯≲1. We finally compute numerically the typical error size in a quantum gate when the terms beyond rotating wave approximation are neglected.
Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors.
Varley, Mark C; Markaki, Athina E; Brooks, Roger A
2017-06-01
Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∼14 mm s -1 producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p < 0.002) or when the chamber was 60% or 100% full (p < 0.01). The fluid flow and scaffold motion experiments show that biaxial rotation would not improve the mass transfer of medium into the scaffold as the second axis of rotation can only transition the scaffold toward oscillatory or orbital motion and, hence, reduce mass transport to the scaffold. The cell culture results confirmed that there was no benefit to the second axis of rotation with no significant difference in cell proliferation either when the scaffolds were free floating or constrained (p > 0.05).
Effect of Rotation on Scaffold Motion and Cell Growth in Rotating Bioreactors
Varley, Mark C.; Markaki, Athina E.
2017-01-01
Efficient use of different bioreactor designs to improve cell growth in three-dimensional scaffolds requires an understanding of their mechanism of action. To address this for rotating wall vessel bioreactors, fluid and scaffold motion were investigated experimentally at different rotation speeds and vessel fill volumes. Low cost bioreactors with single and dual axis rotation were developed to investigate the effect of these systems on human osteoblast proliferation in free floating and constrained collagen-glycosaminoglycan porous scaffolds. A range of scaffold motions (free fall, periodic oscillation, and orbital motion) were observed at the rotation speeds and vessel fluid/air ratios used, with 85% fluid fill and an outer vessel wall velocity of ∼14 mm s−1 producing a scaffold in a free fall state. The cell proliferation results showed that after 14 and 21 days of culture, this combination of fluid fill and speed of rotation produced significantly greater cell numbers in the scaffolds than when lower or higher rotation speeds (p < 0.002) or when the chamber was 60% or 100% full (p < 0.01). The fluid flow and scaffold motion experiments show that biaxial rotation would not improve the mass transfer of medium into the scaffold as the second axis of rotation can only transition the scaffold toward oscillatory or orbital motion and, hence, reduce mass transport to the scaffold. The cell culture results confirmed that there was no benefit to the second axis of rotation with no significant difference in cell proliferation either when the scaffolds were free floating or constrained (p > 0.05). PMID:28125920
A study of safety and tolerability of rotatory vestibular input for preschool children
Su, Wen-Ching; Lin, Chin-Kai; Chang, Shih-Chung
2015-01-01
The objectives of this study were to determine a safe rotatory vestibular stimulation input for preschool children and to study the effects of grade level and sex of preschool children during active, passive, clockwise, and counterclockwise rotation vestibular input. This study adopted purposive sampling with 120 children from three kindergarten levels (K1, K2, and K3) in Taiwan. The subjects ranged in age from 46 to 79 months of age (mean: 62.1 months; standard deviation =9.60). This study included testing with four types of vestibular rotations. The number, duration, and speed of rotations were recorded. The study found that the mean number of active rotations was 10.28; the mean duration of rotation was 24.17 seconds; and the mean speed was 2.29 seconds per rotation. The mean number of passive rotations was 23.04. The differences in number of rotations in clockwise, counterclockwise, active, and passive rotations were not statistically significant. Sex and grade level were not important related factors in the speed and time of active rotation. Different sexes, rotation methods (active, passive), and grades made significant differences in the number of rotations. The safety and tolerability of rotatory vestibular stimulation input data obtained in this study can provide useful reference data for therapists using sensory integration therapy. PMID:25657579
Dynamic behaviour of a rotating cracked beam
NASA Astrophysics Data System (ADS)
Yashar, Ahmed; Ghandchi-Tehrani, Maryam; Ferguson, Neil
2016-09-01
This paper presents a new approach to investigate and analyse the vibrational behaviour of cracked rotating cantilever beams, which can for example represent helicopter or wind turbine blades. The analytical Hamiltonian method is used in modelling the rotating beam and two numerical methods, the Rayleigh-Ritz and FEM, are used to study the natural frequencies and the mode shapes of the intact rotating beams. Subsequently, a crack is introduced into the FE model and simulations are performed to identify the modal characteristics for an open cracked rotating beam. The effect of various parameters such as non-dimensional rotating speed, hub ratio and slenderness ratio are investigated for both the intact and the cracked rotating beam, and in both directions of chordwise and flapwise motion. The veering phenomena in the natural frequencies as a function of the rotational speed and the buckling speed are considered with respect to the slenderness ratio. In addition, the mode shapes obtained for the flapwise vibration are compared using the modal assurance criterion (MAC). Finally, a new three dimensional design chart is produced, showing the effect of crack location and depth on the natural frequencies of the rotating beam. This chart will be subsequently important in identifying crack defects in rotating blades.
Rosenbaum, Daryl A; Mora, Dana C; Arcury, Thomas A; Chen, Haiying; Quandt, Sara A
2014-01-01
Between-employer differences in working conditions may lead to variable injury rates. The objective of this paper is to assess the difference in the prevalence of epicondylitis, rotator cuff syndrome, and low back pain among immigrant Latino poultry workers at plants of three different employers. Data were collected from a cross-sectional study among 286 poultry processing workers. Community-based sampling was used to recruit participants in western North Carolina. Rotator cuff syndrome (26.7%) and low back pain (27.9%) were more prevalent among employees of one specific employer. Multivariate analysis showed significant associations of low back pain and rotator cuff syndrome with age, task performed in the processing line, and employer. Employer is a major predictor of musculoskeletal disorders and pain. Line speed and work pace may account for these differences and provide an opportunity for regulation and intervention to protect the health of workers.
Negative Magnus lift on a rotating sphere at around the critical Reynolds number
NASA Astrophysics Data System (ADS)
Muto, Masaya; Tsubokura, Makoto; Oshima, Nobuyuki
2012-01-01
Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow was investigated using large-eddy simulation at three Reynolds numbers of 1.0 × 104, 2.0 × 105, and 1.14 × 106. The numerical methods used were first validated on a non-rotating sphere, and the spatial resolution around the sphere was determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed in the vicinity of the critical Reynolds number. The rotating sphere exhibited a positive or negative Magnus effect depending on the Reynolds number and the imposed rotating speed. At Reynolds numbers in the subcritical or supercritical regimes, the direction of the Magnus lift force was independent of the rotational speed. In contrast, the lift force was negative in the critical regime when particular rotating speeds were imposed. This negative Magnus effect was investigated in the context of suppression or promotion of boundary layer transition around the separation point.
Method and system for controlling a rotational speed of a rotor of a turbogenerator
Stahlhut, Ronnie Dean; Vuk, Carl Thomas
2008-12-30
A system and method controls a rotational speed of a rotor or shaft of a turbogenerator in accordance with a present voltage level on a direct current bus. A lower threshold and a higher threshold are established for a speed of a rotor or shaft of a turbogenerator. A speed sensor determines speed data or a speed signal for the rotor or shaft associated with a turbogenerator. A voltage regulator adjusts a voltage level associated with a direct current bus within a target voltage range if the speed data or speed signal indicates that the speed is above the higher threshold or below the lower threshold.
Defensive Abdominal Rotation Patterns of Tenebrionid Beetle, Zophobas atratus, Pupae
Ichikawa, Toshio; Nakamura, Tatsuya; Yamawaki, Yoshifumi
2012-01-01
Exarate pupae of the beetle Zophobas atratus Fab. (Coleoptera: Tenebrionidae) have free appendages (antenna, palp, leg, and elytron) that are highly sensitive to mechanical stimulation. A weak tactile stimulus applied to any appendage initiated a rapid rotation of abdominal segments. High-speed photography revealed that one cycle of defensive abdominal rotation was induced in an all-or-none fashion by bending single or multiple mechanosensory hairs on a leg or prodding the cuticular surface of appendages containing campaniform sensilla. The direction of the abdominal rotation completely depended on the side of stimulation; stimulation of a right appendage induced a right-handed rotation about the anterior-posterior axis of the pupal body and vice versa. The trajectories of the abdominal rotations had an ellipsoidal or pear-shaped pattern. Among the trajectory patterns of the rotations induced by stimulating different appendages, there were occasional significant differences in the horizontal (right-left) component of abdominal rotational movements. Simultaneous stimulation of right and left appendages often induced variable and complex patterns of abdominal movements, suggesting an interaction between sensory signals from different sides. When an abdominal rotation was induced in a freely lying pupa, the rotation usually made the pupa move away from or turn its dorsum toward the source of stimulation with the aid of the caudal processes (urogomphi), which served as a fulcrum for transmitting the power of the abdominal rotation to the movement or turning of the whole body. Pattern generation mechanisms for the abdominal rotation were discussed. PMID:23448289
Defensive abdominal rotation patterns of tenebrionid beetle, Zophobas atratus, pupae.
Ichikawa, Toshio; Nakamura, Tatsuya; Yamawaki, Yoshifumi
2012-01-01
Exarate pupae of the beetle Zophobas atratus Fab. (Coleoptera: Tenebrionidae) have free appendages (antenna, palp, leg, and elytron) that are highly sensitive to mechanical stimulation. A weak tactile stimulus applied to any appendage initiated a rapid rotation of abdominal segments. High-speed photography revealed that one cycle of defensive abdominal rotation was induced in an all-or-none fashion by bending single or multiple mechanosensory hairs on a leg or prodding the cuticular surface of appendages containing campaniform sensilla. The direction of the abdominal rotation completely depended on the side of stimulation; stimulation of a right appendage induced a right-handed rotation about the anterior-posterior axis of the pupal body and vice versa. The trajectories of the abdominal rotations had an ellipsoidal or pear-shaped pattern. Among the trajectory patterns of the rotations induced by stimulating different appendages, there were occasional significant differences in the horizontal (right-left) component of abdominal rotational movements. Simultaneous stimulation of right and left appendages often induced variable and complex patterns of abdominal movements, suggesting an interaction between sensory signals from different sides. When an abdominal rotation was induced in a freely lying pupa, the rotation usually made the pupa move away from or turn its dorsum toward the source of stimulation with the aid of the caudal processes (urogomphi), which served as a fulcrum for transmitting the power of the abdominal rotation to the movement or turning of the whole body. Pattern generation mechanisms for the abdominal rotation were discussed.
Wind Variability of B Supergiants. No. 2; The Two-component Stellar Wind of gamma Arae
NASA Technical Reports Server (NTRS)
Prinja, R. K.; Massa, D.; Fullerton, A. W.; Howarth, I. D.; Pontefract, M.
1996-01-01
The stellar wind of the rapidly rotating early-B supergiant, gamma Ara, is studied using time series, high-resolution IUE spectroscopy secured over approx. 6 days in 1993 March. Results are presented based on an analysis of several line species, including N(N), C(IV), Si(IV), Si(III), C(II), and Al(III). The wind of this star is grossly structured, with evidence for latitude-dependent mass loss which reflects the role of rapid rotation. Independent, co-existing time variable features are identified at low-velocity (redward of approx. -750 km/s) and at higher-speeds extending to approx. -1500 km/s. The interface between these structures is 'defined' by the appearance of a discrete absorption component which is extremely sharp (in velocity space). The central velocity of this 'Super DAC' changes only gradually, over several days, between approx. -400 and -750 km/s in most of the ions. However, its location is shifted redward by almost 400 km/s in Al(III) and C(II), indicating that the physical structure giving rise to this feature has a substantial velocity and ionization jump. Constraints on the relative ionization properties of the wind structures are discussed, together with results based on SEI line-profile-fitting methods. The overall wind activity in gamma Ara exhibits a clear ion dependence, such that low-speed features are promoted in low-ionization species, including Al(III), C(II), and Si(III). We also highlight that - in contrast to most OB stars - there are substantial differences in the epoch-to-epoch time-averaged wind profiles of gamma Ara. We interpret the results in terms of a two-component wind model for gamma Ara, with an equatorially compressed low ionization region, and a high speed, higher-ionization polar outflow. This picture is discussed in the context of the predicted bi-stability mechanism for line-driven winds in rapidly rotating early-B type stars, and the formation of compressed wind regions in rapidly rotating hot stars. The apparent absence of a substantial shift in the wind ionization mixture of gamma Ara, and the normal nature of its photospheric spectrum, suggests wind-compression as the likely dominant cause for the observed equatorial density enhancements.
Servomotor and Controller Having Large Dynamic Range
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.; Dutton, Ken; Paulson, M. Scott
2007-01-01
A recently developed micro-commanding rotational-position-control system offers advantages of less mechanical complexity, less susceptibility to mechanical resonances, less power demand, less bulk, less weight, and lower cost, relative to prior rotational-position-control systems based on stepping motors and gear drives. This system includes a digital-signal- processor (DSP)-based electronic controller, plus a shaft-angle resolver and a servomotor mounted on the same shaft. Heretofore, micro-stepping has usually been associated with stepping motors, but in this system, the servomotor is micro-commanded in response to rotational-position feedback from the shaft-angle resolver. The shaft-angle resolver is of a four-speed type chosen because it affords four times the resolution of a single-speed resolver. A key innovative aspect of this system is its position-feedback signal- conditioning circuits, which condition the resolver output signal for multiple ranges of rotational speed. In the preferred version of the system, two rotational- speed ranges are included, but any number of ranges could be added to expand the speed range or increase resolution in particular ranges. In the preferred version, the resolver output is conditioned with two resolver-to-digital converters (RDCs). One RDC is used for speeds from 0.00012 to 2.5 rpm; the other RDC is used for speeds of 2.5 to 6,000 rpm. For the lower speed range, the number of discrete steps of RDC output per revolution was set at 262,144 (4 quadrants at 16 bits per quadrant). For the higher speed range, the number of discrete steps per revolution was set at 4,096 (4 quadrants at 10 bits per quadrant).
A hybrid approach to fault diagnosis of roller bearings under variable speed conditions
NASA Astrophysics Data System (ADS)
Wang, Yanxue; Yang, Lin; Xiang, Jiawei; Yang, Jianwei; He, Shuilong
2017-12-01
Rolling element bearings are one of the main elements in rotating machines, whose failure may lead to a fatal breakdown and significant economic losses. Conventional vibration-based diagnostic methods are based on the stationary assumption, thus they are not applicable to the diagnosis of bearings working under varying speeds. This constraint limits the bearing diagnosis to the industrial application significantly. A hybrid approach to fault diagnosis of roller bearings under variable speed conditions is proposed in this work, based on computed order tracking (COT) and variational mode decomposition (VMD)-based time frequency representation (VTFR). COT is utilized to resample the non-stationary vibration signal in the angular domain, while VMD is used to decompose the resampled signal into a number of band-limited intrinsic mode functions (BLIMFs). A VTFR is then constructed based on the estimated instantaneous frequency and instantaneous amplitude of each BLIMF. Moreover, the Gini index and time-frequency kurtosis are both proposed to quantitatively measure the sparsity and concentration measurement of time-frequency representation, respectively. The effectiveness of the VTFR for extracting nonlinear components has been verified by a bat signal. Results of this numerical simulation also show the sparsity and concentration of the VTFR are better than those of short-time Fourier transform, continuous wavelet transform, Hilbert-Huang transform and Wigner-Ville distribution techniques. Several experimental results have further demonstrated that the proposed method can well detect bearing faults under variable speed conditions.
1983-01-01
concentration, poten- tial sweep rate, rotation speed, deposition potential and other parameters -on the shape and height of the stripping peaks have...concentration, potential sweep rate, rotation speed, deposition potential and other parameters on the shape and height of the stripping peaks have been...of the greater surface area of a solid electrode compared to a dropping mercury electrode. Cathodic stripping voltametry at a rotating silver disk
Presas, Alexandre; Egusquiza, Eduard; Valero, Carme; Valentin, David; Seidel, Ulrich
2014-01-01
In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids—air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction. PMID:25004151
Contamination of the turbine air chamber: a risk of cross infection.
Checchi, L; Montebugnoli, L; Samaritani, S
1998-08-01
In the present work, we evaluated (a) the influx of contaminating fluid into the air chamber when a high-speed turbine stops rotating, (b) the significance of a series of variables (type of handpiece and dental unit, shape of the bur, number of stops set on the turbine) which condition it, and (c) the time required to expel the contaminating fluid from the turbine head. Results showed that contamination takes place every time the turbine stops rotating with the bur in contact with an external fluid. The main variable affecting the influx of contaminating fluid into the air chamber of the turbine head was represented by the shape of the bur (F=54.9; p<0.01). Another significant variable was the type of handpiece and dental unit (F=7.3; p<0.01). The number of stops set on the turbine was irrelevant (F=0.03; p=n.s.). The expulsion of the contaminant from the turbine head showed 2 different exponential rates: a very rapid-elimination phase within 30 s and a slow-elimination phase between 60 and 300 s. In order to remove over 99% of the contaminant from the air chamber, a turbine had to run for more than 4-7 min depending on the type of the handpiece. In conclusion, data from the present study suggest that a significant cross-infection potential exists with high-speed handpieces whenever they are only externally scrubbed and disinfected so the internal cleaning and sterilization between patients is mandatory. The practice of flushing by running the turbines between patients should be discouraged.
Pan, Li; Cao, Jujiang; Liu, Min; Fu, Weiwei
2017-11-30
High speed data transmission rotating connector system for signal high-speed transmission used in the fixed end and rotating end, it is one of the core component in the CT system. This paper involves structure design and analysis of the retaining ring in the CT high speed data transmission rotating connector system based on the principle of off-axis free space optical transmission. According to the problem of the actual engineering application of space limitations, optical fiber fixed and collimator installation location, we designed the structure of the retaining ring. Using the static analysis function of ANSYS Workbench, it verifies rationality and safety of the strength of retaining ring structure. And based on modal analysis function of ANSYS Workbench, it evaluates the effect of the retaining ring on the stability of the system date transmission, and provides theoretical basis for the feasibility of the structure in practical application.
Fermentation of Acid-pretreated Corn Stover to Ethanol Without Detoxification Using Pichia stipitis
NASA Astrophysics Data System (ADS)
Agbogbo, Frank K.; Haagensen, Frank D.; Milam, David; Wenger, Kevin S.
In this work, the effect of adaptation on P. stipitis fermentation using acidpretreated corn stover hydrolyzates without detoxification was examined. Two different types of adaptation were employed, liquid hydrolyzate and solid state agar adaptation. Fermentation of 12.5% total solids undetoxified acid-pretreated corn stover was performed in shake flasks at different rotation speeds. At low rotation speed (100 rpm), both liquid hydrolyzate and solid agar adaptation highly improved the sugar consumption rate as well as ethanol production rate compared to the wild-type strains. The fermentation rate was higher for solid agar-adapted strains compared to liquid hydrolyzate-adapted strains. At a higher rotation speed (150 rpm), there was a faster sugar consumption and ethanol production for both the liquid-adapted and the wild-type strains. However, improvements in the fermentation rate between the liquid-adapted and wild strains were less pronounced at the high rotation speed.
Nonlinear effects in a plain journal bearing. I - Analytical study. II - Results
NASA Technical Reports Server (NTRS)
Choy, F. K.; Braun, M. J.; Hu, Y.
1991-01-01
In the first part of this work, a numerical model is presented which couples the variable-property Reynolds equation with a rotor-dynamics model for the calculation of a plain journal bearing's nonlinear characteristics when working with a cryogenic fluid, LOX. The effects of load on the linear/nonlinear plain journal bearing characteristics are analyzed and presented in a parametric form. The second part of this work presents numerical results obtained for specific parametric-study input variables (lubricant inlet temperature, external load, angular rotational speed, and axial misalignment). Attention is given to the interrelations between pressure profiles and bearing linear and nonlinear characteristics.
Dynamically stable magnetic suspension/bearing system
Post, R.F.
1996-02-27
A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw`s Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements. 32 figs.
Dynamically stable magnetic suspension/bearing system
Post, Richard F.
1996-01-01
A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw's Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements.
The crack effect on instability in a machine tool spindle with gas bearings
NASA Astrophysics Data System (ADS)
Huang, Bo-Wun
2005-09-01
Gas-bearing spindles are required for increased spindle speed in precise machining. Due to manufacturing flaws or cyclic loading, cracks frequently appear in a rotating spindle systems. Cracks markedly affect the dynamic characteristics of rotating machinery. Hence, in this study, high-speed spindles with gas bearings and the crack effect on the instability dynamics are considered. Most investigations on dynamic characteristics of the spindle system were confined to ball-bearing-type spindles. This work examines the dynamic instability in a cracked rotating spindle system with gas bearings. A round Euler-Bernoulli beam is used to approximate the spindle. The Hamilton principle is applied to derive the equation of motion for the spindle system. The effects of crack depth, rotation speed and provided air pressure on the dynamic instability of a rotating spindle system are studied
Effect of rotation speed and welding speed on Friction Stir Welding of AA1100 Aluminium alloy
NASA Astrophysics Data System (ADS)
Raja, P.; Bojanampati, S.; Karthikeyan, R.; Ganithi, R.
2018-04-01
Aluminum AA1100 is the most widely used grade of Aluminium due to its excellent corrosion resistance, high ductility and reflective finish, the selected material was welded with Friction Stir Welding (FSW) process on a CNC machine, using a combination of different tool rotation speed (1500 rpm, 2500 rpm, 3500 rpm) and welding speed (10 mm/min, 30 mm/min, 50 mm/min) as welding parameters. The effect of FSW using this welding parameter was studied by measuring the ultimate tensile strength of the welded joints. A high-speed steel tool was prepared for welding the Aluminium AA1100 alloy having an 8mm shoulder diameter and pin dimension of 4mm diameter and 2.8 mm length. The welded joints were tested using the universal testing machine. It was found that Ultimate Tensile Strength of FSW specimen was highest with a value of 98.08 MPa when the weld was performed at rotation speed of 1500 RPM and welding speed of 50 mm/min.
Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi
2013-06-21
A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well.
Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi
2013-01-01
A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well. PMID:23793021
Tateuchi, Hiroshige; Koyama, Yumiko; Akiyama, Haruhiko; Goto, Koji; So, Kazutaka; Kuroda, Yutaka; Ichihashi, Noriaki
2016-09-01
A decline in physical function associated with secondary hip osteoarthritis (OA) may be caused by both radiographic and clinical factors; however, the underlying mechanism remains unclear. The purpose of this study was to determine how joint degeneration, hip morphology, pain, hip range of motion (ROM), and hip muscle strength relate to one-leg standing (OLS) and gait in patients with mild-to-moderate secondary hip osteoarthritis. Fifty-five female patients (ages 22-65 years) with mild-to-moderate hip OA secondary to hip dysplasia were consecutively enrolled. Balance during OLS and three-dimensional hip angle changes while maintaining the OLS and at foot-off of the raised leg were measured. Gait speed and peak three-dimensional hip joint angles during gait were also measured. The associations between dependent variables (balance, gait speed, and hip kinematic changes) and independent variables (age, body mass index, pain, joint degeneration, hip morphologic abnormality, passive hip ROM, and hip muscle strength) were determined. While lower hip muscle strength was associated with hip kinematic changes such as flexion and internal rotation while maintaining OLS, decreased acetabular head index (AHI) and increased pain were associated with hip extension and abduction at foot-off in OLS. Decreased passive hip ROM was associated with decreased peak hip angles (extension, adduction, and external and internal rotation) during gait, although increased pain and decreased hip extension muscle strength were associated with slower gait speed. In this study of patients with secondary hip OA, AHI, pain, and hip impairments were associated with OLS and gait independently from age and radiographic degeneration. Copyright © 2016 Elsevier B.V. All rights reserved.
Professor Jesse W. Beams and the first practical magnetic suspension
NASA Technical Reports Server (NTRS)
Allaire, P. E.; Humphris, R. R.; Lewis, D. W.
1992-01-01
Dr. Jesse W. Beams developed the first practical magnetic suspension for high speed rotating devices. The devices included high speed rotating mirrors, ultracentrifuges, and high speed centrifugal field rotors. A brief biography of Dr. Beams is presented, and the following topics are discussed: (1) early axial magnetic suspension for ultracentrifuges; and (2) magnetic suspension for high centrifugal fields.
A system for comparison of boring parameters of mini-HDD machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunsaulis, F.R.
A system has been developed to accurately evaluate changes in performance of a mini-horizontal directional drilling (HDD) system in the backreaming/pullback portion of a bore as the parameters influencing the backream are changed. Parameters incorporated in the study include spindle rotation rate, rate of pull, fluid flow rate, and backreamer design. The boring system is able to run at variable, operator-determined rates of spindle rotation and pullback speed utilizing electronic feedback controls for regulation. Spindle torque and pullback force are continuously measured and recorded giving an indication of the performance of the unit. A method has also been developed tomore » measure the pull load on the installed service line to determine the effect of the boring parameters on the service line. Variability of soil along the bore path is measured and quantified using a soil sampling system developed for the study. Sample results obtained with the system are included in the report. 2 refs., 5 figs., 2 tabs.« less
Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions
NASA Astrophysics Data System (ADS)
Chen, Liqiang; Wang, Jianjun; Han, Qinkai; Chu, Fulei
2017-09-01
Rotor systems carried in transportation system or under seismic excitations are considered to have a moving base. To study the dynamic behavior of flexible rotor systems subjected to time-variable base motions, a general model is developed based on finite element method and Lagrange's equation. Two groups of Euler angles are defined to describe the rotation of the rotor with respect to the base and that of the base with respect to the ground. It is found that the base rotations would cause nonlinearities in the model. To verify the proposed model, a novel test rig which could simulate the base angular-movement is designed. Dynamic experiments on a flexible rotor-bearing system with base angular motions are carried out. Based upon these, numerical simulations are conducted to further study the dynamic response of the flexible rotor under harmonic angular base motions. The effects of base angular amplitude, rotating speed and base frequency on response behaviors are discussed by means of FFT, waterfall, frequency response curve and orbits of the rotor. The FFT and waterfall plots of the disk horizontal and vertical vibrations are marked with multiplications of the base frequency and sum and difference tones of the rotating frequency and the base frequency. Their amplitudes will increase remarkably when they meet the whirling frequencies of the rotor system.
Origin of the Earth's Electromagnetic Field Based on the Pulsating Mantle Hypothesis (PMH)
NASA Astrophysics Data System (ADS)
Gholibeigian, Hassan
2017-11-01
In PMH, the Earth's Inner Core's Dislocation (ICD) and Outer Core's Bulge (OCB) phenomena are generated by unbalanced gravitational fields of the Sun and Moon on the Earth. Distance between the Earth's center and inner core's center varies permanently in magnitude and direction inside two hemispheres. Geometrical loci of the inner core's center has the shape of back and force spiral cone in each hemisphere. In other words, the inner core is rotating fast in the outer core inverse of the Earth's rotation a round per day. This mechanism speed up the processes inside the core and generates a Large Scale Forced Convection System (LSFCS) inverse of the Earth's rotation in the core. The LSFCS is the origin of the Earth's electromagnetic field. The LSFCS generates huge mass transfer and momentum of inertia inside the Earth too. The inner core's axis which is the Earth's electromagnetic axis doesn't cross the Earth's geophysical axis and rotates around it per day. The mechanism of this LSFCS has diurnal, monthly and yearly cycles. These cycles are sources of the Earth's electromagnetic field variability. Direction of the variable Earth's magnetic field lines from the South Pole (hemisphere) to the sky and 146 seconds/years apparent solar day length variations can be two observable factors for this mechanism. This dynamic system may occurred inside the other planets like the Sun and the Jupiter.
NASA Technical Reports Server (NTRS)
Converse, David
2011-01-01
Fan designs are often constrained by envelope, rotational speed, weight, and power. Aerodynamic performance and motor electrical performance are heavily influenced by rotational speed. The fan used in this work is at a practical limit for rotational speed due to motor performance characteristics, and there is no more space available in the packaging for a larger fan. The pressure rise requirements keep growing. The way to ordinarily accommodate a higher DP is to spin faster or grow the fan rotor diameter. The invention is to put two radially oriented stages on a single disk. Flow enters the first stage from the center; energy is imparted to the flow in the first stage blades, the flow is redirected some amount opposite to the direction of rotation in the fixed stators, and more energy is imparted to the flow in the second- stage blades. Without increasing either rotational speed or disk diameter, it is believed that as much as 50 percent more DP can be achieved with this design than with an ordinary, single-stage centrifugal design. This invention is useful primarily for fans having relatively low flow rates with relatively high pressure rise requirements.
Small Scale High Speed Turbomachinery
NASA Technical Reports Server (NTRS)
London, Adam P. (Inventor); Droppers, Lloyd J. (Inventor); Lehman, Matthew K. (Inventor); Mehra, Amitav (Inventor)
2015-01-01
A small scale, high speed turbomachine is described, as well as a process for manufacturing the turbomachine. The turbomachine is manufactured by diffusion bonding stacked sheets of metal foil, each of which has been pre-formed to correspond to a cross section of the turbomachine structure. The turbomachines include rotating elements as well as static structures. Using this process, turbomachines may be manufactured with rotating elements that have outer diameters of less than four inches in size, and/or blading heights of less than 0.1 inches. The rotating elements of the turbomachines are capable of rotating at speeds in excess of 150 feet per second. In addition, cooling features may be added internally to blading to facilitate cooling in high temperature operations.
Think spatial: the representation in mental rotation is nonvisual.
Liesefeld, Heinrich R; Zimmer, Hubert D
2013-01-01
For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information influences rotational speed, one can infer that it was contained in the rotated representation. In Experiment 1, rotational speed of university students (10 men, 11 women) was found to be influenced exclusively by the amount of represented orientation-dependent spatial-relational information but not by orientation-independent spatial-relational information, visual complexity, or the number of stimulus parts. As information in mental-rotation tasks is initially presented visually, this finding implies that at some point during each trial, orientation-dependent information is extracted from visual information. Searching for more direct evidence for this extraction, we recorded the EEG of another sample of university students (12 men, 12 women) during mental rotation of the same stimuli. In an early time window, the observed working memory load-dependent slow potentials were sensitive to the stimuli's visual complexity. Later, in contrast, slow potentials were sensitive to the amount of orientation-dependent information only. We conclude that only orientation-dependent information is contained in the rotated representation. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
ERIC Educational Resources Information Center
Jansen-Osmann, Petra; Heil, Martin
2007-01-01
Gender differences in speed of perceptual comparison, of picture-plane mental rotation, and in switching costs between trials that do and do not require mental rotation, were investigated as a function of stimulus material with a total sample size of N=360. Alphanumeric characters, PMA symbols, animal drawings, polygons and 3D cube figures were…
Performance of Simple Gas Foil Thrust Bearings in Air
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.
2012-01-01
Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In this case, the load capacity is constant and in fact often decreases with speed if other factors such as thermal conditions and runner distortions are permitted to dominate the bearing performance.
NASA Astrophysics Data System (ADS)
Murugan, Balamagendiravarman; Thirunavukarasu, Gopinath; Kundu, Sukumar; Kailas, Satish V.; Chatterjee, Subrata
2018-05-01
In the present investigation, friction stir welding of commercially pure aluminum and 304 stainless steel was carried out at varying tool rotational speeds from 200 to 1000 rpm in steps of 200 rpm using 60 mm/min traverse speed at 2 (degree) tool tilt angle. Microstructural characterization of the interfacial zone was carried out using optical microscope and scanning electron microscope. Energy-dispersive spectroscopy indicated the presence of FeAl3 intermetallic phase. Thickness of the intermetallic layer increased with the increase in tool rotational speed. X-ray diffraction studies indicated the formation of intermetallic phases like FeAl2, Fe4Al13, Fe2Al5, and FeAl3. A maximum tensile strength of 90% that of aluminum along with 4.5% elongation was achieved with the welded sample at tool rotational speed of 400 rpm. The stir zone showed higher hardness as compared to base metals, heat affected zone, and thermo-mechanically affected zone due to the presence of intermetallics. The maximum hardness value at the stir zone was achieved at 1000 rpm tool rotational speed.
Measurement of Rotating Blade Tip Clearance with Fibre-Optic Probe
NASA Astrophysics Data System (ADS)
Cao, S. Z.; Duan, F. J.; Zhang, Y. G.
2006-10-01
This paper described a tip clearance measuring system with fibre-optic probe. The system is based on a novel tip clearance sensor of optical fibre-bundle mounted on the casing, rotating speed synchronization sensor mounted on the rotating shaft, the tip clearance preamplification processing circuit followed by high speed data-acquisition unit. A novel tip clearance sensor of trifurcated optical fibre bundle was proposed and demonstrated. It is independent of material of measured surface but capacitive probe demands target conductive. Measurements can be taken under severe conditions such as ionization. Sensor circuitry and data acquisition circuit were successfully designed. With the help of Rotation synchronized sensor, all the blades can be detected in real-time. Because of fibre-optic sensor, the measuring system has commendably frequency response, which can work well in high rotating speed from 0-15000rpm.The measurement range of tip clearance is 0-3mm with 25um precision.
Hanson, Thomas F.
1982-01-01
A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling combination apparatus of the invention. A reading of the complete specification is recommended for a full understanding of the principles and features of the disclosed system.
Note: A kinematic shaker system for high amplitude, low frequency vibration testing
NASA Astrophysics Data System (ADS)
Swaminathan, Anand; Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.
2015-11-01
This note describes a shaker system capable of high peak-velocity, large amplitude, low frequency, near-sinusoidal excitation that has been constructed and employed in experiments on the inhibition of Rayleigh-Bénard convection using acceleration modulation. The production of high peak-velocity vibration is of interest in parametric excitation problems of this type and reaches beyond the capabilities of standard electromagnetic shakers. The shaker system described employs a kinematic linkage to two counter-rotating flywheels, driven by a variable-speed electrical motor, producing peak-to-peak displacements of 15.24 cm to a platform mounted on two guide rails. In operation, this shaker has been demonstrated to produce peak speeds of up to 3.7 m/s without failure.
Swimming Speed of The Breaststroke Kick
Strzała, Marek; Krężałek, Piotr; Kaca, Marcin; Głąb, Grzegorz; Ostrowski, Andrzej; Stanula, Arkadiusz; Tyka, Aleksander
2012-01-01
The breaststroke kick is responsible for a considerable portion of the forward propulsion in breaststroke swimming. The aim of this study was to measure selected anthropometric variables and functional properties of a swimmer’s body: length of body parts; functional range of motion in the leg joints and anaerobic power of the lower limbs. Chosen kinematic variables useful in the evaluation of swimming performance in the breaststroke kick were evaluated. In the present research, swimming speed using breaststroke kicks depended to the largest extent on anaerobic endurance (0.46, p < 0.05 partial correlations with age control). In addition, knee external rotation and swimming technique index had an impact on swimming speed and kick length (both partial correlations with age control 0.35, p < 0.08). A kinematic analysis of the breaststroke kick hip displacement compatible with horizontal body displacement was significantly negatively correlated with foot slip in the water opposite to body displacement (partial correlations: with leg length control −0.43, p < 0.05; with shank length control −0.45, p < 0.05, respectively). Present research and measurements of selected body properties, physical endurance and kinematic movement analysis may help in making a precise determination of an athlete’s talent for breaststroke swimming. PMID:23486737
Measurement of Flow Pattern Within a Rotating Stall Cell in an Axial Compressor
NASA Technical Reports Server (NTRS)
Lepicovsky, Jan; Braunscheidel, Edward P.
2006-01-01
Effective active control of rotating stall in axial compressors requires detailed understanding of flow instabilities associated with this compressor regime. Newly designed miniature high frequency response total and static pressure probes as well as commercial thermoanemometric probes are suitable tools for this task. However, during the rotating stall cycle the probes are subjected to flow direction changes that are far larger than the range of probe incidence acceptance, and therefore probe data without a proper correction would misrepresent unsteady variations of flow parameters. A methodology, based on ensemble averaging, is proposed to circumvent this problem. In this approach the ensemble averaged signals acquired for various probe setting angles are segmented, and only the sections for probe setting angles close to the actual flow angle are used for signal recombination. The methodology was verified by excellent agreement between velocity distributions obtained from pressure probe data, and data measured with thermoanemometric probes. Vector plots of unsteady flow behavior during the rotating stall regime indicate reversed flow within the rotating stall cell that spreads over to adjacent rotor blade channels. Results of this study confirmed that the NASA Low Speed Axial Compressor (LSAC) while in a rotating stall regime at rotor design speed exhibits one stall cell that rotates at a speed equal to 50.6 percent of the rotor shaft speed.
NASA Astrophysics Data System (ADS)
Kumar, K. S. Anil; Murigendrappa, S. M.; Kumar, Hemantha; Shekhar, Himanshu
2018-04-01
Friction stir welding (FSW) dissimilar joints of aluminium alloys of 2024-T351 and 7075-T651 were produced by reinforcing silicon carbide nano particle (SiCNP) in the rectangular cut groove made on the adjoining surface of the two dissimilar alloy plates joined in the butt configuration. A FSW tool of taper threaded cylindrical shape is used for producing the FSW dissimilar joints reinforced with SiCNP in the weld nugget zone (WNZ) and to produce metal matrix nano composite (MMNC) at the WNZ. In the experimental investigation, the constant FSW tool traverse speed of 40 mm/min and tool plunge depth of 6.2 mm/min is kept as constant, while the FSW tool rotation speed was varied from 400 rpm to 1800 rpm. The effect continuous varying tool rotation speed range from 400 rpm to 1800 rpm along the weld length and on the distribution of SiCNP in WNZ is analysed by conducting macro and microstructure study using optical microscopy (OM) and scanning electron microscopy (SEM) provided with energy dispersive spectrometry (EDS). In the experimental investigation, the combination of continuous varying FSW tool rotation speed range from 900rpm to 1150 rpm, constant tool traverse speed range 40 mm/min and tool plunge depth of 6.2 mm results in defect free, proper distribution of SiCNP and highest tensile properties for the FSW dissimilar joints. The highest ultimate tensile strength (UTS) of 380 MPa and yield strength (YS) of 150 MPa was observed for the combination of FSW tool rotation speed of 1000 rpm and tool traverse speed of 40 mm/min. The increasing in FSW tool rotation speed above 1250 rpm results in non homogeneous distribution of SiCNP in WNZ, excessive flash in the weld crown area and shows decreasing tendency in the tensile properties of the FSW dissimilar weld joints produced with reinforcing the SiCNP in the WNZ.
Biocentrifuge system capable of exchanging specimen cages while in operational mode
NASA Technical Reports Server (NTRS)
Belew, R. R. (Inventor)
1981-01-01
The centrifuge comprises a generally circular, rotatably mounted frame carrying a plurality of removable and replaceable cages for the animal specimens. Pairs of opposing cages may be removed from the frame while it is rotating by means of a cage exchanger which rotates concentrically within the centrifuge and the speed of which is controlled independently of the frame speed. An image rotator is provided for selective observation of the rotating animals. The system further includes a waste conveyor system, a food supply system, and a water supply system for each cage for creating a life sustaining environment so that the animals can live in the rotating centrifuge for extended periods.
NASA Astrophysics Data System (ADS)
Chand, Suresh; Vineetha, S.; Madhusudhan, D.; Sai Krishna, CH; Kusuma Devi, G.; Bhawani; Hemarao, K.; Ganesh Naidu, G.
2018-03-01
The plate of 7.0 mm thickness was double side welded using friction stir welding is investigated. The rotational velocity of friction stir welding tool is used 1400 rpm. The influence of welding speed on the microstructure and microhardness values of Al-0.84Mg-0.69Si-0.76Fe aluminum alloy is presented. Two welding speeds 25 mm/min and 31.5 mm/min are used. The microhardness values of friction stir weld are measured at various locations from the weld interface. The microhardness values in stir zone of weld are found larger than lower welding speed at constant rotational velocity of 1400 rpm of friction stir welding tool. The similar effects on microhardness values are found in the thermo-mechanically affected zone and heat affected zone. The fine microstructure is observed at 31.5 mm/min welding speed compared to the 25 mm/min welding speed at 1400 rpm.
Motion-induced eddy current thermography for high-speed inspection
NASA Astrophysics Data System (ADS)
Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian
2017-08-01
This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.
Yes, it turns: experimental evidence of pearl rotation during its formation.
Gueguen, Yannick; Czorlich, Yann; Mastail, Max; Le Tohic, Bruno; Defay, Didier; Lyonnard, Pierre; Marigliano, Damien; Gauthier, Jean-Pierre; Bari, Hubert; Lo, Cedrik; Chabrier, Sébastien; Le Moullac, Gilles
2015-07-01
Cultured pearls are human creations formed by inserting a nucleus and a small piece of mantle tissue into a living shelled mollusc, usually a pearl oyster. Although many pearl observations intuitively suggest a possible rotation of the nucleated pearl inside the oyster, no experimental demonstration of such a movement has ever been done. This can be explained by the difficulty of observation of such a phenomenon in the tissues of a living animal. To investigate this question of pearl rotation, a magnetometer system was specifically engineered to register magnetic field variations with magnetic sensors from movements of a magnetic nucleus inserted in the pearl oyster. We demonstrated that a continuous movement of the nucleus inside the oyster starts after a minimum of 40 days post-grafting and continues until the pearl harvest. We measured a mean angular speed of 1.27° min(-1) calculated for four different oysters. Rotation variability was observed among oysters and may be correlated to pearl shape and defects. Nature's ability to generate so amazingly complex structures like a pearl has delivered one of its secrets.
Yes, it turns: experimental evidence of pearl rotation during its formation
Gueguen, Yannick; Czorlich, Yann; Mastail, Max; Le Tohic, Bruno; Defay, Didier; Lyonnard, Pierre; Marigliano, Damien; Gauthier, Jean-Pierre; Bari, Hubert; Lo, Cedrik; Chabrier, Sébastien; Le Moullac, Gilles
2015-01-01
Cultured pearls are human creations formed by inserting a nucleus and a small piece of mantle tissue into a living shelled mollusc, usually a pearl oyster. Although many pearl observations intuitively suggest a possible rotation of the nucleated pearl inside the oyster, no experimental demonstration of such a movement has ever been done. This can be explained by the difficulty of observation of such a phenomenon in the tissues of a living animal. To investigate this question of pearl rotation, a magnetometer system was specifically engineered to register magnetic field variations with magnetic sensors from movements of a magnetic nucleus inserted in the pearl oyster. We demonstrated that a continuous movement of the nucleus inside the oyster starts after a minimum of 40 days post-grafting and continues until the pearl harvest. We measured a mean angular speed of 1.27° min−1 calculated for four different oysters. Rotation variability was observed among oysters and may be correlated to pearl shape and defects. Nature's ability to generate so amazingly complex structures like a pearl has delivered one of its secrets. PMID:26587271
NASA Astrophysics Data System (ADS)
Li, Zhengwei; Gao, Shuangsheng; Ji, Shude; Yue, Yumei; Chai, Peng
2016-04-01
Refill friction stir spot welding (RFSSW) was successfully used to weld alclad 2024 aluminum alloy with different thicknesses. Effects of tool rotational speed on the weld formation, microstructure, and mechanical properties of the RFSSW welds were mainly discussed. Results show that keyhole is successfully refilled and welding defects such as flash, annular groove, and material adhesion can be observed. A bright contrast bonding ligament is found embedded in the weld and it is thicker in the center. Defects of hook, void, lack of mixing, and incomplete refilling can be found at the thermo-mechanically affected zone/stir zone (TMAZ/SZ) interface, which can be attributed to weak metallurgical bonding effect. With increasing the tool rotational speed, thickness of the bonding ligament decreases, grains in the SZ coarsen, hardness of the SZ decreases, and lap shear load of the welds decreases. When changing the rotating speed, impact strength shows rather complicated variation trend.
Cui, Zhumei; Chen, Yeming; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei
2014-02-19
The adsorption of heat-denatured soy proteins at the oil/water (O/W) interface during emulsification was studied. Protein samples were prepared by heating protein solutions at concentrations of 1-5% (w/v) and were then diluted to 0.3% (w/v). The results showed that soy proteins that had been heated at higher concentrations generated smaller droplet size of emulsion. Increase in homogenizer rotating speed resulted in higher protein adsorption percentages and lower surface loads at the O/W interface. Surface loads for both unheated and heated soy proteins were linearly correlated with the unadsorbed proteins' equilibrium concentration at various rotating speeds. With the rise in NaCl addition level, protein adsorption percentage and surface loads of emulsions increased, whereas lower droplet sizes were obtained at the ionic strength of 0.1 M. The aggregates and non-aggregates displayed different adsorption behaviors when rotating speed or NaCl concentration was varied.
The Inhomogeneous Waves in a Rotating Piezoelectric Body
Chen, Si
2013-01-01
This paper presents the analysis and numerical results of rotation, propagation angle, and attenuation angle upon the waves propagating in the piezoelectric body. Via considering the centripetal and Coriolis accelerations in the piezoelectric equations with respect to a rotating frame of reference, wave velocities and attenuations are derived and plotted graphically. It is demonstrated that rotation speed vector can affect wave velocities and make the piezoelectric body behaves as if it was damping. Besides, the effects of propagation angle and attenuation angle are presented. Critical point is found when rotation speed is equal to wave frequency, around which wave characteristics change drastically. PMID:24298219
Brunson, G.S. Jr.
1961-04-01
A two-speed device is described comprising a two-part stop engageable with a follower. The two-pant stop comprises first and second members in threaded engagement with each other. The first member is restrained against rotation but is free to move longitudinally, and the second member is free to move arially and rotatively. Means are provided to impart rotation to the second member. The follower is engageable first with an end of one member and then with the corresponding end of the other member after some relative longitudinal movement of the members with respect to one another due to the rotation of the second member and the holding of the first member against rotation.
NASA Astrophysics Data System (ADS)
Kesler, Steven R.
The lifting line theory was first developed by Prandtl and was used primarily on analysis of airplane wings. Though the theory is about one hundred years old, it is still used in the initial calculations to find the lift of a wing. The question that guided this thesis was, "How close does Prandtl's lifting line theory predict the thrust of a propeller?" In order to answer this question, an experiment was designed that measured the thrust of a propeller for different speeds. The measured thrust was compared to what the theory predicted. In order to do this experiment and analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen that had a 1.30 meter (51 inches) length from tip to tip. In this thesis, Prandtl's lifting line theory was modified to account for the different incoming velocity depending on the radial position of the airfoil. A modified equation was used to reflect these differences. A working code was developed based on this modified equation. A testing rig was built that allowed the propeller to be rotated at high speeds while measuring the thrust. During testing, the rotational speed of the propeller ranged from 13-43 rotations per second. The thrust from the propeller was measured at different speeds and ranged from 16-33 Newton's. The test data were then compared to the theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results section) shows the theoretical vs. actual thrust for different rotational speeds. The theory over predicted the actual thrust of the propeller. Depending on the rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at high speeds the error increased to 195%. Different reasons for these errors are discussed.
Design principles of a rotating medium speed mechanism
NASA Technical Reports Server (NTRS)
Hostenkamp, R. G.; Achtermann, E.; Bentall, R. H.
1976-01-01
Design principles of a medium speed mechanism (MSM) are presented, including discussion on the relative merits of beryllium and aluminium as structural materials. Rotating at a speed of 60 rpm, the application envisaged for the MSM was as a despin bearing for the despun platform or despun antenna of a spin stabilized satellite. The MSM was built and tested to qualification level and is currently undergoing real time life testing.
Deformation and Life Analysis of Composite Flywheel Disk and Multi-disk Systems
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Saleeb, A. F.; AlZoubi, N. R.
2001-01-01
In this study an attempt is made to put into perspective the problem of a rotating disk, be it a single disk or a number of concentric disks forming a unit. An analytical model capable of performing an elastic stress analysis for single/multiple, annular/solid, anisotropic/isotropic disk systems, subjected to both pressure surface tractions, body forces (in the form of temperature-changes and rotation fields) and interfacial misfits is derived and discussed. Results of an extensive parametric study are presented to clearly define the key design variables and their associated influence. In general the important parameters were identified as misfit, mean radius, thickness, material property and/or load gradation, and speed; all of which must be simultaneously optimized to achieve the "best" and most reliable design. Also, the important issue of defining proper performance/merit indices (based on the specific stored energy), in the presence of multiaxiality and material anisotropy is addressed. These merit indices are then utilized to discuss the difference between flywheels made from PMC and TMC materials with either an annular or solid geometry. Finally two major aspects of failure analysis, that is the static and cyclic limit (burst) speeds are addressed. In the case of static limit loads, upper, lower, and out-of-plane bounds for disks with constant thickness are presented for both the case of internal pressure loading (as one would see in a hydroburst test) and pure rotation (as in the case of a free spinning disk). The results (interaction diagrams) are displayed graphically in designer friendly format. For the case of fatigue, a representative fatigue/life master curve is illustrated in which the normalized limit speed versus number of applied cycles is given for a cladded TMC disk application.
Control system for several rotating mirror camera synchronization operation
NASA Astrophysics Data System (ADS)
Liu, Ningwen; Wu, Yunfeng; Tan, Xianxiang; Lai, Guoji
1997-05-01
This paper introduces a single chip microcomputer control system for synchronization operation of several rotating mirror high-speed cameras. The system consists of four parts: the microcomputer control unit (including the synchronization part and precise measurement part and the time delay part), the shutter control unit, the motor driving unit and the high voltage pulse generator unit. The control system has been used to control the synchronization working process of the GSI cameras (driven by a motor) and FJZ-250 rotating mirror cameras (driven by a gas driven turbine). We have obtained the films of the same objective from different directions in different speed or in same speed.
Modeling torque versus speed, shot noise, and rotational diffusion of the bacterial flagellar motor.
Mora, Thierry; Yu, Howard; Wingreen, Ned S
2009-12-11
We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the "knee") is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions.
Equivalent background speed in recovery from motion adaptation.
Simpson, W A; Newman, A; Aasland, W
1997-01-01
We measured, in the same observers, (1) the detectability, d, of a small rotational jump following adaptation to rotational motion and (2) the detectability of the same jump when superimposed on one of several background rotation speeds. Following 90 s of motion adaptation the detectability of the jump was impaired, and sensitivity slowly recovered over the course of 60 s. The detectability of the jump was also impaired by the background speed in a way consistent with a quadratic form of Weber's law. We propose that motion adaptation impairs the detectability of the small jump because it is as if an equivalent background speed has been superimposed on the display. We measured the equivalent background by finding the real background speed that produced the same d' at each instant in the recovery from motion adaptation. The equivalent background started at approximately one to two thirds the speed of the adapting motion, declined rapidly, rose to a small peak at 30 s, then disappeared by 60 s. Since the equivalent background speed corresponds to the speed of the motion aftereffect, we have measured the time course of the motion aftereffect with objective psychophysics.
Computer program for design analysis of radial-inflow turbines
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1976-01-01
A computer program written in FORTRAN that may be used for the design analysis of radial-inflow turbines was documented. The following information is included: loss model (estimation of losses), the analysis equations, a description of the input and output data, the FORTRAN program listing and list of variables, and sample cases. The input design requirements include the power, mass flow rate, inlet temperature and pressure, and rotational speed. The program output data includes various diameters, efficiencies, temperatures, pressures, velocities, and flow angles for the appropriate calculation stations. The design variables include the stator-exit angle, rotor radius ratios, and rotor-exit tangential velocity distribution. The losses are determined by an internal loss model.
Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms
Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc
2014-01-01
Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping designs have been developed to study the pump performance and capacity at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data shows that, the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon. PMID:24441792
Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator
Bouallègue, Soufiene; Garrido, Aitor J.; Haggège, Joseph
2018-01-01
Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances. PMID:29695127
Multi-Layer Artificial Neural Networks Based MPPT-Pitch Angle Control of a Tidal Stream Generator.
Ghefiri, Khaoula; Bouallègue, Soufiene; Garrido, Izaskun; Garrido, Aitor J; Haggège, Joseph
2018-04-24
Artificial intelligence technologies are widely investigated as a promising technique for tackling complex and ill-defined problems. In this context, artificial neural networks methodology has been considered as an effective tool to handle renewable energy systems. Thereby, the use of Tidal Stream Generator (TSG) systems aim to provide clean and reliable electrical power. However, the power captured from tidal currents is highly disturbed due to the swell effect and the periodicity of the tidal current phenomenon. In order to improve the quality of the generated power, this paper focuses on the power smoothing control. For this purpose, a novel Artificial Neural Network (ANN) is investigated and implemented to provide the proper rotational speed reference and the blade pitch angle. The ANN supervisor adequately switches the system in variable speed and power limitation modes. In order to recover the maximum power from the tides, a rotational speed control is applied to the rotor side converter following the Maximum Power Point Tracking (MPPT) generated from the ANN block. In case of strong tidal currents, a pitch angle control is set based on the ANN approach to keep the system operating within safe limits. Two study cases were performed to test the performance of the output power. Simulation results demonstrate that the implemented control strategies achieve a smoothed generated power in the case of swell disturbances.
Rotor Noise due to Blade-Turbulence Interaction.
NASA Astrophysics Data System (ADS)
Ishimaru, Kiyoto
The time-averaged intensity density function of the acoustic radiation from rotating blades is derived by replacing blades with rotating dipoles. This derivation is done under the following turbulent inflow conditions: turbulent ingestion with no inlet strut wakes, inflow turbulence elongation and contraction with no inlet strut wakes, and inlet strut wakes. Dimensional analysis reveals two non-dimensional parameters which play important roles in generating the blade-passing frequency tone and its multiples. The elongation and contraction of inflow turbulence has a strong effect on the generation of the blade-passing frequency tone and its multiples. Increasing the number of rotor blades widens the peak at the blade-passing frequency and its multiples. Increasing the rotational speed widens the peak under the condition that the non-dimensional parameter involving the rotational speed is fixed. The number of struts and blades should be chosen so that (the least common multiple of them)(.)(rotational speed) is in the cutoff range of Sears' function, in order to minimize the effect of the mean flow deficit on the time averaged intensity density function. The acoustic intensity density function is not necessarily stationary even if the inflow turbulence is homogeneous and isotropic. The time variation of the propagation path due to the rotation should be considered in the computation of the intensity density function; for instance, in the present rotor specification, the rotor radius is about 0.3 m and the rotational speed Mach number is about 0.2.
Basic principles and recent observations of rotationally sampled wind
NASA Technical Reports Server (NTRS)
Connell, James R.
1995-01-01
The concept of rotationally sampled wind speed is described. The unusual wind characteristics that result from rotationally sampling the wind are shown first for early measurements made using an 8-point ring of anemometers on a vertical plane array of meteorological towers. Quantitative characterization of the rotationally sampled wind is made in terms of the power spectral density function of the wind speed. Verification of the importance of the new concept is demonstrated with spectral analyses of the response of the MOD-OA blade flapwise root bending moment and the corresponding rotational analysis of the wind measured immediately upwind of the MOD-OA using a 12-point ring of anemometers on a 7-tower vertical plane array. The Pacific Northwest Laboratory (PNL) theory of the rotationally sampled wind speed power spectral density function is tested successfully against the wind spectrum measured at the MOD-OA vertical plane array. A single-tower empirical model of the rotationally sampled wind speed is also successfully tested against the measurements from the full vertical plane array. Rotational measurements of the wind velocity with hotfilm anemometers attached to rotating blades are shown to be accurate and practical for research on winds at the blades of wind turbines. Some measurements at the rotor blade of a MOD-2 turbine using the hotfilm technique in a pilot research program are shown. They are compared and contrasted to the expectations based upon application of the PNL theory of rotationally sampled wind to the MOD-2 size and rotation rate but without teeter, blade bending, or rotor induction accounted for. Finally, the importance of temperature layering and of wind modifications due to flow over complex terrain is demonstrated by the use of hotfilm anemometer data, and meteorological tower and acoustic doppler sounder data from the MOD-2 site at Goodnoe Hills, Washington.
NASA Astrophysics Data System (ADS)
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2018-04-01
We rederive the equations of motion for relativistic strings, that is, one-dimensional elastic bodies whose internal energy depends only on their stretching, and use them to study circular string loops rotating in the equatorial plane of flat and black hole spacetimes. We start by obtaining the conditions for equilibrium, and find that: (i) if the string’s longitudinal speed of sound does not exceed the speed of light then its radius when rotating in Minkowski’s spacetime is always larger than its radius when at rest; (ii) in Minkowski’s spacetime, equilibria are linearly stable for rotation speeds below a certain threshold, higher than the string’s longitudinal speed of sound, and linearly unstable for some rotation speeds above it; (iii) equilibria are always linearly unstable in Schwarzschild’s spacetime. Moreover, we study interactions of a rotating string loop with a Kerr black hole, namely in the context of the weak cosmic censorship conjecture and the Penrose process. We find that: (i) elastic string loops that satisfy the null energy condition cannot overspin extremal black holes; (ii) elastic string loops that satisfy the dominant energy condition cannot increase the maximum efficiency of the usual particle Penrose process; (iii) if the dominant energy condition (but not the weak energy condition) is violated then the efficiency can be increased. This last result hints at the interesting possibility that the dominant energy condition may underlie the well known upper bounds for the efficiencies of energy extraction processes (including, for example, superradiance).
Everyone Deserves a Speeding Ticket.
ERIC Educational Resources Information Center
Burris, Harold
1993-01-01
Presents a first day physics activity having students determine the fine for a speeding ticket if the speeds considered include the earth's rotation and revolution speed, and the movement through the galaxy. (MDH)
78 FR 2198 - Airworthiness Directives; Turbomeca S.A. Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-10
... high GG speed (NG) rating vibration check. (f) Definition Level 3 maintenance on the GG rotating... performing a high gas generator speed (NG) rating vibration check. This AD was prompted by several reports of... bearing failures have occurred following ``Level 3'' maintenance actions on the GG rotating assembly. Some...
Nagai, Masahiro; Takakuda, Kazuo
2006-06-01
The influence of number of autoclave treatment cycles (N) on rotational speed and total indicated run-out of commercially available air-turbine handpieces from five manufacturers was investigated at N=0, 50, 100, 150, 200, 250 and 300 cycles, and the significance in the test results was assessed by Dunnett's multiple comparison test. Some air-turbine handpieces showed the significant differences in rotational speed at N=300 cycles, however, the decreases of the rotational speeds were only 1 to 3.5 percent. Some air-turbine handpieces showed the significant differences in total indicated run-out, however, the respective values were smaller than that at N=0 cycle. Accordingly, it can be considered that the ball bearing in the air-turbine handpieces is not affected significantly by autoclave. To further evaluate rotational performance, this study focused on the rotational vibration of the ball bearing components of the air-turbine, as measured by Fast Fourier Transform (FFT) analysis; the power spectra of frequency of the ball's revolution, frequency of the cage's rotation and frequency of the ball's rotation were comparatively investigated at N=0, 150 and 300 cycles, and the influence of autoclave was evaluated qualitatively. No abnormalities in the ball bearings were recognized.
Angular momentum transfer in primordial discs and the rotation of the first stars
NASA Astrophysics Data System (ADS)
Hirano, Shingo; Bromm, Volker
2018-05-01
We investigate the rotation velocity of the first stars by modelling the angular momentum transfer in the primordial accretion disc. Assessing the impact of magnetic braking, we consider the transition in angular momentum transport mode at the Alfvén radius, from the dynamically dominated free-fall accretion to the magnetically dominated solid-body one. The accreting protostar at the centre of the primordial star-forming cloud rotates with close to breakup speed in the case without magnetic fields. Considering a physically motivated model for small-scale turbulent dynamo amplification, we find that stellar rotation speed quickly declines if a large fraction of the initial turbulent energy is converted to magnetic energy (≳ 0.14). Alternatively, if the dynamo process were inefficient, for amplification due to flux freezing, stars would become slow rotators if the pre-galactic magnetic field strength is above a critical value, ≃10-8.2 G, evaluated at a scale of nH = 1 cm-3, which is significantly higher than plausible cosmological seed values (˜10-15 G). Because of the rapid decline of the stellar rotational speed over a narrow range in model parameters, the first stars encounter a bimodal fate: rapid rotation at almost the breakup level, or the near absence of any rotation.
Design and Implementation of Hybrid CORDIC Algorithm Based on Phase Rotation Estimation for NCO
Zhang, Chaozhu; Han, Jinan; Li, Ke
2014-01-01
The numerical controlled oscillator has wide application in radar, digital receiver, and software radio system. Firstly, this paper introduces the traditional CORDIC algorithm. Then in order to improve computing speed and save resources, this paper proposes a kind of hybrid CORDIC algorithm based on phase rotation estimation applied in numerical controlled oscillator (NCO). Through estimating the direction of part phase rotation, the algorithm reduces part phase rotation and add-subtract unit, so that it decreases delay. Furthermore, the paper simulates and implements the numerical controlled oscillator by Quartus II software and Modelsim software. Finally, simulation results indicate that the improvement over traditional CORDIC algorithm is achieved in terms of ease of computation, resource utilization, and computing speed/delay while maintaining the precision. It is suitable for high speed and precision digital modulation and demodulation. PMID:25110750
NASA Astrophysics Data System (ADS)
Toghi Eshghi, Amin; Lee, Soobum; Kazem Sadoughi, Mohammad; Hu, Chao; Kim, Young-Cheol; Seo, Jong-Ho
2017-10-01
Energy harvesting (EH) technologies to power small sized electronic devices are attracting great attention. Wasted energy in a vehicle’s rotating tire has a great potential to enable self-powered tire pressure monitoring sensors (TPMS). Piezoelectric type energy harvesters can be used to collect vibrational energy and power such systems. Due to the presence of harsh acceleration in a rotating tire, a design tradeoff needs to be studied to prolong the harvester’s fatigue life as well as to ensure sufficient power generation. However, the design by traditional deterministic design optimization (DDO) does not show reliable performance due to the lack of consideration of various uncertainty factors (e.g., manufacturing tolerances, material properties, and loading conditions). In this study, we address a new EH design formulation that considers the uncertainty in car speed, dimensional tolerances and material properties, and solve this design problem using reliability-based design optimization (RBDO). The RBDO problem is formulated to maximize compactness and minimize weight of a TPMS harvester while satisfying power and durability requirements. A transient analysis has been done to measure the time varying response of EH such as power generation, dynamic strain, and stress. A conservative design formulation is proposed to consider the expected power from varied speed and stress at higher speed. When compared to the DDO, the RBDO results show that the reliability of EH is increased significantly by scarifying the objective function. Finally, experimental test has been conducted to demonstrate the merits of RBDO design over DDO.
NASA Technical Reports Server (NTRS)
Thomas, S.; Faghri, A.; Hankey, W.
1990-01-01
The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Long, Y. T.
1995-01-01
Sloshing dynamics within a partially filled rotating Dewar of superfluid He II are investigated in response to a lateral impulse. The study investigates several factors, including how the rotating bubble of superfluid He II reacts to the impulse in microgravity, how the amplitudes of slosh reaction forces act on the Dewar with various rotating speeds, how the frequencies of the sloshing modes excited differ in terms of differences in rotating speeds, and how the sloshing dynamics differ with and without a baffle. The numerical computation of sloshing dynamics is based on the noninertial frame spacecraft-bound coordinates. Results of the simulations are illustrated.
Co-existence and switching between fast and Ω-slow wind solutions in rapidly rotating massive stars
NASA Astrophysics Data System (ADS)
Araya, I.; Curé, M.; ud-Doula, A.; Santillán, A.; Cidale, L.
2018-06-01
Most radiation-driven winds of massive stars can be modelled with m-CAK theory, resulting in the so-called fast solution. However, the most rapidly rotating stars among them, especially when the rotational speed is higher than {˜ } 75 per cent of the critical rotational speed, can adopt a different solution, the so-called Ω-slow solution, characterized by a dense and slow wind. Here, we study the transition region of the solutions where the fast solution changes to the Ω-slow solution. Using both time-steady and time-dependent numerical codes, we study this transition region for various equatorial models of B-type stars. In all cases, in a certain range of rotational speeds we find a region where the fast and the Ω-slow solution can co-exist. We find that the type of solution obtained in this co-existence region depends stongly on the initial conditions of our models. We also test the stability of the solutions within the co-existence region by performing base-density perturbations in the wind. We find that under certain conditions, the fast solution can switch to the Ω-slow solution, or vice versa. Such solution-switching may be a possible contributor of material injected into the circumstellar environment of Be stars, without requiring rotational speeds near critical values.
Cooper, R G
2007-03-01
Twenty healthy ostriches (ten cocks and ten hens), and twenty birds with tibiotarsal rotation (nine cocks and 11 hens) (14 months old) were isolated, hooded and weighed. A run (50 m x 2.5 m) was divided into sections marked 5 m, 10 m, 15 m and 20 m. Time taken for each bird to pass these points was recorded and speed computed. The degree of tibiotarsal rotation in the right foot was mean +/- SEM, 156 +/- 2.69 degrees. Comparisons between left and right foot length in healthy birds showed no significant differences. Foot length was significantly lower in tibiotarsal rotation (P = 0.03). The right foot in tibiotarsal rotation was significantly shorter than the left foot. The number of strides per each 5 m division were significantly (P < 0.05) greater in tibiotarsal rotation by comparison with healthy birds. At 20 m, healthy cocks had more strides than hens. The stride length in hens was significantly (P < 0.05) greater than cocks at 5, 10 and 15 m, respectively, but lower throughout in tibiotarsal rotation (P = 0.001). The speed of hens was significantly (P < 0.05) greater than cocks. Tibiotarsal rotation resulted in significantly (P < 0.05) reduced speeds. Hens may be able to escape danger faster than cocks. The occurrence of tibiotarsal rotation necessitates consideration of genetics, management, sex, nutrition and growth rates.
The Atmospheric Dynamics of Venus
NASA Astrophysics Data System (ADS)
Sánchez-Lavega, Agustín; Lebonnois, Sebastien; Imamura, Takeshi; Read, Peter; Luz, David
2017-11-01
We review our current knowledge of the atmospheric dynamics of Venus prior to the Akatsuki mission, in the altitude range from the surface to approximately the cloud tops located at about 100 km altitude. The three-dimensional structure of the wind field in this region has been determined with a variety of techniques over a broad range of spatial and temporal scales (from the mesoscale to planetary, from days to years, in daytime and nighttime), spanning a period of about 50 years (from the 1960s to the present). The global panorama is that the mean atmospheric motions are essentially zonal, dominated by the so-called super-rotation (an atmospheric rotation that is 60 to 80 times faster than that of the planetary body). The zonal winds blow westward (in the same direction as the planet rotation) with a nearly constant speed of ˜ 100 m s^{-1} at the cloud tops (65-70 km altitude) from latitude 50°N to 50°S, then decreasing their speeds monotonically from these latitudes toward the poles. Vertically, the zonal winds decrease with decreasing altitude towards velocities ˜ 1-3 m s^{-1} in a layer of thickness ˜ 10 km close to the surface. Meridional motions with peak speeds of ˜ 15 m s^{-1} occur within the upper cloud at 65 km altitude and are related to a Hadley cell circulation and to the solar thermal tide. Vertical motions with speeds ˜1-3 m s^{-1} occur in the statically unstable layer between altitudes of ˜ 50 - 55 km. All these motions are permanent with speed variations of the order of ˜10%. Various types of wave, from mesoscale gravity waves to Rossby-Kelvin planetary scale waves, have been detected at and above cloud heights, and are considered to be candidates as agents for carrying momentum that drives the super-rotation, although numerical models do not fully reproduce all the observed features. Momentum transport by atmospheric waves and the solar tide is thought to be an indispensable component of the general circulation of the Venus atmosphere. Another conspicuous feature of the atmospheric circulation is the presence of polar vortices. These are present in both hemispheres and are regions of warmer and lower clouds, seen prominently at infrared wavelengths, showing a highly variable morphology and motions. The vortices spin with a period of 2-3 days. The South polar vortex rotates around a geographical point which is itself displaced from the true pole of rotation by ˜ 3 degrees. The polar vortex is surrounded and constrained by the cold collar, an infrared-dark region of lower temperatures. We still lack detailed models of the mechanisms underlying the dynamics of these features and how they couple (or not) to the super-rotation. The nature of the super-rotation relates to the angular momentum stored in the atmosphere and how it is transported between the tropics and higher latitudes, and between the deep atmosphere and upper levels. The role of eddy processes is crucial, but likely involves the complex interaction of a variety of different types of eddy, either forced directly by radiative heating and mechanical interactions with the surface or through various forms of instability. Numerical models have achieved some significant recent success in capturing some aspects of the observed super-rotation, consistent with the scenario discussed by Gierasch (J. Atmos. Sci. 32:1038-1044, 1975) and Rossow and Williams (J. Atmos. Sci. 36:377-389, 1979), but many uncertainties remain, especially in the deep atmosphere. The theoretical framework developed to explain the circulation in Venus's atmosphere is reviewed, as well as the numerical models that have been built to elucidate the super-rotation mechanism. These tools are used to analyze the respective roles of the different waves in the processes driving the observed motions. Their limitations and suggested directions for improvements are discussed.
NASA Astrophysics Data System (ADS)
Kumar, H. M. Anil; Venkata Ramana, V.; Pawar, Mayur
2018-03-01
Friction stir welding is an innovative technology in the joining realm of metals and alloys. This technique is highly economical and suitable especially for non ferrous alloys compared to ferrous alloys. It finds many applications in various fields of aeronautics, automobile, ship building industries etc. The paper presents the comparative results of mechanical properties such as tensile strength, microstructure, macro structure and hardness on the similar and dissimilar aluminum alloys AA5083-H111 and AA6082-T6 under certain selected variables - constant tool rotational speed, its tilt angle, welding speed using friction stir welding process. It is observed from the experimental results that joint efficiency of dissimilar aluminium alloys is higher than the similar aluminum alloys.
MULTIPLE DIFFERENTIAL ROTARY MECHANICAL DRIVE
Smits, R.G.
1964-01-28
This patent relates to a mechanism suitable for such applications as driving two spaced-apart spools which carry a roll film strip under conditions where the film movement must be rapidly started, stopped, and reversed while maintaining a constant tension on the film. The basic drive is provided by a variable speed, reversible rnotor coupled to both spools through a first differential mechanism and driving both spools in the same direction. A second motor, providing a constant torque, is connected to the two spools through a second differential mechanism and is coupled to impart torque to one spool in a first direction anid to the other spool in the reverse direction thus applying a constant tension to the film passing over the two spools irrespective of the speed or direction of rotation thereof. (AEC)
The behavior of bouncing disks and pizza tossing
NASA Astrophysics Data System (ADS)
Liu, K.-C.; Friend, J.; Yeo, L.
2009-03-01
We investigate the dynamics of a disk bouncing on a vibrating platform - a variation of the classic bouncing ball problem - that captures the physics of pizza tossing and the operation of certain standing-wave ultrasonic motors (SWUMs). The system's dynamics explains why certain tossing motions are used by dough-toss performers for different tricks: a helical trajectory is used in single tosses because it maximizes energy efficiency and the dough's airborne rotational speed, a semi-elliptical motion is used in multiple tosses because it is easier for maintaining dough rotation at the maximum rotational speed. The system's bifurcation diagram and basins of attraction also informs SWUM designers about the optimal design for high speed and minimal sensitivity to perturbation.
Modeling Torque Versus Speed, Shot Noise, and Rotational Diffusion of the Bacterial Flagellar Motor
Mora, Thierry; Yu, Howard; Wingreen, Ned S.
2010-01-01
We present a minimal physical model for the flagellar motor that enables bacteria to swim. Our model explains the experimentally measured torque-speed relationship of the proton-driven E. coli motor at various pH and temperature conditions. In particular, the dramatic drop of torque at high rotation speeds (the “knee”) is shown to arise from saturation of the proton flux. Moreover, we show that shot noise in the proton current dominates the diffusion of motor rotation at low loads. This suggests a new way to probe the discreteness of the energy source, analogous to measurements of charge quantization in superconducting tunnel junctions. PMID:20366231
Investigation of compressible vortex flow characteristics
NASA Technical Reports Server (NTRS)
Muirhead, V. U.
1977-01-01
The nature of intense air vortices was studied and the factors which determine the intensity and rate of decay of both single and pairs of vortices were investigated. Vortex parameters of axial pressure differential, circulation, outflow rates, separation distance and directions of rotation were varied. Unconfined vortices, generated by a single rotating cage, were intensified by an increasing axial pressure gradient. Breakdown occurred when the axial gradient became negligible. The core radius was a function of the axial gradient. Dual vortices, generated by two counterrotating cages, rotated opposite to the attached cages. With minimum spacing only one vortex was formed which rotated in a direction opposite to the attached cage. When one cage rotated at half the speed of the other cage, one vortex formed at the higher speed cage rotating in the cage direction.
Design of a 3 kW wind turbine generator with thin airfoil blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ameku, Kazumasa; Nagai, Baku M.; Roy, Jitendro Nath
2008-09-15
Three blades of a 3 kW prototype wind turbine generator were designed with thin airfoil and a tip speed ratio of 3. The wind turbine has been controlled via two control methods: the variable pitch angle and by regulation of the field current of the generator and examined under real wind conditions. The characteristics of the thin airfoil, called ''Seven arcs thin airfoil'' named so because the airfoil is composed of seven circular arcs, are analyzed with the airfoil design and analysis program XFOIL. The thin airfoil blade is designed and calculated by blade element and momentum theory. The performancemore » characteristics of the machine such as rotational speed, generator output as well as stability for wind speed changes are described. In the case of average wind speeds of 10 m/s and a maximum of 19 m/s, the automatically controlled wind turbine ran safely through rough wind conditions and showed an average generator output of 1105 W and a power coefficient 0.14. (author)« less
Numerical Simulation of the Working Process in the Twin Screw Vacuum Pump
NASA Astrophysics Data System (ADS)
Lu, Yang; Fu, Yu; Guo, Bei; Fu, Lijuan; Zhang, Qingqing; Chen, Xiaole
2017-08-01
Twin screw vacuum pumps inherit the advantages of screw machinery, such as high reliability, stable medium conveying, small vibration, simple and compact structures, convenient operation, etc, which have been widely used in petrochemical and air industry. On the basis of previous studies, this study analyzed the geometric features of variable pitch of the twin screw vacuum pump such as the sealing line, the meshing line and the volume between teeth. The mathematical model of numerical simulation of the twin screw vacuum pump was established. The leakage paths of the working volume including the sealing line and the addendum arc were comprehensively considered. The corresponding simplified geometric model of leakage flow was built up for different leak paths and the flow coefficients were calculated. The flow coefficient value range of different leak paths was given. The results showed that the flow coefficient of different leak paths can be taken as constant value for the studied geometry. The analysis of recorded indicator diagrams showed that the increasing rotational speed can dramatically decrease the exhaust pressure and the lower rotational speed can lead to over-compression. The pressure of the isentropic process which was affected by leakage was higher than the theoretical process.
Ruys, Andrew J.
2018-01-01
Electrospun fibres have gained broad interest in biomedical applications, including tissue engineering scaffolds, due to their potential in mimicking extracellular matrix and producing structures favourable for cell and tissue growth. The development of scaffolds often involves multivariate production parameters and multiple output characteristics to define product quality. In this study on electrospinning of polycaprolactone (PCL), response surface methodology (RSM) was applied to investigate the determining parameters and find optimal settings to achieve the desired properties of fibrous scaffold for acetabular labrum implant. The results showed that solution concentration influenced fibre diameter, while elastic modulus was determined by solution concentration, flow rate, temperature, collector rotation speed, and interaction between concentration and temperature. Relationships between these variables and outputs were modelled, followed by an optimization procedure. Using the optimized setting (solution concentration of 10% w/v, flow rate of 4.5 mL/h, temperature of 45 °C, and collector rotation speed of 1500 RPM), a target elastic modulus of 25 MPa could be achieved at a minimum possible fibre diameter (1.39 ± 0.20 µm). This work demonstrated that multivariate factors of production parameters and multiple responses can be investigated, modelled, and optimized using RSM. PMID:29562614
Design optimization of a brush turbine with a cleaner/water based solution
NASA Technical Reports Server (NTRS)
Kim, Rhyn H.
1994-01-01
Recently, a fluid turbine which has a brush attached to it has been designed and tested with water as fluid. The purpose of the turbine-brush is to clean up fouling in a tube. The Montreal Protocol prohibits the use of CFC products from refrigeration industry or from industry in general as a cleanser in 1996. Alternatives for the cleansers, devices or a combination of alternative devices with a cleanser should be found. One of the methods is to develop a device which cleans fouling with a cleaning medium. In this paper, we describe a turbine connected with a brush. However, the turbine with the brush should be simple and easy to install. This device is a combined small liquid turbine with a brush. The turbine is activated by the liquid flowing through the tube. Then the turbine turns the brush cleaning fouling along the tube. Based on the energy conservation and the Bernoulli equation along with an empirical relationship of drag force obtained from an experimental apparatus, a relationship of the rotational speed, the number of blades, and geometric variables of the turbine-brush was obtained. The predicted rotational speeds were compared with the experimental observations. Further work was recommended for improvements.
Runaway transient simulation of a model Kaplan turbine
NASA Astrophysics Data System (ADS)
Liu, S.; Zhou, D.; Liu, D.; Wu, Y.; Nishi, M.
2010-08-01
The runaway transient is a typical transient process of a hydro power unit, where the rotational speed of a turbine runner rapidly increases up to the runaway speed under a working head as the guide vanes cannot be closed due to some reason at the load rejection. In the present paper, the characteristics of the runaway transient of a model Kaplan turbine having ns = 479(m-kW) is simulated by using a time-dependent CFD technique where equation of rotational motion of runner, continuity equation and unsteady RANS equations with RNG k-epsilon turbulence model are solved iteratively. In the calculation, unstructured mesh is used to the whole flow passage, which consists of several sub-domains: entrance, casing, stay vanes + guide vanes, guide section, runner and draft tube. And variable speed sliding mesh technique is used to exchange interface flow information between moving part and stationary part, and three-dimensional unstructured dynamic mesh technique is also adopted to ensure mesh quality. Two cases were treated in the simulation of runaway transient characteristics after load rejection: one is the rated operating condition as the initial condition, and the other is the condition at the maximum head. Regarding the runaway speed, the experimental speed is 1.45 times the initial speed and the calculation is 1.47 times the initial for the former case. In the latter case, the experiment and the calculation are 1.67 times and 1.69 times respectively. From these results, it is recognized that satisfactorily prediction will be possible by using the present numerical method. Further, numerical results show that the swirl in the draft-tube flow becomes stronger in the latter part of the transient process so that a vortex rope will occur in the draft tube and its precession will cause the pressure fluctuations which sometimes affect the stability of hydro power system considerably.
Performance of fuel system at different diesel temperature
NASA Astrophysics Data System (ADS)
Xu, Xiaoyong; Li, Xiaolu; Sun, Zai
2010-08-01
This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.
NASA Astrophysics Data System (ADS)
Dong, Ying-bo; Li, Hao; Lin, Hai; Zhang, Yuan
2017-04-01
The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were -43 μm, 30°C, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1-(2/3) α-(1- α)2/3 = k 1 t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.
Tokita, Daisuke; Ebihara, Arata; Miyara, Kana; Okiji, Takashi
2017-08-01
This study examined the dynamic fracture behavior of nickel-titanium rotary instruments in torsional or cyclic loading at continuous or reciprocating rotation by means of high-speed digital video imaging. The ProFile instruments (size 30, 0.06 taper; Dentsply Maillefer, Ballaigues, Switzerland) were categorized into 4 groups (n = 7 in each group) as follows: torsional/continuous (TC), torsional/reciprocating (TR), cyclic/continuous (CC), and cyclic/reciprocating (CR). Torsional loading was performed by rotating the instruments by holding the tip with a vise. For cyclic loading, a custom-made device with a 38° curvature was used. Dynamic fracture behavior was observed with a high-speed camera. The time to fracture was recorded, and the fractured surface was examined with scanning electron microscopy. The TC group initially exhibited necking of the file followed by the development of an initial crack line. The TR group demonstrated opening and closing of a crack according to its rotation in the cutting and noncutting directions, respectively. The CC group separated without any detectable signs of deformation. In the CR group, initial crack formation was recognized in 5 of 7 samples. The reciprocating rotation exhibited a longer time to fracture in both torsional and cyclic fatigue testing (P < .05). The scanning electron microscopic images showed a severely deformed surface in the TR group. The dynamic fracture behavior of NiTi rotary instruments, as visualized with high-speed digital video imaging, varied between the different modes of rotation and different fatigue testing. Reciprocating rotation induced a slower crack propagation and conferred higher fatigue resistance than continuous rotation in both torsional and cyclic loads. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Field Tests of Wind Turbine Unit with Tandem Wind Rotors and Double Rotational Armatures
NASA Astrophysics Data System (ADS)
Galal, Ahmed Mohamed; Kanemoto, Toshiaki
This paper discusses the field tests of the wind turbine unit, in which the front and the rear wind rotors drive the inner and the outer armatures of the synchronous generator. The wind rotors were designed conveniently by the traditional procedure for the single wind rotor, where the diameters of the front and the rear wind rotors are 2 m and 1.33 m. The tests were done on a pick-up type truck driven straightly at constant speed. The rotational torque of the unit is directly proportional to the induced electric current irrespective of the rotational speeds of the wind rotors, while the induced voltage is proportional to the relative rotational speed. The performance of the unit is significantly affected not only by the wind velocity, but also by the blade setting angles of both wind rotors and the applied load especially at lower wind velocity.
On the development of lift and drag in a rotating and translating cylinder
NASA Astrophysics Data System (ADS)
Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon
2014-11-01
The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.
NASA Astrophysics Data System (ADS)
Fu, Shenming
2017-04-01
A twin extratropical cyclone that appeared over the Northwest Pacific Ocean during the winter of 2011 is reproduced reasonably well by the fifth-generation PSU-NCAR Mesoscale Model (MM5). One cyclone in this event has developed into an extreme explosive extratropical cyclone (EEC), with a maximum deepening rate up to 2.7 Bergeron, a minimum SLP of 933 hPa, and a maximum surface wind of 33 m s-1, which means its intensity is comparable with the intensity of a typhoon. The rotational and divergent wind kinetic energy (KE) budget equations are applied to this twin cyclone event so as to understand the rapid enhancement of the wind speed in this case. Preliminary results indicate that, overall, the rotational wind KE is much larger than the divergent wind KE, however, the latter can be of comparable intensity with the rotational wind KE around the regions where the wind speed strengthened most rapidly. Different quadrants of the twin cyclone show significant unevenness, overall, the southeastern quadrant of the EEC features the rapidest enhancement of wind speed, whereas the northwestern quadrant shows the slowest wind-speed acceleration. The vertical stretching of the EEC show consistent variation features with the rotational wind KE. The transport of KE by rotational wind, the conversion from divergent wind KE to rotational wind KE, and the work done by pressure gradient force all contributed to the enhancement of rotational wind KE. In contrast, the divergent wind KE is mainly produced by the baroclinic energy conversion.
Development of aerodynamic foil journal bearings for a high speed cryogenic turboexpander
NASA Astrophysics Data System (ADS)
Xiong, L.-Y.; Wu, G.; Hou, Y.; Liu, L.-Q.; Ling, M.-F.; Chen, C.-Z.
The research presented in this paper is aimed at the development of aerodynamic foil journal bearings applying to a small high speed cryogenic turboexpander. A small high speed cryogenic turboexpander is designed. Attention has been paid to the study of the effect of foil stiffness on the vibration performance of bearings. From rotation tests, it is clear that, with the proper choice of foil stiffness, the foil bearing presented here can possess sufficiently high stability. The maximum rotational speed obtained is greater than 230 000 rpm. Therefore, owing to its simplicity and high performance, this type of foil journal bearing can hopefully be applied to a small high speed cryogenic turboexpander.
Optically tunable Quincke rotation of a nanometer-thin oblate spheroid
NASA Astrophysics Data System (ADS)
Gu, Yu; Zeng, Haibo
2017-08-01
Ever since the discovery of Quincke rotation (spontaneous rotation of a particle in fluid under a dc electric field) more than 100 years ago [G. Quincke, Ann. Phys. (Leipzig) 295, 417 (1896), 10.1002/andp.18962951102], the strength of the dc field has been the only external parameter to actively tune the rotation speed. In this paper we theoretically propose an optically tunable Quincke rotor exploiting the photoconductivity of a semiconducting nanometer-thin oblate spheroid. A full analysis of the instability of the Quincke rotation reveals that, unlike a prolate spheroid, no bistability is possible in such a dynamical system. In addition, the required material property and the strength of the dc electric field needed to realize the rotation are also elucidated. It is also predicted that light can be used to tune the spinning speed or simply turn on and off the Quincke rotation very effectively.
NASA Astrophysics Data System (ADS)
Pezzani, Carlos M.; Bossio, José M.; Castellino, Ariel M.; Bossio, Guillermo R.; De Angelo, Cristian H.
2017-02-01
Condition monitoring in permanent magnet synchronous machines has gained interest due to the increasing use in applications such as electric traction and power generation. Particularly in wind power generation, non-invasive condition monitoring techniques are of great importance. Usually, in such applications the access to the generator is complex and costly, while unexpected breakdowns results in high repair costs. This paper presents a technique which allows using vibration analysis for bearing fault detection in permanent magnet synchronous generators used in wind turbines. Given that in wind power applications the generator rotational speed may vary during normal operation, it is necessary to use special sampling techniques to apply spectral analysis of mechanical vibrations. In this work, a resampling technique based on order tracking without measuring the rotor position is proposed. To synchronize sampling with rotor position, an estimation of the rotor position obtained from the angle of the voltage vector is proposed. This angle is obtained from a phase-locked loop synchronized with the generator voltages. The proposed strategy is validated by laboratory experimental results obtained from a permanent magnet synchronous generator. Results with single point defects in the outer race of a bearing under variable speed and load conditions are presented.
NASA Astrophysics Data System (ADS)
Dhanasekaran, A.; Kumaraswamy, S.
2018-01-01
Pressure pulsation causes vibration in the Electric Submersible Pump (ESP) and affects the life and performance of its system. ESP systems are installed at depths ranging from a few meters to several hundred meters. Unlike pumps used on the surface, once they are installed they become inaccessible for maintenance or for any kind of diagnostic measurement that might be taken directly on them. Therefore a detailed knowledge of mean and fluctuating pressures is required to achieve an optimal pressure distribution inside the ESP. This paper presents the results of an experimental investigation of the stage-wise pulsating pressure in ESP at shut-off condition at different speeds. Experiments were conducted on a pump having five stages. A variable frequency drive was used to operate the pump at five different speeds. Piezoresistive transducers were mounted at each stage of ESP to capture the unsteady pressure signals. Fast Fourier Transformation was carried out on the pressure signals to convert into frequency domain and the spectra of pressure pulsation signals were analyzed. The obtained results indicated the existence of fundamental frequency corresponding to the speed of rotation times the number of impeller blades and of the whole series of harmonics of higher frequencies.
Neural rotational speed control for wave energy converters
NASA Astrophysics Data System (ADS)
Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.
2011-02-01
Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.
Characteristics of steady vibration in a rotating hub-beam system
NASA Astrophysics Data System (ADS)
Zhao, Zhen; Liu, Caishan; Ma, Wei
2016-02-01
A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.
Wormgoor, Shohn; Harden, Lois; Mckinon, Warrick
2010-07-01
Fast bowling is fundamental to all forms of cricket. The purpose of this study was to identify parameters that contribute to high ball release speeds in cricket fast bowlers. We assessed anthropometric dimensions, concentric and eccentric isokinetic strength of selected knee and shoulder muscle groups, and specific aspects of technique from a single delivery in 28 high-performance fast bowlers (age 22.0 +/- 3.0 years, ball release speed 34.0 +/- 1.3 m s(-1)). Six 50-Hz cameras and the Ariel Performance Analysis System software were used to analyse the fast and accurate deliveries. Using Pearson's correlation, parameters that showed significant associations with ball release speed were identified. The findings suggest that greater front leg knee extension at ball release (r=0.52), shoulder alignment in the transverse plane rotated further away from the batsman at front foot strike (r=0.47), greater ankle height during the delivery stride (r=0.44), and greater shoulder extension strength (r=0.39) contribute significantly to higher ball release speeds. Predictor variables failed to allow their incorporation into a multivariate model, which is known to exist in less accomplished bowlers, suggesting that factors that determine ball release speed found in other groups may not apply to high-performance fast bowlers.
NASA Astrophysics Data System (ADS)
Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude
2017-09-01
The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.
Sex Differences in Anthropometrics and Heading Kinematics Among Division I Soccer Athletes
Bretzin, Abigail C.; Mansell, Jamie L.; Tierney, Ryan T.; McDevitt, Jane K.
2016-01-01
Background: Soccer players head the ball repetitively throughout their careers; this is also a potential mechanism for a concussion. Although not all soccer headers result in a concussion, these subconcussive impacts may impart acceleration, deceleration, and rotational forces on the brain, leaving structural and functional deficits. Stronger neck musculature may reduce head-neck segment kinematics. Hypothesis: The relationship between anthropometrics and soccer heading kinematics will not differ between sexes. The relationship between anthropometrics and soccer heading kinematics will not differ between ball speeds. Study Design: Pilot, cross-sectional design. Level of Evidence: Level 3. Methods: Division I soccer athletes (5 male, 8 female) were assessed for head-neck anthropometric and neck strength measurements in 6 directions (ie, flexion, extension, right and left lateral flexions and rotations). Participants headed the ball 10 times (25 or 40 mph) while wearing an accelerometer secured to their head. Kinematic measurements (ie, linear acceleration and rotational velocity) were recorded at 2 ball speeds. Results: Sex differences were observed in neck girth (t = 5.09, P < 0.001), flexor and left lateral flexor strength (t = 3.006, P = 0.012 and t = 4.182, P = 0.002, respectively), and rotational velocity at both speeds (t = −2.628, P = 0.024 and t = −2.227, P = 0.048). Neck girth had negative correlations with both linear acceleration (r = −0.599, P = 0.031) and rotational velocity at both speeds (r = −0.551, P = 0.012 and r = −0.652, P = 0.016). Also, stronger muscle groups had lower linear accelerations at both speeds (P < 0.05). Conclusion: There was a significant relationship between anthropometrics and soccer heading kinematics for sex and ball speeds. Clinical Relevance: Neck girth and neck strength are factors that may limit head impact kinematics. PMID:28225689
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh
The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is oftenmore » unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. Lastly, the results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.« less
Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; ...
2017-02-27
The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is oftenmore » unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. Lastly, the results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.« less
NASA Astrophysics Data System (ADS)
Abnar, B.; Kazeminezhad, M.; Kokabi, A. H.
2014-08-01
Friction stir welding (FSW) was used to join 3003-H18 non-heat-treatable aluminum alloy plates by adding copper powder. The copper powder was first added to the gap (0.1 and 0.2 mm) between two plates and then the FSW was performed. The specimens were joined at various rotational speeds of 800, 1000, and 1200 rpm at traveling speeds of 70 and 100 mm/min. The effects of rotational speed, second pass of FSW, and direction of second pass also were studied on copper particle distribution and formation of Al-Cu intermetallic compounds in the stir zone. The second pass of FSW was carried out in two ways; in line with the first pass direction (2F) and in the reverse direction of the first pass (FB). The microstructure, mechanical properties, and formation of intermetallic compounds type were investigated. In high copper powder compaction into the gap, large clusters were formed in the stir zone, while fine clusters and sound copper particles distribution were obtained in low powder compaction. The copper particle distribution and amount of Al-Cu intermetallic compounds were increased in the stir zone with increasing the rotational speed and applying the second pass. Al2Cu and AlCu intermetallic phases were formed in the stir zone and consequently the hardness was significantly increased. The copper particles and in situ intermetallic compounds were symmetrically distributed in both advancing and retreating sides of weld zone after FB passes. Thus, the wider area was reinforced by the intermetallic compounds. Also, the tensile test specimens tend to fracture from the coarse copper aggregation at the low rotational speeds. At high rotational speeds, the fracture locations are placed in HAZ and TMAZ.
Sex Differences in Anthropometrics and Heading Kinematics Among Division I Soccer Athletes.
Bretzin, Abigail C; Mansell, Jamie L; Tierney, Ryan T; McDevitt, Jane K
Soccer players head the ball repetitively throughout their careers; this is also a potential mechanism for a concussion. Although not all soccer headers result in a concussion, these subconcussive impacts may impart acceleration, deceleration, and rotational forces on the brain, leaving structural and functional deficits. Stronger neck musculature may reduce head-neck segment kinematics. The relationship between anthropometrics and soccer heading kinematics will not differ between sexes. The relationship between anthropometrics and soccer heading kinematics will not differ between ball speeds. Pilot, cross-sectional design. Level 3. Division I soccer athletes (5 male, 8 female) were assessed for head-neck anthropometric and neck strength measurements in 6 directions (ie, flexion, extension, right and left lateral flexions and rotations). Participants headed the ball 10 times (25 or 40 mph) while wearing an accelerometer secured to their head. Kinematic measurements (ie, linear acceleration and rotational velocity) were recorded at 2 ball speeds. Sex differences were observed in neck girth ( t = 5.09, P < 0.001), flexor and left lateral flexor strength ( t = 3.006, P = 0.012 and t = 4.182, P = 0.002, respectively), and rotational velocity at both speeds ( t = -2.628, P = 0.024 and t = -2.227, P = 0.048). Neck girth had negative correlations with both linear acceleration ( r = -0.599, P = 0.031) and rotational velocity at both speeds ( r = -0.551, P = 0.012 and r = -0.652, P = 0.016). Also, stronger muscle groups had lower linear accelerations at both speeds ( P < 0.05). There was a significant relationship between anthropometrics and soccer heading kinematics for sex and ball speeds. Neck girth and neck strength are factors that may limit head impact kinematics.
NASA Astrophysics Data System (ADS)
Surekha, K.; Murty, B. S.; Prasad Rao, K.
2009-04-01
The effect of processing parameters (rotation speed and traverse speed) on the corrosion behaviour of friction stir processed high strength precipitation hardenable AA 2219-T87 alloy was investigated. The results indicate that the rotation speed has a major influence in determining the rate of corrosion, which is attributed to the breaking down and dissolution of the intermetallic particles. Corrosion resistance of friction stir processed alloy was studied by potentiodynamic polarization, electrochemical impedance spectroscopy, salt spray and immersion tests.
NASA Technical Reports Server (NTRS)
1997-01-01
A new technique for rotating stall precursor identification in high-speed compressors has been developed at the NASA Lewis Research Center. This pseudo correlation integral method uses a mathematical algorithm based on chaos theory to identify nonlinear dynamic changes in the compressor. Through a study of four various configurations of a high-speed compressor stage, a multistage compressor rig, and an axi-centrifugal engine test, this algorithm, using only a single pressure sensor, has consistently predicted the onset of rotating stall.
Takami, Y; Makinouchi, K; Otsuka, G; Nosé, Y
1997-12-01
The Gyro C1E3 pump has been developed as a completely sealless centrifugal pump driven by a magnetic coupling system for long-term usage. The Gyro C1E3 pump is a pivot bearing-supported pump in which the impeller is supported with the top and bottom pivot bearings. In the Gyro C1E3 pump, the impeller spinning is affected by the force balance between the floating force (Ff[N]) of the hydrodynamic effect and the magnetic thrust force (Tf[N]). The authors quantitatively investigated the floating force of the impeller in vitro to determine the magnetic coupling distance (MCD[mm]) that would result in stable impeller spinning. In vitro tests were performed using a loop filled with 37% glycerin solution to obtain the relationship between the MCD and floating speed (Rf, rotational speed when the impeller starts floating [rpm]) and the relationship between the MCD and Tf. From the obtained relationships, we calculated Ff and determined the relationship between the Ff and the rotational speed (R). Furthermore, we determined the relationship between d (minimum required MCD [mm]) and R from the results of determining the relationship of the MCD and Tf and of the Ff and R. The following relationships were obtained: Rf = 6.24 x 10(4) x MCD-1.35; Tf = 5.27 x 10(3) x MCD-2.29; Ff = 4.71 x 10(-6) x RPM1.69; and d = 9.02 x RPM-0.85 where RPM is the rotational speed. It was demonstrated that the floating force of the impeller is a function only of the rotational speed in the pivot bearing-supported Gyro C1E3 pump. The floating force is estimated to be 10 N to 40 N at rotational speeds of 1,500 rpm to 3,000 rpm at which the Gyro pump may be used in most clinical situations. It would be possible to control the impeller position of the Gyro pump automatically at the stable spinning condition by controlling the adequate magnetic coupling distance based upon its relationship with the rotational speed which was obtained in this study.
Instantaneous flywheel torque of IC engine grey-box identification
NASA Astrophysics Data System (ADS)
Milašinović, A.; Knežević, D.; Milovanović, Z.; Škundrić, J.
2018-01-01
In this paper a mathematical model developed for the identification of excitation torque acting on the IC engine flywheel is presented. The excitation torque gained through internal combustion of the fuel in the IC engine is transmitted from the flywheel to the transmission. The torque is not constant but variable and is a function of the crank angle. The verification of the mathematical model was done on a 4-cylinder 4-stroke diesel engine for which the in-cylinder pressure was measured in one cylinder and the instantaneous angular speed of the crankshaft at its free end. The research was conducted on a hydraulic engine brake. Inertial forces of all rotational parts, from flywheel to the turbine wheel of the engine brake, are acting on the flywheel due to the nonuniform motion of the flywheel. It is known from the theory of turbomachinery that the torque on the hydraulic brake is a quadratic function of angular speed. Due to that and the variable angular speed of the turbine wheel of the engine brake, the torque during one engine cycle is also variable. The motivation for this research was the idea (intention) to determine the instantaneous torque acting on the flywheel as a function of the crank angle with a mathematical model without any measuring and based on this to determine the quality of work of specific cylinders of the multi-cylinder engine. The crankshaft was considered elastic and also its torsional vibrations were taken into account.
NASA Technical Reports Server (NTRS)
Minkin, H. L.
1976-01-01
The performance characteristics of several miniature pressure transducers were determined at centripetal accelerations up to 11,200 g's at a rotational speed of 23,000 rpm. The variation in centripetal acceleration was produced by changing radial position of the transducer relative to the center of rotation. Residual zero outputs and transducer sensitivities were determined at 23,000 rpm and compared with those determined at 0 rpm. The actual pressures at the various transducer locations differ from the center line impressed pressures due to a rotational effect. Corrections for this effect were made. A brief description of the test apparatus is included.
A Novel Degradation Identification Method for Wind Turbine Pitch System
NASA Astrophysics Data System (ADS)
Guo, Hui-Dong
2018-04-01
It’s difficult for traditional threshold value method to identify degradation of operating equipment accurately. An novel degradation evaluation method suitable for wind turbine condition maintenance strategy implementation was proposed in this paper. Based on the analysis of typical variable-speed pitch-to-feather control principle and monitoring parameters for pitch system, a multi input multi output (MIMO) regression model was applied to pitch system, where wind speed, power generation regarding as input parameters, wheel rotation speed, pitch angle and motor driving currency for three blades as output parameters. Then, the difference between the on-line measurement and the calculated value from the MIMO regression model applying least square support vector machines (LSSVM) method was defined as the Observed Vector of the system. The Gaussian mixture model (GMM) was applied to fitting the distribution of the multi dimension Observed Vectors. Applying the model established, the Degradation Index was calculated using the SCADA data of a wind turbine damaged its pitch bearing retainer and rolling body, which illustrated the feasibility of the provided method.
Liang, Bo Wei; Wu, Wen Hua; Meijer, Onno G; Lin, Jian Hua; Lv, Go Rong; Lin, Xiao Cong; Prins, Maarten R; Hu, Hai; van Dieën, Jaap H; Bruijn, Sjoerd M
2014-01-01
Transverse plane pelvis rotations during walking may be regarded as the "first determinant of gait". This would assume that pelvis rotations increase step length, and thereby reduce the vertical movements of the centre of mass-"the pelvic step". We analysed the pelvic step using 20 healthy young male subjects, walking on a treadmill at 1-5 km/h, with normal or big steps. Step length, pelvis rotation amplitude, leg-pelvis relative phase, and the contribution of pelvis rotation to step length were calculated. When speed increased in normal walking, pelvis rotation changed from more out-of-phase to in-phase with the upper leg. Consequently, the contribution of pelvis rotation to step length was negative at lower speeds, switching to positive at 3 km/h. With big steps, leg and pelvis were more in-phase, and the contribution of pelvis rotation to step length was always positive, and relatively large. Still, the overall contribution of pelvis rotations to step length was small, less than 3%. Regression analysis revealed that leg-pelvis relative phase predicted about 60% of the variance of this contribution. The results of the present study suggest that, during normal slow walking, pelvis rotations increase, rather than decrease, the vertical movements of the centre of mass. With large steps, this does not happen, because leg and pelvis are in-phase at all speeds. Finally, it has been suggested that patients with hip flexion limitation may use larger pelvis rotations to increase step length. This, however, may only work as long as the pelvis rotates in-phase with the leg. Copyright © 2013 Elsevier B.V. All rights reserved.
Low Speed Control for Automatic Welding
NASA Technical Reports Server (NTRS)
Iceland, W. E.
1982-01-01
Amplifier module allows rotating positioner of automatic welding machine to operate at speeds below normal range. Low speeds are precisely regulated by a servomechanism as are normal-range speeds. Addition of module to standard welding machine makes it unnecessary to purchase new equipment for low-speed welding.
NASA Astrophysics Data System (ADS)
Ghommem, M.; Abdelkefi, A.
2017-12-01
The nonlinear dynamics of a microgyroscope consisting of a vibrating beam with attached proof mass and operating at high frequency is numerically investigated. The working principle of this inertial sensor is based on exploiting the transfer of the mechanical energy among two vibrations modes via the Coriolis effect to measure the rotation rate. The flexural motion (drive mode) is generated by applying a DC electrostatic load and an AC harmonic load. We propose a novel sensing technique based on resistance change to detect the induced vibrations of the microbeam (sense mode) and extract the rotation rate. The sensing technique is based on transmitting the Coriolis force acting on the proof mass to a probe that affects the resistance of an electrical circuit acting as a variable voltage divider. This is achieved by integrating the probe dipping μpool (PDP) technology deploying a probe electrode that is dipped into a μpool filled with a conductive nonvolatile fluid. Large magnitude of the AC harmonic load is observed to give rise to dynamic pull-in bandwidth in the frequency response characterized by large and uncontrollable vibrations of the microbeam. Operating near the primary frequency while selecting moderate AC voltage results in linear calibration curves while maintaining high sensitivity of the output voltage to the change in the rotation speed. The simulation results demonstrate the feasibility of the novel technique for sensing the induced vibrations to deliver measurements of the angular speed.
The Biomechanics of the Modern Golf Swing: Implications for Lower Back Injuries.
Cole, Michael H; Grimshaw, Paul N
2016-03-01
The modern golf swing is a complex and asymmetrical movement that places an emphasis on restricting pelvic turn while increasing thorax rotation during the backswing to generate higher clubhead speeds at impact. Increasing thorax rotation relative to pelvic rotation preloads the trunk muscles by accentuating their length and allowing them to use the energy stored in their elastic elements to produce more power. As the thorax and pelvis turn back towards the ball during the downswing, more skilled golfers are known to laterally slide their pelvis toward the target, which further contributes to final clubhead speed. However, despite the apparent performance benefits associated with these sequences, it has been argued that the lumbar spine is incapable of safely accommodating the forces they produce. This notion supports a link between the repeated performance of the golf swing and the development of golf-related low back injuries. Of the complaints reported by golfers, low back injuries continue to be the most prevalent, but the mechanism of these injuries is still poorly understood. This review highlights that there is a paucity of research directly evaluating the apparent link between the modern golf swing and golf-related low back pain. Furthermore, there has been a general lack of consensus within the literature with respect to the methods used to objectively assess the golf swing and the methods used to derived common outcome measures. Future research would benefit from a clear set of guidelines to help reduce the variability between studies.
Propeller speed and phase sensor
NASA Technical Reports Server (NTRS)
Collopy, Paul D. (Inventor); Bennett, George W. (Inventor)
1992-01-01
A speed and phase sensor counterrotates aircraft propellers. A toothed wheel is attached to each propeller, and the teeth trigger a sensor as they pass, producing a sequence of signals. From the sequence of signals, rotational speed of each propeller is computer based on time intervals between successive signals. The speed can be computed several times during one revolution, thus giving speed information which is highly up-to-date. Given that spacing between teeth may not be uniform, the signals produced may be nonuniform in time. Error coefficients are derived to correct for nonuniformities in the resulting signals, thus allowing accurate speed to be computed despite the spacing nonuniformities. Phase can be viewed as the relative rotational position of one propeller with respect to the other, but measured at a fixed time. Phase is computed from the signals.
Wind-tunnel test of an articulated helicopter rotor model with several tip shapes
NASA Technical Reports Server (NTRS)
Berry, J. D.; Mineck, R. E.
1980-01-01
Six interchangeable tip shapes were tested: a square (baseline) tip, an ogee tip, a subwing tip, a swept tip, a winglet tip, and a short ogee tip. In hover at the lower rotational speeds the swept, ogee, and short ogee tips had about the same torque coefficient, and the subwing and winglet tips had a larger torque coefficient than the baseline square tip blades. The ogee and swept tip blades required less torque coefficient at lower rotational speeds and roughly equivalent torque coefficient at higher rotational speeds compared with the baseline square tip blades in forward flight. The short ogee tip required higher torque coefficient at higher lift coefficients than the baseline square tip blade in the forward flight test condition.
A new method for measuring the rotational accuracy of rolling element bearings
NASA Astrophysics Data System (ADS)
Chen, Ye; Zhao, Xiangsong; Gao, Weiguo; Hu, Gaofeng; Zhang, Shizhen; Zhang, Dawei
2016-12-01
The rotational accuracy of a machine tool spindle has critical influence upon the geometric shape and surface roughness of finished workpiece. The rotational performance of the rolling element bearings is a main factor which affects the spindle accuracy, especially in the ultra-precision machining. In this paper, a new method is developed to measure the rotational accuracy of rolling element bearings of machine tool spindles. Variable and measurable axial preload is applied to seat the rolling elements in the bearing races, which is used to simulate the operating conditions. A high-precision (radial error is less than 300 nm) and high-stiffness (radial stiffness is 600 N/μm) hydrostatic reference spindle is adopted to rotate the inner race of the test bearing. To prevent the outer race from rotating, a 2-degrees of freedom flexure hinge mechanism (2-DOF FHM) is designed. Correction factors by using stiffness analysis are adopted to eliminate the influences of 2-DOF FHM in the radial direction. Two capacitive displacement sensors with nano-resolution (the highest resolution is 9 nm) are used to measure the radial error motion of the rolling element bearing, without separating the profile error as the traditional rotational accuracy metrology of the spindle. Finally, experimental measurements are performed at different spindle speeds (100-4000 rpm) and axial preloads (75-780 N). Synchronous and asynchronous error motion values are evaluated to demonstrate the feasibility and repeatability of the developed method and instrument.
In-duct identification of a rotating sound source with high spatial resolution
NASA Astrophysics Data System (ADS)
Heo, Yong-Ho; Ih, Jeong-Guon; Bodén, Hans
2015-11-01
To understand and reduce the flow noise generation from in-duct fluid machines, it is necessary to identify the acoustic source characteristics precisely. In this work, a source identification technique, which can identify the strengths and positions of the major sound radiators in the source plane, is studied for an in-duct rotating source. A linear acoustic theory including the effects of evanescent modes and source rotation is formulated based on the modal summation method, which is the underlying theory for the inverse source reconstruction. A validation experiment is conducted on a duct system excited by a loudspeaker in static and rotating conditions, with two different speeds, in the absence of flow. Due to the source rotation, the measured pressure spectra reveal the Doppler effect, and the amount of frequency shift corresponds to the multiplication of the circumferential mode order and the rotation speed. Amplitudes of participating modes are estimated at the shifted frequencies in the stationary reference frame, and the modal amplitude set including the effect of source rotation is collected to investigate the source behavior in the rotating reference frame. By using the estimated modal amplitudes, the near-field pressure is re-calculated and compared with the measured pressure. The obtained maximum relative error is about -25 and -10 dB for rotation speeds at 300 and 600 rev/min, respectively. The spatial distribution of acoustic source parameters is restored from the estimated modal amplitude set. The result clearly shows that the position and magnitude of the main sound source can be identified with high spatial resolution in the rotating reference frame.
Rotor noise due to blade-turbulence interaction
NASA Astrophysics Data System (ADS)
Ishimaru, K.
1983-01-01
The time-averaged intensity density function of the acoustic radiation from rotating blades is derived by replacing blades with rotating dipoles. This derivation is done under the following turbulent inflow conditions: turbulent ingestion with no inlet strut wakes, inflow turbulence elongation and contraction with no inlet strut wakes, and inlet strut wakes. Dimensional analysis reveals two non-dimensional parameters which play important roles in generating the blade-passing frequency tone and its multiples. The elongation and contraction of inflow turbulence has a strong effect on the generation of the blade-passing frequency tone and its multiples. Increasing the number of rotor blades widens the peak at the blade-passing frequency and its multiples. Increasing the rotational speed widens the peak under the condition that the non-dimensional parameter involving the rotational speed is fixed. The number of struts and blades should be chosen so that (the least common multiple of them)-(rotational speed) is in the cutoff range of Sears' function, in order to minimize the effect of the mean flow deficit on the time averaged intensity density function.
Hewawasam, Choolaka; Matsuura, Norihisa; Takimoto, Yuya; Hatamoto, Masashi; Yamaguchi, Takashi
2018-05-26
A rotational sponge (RS) reactor was proposed as an alternative sewage treatment process. Prior to the application of an RS reactor for sewage treatment, this study evaluated reactor performance with regard to organic removal, nitrification, and nitrogen removal and sought to optimize the rotational speed and hydraulic retention time (HRT) of the system. RS reactor obtained highest COD removal, nitrification, and nitrogen removal efficiencies of 91%, 97%, and 65%, respectively. For the optimization, response surface methodology (RSM) was employed and optimum conditions of rotational speed and HRT were 18 rounds per hour and 4.8 h, respectively. COD removal, nitrification, and nitrogen removal efficiencies at the optimum conditions were 85%, 85%, and 65%, respectively. Corresponding removal rates at optimum conditions were 1.6 kg-COD m -3 d -1 , 0.3 kg-NH 4 + -N m -3 d -1 , and 0.12 kg-N m -3 d -1 . Microbial community analysis revealed an abundance of nitrifying and denitrifying bacteria in the reactor, which contributed to nitrification and nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.
14 CFR 23.51 - Takeoff speeds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff speeds. 23.51 Section 23.51... speeds. (a) For normal, utility, and acrobatic category airplanes, rotation speed, VR, is the speed at... seaplanes and amphibians taking off from water, VR, may be any speed that is shown to be safe under all...
14 CFR 23.51 - Takeoff speeds.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff speeds. 23.51 Section 23.51... speeds. (a) For normal, utility, and acrobatic category airplanes, rotation speed, VR, is the speed at... seaplanes and amphibians taking off from water, VR, may be any speed that is shown to be safe under all...
Effectiveness enhancement of a cycloidal wind turbine by individual active control of blade motion
NASA Astrophysics Data System (ADS)
Hwang, In Seong; Lee, Yun Han; Kim, Seung Jo
2007-04-01
In this paper, a research for the effectiveness enhancement of a Cycloidal Wind Turbine by individual active control of blade motion is described. To improve the performance of the power generation system, which consists of several straight blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control method are adopted. It has advantages comparing with horizontal axis wind turbine or conventional vertical axis wind turbine because it maintains optimal blade pitch angles according to wind speed, wind direction and rotor rotating speed to produce high electric power at any conditions. It can do self-starting and shows good efficiency at low wind speed and complex wind condition. Optimal blade pitch angle paths are obtained through CFD analysis according to rotor rotating speed and wind speed. The individual rotor blade control system consists of sensors, actuators and microcontroller. To realize the actuating device, servo motors are installed to each rotor blade. Actuating speed and actuating force are calculated to compare with the capacities of servo motor, and some delays of blade pitch angles are corrected experimentally. Performance experiment is carried out by the wind blowing equipment and Labview system, and the rotor rotates from 50 to 100 rpm according to the electric load. From this research, it is concluded that developing new vertical axis wind turbine, Cycloidal Wind Turbine which is adopting individual active blade pitch control method can be a good model for small wind turbine in urban environment.
SEAL FOR HIGH SPEED CENTRIFUGE
Skarstrom, C.W.
1957-12-17
A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.
NASA Astrophysics Data System (ADS)
Vyas, Giriraj; Dagar, Parveen; Sahu, Satyajit
2018-05-01
We have shown an exponential increase in the ratio of conductance in the on and off states of switching devices by controlling the surface morphology of the thin films for the device by depositing at different rotational speeds. The pinholes which are preferred topography on the surface at higher rotational speed give rise to higher on-off ratio of current from the devices fabricated at the speed. The lower rotational speed contributes to higher thickness of the film and hence no switching. For thicker films, the domain is formed due to phase segregation between the two components in the film, which also indicates that the film is far from thermal equilibrium. At higher speed, there is very little scope of segregation when the film is drying up. Hence, there are only few pinholes on the surface of the film which are shallow. So, the filamentary mechanism of switching in memory devices can be firmly established by varying the speed of thin film deposition which leads to phase segregation of the materials. Thus, the formation of filament can be regulated by controlling the thickness and the surface morphology.
Two Routes to Expertise in Mental Rotation
ERIC Educational Resources Information Center
Provost, Alexander; Johnson, Blake; Karayanidis, Frini; Brown, Scott D.; Heathcote, Andrew
2013-01-01
The ability to imagine objects undergoing rotation (mental rotation) improves markedly with practice, but an explanation of this plasticity remains controversial. Some researchers propose that practice speeds up the rate of a general-purpose rotation algorithm. Others maintain that performance improvements arise through the adoption of a new…
Method and system for determining induction motor speed
Parlos, Alexander G.; Bharadwaj, Raj M.
2004-03-30
A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.
Dynamic balancing of dual-rotor system with very little rotating speed difference.
Yang, Jian; He, Shi-zheng; Wang, Le-qin
2003-01-01
Unbalanced vibration in dual-rotor rotating machinery was studied with numerical simulations and experiments. A new method is proposed to separate vibration signals of inner and outer rotors for a system with very little difference in rotating speeds. Magnitudes and phase values of unbalance defects can be obtained directly by sampling the vibration signal synchronized with reference signal. The balancing process is completed by the reciprocity influence coefficients of inner and outer rotors method. Results showed the advantage of such method for a dual-rotor system as compared with conventional balancing.
Handling Qualities Evaluations of Unmanned Aircraft Systems
2015-05-04
attitude at rotation 5° ± 0.5° 5° ± 2° Airspeed Vclimb ± 2 KIAS Vclimb ± 3 KIAS Heading Control Runway Track ± 2° Runway Track ± 5° No observed roll...maintain pitch attitude to maintain a target climb speed ±2 KIAS during the initial climb out. This task is 4 appropriate especially for an aircraft with...then maintain a climb speed after rotation (±2 KIAS ) until 1000 feet (ft) AGL. In this scenario, the pilot would pull the stick back after rotation
NASA Astrophysics Data System (ADS)
Almoussawi, M.; Smith, A. J.
2018-05-01
Poly Crystalline Boron Nitride (PCBN) tool wear during the friction stir welding of high melting alloys is an obstacle to commercialize the process. This work simulates the friction stir welding process and tool wear during the plunge/dwell period of 14.8 mm EH46 thick plate steel. The Computational Fluid Dynamic (CFD) model was used for simulation and the wear of the tool is estimated from temperatures and shear stress profile on the tool surface. Two sets of tool rotational speeds were applied including 120 and 200 RPM. Seven plunge/dwell samples were prepared using PCBN FSW tool, six thermocouples were also embedded around each plunge/dwell case in order to record the temperatures during the welding process. Infinite focus microscopy technique was used to create macrographs for each case. The CFD result has been shown that a shear layer around the tool shoulder and probe-side denoted as thermo-mechanical affected zone (TMAZ) was formed and its size increase with tool rotational speed increase. Maximum peak temperature was also found to increase with tool rotational speed increase. PCBN tool wear under shoulder was found to increase with tool rotational speed increase as a result of tool's binder softening after reaching to a peak temperature exceeds 1250 °C. Tool wear also found to increase at probe-side bottom as a result of high shear stress associated with the decrease in the tool rotational speed. The amount of BN particles revealed by SEM in the TMAZ were compared with the CFD model.
Experimental study on the heat transfer characteristics of waste printed circuit boards pyrolysis.
Ma, Hongting; Du, Na; Lin, Xueyin; Li, Chen; Lai, Junwen; Li, Zihao
2018-08-15
In order to study the appropriate and advanced technology for recycling waste printed circuit boards (PCBs), a fixed bed pyrolysis device with stirring function has been designed and developed. The effect of rotating speed on the temperature distribution and mass change in the pyrolysis process of FR-4 PCB has been analyzed. The heat transfer and pyrolysis characteristics of different granular layers with and without stirring have been investigated. The results indicate that the stirring can change the main way of heat transfer from conduction to convection in the PCB layers. As the increase of rotating speed, the temperature rising rate of material at the bottom of the pyrolysis furnace gradually decreases, while the heating rate is increasing at the upper layer, and the temperature difference between the upper and bottom layers is gradually reduced. When the rotating speed varies from 0r/min to 18r/min, the weight loss of the material increases from 3.97% to 6.76%, and the overall pyrolysis degree is improved. During the pyrolysis process, the material layer can be divided into three zones along the vertical direction, namely complete pyrolysis zone, partial pyrolysis zone and non-pyrolysis zone. As the rotating speed is 0r/min, the thickness of each zones is 6cm, 6cm and 3cm, respectively. However, when the rotating speed is increased to 18r/min, the non-pyrolysis zone disappears, and the thickness of complete pyrolysis zone and partial pyrolysis zone increase to 9cm and 6cm, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
Heller, P.R.
1958-09-16
A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.
Rotation and kinetic modifications of the tokamak ideal-wall pressure limit.
Menard, J E; Wang, Z; Liu, Y; Bell, R E; Kaye, S M; Park, J-K; Tritz, K
2014-12-19
The impact of toroidal rotation, energetic ions, and drift-kinetic effects on the tokamak ideal wall mode stability limit is considered theoretically and compared to experiment for the first time. It is shown that high toroidal rotation can be an important destabilizing mechanism primarily through the angular velocity shear; non-Maxwellian fast ions can also be destabilizing, and drift-kinetic damping can potentially offset these destabilization mechanisms. These results are obtained using the unique parameter regime accessible in the spherical torus NSTX of high toroidal rotation speed relative to the thermal and Alfvén speeds and high kinetic pressure relative to the magnetic pressure. Inclusion of rotation and kinetic effects significantly improves agreement between measured and predicted ideal stability characteristics and may provide new insight into tearing mode triggering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, D. L.; Qiu, X. M.; Geng, S. F.
The numerical simulation described in our paper [D. L. Tang et al., Phys. Plasmas 19, 073519 (2012)] shows a rotating dense plasma structure, which is the critical characteristic of the rotating spoke. The simulated rotating spoke has a frequency of 12.5 MHz with a rotational speed of {approx}1.0 Multiplication-Sign 10{sup 6} m/s on the surface of the anode. Accompanied by the almost uniform azimuthal ion distribution, the non-axisymmetric electron distribution introduces two azimuthal electric fields with opposite directions. The azimuthal electric fields have the same rotational frequency and speed together with the rotating spoke. The azimuthal electric fields excite themore » axial electron drift upstream and downstream due to the additional E{sub {theta}} x B field and then the axial shear flow is generated. The axial local charge separation induced by the axial shear electron flow may be compensated by the azimuthal electron transport, finally resulting in the azimuthal electric field rotation and electron transport with the rotating spoke.« less
Control system for a vertical axis windmill
Brulle, Robert V.
1983-10-18
A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.
Control system for a vertical-axis windmill
Brulle, R.V.
1981-09-03
A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.
Rotating Cryocooler for Superconducting Motor
NASA Astrophysics Data System (ADS)
Ko, Junseok; Jeong, Sangkwon; Kim, Hongseong; Jung, Jeheon; Choi, Jaeyoung; In, Sehwan; Sohn, Myunghwan; Kwon, Young-Kil
2006-04-01
A single-stage coaxial pulse tube refrigerator has been designed for HTS (High Temperature Superconductor) motor application. This paper discusses a practical realization of an advanced cooling method for superconducting rotor, on-board cryocooler. When a cryocooler is considered to be mounted on the superconducting rotor, the following two factors must be satisfied for practical application. First, the on-board cryocooler should not disturb the high-speed revolution of the rotor. Second, at the same time, the high-speed revolution of the rotor should not deteriorate the cooling performance of the cryocooler. These mutual technical demands restrict the type of cryocooler suitable for high-speed rotating environment. We select a Stirling-type coaxial pulse tube cryocooler and incorporate it on the 1800-rpm superconducting motor mock-up. The pulse tube cryocooler is designed with an adiabatic model and a various loss mechanism analysis. The no-load temperature is approximately 100 K with less than 150 W electric input power. The axisymmetric configuration of the fabricated cryocooler does not produce any undesirable effect at high-speed rotation. Even if the thermal performance of the rotating pulse tube cryocooler is not satisfactory, the feasibility of simple on-board cooling method for superconducting rotor is confirmed in this paper.
Modal identification of spindle-tool unit in high-speed machining
NASA Astrophysics Data System (ADS)
Gagnol, Vincent; Le, Thien-Phu; Ray, Pascal
2011-10-01
The accurate knowledge of high-speed motorised spindle dynamic behaviour during machining is important in order to ensure the reliability of machine tools in service and the quality of machined parts. More specifically, the prediction of stable cutting regions, which is a critical requirement for high-speed milling operations, requires the accurate estimation of tool/holder/spindle set dynamic modal parameters. These estimations are generally obtained through Frequency Response Function (FRF) measurements of the non-rotating spindle. However, significant changes in modal parameters are expected to occur during operation, due to high-speed spindle rotation. The spindle's modal variations are highlighted through an integrated finite element model of the dynamic high-speed spindle-bearing system, taking into account rotor dynamics effects. The dependency of dynamic behaviour on speed range is then investigated and determined with accuracy. The objective of the proposed paper is to validate these numerical results through an experiment-based approach. Hence, an experimental setup is elaborated to measure rotating tool vibration during the machining operation in order to determine the spindle's modal frequency variation with respect to spindle speed in an industrial environment. The identification of natural frequencies of the spindle under rotating conditions is challenging, due to the low number of sensors and the presence of many harmonics in the measured signals. In order to overcome these issues and to extract the characteristics of the system, the spindle modes are determined through a 3-step procedure. First, spindle modes are highlighted using the Frequency Domain Decomposition (FDD) technique, with a new formulation at the considered rotating speed. These extracted modes are then analysed through the value of their respective damping ratios in order to separate the harmonics component from structural spindle natural frequencies. Finally, the stochastic properties of the modes are also investigated by considering the probability density of the retained modes. Results show a good correlation between numerical and experiment-based identified frequencies. The identified spindle-tool modal properties during machining allow the numerical model to be considered as representative of the real dynamic properties of the system.
Pool boiling from rotating and stationary spheres in liquid nitrogen
NASA Technical Reports Server (NTRS)
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.
Cyclic fatigue of endodontic nickel titanium rotary instruments: static and dynamic tests.
Li, Uei-Ming; Lee, Bor-Shiunn; Shih, Chin-Tsai; Lan, Wan-Hong; Lin, Chun-Pin
2002-06-01
Endodontic instruments upon rotation are subjected to both tensile and compressive stress in curved canals. This stress is localized at the point of curvature. The purpose of this study was to evaluate the cyclic fatigue of 0.04 ProFile nickel titanium rotary instruments operating at different rotational speeds and varied distances of pecking motion in metal blocks that simulated curved canals. A total of 150 ProFile instruments were made to rotate freely in sloped metal blocks at speeds of 200, 300, or 400 rpm by a contra-angle handpiece mounted on an Instron machine. The electric motor and Instron machine were activated until the instruments were broken in two different modes, static and dynamic pecking-motion. The fractured surfaces of separated instruments were examined under a scanning electron microscope. All data obtained were analyzed by a stepwise multiple regression method using a 95% confidence interval. The results demonstrated that the time to failure significantly decreased as the angles of curvature or the rotational speeds increased. However, as pecking distances increased, the time to failure increased. This is because a longer pecking distance gives the instrument a longer time interval before it once again passes through the highest stress area. Microscopic evaluation indicated that ductile fracture was the major cyclic failure mode. To prevent breakage of a NiTi rotary instrument, appropriate rotational speeds and continuous pecking motion in the root canals are recommended.
NASA Technical Reports Server (NTRS)
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving a saturated pool boiling at 1 atm from rotating 2 and 3 inch diameter spheres which were immersed in LN2. Additional results are presented for a stationary 2 inch diameter sphere quenched in LN2, which were obtained with a more versatile and complete experimental apparatus. The speed of the rotational tests varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere.
Think Spatial: The Representation in Mental Rotation Is Nonvisual
ERIC Educational Resources Information Center
Liesefeld, Heinrich R.; Zimmer, Hubert D.
2013-01-01
For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information…
Method and apparatus for reducing rotor blade deflections, loads, and/or peak rotational speed
Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee
2006-10-17
A method for reducing at least one of loads, deflections of rotor blades, or peak rotational speed of a wind turbine includes storing recent historical pitch related data, wind related data, or both. The stored recent historical data is analyzed to determine at least one of whether rapid pitching is occurring or whether wind speed decreases are occurring. A minimum pitch, a pitch rate limit, or both are imposed on pitch angle controls of the rotor blades conditioned upon results of the analysis.
NASA Astrophysics Data System (ADS)
Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Shafizadeh, Mahdi; Nikzad, Siamak
2015-12-01
Semisolid stir joining has been under deliberation as a possible method for joining of copper alloys. In this study, the effect of temperature and rotational speed of stirrer on macrostructure evaluation and mechanical properties of samples were investigated. Optical microscopy and X-ray diffraction were performed for macro and microstructural analysis. A uniform micro-hardness profile was attained by semisolid stir joining method. The ultimate shear strength and bending strength of welded samples were improved in comparison with the cast sample. There is also lower area porosity in welded samples than the cast metal. The mechanical properties were improved by increasing temperature and rotational speed of the joining process.
A new approach to correct yaw misalignment in the spinning ultrasonic anemometer
NASA Astrophysics Data System (ADS)
Ghaemi-Nasab, M.; Davari, Ali R.; Franchini, S.
2018-01-01
Single-axis ultrasonic anemometers are the modern instruments for accurate wind speed measurements. Despite their widespread and ever increasing applications, little attention has been paid up to now to spinning ultrasonic anemometers that can accurately measure both the wind speed and its direction in a single and robust apparatus. In this study, intensive wind-tunnel tests were conducted on a spinning single-axis ultrasonic anemometer to investigate the yaw misalignment in ultrasonic wind speed measurements during the yaw rotation. The anemometer was rotating inside the test section with various angular velocities, and the experiments were performed at several combinations of wind speed and anemometer angular velocity. The instantaneous angular position of the ultrasonic signal path with wind direction was measured using an angular position sensor. For a spinning anemometer, the circulatory wake and the associated flow distortion, along with the Doppler effect, impart a phase shift in the signals measured by the anemometer, which should be added to the position data for correcting the yaw misalignment. In this paper, the experimental data are used to construct a theoretical model, based on a response surface method, to correct the phase shift for various wind speeds and anemometer rotational velocities. This model is shown to successfully correct the velocity indicated by the spinning anemometer for the phase shift due to the rotation, and can easily be used in the calibration process for such anemometers.
NASA Astrophysics Data System (ADS)
Turkoglu, F.; Koseoglu, H.; Zeybek, S.; Ozdemir, M.; Aygun, G.; Ozyuzer, L.
2018-04-01
In this study, aluminum-doped zinc oxide (AZO) thin films were deposited by DC magnetron sputtering at room temperature. The distance between the substrate and target axis, and substrate rotation speed were varied to get high quality AZO thin films. The influences of these deposition parameters on the structural, optical, and electrical properties of the fabricated films were investigated by X-ray diffraction (XRD), Raman spectroscopy, spectrophotometry, and four-point probe techniques. The overall analysis revealed that both sample position and substrate rotation speed are effective in changing the optical, structural, and electrical properties of the AZO thin films. We further observed that stress in the films can be significantly reduced by off-center deposition and rotating the sample holder during the deposition. An average transmittance above 85% in the visible range and a resistivity of 2.02 × 10-3 Ω cm were obtained for the AZO films.
NASA Astrophysics Data System (ADS)
Yamasaki, Nobuhiko; Tajima, Hirotoshi
2008-06-01
In the wake-rotor interaction fan noise, a number of the interacting modes at the blade passing frequency (BPF) and its harmonics are generated which are prescribed by the number of stator and rotor blades etc. In the present study, the dominant mode is tried to be suppressed by the secondary sound from the loudspeaker actuators. One of the novel features of the present system is the adoption of the control board with the Field Programmable Gate Array (FPGA) hardware and the LabVIEW software to synchronize the circumferentially installed loudspeaker actuators with the relative location of rotational blades under arbitrary fan rotational speeds. The experiments were conducted under the conditions of three rotational speeds of 2004, 3150, and 4002 [rpm]. The reduction in the sound pressure level (SPL) was observed for all three rotational speeds. The sound pressure level at the BPF was reduced approximately 13 [dB] for 2004 [rpm] case, but not so large reduction was attained for other cases probably due to the inefficiency of the loudspeaker actuators at high frequencies
Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N. Robert; Pelc, Norbert; Fahrig, Rebecca
2013-01-01
Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors’ assembly were also evaluated to determine its stability during acceleration, and a pulse width modulation algorithm was implemented to control the rotation speed of the motor. Results: At a magnetic flux density of 41 mT orthogonal to the axis of rotation (on the lower end of the expected flux density in the MR suite) the maximum speed of the motor was found to be 5150 revolutions per minute (rpm). The acceleration time necessary to reach 3000 rpm was found to be approximately 10 s at 59 mT. The resonance frequency of the assembly with the anode attached was 1310 rpm (21.8 Hz) which is far below the desired operating speeds. Pulse width modulation provides an effective method to control the speed of the motor with a resolution of 100 rpm. Conclusions: The proposed design can serve as a direct replacement to the conventional induction motor used in rotating anode x-ray tubes. It does not suffer from a reduced rotation speed when operating in a MR environment. The presence of chromic steel bearings in the prototype prevented testing at the higher field strengths, and future iterations of the design could eliminate this shortcoming. The prototype assembly demonstrates proof of concept of the authors’ design and overcomes one of the major obstacles for a MR compatible rotating anode x-ray tube. PMID:23387764
Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N Robert; Pelc, Norbert; Fahrig, Rebecca
2013-02-01
Using hybrid x-ray∕MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also evaluated to determine its stability during acceleration, and a pulse width modulation algorithm was implemented to control the rotation speed of the motor. At a magnetic flux density of 41 mT orthogonal to the axis of rotation (on the lower end of the expected flux density in the MR suite) the maximum speed of the motor was found to be 5150 revolutions per minute (rpm). The acceleration time necessary to reach 3000 rpm was found to be approximately 10 s at 59 mT. The resonance frequency of the assembly with the anode attached was 1310 rpm (21.8 Hz) which is far below the desired operating speeds. Pulse width modulation provides an effective method to control the speed of the motor with a resolution of 100 rpm. The proposed design can serve as a direct replacement to the conventional induction motor used in rotating anode x-ray tubes. It does not suffer from a reduced rotation speed when operating in a MR environment. The presence of chromic steel bearings in the prototype prevented testing at the higher field strengths, and future iterations of the design could eliminate this shortcoming. The prototype assembly demonstrates proof of concept of the authors' design and overcomes one of the major obstacles for a MR compatible rotating anode x-ray tube.
Rotating fiber array molecular driver and molecular momentum transfer device constructed therewith
Milleron, Norman
1983-01-01
A rotating fiber array molecular driver is disclosed which includes a magnetically suspended and rotated central hub to which is attached a plurality of elongated fibers extending radially therefrom. The hub is rotated so as to straighten and axially extend the fibers and to provide the fibers with a tip speed which exceeds the average molecular velocity of fluid molecules entering between the fibers. Molecules colliding with the sides of the rotating fibers are accelerated to the tip speed of the fiber and given a momentum having a directional orientation within a relatively narrow distribution angle at a point radially outward of the hub, which is centered and peaks at the normal to the fiber sides in the direction of fiber rotation. The rotating fiber array may be used with other like fiber arrays or with other stationary structures to form molecular momentum transfer devices such as vacuum pumps, molecular separators, molecular coaters, or molecular reactors.
Mental Rotation Performance in Male Soccer Players
Jansen, Petra; Lehmann, Jennifer; Van Doren, Jessica
2012-01-01
It is the main goal of this study to investigate the visual-spatial cognition in male soccer players. Forty males (20 soccer players and 20 non-athletes) solved a chronometric mental rotation task with both cubed and embodied figures (human figures, body postures). The results confirm previous results that all participants had a lower mental rotation speed for cube figures compared to embodied figures and a higher error rate for cube figures, but only at angular disparities greater than 90°. It is a new finding that soccer–players showed a faster reaction time for embodied stimuli. Because rotation speed did not differ between soccer-players and non-athletes this finding cannot be attributed to the mental rotation process itself but instead to differences in one of the following processes which are involved in a mental rotation task: the encoding process, the maintanence of readiness, or the motor process. The results are discussed against the background of the influence on longterm physical activity on mental rotation and the context of embodied cognition. PMID:23119073
Global m-Equivariant Solutions of Nematic Liquid Crystal Flows in Dimension Two
NASA Astrophysics Data System (ADS)
Chen, Yuan; Yu, Yong
2017-11-01
In this article we construct a global solution of the simplified Ericksen-Leslie system. We show that the velocity of the solution can be decomposed into the sum of three parts. The main flow is governed by the Oseen vortex with the same circulation Reynolds number as the initial fluid. The secondary flow has finite kinetic energy and decay in the speed (1 + t)-2 as t → ∞. The third part is a minor flow whose kinetic energy decays faster than the secondary flow. As for the orientation variable, our solution has a phase function which diverges logarithmically to ∞ as t → ∞. This indicates that the orientation variable will keep rotating around the z-axis while t → ∞. This phenomenon results from a non-trivial coupling between the orientation variable and a fluid with a non-zero circulation Reynolds number.
Analysis on pressure characteristics of pump turbine guide bearing rotating sump based on VOF model
NASA Astrophysics Data System (ADS)
Zhai, L. M.; Yao, Z.; Huang, Q. S.; Xiao, Y. X.; Wang, Z. W.
2013-12-01
With the technology of Computational Fluid Dynamics (CFD), this paper conducts a 3D numerical simulation for the oil and gas flow field in the Pump turbine guide bearing rotating sump. VOF model is adopted in this simulation. This study calculates distribution of the oil-air phase and characteristics of the pressure. The influence of sump rotating speed, oil level and oil viscosity on the pressure at the inlet of oil-immersion plate are discussed. The results demonstrate that the static pressure at the inlet is roughly proportional to oil level. Too low level may result in the separation between lubrication oil and supply hole on the oil-immersion plate, which then disables the oil supply. The static pressure at the inlet increases parabola as the sump rotating speed increases. To ensure the supply pressure, the unit is not suitable for long time operation under low rotating speed. The temperature-viscosity effect of the lubricant oil has little influence on the oil pressure at the supply hole. This paper provides a theoretical base for the safe design and operation of the pump turbine rotating sump, and offers the inlet boundary condition for the analysis of the oil film dynamic characteristics of the turbine guide bearing.
Variable speed wind turbine generator with zero-sequence filter
Muljadi, Eduard
1998-01-01
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable Speed Wind Turbine Generator with Zero-sequence Filter
Muljadi, Eduard
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable speed wind turbine generator with zero-sequence filter
Muljadi, E.
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.
Dillon, Patrick A; Kempton, Thomas; Ryan, Samuel; Hocking, Joel; Coutts, Aaron J
2018-03-01
To examine the effects of match-related and individual player characteristics on activity profile and technical performance during rotations in professional Australian football. Longitudinal observational study. Global positioning system data and player rating scores were collected from 33 professional Australian football players during 15 Australian football League matches. Player rating scores were time aligned with their relative total and high-speed running (HSR) distance (>20kmh -1 ) for each on ground rotation. Individual players' maximal aerobic running speed (MAS) was determined from a two-kilometre trial. A multilevel linear mixed model was used to examine the influence of rotations on physical activity profiles and skill execution during match play. Rotation duration and accumulated distance resulted in a trivial-to-moderate reduction in relative total and HSR distances as well as relative rating points. The number of disposals in a rotation had a small positive effect on relative total and HSR distances and a large positive effect on relative rating points. MAS was associated with a moderate-to-large increase in relative total distance, but had a large negative effect on relative rating points. Previous rotation time, stoppages and the number of rotations in the quarter had a trivial-to-small negative effect on relative total and HSR distances. A greater speed (mmin -1 ) was associated with a trivial increase in rating points during a rotation, while there was a trivial decrease in relative total distance as rating points increased. The complex relationship between factors that influence activity profile and technical performance during rotations in Australian football needs to be considered when interpreting match performance. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Connecting Fundamental Constants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Mario, D.
2008-05-29
A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension willmore » appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a {pi}{radical}(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment.« less
Mass flux in the ecliptic plane and near the Sun deduced from Doppler scintillation
NASA Technical Reports Server (NTRS)
Woo, Richard; Gazis, Paul R.
1994-01-01
During the late declining phase of the solar cycle, the tilt of the solar magnetic dipole with respect to the Sun's rotation axis leads to large-scale organization of the solar wind, such that alternating regions of high- and low-speed solar wind are observed in the ecliptic plane. In this paper, we use Doppler scintillation measurements to investigate mass flux of these two types of solar wind in the ecliptic plane and inside 0.3 AU, where in situ measurements have not been possible. To the extent that Doppler scintillation reflects mass flux, we find that mass flux in high-speed streams: (1) is lower (by a factor of approximately 2.2) than the mass flux of the average solar wind in the heliocentric distance range of 0.3-0.5 AU; (2) is lower still (by as much as a factor of about 4) than the mass flux of the slow solar wind associated with the streamer belt; and (3) appears to grow with heliocentric distance. These Doppler scintillation results are consistent with the equator to pole decrease in mass flux observed in earlier spectral broadening measurements, and with trends and differences between high- and low-speed solar wind observed by in situ measurements in the range of 0.3-0.1 AU. The mass flux results suggest that the solar wind flow in high-speed streams is convergent towards the ecliptic near the Sun, becoming less convergent and approaching radial with increasing heliocentric distance beyond 0.3 AU. The variability of mass flux observed within equatorial and polar high-speed streams close to the Sun is strikingly low. This low variability implies that, as Ulysses currently ascends to higher latitudes and spends more time in the south polar high-speed stream after crossing the heliocentric current sheet, it can expect to observe a marked decrease in variations of both mass flux and solar wind speed, a trend that appears to have started already.
Pair aligning improved motility of Quincke rollers.
Lu, Shi Qing; Zhang, Bing Yue; Zhang, Zhi Chao; Shi, Yan; Zhang, Tian Hui
2018-06-06
Density-dependent speed is studied in a two-dimensional active colloid in which the colloidal particles are propelled by an external electric field via a Quincke rotation. Above the critcal electric field, dense dynamic clusters form spotaneously, in which the particles are highly aligned in velocity and move much faster than isolated units. Detailed observations on pair collision reveal that the alignment of velocity is induced by the long-ranged hydrodynamic interactions and the improvement of speed in the clusters arises from pair aligning in which two particles are closely paired and rotate synchronically. In the aligning state, the short-range in-plane dipole-dipole attraction enhances the rotation torque and gives rises to a larger rolling speed. The pair aligning becomes difficult and unstable at high electric field where the normal dipole-dipole repulsion becomes dominant. As a consequence, the dependence of speed on density becomes weak increasingly upon the increase of the electric field. This result offers an interpretation for the discrepancy between our and previous observations on Quincke rollers.
GRMHD/RMHD Simulations and Stability of Magnetized Spine-Sheath Relativistic Jets
NASA Technical Reports Server (NTRS)
Hardee, Philip; Mizuno, Yosuke; Nishikawa, Ken-Ichi
2007-01-01
A new general relativistic magnetohydrodynamics (GRMHD ) code "RAISHIN" used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, cl2, on the KH instability associated with a relativistic, Y = 2.5, jet spine-sheath interaction. In the simulations sound speeds up to ? c/3 and Alfven wave speeds up to ? 0.56 c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from d 2 sheath speeds is found.
33 CFR 149.535 - What are the requirements for rotating beacons on platforms?
Code of Federal Regulations, 2011 CFR
2011-07-01
... beacon must: (a) Have an effective intensity of at least 15,000 candela; (b) Flash at least once every 20 seconds; (c) Provide a white light signal; (d) Operate in wind speeds of up to 100 knots at a rotation rate that is within 6 percent of the operating speed displayed on the beacon; (e) Have one or more...
33 CFR 149.535 - What are the requirements for rotating beacons on platforms?
Code of Federal Regulations, 2013 CFR
2013-07-01
... beacon must: (a) Have an effective intensity of at least 15,000 candela; (b) Flash at least once every 20 seconds; (c) Provide a white light signal; (d) Operate in wind speeds of up to 100 knots at a rotation rate that is within 6 percent of the operating speed displayed on the beacon; (e) Have one or more...
33 CFR 149.535 - What are the requirements for rotating beacons on platforms?
Code of Federal Regulations, 2012 CFR
2012-07-01
... beacon must: (a) Have an effective intensity of at least 15,000 candela; (b) Flash at least once every 20 seconds; (c) Provide a white light signal; (d) Operate in wind speeds of up to 100 knots at a rotation rate that is within 6 percent of the operating speed displayed on the beacon; (e) Have one or more...
33 CFR 149.535 - What are the requirements for rotating beacons on platforms?
Code of Federal Regulations, 2010 CFR
2010-07-01
... beacon must: (a) Have an effective intensity of at least 15,000 candela; (b) Flash at least once every 20 seconds; (c) Provide a white light signal; (d) Operate in wind speeds of up to 100 knots at a rotation rate that is within 6 percent of the operating speed displayed on the beacon; (e) Have one or more...
33 CFR 149.535 - What are the requirements for rotating beacons on platforms?
Code of Federal Regulations, 2014 CFR
2014-07-01
... beacon must: (a) Have an effective intensity of at least 15,000 candela; (b) Flash at least once every 20 seconds; (c) Provide a white light signal; (d) Operate in wind speeds of up to 100 knots at a rotation rate that is within 6 percent of the operating speed displayed on the beacon; (e) Have one or more...
Oyama, Sakiko; Yu, Bing; Blackburn, J Troy; Padua, Darin A; Li, Li; Myers, Joseph B
2014-09-01
In a properly coordinated throwing motion, peak pelvic rotation velocity is reached before peak upper torso rotation velocity, so that angular momentum can be transferred effectively from the proximal (pelvis) to distal (upper torso) segment. However, the effects of trunk rotation sequence on pitching biomechanics and performance have not been investigated. The aim of this study was to investigate the effects of trunk rotation sequence on ball speed and on upper extremity biomechanics that are linked to injuries in high school baseball pitchers. The hypothesis was that pitchers with improper trunk rotation sequence would demonstrate lower ball velocity and greater stress to the joint. Descriptive laboratory study. Three-dimensional pitching kinematics data were captured from 72 high school pitchers. Subjects were considered to have proper or improper trunk rotation sequences when the peak pelvic rotation velocity was reached either before or after the peak upper torso rotation velocity beyond the margin of error (±3.7% of the time from stride-foot contact to ball release). Maximal shoulder external rotation angle, elbow extension angle at ball release, peak shoulder proximal force, shoulder internal rotation moment, and elbow varus moment were compared between groups using independent t tests (α < 0.05). Pitchers with improper trunk rotation sequences (n = 33) demonstrated greater maximal shoulder external rotation angle (mean difference, 7.2° ± 2.9°, P = .016) and greater shoulder proximal force (mean difference, 9.2% ± 3.9% body weight, P = .021) compared with those with proper trunk rotation sequences (n = 22). No other variables differed significantly different between groups. High school baseball pitchers who demonstrated improper trunk rotation sequences demonstrated greater maximal shoulder external rotation angle and shoulder proximal force compared with pitchers with proper trunk rotation sequences. Improper sequencing of the trunk and torso alter upper extremity joint loading in ways that may influence injury risk. As such, exercises that reinforce the use of a proper trunk rotation sequence during the pitching motion may reduce the stress placed on the structures around the shoulder joint and lead to the prevention of injuries. © 2014 The Author(s).
Kinematic Description of Elite Vs. Low Level Players in Team-Handball Jump Throw
Wagner, Herbert; Buchecker, Michael; von Duvillard, Serge P.; Müller, Erich
2010-01-01
The jump throw is the most applied throwing technique in team- handball (Wagner et al., 2008); however, a comprehensive analysis of 3D-kinematics of the team-handball jump throw is lacking. Therefore, the purpose of our study was: 1) to measure differences in ball release speed in team- handball jump throw and anthropometric parameters between groups of different levels of performance and (2) to analyze upper body 3D-kinematics (flexion/extension and rotation) to determine significant differences between these groups. Three-dimensional kinematic data was analyzed via the Vicon MX 13 motion capturing system (Vicon Peak, Oxford, UK) from 26 male team-handball players of different performance levels (mean age: 21.2 ± 5.0 years). The participants were instructed to throw the ball (IHF Size 3) onto a target at 8 m distance, and to hit the center of a square of 1 × 1 m at about eye level (1.75 m), with maximum ball release speed. Significant differences between elite vs. low level players were found in the ball release speed (p < 0.001), body height (p < 0.05), body weight (p < 0.05), maximal trunk internal rotation (p < 0.05), trunk flexion (p < 0.01) and forearm pronation (p < 0.05) as well as trunk flexion (p < 0.05) and shoulder internal rotation (p < 0.001) angular velocity at ball release. Results of our study suggest that team-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed in the jump throw, and that an increase in trunk flexion and rotation angular velocity improve the performance in team-handball jump throw that should result in an increase of ball release speed. Key points Team-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed. An increase in trunk flexion, trunk rotation and shoulder internal rotation angular velocity should result in an increase of ball release speed. Trunk movements are normally well observable for experienced coaches, easy correctable and therefore practical to improve the performance in team-handball jump throw of low level players during training without using complex measurement devices. PMID:24149381
Kinematic description of elite vs. Low level players in team-handball jump throw.
Wagner, Herbert; Buchecker, Michael; von Duvillard, Serge P; Müller, Erich
2010-01-01
The jump throw is the most applied throwing technique in team- handball (Wagner et al., 2008); however, a comprehensive analysis of 3D-kinematics of the team-handball jump throw is lacking. Therefore, the purpose of our study was: 1) to measure differences in ball release speed in team- handball jump throw and anthropometric parameters between groups of different levels of performance and (2) to analyze upper body 3D-kinematics (flexion/extension and rotation) to determine significant differences between these groups. Three-dimensional kinematic data was analyzed via the Vicon MX 13 motion capturing system (Vicon Peak, Oxford, UK) from 26 male team-handball players of different performance levels (mean age: 21.2 ± 5.0 years). The participants were instructed to throw the ball (IHF Size 3) onto a target at 8 m distance, and to hit the center of a square of 1 × 1 m at about eye level (1.75 m), with maximum ball release speed. Significant differences between elite vs. low level players were found in the ball release speed (p < 0.001), body height (p < 0.05), body weight (p < 0.05), maximal trunk internal rotation (p < 0.05), trunk flexion (p < 0.01) and forearm pronation (p < 0.05) as well as trunk flexion (p < 0.05) and shoulder internal rotation (p < 0.001) angular velocity at ball release. Results of our study suggest that team-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed in the jump throw, and that an increase in trunk flexion and rotation angular velocity improve the performance in team-handball jump throw that should result in an increase of ball release speed. Key pointsTeam-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed.An increase in trunk flexion, trunk rotation and shoulder internal rotation angular velocity should result in an increase of ball release speed.Trunk movements are normally well observable for experienced coaches, easy correctable and therefore practical to improve the performance in team-handball jump throw of low level players during training without using complex measurement devices.
Simplified modelling and analysis of a rotating Euler-Bernoulli beam with a single cracked edge
NASA Astrophysics Data System (ADS)
Yashar, Ahmed; Ferguson, Neil; Ghandchi-Tehrani, Maryam
2018-04-01
The natural frequencies and mode shapes of the flapwise and chordwise vibrations of a rotating cracked Euler-Bernoulli beam are investigated using a simplified method. This approach is based on obtaining the lateral deflection of the cracked rotating beam by subtracting the potential energy of a rotating massless spring, which represents the crack, from the total potential energy of the intact rotating beam. With this new method, it is assumed that the admissible function which satisfies the geometric boundary conditions of an intact beam is valid even in the presence of a crack. Furthermore, the centrifugal stiffness due to rotation is considered as an additional stiffness, which is obtained from the rotational speed and the geometry of the beam. Finally, the Rayleigh-Ritz method is utilised to solve the eigenvalue problem. The validity of the results is confirmed at different rotational speeds, crack depth and location by comparison with solid and beam finite element model simulations. Furthermore, the mode shapes are compared with those obtained from finite element models using a Modal Assurance Criterion (MAC).
Parametric evaluation of ball milling of SiC in water
NASA Technical Reports Server (NTRS)
Kiser, J. D.; Herbell, T. P.; Freedman, M. R.
1985-01-01
A statistically designed experiment was conducted to determine optimum conditions for ball milling alpha-SiC in water. The influence of pH adjustment, volume percent solids loading, and mill rotational speed on grinding effectiveness was examined. An equation defining the effect of those milling variables on specific surface area was obtained. The volume percent solids loading of the slurry had the greatest influence on the grinding effectiveness in terms of increase in specific surface area. As grinding effectiveness improved, mill and media wear also increased. Contamination was minimized by use of sintered alpha-SiC milling hardware.
NASA Technical Reports Server (NTRS)
Pera, R. J.; Onat, E.; Klees, G. W.; Tjonneland, E.
1977-01-01
Weight and envelope dimensions of aircraft gas turbine engines are estimated within plus or minus 5% to 10% using a computer method based on correlations of component weight and design features of 29 data base engines. Rotating components are estimated by a preliminary design procedure where blade geometry, operating conditions, material properties, shaft speed, hub-tip ratio, etc., are the primary independent variables used. The development and justification of the method selected, the various methods of analysis, the use of the program, and a description of the input/output data are discussed.
Modeling on Fluid Flow and Inclusion Motion in Centrifugal Continuous Casting Strands
NASA Astrophysics Data System (ADS)
Wang, Qiangqiang; Zhang, Lifeng; Sridhar, Seetharaman
2016-08-01
During the centrifugal continuous casting process, unreasonable casting parameters can cause violent level fluctuation, serious gas entrainment, and formation of frozen shell pieces at the meniscus. Thus, in the current study, a three-dimensional multiphase turbulent model was established to study the transport phenomena during centrifugal continuous casting process. The effects of nozzle position, casting and rotational speed on the flow pattern, centrifugal force acting on the molten steel, level fluctuation, gas entrainment, shear stress on mold wall, and motion of inclusions during centrifugal continuous casting process were investigated. Volume of Fluid model was used to simulate the molten steel-air two-phase. The level fluctuation and the gas entrainment during casting were calculated by user-developed subroutines. The trajectory of inclusions in the rotating system was calculated using the Lagrangian approach. The results show that during centrifugal continuous casting, a large amount of gas was entrained into the molten steel, and broken into bubbles of various sizes. The greater the distance to the mold wall, the smaller the centrifugal force. Rotation speed had the most important influence on the centrifugal force distribution at the side region. Angular moving angle of the nozzle with 8° and keeping the rotation speed with 60 revolutions per minute can somehow stabilize the level fluctuation. The increase of angular angle of nozzle from 8 to 18 deg and rotation speed from 40 to 80 revolutions per minute favored to decrease the total volume of entrained bubbles, while the increase of distance of nozzle moving left and casting speed had reverse effects. The trajectories of inclusions in the mold were irregular, and then rotated along the strand length. After penetrating a certain distance, the inclusions gradually moved to the center of billet and gathered there. More work, such as the heat transfer, the solidification, and the inclusions entrapment during centrifugal continuous casting, will be performed.
NASA Astrophysics Data System (ADS)
Cai, Le; Mao, Xiaobing; Ma, Zhexuan
2018-02-01
This study first constructed the nonlinear mathematical model of the high-pressure common rail (HPCR) system in the diesel engine. Then, the nonlinear state transformation was performed using the flow’s calculation and the standard state space equation was acquired. Based on sliding-mode variable structure control (SMVSC) theory, a sliding-mode controller for nonlinear systems was designed for achieving the control of common rail pressure and the diesel engine’s rotational speed. Finally, on the simulation platform of MATLAB, the designed nonlinear HPCR system was simulated. The simulation results demonstrate that sliding-mode variable structure control algorithm shows favorable control performances and overcome the shortcomings of traditional PID control in overshoot, parameter adjustment, system precision, adjustment time and ascending time.
Advanced performance of small diaphragm vacuum pumps through the use of mechatronics
NASA Astrophysics Data System (ADS)
Lachenmann, R.; Dirscherl, J.
Oil-free diaphragm vacuum pumps have proven to be the best way in vacuum generation for the chemical laboratory and they also find increasing use as backing pumps for modern wide-range turbo molecular pumps. The majority of vacuum pumps in practical use pump only a rather small percentage of their lifetime at full gas load. A pump backing a turbo molecular pump does not have to pump a significant gas load when the high-vacuum pump is running at ultimate vacuum pressure. Also, for a vacuum distillation the vacuum pump has to operate at full speed only at the beginning to lower the pressure inside the system to a vacuum level where evaporation starts. In a rather leak-tight system the distillation process continues by evaporating from the hot liquid and condensing at the cold condenser without the need of a mechanical vacuum pump. Rotational speed controlled diaphragm pumps are now available through progress in mechatronics and offer high pumping speed capability for fast pump-down cycles and precise pressure control for distillations. At low gas load the rotational speed can be reduced, improving maintenance intervals, power consumption, noise, vibration and - surprisingly - also ultimate pressure. The different behaviour in pumping speed and ultimate pressure of rotational speed controlled diaphragm pumps in comparison to constant-speed pumps is related to the mechanical properties of the valves and gas dynamics .
Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki
NASA Astrophysics Data System (ADS)
Horinouchi, Takeshi; Murakami, Shin-Ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S.; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M.; Sugiyama, Ko-Ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F.
2017-09-01
The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet's rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet's nightside escapes to space at narrow spectral windows of the near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m s-1 at low to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m s-1 using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide clues to the dynamics of Venus's atmospheric superrotation.
Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki.
Horinouchi, Takeshi; Murakami, Shin-Ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M; Sugiyama, Ko-Ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F
2017-01-01
The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet's rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet's night-side escapes to space at narrow spectral windows of near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m/s at low- to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m/s using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide new challenges and clues to the dynamics of Venus's atmospheric superrotation.
NASA Astrophysics Data System (ADS)
Dabir, Hossein; Davarpanah, Morteza; Ahmadpour, Ali
2015-07-01
The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. According to the results, smaller AgCl particles are obtained under higher supersaturations and also higher disk rotation speeds. Moreover, in the range of our investigation, the use of lower reactants flow rates and larger disk diameter can reduce the particle size of products. The non-stoichiometric condition of reactants has a significant influence on the reduction in particle aggregation. It was also found that by optimizing the operating conditions, uniform AgCl nanoparticles with the mean size of around 37 nm can be produced.
Sound controlled rotation of a cluster of small particles on an ultrasonically vibrating metal strip
NASA Astrophysics Data System (ADS)
Zhang, Xueyi; Zheng, Yun; Hu, Junhui
2008-01-01
We show that a vibrating metal strip, mechanically driven by an ultrasonic transducer, can rotate a cluster of small particles around a fixed point, and the diameter of the cluster of small particles can reach a stable value (steady diameter) for a given driving condition. The rotation is very stable when the vibration of the metal strip is appropriate. The revolution speed, its direction, and steady diameter of the particle cluster can be controlled by the operating frequency of the ultrasonic transducer. For shrimp eggs, a revolution speed up to 360rpm can be obtained.
A top-face-sway electromagnetic micromotor
NASA Astrophysics Data System (ADS)
Liang, Jingqiu; Le, Zichun; Yao, Jinsong; Wu, Zhiyong; Jia, Hongguang; Wu, Yihui; Jia, Zhi; 1, Qiongying Lu; Xuan, Ming; Wang, Lijun
2003-04-01
In this paper, the structure of a top-face-sway electromagnetic micromotor and its principle, fabrication and performance are introduced. A combination of the electromagnetic actuating and the planetary reducing provides this micromotor an advantage of low rotational speed and high torque. In addition, since a flexible coupling absorbs the sway and only outputs rotation, it gives this micromotor a balanced output. The dimension of the micromotor is 5 mm. Its rotation speed has a range of 20 - 860 rpm, and its driving current is 300 mA. The output torque of the micromotor is measured to be 13.0 ?Nm.
Bonnemain, Jean; Malossi, A Cristiano I; Lesinigo, Matteo; Deparis, Simone; Quarteroni, Alfio; von Segesser, Ludwig K
2013-10-01
In this work we present numerical simulations of continuous flow left ventricle assist device implantation with the aim of comparing difference in flow rates and pressure patterns depending on the location of the anastomosis and the rotational speed of the device. Despite the fact that the descending aorta anastomosis approach is less invasive, since it does not require a sternotomy and a cardiopulmonary bypass, its benefits are still controversial. Moreover, the device rotational speed should be correctly chosen to avoid anomalous flow rates and pressure distribution in specific location of the cardiovascular tree. With the aim of assessing the differences between these two approaches and device rotational speed in terms of flow rate and pressure waveforms, we set up numerical simulations of network of one-dimensional models where we account for the presence of an outflow cannula anastomosed to different locations of the aorta. Then, we use the resulting network to compare the results of the two different cannulations for several stages of heart failure and different rotational speed of the device. The inflow boundary data for the heart and the cannulas are obtained from a lumped parameters model of the entire circulatory system with an assist device, which is validated with clinical data. The results show that ascending and descending aorta cannulations lead to similar waveforms and mean flow rate in all the considered cases. Moreover, regardless of the anastomosis region, the rotational speed of the device has an important impact on wave profiles; this effect is more pronounced at high RPM. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Software and hardware complex for research and management of the separation process
NASA Astrophysics Data System (ADS)
Borisov, A. P.
2018-01-01
The article is devoted to the development of a program for studying the operation of an asynchronous electric drive using vector-algorithmic switching of windings, as well as the development of a hardware-software complex for controlling parameters and controlling the speed of rotation of an asynchronous electric drive for investigating the operation of a cyclone. To study the operation of an asynchronous electric drive, a method was used in which the average value of flux linkage is found and a method for vector-algorithmic calculation of the power and electromagnetic moment of an asynchronous electric drive feeding from a single-phase network is developed, with vector-algorithmic commutation, and software for calculating parameters. The software part of the complex allows to regulate the speed of rotation of the motor by vector-algorithmic switching of transistors or, using pulse-width modulation (PWM), set any engine speed. Also sensors are connected to the hardware-software complex at the inlet and outlet of the cyclone. The developed cyclone with an inserted complex allows to receive high efficiency of product separation at various entrance speeds. At an inlet air speed of 18 m / s, the cyclone’s maximum efficiency is achieved. For this, it is necessary to provide the rotational speed of an asynchronous electric drive with a frequency of 45 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiuchi, T.; Sakurai, H.
1988-09-20
This patent describes an apparatus for controlling the solenoid current of a solenoid valve which controls suction air in an internal combustion engine. The apparatus consists of: (a) engine rotational speed detector means for detecting engine rotational speed; (b) aimed idle speed setting means for generating a signal corresponding to a predetermined idling speed; (c) first calculating means coupled to the engine rotational speed detector means and the aimed idle speed setting means for calculating a feedback control term (Ifb(n)) as a function of an integration term (Iai), a proportion term (Ip), and a differentiation term (Id); (d) first determiningmore » and storing means coupled to the first calculating means, for determining an integration term (Iai(n)) of the the feedback control term (Ifb(n)) and for determining a determined value (Ixref) in accordance therewith; (e) changeover means coupled to the first calculating means and the first determining and storing means for selecting the output of one of the first calculating means or the first determining and storing means; (f) first signal generating means coupled to the changeover means for generating a solenoid current control value (Icmd) as a function of the output of the changeover means.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiuchi, T.; Yasuoka, A.
1988-09-13
This patent describes apparatus for controlling the solenoid current of a selenoid valve which controls the amount of suction air in an internal combustion engine, the apparatus comprising: (a) engine rotational speed detector means for detecting engine rotational speed; (b) aimed idle speed setting means for generating a signal corresponding to a predetermined idling speed; (c) first calculating means coupled to the engine rotational speed detector means and the aimed idle speed setting means for calculating a feedback control term Ifb(n) as a function of an integration term (Iai), a proportion term (Ip), and a differentiation term (Id); (d) firstmore » determining and storing means coupled to the first calculating means, for determining an integration term (Iai(n)) of the feedback control term (Ifb(n)) and for determining a determined value (Ixref) in accordance therewith; (e) changeover means coupled to the first calculating means and the first determining and storing means for selecting the output of one of the first calculating means or the first determining and storing means; (f) first signal generating means coupled to the changeover means for generating a solenoid current control value (Icmd) as a function of the output of the changeover.« less
NASA Astrophysics Data System (ADS)
Mamonov, V. N.; Nazarov, A. D.; Serov, A. F.; Terekhov, V. I.
2016-01-01
The effect of parameters of the multi-ring Couette system with counter rotating coaxial cylinders on the process of thermal energy release in a viscous liquid filling this system is considered with regard to the problem of determining the possibility of creating the high-performance wind heat generator. The multi-cylinder rotor design allows directly conversion of the mechanical power of a device consisting of two "rotor" wind turbines with a common axis normal to the air flow into the thermal energy in a wide range of rotational speed of the cylinders. Experimental results on the measurement of thermal power released in the pilot heat generator at different relative angular speeds of cylinder rotation are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akparov, V V; Dmitriev, Valentin G; Duraev, V P
A semiconductor ring laser (SRL) with a radiation wavelength of 1540 nm and a fibre ring cavity is developed and studied in several main lasing regimes. An SRL design based on a semiconductor optical travelling-wave amplifier and a ring cavity, composed of a single-mode polarisation-maintaining fibre, is considered. The SRL is studied in the regime of a rotation speed sensor, in which the frequency shift of counterpropagating waves in the SRL is proportional to its rotation speed. The minimum rotation speed that can be detected using the SRL under consideration depends on the cavity length; in our experiment it turnedmore » to be 1deg s{sup -1}. The changes in the threshold current, emission spectrum, and fundamental radiation wavelength upon closing and opening the SRL ring cavity and with a change in its radius are also investigated. (lasers)« less
Computer modeling of the stalled flow of a rotating cylinder and the reverse magnus effect
NASA Astrophysics Data System (ADS)
Belotserkovskii, S. M.; Kotovskii, V. N.; Nisht, M. I.; Fedorov, R. M.
1985-02-01
Unsteady stalled flow around a rotating cylinder is investigated in a numerical experiment. Attention is mostly given to the reverse Magnus effect which was discovered in tube experiments at some critical rotational speed of the cylinder.
NASA Astrophysics Data System (ADS)
Zhang, Yunshun; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P.
2018-04-01
Nonlinear energy harvesters are frequently considered in preference to linear devices because they can potentially overcome the narrow frequency bandwidth limitations inherent to linear variants; however, the possibility of variable harvesting efficiency is raised for the nonlinear case. This paper proposes a rotational energy harvester which may be fitted into an automobile tyre, with the advantage that it may broaden the rotating frequency bandwidth and simultaneously stabilise high-energy orbit oscillations. By consideration of the centrifugal effects due to rotation, the overall restoring force will potentially be increased for a cantilever implemented within the harvester, and this manifests as an increase in its equivalent elastic stiffness. In addition, this study reveals that the initial potential well barriers become as shallow as those for a bistable system. When the rotational frequency increases beyond an identifiable boundary frequency, the system transforms into one with a potential barrier of a typical monostable system. On this basis, the inter-well motion of the bistable system can provide sufficient kinetic energy so that the cantilever maintains its high-energy orbit oscillation for monostable hardening behaviour. Furthermore, in a vehicle drive experiment, it has been shown that the effective rotating frequency bandwidth can be widened from 15 km/h-25 km/h to 10 km/h-40 km/h. In addition, it is confirmed that the centrifugal effects can improve the harvester performance, producing a mean power of 61 μW at a driving speed of 40 km/h, and this is achieved by stabilising the high-energy orbit oscillations of the rotational harvester.
How Do Changes in Speed Affect the Perception of Duration?
ERIC Educational Resources Information Center
Matthews, William J.
2011-01-01
Six experiments investigated how changes in stimulus speed influence subjective duration. Participants saw rotating or translating shapes in three conditions: constant speed, accelerating motion, and decelerating motion. The distance moved and average speed were the same in all three conditions. In temporal judgment tasks, the constant-speed…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis; Alan Black; Homer Robertson
2006-03-01
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).« less
Experimental study of a variable-capacitance micromotor with electrostatic suspension
NASA Astrophysics Data System (ADS)
Han, F. T.; Wu, Q. P.; Wang, L.
2010-11-01
A variable-capacitance micromotor where the rotor is supported electrostatically in five degrees of freedom was designed, fabricated and tested in order to study the behavior of this electrostatic motor. The micromachined device is based on a glass/silicon/glass stack bonding structure, fabricated by bulk micromachining and initially operated in atmospheric environment. The analytical torque model is obtained by calculating the capacitances between different stator electrodes and the rotor. Capacitance values in the order of 10-13 pF and torque values in the order of 10-10 N m have been calculated from the motor geometry and attainable drive voltage. A dynamic model of the motor is proposed by further estimating the air-film damping effect in an effort to explain the experimental rotation measurements. Experimental results of starting voltage, continuous operation, switching response and electric bearing of the micromotor are presented and discussed. Preliminary measurements indicate that a rotor rotating speed of 73.3 r min-1 can be achieved at a drive voltage of 28.3 V, equivalent to a theoretical motive torque of 517 pN m. Starting voltage results obtained from experimental measurement are in agreement with the developed dynamic model.
Slide system for machine tools
Douglass, S.S.; Green, W.L.
1980-06-12
The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.
Synchronizing Photography For High-Speed-Engine Research
NASA Technical Reports Server (NTRS)
Chun, K. S.
1989-01-01
Light flashes when shaft reaches predetermined angle. Synchronization system facilitates visualization of flow in high-speed internal-combustion engines. Designed for cinematography and holographic interferometry, system synchronizes camera and light source with predetermined rotational angle of engine shaft. 10-bit resolution of absolute optical shaft encoder adapted, and 2 to tenth power combinations of 10-bit binary data computed to corresponding angle values. Pre-computed angle values programmed into EPROM's (erasable programmable read-only memories) to use as angle lookup table. Resolves shaft angle to within 0.35 degree at rotational speeds up to 73,240 revolutions per minute.
Slide system for machine tools
Douglass, Spivey S.; Green, Walter L.
1982-01-01
The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.
Zhang, Yawei; Deng, Xinchen; Yin, Fang-Fang; Ren, Lei
2018-01-01
Limited-angle intrafraction verification (LIVE) has been previously developed for four-dimensional (4D) intrafraction target verification either during arc delivery or between three-dimensional (3D)/IMRT beams. Preliminary studies showed that LIVE can accurately estimate the target volume using kV/MV projections acquired over orthogonal view 30° scan angles. Currently, the LIVE imaging acquisition requires slow gantry rotation and is not clinically optimized. The goal of this study is to optimize the image acquisition parameters of LIVE for different patient respiratory periods and gantry rotation speeds for the effective clinical implementation of the system. Limited-angle intrafraction verification imaging acquisition was optimized using a digital anthropomorphic phantom (XCAT) with simulated respiratory periods varying from 3 s to 6 s and gantry rotation speeds varying from 1°/s to 6°/s. LIVE scanning time was optimized by minimizing the number of respiratory cycles needed for the four-dimensional scan, and imaging dose was optimized by minimizing the number of kV and MV projections needed for four-dimensional estimation. The estimation accuracy was evaluated by calculating both the center-of-mass-shift (COMS) and three-dimensional volume-percentage-difference (VPD) between the tumor in estimated images and the ground truth images. The robustness of LIVE was evaluated with varied respiratory patterns, tumor sizes, and tumor locations in XCAT simulation. A dynamic thoracic phantom (CIRS) was used to further validate the optimized imaging schemes from XCAT study with changes of respiratory patterns, tumor sizes, and imaging scanning directions. Respiratory periods, gantry rotation speeds, number of respiratory cycles scanned and number of kV/MV projections acquired were all positively correlated with the estimation accuracy of LIVE. Faster gantry rotation speed or longer respiratory period allowed less respiratory cycles to be scanned and less kV/MV projections to be acquired to estimate the target volume accurately. Regarding the scanning time minimization, for patient respiratory periods of 3-4 s, gantry rotation speeds of 1°/s, 2°/s, 3-6°/s required scanning of five, four, and three respiratory cycles, respectively. For patient respiratory periods of 5-6 s, the corresponding respiratory cycles required in the scan changed to four, three, and two cycles, respectively. Regarding the imaging dose minimization, for patient respiratory periods of 3-4 s, gantry rotation speeds of 1°/s, 2-4°/s, 5-6°/s required acquiring of 7, 5, 4 kV and MV projections, respectively. For patient respiratory periods of 5-6 s, 5 kV and 5 MV projections are sufficient for all gantry rotation speeds. The optimized LIVE system was robust against breathing pattern, tumor size and tumor location changes. In the CIRS study, the optimized LIVE system achieved the average center-of-mass-shift (COMS)/volume-percentage-difference (VPD) of 0.3 ± 0.1 mm/7.7 ± 2.0% for the scanning time priority case, 0.2 ± 0.1 mm/6.1 ± 1.2% for the imaging dose priority case, respectively, among all gantry rotation speeds tested. LIVE was robust against different scanning directions investigated. The LIVE system has been preliminarily optimized for different patient respiratory periods and treatment gantry rotation speeds using digital and physical phantoms. The optimized imaging parameters, including number of respiratory cycles scanned and kV/MV projection numbers acquired, provide guidelines for optimizing the scanning time and imaging dose of the LIVE system for its future evaluations and clinical implementations through patient studies. © 2017 American Association of Physicists in Medicine.
Uniocular and binocular fields of rotation measures: Octopus versus Goldmann.
Rowe, Fiona J; Hanif, Sahira
2011-06-01
To compare the range of ocular rotations measured by Octopus versus Goldmann perimetry. Forty subjects (20 controls and 20 patients with impaired ocular movements) were prospectively recruited, age range 21-83 years. Range of uniocular rotations was measured in six vectors corresponding to extraocular muscle actions: 0°, 67°, 141°, 180°, 216°, 293°. Fields of binocular single vision were assessed at 30° intervals. Vector measurements were utilised to calculate an area score for the field of uniocular rotations or binocular field of single vision. Two test speeds were used for Octopus testing: 3°/ and 10°/second. Test duration was two thirds quicker for Octopus 10°/second than for 3°/second stimulus speed, and slightly quicker for Goldmann. Mean area for control subjects for uniocular field was 7910.45 degrees(2) for Goldmann, 7032.14 for Octopus 3°/second and 7840.66 for Octopus 10°/second. Mean area for patient subjects of right uniocular field was 8567.21 degrees(2) for Goldmann, 5906.72 for Octopus 3°/second and 8806.44 for Octopus 10°/second. Mean area for left uniocular field was 8137.49 degrees(2) for Goldmann, 8127.9 for Octopus 3°/second and 8950.54 for Octopus 10°/second. Range of measured rotation was significantly larger for Octopus 10°/second speed. Our results suggest that the Octopus perimeter is an acceptable alternative method of assessment for uniocular ductions and binocular field of single vision. Speed of stimulus significantly alters test duration for Octopus perimetry. Comparisons of results from both perimeters show that quantitative measurements differ, although qualitatively the results are similar. Differences per mean vectors were less than 5° (within clinically accepted variances) for both controls and patients when comparing Goldmann to Octopus 10°/second speed. However, differences were almost 10° for the patient group when comparing Goldmann to Octopus 3°/second speed. Thus, speed of stimulus must be considered if wishing to use these perimeters interchangeably.
Single-shot lifetime-based PSP and TSP measurements on turbocharger compressor blades
NASA Astrophysics Data System (ADS)
Peng, Di; Jiao, Lingrui; Yu, Yuelong; Liu, Yingzheng; Oshio, Tetsuya; Kawakubo, Tomoki; Yakushiji, Akimitsu
2017-09-01
Fast-responding pressure-sensitive paint (Fast PSP) and temperature-sensitive paint (TSP) measurements were conducted on two turbocharger compressors using a single-shot lifetime-based technique. The fast PSP and TSP were applied on separate blades of one compressor, and both paints were excited by a pulsed 532 nm Nd:YAG laser. The luminescent decay signals following the laser pulse were recorded by a CCD camera in a double-exposure mode. Instantaneous pressure and temperature fields on compressor blades were obtained simultaneously, for rotation speeds up to 150,000 rpm. The variations in pressure and temperature fields with rotation speed, flow rate and runtime were clearly visualized, showing the advantage of high spatial resolution. Severe image blurring problems and significant temperature-induced errors in the PSP results were found at high rotation speeds. The first issue was addressed by incorporating a deconvolution-based deblurring algorithm to recover the clear image from the blurred image using the combination of luminescent lifetime and rotation speed. The second issue was resolved by applying a pixel-by-pixel temperature correction based on the TSP results. The current technique has shown great capabilities in flow diagnostics of turbomachinery and can serve as a powerful tool for CFD validations and design optimizations.
NASA Astrophysics Data System (ADS)
Banerjee, Arindam; Kolekar, Nitin
2015-11-01
The current experimental investigation aims at understanding the effect of free surface proximity and associated blockage on near-wake flow-field and performance of a three bladed horizontal axis marine hydrokinetic turbine. Experiments were conducted on a 0.14m radius, three bladed constant chord turbine in a 0.61m ×0.61m test section water channel. The turbine was subjected to various rotational speeds, flow speeds and depths of immersion. Experimental data was acquired through a submerged in-line thrust-torque sensor that was corrected to an unblocked dataset with a blockage correction using measured thrust data. A detailed comparison is presented between blocked and unblocked datasets to identify influence of Reynolds number and free surface proximity on blockage effects. The percent change in Cp was found to be dependent on flow velocity, rotational speed and free surface to blade tip clearance. Further, flow visualization using a stereoscopic particle image velocimetry was carried out in the near-wake region of turbine to understand the mechanism responsible for variation of Cp with rotational speed and free surface proximity. Results revealed presence of slower wake at higher rotational velocities and increased asymmetry in the wake at high free surface proximity.
Cipolla, Thomas M.; Kaufman, Richard I.; Mok, Lawrence S.
2003-07-15
A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals. A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.
Measurement of angular velocity in the perception of rotation.
Barraza, José F; Grzywacz, Norberto M
2002-09-01
Humans are sensitive to the parameters of translational motion, namely, direction and speed. At the same time, people have special mechanisms to deal with more complex motions, such as rotations and expansions. One wonders whether people may also be sensitive to the parameters of these complex motions. Here, we report on a series of experiments that explore whether human subjects can use angular velocity to evaluate how fast a rotational motion is. In four experiments, subjects were required to perform a task of speed-of-rotation discrimination by comparing two annuli of different radii in a temporal 2AFC paradigm. Results showed that humans could rely on a sensitive measurement of angular velocity to perform this discrimination task. This was especially true when the quality of the rotational signal was high (given by the number of dots composing the annulus). When the signal quality decreased, a bias towards linear velocity of 5-80% appeared, suggesting the existence of separate mechanisms for angular and linear velocity. This bias was independent from the reference radius. Finally, we asked whether the measurement of angular velocity required a rigid rotation, that is, whether the visual system makes only one global estimate of angular velocity. For this purpose, a random-dot disk was built such that all the dots were rotating with the same tangential speed, irrespectively of radius. Results showed that subjects do not estimate a unique global angular velocity, but that they perceive a non-rigid disk, with angular velocity falling inversely proportionally with radius.
Energy analysis of convectively induced wind perturbations
NASA Technical Reports Server (NTRS)
Fuelberg, Henry E.; Buechler, Dennis E.
1989-01-01
Budgets of divergent and rotational components of kinetic energy (KD and KR) are examined for four upper level wind speed maxima that develop during the fourth Atmospheric Variability Experiment (AVE IV) and the first AVE-Severe Environmental Storms and Mesoscale Experiment (AVE-SESAME I). A similar budget analysis is performed for a low-level jet stream during AVE-SESAME I. The energetics of the four upper level speed maxima is found to have several similarities. The dominant source of KD is cross-contour flow by the divergent wind, and KD provides a major source of KR via a conversion process. Conversion from available potential energy provides an additional source of KR in three of the cases. Horizontal maps reveal that the conversions involving KD are maximized in regions poleward of the convection. Low-level jet development during AVE-SESAME I appears to be assisted by convective activity to the west.
NASA Technical Reports Server (NTRS)
Ramakumar, R.; Bahrami, K.
1981-01-01
This paper discusses the application of field modulated generator systems (FMGS) to dispersed solar-thermal-electric generation from a parabolic dish field with electric transport. Each solar generation unit is rated at 15 kWe and the power generated by an array of such units is electrically collected for insertion into an existing utility grid. Such an approach appears to be most suitable when the heat engine rotational speeds are high (greater than 6000 r/min) and, in particular, if they are operated in the variable speed mode and if utility-grade a.c. is required for direct insertion into the grid without an intermediate electric energy storage and reconversion system. Predictions of overall efficiencies based on conservative efficiency figures for the FMGS are in the range of 25 per cent and should be encouraging to those involved in the development of cost-effective dispersed solar thermal power systems.
Simulation of VSPT Experimental Cascade Under High and Low Free-Stream Turbulence Conditions
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Giel, Paul W.; Flegel, Ashlie
2014-01-01
Variable-Speed Power Turbines (VSPT) for rotorcraft applications operate in conditions of low Reynolds number and a wide range in incidence resulting from rotational speed variation. A comprehensive data set obtained in a linear cascade which includes the effects of Reynolds number, free-stream turbulence and incidence is now available and this paper concerns itself with the post-diction of boundary layer transitionseparation, blade pressure loading and total pressure loss pertaining to the conditions set for measurements in that data set. The distinction between the state of the measured data presented here and the earlier publications is the addition of high free-stream turbulence intensity. We will, for the purposes of the numerical post-diction, present some of the higher free stream turbulence data in this paper but defer a comprehensive presentation and treatment of the measured data will be done elsewhere.
Experimental Evaluation of a High Speed Flywheel for an Energy Cache System
NASA Astrophysics Data System (ADS)
Haruna, J.; Murai, K.; Itoh, J.; Yamada, N.; Hirano, Y.; Fujimori, T.; Homma, T.
2011-03-01
A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.
Heat Control via Torque Control in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Venable, Richard; Colligan, Kevin; Knapp, Alan
2004-01-01
In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Kascak, Albert F.; Jansen, Ralph H.; Dever, Timothy P.; Duffy, Kirsten P.
2006-01-01
For magnetic-bearing-supported high-speed rotating machines with significant gyroscopic effects, it is necessary to stabilize forward and backward tilt whirling modes. Instability or low damping of these modes can prevent the attainment of desired shaft speed. We show analytically that both modes can be stabilized by using cross-axis proportional gains and high- and low-pass filters in the magnetic bearing controller. Furthermore, at high shaft speeds, where system phase lags degrade the stability of the forward-whirl mode, a phasor advance of the control signal can partially counteract the phase lag. In some range of high shaft speed, the derivative gain for the tilt modes (essential for stability for slowly rotating shafts) can be removed entirely. We show analytically how the tilt eigenvalues depend on shaft speed and on various controller feedback parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lillaney, Prasheel; Pelc, Norbert; Shin Mihye
Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the inductionmore » motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also evaluated to determine its stability during acceleration, and a pulse width modulation algorithm was implemented to control the rotation speed of the motor. Results: At a magnetic flux density of 41 mT orthogonal to the axis of rotation (on the lower end of the expected flux density in the MR suite) the maximum speed of the motor was found to be 5150 revolutions per minute (rpm). The acceleration time necessary to reach 3000 rpm was found to be approximately 10 s at 59 mT. The resonance frequency of the assembly with the anode attached was 1310 rpm (21.8 Hz) which is far below the desired operating speeds. Pulse width modulation provides an effective method to control the speed of the motor with a resolution of 100 rpm. Conclusions: The proposed design can serve as a direct replacement to the conventional induction motor used in rotating anode x-ray tubes. It does not suffer from a reduced rotation speed when operating in a MR environment. The presence of chromic steel bearings in the prototype prevented testing at the higher field strengths, and future iterations of the design could eliminate this shortcoming. The prototype assembly demonstrates proof of concept of the authors' design and overcomes one of the major obstacles for a MR compatible rotating anode x-ray tube.« less
Low-speed wind-tunnel tests of single- and counter-rotation propellers
NASA Technical Reports Server (NTRS)
Dunham, D. M.; Gentry, G. L., Jr.; Coe, P. L., Jr.
1986-01-01
A low-speed (Mach 0 to 0.3) wind-tunnel investigation was conducted to determine the basic performance, force and moment characteristics, and flow-field velocities of single- and counter-rotation propellers. Compared with the eight-blade single-rotation propeller, a four- by four- (4 x 4) blade counter-rotation propeller with the same blade design produced substantially higher thrust coefficients for the same blade angles and advance ratios. The results further indicated that ingestion of the wake from a supporting pylon for a pusher configuration produced no significant change in the propeller thrust performance for either the single- or counter-rotation propellers. A two-component laser velocimeter (LV) system was used to make detailed measurements of the propeller flow fields. Results show increasing slipstream velocities with increasing blade angle and decreasing advance ratio. Flow-field measurements for the counter-rotation propeller show that the rear propeller turned the flow in the opposite direction from the front propeller and, therefore, could eliminate the swirl component of velocity, as would be expected.
Cybersickness without the wobble: Experimental results speak against postural instability theory.
Dennison, Mark Stephen; D'Zmura, Michael
2017-01-01
It has been suggested that postural instability is necessary for cybersickness to occur. Seated and standing subjects used a head-mounted display to view a virtual tunnel that rotated about their line of sight. We found that the offset direction of perceived vertical settings matched the direction of the tunnel's rotation, so replicating earlier findings. Increasing rotation speed caused cybersickness to increase, but had no significant impact on perceived vertical settings. Postural sway during rotation was similar to postural sway during rest. While a minority of subjects exhibited postural sway in response to the onset of tunnel rotation, the majority did not. Furthermore, cybersickness increased with rotation speed similarly for the seated and standing conditions. Finally, subjects with greater levels of cybersickness exhibited less variation in postural sway. These results lead us to conclude that the link between postural instability and cybersickness is a weak one in the present experiment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Method for producing dustless graphite spheres from waste graphite fines
Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN
2012-05-08
A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Hughes, Christopher E.
1990-01-01
A model high-speed, advanced counterrotation propeller, F7/A7, was tested in the anechoic wind tunnel at simulated takeoff and approach conditions of Mach 0.2. The propeller was operated in a baseline configuration with the forward and aft rotor blade setting angles and forward and aft rotational speeds essentially equal. Two additional configurations were tested with the aft rotor at increased blade setting angles and the rotational speed reduced to achieve overall performance similar to that of the baseline configuration. Acoustic data were taken with an axially translating microphone probe that was attached to the tunnel floor. Concurrent aerodynamic data were taken to define propeller operating conditions.
Development of a wind energy converter with single blade rotor
NASA Astrophysics Data System (ADS)
Hipp, K.
1984-06-01
Wind energy converters with high tip speed ratio and a capacity of up to 50 kW in a 8.5 /msec wind speed were developed. Units with 12 m diameter rotors were tested. The concept of a cost favorable plant as a high speed engine with a supercritically running one blade rotor (soft bearing), gust balance out, automatic blade adjustment to ensure favorable starting qualities, proves to be a success. The single rectangular blade non-twisted with the profile NACA 23012/18 has no dynamic problems. The application of a centrifugal governor, i.e., vane like a Maxwell slat, operating only by rotation about a fixed hinge axis in order to attain adequate constant rotational speed of the plant, is not satisfactory.
Electric vehicle drive train with rollback detection and compensation
Konrad, C.E.
1994-12-27
An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.
Electric vehicle drive train with rollback detection and compensation
Konrad, Charles E.
1994-01-01
An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.
NASA Technical Reports Server (NTRS)
Gregory, T. J.
1977-01-01
Apparatus holds remotely piloted arm that accelerates until launching speed is reached. Then vehicle and counterweight at other end of arm are released simultaneously to avoid structural damage from unbalanced rotating forces.
NASA Astrophysics Data System (ADS)
Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.
2017-04-01
The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).
Blade pitch optimization methods for vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Kozak, Peter
Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.
Heat Exchanger Design and Testing for a 6-Inch Rotating Detonation Engine
2013-03-01
Engine Research Facility HHV Higher heating value LHV Lower heating value PDE Pulsed detonation engine RDE Rotating detonation engine RTD...the combustion community are pulse detonation engines ( PDEs ) and rotating detonation engines (RDEs). 1.1 Differences between Pulsed and Rotating ...steadier than that of a PDE (2, 3). (2) (3) Figure 1. Unrolled rotating detonation wave from high-speed video (4) Another difference that
NASA Astrophysics Data System (ADS)
Kumar, Tarun; Lal, Arvind Kumar; Pathania, Ankush
2018-06-01
Anharmonic oscillations of rotating stars have been studied by various authors in literature to explain the observed features of certain variable stars. However, there is no study available in literature that has discussed the combined effect of rotation and tidal distortions on the anharmonic oscillations of stars. In this paper, we have created a model to determine the effect of rotation and tidal distortions on the anharmonic radial oscillations associated with various polytropic models of pulsating variable stars. For this study we have used the theory of Rosseland to obtain the anharmonic pulsation equation for rotationally and tidally distorted polytropicmodels of pulsating variable stars. The main objective of this study is to investigate the effect of rotation and tidal distortions on the shapes of the radial velocity curves for rotationally and tidally distorted polytropic models of pulsating variable stars. The results of the present study show that the rotational effects cause more deviations in the shapes of radial velocity curves of pulsating variable stars as compared to tidal effects.
Levy, Jonathan C; Everding, Nathan G; Gil, Carlos C; Stephens, Scott; Giveans, M Russell
2014-12-01
Whereas patient expectations after anatomic total shoulder arthroplasty (TSA) and reverse shoulder arthroplasty (RSA) relate to sustained improvements in pain, function, and motion, the time necessary to reach these goals is unclear. Our purpose was to investigate the speed of recovery and to compare the effectiveness of primary TSA and RSA. We analyzed (preoperative, 3 month, 6 month, 1-year, and 2-year scores) pain scores, functional scores, and motion for 122 patients treated with primary RSA and 166 patients treated with primary TSA with a minimum of 1 year of follow-up. Comparisons were made to determine the effectiveness of treatment, time required to reach a plateau in improvement, and percentage of overall improvement at 3 and 6 months. Significant improvements were observed for both TSA and RSA at all intervals (P < .001), except with internal rotation for RSA. Pain relief was rapid after both TSA and RSA. TSA patients reached a consistent plateau for pain and function by 6 months and for shoulder elevation by 1 year. RSA patients demonstrated variability with multiple false plateau points. By 6 months, TSA patients had achieved 90% to 100% of functional improvement, whereas RSA patients reached 72% to 91%. The effectiveness of TSA was greater than that of RSA for all measures with the exception of elevation and abduction. Whereas patients treated with primary TSA and RSA can expect rapid improvements in pain, those treated with TSA can anticipate a more consistent and effective recovery of pain, function, and shoulder rotation. Patients receiving RSA can expect a variable length of recovery with greater improvements in forward elevation and abduction. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Combined passive magnetic bearing element and vibration damper
Post, Richard F.
2001-01-01
A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium and dampen transversely directed vibrations. Mechanical stabilizers are provided to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. In a improvement over U.S. Pat. No. 5,495,221, a magnetic bearing element is combined with a vibration damping element to provide a single upper stationary dual-function element. The magnetic forces exerted by such an element, enhances levitation of the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations, and suppresses the effects of unbalance or inhibits the onset of whirl-type rotor-dynamic instabilities. Concurrently, this equilibrium is made stable against displacement-dependent drag forces of the rotating object from its equilibrium position.
Numerical study of vortex rope during load rejection of a prototype pump-turbine
NASA Astrophysics Data System (ADS)
Liu, J. T.; Liu, S. H.; Sun, Y. K.; Wu, Y. L.; Wang, L. Q.
2012-11-01
A transient process of load rejection of a prototype pump-turbine was studied by three dimensional, unsteady simulations, as well as steady calculations.Dynamic mesh (DM) method and remeshing method were used to simulate the rotation of guide vanes and runner. The rotational speed of the runner was predicted by fluid couplingmethod. Both the transient calculation and steady calculation were performed based on turbulence model. Results show that steady calculation results have large error in the prediction of the external characteristics of the transient process. The runaway speed can reach 1.15 times the initial rotational speed during the transient process. The vortex rope occurs before the pump-turbine runs at zero moment point. Vortex rope has the same rotating direction with the runner. The vortex rope is separated into two parts as the flow rate decreases to 0. Pressure level decreases during the whole transient process.The transient simulation result were also compared and verified by experimental results. This computational method could be used in the fault diagnosis of transient operation, as well as the optimization of a transient process.
PLASMA FLOWS AT VOYAGER 2 AWAY FROM THE MEASURED SUPRATHERMAL PRESSURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
McComas, D. J.; Schwadron, N. A., E-mail: dmccomas@swri.edu
2014-11-01
Plasma flows measured by Voyager 2 show a clear rotation away from radially outward with increasing penetration into the inner heliosheath while the overall flow speed remains roughly constant. However, the direction of rotation is far more into the transverse, and less into the polar direction, than predicted. No current model reproduces the key observational results of (1) the direction of flow rotation or (2) constancy of the flow speed. Here we show that the direction is consistent with flow away from the region of maximum pressure in the inner heliosheath, ∼20° south of the upwind direction, as measured bymore » the Interstellar Boundary Explorer (IBEX). Further, we show that the dominance of the suprathermal ion pressure in the inner heliosheath measured by IBEX can explain both the observed flow rotation and constancy of the flow speed. These results indicate the critical importance of suprathermal ions in the physics of the inner heliosheath and have significant implications for understanding this key region of the heliosphere's interstellar interaction and astrophysical plasmas more broadly.« less
Simultaneity on the Rotating Disk
NASA Astrophysics Data System (ADS)
Koks, Don
2017-04-01
The disk that rotates in an inertial frame in special relativity has long been analysed by assuming a Lorentz contraction of its peripheral elements in that frame, which has produced widely varying views in the literature. We show that this assumption is unnecessary for a disk that corresponds to the simplest form of rotation in special relativity. After constructing such a disk and showing that observers at rest on it do not constitute a true rotating frame, we choose a "master" observer and calculate a set of disk coordinates and spacetime metric pertinent to that observer. We use this formalism to resolve the "circular twin paradox", then calculate the speed of light sent around the periphery as measured by the master observer, to show that this speed is a function of sent-direction and disk angle traversed. This result is consistent with the Sagnac Effect, but constitutes a finer analysis of that effect, which is normally expressed using an average speed for a full trip of the periphery. We also use the formalism to give a resolution of "Selleri's paradox".
NASA Technical Reports Server (NTRS)
Johnsen, R. L.; Namkoong, D.; Edkin, R. A.
1971-01-01
The Brayton rotating unit (BRU), consisting of a turbine, an alternator, and a compressor, was tested as part of a Brayton cycle power conversion system over a side range of steady state operating conditions. The working fluid in the system was a mixture of helium-xenon gases. Turbine inlet temperature was varied from 1200 to 1600 F, compressor inlet temperature from 60 to 120 F, compressor discharge pressure from 20 to 45 psia, rotative speed from 32 400 to 39 600 rpm, and alternator liquid-coolant flow rate from 0.01 to 0.27 pound per second. Test results indicated that the BRU internal temperatures were highly sensitive to alternator coolant flow below the design value of 0.12 pound per second but much less so at higher values. The armature winding temperature was not influenced significantly by turbine inlet temperature, but was sensitive, up to 20 F per kVA alternator output, to varying alternator output. When only the rotational speed was changed (+ or - 10% of rated value), the BRU internal temperatures varied directly with the speed.
Two speed drive system. [mechanical device for changing speed on rotating vehicle wheel
NASA Technical Reports Server (NTRS)
Burch, J. L. (Inventor)
1972-01-01
A two speed drive system for a wheel of a vehicle by which shifting from one speed to the other is accomplished by the inherent mechanism of the wheel is described. A description of the speed shifting operation is provided and diagrams of the mechanism are included. Possible application to lunar roving vehicles is proposed.
Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition
NASA Astrophysics Data System (ADS)
Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.
2017-07-01
Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.
Takeda, Noriaki; Uno, Atsuhiko; Inohara, Hidenori; Shimada, Shoichi
2016-01-01
Background The mouse is the most commonly used animal model in biomedical research because of recent advances in molecular genetic techniques. Studies related to eye movement in mice are common in fields such as ophthalmology relating to vision, neuro-otology relating to the vestibulo-ocular reflex (VOR), neurology relating to the cerebellum’s role in movement, and psychology relating to attention. Recording eye movements in mice, however, is technically difficult. Methods We developed a new algorithm for analyzing the three-dimensional (3D) rotation vector of eye movement in mice using high-speed video-oculography (VOG). The algorithm made it possible to analyze the gain and phase of VOR using the eye’s angular velocity around the axis of eye rotation. Results When mice were rotated at 0.5 Hz and 2.5 Hz around the earth’s vertical axis with their heads in a 30° nose-down position, the vertical components of their left eye movements were in phase with the horizontal components. The VOR gain was 0.42 at 0.5 Hz and 0.74 at 2.5 Hz, and the phase lead of the eye movement against the turntable was 16.1° at 0.5 Hz and 4.88° at 2.5 Hz. Conclusions To the best of our knowledge, this is the first report of this algorithm being used to calculate a 3D rotation vector of eye movement in mice using high-speed VOG. We developed a technique for analyzing the 3D rotation vector of eye movements in mice with a high-speed infrared CCD camera. We concluded that the technique is suitable for analyzing eye movements in mice. We also include a C++ source code that can calculate the 3D rotation vectors of the eye position from two-dimensional coordinates of the pupil and the iris freckle in the image to this article. PMID:27023859
Electric-field-induced motion of colloid particles in smectic liquid crystals
NASA Astrophysics Data System (ADS)
Jakli, Antal
2005-03-01
We present the first observations of DC electric-field-induced rotational and translational motion of finite particles in liquid crystals. The electro-rotation is basically identical to the well known Quincke rotation, which triggers the translational motion at higher fields. From the electric field dependence of the angular velocity of the rotation we obtain the viscosity of the liquid crystals. The analysis of the translational motion in smectic liquid crystals indicates elastic responses near the threshold for translation. At increasing fields the speed of the particles is increasing and at sufficiently high speeds the flow of the smectic A and smectic C liquid crystal around the beads become purely viscous. Colloid particles in smectic materials maybe considered as model systems for understanding motion of proteins in cell membranes.
Rogers, B.T. Jr.; Davis, W.C.
1957-12-17
This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.
Light controlled 3D micromotors powered by bacteria
NASA Astrophysics Data System (ADS)
Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; di Leonardo, Roberto
2017-06-01
Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed.
Fast traffic sign recognition with a rotation invariant binary pattern based feature.
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-19
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.
Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass
NASA Astrophysics Data System (ADS)
Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.
2018-03-01
Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.
Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature
Yin, Shouyi; Ouyang, Peng; Liu, Leibo; Guo, Yike; Wei, Shaojun
2015-01-01
Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern) based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network) based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed. PMID:25608217
Light controlled 3D micromotors powered by bacteria
Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; Di Leonardo, Roberto
2017-01-01
Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed. PMID:28656975
High Speed Gear Sized and Configured to Reduce Windage Loss
NASA Technical Reports Server (NTRS)
Kunz, Robert F. (Inventor); Medvitz, Richard B. (Inventor); Hill, Matthew John (Inventor)
2013-01-01
A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.
Composite flywheels with rim and hub
NASA Astrophysics Data System (ADS)
Ikegami, K.; Igarashi, J.-I.; Shiratori, E.
The possibility of obtaining a flywheel of high energy density by increasing both rotating speed and moment of inertia of the disc is investigated. As the starting point of the search process for such a flywheel, a glass cloth-laminated disc with a hole at the center is considered. The rotating speed of the disc is improved by reinforcing the central hole of the disc with the same material as that of the disc. The large moment of inertia is obtained by attaching a rim around the disc. The rim is moulded by winding carbon fiber around it. This rim also has the usual 'hoop' effect which prevents a reduction of the rotating speed of the disc because of the additional moment of inertia of the rim. The shape of the disc having a high energy density is numerically sought by varying the dimensions of the hub and the rim of the disc, and an optimal shape is proposed.
A rolling locomotion method for untethered magnetic microrobots
NASA Astrophysics Data System (ADS)
Hou, Max T.; Shen, Hui-Mei; Jiang, Guan-Lin; Lu, Chiang-Ni; Hsu, I.-Jen; Yeh, J. Andrew
2010-01-01
It is a challenge to achieve free and efficient motion of microrobots on arbitrary surfaces. We report a rolling locomotion method for a magnetic microrobot with a rectangular body (300×200×50 μm3); this method is based on an external rotating magnetic field. The magnetic force, accompanied by normal and friction forces, enables the successive rotations of the microrobot. A magnetic field with a rotational speed of 2 rps rolls the microrobot, giving it a translation speed of 1.4 mm/s. With this locomotion ability, microrobots can move along a line or curve and can climb slopes or stairs.
Robotic Variable Polarity Plasma Arc (VPPA) Welding
NASA Technical Reports Server (NTRS)
Jaffery, Waris S.
1993-01-01
The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.
Robotic Variable Polarity Plasma Arc (VPPA) welding
NASA Astrophysics Data System (ADS)
Jaffery, Waris S.
1993-02-01
The need for automated plasma welding was identified in the early stages of the Space Station Freedom Program (SSFP) because it requires approximately 1.3 miles of welding for assembly. As a result of the Variable Polarity Plasma Arc Welding (VPPAW) process's ability to make virtually defect-free welds in aluminum, it was chosen to fulfill the welding needs. Space Station Freedom will be constructed of 2219 aluminum utilizing the computer controlled VPPAW process. The 'Node Radial Docking Port', with it's saddle shaped weld path, has a constantly changing surface angle over 360 deg of the 282 inch weld. The automated robotic VPPAW process requires eight-axes of motion (six-axes of robot and two-axes of positioner movement). The robot control system is programmed to maintain Torch Center Point (TCP) orientation perpendicular to the part while the part positioner is tilted and rotated to maintain the vertical up orientation as required by the VPPAW process. The combined speed of the robot and the positioner are integrated to maintain a constant speed between the part and the torch. A laser-based vision sensor system has also been integrated to track the seam and map the surface of the profile during welding.
Flows of X-ray gas reveal the disruption of a star by a massive black hole.
Miller, Jon M; Kaastra, Jelle S; Miller, M Coleman; Reynolds, Mark T; Brown, Gregory; Cenko, S Bradley; Drake, Jeremy J; Gezari, Suvi; Guillochon, James; Gultekin, Kayhan; Irwin, Jimmy; Levan, Andrew; Maitra, Dipankar; Maksym, W Peter; Mushotzky, Richard; O'Brien, Paul; Paerels, Frits; de Plaa, Jelle; Ramirez-Ruiz, Enrico; Strohmayer, Tod; Tanvir, Nial
2015-10-22
Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/ultraviolet flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate. Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC 043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory and more recent numerical simulations.
NASA Astrophysics Data System (ADS)
Kueh, T. C.; Beh, S. L.; Ooi, Y. S.; Rilling, D. G.
2017-04-01
Water vortex turbine utilizes the natural behaviour of water to form free surface vortex for energy extraction. This allows simple construction and ease of management on the whole water vortex power plant system. To our findings, the literature study specifically on water vortex turbine is inadequate and low efficiency was reported. Influences of operating speed and blade shape on turbine performance are the two parameters investigated in this study. Euler Turbomachinery Equation and velocity triangle are used in the improvement analysis. Two turbines with flat blades and curved blades are tested and compared. Both turbines show similar rotational speed at no load condition. This suggested that the circulation force of the water vortex has more dominant effect on the turbine rotational speed, compared to the turbine’s geometry. Flat-blades turbine showed maximum efficiency of 21.63% at 3.27 rad/s whereas curved-blades turbine showed 22.24% at 3.56 rad/s. When operating load is applied, the backward-leaning curve helps the turbine blades to reduce the disturbance on the water vortex, and hence provide a better performance.
Control of finger forces during fast, slow and moderate rotational hand movements.
Kazemi, Hamed; Kearney, Robert E; Milner, Theodore E
2014-01-01
The goal of this study was to investigate the effect of speed on patterns of grip forces during twisting movement involving forearm supination against a torsional load (combined elastic and inertial load). For slow and moderate speed rotations, the grip force increased linearly with load torque. However, for fast rotations in which the contribution of the inertia to load torque was significantly greater than slower movements, the grip force-load torque relationship could be segmented into two phases: a linear ascending phase corresponding to the acceleration part of the movement followed by a plateau during deceleration. That is, during the acceleration phase, the grip force accurately tracked the combined elastic and inertial load. However, the coupling between grip force and load torque was not consistent during the deceleration phase of the movement. In addition, as speed increased, both the position and the force profiles became smoother. No differences in the baseline grip force, safety margin to secure the grasp during hold phase or the overall change in grip force were observed across different speeds.
Testing of Face-milled Spiral Bevel Gears at High-speed and Load
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
2001-01-01
Spiral bevel gears are an important drive system components of rotorcraft (helicopters) currently in use. In this application the spiral bevel gears are required to transmit very high torque at high rotational speed. Available experimental data on the operational characteristics for thermal and structural behavior is relatively small in comparison to that found for parallel axis gears. An ongoing test program has been in place at NASA Glenn Research Center over the last ten years to investigate their operational behavior at operating conditions found in aerospace applications. This paper will summarize the results of the tests conducted on face-milled spiral bevel gears. The data from the pinion member (temperature and stress) were taken at conditions from slow-roll to 14400 rpm and up to 537 kW (720 hp). The results have shown that operating temperature is affected by the location of the lubricating jet with respect to the point it is injected and the operating conditions that are imposed. Also the stress measured from slow-roll to very high rotational speed, at various torque levels, indicated little dynamic affect over the rotational speeds tested.
Inter-joint coordination between hips and trunk during downswings: Effects on the clubhead speed.
Choi, Ahnryul; Lee, In-Kwang; Choi, Mun-Taek; Mun, Joung Hwan
2016-10-01
Understanding of the inter-joint coordination between rotational movement of each hip and trunk in golf would provide basic knowledge regarding how the neuromuscular system organises the related joints to perform a successful swing motion. In this study, we evaluated the inter-joint coordination characteristics between rotational movement of the hips and trunk during golf downswings. Twenty-one right-handed male professional golfers were recruited for this study. Infrared cameras were installed to capture the swing motion. The axial rotation angle, angular velocity and inter-joint coordination were calculated by the Euler angle, numerical difference method and continuous relative phase, respectively. A more typical inter-joint coordination demonstrated in the leading hip/trunk than trailing hip/trunk. Three coordination characteristics of the leading hip/trunk reported a significant relationship with clubhead speed at impact (r < -0.5) in male professional golfers. The increased rotation difference between the leading hip and trunk in the overall downswing phase as well as the faster rotation of the leading hip compared to that of the trunk in the early downswing play important roles in increasing clubhead speed. These novel inter-joint coordination strategies have the great potential to use a biomechanical guideline to improve the golf swing performance of unskilled golfers.
On Stationary Navier-Stokes Flows Around a Rotating Obstacle in Two-Dimensions
NASA Astrophysics Data System (ADS)
Higaki, Mitsuo; Maekawa, Yasunori; Nakahara, Yuu
2018-05-01
We study the two-dimensional stationary Navier-Stokes equations describing the flows around a rotating obstacle. The unique existence of solutions and their asymptotic behavior at spatial infinity are established when the rotation speed of the obstacle and the given exterior force are sufficiently small.
The span as a fundamental factor in airplane design
NASA Technical Reports Server (NTRS)
Lachmann, G
1928-01-01
Previous theoretical investigations of steady curvilinear flight did not afford a suitable criterion of "maneuverability," which is very important for judging combat, sport and stunt-flying airplanes. The idea of rolling ability, i.e., of the speed of rotation of the airplane about its X axis in rectilinear flight at constant speed and for a constant, suddenly produced deflection of the ailerons, is introduced and tested under simplified assumptions for the air-force distribution over the span. This leads to the following conclusions: the effect of the moment of inertia about the X axis is negligibly small, since the speed of rotation very quickly reaches a uniform value.
Speed and Torque Control Strategies for Loss Reduction of Vertical Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Argent, Michael; McDonald, Alasdair; Leithead, Bill; Giles, Alexander
2016-09-01
This paper builds on the work into modelling the generator losses for Vertical Axis Wind Turbines from their intrinsic torque cycling to investigate the effects of aerodynamic inefficiencies caused by the varying rotational speed resulting from different torque control strategies to the cyclic torque. This is achieved by modelling the wake that builds up from the rotation of the VAWT rotor to investigate how the wake responds to a changing rotor speed and how this in turn affects the torque produced by the blades as well as the corresponding change in generator losses and any changes to the energy extracted by the wind turbine rotor.
Tashman, Scott; Anderst, William
2003-04-01
Dynamic assessment of three-dimensional (3D) skeletal kinematics is essential for understanding normal joint function as well as the effects of injury or disease. This paper presents a novel technique for measuring in-vivo skeletal kinematics that combines data collected from high-speed biplane radiography and static computed tomography (CT). The goals of the present study were to demonstrate that highly precise measurements can be obtained during dynamic movement studies employing high frame-rate biplane video-radiography, to develop a method for expressing joint kinematics in an anatomically relevant coordinate system and to demonstrate the application of this technique by calculating canine tibio-femoral kinematics during dynamic motion. The method consists of four components: the generation and acquisition of high frame rate biplane radiographs, identification and 3D tracking of implanted bone markers, CT-based coordinate system determination, and kinematic analysis routines for determining joint motion in anatomically based coordinates. Results from dynamic tracking of markers inserted in a phantom object showed the system bias was insignificant (-0.02 mm). The average precision in tracking implanted markers in-vivo was 0.064 mm for the distance between markers and 0.31 degree for the angles between markers. Across-trial standard deviations for tibio-femoral translations were similar for all three motion directions, averaging 0.14 mm (range 0.08 to 0.20 mm). Variability in tibio-femoral rotations was more dependent on rotation axis, with across-trial standard deviations averaging 1.71 degrees for flexion/extension, 0.90 degree for internal/external rotation, and 0.40 degree for varus/valgus rotation. Advantages of this technique over traditional motion analysis methods include the elimination of skin motion artifacts, improved tracking precision and the ability to present results in a consistent anatomical reference frame.
Blendea, Dan; Mansour, Moussa; Shah, Ravi V; Chung, Jeffrey; Nandigam, Veena; Heist, E Kevin; Mela, Theofanie; Reddy, Vivek Y; Manzke, Robert; McPherson, Craig A; Ruskin, Jeremy N; Singh, Jagmeet P
2007-11-15
Standard coronary venous angiography (SCVA) provides a static, fixed projection of the coronary venous (CV) tree. High-speed rotational coronary venous angiography (RCVA) is a novel method of mapping CV anatomy using dynamic, multiangle visualization. The purpose of this study was to assess the value of RCVA during cardiac resynchronization therapy. Digitally acquired rotational CV angiograms from 49 patients (mean age 69 +/- 11 years) who underwent left ventricular lead implantation were analyzed. RCVA, which uses rapid isocentric rotation over a 110 degrees arc, acquiring 120 frames/angiogram, was compared with SCVA, defined as 2 static orthogonal views: right anterior oblique 45 degrees and left anterior oblique 45 degrees . RCVA demonstrated that the posterior vein-to-coronary sinus (CS) angle and the left marginal vein-to-CS angle were misclassified in 5 and 11 patients, respectively, using SCVA. RCVA identified a greater number of second-order tributaries with diameters >1.5 mm than SCVA. The CV branch selected for lead placement was initially identified in 100% of patients using RCVA but in only 74% of patients using SCVA. RCVA showed that the best angiographic view for visualizing the CS and its tributaries differed significantly among different areas of the CV tree and among patients. The area of the CV tree that showed less variability was the CS ostium, which had a fairly constant relation with the spine in shallow right anterior oblique and left anterior oblique projections. In conclusion, RCVA provided a more precise map of CV anatomy and the spatial relation of venous branches. It allowed the identification of fluoroscopic views that could facilitate cannulation of the CS. The final x-ray view displaying the appropriate CV branch for left ventricular lead implantation was often different from the conventional left anterior oblique and right anterior oblique views. RCVA identified the target branch for lead implantation more often than SCVA.
NASA Astrophysics Data System (ADS)
Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori
2013-08-01
As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.
Wing and body kinematics of forward flight in drone-flies.
Meng, Xue Guang; Sun, Mao
2016-08-15
Here, we present a detailed analysis of the wing and body kinematics in drone-flies in free flight over a range of speeds from hovering to about 8.5 m s(-1). The kinematics was measured by high-speed video techniques. As the speed increased, the body angle decreased and the stroke plane angle increased; the wingbeat frequency changed little; the stroke amplitude first decreased and then increased; the ratio of the downstroke duration to the upstroke duration increased; the mean positional angle increased at lower speeds but changed little at speeds above 3 m s(-1). At a speed above about 1.5 m s(-1), wing rotation at supination was delayed and that at pronation was advanced, and consequently the wing rotations were mostly performed in the upstroke. In the downstroke, the relative velocity of the wing increased and the effective angle of attack decreased with speed; in the upstroke, they both decreased with speed at lower speeds, and at higher speeds, the relative velocity became larger but the effective angle of attack became very small. As speed increased, the increasing inclination of the stroke plane ensured that the effective angle of attack in the upstroke would not become negative, and that the wing was in suitable orientations for vertical-force and thrust production.
NASA Technical Reports Server (NTRS)
Hoffman, T. R.
2000-01-01
Researchers at the NASA Glenn Research Center at Lewis Field successfully tested a variable cowl lip inlet at simulated takeoff conditions in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) as part of the High-Speed Research Program. The test was a follow-on to the Two-Dimensional Bifurcated (2DB) Inlet/Engine test. At the takeoff condition for a High-Speed Civil Transport aircraft, the inlet must provide adequate airflow to the engine with an acceptable distortion level and high-pressure recovery. The test was conducted to study the effectiveness of installing two rotating lips on the 2DB Inlet cowls to increase mass flow rate and eliminate or reduce boundary layer flow separation near the lips. Hardware was mounted vertically in the test section so that it extended through the tunnel ceiling and that the 2DB Inlet was exposed to the atmosphere above the test section. The tunnel was configured in the aerodynamic mode, and exhausters were used to pump down the tunnel to vacuum levels and to provide a maximum flow rate of approximately 58 lb/sec. The test determined the (1) maximum flow in the 2DB Inlet for each variable cowl lip, (2) distortion level and pressure recovery for each lip configuration, (3) boundary layer conditions near variable lips inside the 2DB Inlet, (4) effects of a wing structure adjacent to the 2DB Inlet, and (5) effects of different 2DB Inlet exit configurations. It also employed flow visualization to generate enough qualitative data on variable lips to optimize the variable lip concept. This test was a collaborative effort between the Boeing Company and Glenn. Extensive inhouse support at Glenn contributed significantly to the progress and accomplishment of this test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dressel, M.O.
1979-10-30
A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfacesmore » of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the different gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft. 11 claims.« less
Dressel, Michael O.
1979-01-01
A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.
NASA Astrophysics Data System (ADS)
Lu, Haohui; Chai, Tan; Cooley, Christopher G.
2018-03-01
This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.
A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils
Li, Jian; Wu, Dan; Han, Yan
2016-01-01
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation. PMID:27706039
A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils.
Li, Jian; Wu, Dan; Han, Yan
2016-09-30
Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent "I-shape" is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.
NASA Astrophysics Data System (ADS)
Choi, Heekyu; Bor, Amgalan; Sakuragi, Shiori; Lee, Jehyun; Lim, Hyung-Tae
2016-01-01
The behavior of ground copper powder for copper-carbon nanotube (copper-CNT) nanocomposite fabrication during high-speed planetary ball milling was investigated because the study of the behavior characteristics of copper powder has recently gained scientific interest. Also, studies of Cu/CNT composites have widely been done due to their useful applications to enhanced, advanced nano materials and components, which would significantly improve the properties of new mechatronics-integrated materials and components. This study varied experimental conditions such as the rotation speed and the grinding time with and without CNTs, and the particle size distribution, median diameter, crystal structure and size, and particle morphology were monitored for a given grinding time. We observed that pure copper powders agglomerated and that the morphology changed with changing rotation speed. The particle agglomerations were observed with maximum experiment conditions (700 rpm, 60 min) in this study of the grinding process for mechanical alloys in the case of pure copper powders because the grinding behavior of Cu/CNT agglomerations was affected by the addition of CNTs. Indeed, the powder morphology and the crystal size of the composite powder could be changed by increasing the grinding time and the rotation speed.
The response of a high-speed train wheel to a harmonic wheel-rail force
NASA Astrophysics Data System (ADS)
Sheng, Xiaozhen; Liu, Yuxia; Zhou, Xin
2016-09-01
The maximum speed of China's high-speed trains currently is 300km/h and expected to increase to 350-400km/h. As a wheel travels along the rail at such a high speed, it is subject to a force rotating at the same speed along its periphery. This fast moving force contains not only the axle load component, but also many components of high frequencies generated from wheel-rail interactions. Rotation of the wheel also introduces centrifugal and gyroscopic effects. How the wheel responds is fundamental to many issues, including wheel-rail contact, traction, wear and noise. In this paper, by making use of its axial symmetry, a special finite element scheme is developed for responses of a train wheel subject to a vertical and harmonic wheel-rail force. This FE scheme only requires a 2D mesh over a cross-section containing the wheel axis but includes all the effects induced by wheel rotation. Nodal displacements, as a periodic function of the cross-section angle 6, can be decomposed, using Fourier series, into a number of components at different circumferential orders. The derived FE equation is solved for each circumferential order. The sum of responses at all circumferential orders gives the actual response of the wheel.
NASA Astrophysics Data System (ADS)
Lattime, Scott Byran
A conceptually new type of seal has been developed for gas turbine applications which dramatically reduces wear and leakage associated with current labyrinth and brush seal technologies. The Hybrid Floating Brush Seal (HFBS) combines brush seal and film riding face seal technologies to create a hybrid seal that allows both axial and radial excursions of the sealed shaft, while simultaneously eliminating interface surface speeds (friction and heat) between the rotor and the brush material that characterize standard brush seal technology. A simple test rig was designed to evaluate feasibility of the HFBS under relatively low pressures and rotational speeds (50psig, 5krpm). A second test stand was created to study the effects of centrifugal force on bristle deflection. A third test facility was constructed for prototype development and extensive room temperature testing at moderate pressures and fairly high rotational speeds (100psig, 40krpm). This test rig also allowed the evaluation of the HFBS during axial movement of a rotating shaft. An analytical model to predict the effects of centrifugal force on the bristles of a rotating brush seal was developed. Room temperature analysis of the HFBS proved successful for relatively high operating rotational velocities at moderate pressures with very acceptable leakage rates for gas turbine engines. Brush seals were able to track rotor speeds up to 24krpm while maintaining sealing integrity. The HFBS's ability to function under axial shaft displacement and synchronous dynamic radial loading was also proven successful. Hydrodynamic performance of the face seal was proven to provide adequate stiffness and load carrying capacity to keep the brush seal from contacting the face seal at pressure drops across the brush of up to 100psi. Leakage performance over standard brush seal and labyrinth technology was quite dramatic. The HFBS showed its sealing advantage using much higher radial interference between the rotor and the bristle bore over standard brush seal designs. Experimental results of the HFBS showed leakage reductions of 6 to 7 times that of a standard brush seal at the same operating pressure ratios and rotational speed and an order of magnitude less than numerical predictions of a standard labyrinth seal. (Abstract shortened by UMI.)
Atmospheric tides on Venus. III - The planetary boundary layer
NASA Technical Reports Server (NTRS)
Dobrovolskis, A. R.
1983-01-01
Diurnal solar heating of Venus' surface produces variable temperatures, winds, and pressure gradients within a shallow layer at the bottom of the atmosphere. The corresponding asymmetric mass distribution experiences a tidal torque tending to maintain Venus' slow retrograde rotation. It is shown that including viscosity in the boundary layer does not materially affect the balance of torques. On the other hand, friction between the air and ground can reduce the predicted wind speeds from about 5 to about 1 m/sec in the lower atmosphere, more consistent with the observations from Venus landers and descent probes. Implications for aeolian activity on Venus' surface and for future missions are discussed.
Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade
NASA Astrophysics Data System (ADS)
Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.
2016-08-01
To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.
Design and Testing of the Contra-Rotating Turbine for the Scimitar Precooled Mach 5 Cruise Engine
NASA Astrophysics Data System (ADS)
Varvill, R.; Paniagua, G.; Kato, H.; Thatcher, M.
tion chamber and subsequent expansion through the main noz- zle to produce thrust. In subsonic flight it becomes the gas generator driving a high bypass ratio ducted fan through a hub turbine, the exhaust mixing with the duct flow and discharging through the bypass nozzle to produce thrust. In both modes the turbo-compressor is driven by a helium turbine which has contra rotating stages to improve its efficiency at low rotational speed and reduce the number of stages required. Due to the large speed of sound mismatch between the air compressor and the helium turbine it is possible to eliminate the turbine stators by contra rotating the spools. The compressor is divided into low pressure and high pressure spools although by normal gas turbine standards they are both low pressure ratio machines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, A.K.; Das, P.K.; Saha, P.
2010-11-15
Boiling heat transfer from a flat surface can be enhanced if continuous open tunnel type structures are embedded in it. Further, improvement of boiling heat transfer from such surfaces has been tried by two separate avenues. At first, inclined tunnels are embedded over the solid surface and an effort is made to optimize the tunnel inclination for boiling heat transfer. Surfaces are manufactured in house with four different inclinations of the tunnels with or without a reentrant circular pocket at the end of the tunnel. Experiments conducted in the nucleate boiling regime showed that 45 deg inclination of the tunnelsmore » for both with and without base geometry provides the highest heat transfer coefficient. Next, active fluid rotation was imposed to enhance the heat transfer from tunnel type surfaces with and without the base geometry. Rotational speed imparted by mechanical stirrer was varied over a wide range. It was observed that fluid rotation enhances the heat transfer coefficient only up to a certain value of stirrer speed. Rotational speed values, beyond this limit, reduce the boiling heat transfer severely. A comparison shows that embedding continuous tunnel turns out to be a better option for the increase of heat transfer coefficient compared to the imposition of fluid rotation. But the behavior of inclined tunnels under the action of fluid rotation is yet to be established and can be treated as a future scope of the work. (author)« less
Vibrational analysis of vertical axis wind turbine blades
NASA Astrophysics Data System (ADS)
Kapucu, Onur
The goal of this research is to derive a vibration model for a vertical axis wind turbine blade. This model accommodates the affects of varying relative flow angle caused by rotating the blade in the flow field, uses a simple aerodynamic model that assumes constant wind speed and constant rotation rate, and neglects the disturbance of wind due to upstream blade or post. The blade is modeled as elastic Euler-Bernoulli beam under transverse bending and twist deflections. Kinetic and potential energy equations for a rotating blade under deflections are obtained, expressed in terms of assumed modal coordinates and then plugged into Lagrangian equations where the non-conservative forces are the lift and drag forces and moments. An aeroelastic model for lift and drag forces, approximated with third degree polynomials, on the blade are obtained assuming an airfoil under variable angle of attack and airflow magnitudes. A simplified quasi-static airfoil theory is used, in which the lift and drag coefficients are not dependent on the history of the changing angle of attack. Linear terms on the resulting equations of motion will be used to conduct a numerical analysis and simulation, where numeric specifications are modified from the Sandia-17m Darrieus wind turbine by Sandia Laboratories.
Dual processing of visual rotation for bipedal stance control.
Day, Brian L; Muller, Timothy; Offord, Joanna; Di Giulio, Irene
2016-10-01
When standing, the gain of the body-movement response to a sinusoidally moving visual scene has been shown to get smaller with faster stimuli, possibly through changes in the apportioning of visual flow to self-motion or environment motion. We investigated whether visual-flow speed similarly influences the postural response to a discrete, unidirectional rotation of the visual scene in the frontal plane. Contrary to expectation, the evoked postural response consisted of two sequential components with opposite relationships to visual motion speed. With faster visual rotation the early component became smaller, not through a change in gain but by changes in its temporal structure, while the later component grew larger. We propose that the early component arises from the balance control system minimising apparent self-motion, while the later component stems from the postural system realigning the body with gravity. The source of visual motion is inherently ambiguous such that movement of objects in the environment can evoke self-motion illusions and postural adjustments. Theoretically, the brain can mitigate this problem by combining visual signals with other types of information. A Bayesian model that achieves this was previously proposed and predicts a decreasing gain of postural response with increasing visual motion speed. Here we test this prediction for discrete, unidirectional, full-field visual rotations in the frontal plane of standing subjects. The speed (0.75-48 deg s(-1) ) and direction of visual rotation was pseudo-randomly varied and mediolateral responses were measured from displacements of the trunk and horizontal ground reaction forces. The behaviour evoked by this visual rotation was more complex than has hitherto been reported, consisting broadly of two consecutive components with respective latencies of ∼190 ms and >0.7 s. Both components were sensitive to visual rotation speed, but with diametrically opposite relationships. Thus, the early component decreased with faster visual rotation, while the later component increased. Furthermore, the decrease in size of the early component was not achieved by a simple attenuation of gain, but by a change in its temporal structure. We conclude that the two components represent expressions of different motor functions, both pertinent to the control of bipedal stance. We propose that the early response stems from the balance control system attempting to minimise unintended body motion, while the later response arises from the postural control system attempting to align the body with gravity. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
A conceptual framework for evaluating variable speed generator options for wind energy applications
NASA Technical Reports Server (NTRS)
Reddoch, T. W.; Lipo, T. A.; Hinrichsen, E. N.; Hudson, T. L.; Thomas, R. J.
1995-01-01
Interest in variable speed generating technology has accelerated as greater emphasis on overall efficiency and superior dynamic and control properties in wind-electric generating systems are sought. This paper reviews variable speed technology options providing advantages and disadvantages of each. Furthermore, the dynamic properties of variable speed systems are contrasted with synchronous operation. Finally, control properties of variable speed systems are examined.
Shinomiya, Kazufusa; Zaima, Kazumasa; Harada, Yukina; Yasue, Miho; Harikai, Naoki; Tokura, Koji; Ito, Yoichiro
2017-01-20
Coil satellite centrifuge (CSC) produces the complex satellite motion consisting of the triplicate rotation of the coiled column around three axes including the sun axis (the angular velocity, ω 1 ), the planet axis (ω 2 ) and the satellite axis (the central axis of the column) (ω 3 ) according to the following formula: ω 1 =ω 2 +ω 3 . Improved peak resolution in the separation of 4-methylumbelliferyl sugar derivatives was achieved using the conventional multilayer coiled columns with ethyl acetate/1-butanol/water (3: 2: 5, v/v) for the lower mobile phase at the combination of the rotation speeds (ω 1 , ω 2 , ω 3 )=(300, 150, 150rpm), and (1:4:5, v/v) for the upper mobile phase at (300:100:200rpm). The effect of the satellite motion on the peak resolution and the stationary phase retention was evaluated by each CSC separation with the different rotation speeds of ω 2 and ω 3 under the constant revolution speed at ω 1 =300rpm. With the lower mobile phase, almost constant peak resolution and stationary phase retention were yielded regardless of the change of ω 2 and ω 3 , while with the upper mobile phase these two values were sensitively varied according to the different combination of ω 2 and ω 3 . For example, when ω 2 =147 or 200rpm is used, no stationary phase was retained in the coiled column while ω 2 =150rpm could retain enough volume of stationary phase for separation. On the other hand, the combined rotation speeds at (ω 1 , ω 2 , ω 3 )=(300, 300, 0rpm) or (300, 0, 300rpm) produced insufficient peak resolution regardless of the choice of the mobile phase apparently due to the lack of rotation speed except at (300, 0, 300rpm) with the upper mobile phase. At lower rotation speed of ω 1 =300rpm, better peak resolution and stationary phase retention were obtained by the satellite motion (ω 3 ) than by the planetary motion (ω 2 ), or ω 3 >ω 2 . The effect of the hydrophobicity of the two-phase solvent systems on the stationary phase retention was further examined using the n-hexane/ethyl acetate/1-butanol/methanol/water system at different volume ratios. In the satellite motion at (ω 1 , ω 2 , ω 3 )=(300, 150, 150rpm), almost constant stationary phase retention was obtained with the lower mobile phase regardless of the hydrophobicity of the solvent system whereas the stationary phase retention varied according to the volume ratio of the two-phase solvent system for the upper mobile phase. However, stable stationary phase retention was observed with either phase used as the mobile phase. In order to analyze the acceleration acting on the coiled column, an acceleration sensor was set on the column holder by displacing the multilayer column. The combination of the rotation speeds at (300, 100, 200rpm) showed double loops in the acceleration track, whereas (300, 150, 150rpm) showed a single loop, and all other combinations showed, complex tracks. The overall results indicate that the satellite motion is seriously affected by the combination of rotation speeds and the hydrophobicity of the two-phase solvent system when the upper phase was used as the mobile phase for separation. Copyright © 2016 Elsevier B.V. All rights reserved.
Shinomiya, Kazufusa; Zaima, Kazumasa; Harada, Yukina; Yasue, Miho; Harikai, Naoki; Tokura, Koji; Ito, Yoichiro
2016-01-01
Coil satellite centrifuge (CSC) produces the complex satellite motion consisting of the triplicate rotation of the coiled column around three axes including the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3) according to the following formula: ω1 = ω2 + ω3. Improved peak resolution in the separation of 4-methylumbelliferyl sugar derivatives was achieved using the conventional multilayer coiled columns with ethyl acetate/1-butanol/water (3 : 2 : 5, v/v) for the lower mobile phase at the combination of the rotation speeds (ω1, ω2, ω3) = (300, 150, 150 rpm), and (1 : 4 : 5, v/v) for the upper mobile phase at (300 : 100 : 200 rpm). The effect of the satellite motion on the peak resolution and the stationary phase retention was evaluated by each CSC separation with the different rotation speeds of ω2 and ω3 under the constant revolution speed at ω1 = 300 rpm. With the lower mobile phase, almost constant peak resolution and stationary phase retention were yielded regardless of the change of ω2 and ω3, while with the upper mobile phase these two values were sensitively varied according to the different combination of ω2 and ω3. For example, when ω2 = 147 or 200 rpm is used, no stationary phase was retained in the coiled column while ω2 = 150 rpm could retain enough volume of stationary phase for separation. On the other hand, the combined rotation speeds at (ω1, ω2, ω3) = (300, 300, 0 rpm) or (300, 0, 300 rpm) produced insufficient peak resolution regardless of the choice of the mobile phase apparently due to the lack of rotation speed except at (300, 0, 300 rpm) with the upper mobile phase. At lower rotation speed of ω1 = 300 rpm, better peak resolution and stationary phase retention were obtained by the satellite motion (ω3) than by the planetary motion (ω2), or ω3 > ω2. The effect of the hydrophobicity of the two-phase solvent systems on the stationary phase retention was further examined using the n-hexane/ethyl acetate/1-butanol/methanol/water system at different volume ratios. In the satellite motion at (ω1, ω2, ω3) = (300, 150, 150 rpm), almost constant stationary phase retention was obtained with the lower mobile phase regardless of the hydrophobicity of the solvent system whereas the stationary phase retention varied according to the volume ratio of the two-phase solvent system for the upper mobile phase. However, stable stationary phase retention was observed with either phase used as the mobile phase. In order to analyze the acceleration acting on the coiled column, an acceleration sensor was set on the column holder by displacing the multilayer column. The combination of the rotation speeds at (300, 100, 200 rpm) showed double loops in the acceleration track, whereas (300, 150, 150 rpm) showed a single loop, and all other combinations showed, complex tracks. The overall results indicate that the satellite motion is seriously affected by the combination of rotation speeds and the hydrophobicity of the two-phase solvent system when the upper phase was used as the mobile phase for separation. PMID:28040269
ON THE ROTATION OF SUNSPOTS AND THEIR MAGNETIC POLARITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianchuan; Yang, Zhiliang; Guo, Kaiming
2016-07-20
The rotation of sunspots of 2 yr in two different solar cycles is studied with the data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observataory . We choose the α sunspot groups and the relatively large and stable sunspots of complex active regions in our sample. In the year of 2003, the α sunspot groups and the preceding sunspots tend to rotate counterclockwise and have positive magnetic polarity in the northern hemisphere. In the southern hemisphere, the magnetic polarity and rotational tendency ofmore » the α sunspot groups and the preceding sunspots are opposite to the northern hemisphere. The average rotational speed of these sunspots in 2003 is about 0.°65 hr{sup 1}. From 2014 January to 2015 February, the α sunspot groups and the preceding sunspots tend to rotate clockwise and have negative magnetic polarity in the northern hemisphere. The patterns of rotation and magnetic polarity of the southern hemisphere are also opposite to those of the northern hemisphere. The average rotational speed of these sunspots in 2014/2015 is about 1.°49 hr{sup 1}. The rotation of the relatively large and stable preceding sunspots and that of the α sunspot groups located in the same hemisphere have opposite rotational direction in 2003 and 2014/2015.« less
NASA Technical Reports Server (NTRS)
Beij, K Hilding
1933-01-01
This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.
NASA Astrophysics Data System (ADS)
Quevedo, H. J.; Valanju, P. M.; Bengtson, Roger D.
2007-06-01
In MBX, a small mirror machine with a radial electric field creates a rotating plasma that is expected to evolve, under certain conditions, into a self-organizing, detached toroidal plasma ring, a magnetofluid state. In the present stage of the experiment a low density plasma generated by microwaves (1 kW at 2.54 GHz) has been successfully rotated at supersonic speeds using a 1 kV-80 mF capacitor bank with currents ˜5 amps. Under these conditions the plasma presents high asymmetry in the current, plasma potential and consequently rotation with the voltage applied. A simple model is presented to account for these features.
Modeling the heliolatitudinal gradient of the solar wind parameters with exact MHD solutions
NASA Technical Reports Server (NTRS)
Lima, J. J. G.; Tsinganos, K.
1995-01-01
The heliolatitudinal dependence of observations of the solar wind macroscopic quantities such as the averaged proton speed, density and the mass and momentum flux are modeled. The published observations covering the last two and a half solar cycles, are obtained either via the technique of interplanetary scintillations for the last 2 solar cycles (1970-1990), or, from the plasma experiment aboard the ULYSSES spacecraft for the recent period 1990-1994. Exact, two dimensional solutions of the full set of the steady MHD equations are used which are obtained through a nonlinear separation of the variables in the MHD equations. The three parameters emerging from the solutions are fixed from these observations, as well as from observations of the solar rotation. It is found that near solar maximum the solar wind speed is uniformly low, around the 400 km/s over a wide range of latitudes. On the other hand, during solar minimum and the declining phase of the solar activity cycle, there is a strong heliolatitudinal gradient in proton speed between 400-800 from equator to pole. This modeling also agrees with previous findings that the gradient in wind speed with the latitude is offset by a gradient in density such that the mass and momentum flux vary relatively little.
Resonant vibration control of rotating beams
NASA Astrophysics Data System (ADS)
Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan
2011-04-01
Rotating structures, like e.g. wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor-actuator system, governed by a resonant controller. The theory is here demonstrated by an active strut, connecting two cross-sections of a rotating beam. The structure is modeled by beam elements in a rotating frame of reference following the beam. The geometric stiffness is derived in a compact form from an initial stress formulation in terms of section forces and moments. The stiffness, and thereby the natural frequencies, of the beam depend on the rotation speed and the controller is tuned to current rotation speed to match the resonance frequency of the selected mode. It is demonstrated that resonant control leads to introduction of the intended level of damping in the selected mode and, with good modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency.
Caracterización y automatización mecánica de los telescopios Cherenkov de CASLEO
NASA Astrophysics Data System (ADS)
Leal, N.; Yelós, L. D.; Mancilla, A.; Maya, J.; Feres, L.; Lazarte, F.; García, B.
2017-10-01
A new automation system for the Cherenkov Telescopes at CASLEO is designed. Two rotation speeds are proposed: a fast speed for positioning and parking and a slow speed for tracking. The wind speed at El Leoncito site is used as a design parameter. In this work we present the first tests with the new setup which shows a correct performance at fast speeds.
NASA Astrophysics Data System (ADS)
Gemme, Frederic
The aim of the present research project is to increase the amount of fundamental knowledge regarding the process by getting a better understanding of the physical phenomena involved in friction stir welding (FSW). Such knowledge is required to improve the process in the context of industrial applications. In order to do so, the first part of the project is dedicated to a theoretical study of the process, while the microstructure and the mechanical properties of welded joints obtained in different welding conditions are measured and analyzed in the second part. The combination of the tool rotating and translating movements induces plastic deformation and heat generation of the welded material. The material thermomechanical history is responsible for metallurgical phenomena occurring during FSW such as recrystallization and precipitate dissolution and coarsening. Process modelling is used to reproduce this thermomechanical history in order to predict the influence of welding on the material microstructure. It is helpful to study heat generation and heat conduction mechanisms and to understand how joint properties are related to them. In the current work, a finite element numerical model based on solid mechanics has been developed to compute the thermomechanical history of the welded material. The computation results were compared to reference experimental data in order to validate the model and to calibrate unknown physical parameters. The model was used to study the effect of the friction coefficient on the thermomechanical history. Results showed that contact conditions at the workpiece/tool interface have a strong effect on relative amounts of heat generated by friction and by plastic deformation. The comparison with the experimental torque applied by the tool for different rotational speeds has shown that the friction coefficient decreases when the rotational speed increases. Consequently, heat generation is far more important near the material/tool interface and the material deformation is shallower, increasing the lack of penetration probability. The variation of thermomechanical conditions with regards to the rotational speed is responsible for the variation of the nugget shape, as recrystallization conditions are not reached in the same volume of material. The second part of the research project was dedicated to a characterization of the welded joints microstructure and mechanical properties. Sound joints were obtained by using a manufacturing procedure involving process parameters optimization and quality control of the joint integrity. Five different combinations of rotational and advancing speeds were studied. Microstructure observations have shown that the rotational speed has an effect on recrystallization conditions because of the variation of the contact conditions at the material/tool interface. On the other hand, the advancing speed has a strong effect on the precipitation state in the heat affected zone (HAZ). The heat input increases when the advancing speed decreases. The material softening in the HAZ is then more pronounced. Mechanical testing of the welded joints showed that the fatigue resistance increases when the rotational speed increases and the advancing speed decreases. The fatigue resistance of FSW joints mainly depends on the ratio of the advancing speed on the rotational speed, called the welding pitch k. When the welding pitch is high (k ≥ 0,66 mm/rev), the fatigue resistance depends on crack initiation at the root of circular grooves left by the tool on the weld surface. The size of these grooves is directly related to the welding pitch. When the welding pitch is low (k ≤ 0,2 mm/rev), the heat input is high and the fatigue resistance is limited by the HAZ softening. The fatigue resistance is optimized when k stands in the 0,25-0,30 mm/rev range. Outside that range, the presence of small lateral lips is critical. The results of the characterization part of the project showed that the effects of the applied vertical force on the formation of lateral lips should be submitted to further investigations. The elimination of the lateral lip, which could be achieved with a more precise adjustment of the vertical force, could lead to an improved fatigue resistance. The elimination of lateral lips, but also the circular grooves left by the tool, may be obtained by developing an appropriate surfacing technique and could lead to an improved fatigue resistance without reducing the advancing speed. (Abstract shortened by UMI.)
Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki
Horinouchi, Takeshi; Murakami, Shin-ya; Satoh, Takehiko; Peralta, Javier; Ogohara, Kazunori; Kouyama, Toru; Imamura, Takeshi; Kashimura, Hiroki; Limaye, Sanjay S.; McGouldrick, Kevin; Nakamura, Masato; Sato, Takao M.; Sugiyama, Ko-ichiro; Takagi, Masahiro; Watanabe, Shigeto; Yamada, Manabu; Yamazaki, Atsushi; Young, Eliot F.
2018-01-01
The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planet’s rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planet’s night-side escapes to space at narrow spectral windows of near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m/s at low- to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m/s using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide new challenges and clues to the dynamics of Venus’s atmospheric superrotation. PMID:29887914
On the Origins of the Intercorrelations Between Solar Wind Variables
NASA Astrophysics Data System (ADS)
Borovsky, Joseph E.
2018-01-01
It is well known that the time variations of the diverse solar wind variables at 1 AU (e.g., solar wind speed, density, proton temperature, electron temperature, magnetic field strength, specific entropy, heavy-ion charge-state densities, and electron strahl intensity) are highly intercorrelated with each other. In correlation studies of the driving of the Earth's magnetosphere-ionosphere-thermosphere system by the solar wind, these solar wind intercorrelations make determining cause and effect very difficult. In this report analyses of solar wind spacecraft measurements and compressible-fluid computer simulations are used to study the origins of the solar wind intercorrelations. Two causes are found: (1) synchronized changes in the values of the solar wind variables as the plasma types of the solar wind are switched by solar rotation and (2) dynamic interactions (compressions and rarefactions) in the solar wind between the Sun and the Earth. These findings provide an incremental increase in the understanding of how the Sun-Earth system operates.
Evaluation of a continuous-rotation, high-speed scanning protocol for micro-computed tomography.
Kerl, Hans Ulrich; Isaza, Cristina T; Boll, Hanne; Schambach, Sebastian J; Nolte, Ingo S; Groden, Christoph; Brockmann, Marc A
2011-01-01
Micro-computed tomography is used frequently in preclinical in vivo research. Limiting factors are radiation dose and long scan times. The purpose of the study was to compare a standard step-and-shoot to a continuous-rotation, high-speed scanning protocol. Micro-computed tomography of a lead grid phantom and a rat femur was performed using a step-and-shoot and a continuous-rotation protocol. Detail discriminability and image quality were assessed by 3 radiologists. The signal-to-noise ratio and the modulation transfer function were calculated, and volumetric analyses of the femur were performed. The radiation dose of the scan protocols was measured using thermoluminescence dosimeters. The 40-second continuous-rotation protocol allowed a detail discriminability comparable to the step-and-shoot protocol at significantly lower radiation doses. No marked differences in volumetric or qualitative analyses were observed. Continuous-rotation micro-computed tomography significantly reduces scanning time and radiation dose without relevantly reducing image quality compared with a normal step-and-shoot protocol.
Rapid Speed Modulation of a Rotary Total Artificial Heart Impeller.
Kleinheyer, Matthias; Timms, Daniel L; Tansley, Geoffrey D; Nestler, Frank; Greatrex, Nicholas A; Frazier, O Howard; Cohn, William E
2016-09-01
Unlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis. It may therefore be beneficial to attempt to reproduce pulsatile output, similar to that generated by the native heart, by rapidly modulating the speed of an RBP impeller. The choice of an appropriate speed profile and control strategy to generate physiologic waveforms while minimizing power consumption and blood trauma becomes a challenge. In this study, pump operation modes with six different speed profiles using the BiVACOR TAH were evaluated in vitro. These modes were compared with respect to: hemodynamic pulsatility, which was quantified as surplus hemodynamic energy (SHE); maximum rate of change of pressure (dP/dt); pulse power index; and motor power consumption as a function of pulse pressure. The results showed that the evaluated variables underwent different trends in response to changes in the speed profile shape. The findings indicated a possible trade-off between SHE levels and flow rate pulsatility related to the relative systolic duration in the speed profile. Furthermore, none of the evaluated measures was sufficient to fully characterize hemodynamic pulsatility. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Oka, Mohachiro; Enokizono, Masato; Mori, Yuji; Yamazaki, Kazumasa
2018-04-01
Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. Eddy-current loss in the stator core is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator core for a motor using an ultrathin electrical steel sheet with only a small amount of eddy-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator cores that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator core. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, eddy-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator core.
Fraser, Kirk A.; St-Georges, Lyne; Kiss, Laszlo I.
2014-01-01
Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time. PMID:28788627
Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I
2014-04-30
Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.
First order ball bearing kinematics
NASA Technical Reports Server (NTRS)
Kingbury, E.
1984-01-01
Two first order equations are given connecting geometry and internal motions in an angular contact ball bearing. Total speed, kinematic equivalence, basic speed ratio, and modal speed ratio are defined and discussed; charts are given for the speed ratios covering all bearings and all rotational modes. Instances where specific first order assumptions might fail are discussed, and the resulting effects on bearing performance reviewed.
Experimental investigation of the abrasive crown dynamics in orbital atherectomy.
Zheng, Yihao; Belmont, Barry; Shih, Albert J
2016-07-01
Orbital atherectomy is a catheter-based minimally invasive procedure to modify the plaque within atherosclerotic arteries using a diamond abrasive crown. This study was designed to investigate the crown motion and its corresponding contact force with the vessel. To this end, a transparent arterial tissue-mimicking phantom made of polyvinyl chloride was developed, a high-speed camera and image processing technique were utilized to visualize and quantitatively analyze the crown motion in the vessel phantom, and a piezoelectric dynamometer measured the forces on the phantom during the procedure. Observed under typical orbital atherectomy rotational speeds of 60,000, 90,000, and 120,000rpm in a 4.8mm caliber vessel phantom, the crown motion was a combination of high-frequency rotation at 1000, 1500, and 1660.4-1866.1Hz and low-frequency orbiting at 18, 38, and 40Hz, respectively. The measured forces were also composed of these high and low frequencies, matching well with the rotation of the eccentric crown and the associated orbital motion. The average peak force ranged from 0.1 to 0.4N at different rotational speeds. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Full-field Deformation Measurement Techniques for a Rotating Composite Shaft
NASA Technical Reports Server (NTRS)
Kohlman, Lee W.; Ruggeri, Charles R.; Martin, Richard E.; Roberts, Gary D.; Handschuh, Robert F.; Roth, Don J.
2012-01-01
Test methods were developed to view global and local deformation in a composite tube during a test in which the tube is rotating at speeds and torques relevant to rotorcraft shafts. Digital image correlation (DIC) was used to provide quantitative displacement measurements during the tests. High speed cameras were used for the DIC measurements in order to capture images at sufficient frame rates and with sufficient resolution while the tube was rotating at speeds up to 5,000 rpm. Surface displacement data was resolved into cylindrical coordinates in order to measure rigid body rotation and global deformation of the tube. Tests were performed on both undamaged and impact damaged tubes in order to evaluate the capability to detect local deformation near an impact damaged site. Measurement of radial displacement clearly indicated a local buckling deformation near the impacted site in both dynamic and static tests. X-ray computed tomography (CT) was used to investigate variations in fiber architecture within the composite tube and to detect impact damage. No growth in the impact damage area was observed by DIC during dynamic testing or by x-ray CT in post test inspection of the composite tube.
Twisted surfaces with vanishing curvature in Galilean 3-space
NASA Astrophysics Data System (ADS)
Dede, Mustafa; Ekici, Cumali; Goemans, Wendy; Ünlütürk, Yasin
In this work, we define twisted surfaces in Galilean 3-space. In order to construct these surfaces, a planar curve is subjected to two simultaneous rotations, possibly with different rotation speeds. The existence of Euclidean rotations and isotropic rotations leads to three distinct types of twisted surfaces in Galilean 3-space. Then we classify twisted surfaces in Galilean 3-space with zero Gaussian curvature or zero mean curvature.
Method and apparatus for water jet drilling of rock
Summers, David A.; Mazurkiewicz, Marian; Bushnell, Dwight J.; Blaine, James
1978-01-01
Rock drilling method and apparatus utilizing high pressure water jets for drilling holes of relatively small diameter at speeds significantly greater than that attainable with existing drilling tools. Greatly increased drilling rates are attained due to jet nozzle geometry and speed of rotation. The jet nozzle design has two orifices, one pointing axially ahead in the direction of travel and the second inclined at an angle of approximately 30.degree. from the axis. The two orifices have diameters in the ratio of approximately 1:2. Liquid jet velocities in excess of 1,000 ft/sec are used, and the nozzle is rotated at speeds up to 1,000 rpm and higher.
A fiber optic sensor for noncontact measurement of shaft speed, torque, and power
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1990-01-01
A fiber optic sensor which enables noncontact measurement of the speed, torque and power of a rotating shaft was fabricated and tested. The sensor provides a direct measurement of shaft rotational speed and shaft angular twist, from which torque and power can be determined. Angles of twist between 0.005 and 10 degrees were measured. Sensor resolution is limited by the sampling rate of the analog to digital converter, while accuracy is dependent on the spot size of the focused beam on the shaft. Increasing the sampling rate improves measurement resolution, and decreasing the focused spot size increases accuracy. Digital processing allows for enhancement of an electronically or optically degraded signal.
A fiber optic sensor for noncontact measurement of shaft speed, torque and power
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1990-01-01
A fiber optic sensor which enables noncontact measurement of the speed, torque and power of a rotating shaft was fabricated and tested. The sensor provides a direct measurement of shaft rotational speed and shaft angular twist, from which torque and power can be determined. Angles of twist between 0.005 and 10 degrees were measured. Sensor resolution is limited by the sampling rate of the analog to digital converter, while accuracy is dependent on the spot size of the focused beam on the shaft. Increasing the sampling rate improves measurement resolution, and decreasing the focused spot size increases accuracy. Digital processing allows for enhancement of an electronically or optically degraded signal.
High speed reaction wheels for satellite attitude control and energy storage
NASA Technical Reports Server (NTRS)
Studer, P.; Rodriguez, E.
1985-01-01
The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.
Two routes to expertise in mental rotation.
Provost, Alexander; Johnson, Blake; Karayanidis, Frini; Brown, Scott D; Heathcote, Andrew
2013-01-01
The ability to imagine objects undergoing rotation (mental rotation) improves markedly with practice, but an explanation of this plasticity remains controversial. Some researchers propose that practice speeds up the rate of a general-purpose rotation algorithm. Others maintain that performance improvements arise through the adoption of a new cognitive strategy-repeated exposure leads to rapid retrieval from memory of the required response to familiar mental rotation stimuli. In two experiments we provide support for an integrated explanation of practice effects in mental rotation by combining behavioral and EEG measures in a way that provides more rigorous inference than is available from either measure alone. Before practice, participants displayed two well-established signatures of mental rotation: Both response time and EEG negativity increased linearly with rotation angle. After extensive practice with a small set of stimuli, both signatures of mental rotation had all but disappeared. In contrast, after the same amount of practice with a much larger set both signatures remained, even though performance improved markedly. Taken together, these results constitute a reversed association, which cannot arise from variation in a single cause, and so they provide compelling evidence for the existence of two routes to expertise in mental rotation. We also found novel evidence that practice with the large but not the small stimulus set increased the magnitude of an early visual evoked potential, suggesting increased rotation speed is enabled by improved efficiency in extracting three-dimensional information from two-dimensional stimuli. © 2013 Cognitive Science Society, Inc.
NASA Technical Reports Server (NTRS)
Sandercock, D. M.; Sanger, N. L.
1974-01-01
A single rotating blade row was tested with two magnitudes of tip radial distortion and two magnitudes of hub radial distortion imposed on the inlet flow. The rotor was about 50 centimeters (20 in.) in diameter and had a design operating tip speed of approximately 420 meters per second (1380 ft/sec). Overall performance at 60, 80, and 100 percent of equivalent design speed generally showed a decrease (compared to undistorted flow) in rotor stall margin with tip radial distortion but no change, or a slight increase, in rotor stall margin with hub radial distortion. At design speed there was a decrease in rotor overall total pressure ratio and choke flow with all inlet flow distortions. Radial distributions of blade element parameters are presented for selected operating conditions at design speed.
Centrifugally decoupling touchdown bearings
Post, Richard F
2014-06-24
Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.
NASA Technical Reports Server (NTRS)
Falls, L. W.; Crutcher, H. L.
1976-01-01
Transformation of statistics from a dimensional set to another dimensional set involves linear functions of the original set of statistics. Similarly, linear functions will transform statistics within a dimensional set such that the new statistics are relevant to a new set of coordinate axes. A restricted case of the latter is the rotation of axes in a coordinate system involving any two correlated random variables. A special case is the transformation for horizontal wind distributions. Wind statistics are usually provided in terms of wind speed and direction (measured clockwise from north) or in east-west and north-south components. A direct application of this technique allows the determination of appropriate wind statistics parallel and normal to any preselected flight path of a space vehicle. Among the constraints for launching space vehicles are critical values selected from the distribution of the expected winds parallel to and normal to the flight path. These procedures are applied to space vehicle launches at Cape Kennedy, Florida.
Spacecraft with gradual acceleration of solar panels
NASA Technical Reports Server (NTRS)
Merhav, Tamir R. (Inventor); Festa, Michael T. (Inventor); Stetson, Jr., John B. (Inventor)
1996-01-01
A spacecraft (8) includes a movable appendage such as solar panels (12) operated by a stepping motor (28) driven by pulses (311). In order to reduce vibration andor attitude error, the drive pulses are generated by a clock down-counter (312) with variable count ratio. Predetermined desired clock ratios are stored in selectable memories (314a-d), and the selected ratio (R) is coupled to a comparator (330) together with the current ratio (C). An up-down counter (340) establishes the current count-down ratio by counting toward the desired ratio under the control of the comparator; thus, a step change of solar panel speed never occurs. When a direction change is commanded, a flag signal generator (350) disables the selectable memories, and enables a further store (360), which generates a count ratio representing a very slow solar panel rotational rate, so that the rotational rate always slows to a low value before direction is changed. The principles of the invention are applicable to any movable appendage.
Friction Hydro-Pillar Processing of a High Carbon Steel: Joint Structure and Properties
NASA Astrophysics Data System (ADS)
Kanan, Luis Fernando; Vicharapu, Buchibabu; Bueno, Antonio Fernando Burkert; Clarke, Thomas; De, Amitava
2018-04-01
A coupled experimental and theoretical study is reported here on friction hydro-pillar processing of AISI 4140 steel, which is a novel solid-state joining technique to repair and fill crack holes in thick-walled components by an external stud. The stud is rotated and forced to fill a crack hole by plastic flow. During the process, frictional heating occurs along the interface of the stud and the wall of crack hole leading to thermal softening of the stud that eases its plastic deformation. The effect of the stud force, its rotational speed and the total processing time on the rate of heat generation and resulting transient temperature field is therefore examined to correlate the processing variables with the joint structure and properties in a systematic and quantitative manner, which is currently scarce in the published literature. The results show that a gentler stud force rate and greater processing time can promote proper filling of the crack hole and facilitate a defect-free joint between the stud and original component.
NASA Astrophysics Data System (ADS)
Takehiro, Shin-ichi; Sasaki, Youhei
2018-03-01
Penetration of steady magneto-hydrodynamic (MHD) disturbances into an upper strongly stratified stable layer excited by MHD thermal convection in rotating spherical shells is investigated. The theoretical model proposed by Takehiro (2015) is reexamined in the case of steady fluid motion below the bottom boundary. Steady disturbances penetrate into a density stratified MHD fluid existing in the semi-infinite region in the vertical direction. The axis of rotation of the system is tilted with respect to the vertical. The basic magnetic field is uniform and may be tilted with respect to the vertical and the rotation axis. Linear dispersion relation shows that the penetration distance with zero frequency depends on the amplitude of Alfvén wave speed. When Alfvén wave speed is small, viscous diffusion becomes dominant and penetration distance is similar to the horizontal scale of the disturbance at the lower boundary. In contrast, when Alfvén wave speed becomes larger, disturbance can penetrate deeper, and penetration distance becomes proportional to the Alfvén wave speed and inversely proportional to the geometric average of viscous and magnetic diffusion coefficients and to the total horizontal wavenumber. The analytic expression of penetration distance is in good agreement with the extent of penetration of mean zonal flow induced by finite amplitude convection in a rotating spherical shell with an upper stably stratified layer embedded in an axially uniform basic magnetic field. The theory expects that the stable layer suggested in the upper part of the outer core of the earth could be penetrated completely by mean zonal flows excited by thermal/compositional convection developing below the stable layer.
Speed of recovery after arthroscopic rotator cuff repair.
Kurowicki, Jennifer; Berglund, Derek D; Momoh, Enesi; Disla, Shanell; Horn, Brandon; Giveans, M Russell; Levy, Jonathan C
2017-07-01
The purpose of this study was to delineate the time taken to achieve maximum improvement (plateau of recovery) and the degree of recovery observed at various time points (speed of recovery) for pain and function after arthroscopic rotator cuff repair. An institutional shoulder surgery registry query identified 627 patients who underwent arthroscopic rotator cuff repair between 2006 and 2015. Measured range of motion, patient satisfaction, and patient-reported outcome measures were analyzed for preoperative, 3-month, 6-month, 1-year, and 2-year intervals. Subgroup analysis was performed on the basis of tear size by retraction grade and number of anchors used. As an entire group, the plateau of maximum recovery for pain, function, and motion occurred at 1 year. Satisfaction with surgery was >96% at all time points. At 3 months, 74% of improvement in pain and 45% to 58% of functional improvement were realized. However, only 22% of elevation improvement was achieved (P < .001). At 6 months, 89% of improvement in pain, 81% to 88% of functional improvement, and 78% of elevation improvement were achieved (P < .001). Larger tears had a slower speed of recovery for Single Assessment Numeric Evaluation scores, forward elevation, and external rotation. Smaller tears had higher motion and functional scores across all time points. Tear size did not influence pain levels. The plateau of maximum recovery after rotator cuff repair occurred at 1 year with high satisfaction rates at all time points. At 3 months, approximately 75% of pain relief and 50% of functional recovery can be expected. Larger tears have a slower speed of recovery. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Novel Spiral-Like Electrode Structure Design for Realization of Two Modes of Energy Harvesting.
Chen, Lin; Guo, Hengyu; Xia, Xiaona; Liu, Guanlin; Shi, Haofei; Wang, Mingjun; Xi, Yi; Hu, Chenguo
2015-08-05
A planar spiral-like electrodes (PSE) based triboelectric generator has been designed for harvesting rotary mechanical energy to translate into electricity. The performance of the PSE-triboelectric generator with different cycles of spiral-like electrode strip at different rotating speeds is investigated, which demonstrates the open-circuit voltage and short-circuit current of 470 V and 9.0 μA at rotating speed of 500 r/min with three cycles. In addition, a novel coaxially integrated multilayered PSE-triboelectric generator is built, which can enhance the output of the power effectively. The short-circuit current, the open-circuit voltage, and output power reach to 41.55 μA, 500 V, and 11.73 mW, respectively, at rotating speed of 700 r/min. The output power of the multilayered PSE-triboelectric generator can drive 200 LEDs connected in antiparallel and charge a 110 μF commercial capacitor to 6 V in 23 s. Besides, due to the spiral-like electrode structure, the PSE-generator can work simultaneously in the modes of triboelectricity and electromagnetic induced electricity by sticking a small magnet on the rotating disk. The electromagnetic induced output power reaches to 21 μW at a loading resistance of 2 Ω at a rotating rate of 200 r/min. The spiral-like electrode structure not only broadens the electrode structure design but also adds a new function to the electrode.
Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement.
De-Deus, G; Moreira, E J L; Lopes, H P; Elias, C N
2010-12-01
To evaluate the cyclic fatigue fracture resistance of engine-driven F2 ProTaper instruments under reciprocating movement. A sample of 30 NiTi ProTaper F2 instruments was used. An artificial canal was made from a stainless steel tube, allowing the instruments to rotate freely. During mechanical testing, different movement kinematics and speeds were used, which resulted in three experimental groups (n = 10). The instruments from the first group (G1) were rotated at a nominal speed of 250 rpm until fracture, whilst the instruments from the second group (G2) were rotated at 400 rpm. In the third instrument group (G3), the files were driven under reciprocating movement. The time of fracture for each instrument was measured, and statistical analysis was performed using parametric methods. Reciprocating movement resulted in a significantly longer cyclic fatigue life (P < 0.05). Moreover, operating rpm was a significant factor affecting cyclic fatigue life (P < 0.05); instruments used at a rotational speed of 400 rpm (approximately 95 s) failed more rapidly than those used at 250 rpm (approximately 25 s). Movement kinematics is amongst the factors determining the resistance of rotary NiTi instruments to cyclic fracture. Moreover, the reciprocating movement promoted an extended cyclic fatigue life of the F2 ProTaper instrument in comparison with conventional rotation.
Stiffness Effects in Rocker-Soled Shoes: Biomechanical Implications
Su, Pei-Fang; Chung, Chia-Hua; Hsia, Chi-Chun; Chang, Chih-Han
2017-01-01
Rocker-soled shoes provide a way to reduce the possible concentration of stress, as well as change movement patterns, during gait. This study attempts to examine how plantar force and spatio-temporal variables are affected by two rocker designs, one with softer and one with denser sole materials, by comparing them with the barefoot condition and with flat-soled shoes. Eleven subjects’ gait parameters during walking and jogging were recorded. Our results showed that compared with barefoot walking, plantar forces were higher for flat shoes while lower for both types of rocker shoes, the softer-material rocker being the lowest. The plantar force of flat shoes is greater than the vertical ground reaction force, while that of both rocker shoes is much less, 13.87–30.55% body weight. However, as locomotion speed increased to jogging, for all shoe types, except at the second peak plantar force of the denser sole material rocker shoes, plantar forces were greater than for bare feet. More interestingly, because the transmission of force was faster while jogging, greater plantar force was seen in the rocker-soled shoes with softer material than with denser material; results for higher-speed shock absorption in rocker-soled shoes with softer material were thus not as good. In general, the rolling phenomena along the bottom surface of the rocker shoes, as well as an increase in the duration of simultaneous curve rolling and ankle rotation, could contribute to the reduction of plantar force for both rocker designs. The possible mechanism is the conversion of vertical kinetic energy into rotational kinetic energy. To conclude, since plantar force is related to foot-ground interface and deceleration methods, rocker-design shoes could achieve desired plantar force reduction through certain rolling phenomena, shoe-sole stiffness levels, and locomotion speeds. PMID:28046009
Stiffness Effects in Rocker-Soled Shoes: Biomechanical Implications.
Lin, Shih-Yun; Su, Pei-Fang; Chung, Chia-Hua; Hsia, Chi-Chun; Chang, Chih-Han
2017-01-01
Rocker-soled shoes provide a way to reduce the possible concentration of stress, as well as change movement patterns, during gait. This study attempts to examine how plantar force and spatio-temporal variables are affected by two rocker designs, one with softer and one with denser sole materials, by comparing them with the barefoot condition and with flat-soled shoes. Eleven subjects' gait parameters during walking and jogging were recorded. Our results showed that compared with barefoot walking, plantar forces were higher for flat shoes while lower for both types of rocker shoes, the softer-material rocker being the lowest. The plantar force of flat shoes is greater than the vertical ground reaction force, while that of both rocker shoes is much less, 13.87-30.55% body weight. However, as locomotion speed increased to jogging, for all shoe types, except at the second peak plantar force of the denser sole material rocker shoes, plantar forces were greater than for bare feet. More interestingly, because the transmission of force was faster while jogging, greater plantar force was seen in the rocker-soled shoes with softer material than with denser material; results for higher-speed shock absorption in rocker-soled shoes with softer material were thus not as good. In general, the rolling phenomena along the bottom surface of the rocker shoes, as well as an increase in the duration of simultaneous curve rolling and ankle rotation, could contribute to the reduction of plantar force for both rocker designs. The possible mechanism is the conversion of vertical kinetic energy into rotational kinetic energy. To conclude, since plantar force is related to foot-ground interface and deceleration methods, rocker-design shoes could achieve desired plantar force reduction through certain rolling phenomena, shoe-sole stiffness levels, and locomotion speeds.
NASA Astrophysics Data System (ADS)
Krause, Lars; Braun, Markus; Hauslage, Jens; Hemmersbach, Ruth
2018-05-01
In single-celled rhizoids of the green algae Chara, positively gravitropic growth is governed by statoliths kept in a dynamically stable position 10-25 μ m above the cell tip by a complex interaction of gravity and actomyosin forces. Any deviation of the tube-like cells from the tip-downward orientation causes statoliths to sediment onto the gravisensitive subapical cell flank which initiates a gravitropic curvature response. Microgravity experiments have shown that abolishing the net tip-directed gravity force results in an actomyosin-mediated axial displacement of statoliths away from the cell tip. The present study was performed to critically assess the quality of microgravity simulation provided by different operational modes of a Random Positioning Machine (RPM) running with one axis (2D mode) or two axes (3D mode) and different rotational speeds (2D), speed ranges and directions (3D). The effects of 2D and 3D rotation were compared with data from experiments in real microgravity conditions (MAXUS sounding rocket missions). Rotational speeds in the range of 60-85 rpm in 2D and 3D modes resulted in a similar kinetics of statolith displacement as compared to real microgravity data, while slower clinorotation (2-11 rpm) caused a reduced axial displacement and a more dispersed arrangement of statoliths closer to the cell tip. Increasing the complexity of rotation by adding a second rotation axis in case of 3D clinorotation did not increase the quality of microgravity simulation, however, increased side effects such as the level of vibrations resulting in a more dispersed arrangement of statoliths. In conclusion, fast 2D clinorotation provides the most appropriate microgravity simulation for investigating the graviperception mechanism in Chara rhizoids, whereas slower clinorotation speeds and rotating samples around two axes do not improve the quality of microgravity simulation.
NASA Astrophysics Data System (ADS)
Krause, Lars; Braun, Markus; Hauslage, Jens; Hemmersbach, Ruth
2018-01-01
In single-celled rhizoids of the green algae Chara, positively gravitropic growth is governed by statoliths kept in a dynamically stable position 10-25 μ m above the cell tip by a complex interaction of gravity and actomyosin forces. Any deviation of the tube-like cells from the tip-downward orientation causes statoliths to sediment onto the gravisensitive subapical cell flank which initiates a gravitropic curvature response. Microgravity experiments have shown that abolishing the net tip-directed gravity force results in an actomyosin-mediated axial displacement of statoliths away from the cell tip. The present study was performed to critically assess the quality of microgravity simulation provided by different operational modes of a Random Positioning Machine (RPM) running with one axis (2D mode) or two axes (3D mode) and different rotational speeds (2D), speed ranges and directions (3D). The effects of 2D and 3D rotation were compared with data from experiments in real microgravity conditions (MAXUS sounding rocket missions). Rotational speeds in the range of 60-85 rpm in 2D and 3D modes resulted in a similar kinetics of statolith displacement as compared to real microgravity data, while slower clinorotation (2-11 rpm) caused a reduced axial displacement and a more dispersed arrangement of statoliths closer to the cell tip. Increasing the complexity of rotation by adding a second rotation axis in case of 3D clinorotation did not increase the quality of microgravity simulation, however, increased side effects such as the level of vibrations resulting in a more dispersed arrangement of statoliths. In conclusion, fast 2D clinorotation provides the most appropriate microgravity simulation for investigating the graviperception mechanism in Chara rhizoids, whereas slower clinorotation speeds and rotating samples around two axes do not improve the quality of microgravity simulation.
Simulation of solid-liquid flows in a stirred bead mill based on computational fluid dynamics (CFD)
NASA Astrophysics Data System (ADS)
Winardi, S.; Widiyastuti, W.; Septiani, E. L.; Nurtono, T.
2018-05-01
The selection of simulation model is an important step in computational fluid dynamics (CFD) to obtain an agreement with experimental work. In addition, computational time and processor speed also influence the performance of the simulation results. Here, we report the simulation of solid-liquid flow in a bead mill using Eulerian model. Multiple Reference Frame (MRF) was also used to model the interaction between moving (shaft and disk) and stationary (chamber exclude shaft and disk) zones. Bead mill dimension was based on the experimental work of Yamada and Sakai (2013). The effect of shaft rotation speed of 1200 and 1800 rpm on the particle distribution and the flow field was discussed. For rotation speed of 1200 rpm, the particles spread evenly throughout the bead mill chamber. On the other hand, for the rotation speed of 1800 rpm, the particles tend to be thrown to the near wall region resulting in the dead zone and found no particle in the center region. The selected model agreed well to the experimental data with average discrepancies less than 10%. Furthermore, the simulation was run without excessive computational cost.
Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests
NASA Astrophysics Data System (ADS)
Izzuddin, Nur; Sunarsih, Priyanto, Agoes
2015-05-01
As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.
Large amplitude forcing of a high speed 2-dimensional jet
NASA Technical Reports Server (NTRS)
Bernal, L.; Sarohia, V.
1984-01-01
The effect of large amplitude forcing on the growth of a high speed two dimensional jet was investigated experimentally. Two forcing techniques were utilized: mass flow oscillations and a mechanical system. The mass flow oscillation tests were conducted at Strouhal numbers from 0.00052 to 0.045, and peak to peak amplitudes up to 50 percent of the mean exit velocity. The exit Mach number was varied in the range 0.15 to 0.8. The corresponding Reynolds numbers were 8,400 and 45,000. The results indicate no significant change of the jet growth rate or centerline velocity decay compared to the undisturbed free jet. The mechanical forcing system consists of two counter rotating hexagonal cylinders located parallel to the span of the nozzle. Forcing frequencies up to 1,500 Hz were tested. Both symmetric and antisymmetric forcing can be implemented. The results for antisymmetric forcing showed a significant (75 percent) increase of the jet growth rate at an exit Mach number of 0.25 and a Strouhal number of 0.019. At higher rotational speeds, the jet deflected laterally. A deflection angle of 39 deg with respect to the centerline was measured at the maximum rotational speed.
Moreno-Pérez, V.; Elvira, JLL.; Fernandez-Fernandez, J.; Vera-Garcia, FJ.
2018-01-01
Background Glenohumeral internal rotation deficit and external rotation strength have been associated with the development of shoulder pain in overhead athletes. Objective To examine the bilateral passive shoulder rotational range of motion (ROM), the isometric rotational strength and unilateral serve speed in elite tennis players with and without shoulder pain history (PH and NPH, respectively) and compare between dominant and non-dominant limbs and between groups. Study Design Cohort study. Methods Fifty-eight elite tennis players were distributed into the PH group (n = 20) and the NPH group (n = 38). Serve velocity, dominant and non-dominant passive shoulder external and internal rotation (ER and IR) ROM, total arc of motion (TAM: the sum of IR and ER ROM), ER and IR isometric strength, bilateral deficits and ER/IR strength ratio were measured in both groups. Questionnaires were administered in order to classify characteristics of shoulder pain. Results The dominant shoulder showed significantly reduced IR ROM and TAM, and increased ER ROM compared to the non-dominant shoulder in both groups. Isometric ER strength and ER/IR strength ratio were significantly lower in the dominant shoulder in the PH group when compared with the NPH group. No significant differences between groups were found for serve speed. Conclusion These data show specific adaptations in the IR, TAM and ER ROM in the dominant shoulder in both groups. Isometric ER muscle weakness and ER/IR strength ratio deficit appear to be associated with history of shoulder injuries in elite tennis players. It would be advisable for clinicians to use the present information to design injury prevention programs. Level of evidence 2 PMID:29484240
Moreno-Pérez, V; Elvira, Jll; Fernandez-Fernandez, J; Vera-Garcia, F J
2018-02-01
Glenohumeral internal rotation deficit and external rotation strength have been associated with the development of shoulder pain in overhead athletes. To examine the bilateral passive shoulder rotational range of motion (ROM), the isometric rotational strength and unilateral serve speed in elite tennis players with and without shoulder pain history (PH and NPH, respectively) and compare between dominant and non-dominant limbs and between groups. Cohort study. Fifty-eight elite tennis players were distributed into the PH group (n = 20) and the NPH group (n = 38). Serve velocity, dominant and non-dominant passive shoulder external and internal rotation (ER and IR) ROM, total arc of motion (TAM: the sum of IR and ER ROM), ER and IR isometric strength, bilateral deficits and ER/IR strength ratio were measured in both groups. Questionnaires were administered in order to classify characteristics of shoulder pain. The dominant shoulder showed significantly reduced IR ROM and TAM, and increased ER ROM compared to the non-dominant shoulder in both groups. Isometric ER strength and ER/IR strength ratio were significantly lower in the dominant shoulder in the PH group when compared with the NPH group. No significant differences between groups were found for serve speed. These data show specific adaptations in the IR, TAM and ER ROM in the dominant shoulder in both groups. Isometric ER muscle weakness and ER/IR strength ratio deficit appear to be associated with history of shoulder injuries in elite tennis players. It would be advisable for clinicians to use the present information to design injury prevention programs. 2.
NASA Astrophysics Data System (ADS)
Doris, Muhamad; Aziz, Fakhra; Alhummiany, Haya; Bawazeer, Tahani; Alsenany, Nourah; Mahmoud, Alaa; Zakaria, Rozalina; Sulaiman, Khaulah; Supangat, Azzuliani
2017-01-01
In this study, low-bandgap polymer poly{[4,4-bis(2-ethylhexyl)-cyclopenta-(2,1- b;3,4- b')dithiophen]-2,6-diyl- alt-(2,1,3-benzothiadiazole)-4,7-diyl} (PCPDTBT) nanostructures have been synthesized via a hard nanoporous alumina template of centrifugal process. Centrifuge has been used to infiltrate the PCPDTBT solution into the nanoporous alumina by varying the rotational speeds. The rotational speed of centrifuge is directly proportional to the infiltration force that penetrates into the nanochannels of the template. By varying the rotational speed of centrifuge, different types of PCPDTBT nanostructures are procured. Infiltration force created during the centrifugal process has been found a dominant factor in tuning the morphological, optical, and structural properties of PCPDTBT nanostructures. The field emission scanning electron microscopy (FESEM) images proved the formation of nanotubes and nanowires. The energy-dispersive X-ray spectroscope (EDX) analysis showed that the nanostructures were composed of PCPDTBT with complete dissolution of the template.
Rotating bouncing disks, tossing pizza dough, and the behavior of ultrasonic motors
NASA Astrophysics Data System (ADS)
Liu, Kuang-Chen; Friend, James; Yeo, Leslie
2009-10-01
Pizza tossing and certain forms of standing-wave ultrasonic motors (SWUMs) share a similar process for converting reciprocating input into continuous rotary motion. We show that the key features of this motion conversion process such as collision, separation and friction coupling are captured by the dynamics of a disk bouncing on a vibrating platform. The model shows that the linear or helical hand motions commonly used by pizza chefs and dough-toss performers for single tosses maximize energy efficiency and the dough’s airborne rotational speed; on the other hand, the semielliptical hand motions used for multiple tosses make it easier to maintain dough rotation at the maximum speed. The system’s bifurcation diagram and basins of attraction also provide a physical basis for understanding the peculiar behavior of SWUMs and provide a means to design them. The model is able to explain the apparently chaotic oscillations that occur in SWUMs and predict the observed trends in steady-state speed and stall torque as preload is increased.
A reference Pelton turbine - High speed visualization in the rotating frame
NASA Astrophysics Data System (ADS)
Solemslie, Bjørn W.; Dahlhaug, Ole G.
2016-11-01
To enable a detailed study the flow mechanisms effecting the flow within the reference Pelton runner designed at the Waterpower Laboratory (NTNLT) a flow visualization system has been developed. The system enables high speed filming of the hydraulic surface of a single bucket in the rotating frame of reference. It is built with an angular borescopes adapter entering the turbine along the rotational axis and a borescope embedded within a bucket. A stationary high speed camera located outside the turbine housing has been connected to the optical arrangement by a non-contact coupling. The view point of the system includes the whole hydraulic surface of one half of a bucket. The system has been designed to minimize the amount of vibrations and to ensure that the vibrations felt by the borescope are the same as those affecting the camera. The preliminary results captured with the system are promising and enable a detailed study of the flow within the turbine.
Rotating bouncing disks, tossing pizza dough, and the behavior of ultrasonic motors.
Liu, Kuang-Chen; Friend, James; Yeo, Leslie
2009-10-01
Pizza tossing and certain forms of standing-wave ultrasonic motors (SWUMs) share a similar process for converting reciprocating input into continuous rotary motion. We show that the key features of this motion conversion process such as collision, separation and friction coupling are captured by the dynamics of a disk bouncing on a vibrating platform. The model shows that the linear or helical hand motions commonly used by pizza chefs and dough-toss performers for single tosses maximize energy efficiency and the dough's airborne rotational speed; on the other hand, the semielliptical hand motions used for multiple tosses make it easier to maintain dough rotation at the maximum speed. The system's bifurcation diagram and basins of attraction also provide a physical basis for understanding the peculiar behavior of SWUMs and provide a means to design them. The model is able to explain the apparently chaotic oscillations that occur in SWUMs and predict the observed trends in steady-state speed and stall torque as preload is increased.
NASA Astrophysics Data System (ADS)
Behmand, Saleh Alaei; Mirsalehi, Seyyed Ehsan; Omidvar, Hamid; Safarkhanian, Mohammad Ali
2016-10-01
In this article, filling friction stir welding (FFSW) of the remaining exit holes of AA5456 alloy friction-stir-welded lap joints was studied. For this purpose, the influences of different rotating speeds, holding times, and pin materials, AA5456 and AA2024, on the metallurgical structure and joint strength were investigated. The observations showed that defect-free lap joints are successfully obtainable by this method using similar and dissimilar consumable pins. The results indicated that the higher rotating speed and holding time adversely affect the weld performance. The best result was achieved for 30 seconds holding time, 500 rpm rotating speed, and AA2024 consumable pin. In this condition, a lap shear strength of 10 pct higher than that of the nonfilled joint, equivalent to about 94 pct of the original defect-free FSW joint, was obtained, whereas the GTAW filled joint showed only approximately 87 pct of the continuous FSW joint strength.
Examining Impulse-Variability in Kicking.
Chappell, Andrew; Molina, Sergio L; McKibben, Jonathon; Stodden, David F
2016-07-01
This study examined variability in kicking speed and spatial accuracy to test the impulse-variability theory prediction of an inverted-U function and the speed-accuracy trade-off. Twenty-eight 18- to 25-year-old adults kicked a playground ball at various percentages (50-100%) of their maximum speed at a wall target. Speed variability and spatial error were analyzed using repeated-measures ANOVA with built-in polynomial contrasts. Results indicated a significant inverse linear trajectory for speed variability (p < .001, η2= .345) where 50% and 60% maximum speed had significantly higher variability than the 100% condition. A significant quadratic fit was found for spatial error scores of mean radial error (p < .0001, η2 = .474) and subject-centroid radial error (p < .0001, η2 = .453). Findings suggest variability and accuracy of multijoint, ballistic skill performance may not follow the general principles of impulse-variability theory or the speed-accuracy trade-off.
Simulating Lahars Using A Rotating Drum
NASA Astrophysics Data System (ADS)
Neather, Adam; Lube, Gert; Jones, Jim; Cronin, Shane
2014-05-01
A large (0.5 m in diameter, 0.15 m wide) rotating drum is used to investigate the erosion and deposition mechanics of lahars. To systematically simulate the conditions occurring in natural mass flows our experimental setup differs from the common rotating drum employed in industrial/engineering studies. Natural materials with their typical friction properties are used, as opposed to the frequently employed spherical glass beads; the drum is completely water-proof, so solid/air and solid/liquid mixtures can be investigated; the drum velocity and acceleration can be precisely controlled using a software interface to a micro-controller, allowing for the study of steady, unsteady and intermediate flow regimes. The drum has a toughened glass door, allowing high-resolution, high-speed video recording of the material inside. Vector maps of the velocities involved in the flows are obtained using particle image velocimetry (PIV). The changes in velocity direction and/or magnitude are used to locate the primary internal boundaries between layers of opposite flow direction, as well as secondary interfaces between shear layers. A range of variables can be measured: thickness and number of layers; the curvature of the free surface; frequency of avalanching; position of the centre of mass of the material; and the velocity profiles of the flowing material. Experiments to date have focussed on dry materials, and have had a fill factor of approximately 0.3. Combining these measured variables allows us to derive additional data of interest, such as mass and momentum flux. It is these fluxes that we propose will allow insight into the erosion/deposition mechanics of a lahar. A number of conclusions can be drawn to date. A primary interface separates flowing and passive region (this interface has been identified in previous studies). As well as the primary interface, the flowing layer separates into individual shear layers, with individual erosion/deposition and flow histories. This complex flow geometry and process of erosion and deposition seen in our high speed videos is more complicated than previously reported in the literature. We identify two layers only in the slowest flows (< 0.5 rad s-1), while faster ones (< 4 rad s-1) include between three and five. As the rotational velocity of the drum increases, the curvature of the free surface increases. In the central part of the drum, the primary interfaces occasionally merges into an elliptical zone rather than a linear shear boundary. Inside this zone is a complete circulation of material. These zones' size and number appears to be a function of the rotational velocity of the drum. These "Neather cells" (as we tentatively name these phenomena) can reach as large as 20 mm in thickness. The centre of mass' deflection from vertical is linearly dependent on rotational velocity, whilst the typical flow regimes as identified by Mellmann [2001] show no influence. The frequency of avalanches increases with velocity up to a critical velocity (approximately 1.1 rad s-1), after which the avalanche frequency remains constant. 1 References J Mellmann. The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technology, 118(3):251-270, 2001.
Free Vibration Characteristics of Functionally Graded Pre-twisted Conical Shells under Rotation
NASA Astrophysics Data System (ADS)
Das, Apurba; Karmakar, Amit
2017-06-01
This article deals with effect of rotation and pretwist angle on free vibration characteristics of functionally graded conical shells. The dynamic equilibrium equation is derived from Lagrange's equation neglecting the Coriolis effect for moderate rotational speeds. The materials properties of conical shell are varied with a power-law distribution of the volume fractions of their constituents through its thickness. Convergence studies are performed in respect of mesh sizes, and comparisons of the present solutions and those reported in open literature are provided to substantiate the accuracy of the proposed method. Computer codes developed to obtain the numerical results for the combined effects of twist angle and rotational speed on the natural frequencies of functionally graded conical shells. The mode shapes for a typical laminate configuration under different conditions are also illustrated. Numerical results are obtained for the non-dimensional fundamental (NDFF) and second frequencies (NDSF).
Effects of clinostat rotation on Aurelia statolith synthesis
NASA Technical Reports Server (NTRS)
Spangenberg, D.; Davis, S.; Ross-Clunis, H., III
1985-01-01
Aurelia ephyrae develop eight graviceptors (rhopalia) during their metamorphosis from polyps, which are used for positional orientation with respect to gravity. In three experiments for each speed of 1/15, 1/8, 1/4, 1/2, 1, and 24 rpm, groups of six polyps were rotated in the horizontal or vertical plane (control) using clinostats. Other controls were kept stationary in the two planes. Ten ephyrae from each group were collected after 5-6 days at 27 C in iodine and the number of statoliths per rhopalium were counted. Statistical analyses of statolith numbers revealed that horizontal clinostat rotation at 1/4 and 1/2 rpm caused the formation of significantly fewer statoliths per rhopalium than were found in controls. The finding that these slow rates of rotation reduces statolith numbers suggests that the developing ephyrae were disoriented with respect to gravity at these speeds, causing fewer statocytes to differentiate or to mineralize.
Garcia, Ernest J.; Sniegowski, Jeffry J.
1997-01-01
A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque to a micromechanism. The microengine can be operated at varying speeds and its motion can be reversed. Linear actuators are synchronized in order to provide linear oscillatory motion to the linkage means in the X and Y directions according to a desired position, rotational direction and speed of said mechanical output means. The output gear has gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.
NASA Technical Reports Server (NTRS)
Applin, Z. T.; Coe, P. L., Jr.
1986-01-01
A limited experimental investigation was conducted in the Langley 4- by 7-Meter Tunnel to explore the effects of aft-fuselage-mounted advanced turboprop installations on the low-speed stability and control characteristics of a representative transport aircraft in a landing configuration. In general, the experimental results indicate that the longitudinal and lateral-directional stability characteristics for the aft-fuselage-mounted single-rotation tractor and counter-rotation pusher propeller configurations tested during this investigation are acceptable aerodynamically. For the single-rotation tractor configuration, the propeller-induced aerodynamics are significantly influenced by the interaction of the propeller slipstream with the pylon and nacelle. The stability characteristics for the counter-rotation pusher configuration are strongly influenced by propeller normal forces. The longitudinal and directional control effectiveness, engine-out characteristics, and ground effects are also presented. In addition, a tabulated presentation of all aerodynamic data presented in this report is included as an appendix.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.
1988-01-01
Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).
Dynamical behavior of surface tension on rotating fluids in low and microgravity environments
NASA Technical Reports Server (NTRS)
Hung, R. J.; Tsao, Y. D.; Hong, B. B.; Leslie, F. W.
1989-01-01
Consideration is given to the time-dependent evolutions of the free surface profile (bubble shapes) of a cylindrical container, partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry in low and microgravity environments. The dynamics of the bubble shapes are calculated for four cases: linear time-dependent functions of spin-up and spin-down in low and microgravity, linear time-dependent functions of increasing and decreasing gravity at high and low rotating cylinder speeds, time-dependent step functions of spin-up and spin-down in low gravity, and sinusoidal function oscillation of the gravity environment in high and low rotating cylinder speeds. It is shown that the computer algorithms developed by Hung et al. (1988) may be used to simulate the profile of time-dependent bubble shapes under variations of centrifugal, capillary, and gravity forces.
Fluid signatures of rotational discontinuities at Earth's magnetopause
NASA Technical Reports Server (NTRS)
Scudder, J. D.
1983-01-01
Fluid signatures in the MHD approximation at rotational discontinuities (RD) of finite width called rotational shear layers (RSL) are examined for general flow and magnetic geometries. Analytical and geometrical arguments illustrate that the fluid speed can either go up or down across an RSL for a fixed normal mass flux. The speed profile may or may not be monotonic depending on the boundary conditions. The flow velocity may or may not be field aligned or ""jetting'' as a result of traversing the RSL. In general, significant ""convection'' is expected in the layer. The observable signatures of (MHD) RSL's depend on 7 (boundary condition) parameters are (1) the mass density, (2 to 5) the incident normal and transverse components of the magnetic field and fluid velocity, (6) the angle epsilon between the incident tangential flow velocity and tangential magnetic field, and (7) the size of the magnetic angular rotation implemented by the layer delta phi.
Effects of Clinostat Rotation on Aurelia Statolith Synthesis
NASA Technical Reports Server (NTRS)
Spangenberg, Dorothy B.; Davis, S.; Ross-Clunis, H., III
1991-01-01
Aurelia ephyrae develop eight graviceptors (rhopalia) during their metamorphosis from polyps, which are used for positional orientation with respect to gravity. In three experiments for each speed of 1/15, 1/8, 1/2, 1, and 24 rpm, groups of six polyps were rotated in the horizontal or vertical plane (control) using clinostats. Other controls were kept stationary in the two planes. Ten ephyrae from each group were collected after 5 to 6 days at 27 C in iodine and the number of statoliths per rhopalium were counted. Statistical analyses of statolith numbers revealed that horizontal clinostat rotation at 1/4 and 1/2 rpm caused the formation of significantly fewer statoliths per rhopalium than were found in controls. The finding that these slow rates of rotation reduces statolith numbers suggests that the developing ephyrae were disoriented with respect to gravity at these speeds, causing fewer statocytes to differentiate or to mineralize.
An examination of loads and responses of a wind turbine undergoing variable-speed operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, A.D.; Buhl, M.L. Jr.; Bir, G.S.
1996-11-01
The National Renewable Energy Laboratory has recently developed the ability to predict turbine loads and responses for machines undergoing variable-speed operation. The wind industry has debated the potential benefits of operating wind turbine sat variable speeds for some time. Turbine system dynamic responses (structural response, resonance, and component interactions) are an important consideration for variable-speed operation of wind turbines. The authors have implemented simple, variable-speed control algorithms for both the FAST and ADAMS dynamics codes. The control algorithm is a simple one, allowing the turbine to track the optimum power coefficient (C{sub p}). The objective of this paper is tomore » show turbine loads and responses for a particular two-bladed, teetering-hub, downwind turbine undergoing variable-speed operation. The authors examined the response of the machine to various turbulent wind inflow conditions. In addition, they compare the structural responses under fixed-speed and variable-speed operation. For this paper, they restrict their comparisons to those wind-speed ranges for which limiting power by some additional control strategy (blade pitch or aileron control, for example) is not necessary. The objective here is to develop a basic understanding of the differences in loads and responses between the fixed-speed and variable-speed operation of this wind turbine configuration.« less
NASA Technical Reports Server (NTRS)
Hess, B. J.; Angelaki, D. E.
1997-01-01
The kinematic constraints of three-dimensional eye positions were investigated in rhesus monkeys during passive head and body rotations relative to gravity. We studied fast and slow phase components of the vestibulo-ocular reflex (VOR) elicited by constant-velocity yaw rotations and sinusoidal oscillations about an earth-horizontal axis. We found that the spatial orientation of both fast and slow phase eye positions could be described locally by a planar surface with torsional variation of <2.0 +/- 0.4 degrees (displacement planes) that systematically rotated and/or shifted relative to Listing's plane. In supine/prone positions, displacement planes pitched forward/backward; in left/right ear-down positions, displacement planes were parallel shifted along the positive/negative torsional axis. Dynamically changing primary eye positions were computed from displacement planes. Torsional and vertical components of primary eye position modulated as a sinusoidal function of head orientation in space. The torsional component was maximal in ear-down positions and approximately zero in supine/prone orientations. The opposite was observed for the vertical component. Modulation of the horizontal component of primary eye position exhibited a more complex dependence. In contrast to the torsional component, which was relatively independent of rotational speed, modulation of the vertical and horizontal components of primary position depended strongly on the speed of head rotation (i.e., on the frequency of oscillation of the gravity vector component): the faster the head rotated relative to gravity, the larger was the modulation. Corresponding results were obtained when a model based on a sinusoidal dependence of instantaneous displacement planes (and primary eye position) on head orientation relative to gravity was fitted to VOR fast phase positions. When VOR fast phase positions were expressed relative to primary eye position estimated from the model fits, they were confined approximately to a single plane with a small torsional standard deviation ( approximately 1.4-2.6 degrees). This reduced torsional variation was in contrast to the large torsional spread (well >10-15 degrees ) of fast phase positions when expressed relative to Listing's plane. We conclude that primary eye position depends dynamically on head orientation relative to space rather than being fixed to the head. It defines a gravity-dependent coordinate system relative to which the torsional variability of eye positions is minimized even when the head is moved passively and vestibulo-ocular reflexes are evoked. In this general sense, Listing's law is preserved with respect to an otolith-controlled reference system that is defined dynamically by gravity.
Thermo-Mechanical Processing in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Schneider, Judy
2003-01-01
Friction stir welding is a solid-phase joining, or welding process that was invented in 1991 at The Welding Institute (TWI). The process is potentially capable of joining a wide variety of aluminum alloys that are traditionally difficult to fusion weld. The friction stir welding (FSW) process produces welds by moving a non-consumable rotating pin tool along a seam between work pieces that are firmly clamped to an anvil. At the start of the process, the rotating pin is plunged into the material to a pre-determined load. The required heat is produced by a combination of frictional and deformation heating. The shape of the tool shoulder and supporting anvil promotes a high hydrostatic pressure along the joint line as the tool shears and literally stirs the metal together. To produce a defect free weld, process variables (RPM, transverse speed, and downward force) and tool pin design must be chosen carefully. An accurate model of the material flow during the process is necessary to guide process variable selection. At MSFC a plastic slip line model of the process has been synthesized based on macroscopic images of the resulting weld material. Although this model appears to have captured the main features of the process, material specific interactions are not understood. The objective of the present research was to develop a basic understanding of the evolution of the microstructure to be able to relate it to the deformation process variables of strain, strain rate, and temperature.
Biomechanics and Strength of Manual Wheelchair Users
Ambrosio, Fabrisia; Boninger, Michael L; Souza, Aaron L; Fitzgerald, Shirley G; Koontz, Alicia M; Cooper, Rory A
2005-01-01
Background/Objective: Previous investigations have identified muscular imbalance in the shoulder as a source of pain and injury in manual wheelchair users. Our aim was to determine whether a correlation exists between strength and pushrim biomechanical variables including: tangential (motive) force (Ft), radial force (Fr), axial force (Fz), total (resultant) force (FR), fraction of effective force (FEF), and cadence. Methods: Peak isokinetic shoulder strength (flexion [FLX], extension [EXT], abduction [ABD], adduction [ADD], internal rotation [IR], and external rotation [ER]) was tested in 22 manual wheelchair users with a BioDex system for 5 repetitions at 60°/s. Subjects then propelled their own manual wheelchair at 2 speeds, 0.9 m/s (2 mph) and 1.8 m/s (4 mph), for 20 seconds, during which kinematic (OPTOTRAK) and kinetic (SMARTWHEEL) data were collected. Peak isokinetic forces in the cardinal planes were correlated with pushrim biomechanical variables. Results: All peak torque strength variables correlated significantly (P ≤ 0.05) with Ft, Fr, and FR, but were not significantly correlated with Fz, FEF, or cadence. Finally, there were no relationships found between muscle strength ratios (for example, FLX/EXT) and Ft, Fr, FR, Fz, or FEF. Conclusion: There was a correlation between strength and force imparted to the pushrim among wheelchair users; however, there was no correlation found in wheelchair propulsion or muscle imbalance. Clinicians should be aware of this, and approach strength training and training in wheelchair propulsion techniques separately. PMID:16869087
Optimization of the Reconstruction Interval in Neurovascular 4D-CTA Imaging
Hoogenboom, T.C.H.; van Beurden, R.M.J.; van Teylingen, B.; Schenk, B.; Willems, P.W.A.
2012-01-01
Summary Time resolved whole brain CT angiography (4D-CTA) is a novel imaging technology providing information regarding blood flow. One of the factors that influence the diagnostic value of this examination is the temporal resolution, which is affected by the gantry rotation speed during acquisition and the reconstruction interval during post-processing. Post-processing determines the time spacing between two reconstructed volumes and, unlike rotation speed, does not affect radiation burden. The data sets of six patients who underwent a cranial 4D-CTA were used for this study. Raw data was acquired using a 320-slice scanner with a rotation speed of 2 Hz. The arterial to venous passage of an intravenous contrast bolus was captured during a 15 s continuous scan. The raw data was reconstructed using four different reconstruction-intervals: 0.2, 0.3, 0.5 and 1.0 s. The results were rated by two observers using a standardized score sheet. The appearance of each lesion was rated correctly in all readings. Scoring for quality of temporal resolution revealed a stepwise improvement from the 1.0 s interval to the 0.3 s interval, while no discernable improvement was noted between the 0.3 s and 0.2 s interval. An increase in temporal resolution may improve the diagnostic quality of cranial 4D-CTA. Using a rotation speed of 0.5 s, the optimal reconstruction interval appears to be 0.3 s, beyond which, changes can no longer be discerned. PMID:23217631
Mechanical properties of friction stir welded Al alloys with different hardening mechanisms
NASA Astrophysics Data System (ADS)
Lim, Sunggon; Kim, Sangshik; Lee, Chang-Gil; Kim, Sung Joon
2005-04-01
The mechanical properties of precipitation hardened Al 6061-T651 and Al 7075-T6 and strain hardened Al 5083-H32, friction stir welded with various welding parameters, were examined in the present study. 4 mm thick Al 6061-T651, Al 7075-T6, and Al 5083-H32 alloy plates were used for friction stir welding (FSW) with rotating speed varied from 1000 to 2500 rpm (rotation per minute) and welding speed ranging from 0.1 to 0.4 mpm (m/min). Each alloy displayed slightly different trends with respect to the effect of different welding parameters on the tensile properties of the FSWed Al alloys. The tensile elongation of FSWed Al 6061-T651 and Al 7075-T6 tended to increase greatly, while the tensile strength decreased marginally, with increasing welding speed and/or decreasing rotating speed. The tensile strength and the tensile elongation of Al 6061-T651 decreased from 135 to 154 MPa and 10.6 to 17.0%, respectively, with increasing welding speed from 0.1 to 0.4 mpm at a rotating speed of 1,600 rpm. Unlike the age-hardened Al 6061-T651 and Al 7075-T6, the strain-hardened Al 5083-H32 showed no notable change in tensile property with varying welding parameters. The change in the strength level with different welding parameters for each alloy was not as significant as the variation in tensile elongation. It was believed that the tensile elongation of FSWed Al alloys with varying welding parameters was mainly determined by the coarse particle clustering. With respect to the change in tensile strength during friction stir welding, it is hypothesized that two competing mechanisms, recovery by friction and heat and strain hardening by plastic flow in the weld zone offset the effects of different welding parameters on the tensile strength level of FSWed Al alloys.