VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.
Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R
2018-01-29
Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Breen, S. J.; Lochbuehler, T.; Detwiler, R. L.; Linde, N.
2013-12-01
Electrical resistivity tomography (ERT) is a well-established method for geophysical characterization and has shown potential for monitoring geologic CO2 sequestration, due to its sensitivity to electrical resistivity contrasts generated by liquid/gas saturation variability. In contrast to deterministic ERT inversion approaches, probabilistic inversion provides not only a single saturation model but a full posterior probability density function for each model parameter. Furthermore, the uncertainty inherent in the underlying petrophysics (e.g., Archie's Law) can be incorporated in a straightforward manner. In this study, the data are from bench-scale ERT experiments conducted during gas injection into a quasi-2D (1 cm thick), translucent, brine-saturated sand chamber with a packing that mimics a simple anticlinal geological reservoir. We estimate saturation fields by Markov chain Monte Carlo sampling with the MT-DREAM(ZS) algorithm and compare them quantitatively to independent saturation measurements from a light transmission technique, as well as results from deterministic inversions. Different model parameterizations are evaluated in terms of the recovered saturation fields and petrophysical parameters. The saturation field is parameterized (1) in cartesian coordinates, (2) by means of its discrete cosine transform coefficients, and (3) by fixed saturation values and gradients in structural elements defined by a gaussian bell of arbitrary shape and location. Synthetic tests reveal that a priori knowledge about the expected geologic structures (as in parameterization (3)) markedly improves the parameter estimates. The number of degrees of freedom thus strongly affects the inversion results. In an additional step, we explore the effects of assuming that the total volume of injected gas is known a priori and that no gas has migrated away from the monitored region.
1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange
Voytek, Emily B.; Drenkelfuss, Anja; Day-Lewis, Frederick D.; Healy, Richard; Lane, John W.; Werkema, Dale D.
2014-01-01
A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known.
1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange.
Voytek, Emily B; Drenkelfuss, Anja; Day-Lewis, Frederick D; Healy, Richard; Lane, John W; Werkema, Dale
2014-01-01
A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.
How to Recharge a Confined Aquifer: An Exploration of Geologic Controls on Groundwater Storage.
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.
2017-12-01
Decreased snowpack storage and groundwater overdraft in California has increased interest in managed aquifer recharge (MAR) of excess winter runoff to the Central Valley aquifer system, which has unused storage capacity that far exceeds the state's surface reservoirs. Recharge to the productive, confined aquifer system remains a challenge due to the presence of nearly-ubiquitous, multiple silt and clay confining units that limit recharge pathways. However, previous studies have identified interconnected networks of sand and gravel deposits that bypass the confining units and accommodate rapid, high-volume recharge to the confined aquifer system in select locations. We use the variably-saturated, fully-integrated groundwater/surface-water flow code, ParFlow, in combination with a high-resolution, transition probability Markov-chain geostatistical model of the subsurface geologic heterogeneity of the east side of the Sacramento Valley, CA, to characterize recharge potential across a landscape that includes these geologic features. Multiple 180-day MAR simulations show that recharge potential is highly dependent on subsurface geologic structure, with a several order-of-magnitude range of recharge rates and volumes across the landscape. Where there are recharge pathways to the productive confined-aquifer system, pressure propagation in the confined system is widespread and rapid, with multi-kilometer lateral pressure propagation. Although widespread pressure propagation occurs in the confined system, only a small fraction of recharge volume is accommodated there. Instead, the majority of recharge occurs by filling unsaturated pore spaces. Where they outcrop at land surface, high-K recharge pathways fill rapidly, accommodating the majority of recharge during early time. However, these features become saturated quickly, and somewhat counterintuitively, the low-K silt and clay facies accommodate the majority of recharge volume during most of the simulation. These findings (1) highlight the large variability of MAR potential across the landscape, wherein the recharge capacity in select areas far exceeds recharge potential over most of the landscape, and (2) elucidate important physical processes that control MAR potential in alluvial aquifer systems.
Voss, Clifford I.; Boldt, David; Shapiro, Allen M.
1997-01-01
This report describes a Graphical-User Interface (GUI) for SUTRA, the U.S. Geological Survey (USGS) model for saturated-unsaturated variable-fluid-density ground-water flow with solute or energy transport,which combines a USGS-developed code that interfaces SUTRA with Argus ONE, a commercial software product developed by Argus Interware. This product, known as Argus Open Numerical Environments (Argus ONETM), is a programmable system with geographic-information-system-like (GIS-like) functionality that includes automated gridding and meshing capabilities for linking geospatial information with finite-difference and finite-element numerical model discretizations. The GUI for SUTRA is based on a public-domain Plug-In Extension (PIE) to Argus ONE that automates the use of ArgusONE to: automatically create the appropriate geospatial information coverages (information layers) for SUTRA, provide menus and dialogs for inputting geospatial information and simulation control parameters for SUTRA, and allow visualization of SUTRA simulation results. Following simulation control data and geospatial data input bythe user through the GUI, ArgusONE creates text files in a format required for normal input to SUTRA,and SUTRA can be executed within the Argus ONE environment. Then, hydraulic head, pressure, solute concentration, temperature, saturation and velocity results from the SUTRA simulation may be visualized. Although the GUI for SUTRA discussed in this report provides all of the graphical pre- and post-processor functions required for running SUTRA, it is also possible for advanced users to apply programmable features within Argus ONE to modify the GUI to meet the unique demands of particular ground-water modeling projects.
Seasonal variability of soil-gas radon concentration in central California
King, C.-Y.; Minissale, A.
1994-01-01
Radon concentrations in soil gas were measured by the track-etch method in 60 shallow holes, each 70 cm deep and supported by a capped plastic tube, along several major faults in central California during 1975-1985. This set of data was analyzed to investigate the seasonal variability of soil-gas radon concentration in an area which has various geological conditions but similar climate. The results show several different patterns of seasonal variations, but all of which can be largely attributed to the water-saturation and moisture-retention characteristics of the shallow part of the soil. During the rainy winter and spring seasons, radon tended to be confined underground by the water-saturated surface soil which had much reduced gas permeability, while during the sunny summer and autumn seasons, it exhaled more readily as the soil became drier and more permeable. At several sites located on creeping faults, the radon-variation patterns changed with time, possibly because of disturbance of site condition by fault movement. ?? 1994.
Niswonger, Richard G.; Prudic, David E.
2005-01-01
Many streams in the United States, especially those in semiarid regions, have reaches that are hydraulically disconnected from underlying aquifers. Ground-water withdrawals have decreased water levels in valley aquifers beneath streams, increasing the occurrence of disconnected streams and aquifers. The U.S. Geological Survey modular ground-water model (MODFLOW-2000) can be used to model these interactions using the Streamflow-Routing (SFR1) Package. However, the approach does not consider unsaturated flow between streams and aquifers and may not give realistic results in areas with significantly deep unsaturated zones. This documentation describes a method for extending the capabilities of MODFLOW-2000 by incorporating the ability to simulate unsaturated flow beneath streams. A kinematic-wave approximation to Richards' equation was solved by the method of characteristics to simulate unsaturated flow beneath streams in SFR1. This new package, called SFR2, includes all the capabilities of SFR1 and is designed to be used with MODFLOW-2000. Unlike SFR1, seepage loss from the stream may be restricted by the hydraulic conductivity of the unsaturated zone. Unsaturated flow is simulated independently of saturated flow within each model cell corresponding to a stream reach whenever the water table (head in MODFLOW) is below the elevation of the streambed. The relation between unsaturated hydraulic conductivity and water content is defined by the Brooks-Corey function. Unsaturated flow variables specified in SFR2 include saturated and initial water contents; saturated vertical hydraulic conductivity; and the Brooks-Corey exponent. These variables are defined independently for each stream reach. Unsaturated flow in SFR2 was compared to the U.S. Geological Survey's Variably Saturated Two-Dimensional Flow and Transport (VS2DT) Model for two test simulations. For both test simulations, results of the two models were in good agreement with respect to the magnitude and downward progression of a wetting front through an unsaturated column. A third hypothetical simulation is presented that includes interaction between a stream and aquifer separated by an unsaturated zone. This simulation is included to demonstrate the utility of unsaturated flow in SFR2 with MODFLOW-2000. This report includes a description of the data input requirements for simulating unsaturated flow in SFR2.
Hemley, J.J.; Hunt, J.P.
1992-01-01
The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors
Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS
Morway, Eric D.; Niswonger, Richard G.; Langevin, Christian D.; Bailey, Ryan T.; Healy, Richard W.
2013-01-01
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship.
Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS.
Morway, Eric D; Niswonger, Richard G; Langevin, Christian D; Bailey, Ryan T; Healy, Richard W
2013-03-01
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Delin, Geoffrey N.; Risser, Dennis W.
2007-01-01
Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.
NASA Astrophysics Data System (ADS)
Hartigan, David; Lovell, Mike; Davies, Sarah
2014-05-01
A significant challenge to the petrophysical evaluation of shale gas systems can be attributed to the conductivity behaviour of clay minerals and entrained clay bound waters. This is compounded by centimetre to sub-millimetre vertical and lateral heterogeneity in formation composition and structure. Where despite significant variation in formation geological and therefore petrophysical properties, we routinely rely on conventional resistivity methods for the determination of water saturation (Sw), and hence the free gas saturation (Sg) in gas bearing mudstones. The application of resistivity based methods is the subject of continuing debate, and there is often significant uncertainty in both how they are applied and the saturation estimates they produce. This is partly a consequence of the view that "the quantification of the behaviour of shale conductivity....has only limited geological significance" (Rider 1986). As a result, there is a separation between our geological understanding of shale gas systems and the petrophysical rational and methods employed to evaluate them. In response to this uncertainty, many petrophysicists are moving away from the use of more complex 'shaly-sand' based evaluation techniques and returning to traditional Archie methods for answers. The Archie equation requires various parameter inputs such as porosity and saturation exponents (m and n), as well as values for connate fluid resistivity (Rw). Many of these parameters are difficult to determine in shale gas systems, where obtaining a water sample, or carrying out laboratory experiments on recovered core is often technically impractical. Here we assess the geological implications and controls on variations in pseudo Archie parameters across two geological formations, using well data spanning multiple basinal settings for a prominent shale gas play in the northern Gulf of Mexico basin. The results, of numerical analysis and systematic modification of parameter values to minimise the error between core derived Sw (Dean Stark analysis) and computed Sw, links sample structure with composition, highlighting some unanticipated impacts of clay minerals on the effective bulk fluid resistivity (Rwe) and thus formation resistivity (Rt). In addition, it highlights simple corrective empirical adaptations that can significantly reduce the error in Sw estimation for some wells. Observed results hint at the possibility of developing a predictive capability in selecting Archie parameter values based on geological facies association and log composition indicators (i.e. V Clay), establishing a link between formation depositional systems and their petrophysical properties in gas bearing mudstones. Rider, M.H., 1986. The Geological Interpretation of Well Logs, Blackie.
The impact of fluid topology on residual saturations - A pore-network model study
NASA Astrophysics Data System (ADS)
Doster, F.; Kallel, W.; van Dijke, R.
2014-12-01
In two-phase flow in porous media only fractions of the resident fluid are mobilised during a displacement process and, in general, a significant amount of the resident fluid remains permanently trapped. Depending on the application, entrapment is desirable (geological carbon storage), or it should be obviated (enhanced oil recovery, contaminant remediation). Despite its utmost importance for these applications, predictions of trapped fluid saturations for macroscopic systems, in particular under changing displacement conditions, remain challenging. The models that aim to represent trapping phenomena are typically empirical and require tracking of the history of the state variables. This exacerbates the experimental verification and the design of sophisticated displacement technologies that enhance or impede trapping. Recently, experiments [1] have suggested that a macroscopic normalized Euler number, quantifying the topology of fluid distributions, could serve as a parameter to predict residual saturations based on state variables. In these experiments the entrapment of fluids was visualised through 3D micro CT imaging. However, the experiments are notoriously time consuming and therefore only allow for a sparse sampling of the parameter space. Pore-network models represent porous media through an equivalent network structure of pores and throats. Under quasi-static capillary dominated conditions displacement processes can be modeled through simple invasion percolation rules. Hence, in contrast to experiments, pore-network models are fast and therefore allow full sampling of the parameter space. Here, we use pore-network modeling [2] to critically investigate the knowledge gained through observing and tracking the normalized Euler number. More specifically, we identify conditions under which (a) systems with the same saturations but different normalized Euler numbers lead to different residual saturations and (b) systems with the same saturations and the same normalized Euler numbers but different process histories yield the same residual saturations. Special attention is given to contact angle and process histories with varying drainage and imbibition periods. [1] Herring et al., Adv. Water. Resour., 62, 47-58 (2013) [2] Ryazanov et al., Transp. Porous Media, 80, 79-99 (2009).
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; ...
2014-12-31
The heterogeneous nature of typical sedimentary formations can play a major role in the propagation of the CO 2 plume, eventually dampening the accumulation of mobile phase underneath the caprock. From core flooding experiments, it is also known that contrasts in capillary threshold pressure due to different pore size can affect the flow paths of the invading and displaced fluids and consequently influence the build- up of non-wetting phase (NWP) at interfaces between geological facies. The full characterization of the geologic variability at all relevant scales and the ability to make observations on the spatial and temporal distribution of themore » migration and trapping of supercritical CO 2 is not feasible from a practical perspective. To provide insight into the impact of well-defined heterogeneous systems on the flow dynamics and trapping efficiency of supercritical CO 2 under drainage and imbibition conditions, we present an experimental investigation at the meter scale conducted in synthetic sand reservoirs packed in a quasi-two-dimensional flow-cell. Two immiscible displacement experiments have been performed to observe the preferential entrapment of NWP in simple heterogeneous porous media. The experiments consisted of an injection, a fluid redistribution, and a forced imbibition stages conducted in an uncorrelated permeability field and a homogeneous base case scenario. We adopted x-ray attenuation analysis as a non-destructive technique that allows a precise measurement of phase saturations throughout the entire flow domain. By comparing a homogeneous and a heterogeneous scenario we have identified some important effects that can be attributed to capillary barriers, such as dampened plume advancement, higher non-wetting phase saturations, larger contact area between the injected and displaced phases, and a larger range of non-wetting phase saturations.« less
NASA Astrophysics Data System (ADS)
Al-Amri, Meshal; Mahmoud, Mohamed; Elkatatny, Salaheldin; Al-Yousef, Hasan; Al-Ghamdi, Tariq
2017-07-01
Accurate estimation of permeability is essential in reservoir characterization and in determining fluid flow in porous media which greatly assists optimize the production of a field. Some of the permeability prediction techniques such as Porosity-Permeability transforms and recently artificial intelligence and neural networks are encouraging but still show moderate to good match to core data. This could be due to limitation to homogenous media while the knowledge about geology and heterogeneity is indirectly related or absent. The use of geological information from core description as in Lithofacies which includes digenetic information show a link to permeability when categorized into rock types exposed to similar depositional environment. The objective of this paper is to develop a robust combined workflow integrating geology and petrophysics and wireline logs in an extremely heterogeneous carbonate reservoir to accurately predict permeability. Permeability prediction is carried out using pattern recognition algorithm called multi-resolution graph-based clustering (MRGC). We will bench mark the prediction results with hard data from core and well test analysis. As a result, we showed how much better improvements are achieved in the permeability prediction when geology is integrated within the analysis. Finally, we use the predicted permeability as an input parameter in J-function and correct for uncertainties in saturation calculation produced by wireline logs using the classical Archie equation. Eventually, high level of confidence in hydrocarbon volumes estimation is reached when robust permeability and saturation height functions are estimated in presence of important geological details that are petrophysically meaningful.
NASA Astrophysics Data System (ADS)
Park, Chanho; Nguyen, Phung K. T.; Nam, Myung Jin; Kim, Jongwook
2013-04-01
Monitoring CO2 migration and storage in geological formations is important not only for the stability of geological sequestration of CO2 but also for efficient management of CO2 injection. Especially, geophysical methods can make in situ observation of CO2 to assess the potential leakage of CO2 and to improve reservoir description as well to monitor development of geologic discontinuity (i.e., fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and nallow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, crosswell tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO2). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO2 saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO2 injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO2 saturation changes when the CO2 saturation is less than about 20%, while when the CO2 saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO2 saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution difference between them. Moreover, assuming a similar reservoir situation to the CO2 storage site in Nagaoka, Japan, we generate time-lapse tomographic data sets for the corresponding CO2 injection process, and make a preliminary interpretation of the data sets.
NASA Astrophysics Data System (ADS)
Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.
2014-12-01
This work describes a methodology used for large scale modeling of wave propagation fromunderground explosions conducted at the Nevada Test Site (NTS) in two different geological settings:fractured granitic rock mass and in alluvium deposition. We show that the discrete nature of rockmasses as well as the spatial variability of the fabric of alluvium is very important to understand groundmotions induced by underground explosions. In order to build a credible conceptual model of thesubsurface we integrated the geological, geomechanical and geophysical characterizations conductedduring recent test at the NTS as well as historical data from the characterization during the undergroundnuclear test conducted at the NTS. Because detailed site characterization is limited, expensive and, insome instances, impossible we have numerically investigated the effects of the characterization gaps onthe overall response of the system. We performed several computational studies to identify the keyimportant geologic features specific to fractured media mainly the joints; and those specific foralluvium porous media mainly the spatial variability of geological alluvium facies characterized bytheir variances and their integral scales. We have also explored common key features to both geologicalenvironments such as saturation and topography and assess which characteristics affect the most theground motion in the near-field and in the far-field. Stochastic representation of these features based onthe field characterizations have been implemented in Geodyn and GeodynL hydrocodes. Both codeswere used to guide site characterization efforts in order to provide the essential data to the modelingcommunity. We validate our computational results by comparing the measured and computed groundmotion at various ranges. This work performed under the auspices of the U.S. Department of Energy by Lawrence LivermoreNational Laboratory under Contract DE-AC52-07NA27344.
Naturally fractured tight gas reservoir detection optimization. Quarterly report, April--June 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
Geologic assessment of the basin during the third quarter possessed several major objectives. The first task was to test the validity of the gas-centered basin model for the Piceance Basin. The second objective was to define the location and variability of gas-saturated zones within the Williams Fork and Iles Formation reservoir horizons. A third objective was to prepare an updated structure map of the Piceance Basin on the top of the Iles Formation (Rollins Sandstone) to take advantage of new data provided by ten years of drilling activity throughout the basin. The first two objectives formed the core of themore » ARI poster session presented at the AAPG annual meeting in Denver. The delineation of the gas and water-saturated zone geometries for the Williams Fork and Iles Formations in the basin was presented in the form of a poster session at the AAPG Annual meeting held in Denver in mid-June. The poster session outlined the nature of the gas-centered basin geometry and demonstrated the gas and water-saturated conditions for the Williams Fork, Cozzette and Corcoran reservoir horizons throughout the basin. Initial and cumulative production data indicate that these reservoir horizons are gas-saturated in most of the south-central and eastern basin. The attached report summarizes the data and conclusions of the poster session.« less
Ground Water and Surface Water in the Haiku Area, East Maui, Hawaii
Gingerich, Stephen B.
1999-01-01
The Haiku study area lies on the gently sloping eastern flank of the East Maui Volcano (Haleakala) between the drainage basins of Maliko Gulch to the west and Kakipi Gulch to the east. The study area lies on the northwest rift zone of East Maui Volcano, a geologic feature 3 to 5 miles wide marked by surface expressions such as cinder, spatter, and pumice cones. The study area contains two geologic units, the main shield-building stage Honomanu Basalt and the Kula Volcanics. The hydraulic conductivity of the Honomanu Basalt was estimated to be between 1,000 and 3,600 feet per day on the basis of aquifer tests and 3,300 feet per day on the basis of the regional recharge rate and observed ground-water heads. The hydraulic conductivity of the Kula Volcanics is expected to be several orders of magnitude lower. An estimated 191 million gallons per day of rainfall and 22 million gallons per day of fog drip reach the study area and about 98 million gallons per day enters the ground-water system as recharge. Nearly all of the ground water currently withdrawn in the study area is from well 5520-01 in Maliko Gulch, where historic withdrawal rates have averaged about 2.8 million gallons per day. An additional 18 million gallons per day of ground-water withdrawal is proposed. Flow in Waiohiwi Gulch, a tributary to Maliko Gulch, is perennial between about 2,000 ft and 4,000 ft altitude. At lower altitudes in Maliko Gulch, flow is perennial at only a few spots downstream of springs and near the coast. The Kuiaha and Kaupakulua Gulch systems are usually dry from sea level to an altitude of 350 feet and gain water from about 350 feet to about 900 feet altitude. The two main branches of the Kaupakulua Gulch system alternately gain and lose water as high as 2,400 feet altitude. Kakipi Gulch has perennial flow over much of its length but is often dry near the coast below 400 feet altitude. Fresh ground water occurs in two main forms: (1) as perched high-level water held up by relatively low-permeability geologic layers, and (2) as a freshwater lens floating on denser, underlying saltwater. The rocks beneath the contact between the Kula Volcanics and the underlying Honomanu Basalt and above the freshwater lens appear to be unsaturated on the basis of several observations: (1) streams are dry or losing water where they are incised into the Honomanu Basalt, (2) the hydraulic conductivity of the Honomanu Basalt is too high to support a thick ground-water lens given the estimated recharge to the study area, and (3) wells that penetrate through the contact have encountered conditions of cascading water from above the contact and dry lava tubes in the Honomanu Basalt. More than 90 percent of the recharge to the study area is estimated to flow downward through the perched high-level water body to reach the freshwater lens. A cross-sectional, steady-state, variably saturated ground-water flow model using the computer code VS2DT was constructed to evaluate whether a two-layer, variably saturated ground-water flow system could exist given the hydrologic and geologic conditions of the Haiku study area. Using 25 inches per year of recharge and hydraulic characteristics representative of the Kula Volcanics and the Honomanu Basalt, the model demonstrates that a 13-foot thick geologic layer with a saturated vertical hydraulic conductivity less than 6.6Y10-2 feet per day can impede vertical ground-water flow enough to produce two separate saturated zones with an unsaturated zone between them. Subsequent lower vertical hydraulic conductivity values for the impeding layer allow even less water to reach the lower layer.
Modeling Reactive Transport of Strontium-90 in Heterogeneous, Variably Saturated Subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Wang; Joan Q. Wu; Laurence C. Hull
2010-08-01
Sodium-bearing waste (SBW) containing high concentration of 90Sr was accidentally released to the vadose zone at the Idaho Nuclear Technology and Engineering Center, Idaho National Laboratory, Idaho Falls, ID, in 1972. To investigate the transport and fate of the 90Sr through this 137-m-thick, heterogeneous, variably saturated subsurface, we conducted a two-dimensional numerical modeling using TOUGHREACT under different assumed scenarios (low permeability of an entire interbed or just its surface) for the formation of perched water whose presence reflects the unique characteristics of the geologic materials and stratification at the study site. The results showed that different mechanisms could lead tomore » different flow geometries. The assumption of low permeability for the entire interbed led to the largest saturated zone area and the longest water travel time (55 vs. 43 or 44 yr in other scenarios) from the SBW leakage to the groundwater table. Simulated water travel time from different locations on the land surface to the groundwater aquifer varied from <30 to >80 yr. The results also indicated that different mechanisms may lead to differences in the peak and travel time of a small mobile fraction of Sr. The effective distribution coefficient and retardation factor for Sr2+ would change more than an order of magnitude for the same material during the 200-yr simulation period because of large changes in the concentrations of Sr2+ and competing ions. Understanding the migration rate of the mobile Sr2+ is necessary for designing long-term monitoring programs to detect it.« less
Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone
NASA Astrophysics Data System (ADS)
Nimmo, John R.; Creasey, Kaitlyn M.; Perkins, Kim S.; Mirus, Benjamin B.
2017-03-01
Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.
Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone
Nimmo, John R.; Creasey, Kaitlyn M; Perkins, Kimberlie; Mirus, Benjamin B.
2017-01-01
Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.
Variable thickness transient ground-water flow model. Volume 3. Program listings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reisenauer, A.E.
1979-12-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologicmore » systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow.« less
Monitoring CO2 invasion processes at the pore scale using geological labs on chip.
Morais, S; Liu, N; Diouf, A; Bernard, D; Lecoutre, C; Garrabos, Y; Marre, S
2016-09-21
In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics. By using on-chip optical characterization and imaging approaches, the CO2 saturation curves as a function of either time or the number of pore volume injected were determined. Three main mechanisms were observed during CO2 injection, namely, invasion, percolation and drying, which are discussed in this paper. Interestingly, besides conventional mechanisms, two counterintuitive situations were observed during the invasion and drying processes.
Petrofacies Analysis - A Petrophysical Tool for Geologic/Engineering Reservoir Characterization
Watney, W.L.; Guy, W.J.; Doveton, J.H.; Bhattacharya, S.; Gerlach, P.M.; Bohling, Geoffrey C.; Carr, T.R.
1998-01-01
Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measurements of a reservoir. The word "petrofacies" makes an explicit link between petroleum engineers' concerns with pore characteristics as arbiters of production performance and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations are reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types (size and connectedness) for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production, such as bypassed pay behind pipe and in old exploration wells, or to assess zonation and continuity of the reservoir. Petrofacies analysis in this study was applied to distinguishing flow units and including discriminating pore type as an assessment of reservoir conformance and continuity. The analysis is facilitated through the use of colorimage cross sections depicting depositional sequences, natural gamma ray, porosity, and permeability. Also, cluster analysis was applied to discriminate petrophysically similar reservoir rock.
NASA Astrophysics Data System (ADS)
Greene, S. E.; Ridgwell, A.; Kirtland Turner, S.
2015-12-01
Rapid climatic and biotic events putatively associated with ocean acidification are scattered throughout the Meso-Cenozoic. Many of these rapid perturbations, variably referred to as hyperthermals (Paleogene) and oceanic anoxic events or mass extinction events (Mesozoic), share a number of characteristic features, including some combination of negative carbon isotopic excursion, global warming, and a rise in atmospheric CO2 concentration. Comparisons between ocean acidification events over the last ~250 Ma are, however, problematic because the types of marine geological archives and carbon reservoirs that can be interrogated are fundamentally different for early Mesozoic vs. late Mesozoic-Cenozoic events. Many Mesozoic events are known primarily or exclusively from geological outcrops of relatively shallow water deposits, whereas the more recent Paleogene hyperthermal events have been chiefly identified from deep sea records. In addition, these earlier events are superimposed on an ocean with a fundamentally different carbonate buffering capacity, as calcifying plankton (which created the deep-sea carbonate sink) originate in the mid-Mesozoic. Here, we use both Earth system modeling and reaction transport sediment modeling to explore the ways in which comparable ocean acidification-inducing climate perturbations might manifest in the Mesozoic vs. the Cenozoic geological record. We examine the role of the deep-sea carbonate sink in the expression of ocean acidification, as well as the spatial heterogeneity of surface ocean pH and carbonate saturation state. These results critically inform interpretations of ocean acidification prior to the mid-Mesozoic advent of calcifying plankton and expectations about the recording of these events in geological outcrop.
NASA Astrophysics Data System (ADS)
Buscheck, T.; Glascoe, L.; Sun, Y.; Gansemer, J.; Lee, K.
2003-12-01
For the proposed Yucca Mountain geologic repository for high-level nuclear waste, the planned method of disposal involves the emplacement of cylindrical packages containing the waste inside horizontal tunnels, called emplacement drifts, bored several hundred meters below the ground surface. The emplacement drifts reside in highly fractured, partially saturated volcanic tuff. An important phenomenological consideration for the licensing of the proposed repository at Yucca Mountain is the generation of decay heat by the emplaced waste and the consequences of this decay heat. Changes in temperature will affect the hydrologic and chemical environment at Yucca Mountain. A thermohydrologic-modeling tool is necessary to support the performance assessment of the Engineered Barrier System (EBS) of the proposed repository. This modeling tool must simultaneously account for processes occurring at a scale of a few tens of centimeters around individual waste packages, for processes occurring around the emplacement drifts themselves, and for processes occurring at the multi-kilometer scale of the mountain. Additionally, many other features must be considered including non-isothermal, multiphase-flow in fractured porous rock of variable liquid-phase saturation and thermal radiation and convection in open cavities. The Multiscale Thermohydrologic Model (MSTHM) calculates the following thermohydrologic (TH) variables: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes. The TH variables are determined as a function of position along each of the emplacement drifts in the repository and as a function of waste-package (WP) type. These variables are determined at various generic locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert; they are also determined at various generic locations in the adjoining host rock; these variables are determined every 20 m for each emplacement drift in the repository. The MSTHM accounts for 3-D drift-scale and mountain-scale heat flow and captures the influence of the key engineering-design variables and natural-system factors affecting TH conditions in the emplacement drifts and adjoining host rock. Presented is a synopsis of recent MSTHM calculations conducted to support the Total System Performance Assessment for the License Application (TSPA-LA). This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
NASA Astrophysics Data System (ADS)
Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker
2015-11-01
Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to saturation) far outside the range of results obtained by the rest of the scenarios. This study also addresses potential air trapping by dissolution of part of the initial air content of the bentonite, showing that neglecting gas flow effects and trapping could lead to significant underestimation of the remaining air content and the duration of the initial aerobic phase of the repository.
Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker
2015-11-01
Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to saturation) far outside the range of results obtained by the rest of the scenarios. This study also addresses potential air trapping by dissolution of part of the initial air content of the bentonite, showing that neglecting gas flow effects and trapping could lead to significant underestimation of the remaining air content and the duration of the initial aerobic phase of the repository. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Braud, Isabelle; Desprats, Jean-François; Ayral, Pierre-Alain; Bouvier, Christophe; Vandervaere, Jean-Pierre
2017-04-01
Topsoil field-saturated hydraulic conductivity, Kfs, is a parameter that controls the partition of rainfall between infiltration and runoff. It is a key parameter in most distributed hydrological models. However, there is a mismatch between the scale of local in situ measurements and the scale at which the parameter is required in models. Therefore it is necessary to design methods to regionally map this parameter at the model scale. The paper propose a method for mapping Kfs in the Cévennes-Vivarais region, south-east France, using more easily available GIS data: geology and land cover. The mapping is based on a data set gathering infiltration tests performed in the area or close to it for more than ten years. The data set is composed of infiltration tests performed using various techniques: Guelph permeameter, double ring and single ring infiltration tests, infiltrometers with multiple suctions. The different methods lead to different orders of magnitude for Kfs rendering the pooling of all the data challenging. Therefore, a method is first proposed to pool the data from the different infiltration methods, leading to a homogenized set of Kfs, based on an equivalent double ring/tension disk infiltration value. Statistical tests showed significant differences in distributions among different geologies and land covers. Thus those variables were retained as proxy for mapping Kfs at the regional scale. This map was compared to a map based on the Rawls and Brakensiek (RB) pedo-transfer function (Manus et al., 2009, Vannier et al., 2016), showing very different patterns between both maps. In addition, RB values did not fit observed values at the plot scale, highlighting that soil texture only is not a good predictor of Kfs. References Manus, C., Anquetin, S., Braud, I., Vandervaere, J.P., Viallet, P., Creutin, J.D., Gaume, E., 2009. A modelling approach to assess the hydrological response of small Mediterranean catchments to the variability of soil characteristics in a context of extreme events. Hydrology and Earth System Sciences, 13: 79-87. Vannier, O., Anquetin, S., Braud, I., 2016. Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: regional modelling study and process understanding. Journal of Hydrology, 541 Part A, 158-172.
Study of the fluid flow characteristics in a porous medium for CO2 geological storage using MRI.
Song, Yongchen; Jiang, Lanlan; Liu, Yu; Yang, Mingjun; Zhou, Xinhuan; Zhao, Yuechao; Dou, Binlin; Abudula, Abuliti; Xue, Ziqiu
2014-06-01
The objective of this study was to understand fluid flow in porous media. Understanding of fluid flow process in porous media is important for the geological storage of CO2. The high-resolution magnetic resonance imaging (MRI) technique was used to measure fluid flow in a porous medium (glass beads BZ-02). First, the permeability was obtained from velocity images. Next, CO2-water immiscible displacement experiments using different flow rates were investigated. Three stages were obtained from the MR intensity plot. With increasing CO2 flow rate, a relatively uniform CO2 distribution and a uniform CO2 front were observed. Subsequently, the final water saturation decreased. Using core analysis methods, the CO2 velocities were obtained during the CO2-water immiscible displacement process, which were applied to evaluate the capillary dispersion rate, viscous dominated fractional flow, and gravity flow function. The capillary dispersion rate dominated the effects of capillary, which was largest at water saturations of 0.5 and 0.6. The viscous-dominant fractional flow function varied with the saturation of water. The gravity fractional flow reached peak values at the saturation of 0.6. The gravity forces played a positive role in the downward displacements because they thus tended to stabilize the displacement process, thereby producing increased breakthrough times and correspondingly high recoveries. Finally, the relative permeability was also reconstructed. The study provides useful data regarding the transport processes in the geological storage of CO2. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology
Ludvigson, Greg A.; Gonzalez, Luis A.; Metzger, R.A.; Witzke, B.J.; Brenner, Richard L.; Murillo, A.P.; White, T.S.
1998-01-01
Sphaerosiderite, a morphologically distinct millimeter-scale spherulitic siderite (FeCO3), forms predominantly in wetland soils and sediments, and is common in the geologic record. Ancient sphaerosiderites are found in paleosol horizons within coal-bearing stratigraphic intervals and, like their modern counterparts, are interpreted as having formed in water-saturated environments. Here we report on sphaerosiderites from four different stratigraphic units, each of which has highly variable 13C and relatively stable 18O compositions. The unique isotopic trends are analogous to well-documented meteoric calcite lines, which we define here as meteoric sphaerosiderite lines. Meteoric sphaerosiderite lines provide a new means of constraining ground-water ??18O and thus allow evaluation of paleohydrology and paleoclimate in humid continental settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, Dustin M.; Moore, Johnathan E.; Tudek, John K.
Evaluation of the fate and transport of carbon dioxide (CO 2) in deep reservoirs is crucial to the development of long-term geologic carbon sequestration (GCS) technologies. In this report, various studies using computed tomography (CT) scanning are utilized in conjunction with traditional flow tests to observe the multi-scale phenomena associated with CO 2 injection in geologic media. Pore scale analyses were performed to determine the infiltration characteristics of CO 2 into a brine saturated reservoir rock. Multiphase floods were performed to evaluate the saturation of CO 2 into a brine-saturated reservoir rock and determine how structural changes within the lithologymore » affect such interactions. Additionally, CO 2 induced swelling of unconventional reservoir rock was evaluated with respect to reductions in fracture transmissivity due to matrix swelling. These studies are just a few examples of the benefits of multi-scale CT imaging in conjunction with traditional laboratory methodology to gain a better understanding of the interactions between CO 2 and the lithologies it interacts with during GCS.« less
Quantifying Hydrate Formation in Gas-rich Environments Using the Method of Characteristics
NASA Astrophysics Data System (ADS)
You, K.; Flemings, P. B.; DiCarlo, D. A.
2015-12-01
Methane hydrates hold a vast amount of methane globally, and have huge energy potential. Methane hydrates in gas-rich environments are the most promising production targets. We develop a one-dimensional analytical solution based on the method of characteristics to explore hydrate formation in such environments (Figure 1). Our solution shows that hydrate saturation is constant with time and space in a homogeneous system. Hydrate saturation is controlled by the initial thermodynamic condition of the system, and changed by the gas fractional flow. Hydrate saturation increases with the initial distance from the hydrate phase boundary. Different gas fractional flows behind the hydrate solidification front lead to different gas saturations at the hydrate solidification front. The higher the gas saturation at the front, the less the volume available to be filled by hydrate, and hence the lower the hydrate saturation. The gas fractional flow depends on the relative permeability curves, and the forces that drive the flow. Viscous forces (the drive for flow induced from liquid pressure gradient) dominate the flow, and hydrate saturation is independent on the gas supply rates and the flow directions at high gas supply rates. Hydrate saturation can be estimated as one minus the ratio of the initial to equilibrium salinity. Gravity forces (the drive for flow induced from the gravity) dominate the flow, and hydrate saturation depends on the flow rates and the flow directions at low gas supply rates. Hydrate saturation is highest for upward flow, and lowest for downward flow. Hydrate saturation decreases with the flow rate for upward flow, and increases with the flow rate for downward flow. This analytical solution illuminates how hydrate is formed by gas (methane, CO2, ethane, propane) flowing into brine-saturated sediments at both the laboratory and geological scales (Figure 1). It provides an approach to generalize the understanding of hydrate solidification in gas-rich environments, although complicated numerical models have been developed previously. Examples of gas expulsion into hydrate stability zones and the associated hydrate formation in both laboratory and geological scales, and CO2 sequestration into CO2-hydrates near the seafloor and under the permafrost will be presented.
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, Y.; Zhang, X.; Du, C.
2009-12-01
The Moxa Arch Anticline is a regional-scale northwest-trending uplift in western Wyoming where geological storage of acid gases (CO2, CH4, N2, H2S, He) from ExxonMobile's Shute Creek Gas Plant is under consideration. The Nugget Sandstone, a deep saline aquifer at depths exceeding 17,170 ft, is a candidate formation for acid gas storage. As part of a larger goal of determining site suitability, this study builds three-dimensional local to regional scale geological and fluid flow models for the Nugget Sandstone, its caprock (Twin Creek Limestone), and an underlying aquifer (Ankareh Sandstone), or together, the ``Nugget Suite''. For an area of 3000 square miles, geological and engineering data were assembled, screened for accuracy, and digitized, covering an average formation thickness of ~1700 feet. The data include 900 public-domain well logs (SP, Gamma Ray, Neutron Porosity, Density, Sonic, shallow and deep Resistivity, Lithology, Deviated well logs), 784 feet of core measurements (porosity and permeability), 4 regional geological cross sections, and 3 isopach maps. Data were interpreted and correlated for geological formations and facies, the later categorized using both Neural Network and Gaussian Hierarchical Clustering algorithms. Well log porosities were calibrated with core measurements, those of permeability estimated using formation-specific porosity-permeability transforms. Using conditional geostatistical simulations (first indicator simulation of facies, then sequential Gaussian simulation of facies-specific porosity), data were integrated at the regional-scale to create a geological model from which a local-scale simulation model surrounding the Shute Creek injection site was extracted. Based on this model, full compositional multiphase flow simulations were conducted with which we explore (1) an appropriate grid resolution for accurate acid gas predictions (pressure, saturation, and mass balance); (2) sensitivity of key geological and engineering variables on model predictions. Results suggest that (1) a horizontal and vertical resolution of 1/75 and 1/5~1/2 porosity correlation length is needed, respectively, to accurately capture the flow physics and mass balance. (2) the most sensitive variables that have first order impact on model predictions (i.e., regional storage, local displacement efficiency) are boundary condition, vertical permeability, relative permeability hysteresis, and injection rate. However, all else being equal, formation brine salinity has the most important effects on the concentrations of all dissolved components. Future work will define and simulate reactions of acid gases with formation brines and rocks which are currently under laboratory investigations.
Iverson, R.M.
1993-01-01
Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hun Bok; Um, Wooyong
2013-08-16
Hydrated Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images displayed that the cement alteration was significantly more extensive by CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50°C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integratedmore » XMT, XRD, and SEM-EDS analyses identified the formation of extensive carbonated zone filled with CaCO3(s), as well as the porous degradation front and the outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. The cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. Extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of carbon dioxide indicates that the extent of cement carbonation can be significantly heterogeneous depending on CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous, and aqueous phases of CO2 during geologic carbon sequestration is unlikely to damage the wellbore integrity because cement alteration by all phases of CO2 is dominated by carbonation reaction. This is consistent with previous field studies of wellbore cement with extensive carbonation after exposure to CO2 for 3 decades. However, XMT imaging indicates that preferential cement alteration by supercritical CO2 or CO2-saturated groundwater can occur along the cement-steel or cement-rock interfaces. This highlights the importance of further investigation of cement degradation along the interfaces of wellbore materials to ensure permanent geologic carbon storage.« less
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Tsai, C. H.
2015-12-01
This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.
Mills, Patrick C.; Healy, Richard W.
1993-01-01
The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 mm (millimeters); mean annual recharge to the disposal trenches (July 1982 through June 1984) was estimated to be 107 mm. Average annual tritium flux below the study trenches was estimated to be 3.4 mCi/yr (millicuries per year). Site geology, climate, and waste-disposal practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. Disposal trenches are constructed in complexly layered glacial and postglacial deposits that average 17 m (meters) in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10 -1 to 3.4x10 4 mm/d (millimeters per day). A 120-m-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four disposal trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the site provided water-budget data for estimating recharge to the disposal trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered the trenches primarily at the trench edges where the compacted zone was absent and the cover was relatively thin. Collapse holes in the trench covers that resulted from inadequate compaction of wastes within the trenches provided additional preferential pathways for surface-water drainage into the trenches; drainage into one collapse hole during a rainstorm was estimated to be 1,700 L (liters). Till deposits near trench bases induced lateral water and tritium movement. Limited temporal variation in water movement and small flow gradients (relative to the till deposits) were detected in the unsaturated subtrench sand deposit; maximum gradients during the spring recharge period averaged 1.62 mm/mm (millimeter per millimeter). Time-of-travel of water moving from the trench covers to below the trenches was estimated to be as rapid as 41 days (assuming individual water molecules move this distance in one recharge cycle). Tritium concentrations in water from the unsaturated zone ranged from 200 (background) to 10,000,000 pCi/L (picocuries per liter). Tritium concentrations generally were higher below trench bases (averaging 91,000 pCi/L) than below intertrench sediments (averaging 3,300 pCi/L), and in the subtrench Toulon Member of the Glasford Formation (sand) (averaging 110,000 pCi/L) than in the Hulick Till Member of the Glasford Formation (clayey silt) (averaging 59,000 pCi/L). Average subtrench tritium concentration increased from 28,000 to 100,000 pCi/L during the study period. Within the trench covers, there was a strong seasonal trend in tritium concentrations; the highest concentrations occurred in late summer when soil-moisture contents were at a minimum. Subtrench tritium movement occurred in association with the annual cycle of water movement, as well as independently of the cycle, in apparent response to continuous water movement through the subtrench sand deposits and to the deterioration of trench-waste containers. The increase in concen
Mills, Patrick C.; Healy, R.W.
1991-01-01
The movement of water and tritium through the unsaturated zone was studied at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, from 1981 to 1985. Water and tritium movement occurred in an annual, seasonally timed cycle; recharge to the saturated zone generally occurred in the spring and early summer. Mean annual precipitation (1982-85) was 871 millimeters; mean annual recharge to the disposal trenches (July 1982 through June 1984) was estimated to be 107 millimeters. Average annual tritium flux below the study trenches was estimated to be 3.4 millicuries per year. Site geology, climate, and waste-disposal practices influenced the spatial and temporal variability of water and tritium movement. Of the components of the water budget, evapotranspiration contributed most to the temporal variability of water and tritium movement. Disposal trenches are constructed in complexly layered glacial and postglacial deposits that average 17 meters in thickness and overlie a thick sequence of Pennsylvanian shale. The horizontal saturated hydraulic conductivity of the clayey-silt to sand-sized glacial and postglacial deposits ranges from 4.8x10^-1 to 3.4x10^4 millimeters per day. A 120-meter-long horizontal tunnel provided access for hydrologic measurements and collection of sediment and water samples from the unsaturated and saturated geologic deposits below four disposal trenches. Trench-cover and subtrench deposits were monitored with soil-moisture tensiometers, vacuum and gravity lysimeters, piezometers, and a nuclear soil-moisture gage. A cross-sectional, numerical ground-water-flow model was used to simulate water movement in the variably saturated geologic deposits in the tunnel area. Concurrent studies at the site provided water-budget data for estimating recharge to the disposal trenches. Vertical water movement directly above the trenches was impeded by a zone of compaction within the clayey-silt trench covers. Water entered the trenches primarily at the trench edges where the compacted zone was absent and the cover was relatively thin. Collapse holes in the trench covers that resulted from inadequate compaction of wastes within the trenches provided additional preferential pathways for surface-water drainage into the trenches; drainage into one collapse hole during a rainstorm was estimated to be 1,700 liters. Till deposits near trench bases induced lateral water and tritium movement. Limited temporal variation in water movement and small flow gradients (relative to the till deposits) were detected in the unsaturated subtrench sand deposit; maximum gradients during the spring recharge period averaged 1.62 millimeters per millimeter. Time-of-travel of water moving from the trench covers to below the trenches was estimated to be as rapid as 41 days (assuming individual water molecules move this distance in one recharge cycle). Tritium concentrations in water from the unsaturated zone ranged from 200 (background) to 10,000,000 pCi/L (picocuries per liter). Tritium concentrations generally were higher below trench bases (averaging 91,000 pCi/L) than below intertrench sediments (averaging 3,300 pCi/L), and in the subtrench Toulon Member of the Glasford Formation (sand) (averaging 110,000 pCi/L) than in the Hulick Till Member of the Glasford Formation (clayey silt) (averaging 59,000 pCi/L). Average subtrench tritium concentration increased from 28,000 to 100,000 pCi/L during the study period. Within the trench covers, there was a strong seasonal trend in tritium concentrations; the highest concentrations occurred in late summer when soil-moisture contents were at a minimum. Subtrench tritium movement occurred in association with the annual cycle of water movement, as well as independently of the cycle, in apparent response to continuous water movement through the subtrench sand deposits and to the deterioration of trench-waste containers. The increase in concentrations of tritium with incre
Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A
2017-05-01
The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.
Tuck, L.K.; Pearson, Daniel K.; Cannon, M.R.; Dutton, DeAnn M.
2013-01-01
The Tongue River Member of the Tertiary Fort Union Formation is the primary source of groundwater in the Northern Cheyenne Indian Reservation in southeastern Montana. Coal beds within this formation generally contain the most laterally extensive aquifers in much of the reservation. The U.S. Geological Survey, in cooperation with the Northern Cheyenne Tribe, conducted a study to estimate the volume of water in five coal aquifers. This report presents estimates of the volume of water in five coal aquifers in the eastern and southern parts of the Northern Cheyenne Indian Reservation: the Canyon, Wall, Pawnee, Knobloch, and Flowers-Goodale coal beds in the Tongue River Member of the Tertiary Fort Union Formation. Only conservative estimates of the volume of water in these coal aquifers are presented. The volume of water in the Canyon coal was estimated to range from about 10,400 acre-feet (75 percent saturated) to 3,450 acre-feet (25 percent saturated). The volume of water in the Wall coal was estimated to range from about 14,200 acre-feet (100 percent saturated) to 3,560 acre-feet (25 percent saturated). The volume of water in the Pawnee coal was estimated to range from about 9,440 acre-feet (100 percent saturated) to 2,360 acre-feet (25 percent saturated). The volume of water in the Knobloch coal was estimated to range from about 38,700 acre-feet (100 percent saturated) to 9,680 acre-feet (25 percent saturated). The volume of water in the Flowers-Goodale coal was estimated to be about 35,800 acre-feet (100 percent saturated). Sufficient data are needed to accurately characterize coal-bed horizontal and vertical variability, which is highly complex both locally and regionally. Where data points are widely spaced, the reliability of estimates of the volume of coal beds is decreased. Additionally, reliable estimates of the volume of water in coal aquifers depend heavily on data about water levels and data about coal-aquifer characteristics. Because the data needed to define the volume of water were sparse, only conservative estimates of the volume of water in the five coal aquifers are presented in this report. These estimates need to be used with caution and mindfulness of the uncertainty associated with them.
Gas hydrate property measurements in porous sediments with resonant ultrasound spectroscopy
NASA Astrophysics Data System (ADS)
McGrail, B. P.; Ahmed, S.; Schaef, H. T.; Owen, A. T.; Martin, P. F.; Zhu, T.
2007-05-01
Resonant ultrasound spectroscopy was used to characterize a natural geological core sample obtained from the Mallik 5L-38 gas hydrate research well at high pressure and subambient temperatures. Using deuterated methane gas to form gas hydrate in the core sample, it was discovered that resonance amplitudes are correlated with the fraction of the pore space occupied by the gas hydrate crystals. A pore water freezing model was developed that utilizes the known pore size distribution and pore water chemistry to predict gas hydrate saturation as a function of pressure and temperature. The model showed good agreement with the experimental measurements and demonstrated that pore water chemistry is the most important factor controlling equilibrium gas hydrate saturations in these sediments when gas hydrates are formed artificially in laboratory pressure vessels. With further development, the resonant ultrasound technique can provide a rapid, nondestructive, field portable means of measuring the equilibrium P-T properties and dissociation kinetics of gas hydrates in porous media, determining gas hydrate saturations, and may provide new insights into the nature of gas hydrate formation mechanisms in geologic materials.
NASA Astrophysics Data System (ADS)
Glaser, Barbara; Antonelli, Marta; Pfister, Laurent; Klaus, Julian
2017-04-01
Surface saturated areas are important for the on- and offset of hydrological connectivity within the hillslope-riparian-stream continuum. This is reflected in concepts such as variable contributing areas or critical source areas. However, we still lack a standardized method for areal mapping of surface saturation and for observing its spatiotemporal variability. Proof-of-concept studies in recent years have shown the potential of thermal infrared (TIR) imagery to record surface saturation dynamics at various temporal and spatial scales. Thermal infrared imagery is thus a promising alternative to conventional approaches, such as the squishy boot method or the mapping of vegetation. In this study we use TIR images to investigate the variability of surface saturated areas at different temporal and spatial scales in the forested Weierbach catchment (0.45 km2) in western Luxembourg. We took TIR images of the riparian zone with a hand-held FLIR infrared camera at fortnightly intervals over 18 months at nine different locations distributed over the catchment. Not all of the acquired images were suitable for a derivation of the surface saturated areas, as various factors influence the usability of the TIR images (e.g. temperature contrasts, shadows, fog). Nonetheless, we obtained a large number of usable images that provided a good insight into the dynamic behaviour of surface saturated areas at different scales. The images revealed how diverse the evolution of surface saturated areas can be throughout the hydrologic year. For some locations with similar morphology or topography we identified diverging saturation dynamics, while other locations with different morphology / topography showed more similar behaviour. Moreover, we were able to assess the variability of the dynamics of expansion / contraction of saturated areas within the single locations, which can help to better understand the mechanisms behind surface saturation development.
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Maxwell, R. M.; Liu, Y.
2017-12-01
Civilizations have typically obtained water from natural and constructed surface-water resources throughout most of human history. Only during the last 50-70 years has a significant quantity of water for humans been obtained through pumping from wells. During this short time, alarming levels of groundwater depletion have been observed worldwide, especially in some semi-arid and arid regions that rely heavily on groundwater pumping from clastic sedimentary basins. In order to reverse the negative effects of over-exploitation of groundwater resources, we must transition from treating groundwater mainly as an extractive resource to one in which recharge and subsurface storage are pursued more aggressively. However, this remains a challenge because unlike surface-water reservoirs which are typically replenished over annual timescales, the complex geologic architecture of clastic sedimentary basins impedes natural groundwater recharge rates resulting in decadal or longer timescales for aquifer replenishment. In parts of California's Central Valley alluvial aquifer system, groundwater pumping has outpaced natural groundwater recharge for decades. Managed aquifer recharge (MAR) has been promoted to offset continued groundwater overdraft, but MAR to the confined aquifer system remains a challenge because multiple laterally-extensive silt and clay aquitards limit recharge rates in most locations. Here, we simulate the dynamics of MAR and identify potential recharge pathways in this system using a novel combination of (1) a high-resolution model of the subsurface geologic heterogeneity and (2) a physically-based model of variably-saturated, three-dimensional water flow. Unlike most groundwater models, which have coarse spatial resolution that obscures the detailed subsurface geologic architecture of these systems, our high-resolution model can pinpoint specific geologic features and locations that have the potential to `short-circuit' aquitards and provide orders-of-magnitude greater recharge rates and volumes than would be possible over the rest of the landscape. Our results highlight the importance of capturing detailed geologic heterogeneity and physical processes that are not typically included in groundwater models when evaluating groundwater recharge potential.
An Estimate of Recoverable Heavy Oil Resources of the Orinoco Oil Belt, Venezuela
Schenk, Christopher J.; Cook, Troy A.; Charpentier, Ronald R.; Pollastro, Richard M.; Klett, Timothy R.; Tennyson, Marilyn E.; Kirschbaum, Mark A.; Brownfield, Michael E.; Pitman, Janet K.
2009-01-01
The Orinoco Oil Belt Assessment Unit of the La Luna-Quercual Total Petroleum System encompasses approximately 50,000 km2 of the East Venezuela Basin Province that is underlain by more than 1 trillion barrels of heavy oil-in-place. As part of a program directed at estimating the technically recoverable oil and gas resources of priority petroleum basins worldwide, the U.S. Geological Survey estimated the recoverable oil resources of the Orinoco Oil Belt Assessment Unit. This estimate relied mainly on published geologic and engineering data for reservoirs (net oil-saturated sandstone thickness and extent), petrophysical properties (porosity, water saturation, and formation volume factors), recovery factors determined by pilot projects, and estimates of volumes of oil-in-place. The U.S. Geological Survey estimated a mean volume of 513 billion barrels of technically recoverable heavy oil in the Orinoco Oil Belt Assessment Unit of the East Venezuela Basin Province; the range is 380 to 652 billion barrels. The Orinoco Oil Belt Assessment Unit thus contains one of the largest recoverable oil accumulations in the world.
NASA Astrophysics Data System (ADS)
Webb, R. M.; Leavesley, G. H.; Shanley, J. B.; Peters, N. E.; Aulenbach, B. T.; Blum, A. E.; Campbell, D. H.; Clow, D. W.; Mast, M. A.; Stallard, R. F.; Larsen, M. C.; Troester, J. W.; Walker, J. F.; White, A. F.
2003-12-01
The Water, Energy, and Biogeochemical Model (WEBMOD) was developed as an aid to compare and contrast basic hydrologic and biogeochemical processes active in the diverse hydroclimatic regions represented by the five U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budget (WEBB) sites: Loch Vale, Colorado; Trout Lake, Wisconsin; Sleepers River, Vermont; Panola Mountain, Georgia; and Luquillo Experimental Forest, Puerto Rico. WEBMOD simulates solute concentrations for vegetation canopy, snow pack, impermeable ground, leaf litter, unsaturated and saturated soil zones, riparian zones and streams using selected process modules coupled within the USGS Modular Modeling System (MMS). Source codes for the MMS hydrologic modules include the USGS Precipitation Runoff Modeling System, the National Weather Service Hydro-17 snow model, and TOPMODEL. The hydrologic modules distribute precipitation and temperature to predict evapotranspiration, snow accumulation, snow melt, and streamflow. Streamflow generation mechanisms include infiltration excess, saturated overland flow, preferential lateral flow, and base flow. Input precipitation chemistry, and fluxes and residence times predicted by the hydrologic modules are input into the geochemical module where solute concentrations are computed for a series of discrete well-mixed reservoirs using calls to the geochemical engine PHREEQC. WEBMOD was used to better understand variations in water quality observed at the WEBB sites from October 1991 through September 1997. Initial calibrations were completed by fitting the simulated hydrographs with those measured at the watershed outlets. Model performance was then refined by comparing the predicted export of conservative chemical tracers such as chloride, with those measured at the watershed outlets. The model succeeded in duplicating the temporal variability of net exports of major ions from the watersheds.
Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.
Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang
2014-01-01
Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of groundwater table.
Estimation of the probability of success in petroleum exploration
Davis, J.C.
1977-01-01
A probabilistic model for oil exploration can be developed by assessing the conditional relationship between perceived geologic variables and the subsequent discovery of petroleum. Such a model includes two probabilistic components, the first reflecting the association between a geologic condition (structural closure, for example) and the occurrence of oil, and the second reflecting the uncertainty associated with the estimation of geologic variables in areas of limited control. Estimates of the conditional relationship between geologic variables and subsequent production can be found by analyzing the exploration history of a "training area" judged to be geologically similar to the exploration area. The geologic variables are assessed over the training area using an historical subset of the available data, whose density corresponds to the present control density in the exploration area. The success or failure of wells drilled in the training area subsequent to the time corresponding to the historical subset provides empirical estimates of the probability of success conditional upon geology. Uncertainty in perception of geological conditions may be estimated from the distribution of errors made in geologic assessment using the historical subset of control wells. These errors may be expressed as a linear function of distance from available control. Alternatively, the uncertainty may be found by calculating the semivariogram of the geologic variables used in the analysis: the two procedures will yield approximately equivalent results. The empirical probability functions may then be transferred to the exploration area and used to estimate the likelihood of success of specific exploration plays. These estimates will reflect both the conditional relationship between the geological variables used to guide exploration and the uncertainty resulting from lack of control. The technique is illustrated with case histories from the mid-Continent area of the U.S.A. ?? 1977 Plenum Publishing Corp.
Publications - GMC 192 | Alaska Division of Geological & Geophysical
DGGS GMC 192 Publication Details Title: Compressive and shear wave velocity measurements as brine , Compressive and shear wave velocity measurements as brine-saturated measurements (volume 1) and as soltrol
Evaluation of probabilistic flow in two unsaturated soils
NASA Astrophysics Data System (ADS)
Boateng, Samuel
2001-11-01
A variably saturated flow model is coupled to a first-order reliability algorithm to simulate unsaturated flow in two soils. The unsaturated soil properties are considered as uncertain variables with means, standard deviations, and marginal probability distributions. Thus, each simulation constitutes an unsaturated probability flow event. Sensitivities of the uncertain variables are estimated for each event. The unsaturated hydraulic properties of a fine-textured soil and a coarse-textured soil are used. The properties are based on the van Genuchten model. The flow domain has a recharge surface, a seepage boundary along the bottom, and a no-flow boundary along the sides. The uncertain variables are saturated water content, residual water content, van Genuchten model parameters alpha (α) and n, and saturated hydraulic conductivity. The objective is to evaluate the significance of each uncertain variable to the probabilistic flow. Under wet conditions, saturated water content and residual water content are the most significant uncertain variables in the sand. For dry conditions in the sand, however, the van Genuchten model parameters α and n are the most significant. Model parameter n and saturated hydraulic conductivity are the most significant for the wet clay loam. Saturated water content is most significant for the dry clay loam. Résumé. Un modèle d'écoulement variable en milieu saturé est couplé à un algorithme d'exactitude de premier ordre pour simuler les écoulements en milieu non saturé dans deux sols. Les propriétés des sols non saturés sont considérés comme des variables incertaines avec des moyennes, des écarts-types et des distributions de probabilité marginale. Ainsi chaque simulation constitue un événement d'écoulement non saturé probable. La sensibilité des variables incertaines est estimée pour chaque événement. Les propriétés hydrauliques non saturées d'un sol à texture fine et d'un sol à texture grossière sont utilisées. Les propriétés sont basées sur le modèle de van Genuchten. Le domaine d'écoulement possède une surface de recharge, une limite de fuite à sa base et des limites sans écoulement sur les côtés. Les variables incertaines sont la teneur en eau à saturation, la teneur en eau résiduelle, les paramètres alpha (α) et n du modèle de van Genuchten et la conductivité hydraulique à saturation. L'objectif est d'évaluer la signification de chacune des variables incertaines dans l'écoulement probabiliste. Dans des conditions humides, la teneur en eau à saturation et la teneur en eau résiduelle sont les variables incertaines les plus significatives dans le sable. Toutefois, dans des conditions sèches dans le sable, les paramètres α et n du modèle de van Genuchten sont les plus significatifs. Le paramètre n du modèle et la conductivité hydraulique à saturation sont les plus significatifs pour un sol argileux humide. La teneur en eau à saturation est très significative pour le sol argileux sec. Resumen. Se ha acoplado un modelo de flujo de saturación variable con un algoritmo de fiabilidad de primer orden con el fin de simular el flujo no saturado en dos tipos de suelos. Se ha tratado las propiedades del suelo no saturado como variables inciertas, a las que se asigna las medias, desviaciones estándar y distribuciones de probabilidad marginal correspondientes. Así, cada simulación constituye un evento probabilístico de flujo no saturado y la sensibilidad de las variables inciertas es estimada para cada evento. Se ha utilizado las propiedades de la conductividad hidráulica no saturada de dos suelos con dos tipos de textura - fina y gruesa - mediante el modelo de van Genuchten. El dominio de flujo está delimitado por una superficie de recarga, base de goteo y contornos laterales de flujo nulo. Las variables inciertas son el contenido de agua residual, el de saturación, los parámetros del modelo de van Genuchten (α y n) y la conductividad hidráulica saturada. El objetivo era evaluar la contribución de cada variable incierta al flujo probabilístico. Para arenas, las variables inciertas más importantes, en condiciones de humedad, son el contenido de agua residual y el de saturación en ausencia de humedad, lo son ambos parámetros del modelo de van Genuchten. Para margas arcillosas, las variables más significativas en condiciones húmedas son el parámetro n y la conductividad hidráulica saturada; en condiciones secas, el contenido de agua en saturación.
Factors influencing spatial variability in nitrogen processing in nitrogen-saturated soils
Frank S. Gilliam; Charles C. Somerville; Nikki L. Lyttle; Mary Beth Adams
2001-01-01
Nitrogen (N) saturation is an environmental concern for forests in the eastern U.S. Although several watersheds of the Fernow Experimental Forest (FEF), West Virginia exhibit symptoms of N saturation, many watersheds display a high degree of spatial variability in soil N processing. This study examined the effects of temperature on net N mineralization and...
Loring, John S; Thompson, Christopher J; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T; Rosso, Kevin M
2012-05-17
In geologic carbon sequestration, whereas part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated supercritical CO(2) (scCO(2)) near the well bore and at the caprock, especially in the short term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO(2) containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)(2)) in situ over a 24 h reaction period with scCO(2) containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO(2). Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO(3)·3H(2)O). Mixtures of nesquehonite and magnesite (MgCO(3)) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.
Modeling the hydrogeophysical response of lake talik evolution
Minsley, Burke J.; Wellman, Tristan; Walvoord, Michelle Ann; Revil, Andre
2014-01-01
Geophysical methods provide valuable information about subsurface permafrost and its relation to dynamic hydrologic systems. Airborne electromagnetic data from interior Alaska are used to map the distribution of permafrost, geological features, surface water, and groundwater. To validate and gain further insight into these field datasets, we also explore the geophysical response to hydrologic simulations of permafrost evolution by implementing a physical property relationship that connects geology, temperature, and ice saturation to changes in electrical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, David A
2016-03-27
The prediction of the long-term stability and safety of geologic sequestration of greenhouse gases requires a detailed understanding of subsurface transport and chemical interactions between the disposed greenhouse gases and the geologic media. In this regard, mineral-fluid interactions are of prime importance since reactions that occur on or near the interface can assist in the long term sequestration of CO2 by trapping in mineral phases such as carbonates, as well as influencing the subsurface migration of the disposed fluids via creation or plugging of pores or fractures in the host rock strata. Previous research on mineral-fluid interaction for subsurface CO2more » storage has focused almost entirely on the aqueous phase, i.e., reactivity with aqueous solutions or brines containing dissolved CO2. However, interactions with neat to water-saturated non-aqueous fluids are of equal if not greater importance since supercritical CO2 (scCO2) is less dense than the aqueous phase or oil which will create a buoyant scCO2 plume that ultimately will dominate the pore volume within the caprock, and the injected scCO2 will contain water soon after injection and this water can be highly reactive. Collectively, therefore, mineral interactions with water-saturated scCO2-dominated fluids are pivotal and could result in the stable sequestration of CO2 by trapping in mineral phases such as metal carbonates within otherwise permeable zones in the caprock. The primary objective is to unravel the molecular mechanisms governing the reactivity of mineral phases important in the geologic sequestration of CO2 with variably wet supercritical carbon dioxide as a function of T, P, and mineral structure using computational chemistry. This work is in close collaboration with the PNNL Geosciences effort. The focus of the work at The University of Alabama is computational studies of the formation of magnesium and calcium carbonates and oxides and their reactivity and providing computational support of the experimental efforts at PNNL, especially for energetics, structural properties, and interpretation of spectra.« less
Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada
Flint, L.E.
1998-01-01
Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the relation of flow properties to porosity that are described can be used to produce detailed and accurate representations of the core-scale hydrologic processes ongoing at Yucca Mountain.
A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes
NASA Astrophysics Data System (ADS)
Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan
2016-07-01
An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.
Brouyère, Serge
2006-01-10
In the Hesbaye region in Belgium, tracer tests performed in variably saturated fissured chalk rocks presented very contrasting results in terms of transit times, according to artificially controlled water recharge conditions prevailing during the experiments. Under intense recharge conditions, tracers migrated across the partially or fully saturated fissure network, at high velocity in accordance with the high hydraulic conductivity and low effective porosity (fracture porosity). At the same time, a portion of the tracer was temporarily retarded in the almost immobile water located in the matrix. Under natural infiltration conditions, the fissure network remained inactive. Tracers migrated downward through the matrix, at low velocity in relation with the low hydraulic conductivity and the large porosity of the matrix. Based on these observations, Brouyère et al. (2004a) [Brouyère, S., Dassargues, A., Hallet, V., 2004a. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation, J. Contam. Hydrol., 72 (1-4), 135-164, doi: 10.1016/j.conhyd.2003.10.009] proposed a conceptual model in order to explain the migration of solutes in variably saturated, dual-porosity, dual-permeability chalk. Here, mathematical and numerical modelling of tracer and contaminant migration in variably saturated fissured chalk is presented, considering the aforementioned conceptual model. A new mathematical formulation is proposed to represent the unsaturated properties of the fissured chalk in a more dynamic and appropriate way. At the same time, the rock water content is partitioned between mobile and immobile water phases, as a function of the water saturation of the chalk rock. The groundwater flow and contaminant transport in the variably saturated chalk is solved using the control volume finite element method. Modelling the field tracer experiments performed in the variably saturated chalk shows the adequacy and usefulness of the new conceptual, mathematical and numerical model.
Geologic Conditions Required for the Fluvial Erosion of Titan’s Craters
NASA Astrophysics Data System (ADS)
Kinser, Rebeca; Neish, Catherine; Howard, Alan; Schenk, Paul; Bray, Veronica
2015-11-01
In comparison to other icy satellites, Titan has a small number of impact craters on its surface. This suggests that it has a young surface and/or erosional processes that remove craters from its surface. The set of geological conditions on Titan that would allow craters to become unrecognizable by orbiting spacecraft such as Cassini is unclear. Initial results suggest that not all geologic conditions would allow for complete degradation of impact craters on Titan. Using a landscape evolution model, we explored a larger parameter space to determine the conditions under which a representative 40 km crater on Titan would be eroded. We focused on varying the values of parameters such as bedrock and regolith erodibility, sediment grain size, the weathering rate of the regolith, and whether or not the regolith was saturated with liquid hydrocarbons. We found that only after changing the saturation state of the regolith mid-way through the simulation was it possible to completely erode the crater. Since there are few craters on Titan, this suggests that during Titan’s geological history there may have been varying quantities of liquid on its surface. Titan is known to have a dense atmosphere, not unlike that of the Earth, that could allow for surface liquids to vary under a changing climate. The erosion rate could then also vary as a direct result of changing climatic conditions.
NASA Astrophysics Data System (ADS)
Noh, K.; Jeong, S.; Seol, S. J.; Byun, J.; Kwon, T.
2015-12-01
Man-made carbon dioxide (CO2) released into the atmosphere is a significant contributor to the greenhouse gas effect and related global warming. Sequestration of CO2 into saline aquifers has been proposed as one of the most practical options of all geological sequestration possibilities. During CO2 geological sequestration, monitoring is indispensable to delineate the change of CO2 saturation and migration of CO2 in the subsurface. Especially, monitoring of CO2 saturation in aquifers provides useful information for determining amount of injected CO2. Seismic inversion can provide the migration of CO2 plume with high resolution because velocity is reduced when CO2 replaces the pore fluid during CO2 injection. However, the estimation of CO2 saturation using the seismic method is difficult due to the lower sensitivity of the velocity to the saturation when the CO2 saturation up to 20%. On the other hand, marine controlled-source EM (mCSEM) inversion is sensitive to the resistivity changes resulting from variations in CO2 saturation, even though it has poor resolution than seismic method. In this study, we proposed an effective CO2 sequestration monitoring method using joint inversion of seismic and mCSEM data based on a cross-gradient constraint. The method was tested with realistic CO2 injection models in a deep brine aquifer beneath a shallow sea which is selected with consideration for the access convenience for the installation of source and receiver and an environmental safety. Resistivity images of CO2 plume by the proposed method for different CO2 injection stages have been significantly improved over those obtained from individual EM inversion. In addition, we could estimate a reliable CO2 saturation by rock physics model (RPM) using the P-wave velocity and the improved resistivity. The proposed method is a basis of three-dimensional estimation of reservoir parameters such as porosity and fluid saturation, and the method can be also applied for detecting a reservoir and calculating the accurate oil and gas reserves.
NASA Astrophysics Data System (ADS)
Wang, Shibo; Tokunaga, Tetsu K.; Wan, Jiamin; Dong, Wenming; Kim, Yongman
2016-08-01
Capillary pressure (Pc)-saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, 17 sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23°C) and reservoir (12.0 MPa, 45°C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.
NASA Astrophysics Data System (ADS)
Tokunaga, T. K.; Wang, S.; Wan, J.; Dong, W.; Kim, Y.
2016-12-01
Capillary pressure (Pc) - saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, seventeen sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23 °C) and reservoir (12.0 MPa, 45 °C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.
Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.
2013-01-01
A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.
NASA Astrophysics Data System (ADS)
Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.
2014-12-01
Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which are expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as it is to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of global climate model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the INtegrated CAtchment model of Phosphorus dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivities) were highly varied. Sensitivity was governed by quaternary geology (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.
NASA Astrophysics Data System (ADS)
Pfister, L.; McDonnell, J.; Hissler, C.; Martínez-Carreras, N.; Klaus, J.
2015-12-01
With catchment water storage being only rarely determined, storage dynamics remain largely unknown to date. However, storage bears considerable potential for catchment inter-comparison exercises, as well as it is likely to have an important role in regulating catchment functions. Catchment comparisons across a wide range of environments and scales will help to increase our understanding of relationships between storage dynamics and catchment processes. With respect to the potential of catchment storage for bringing new momentum to catchment classification and catchment processes understanding we currently investigate spatial and temporal variability of dynamic storage in a nested catchment set-up (16 catchments) of the Alzette River basin (Luxembourg, Europe), covering a wide range of geological settings, catchment areas, contrasted landuse, and hydro-meteorological and tracer series. We define catchment storage as the total amount of water stored in a control volume, delimited by the catchment's topographical boundaries and depth of saturated and unsaturated zones. Complementary storage assessments (via input-output dynamics of natural tracers, geographical sounding, groundwater level measurements, soil moisture measurements, hydrometry) are carried out for comparison purposes. In our nested catchment set-up we have (1) assessed dependencies between geology, catchment permeability and winter runoff coefficients, (2) calculated water balance derived catchment storage and mixing potential and quantified how dynamic storage differs between catchments and scales, and (3) examined how stream baseflow dD (as a proxy for baseflow transit time) and integrated flow measures (like the flow duration curve) relate to bedrock geology. Catchments with higher bedrock permeability exhibited larger storage capacities and eventually lower average winter runoff coefficients. Over a time-span of 11 years, all catchments re-produced the same winter runoff coefficients year after year, regardless of their bedrock geology, permeability and winter season storage filling ratios. Ultimately, catchment organisation in our area of interest (i.e. geology, permeability, flowpath length) appeared to have a strong control on winter runoff coefficients, catchment storage and subsequently baseflow dD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honarpour, M.; Szpakiewicz, M.; Sharma, B.
This report covers the development of a generic approach to reservoir characterization, the preliminary studies leading to the selection of an appropriate depositional system for detailed study, the application of outcrop studies to quantified reservoir characterization, and the construction of a quantified geological/engineering model used to screen the effects and scales of various geological heterogeneities within a reservoir. These heterogeneities result in large production/residual oil saturation contrasts over small distances. 36 refs., 124 figs., 38 tabs.
NASA Astrophysics Data System (ADS)
Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav
2016-04-01
Repository, located in a deep geological formation, is today considered the most suitable solution for disposal of spent nuclear fuel and high-level waste. The geological formations, in combination with an engineered barrier system, should ensure isolation of the waste from the environment for thousands of years. For long-term monitoring of such underground excavations special monitoring systems are developed. In our research we developed and tested monitoring system based on repeated ultrasonic time of flight measurement and electrical resistivity tomography (ERT). As a test site Bedřichov gallery in the northern Bohemia was selected. This underground gallery in granitic rock was excavated using Tunnel Boring Machine (TBM). The seismic high-frequency measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The ERT measurement is performed also on the rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. An analysis of relation of seismic velocity and electrical resistivity on water saturation and stress state of the granitic rock is necessary for the interpretation of both seismic monitoring and ERT. Laboratory seismic and resistivity measurements were performed. One series of experiments was based on uniaxial loading of dry and saturated granitic samples. The relation between stress state and ultrasonic wave velocities was tested separately for dry and saturated rock samples. Other experiments were focused on the relation between electrical resistivity of the rock sample and its saturation level. Rock samples with different porosities were tested. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA 0302408
Niswonger, Richard G.; Prudic, David E.; Regan, R. Steven
2006-01-01
Percolation of precipitation through unsaturated zones is important for recharge of ground water. Rain and snowmelt at land surface are partitioned into different pathways including runoff, infiltration, evapotranspiration, unsaturated-zone storage, and recharge. A new package for MODFLOW-2005 called the Unsaturated-Zone Flow (UZF1) Package was developed to simulate water flow and storage in the unsaturated zone and to partition flow into evapotranspiration and recharge. The package also accounts for land surface runoff to streams and lakes. A kinematic wave approximation to Richards? equation is solved by the method of characteristics to simulate vertical unsaturated flow. The approach assumes that unsaturated flow occurs in response to gravity potential gradients only and ignores negative potential gradients; the approach further assumes uniform hydraulic properties in the unsaturated zone for each vertical column of model cells. The Brooks-Corey function is used to define the relation between unsaturated hydraulic conductivity and water content. Variables used by the UZF1 Package include initial and saturated water contents, saturated vertical hydraulic conductivity, and an exponent in the Brooks-Corey function. Residual water content is calculated internally by the UZF1 Package on the basis of the difference between saturated water content and specific yield. The UZF1 Package is a substitution for the Recharge and Evapotranspiration Packages of MODFLOW-2005. The UZF1 Package differs from the Recharge Package in that an infiltration rate is applied at land surface instead of a specified recharge rate directly to ground water. The applied infiltration rate is further limited by the saturated vertical hydraulic conductivity. The UZF1 Package differs from the Evapotranspiration Package in that evapotranspiration losses are first removed from the unsaturated zone above the evapotranspiration extinction depth, and if the demand is not met, water can be removed directly from ground water whenever the depth to ground water is less than the extinction depth. The UZF1 Package also differs from the Evapotranspiration Package in that water is discharged directly to land surface whenever the altitude of the water table exceeds land surface. Water that is discharged to land surface, as well as applied infiltration in excess of the saturated vertical hydraulic conductivity, may be routed directly as inflow to specified streams or lakes if these packages are active; otherwise, this water is removed from the model. The UZF1 Package was tested against the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model for a vertical unsaturated flow problem that includes evapotranspiration losses. This report also includes an example in which MODFLOW-2005 with the UZF1 Package was used to simulate a realistic surface-water/ground-water flow problem that includes time and space variable infiltration, evapotranspiration, runoff, and ground-water discharge to land surface and to streams. Another simpler problem is presented so that the user may use the input files as templates for new problems and to verify proper code installation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, John S.; Thompson, Christopher J.; Zhang, Changyong
2012-04-25
In geologic carbon sequestration, while part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated super critical CO2 (scCO2) near the well bore and at the caprock, especially in the short-term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO2 containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)2) in situ over a 24 hr reaction period with scCO2 containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, andmore » 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO2. Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO3 • 3H2O). Mixtures of nesquehonite and magnesite (MgCO3) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.« less
Hillslope hydrology and stability
Lu, Ning; Godt, Jonathan
2012-01-01
Landslides are caused by a failure of the mechanical balance within hillslopes. This balance is governed by two coupled physical processes: hydrological or subsurface flow and stress. The stabilizing strength of hillslope materials depends on effective stress, which is diminished by rainfall. This book presents a cutting-edge quantitative approach to understanding hydro-mechanical processes across variably saturated hillslope environments and to the study and prediction of rainfall-induced landslides. Topics covered include historic synthesis of hillslope geomorphology and hydrology, total and effective stress distributions, critical reviews of shear strength of hillslope materials and different bases for stability analysis. Exercises and homework problems are provided for students to engage with the theory in practice. This is an invaluable resource for graduate students and researchers in hydrology, geomorphology, engineering geology, geotechnical engineering and geomechanics and for professionals in the fields of civil and environmental engineering and natural hazard analysis.
DENSITY-DEPENDENT FLOW IN ONE-DIMENSIONAL VARIABLY-SATURATED MEDIA
A one-dimensional finite element is developed to simulate density-dependent flow of saltwater in variably saturated media. The flow and solute equations were solved in a coupled mode (iterative), in a partially coupled mode (non-iterative), and in a completely decoupled mode. P...
2D VARIABLY SATURATED FLOWS: PHYSICAL SCALING AND BAYESIAN ESTIMATION
A novel dimensionless formulation for water flow in two-dimensional variably saturated media is presented. It shows that scaling physical systems requires conservation of the ratio between capillary forces and gravity forces. A direct result of this finding is that for two phys...
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; ...
2014-12-31
During CO 2 injection and storage in deep reservoirs, the injected CO 2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO 2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO 2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space playmore » a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.« less
Influence of soil environmental parameters on thoron exhalation rate.
Hosoda, M; Tokonami, S; Sorimachi, A; Ishikawa, T; Sahoo, S K; Furukawa, M; Shiroma, Y; Yasuoka, Y; Janik, M; Kavasi, N; Uchida, S; Shimo, M
2010-10-01
Field measurements of thoron exhalation rates have been carried out using a ZnS(Ag) scintillation detector with an accumulation chamber. The influence of soil surface temperature and moisture saturation on the thoron exhalation rate was observed. When the variation of moisture saturation was small, the soil surface temperature appeared to induce a strong effect on the thoron exhalation rate. On the other hand, when the variation of moisture saturation was large, the influence of moisture saturation appeared to be larger than the soil surface temperature. The number of data ranged over 405, and the median was estimated to be 0.79 Bq m(-2) s(-1). Dependence of geology on the thoron exhalation rate from the soil surface was obviously found, and a nationwide distribution map of the thoron exhalation rate from the soil surface was drawn by using these data. It was generally high in the southwest region than in the northeast region.
Kepner, Gordon R
2010-04-13
The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.
NASA Astrophysics Data System (ADS)
Pan, Huali; Hu, Mingjian; Ou, Guoqiang
2017-04-01
According to the geological investigation in Fujian province, the total number of geological disasters was 9513, in which the number of landslide, collapse, unstable slope and surface collapse was 5816, 1888, 1591, 103 and 115 respectively. The main geological disaster was the landslide with 61.1% of total geological disasters. Among all these geological disasters, only 6.0% was relative stable, 17.0% was basic stable, nearly 76.0% was unstable. The slope disaster was the main geological disaster, if the unstable slope was the potential landslide or collapse; the slope collapse was 98.0% of all geological disasters. The rainfall, in particular the heavy rain, was direct dynamic factor for geological disasters, but the occurrence probability of geological disasters was different because of the sensitivity of the geological environment though of the same intensity rainfall. To obtain the characteristics of soil erosion under the rainfall condition, the rainfall characteristics and its related disasters of slag disposal pit of a certain Gold-Copper Deposit in Fujian province was analyzed by the meteorological and rainfall data. According to the distribution of monitoring stations of hydrological and rainfall in Longyan city of Fujian province and the location of gold-copper deposit, the Shanghang monitoring station of hydrological and rainfall was chosen, which is the nearest one to the gold-copper deposit. Then main parameters of the prediction model, the antecedent precipitation, the rainfall on the day and the rainfall threshold, were calculated by using the rainfall data from 2002 to 2010. And the relationship between geological disasters and the rainfall characteristics were analyzed. The results indicated that there was high risk for the debris flow with landslide collapse when either the daily rainfall was more than 100.0 mm, or the total rainfall was more than 136.0mm in the gold-copper deposit and the Shanghang region. At the same time, although there was few risk for the debris flow when the daily rainfall was between 50.0-100.0mm, once the soil was saturated or nearly saturated because of the continuous antecedent precipitation, debris flow disaster would occur even the daily rainfall was only 50.0mm. In addition, it was prone to trigger debris flow disaster when the daily heavy rainfall was more than 100.0mm or the torrential rainfall in 3 days was between 250.0 -300.0mm.
Bloss, Benjamin R.; Bedrosian, Paul A.; Buesch, David C.
2015-01-01
Correlating laboratory resistivity measurements with geophysical resistivity models helps constrain these models to the geology and lithology of an area. Throughout the Fort Irwin National Training Center area, 111 samples from both cored boreholes and surface outcrops were collected and processed for laboratory measurements. These samples represent various lithologic types that include plutonic and metamorphic (basement) rocks, lava flows, consolidated sedimentary rocks, and unconsolidated sedimentary deposits that formed in a series of intermountain basins. Basement rocks, lava flows, and some lithified tuffs are generally resistive (≥100 ohm-meters [Ω·m]) when saturated. Saturated unconsolidated samples are moderately conductive to conductive, with resistivities generally less than 100 Ω·m, and many of these samples are less than 50 Ω·m. The unconsolidated samples can further be separated into two broad groups: (1) younger sediments that are moderately conductive, owing to their limited clay content, and (2) older, more conductive sediments with a higher clay content that reflects substantial amounts of originally glassy volcanic ash subsequently altered to clay. The older sediments are believed to be Tertiary. Time-domain electromagnetic (TEM) data were acquired near most of the boreholes, and, on the whole, close agreements between laboratory measurements and resistivity models were found.
Kim, Kue-Young; Oh, Junho; Han, Weon Shik; Park, Kwon Gyu; Shinn, Young Jae; Park, Eungyu
2018-03-20
Geologic storage of carbon dioxide (CO 2 ) is considered a viable strategy for significantly reducing anthropogenic CO 2 emissions into the atmosphere; however, understanding the flow mechanisms in various geological formations is essential for safe storage using this technique. This study presents, for the first time, a two-phase (CO 2 and brine) flow visualization under reservoir conditions (10 MPa, 50 °C) for a highly heterogeneous conglomerate core obtained from a real CO 2 storage site. Rock heterogeneity and the porosity variation characteristics were evaluated using X-ray computed tomography (CT). Multiphase flow tests with an in-situ imaging technology revealed three distinct CO 2 saturation distributions (from homogeneous to non-uniform) dependent on compositional complexity. Dense discontinuity networks within clasts provided well-connected pathways for CO 2 flow, potentially helping to reduce overpressure. Two flow tests, one under capillary-dominated conditions and the other in a transition regime between the capillary and viscous limits, indicated that greater injection rates (potential causes of reservoir overpressure) could be significantly reduced without substantially altering the total stored CO 2 mass. Finally, the capillary storage capacity of the reservoir was calculated. Capacity ranged between 0.5 and 4.5%, depending on the initial CO 2 saturation.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Yu, Qingchun
2017-07-01
With rising threats from greenhouse gases, capture and injection of CO2 into suitable underground formations is being considered as a method to reduce anthropogenic emissions of CO2 to the atmosphere. As the injected CO2 will remain in storage for hundreds of years, the safety of CO2 geologic sequestration is a major concern. The low-permeability sandstone of the Ordos Basin in China is regarded as both caprock and reservoir rock, so understanding the breakthrough pressure and permeability of the rock is necessary. Because part of the pore volume experiences a non-wetting phase during the CO2 injection and migration process, the rock may be in an unsaturated condition. And if accidental leakage occurs, CO2 will migrate up into the unsaturated zone. In this study, breakthrough experiments were performed at various degrees of water saturation with five core samples of low-permeability sandstone obtained from the Ordos Basin. The experiments were conducted at 40 °C and pressures of >8 MPa to simulate the geological conditions for CO2 sequestration. The results indicate that the degree of water saturation and the pore structure are the main factors affecting the rock breakthrough pressure and permeability, since the influence of calcite dissolution and clay mineral swelling during the saturation process is excluded. Increasing the average pore radius or most probable pore radius leads to a reduction in the breakthrough pressure and an increase by several orders of magnitude in scCO2 effective permeability. In addition, the breakthrough pressure rises and the scCO2 effective permeability decreases when the water saturation increases. However, when the average pore radius is greater than 0.151 μm, the degree of water saturation will has a little effect on the breakthrough pressure. On this foundation, if the most probable pore radius of the core sample reaches 1.760 μm, the breakthrough pressure will not be impacted by the increasing water saturation. We establish correlations between (1) the breakthrough pressure and average pore radius or most probable pore radius, (2) the breakthrough pressure and scCO2 effective permeability, (3) the breakthrough pressure and water saturation, and (4) the scCO2 effective permeability and water saturation. This study provides practical information for further studies of CO2 sequestration as well as the caprock evaluation.
Local Hydrological effects in Membach, Belgium: influence on the long term gravity variation
NASA Astrophysics Data System (ADS)
van Camp, M.; Dassargues, A.; Vanneste, K.; Verbeeck, K.; Warnant, R.
2003-04-01
Absolute (AG) and superconducting (SG) gravity measurements have been performed since 1996 at the underground Membach Station (Ardenne, eastern Belgium). Two effects can be distinguished: one seasonal-like and a long-term geophysical trend. The first effect is a 5 µGal seasonal-like term due most probably and mainly to hydrological variations. To determine the thickness of the porous unconsolidated layer covering the fissured bed-rock (low-porosity argillaceous sandstone with quartzitic beds) through which the tunnel was excavated, geophysical prospecting has been undertaken above the Membach station. This shows that the thickness of the weathered zone covering the bedrock can be highly variable between zero and 10 meters (possibly due to palaeo mudflows linked to periglacial conditions in the area). This leads to highly variable (in space) saturation capacity of the subsoil above the gallery. The extensive geological researches will allow us to correct the gravity variations induced by the variable mass of water stored in the shallow partially saturated soil. This work can be essential to correct local effects that can mask regional effects such as changes in continental water storage. Local effects, indeed, could prevent the combination of satellite data (e.g. GRACE) with ground-based gravity measurements. On the other hand, studying the local seasonal variations also contributes to investigate the influence of the water storage variations in small river basins on the time dependent gravity field. The second effect is the detection of a very low geophysical trend in gravity of -0.5+/-0.1 µGal/year. The SG drift, the hydrological effects, and the origin of the low trend are discussed. In particular, we show a good correlation between the gravity measurements and the continuous GPS measurements being made since 1997 at 3 km from the station. Possible crustal deformations could be linked to active faults in the Ardenne and/or bordering the Roer Valley Graben, or perhaps linked to the Eifel plume.
NASA Technical Reports Server (NTRS)
Curlis, J. D.; Frost, V. S.; Dellwig, L. F.
1986-01-01
Computer-enhancement techniques applied to the SIR-A data from the Lisbon Valley area in the northern portion of the Paradox basin increased the value of the imagery in the development of geologically useful maps. The enhancement techniques include filtering to remove image speckle from the SIR-A data and combining these data with Landsat multispectral scanner data. A method well-suited for the combination of the data sets utilized a three-dimensional domain defined by intensity-hue-saturation (IHS) coordinates. Such a system allows the Landsat data to modulate image intensity, while the SIR-A data control image hue and saturation. Whereas the addition of Landsat data to the SIR-A image by means of a pixel-by-pixel ratio accentuated textural variations within the image, the addition of color to the combined images enabled isolation of areas in which gray-tone contrast was minimal. This isolation resulted in a more precise definition of stratigraphic units.
USDA-ARS?s Scientific Manuscript database
Passive capillary lysimeters (PCLs) are uniquely suited for measuring water fluxes in variably-saturated soils. The objective of this work was to compare PCL flux measurements with simulated fluxes obtained with a calibrated unsaturated flow model. The Richards equation-based model was calibrated us...
NASA Astrophysics Data System (ADS)
Lam, D. T.; Kerrou, J.; Benabderrahmane, H.; Perrochet, P.
2017-12-01
The calibration of groundwater flow models in transient state can be motivated by the expected improved characterization of the aquifer hydraulic properties, especially when supported by a rich transient dataset. In the prospect of setting up a calibration strategy for a variably-saturated transient groundwater flow model of the area around the ANDRA's Bure Underground Research Laboratory, we wish to take advantage of the long hydraulic head and flowrate time series collected near and at the access shafts in order to help inform the model hydraulic parameters. A promising inverse approach for such high-dimensional nonlinear model, and which applicability has been illustrated more extensively in other scientific fields, could be an iterative ensemble smoother algorithm initially developed for a reservoir engineering problem. Furthermore, the ensemble-based stochastic framework will allow to address to some extent the uncertainty of the calibration for a subsequent analysis of a flow process dependent prediction. By assimilating the available data in one single step, this method iteratively updates each member of an initial ensemble of stochastic realizations of parameters until the minimization of an objective function. However, as it is well known for ensemble-based Kalman methods, this correction computed from approximations of covariance matrices is most efficient when the ensemble realizations are multi-Gaussian. As shown by the comparison of the updated ensemble mean obtained for our simplified synthetic model of 2D vertical flow by using either multi-Gaussian or multipoint simulations of parameters, the ensemble smoother fails to preserve the initial connectivity of the facies and the parameter bimodal distribution. Given the geological structures depicted by the multi-layered geological model built for the real case, our goal is to find how to still best leverage the performance of the ensemble smoother while using an initial ensemble of conditional multi-Gaussian simulations or multipoint simulations as conceptually consistent as possible. Performance of the algorithm including additional steps to help mitigate the effects of non-Gaussian patterns, such as Gaussian anamorphosis, or resampling of facies from the training image using updated local probability constraints will be assessed.
Kisch-Wedel, H; Bernreuter, P; Kemming, G; Albert, M; Zwissler, B
2009-09-01
A new technique was validated in vivo in reflectance pulse oximetry for measuring low oxygen saturations. Two pairs of light emitter/detector diodes allow for estimation of light attenuation (LA) in tissue, which is assumed to be responsible for the inaccuracy of pulse oximetry at less than 70 % arterial oxygen saturation. For validation, 17 newborn piglets were desaturated stepwise from 21 % to 1.25 % inspiratory oxygen concentration during general anesthesia, and arterial oxygen saturation was measured with the reflectance pulse oximeter adjusted for LA in tissue, with a standard transmission pulse oximeter and a hemoximeter. LA in tissue could be quantified and was different between snout and foreleg (probability level (p) < 0.05). At arterial oxygen saturations above 70 %, the bias between the methods was at 0 %-1 % and the variability 4 %-5 %. From 2 % to 100 % arterial oxygen saturation, the reflectance pulse oximeter estimated oxyhemoglobin saturation more accurately than a conventional transmission pulse oximeter (p < 0.05). At low oxygen saturations below 70 %, the bias and variability of the reflectance pulse oximeter calibration were closer to the hemoximeter measurements than the transmission pulse oximeter (p < 0.05). The variability of the reflectance pulse oximeter was slightly lower than the traditional oximeter by taking into account the LA in tissue (9 % versus 11 % -15 %, ns), and thus, the quality of the individual calibration lines improved (correlation coefficient, p < 0.05).
NASA Astrophysics Data System (ADS)
Abdelghafour, H.; Brondolo, F.; Denchik, N.; Pezard, P. A.
2014-12-01
The controllability of CO2 geological storage can ensure the integrity of storage operations, requiring a precise monitoring of reservoir fluids and properties during injection and over time. In this context, deep saline aquifers offer a large capacity of storing CO2, but the accessibility to long term behavior studies remains limited until now. The Maguelone shallow experimental site located near Montpellier (Languedoc, France) provides such an opportunity for the understanding and accuracy of hydrogeophysical monitoring methods. The geology, petrophysic and hydrology of this site have been studied in details in previous studies, revealing the presence of a thin saline aquifer at 13-16 m depth surrounded by clay-rich materials. The site as a whole provides a natural laboratory to study CO2 injection at field scale, shallow depth, hence reasonable costs. The monitoring setup is composed of a series of hydrogeophysical and geochemical methods offering measurements of fluid pore pressure, electrical resistivity, acoustic velocities as well as pH and fluid properties and chemistry. To assess the response of the reservoir during CO2 injection, all measurements need to be compared to a representative baseline. Long after a series of gas injection experiments at Maguelone, fluctuations overtime of reservoir fluids and properties (such as pore fluid pH) were discovered at steady state, demonstrating the natural variability of the site in terms of biogenic gas (H2S, CH4, CO2) production and transfer. For this, a new resistivity baseline had to be constructed for all observatories. From this, the downhole gas saturation was determined versus depth and time from time-lapse resistivity logs analysed on the basis of other logs and laboratory measurements. The Waxman and Smits model (1968) for electrical properties of sand-clay formations was modified to estimate the gas saturation in 4D, to account for surface conductivity and pore connectivity. High frequency logging and monitoring of electrical properties both, with several measurements per hour and a dm-scale resolution, provide and insight into subsurface dynamics in terms of gas flow and storage, with biogenic gas saturations ranging from 0.1 to 5.0 %. This natural contribution has to be taken into account for upcoming experiments.
NASA Astrophysics Data System (ADS)
Karki, A.; Kargel, J. S.
2017-12-01
Landslides and ice avalanches kill >5000 people annually (D. Petley, 2012, Geology http://dx.doi.org/10.1130/G33217.1); destroy or damage homes and infrastructure; and create secondary hazards, such as flooding due to blocked rivers. Critical roles of surface slope, earthquake shaking, soil characteristics and saturation, river erosional undercutting, rainfall intensity, snow loading, permafrost thaw, freeze-thaw and frost shattering, debuttressing of unstable masses due to glacier thinning, and vegetation burn or removal are well-known factors affecting landslides and avalanches. Lithology-dependent bedrock physicochemical-mechanical properties—especially brittle elastic and shear strength, and chemical weathering properties that affect rock strength, are also recognized controls on landsliding and avalanching, but are not commonly considered in detail in landslide susceptibility assessment. Lithology controls the formation of weakened, weathered bedrock; the formation and accumulation of soils; soil saturation-related properties of grain size distribution, porosity, and permeability; and soil creep related to soil wetting-drying and freeze-thaw. Lithology controls bedrock abrasion and glacial erosion and debris production rates, the formation of rough or smoothed bedrock surface by glaciation, fluvial, and freeze-thaw processes. Lithologic variability (e.g., bedding; fault and joint structure) affects contrasts in chemical weathering rates, porosity, and susceptibility to frost shattering and chemical weathering, hence formation of overhanging outcrops and weakened slip planes. The sudden failure of bedrock or sudden slip of ice on bedrock, and many other processes depend on rock lithology, microstructure (porosity and permeability), and macrostructure (bedding; faults). These properties are sometimes considered in gross terms for landslide susceptibility assessment, but in detailed applications to specific development projects, and in detailed mapping over large areas, the details of rock lithology, weathering state, and structure are rarely considered. We have initiated a geological and rock mechanical properties approach to landslide susceptibility assessments in areas of high concern for human and infrastructure safety.
Vail, W.B. III.
1989-04-11
Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes. 3 figs.
Vail, III, William B.
1989-01-01
Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes.
Geologic exploration: The contribution of LANDSAT-4 thematic mapper data
NASA Technical Reports Server (NTRS)
Everett, J. R.; Dykstra, J. D.; Sheffield, C. A.
1983-01-01
The major advantages of the TM data over that of MSS systems are increased spatial resolution and a greater number of narrow, strategically placed spectral bands. The 30 meter pixel size permits finer definition of ground features and improves reliability of the photointerpretation of geologic structure. The value of the spatial data increases relative to the value of the spectral data as soil and vegetation cover increase. In arid areas with good exposure, it is possible with careful digital processing and some inventive color compositing to produce enough spectral differentiation of rock types and thereby produce facsimiles of standard geologic maps with a minimum of field work or reference to existing maps. Hue-saturation value images are compared with geological maps of Death Valley, California, the Big Horn/Wind River Basin of Wyoming, the area around Cement, Oklahoma, and Detroit. False color composites of the Ontario region are also examined.
NASA Astrophysics Data System (ADS)
Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Procter, Jonathan; Agustín-Flores, Javier
2014-10-01
Monogenetic basaltic volcanism is characterised by a complex array of eruptive behaviours, reflecting spatial and temporal variability of the magmatic properties (e.g. composition, eruptive volume, magma flux) as well as environmental factors at the vent site (e.g. availability of water, country rock geology, faulting). These combine to produce changes in eruption style over brief periods (minutes to days) in many eruption episodes. Monogenetic eruptions in some volcanic fields often start with a phreatomagmatic vent-opening phase that later transforms into "dry" magmatic explosive or effusive activity, with a strong variation in the duration and importance of this first phase. Such an eruption sequence pattern occurred in 83% of the known eruption in the 0.25 My-old Auckland Volcanic Field (AVF), New Zealand. In this investigation, the eruptive volumes were compared with the sequences of eruption styles preserved in the pyroclastic record at each volcano of the AVF, as well as environmental influencing factors, such as distribution and thickness of water-saturated semi- to unconsolidated sediments, topographic position, distances from known fault lines. The AVF showed that there is no correlation between ejecta ring volumes and environmental influencing factors that is valid for the entire AVF. In contrary, using a set of comparisons of single volcanoes with well-known and documented sequences, resultant eruption sequences could be explained by predominant patterns of the environment in which these volcanoes were erupted. Based on the spatial variability of these environmental factors, a first-order susceptibility hazard map was constructed for the AVF that forecasts areas of largest likelihood for phreatomagmatic eruptions by overlaying topographical and shallow geological information. Combining detailed phase-by-phase breakdowns of eruptive volumes and the event sequences of the AVF, along with the new susceptibility map, more realistic eruption scenarios can be developed for different parts of the volcanic field. This approach can be applied to tailoring field and sub-field specific hazard forecasting at similar volcanic fields worldwide.
Simulating tracer transport in variably saturated soils and shallow groundwater
USDA-ARS?s Scientific Manuscript database
The objective of this study was to develop a realistic model to simulate the complex processes of flow and tracer transport in variably saturated soils and to compare simulation results with the detailed monitoring observations. The USDA-ARS OPE3 field site was selected for the case study due to ava...
NASA Astrophysics Data System (ADS)
Zhang, L.; Namhata, A.; Dilmore, R. M.; Bromhal, G. S.
2016-12-01
An increasing emphasis on the industrial scale implementation of CO2 storage into geological formations has led to the development of whole-system models to evaluate performance of candidate geologic storage sites, and the environmental risk associated with them. The components of that engineered geologic system include the storage reservoir, primary and secondary seals, and the overlying formations above primary and secondary seals (above-zone monitoring interval, AZMI). Leakage of CO2 and brine through the seal to the AZMI may occur due to the presence of natural or induced fractures in the seal. In this work, an AZMI model that simulates pressure and CO2 saturation responses through time to migration of fluids (here, CO2 and brine) from the primary seal to the AZMI is developed. A hypothetical case is examined wherein CO2 is injected into a storage reservoir for 30 years and a heterogeneous primary seal exists above the reservoir with some permeable zones. The total simulation period is 200 years (30 years of CO2 injection period and 170 years of post CO2 injection period). Key geophysical parameters such as permeability of the AZMI, thickness of the AZMI and porosity of the AZMI have significant impact on pressure evolution in the AZMI. arbitrary Polynomial Chaos (aPC) Expansion analysis shows that permeability of the AZMI has the most significant impact on pressure build up in the AZMI above the injection well at t=200 years, followed by thickness of the AZMI and porosity of the AZMI. Geochemical reactions have no impact on pressure and CO2 saturation evolution in the AZMI during the CO2 injection period. After the CO2 injection stops, precipitation of secondary minerals (e.g., amorphous silica and kaolinite) at the CO2 plume/brine interface in the AZMI formation may cause permeability reduction of the AZMI, which restrains horizontal migration of CO2 in the AZMI.
NASA Astrophysics Data System (ADS)
Berg, Steven J.; Illman, Walter A.
2012-11-01
SummaryInterpretation of pumping tests in unconfined aquifers has largely been based on analytical solutions that disregard aquifer heterogeneity. In this study, we investigate whether the prediction of drawdown responses in a heterogeneous unconfined aquifer and the unsaturated zone above it with a variably saturated groundwater flow model can be improved by including information on hydraulic conductivity (K) and specific storage (Ss) from transient hydraulic tomography (THT). We also investigate whether these predictions are affected by the use of unsaturated flow parameters estimated through laboratory hanging column experiments or calibration of in situ drainage curves. To investigate these issues, we designed and conducted laboratory sandbox experiments to characterize the saturated and unsaturated properties of a heterogeneous unconfined aquifer. Specifically, we conducted pumping tests under fully saturated conditions and interpreted the drawdown responses by treating the medium to be either homogeneous or heterogeneous. We then conducted another pumping test and allowed the water table to drop, similar to a pumping test in an unconfined aquifer. Simulations conducted using a variably saturated flow model revealed: (1) homogeneous parameters in the saturated and unsaturated zones have a difficult time predicting the responses of the heterogeneous unconfined aquifer; (2) heterogeneous saturated hydraulic parameter distributions obtained via THT yielded significantly improved drawdown predictions in the saturated zone of the unconfined aquifer; and (3) considering heterogeneity of unsaturated zone parameters produced a minor improvement in predictions in the unsaturated zone, but not the saturated zone. These results seem to support the finding by Mao et al. (2011) that spatial variability in the unsaturated zone plays a minor role in the formation of the S-shape drawdown-time curve observed during pumping in an unconfined aquifer.
A physically-based Distributed Hydrologic Model for Tropical Catchments
NASA Astrophysics Data System (ADS)
Abebe, N. A.; Ogden, F. L.
2010-12-01
Hydrological models are mathematical formulations intended to represent observed hydrological processes in a watershed. Simulated watersheds in turn vary in their nature based on their geographic location, altitude, climatic variables and geology and soil formation. Due to these variations, available hydrologic models vary in process formulation, spatial and temporal resolution and data demand. Many tropical watersheds are characterized by extensive and persistent biological activity and a large amount of rain. The Agua Salud catchments located within the Panama Canal Watershed, Panama, are such catchments identified by steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. Tropical soils are highly affected by soil cracks, decayed tree roots and earthworm burrows forming a network of preferential flow paths that drain to a perched water table, which forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant processes in these tropical watersheds. The model incorporates the major flow processes including overland flow, channel flow, matrix and non-Richards film flow infiltration, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer, and deep saturated groundwater flow. Emphasis is given to the modeling of subsurface unsaturated zone soil moisture dynamics and the saturated preferential lateral flow from the network of macrospores. Preliminary results indicate that the model has the capability to simulate the complex hydrological processes in the catchment and will be a useful tool in the ongoing comprehensive ecohydrological studies in tropical catchments, and help improve our understanding of the hydrological effects of deforestation and aforestation.
Ravazzoli, C L; Santos, J E; Carcione, J M
2003-04-01
We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.
Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; ...
2012-12-20
The risk of CO 2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO 2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO 2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO 2/brine saturation are connected to the fault-leakage model as amore » boundary condition. CO 2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO 2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO 2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less
Lee, M.W.; Collett, T.S.
2011-01-01
In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.
Simultaneous use of geological, geophysical, and LANDSAT digital data in uranium exploration. [Libya
DOE Office of Scientific and Technical Information (OSTI.GOV)
Missallati, A.; Prelat, A.E.; Lyon, R.J.P.
1979-08-01
The simultaneous use of geological, geophysical and Landsat data in uranium exploration in southern Libya is reported. The values of 43 geological, geophysical and digital data variables, including age and type of rock, geological contacts, aeroradio-metric and aeromagnetic values and brightness ratios, were used as input into a geomathematical model. Stepwise discriminant analysis was used to select grid cells most favorable for detailed mineral exploration and to evaluate the significance of each variable in discriminating between the anomalous (radioactive) and nonanomalous (nonradioactive) areas. It is found that the geological contact relationships, Landsat Bands 6 and Band 7/4 ratio values weremore » most useful in the discrimination. The procedure was found to be statistically and geologically reliable, and applicable to similar regions using only the most important geological and Landsat data.« less
Sensitivity analysis of tracer transport in variably saturated soils at USDA-ARS OPE3 field site
USDA-ARS?s Scientific Manuscript database
The objective of this study was to assess the effects of uncertainties in hydrologic and geochemical parameters on the results of simulations of the tracer transport in variably saturated soils at the USDA-ARS OPE3 field site. A tracer experiment with a pulse of KCL solution applied to an irrigatio...
NASA Astrophysics Data System (ADS)
Na, S.; Sun, W.; Yoon, H.; Choo, J.
2016-12-01
Directional mechanical properties of layered geomaterials such as shale are important on evaluating the onset and growth of fracture for engineering applications such as hydraulic fracturing, geologic carbon storage, and geothermal recovery. In this study, a continuum phase field modeling is conducted to demonstrate the initiation and pattern of cracks in fluid-saturated porous media. The discontinuity of sharp cracks is formulated using diffusive crack phase field modeling and the anisotropic surface energy is incorporated to account for the directional fracture toughness. In particular, the orientation of bedding in geomaterials with respect to the loading direction is represented by the directional critical energy release rate. Interactions between solid skeleton and fluid are also included to analyze the mechanical behavior of fluid-saturated geologic materials through the coupled hydro-mechanical model. Based on the linear elastic phase field modeling, we also addressed how the plasticity in crack phase field influences the crack patterns by adopting the elasto-plastic model with Drucker-Prager yield criterion. Numerical examples exhibit the features of anisotropic surface energy, the interactions between solid and fluid and the effects of plasticity on crack propagations.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Imasato, M.
2017-12-01
Carbon dioxide (CO2) capture and storage (CCS) plays a vital role in reducing greenhouse gas emissions. In the northern part of Kyushu region of Japan, complex geological structure (Coalfield) is existed near the CO2 emission source and has 1.06 Gt of CO2 storage capacity. The geological survey shows that these layers are formed by low permeable sandstone. It is necessary to monitor the CO2 behavior and clear the mechanisms of CO2 penetration and storage in the low permeable sandstone. In this study, measurements of complex electrical impedance (Z) and elastic wave velocity (P-wave velocity: Vp) were conducted during the supercritical CO2 injection experiment into the brine-saturated low permeable sandstone. The experiment conditions were as follows; Confining pressure: 20 MPa, Initial pore pressure: 10 MPa, 40 °, CO2 injection rate: 0.01 to 0.5 mL/min. Z was measured in the center of the specimen and Vp were measured at three different heights of the specimen at constant intervals. In addition, we measured the longitudinal and lateral strain at the center of the specimen, the pore pressure and CO2 injection volume (CO2 saturation). During the CO2 injection, the change of Z and Vp were confirmed. In the drainage terms, Vp decreased drastically once CO2 reached the measurement cross section.Vp showed the little change even if the flow rate increased (CO2 saturation increased). On the other hand, before the CO2 front reached, Z decreased with CO2-dissolved brine. After that, Z showed continuously increased as the CO2 saturation increased. From the multi-parameter (Hydraulic and Rock-physics parameters), we revealed the detail CO2 behavior in the specimen. In the brine-saturated low permeable sandstone, the slow penetration of CO2 was observed. However, once CO2 has passed, the penetration of CO2 became easy in even for brine-remainded low permeable sandstone. We conclude low permeable sandstone has not only structural storage capacity but also residual tapping (Capillary trapping) capacity. There is a positive possibility to conduct CCS in the low-quality reservoir (low permeable sandstone).
Quantify fluid saturation in fractures by light transmission technique and its application
NASA Astrophysics Data System (ADS)
Ye, S.; Zhang, Y.; Wu, J.
2016-12-01
The Dense Non-Aqueous Phase Liquids (DNAPLs) migration in transparent and rough fractures with variable aperture was studied experimentally using a light transmission technique. The migration of trichloroethylene (TCE) in variable-aperture fractures (20 cm wide x 32.5 cm high) showed that a TCE blob moved downward with snap-off events in four packs with apertures from 100 μm to 1000 μm, and that the pattern presented a single and tortuous cluster with many fingers in a pack with two apertures of 100 μm and 500 μm. The variable apertures in the fractures were measured by light transmission. A light intensity-saturation (LIS) model based on light transmission was used to quantify DNAPL saturation in the fracture system. Known volumes of TCE, were added to the chamber and these amounts were compared to the results obtained by LIS model. Strong correlation existed between results obtained based on LIS model and the known volumes of T CE. Sensitivity analysis showed that the aperture was more sensitive than parameter C2 of LIS model. LIS model was also used to measure dyed TCE saturation in air sparging experiment. The results showed that the distribution and amount of TCE significantly influenced the efficient of air sparging. The method developed here give a way to quantify fluid saturation in two-phase system in fractured medium, and provide a non-destructive, non-intrusive tool to investigate changes in DNAPL architecture and flow characteristics in laboratory experiments. Keywords: light transmission, fluid saturation, fracture, variable aperture AcknowledgementsFunding for this research from NSFC Project No. 41472212.
NASA Astrophysics Data System (ADS)
Sonam; Jain, Vikrant
2018-03-01
Long profiles of rivers provide a platform to analyse interaction between geological and geomorphic processes operating at different time scales. Identification of an appropriate model for river long profile becomes important in order to establish a quantitative relationship between the profile shape, its geomorphic effectiveness, and inherent geological characteristics. This work highlights the variability in the long profile shape of the Ganga River and its major tributaries, its impact on stream power distribution pattern, and role of the geological controls on it. Long profile shapes are represented by the sum of two exponential functions through the curve fitting method. We have shown that coefficients of river long profile equations are governed by the geological characteristics of subbasins. These equations further define the spatial distribution pattern of stream power and help to understand stream power variability in different geological terrains. Spatial distribution of stream power in different geological terrains successfully explains spatial variability in geomorphic processes within the Himalayan hinterland area. In general, the stream power peaks of larger rivers lie in the Higher Himalaya, and rivers in the eastern hinterland area are characterised by the highest magnitude of stream power.
One perspective on spatial variability in geologic mapping
Markewich, H.W.; Cooper, S.C.
1991-01-01
This paper discusses some of the differences between geologic mapping and soil mapping, and how the resultant maps are interpreted. The role of spatial variability in geologic mapping is addressed only indirectly because in geologic mapping there have been few attempts at quantification of spatial differences. This is largely because geologic maps deal with temporal as well as spatial variability and consider time, age, and origin, as well as composition and geometry. Both soil scientists and geologists use spatial variability to delineate mappable units; however, the classification systems from which these mappable units are defined differ greatly. Mappable soil units are derived from systematic, well-defined, highly structured sets of taxonomic criteria; whereas mappable geologic units are based on a more arbitrary heirarchy of categories that integrate many features without strict values or definitions. Soil taxonomy is a sorting tool used to reduce heterogeneity between soil units. Thus at the series level, soils in any one series are relatively homogeneous because their range of properties is small and well-defined. Soil maps show the distribution of soils on the land surface. Within a map area, soils, which are often less than 2 m thick, show a direct correlation to topography and to active surface processes as well as to parent material.
Variability of isotope and major ion chemistry in the Allequash Basin, Wisconsin
Walker, John F.; Hunt, Randall J.; Bullen, Thomas D.; Krabbenhoft, David P.; Kendall, Carol
2003-01-01
As part of ongoing research conducted at one of the U.S. Geological Survey's Water, Energy, and Biogeochem-ical Budgets sites, work was undertaken to describe the spatial and temporal variability of stream and ground water isotopic composition and cation chemistry in the Trout Lake watershed, to relate the variability to the watershed flow system, and to identify the linkages of geochemical evolution and source of water in the watershed. The results are based on periodic sampling of sites at two scales along Allequash Creek, a small headwater stream in northern Wisconsin. Based on this sampling, there are distinct water isotopic and geochemical differences observed at a smaller hillslope scale and the larger Allequash Creek scale. The variability was larger than expected for this simple watershed, and is likely to be seen in more complex basins. Based on evidence from multiple isotopes and stream chemistry, the flow system arises from three main source waters (terrestrial-, lake-, or wetland-derived recharge) that can be identified along any flowpath using water isotopes together with geochemical characteristics such as iron concentrations. The ground water chemistry demonstrates considerable spatial variability that depends mainly on the flow-path length and water mobility through the aquifer. Calcium concentrations increase with increasing flowpath length, whereas strontium isotope ratios increase with increasing extent of stagnation in either the unsaturated or saturated zones as waters move from source to sink. The flowpath distribution we identify provides important constraints on the calibration of ground water flow models such as that undertaken by Pint et al. (this issue).
The solusphere-its inferences and study
Rainwater, F.H.; White, W.F.
1958-01-01
Water is a fundamental geologic agent active in rock decomposition, erosion, and synthesis. Solutes in water are of particular interest to geochemists as sources of raw material for synthesis or as products of decomposition. When geochemical studies move from the laboratory into natural environment many variables relating to solute hydrology must be considered. As a focal point there has been designed a graphical representation of solute hydrology, the solusphere, which embodies the concepts of land-water occurrence and movement on which are superimposed geologic, biologic, physical, chemical, and cultural processes affecting solutes. The solusphere is demonstrated by passing an imaginary plane through the centre of the earth. This plane intercepts concentric zones designated as rock flowage, saturation, aeration, surface activity, and atmosphere. Transport processes carry solutes within and between zones without alteration or conversion. However, whether stationary or in motion, the water's solute character is constantly subject to (1) alteration processes that change concentration by addition or subtraction of solutes or solvent without loss of solute identities, and (2) conversion processes that change the chemical state and form of solutes. The geochemist is concerned with specific conversion processes, but he also must consider transport, alteration, and other conversion processes that are continually modifying the materials with which he is dealing in nature. The solusphere is an attempt to organize processes affecting the chemical quality of land waters into a unified field of science much like the field of marine chemistry. ?? 1958.
Analysis of the Source Physics Experiment SPE4 Prime Using State-Of Parallel Numerical Tools.
NASA Astrophysics Data System (ADS)
Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.
2015-12-01
This work describes a methodology used for large scale modeling of wave propagation from underground chemical explosions conducted at the Nevada National Security Site (NNSS) fractured granitic rock. We show that the discrete natures of rock masses as well as the spatial variability of the fabric of rock properties are very important to understand ground motions induced by underground explosions. In order to build a credible conceptual model of the subsurface we integrated the geological, geomechanical and geophysical characterizations conducted during recent test at the NNSS as well as historical data from the characterization during the underground nuclear test conducted at the NNSS. Because detailed site characterization is limited, expensive and, in some instances, impossible we have numerically investigated the effects of the characterization gaps on the overall response of the system. We performed several computational studies to identify the key important geologic features specific to fractured media mainly the joints characterized at the NNSS. We have also explored common key features to both geological environments such as saturation and topography and assess which characteristics affect the most the ground motion in the near-field and in the far-field. Stochastic representation of these features based on the field characterizations has been implemented into LLNL's Geodyn-L hydrocode. Simulations were used to guide site characterization efforts in order to provide the essential data to the modeling community. We validate our computational results by comparing the measured and computed ground motion at various ranges for the recently executed SPE4 prime experiment. We have also conducted a comparative study between SPE4 prime and previous experiments SPE1 and SPE3 to assess similarities and differences and draw conclusions on designing SPE5.
Biological variability of transferrin saturation and unsaturated iron binding capacity
Adams, PC; Reboussin, DM; Press, RD; Barton, JC; Acton, RT; Moses, GC; Leiendecker-Foster, C; McLaren, GD; Dawkins, FW; Gordeuk, VR; Lovato, L; Eckfeldt, JH
2007-01-01
Background Transferrin saturation is widely considered the preferred screening test for hemochromatosis. Unsaturated iron binding capacity has similar performance at lower cost. However, the within-person biological variability of both these tests may limit their ability at commonly used cut points to detect HFE C282Y homozygous patients. Methods The Hemochromatosis and Iron Overload Screening (HEIRS) Study screened 101,168 primary care participants for iron overload using tansferrin saturation, unsaturated iron binding capacity, ferritin and HFE C282Y and H63D genotyping. Transferrin saturation and unsaturated iron binding capacity were performed at initial screening and again when selected participants and controls returned for a clinical examination several months later. A missed case was defined as a C282Y homozygote who had transferrin saturation below cut point (45 % women, 50 % men) or unsaturated iron binding capacity above cut point (150 μmol/L women, 125 μmol/L men) at either the initial screening or clinical examination, or both, regardless of serum ferritin. Results There were 209 C282Y previously undiagnosed homozygotes with transferrin saturation and unsaturated iron binding capacity testing done at initial screening and clinical examination. Sixty-eight C282Y homozygotes (33%) would have been missed at these transferrin saturation cut points (19 men, 49 women, median SF 170 μg/L, first and third quartiles 50 and 474 μg/L), and 58 homozygotes (28 %) would have been missed at the unsaturated iron binding capacity cut points (20 men, 38 women, median SF 168 μg/L, quartiles 38 and 454 μg/L). There was no advantage to using fasting samples. Conclusions The within-person biological variability of transferrin saturation and unsaturated iron binding capacity limit their usefulness as an initial screening test for expressing C282Y homozygotes. PMID:17976429
W. Henry McNab; Carl E. Merschat
1990-01-01
Quartz grain size and mylonitization, geologic variables determined fromrocks on sites, were associated with total height of yellow-poplar (Liriodendron tulipifera L.) standsand may be of value as independent variables in modeling tree growth from site characteristics. A predictive model containing quartz grain site and stand age accounted for about 54% of the...
UNDERSTANDING AND MANAGING RISKS POSED BY BRINES CONTAINING DISSOLVED CARBON DIOXIDE
Geologic disposal of supercritical carbon dioxide in saline aquifers and depleted oil and gas fields will cause large volumes of brine to become saturated with dissolved CO2 at concentrations of 50 g/l or more. As CO2 dissolves in brine, the brine de...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samimi, B.; Bagherpour, H.; Nioc, A.
1995-08-01
The geological reservoir study of the supergiant Ahwaz field significantly improved the history matching process in many aspects, particularly the development of a geostatistical model which allowed a sound basis for changes and by delivering much needed accurate estimates of grid block vertical permeabilities. The geostatistical reservoir evaluation was facilitated by using the Heresim package and litho-stratigraphic zonations for the entire field. For each of the geological zones, 3-dimensional electrolithofacies and petrophysical property distributions (realizations) were treated which captured the heterogeneities which significantly affected fluid flow. However, as this level of heterogeneity was at a significantly smaller scale than themore » flow simulation grid blocks, a scaling up effort was needed to derive the effective flow properties of the blocks (porosity, horizontal and vertical permeability, and water saturation). The properties relating to the static reservoir description were accurately derived by using stream tube techniques developed in-house whereas, the relative permeabilities of the grid block were derived by dynamic pseudo relative permeability techniques. The prediction of vertical and lateral communication and water encroachment was facilitated by a close integration of pressure, saturation data, geostatistical modelling and sedimentological studies of the depositional environments and paleocurrents. The nature of reservoir barriers and baffles varied both vertically and laterally in this heterogeneous reservoir. Maps showing differences in pressure between zones after years of production served as a guide to integrating the static geological studies to the dynamic behaviour of each of the 16 reservoir zones. The use of deep wells being drilled to a deeper reservoir provided data to better understand the sweep efficiency and the continuity of barriers and baffles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hun Bok; Kabilan, Senthil; Carson, James P.
2014-08-07
Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite,more » whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.« less
A new numerical benchmark for variably saturated variable-density flow and transport in porous media
NASA Astrophysics Data System (ADS)
Guevara, Carlos; Graf, Thomas
2016-04-01
In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.
Subsurface capture of carbon dioxide
Blount, Gerald; Siddal, Alvin A.; Falta, Ronald W.
2014-07-22
A process and apparatus of separating CO.sub.2 gas from industrial off-gas source in which the CO.sub.2 containing off-gas is introduced deep within an injection well. The CO.sub.2 gases are dissolved in the, liquid within the injection well while non-CO.sub.2 gases, typically being insoluble in water or brine, are returned to the surface. Once the CO.sub.2 saturated liquid is present within the injection well, the injection well may be used for long-term geologic storage of CO.sub.2 or the CO.sub.2 saturated liquid can be returned to the surface for capturing a purified CO.sub.2 gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doughty, C.; Pruess, K.
1991-06-01
Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository formore » heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.« less
Stochastic simulation of uranium migration at the Hanford 300 Area.
Hammond, Glenn E; Lichtner, Peter C; Rockhold, Mark L
2011-03-01
This work focuses on the quantification of groundwater flow and subsequent U(VI) transport uncertainty due to heterogeneity in the sediment permeability at the Hanford 300 Area. U(VI) migration at the site is simulated with multiple realizations of stochastically-generated high resolution permeability fields and comparisons are made of cumulative water and U(VI) flux to the Columbia River. The massively parallel reactive flow and transport code PFLOTRAN is employed utilizing 40,960 processor cores on DOE's petascale Jaguar supercomputer to simultaneously execute 10 transient, variably-saturated groundwater flow and U(VI) transport simulations within 3D heterogeneous permeability fields using the code's multi-realization simulation capability. Simulation results demonstrate that the cumulative U(VI) flux to the Columbia River is less responsive to fine scale heterogeneity in permeability and more sensitive to the distribution of permeability within the river hyporheic zone and mean permeability of larger-scale geologic structures at the site. Copyright © 2010 Elsevier B.V. All rights reserved.
Identification Of Rippability And Bedrock Depth Using Seismic Refraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Nur Azwin; Saad, Rosli; Nawawi, M. N. M
2010-12-23
Spatial variability of the bedrock with reference to the ground surface is vital for many applications in geotechnical engineering to decide the type of foundation of a structure. A study was done within the development area of Mutiara Damansara utilising the seismic refraction method using ABEM MK8 24 channel seismograph. The geological features of the subsurface were investigated and velocities, depth to the underlying layers were determined. The seismic velocities were correlated with rippability characteristics and borehole records. Seismic sections generally show a three layer case. The first layer with velocity 400-600 m/s predominantly consists of soil mix with gravel.more » The second layer with velocity 1600-2000 m/s is suggested to be saturated and weathered area. Both layers forms an overburden and generally rippable. The third layer represents granite bedrock with average depth and velocity 10-30 m and >3000 m/s respectively and it is non-rippable. Steep slope on the bedrock are probably the results of shear zones.« less
Geomorphic and biophysical factors affecting water tracks in northern Alaska
NASA Astrophysics Data System (ADS)
Trochim, E. D.; Jorgenson, M. T.; Prakash, A.; Kane, D. L.
2016-03-01
A better understanding of water movement on hillslopes in Arctic environments is necessary for evaluating the effects of climate variability. Drainage networks include a range of features that vary in transport capacity from rills to water tracks to rivers. This research focuses on describing and classifying water tracks, which are saturated linear-curvilinear stripes that act as first-order pathways for transporting water off of hillslopes into valley bottoms and streams. Multiple factor analysis was used to develop five water tracks classes based on their geomorphic, soil, and vegetation characteristics. The water track classes were then validated using conditional inference trees, to verify that the classes were repeatable. Analysis of the classes and their characteristics indicate that water tracks cover a broad spectrum of patterns and processes primarily driven by surficial geology. This research demonstrates an improved approach to quantifying water track characteristics for specific areas, which is a major step toward understanding hydrological processes and feedbacks within a region.
Identification Of Rippability And Bedrock Depth Using Seismic Refraction
NASA Astrophysics Data System (ADS)
Ismail, Nur Azwin; Saad, Rosli; Nawawi, M. N. M.; Muztaza, Nordiana Mohd; El Hidayah Ismail, Noer; Mohamad, Edy Tonizam
2010-12-01
Spatial variability of the bedrock with reference to the ground surface is vital for many applications in geotechnical engineering to decide the type of foundation of a structure. A study was done within the development area of Mutiara Damansara utilising the seismic refraction method using ABEM MK8 24 channel seismograph. The geological features of the subsurface were investigated and velocities, depth to the underlying layers were determined. The seismic velocities were correlated with rippability characteristics and borehole records. Seismic sections generally show a three layer case. The first layer with velocity 400-600 m/s predominantly consists of soil mix with gravel. The second layer with velocity 1600-2000 m/s is suggested to be saturated and weathered area. Both layers forms an overburden and generally rippable. The third layer represents granite bedrock with average depth and velocity 10-30 m and >3000 m/s respectively and it is non-rippable. Steep slope on the bedrock are probably the results of shear zones.
Site selection for DOE/JIP gas hydrate drilling in the northern Gulf of Mexico
Hutchinson, Deborah; Shelander, Dianna; Dai, J.; McConnell, D.; Shedd, William; Frye, Matthew; Ruppel, Carolyn D.; Boswell, R.; Jones, Emrys; Collett, Timothy S.; Rose, Kelly K.; Dugan, Brandon; Wood, Warren T.
2008-01-01
n the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other analyses
Comparison between deep breathing exercises and incentive spirometry after CABG surgery.
Renault, Julia Alencar; Costa-Val, Ricardo; Rosseti, Márcia Braz; Houri Neto, Miguel
2009-01-01
To compare the effects of deep breathing exercises (DBE) and the flow-oriented incentive spirometry (IS) in patients undergone coronary artery bypass grafting (CABG) through the following variables: forced vital capacity - FVC, forced expiratory volume in 1 second - FEV(1), maximal respiratory pressures and oxygen saturation. Thirty six patients in CABG postoperative period underwent thirty minutes of non-invasive ventilation during the first 24 hours after extubation and were randomly shared into two groups as following: DBE (n=18) and IS (n=18). The spirometric variables were assessed on the preoperative period and seventh postoperative day (POD). The respiratory muscle strength and oxygen saturation were assessed on the preoperative period, first, second and seventh POD. The groups were considered homogeneous in relation to the demographic and surgical variables. It has been noted fall in the values of FVC and FEV(1) between the preoperative period and the seventh POD, but without significant differences between groups. The maximal respiratory pressures showed drop in the first POD but with and partial recovery until the seventh POD, also without significant differences between groups. The oxygen saturation was the only variable that was completely recovered on the seventh POD, also without significant differences between groups. There were not observed significant differences in maximal respiratory pressures, spirometric variables and oxygen saturation in patients undergone deep breathing exercises and flow-oriented incentive spirometry after coronary artery bypass grafting.
Self isolating high frequency saturable reactor
Moore, James A.
1998-06-23
The present invention discloses a saturable reactor and a method for decoupling the interwinding capacitance from the frequency limitations of the reactor so that the equivalent electrical circuit of the saturable reactor comprises a variable inductor. The saturable reactor comprises a plurality of physically symmetrical magnetic cores with closed loop magnetic paths and a novel method of wiring a control winding and a RF winding. The present invention additionally discloses a matching network and method for matching the impedances of a RF generator to a load. The matching network comprises a matching transformer and a saturable reactor.
Burdett, Heidi L.; Donohue, Penelope J. C.; Hatton, Angela D.; Alwany, Magdy A.; Kamenos, Nicholas A.
2013-01-01
Oceanic pH is projected to decrease by up to 0.5 units by 2100 (a process known as ocean acidification, OA), reducing the calcium carbonate saturation state of the oceans. The coastal ocean is expected to experience periods of even lower carbonate saturation state because of the inherent natural variability of coastal habitats. Thus, in order to accurately project the impact of OA on the coastal ocean, we must first understand its natural variability. The production of dimethylsulphoniopropionate (DMSP) by marine algae and the release of DMSP’s breakdown product dimethylsulphide (DMS) are often related to environmental stress. This study investigated the spatiotemporal response of tropical macroalgae (Padina sp., Amphiroa sp. and Turbinaria sp.) and the overlying water column to natural changes in reefal carbonate chemistry. We compared macroalgal intracellular DMSP and water column DMSP+DMS concentrations between the environmentally stable reef crest and environmentally variable reef flat of the fringing Suleman Reef, Egypt, over 45-hour sampling periods. Similar diel patterns were observed throughout: maximum intracellular DMSP and water column DMS/P concentrations were observed at night, coinciding with the time of lowest carbonate saturation state. Spatially, water column DMS/P concentrations were highest over areas dominated by seagrass and macroalgae (dissolved DMS/P) and phytoplankton (particulate DMS/P) rather than corals. This research suggests that macroalgae may use DMSP to maintain metabolic function during periods of low carbonate saturation state. In the reef system, seagrass and macroalgae may be more important benthic producers of dissolved DMS/P than corals. An increase in DMS/P concentrations during periods of low carbonate saturation state may become ecologically important in the future under an OA regime, impacting larval settlement and increasing atmospheric emissions of DMS. PMID:23724073
NASA Astrophysics Data System (ADS)
Abell, J. T.; Jacobsen, J.; Bjorkstedt, E.
2016-02-01
Determining aragonite saturation state (Ω) in seawater requires measurement of two parameters of the carbonate system: most commonly dissolved inorganic carbon (DIC) and total alkalinity (TA). The routine measurement of DIC and TA is not always possible on frequently repeated hydrographic lines or at moored-time series that collect hydrographic data at short time intervals. In such cases a proxy can be developed that relates the saturation state as derived from one time or infrequent DIC and TA measurements (Ωmeas) to more frequently measured parameters such as dissolved oxygen (DO) and temperature (Temp). These proxies are generally based on best-fit parameterizations that utilize references values of DO and Temp and adjust linear coefficients until the error between the proxy-derived saturation state (Ωproxy) and Ωmeas is minimized. Proxies have been used to infer Ω from moored hydrographic sensors and gliders which routinely collect DO and Temp data but do not include carbonate parameter measurements. Proxies can also calculate Ω in regional oceanographic models which do not explicitly include carbonate parameters. Here we examine the variability and accuracy of Ωproxy along a near-shore hydrographic line and a moored-time series stations at Trinidad Head, CA. The saturation state is determined using proxies from different coastal regions of the California Current Large Marine Ecosystem and from different years of sampling along the hydrographic line. We then calculate the variability and error associated with the use of different proxy coefficients, the sensitivity to reference values and the inclusion of additional variables. We demonstrate how this variability affects estimates of the intensity and duration of exposure to aragonite corrosive conditions on the near-shore shelf and in the water column.
NASA Astrophysics Data System (ADS)
Hu, R.; Wan, J.
2015-12-01
Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.
Geologic interpretation of HCMM and aircraft thermal data
NASA Technical Reports Server (NTRS)
1982-01-01
Progress on the Heat Capacity Mapping Mission (HCMM) follow-on study is reported. Numerous image products for geologic interpretation of both HCMM and aircraft thermal data were produced. These include, among others, various combinations of the thermal data with LANDSAT and SEASAT data. The combined data sets were displayed using simple color composites, principal component color composites and black and white images, and hue, saturation intensity color composites. Algorithms for incorporating both atmospheric and elevation data simultaneously into the digital processing for creation of quantitatively correct thermal inertia images, are in the final development stage. A field trip to Death Valley was undertaken to field check the aircraft and HCMM data.
Bossew, Peter; Dubois, Grégoire; Tollefsen, Tore
2008-01-01
Geological classes are used to model the deterministic (drift or trend) component of the Radon potential (Friedmann's RP) in Austria. It is shown that the RP can be grouped according to geological classes, but also according to individual geological units belonging to the same class. Geological classes can thus serve as predictors for mean RP within the classes. Variability of the RP within classes or units is interpreted as the stochastic part of the regionalized variable RP; however, there does not seem to exist a smallest unit which would naturally divide the RP into a deterministic and a stochastic part. Rather, this depends on the scale of the geological maps used, down to which size of geological units is used for modelling the trend. In practice, there must be a sufficient number of data points (measurements) distributed as uniformly as possible within one unit to allow reasonable determination of the trend component.
Integrated Hydrologic Models for Closing the Water Budget: Whitewater River Basin, Kansas
NASA Astrophysics Data System (ADS)
Beeson, P.; Duffy, C.; Springer, E.; Panday, S.
2004-12-01
Groundwater and its recharge are unobserved and unmeasured components of the water cycle of a river basin. The objectives of this study were: 1) to evaluate the groundwater component of the water balance for the Whitewater River Basin using a 3-D saturated groundwater model, 2) to compare the groundwater model results with a fully integrated hydrologic model and, 3) to describe the spectral frequency response of the basin to long-term climate forcing. The basin is the Whitewater River, near Wichita, Kansas. The basin has an area of 1,100 square-kilometers, an elevation range of 380 - 470m (amsl), and an average annual precipitation of 858 millimeters. The near-surface geology is comprised of a weathered shale overlying limestone bedrock of Mississippian age. Streamflow and weather records are available from 1960. A steady-state saturated groundwater model (MODFLOW) was implemented assuming a simple two-layer conceptual model. A total of 422 wells with static water levels were available. Using a subset of the wells, a steady-state calibration of MODFLOW was performed by adjusting permeability between the two layers. Steady-state calibration resulted in an R2 of 0.89 for predicted and observed water levels. The remaining wells were used for validation, with an R2 of 0.92. The next step constructed the transient model using a fixed percentage of rainfall as groundwater recharge. For a single observation well the R2 was 0.89 (observed vs. predicted) for the transient calibration and 0.77 for the validation for a year simulation. The final step was to compare MODFLOW to an integrated model to provide a more complete representation of surface hydrologic dynamics. Here MODHMS (developed by HydroGeologic Inc, Herndon, VA) was used since it is MODFLOW-based with 3D variably-saturated groundwater flow, 2D overland flow, and 1D channel flow. MODHMS allows for canopy interception and evapotranspiration so total precipitation and potential evaporation were input to the model for a better estimate of recharge through complete energy and water balance. Singular spectrum analysis (SSA) was used to analyze the temporal response of precipitation, streamflow and groundwater levels from selected points in the model both for MODFLOW and MODHMS results. This paper demonstrates the use of integrated models for determination of groundwater recharge. Time series analysis proved to be a useful tool in identifying climate response within the watershed.
Saturation-dependent solute dispersivity in porous media: Pore-scale processes
NASA Astrophysics Data System (ADS)
Raoof, A.; Hassanizadeh, S. M.
2013-04-01
It is known that in variably saturated porous media, dispersion coefficient depends on Darcy velocity and water saturation. In one-dimensional flow, it is commonly assumed that the dispersion coefficient is a linear function of velocity. The coefficient of proportionality, called the dispersivity, is considered to depend on saturation. However, there is not much known about its dependence on saturation. In this study, we investigate, using a pore network model, how the longitudinal dispersivity varies nonlinearly with saturation. We schematize the porous medium as a network of pore bodies and pore throats with finite volumes. The pore space is modeled using the multidirectional pore-network concept, which allows for a distribution of pore coordination numbers. This topological property together with the distribution of pore sizes are used to mimic the microstructure of real porous media. The dispersivity is calculated by solving the mass balance equations for solute concentration in all network elements and averaging the concentrations over a large number of pores. We have introduced a new formulation of solute transport within pore space, where we account for different compartments of residual water within drained pores. This formulation makes it possible to capture the effect of limited mixing due to partial filling of the pores under variably saturated conditions. We found that dispersivity increases with the decrease in saturation, it reaches a maximum value, and then decreases with further decrease in saturation. To show the capability of our formulation to properly capture the effect of saturation on solute dispersion, we applied it to model the results of a reported experimental study.
Setting Age Limits for TT-OSL Dating - the Local Effect
NASA Astrophysics Data System (ADS)
Faershtein, G.; Porat, N.; Guralnik, B.; Matmon, A.
2017-12-01
Luminescence dating techniques, especially Optically Stimulated Luminescence (OSL) on quartz, are widely used for dating middle Pleistocene to late Holocene sediments from different geological settings. The dating limit of a particular luminescence method depends on signal saturation and its thermal stability. The OSL signal saturates at doses of 200 Gy, equivalent to ages of 150-300 ka. Thermally Transferred OSL (TT-OSL) is a developmental technique, which potentially extends the luminescence dating range up to 1000 ka. For the Chinese Loess Plateau, experiments have shown that the natural TT-OSL signal saturates at 2200 Gy (Chapot et al., 2016). Regarding thermal stability, different studies report a wide range of estimates (0.24-861 Ma), suggesting that the thermal lifetime of TT-OSL is (i) currently poorly constrained, and (ii) may vary both by sample and region. Here, we investigated the dating limit of TT-OSL, using quartz of Nilotic origin (Israel), obtained from two sediment sections of similar depth but different dose rates. Natural dose response curves (DRC) of the TT-OSL signal were constructed for each section separately. In both sections, luminescence intensity grows sub-linearly up to 450 Gy, beyond which it remains constant with depth. The absence of equivalent doses (De) over 600 Gy, at both sections (as well as elsewhere regionally), suggest that TT-OSL signal saturation may be an intrinsic property, related to quartz provenance, and independent of the specific ionizing dose rate at each section. The thermal stability of TT-OSL was investigated on a modern sample from one section, using a combination of analytical techniques (varying heating rates, and isothermal storage). The obtained TT-OSL lifetimes range between 105-107 ka, and reinforce a significant inter sample variability. A synthesis of our results suggests that TT-OSL ages of Nilotic quartz derived from De values over 450 Gy, are likely underestimates, and should be treated as minimum ages. The limiting value of 600 Gy for local quartz TT-OSL is likely representative of a steady-state between TT-OSL trap filling due to ionizing radiation, and the concurrent thermal empting of these traps.
NASA Astrophysics Data System (ADS)
Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang
2017-11-01
Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, John S.; Schaef, Herbert T.; Thompson, Christopher J.
2013-01-01
Injection of supercritical CO2 (scCO2) for the geologic storage of carbon dioxide will displace formation water, and the pore space adjacent to overlying caprocks could eventually be dominated by dry to water-saturated scCO2. Wet scCO2 is highly reactive and capable of carbonating and hydrating certain minerals, whereas anhydrous scCO2 can dehydrate water-containing minerals. Because these geochemical processes affect solid volume and thus porosity and permeability, they have the potential to affect the long-term integrity of the caprock seal. In this study, we investigate the swelling and shrinkage of an expandable clay found in caprock formations, montmorillonite (Ca-STx-1), when exposed tomore » variable water-content scCO2 at 50 °C and 90 bar using a combination of in situ probes, including X-ray diffraction (XRD), in situ magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), and in situ attenuated total reflection infrared spectroscopy (ATR-IR). We show that the extent of montmorillonite clay swelling/shrinkage is dependent not only on water hydration/dehydration, but also on CO2 intercalation reactions. Our results also suggest a competition between water and CO2 for interlayer residency where increasing concentrations of intercalated water lead to decreasing concentrations of intercalated CO2. Overall, this paper demonstrates the types of measurements required to develop fundamental knowledge that will enhance modeling efforts and reduce risks associated with subsurface storage of CO2.« less
Fracture Networks from a deterministic physical model as 'forerunners' of Maze Caves
NASA Astrophysics Data System (ADS)
Ferer, M. V.; Smith, D. H.; Lace, M. J.
2013-12-01
'Fractures are the chief forerunners of caves because they transmit water much more rapidly than intergranular pores.[1] Thus, the cave networks can follow the fracture networks from which the Karst caves formed by a variety of processes. Traditional models of continental Karst define water flow through subsurface geologic formations, slowly dissolving the rock along the pathways (e.g. water saturated with respect to carbon dioxide flowing through fractured carbonate formations). We have developed a deterministic, physical model of fracturing in a model geologic layer of a given thickness, when that layer is strained in one direction and subsequently in a perpendicular direction. It was observed that the connected fracture networks from our model visually resemble maps of maze caves. Since these detailed cave maps offer critical tools in modeling cave development patterns and conduit flow in Karst systems, we were able to test the qualitative resemblance by using statistical analyses to compare our model networks in geologic layers of four different thicknesses with the corresponding statistical analyses of four different maze caves, formed in a variety of geologic settings. The statistical studies performed are: i) standard box-counting to determine if either the caves or the model networks are fractal. We found that both are fractal with a fractal dimension Df ≈ 1.75 . ii) for each section inside a closed path, we determined the area and perimeter-length, enabling a study of the tortuosity of the networks. From the dependence of the section's area upon its perimeter-length, we have found a power-law behavior (for sufficiently large sections) characterized by a 'tortuosity' exponent. These exponents have similar values for both the model networks and the maze caves. The best agreement is between our thickest model layer and the maze-like part of Wind Cave in South Dakota where the data from the model and the cave overlie each other. For the present networks from the physical model, we assumed that the geologic layer was of uniform thickness and that the strain in both directions were the same. The latter may not be the case for the Brazilian, Toca de Boa Cave. These assumptions can be easily modified in our computer code to reflect different geologic histories. Even so the quantitative agreement suggests that our model networks are statistically realistic both for the 'forerunners' of caves and for general fracture networks in geologic layers, which should assist the study of underground fluid flow in many applications for which fracture patterns and fluid flow are difficult to determine (e.g., hydrology, watershed management, oil recovery, carbon dioxide sequestration, etc.). Keywords - Fracture Networks, Karst, Caves, Structurally Variable Pathways, hydrogeological modeling 1 Arthur N. Palmer, CAVE GEOLOGY, pub. Cave Books, Dayton OH, (2007).
NASA Astrophysics Data System (ADS)
Mori, H.; Trevisan, L.; Sakaki, T.; Cihan, A.; Smits, K. M.; Illangasekare, T. H.
2013-12-01
Multiphase flow models can be used to improve our understanding of the complex behavior of supercritical CO2 (scCO2) in deep saline aquifers to make predictions for the stable storage strategies. These models rely on constitutive relationships such as capillary pressure (Pc) - saturation (Sw) and relative permeability (kr) - saturation (Sw) as input parameters. However, for practical application of these models, such relationships for scCO2 and brine system are not readily available for geological formations. This is due to the complicated and expensive traditional methods often used to obtain these relationships in the laboratory through high pressure and/or high-temperature controls. A method that has the potential to overcome the difficulty in conducting such experiments is to replicate scCO2 and brine with surrogate fluids that capture the density and viscosity effects to obtain the constitutive relationships under ambient conditions. This study presents an investigation conducted to evaluate this method. An assessment of the method allows us to evaluate the prediction accuracy of multiphase models using the constitutive relationships developed from this approach. With this as a goal, the study reports multiple laboratory column experiments conducted to measure these relationships. The obtained relationships were then used in the multiphase flow simulator TOUGH2 T2VOC to explore capillary trapping mechanisms of scCO2. A comparison of the model simulation to experimental observation was used to assess the accuracy of the measured constitutive relationships. Experimental data confirmed, as expected, that the scaling method cannot be used to obtain the residual and irreducible saturations. The results also showed that the van Genuchten - Mualem model was not able to match the independently measured kr data obtained from column experiments. Simulated results of fluid saturations were compared with saturation measurements obtained using x-ray attenuations. This comparison demonstrated that the experimentally derived constitutive relationships matched the experimental data more accurately than the simulation using constitutive relationships derived from scaling methods and van Genuchten - Mualem model. However, simulated imbibition fronts did not match well, suggesting the need for further study. In general, the study demonstrated the feasibility of using surrogate fluids to obtain both Pc - Sw and kr - Sw relationships to be used in multiphase models of scCO2 migration and entrapment.
Fluvial processes in Puget Sound rivers and the Pacific Northwest [Chapter 3
John M. Buffington; Richard D. Woodsmith; Derek B. Booth; David R. Montgomery
2003-01-01
The variability of topography, geology, climate; vegetation, and land use in the Pacific Northwest creates considerable spatial and temporal variability of fluvial processes and reach-scale channel type. Here we identify process domains of typical Pacific Northwest watersheds and examine local physiographic and geologic controls on channel processes and response...
Neshat, Hanieh; Jebreili, Mahnaz; Seyyedrasouli, Aleheh; Ghojazade, Morteza; Hosseini, Mohammad Bagher; Hamishehkar, Hamed
2016-06-01
Different studies have shown that the use of olfactory stimuli during painful medical procedures reduces infants' response to pain. The main purpose of the current study was to investigate the effect of breast milk odor and vanilla odor on premature infants' vital signs including heart rate and blood oxygen saturation during and after venipuncture. A total of 135 preterm infants were randomly selected and divided into three groups of control, vanilla odor, and breast milk odor. Infants in the breast milk group and the vanilla group were exposed to breast milk odor and vanilla odor from 5 minutes prior to sampling until 30 seconds after sampling. The results showed that breast milk odor has a significant effect on the changes of neonatal heart rate and blood oxygen saturation during and after venipuncture and decreased the variability of premature infants' heart rate and blood oxygen saturation. Vanilla odor has no significant effect on premature infants' heart rate and blood oxygen saturation. Breast milk odor can decrease the variability of premature infants' heart rate and blood oxygen saturation during and after venipuncture. Copyright © 2015. Published by Elsevier B.V.
Time-response shaping using output to input saturation transformation
NASA Astrophysics Data System (ADS)
Chambon, E.; Burlion, L.; Apkarian, P.
2018-03-01
For linear systems, the control law design is often performed so that the resulting closed loop meets specific frequency-domain requirements. However, in many cases, it may be observed that the obtained controller does not enforce time-domain requirements amongst which the objective of keeping a scalar output variable in a given interval. In this article, a transformation is proposed to convert prescribed bounds on an output variable into time-varying saturations on the synthesised linear scalar control law. This transformation uses some well-chosen time-varying coefficients so that the resulting time-varying saturation bounds do not overlap in the presence of disturbances. Using an anti-windup approach, it is obtained that the origin of the resulting closed loop is globally asymptotically stable and that the constrained output variable satisfies the time-domain constraints in the presence of an unknown finite-energy-bounded disturbance. An application to a linear ball and beam model is presented.
Enhanced CAH dechlorination in a low permeability, variably-saturated medium
Martin, J.P.; Sorenson, K.S.; Peterson, L.N.; Brennan, R.A.; Werth, C.J.; Sanford, R.A.; Bures, G.H.; Taylor, C.J.; ,
2002-01-01
An innovative pilot-scale field test was performed to enhance the anaerobic reductive dechlorination (ARD) of chlorinated aliphatic hydrocarbons (CAHs) in a low permeability, variably-saturated formation. The selected technology combines the use of a hydraulic fracturing (fracking) technique with enhanced bioremediation through the creation of highly-permeable sand- and electron donor-filled fractures in the low permeability matrix. Chitin was selected as the electron donor because of its unique properties as a polymeric organic material and based on the results of lab studies that indicated its ability to support ARD. The distribution and impact of chitin- and sand-filled fractures to the system was evaluated using hydrologic, geophysical, and geochemical parameters. The results indicate that, where distributed, chitin favorably impacted redox conditions and supported enhanced ARD of CAHs. These results indicate that this technology may be a viable and cost-effective approach for remediation of low-permeability, variably saturated systems.
Saturated thickness of the High Plains regional aquifer in 1980, northwestern Oklahoma
Havens, John S.
1982-01-01
During 1978, the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluation of the effects of long-term development of the aquifer and to develop computer models for prediction of aquifer response to alternative changes in ground-water management (Weeks, 1978). This report is one of a series presenting hydrologic information of the High Plains aquifer in Oklahoma. The 1980 saturated thickness of the High Plains regional aquifer in Oklahoma is shown for the eastern area (plate 1), consisting of Harper, Ellis, Woodward, Dewey, and Roger Mills Counties, and for the Panhandle area (plate 2), consisting of Cimarron, Texas, and Beaver Counties.
Use of PRD1 bacteriophage in groundwater viral transport, inactivation, and attachment studies
Harvey, Ronald W.; Ryan, Joseph N.
2004-01-01
PRD1, an icosahedra-shaped, 62 nm (diameter), double-stranded DNA bacteriophage with an internal membrane, has emerged as an important model virus for studying the manner in which microorganisms are transported through a variety of groundwater environments. The popularity of this phage for use in transport studies involving geologic media is due, in part, to its relative stability over a range of temperatures and low degree of attachment in aquifer sediments. Laboratory and field investigations employing PRD1 are leading to a better understanding of viral attachment and transport behaviors in saturated geologic media and to improved methods for describing mathematically subsurface microbial transport at environmentally significant field scales. Radioisotopic labeling of PRD1 is facilitating additional information about the nature of viral interactions with solid surfaces in geologic media, the importance of iron oxide surfaces, and allowing differentiation between inactivation and attachment in field-scale tracer tests.
Geology and MER target site characteristics along the southern rim of Isidis Planitia, Mars
Crumpler, L.S.; Tanaka, K.L.
2003-01-01
The southern rim of the Isidis basin contains one of the highest densities of valley networks, several restricted paleolake basins, and the stratigraphically lowest (oldest) terrain on Mars. Geologic mapping in Viking, MGS/MOC, and MOLA data, Odyssey/ THEMIS data, and other multispectral data products supports the presence of extensive fans of debris and sediments deposited along the inner rim of the Isidis basin where large valleys enter the lowlands. Additional processes subsequent to the period of intense fluvial activity, including mass flow analogous to some glacial processes, have contributed to the materials accumulated on the margins of the Isidis basin. These have occurred along preexisting channels and valleys at the termini of major channels where they enter the plains along the highland-lowland boundary. If the abundant valley networks in highland terrains are the result of runoff accompanied by saturated groundwater flow, as has been suggested in previous studies of ancient fluvial highland terrains, then the extreme age and abundance of early valley networks in the Libya Montes highland rocks should have resulted in deposition of materials that record evidence for the long-term presence of water in the form of aqueous alteration of polycrystalline constituents. The material deposited along the basin margin is likely to consist of ancient altered highland rocks in several physical states (weathered, rounded, and angular) exposing both weathered and altered surfaces, and exposures of alteration profiles in fractured faces and unweathered material from rock interiors. Debris fans shed off the southern rim of Isidis Planitia should contain materials that have experienced possible saturated groundwater flow, residence within paleolake basins, and derivative materials deposited during the most fluvially intensive part of Martian geologic history. Many of these materials have also been reworked by ice-related processes. In situ measurements of the ancient crustal materials, in the form of rocks within the debris fans, and the weathered condition of the rocky material are potential sources for mineralogical evidence of climatic conditions in earliest Martian geologic history. The absence of alteration within rocks would, on the other hand, support the hypothesis that fluvial runoff during the earliest history of Mars was geologically brief rather than long-term and that long-term saturated groundwater flow was not present. Determination of the presence or absence of alteration would have corresponding implications for hypotheses requiring the long-term presence of aqueous solutions (i.e., complex organic compounds and life). A proposed MER site along the margin addresses realistic field science objectives of the Mars Exploration Rover mission and the current goals of the Mars Exploration Program. In situ measurements may be important in deriving estimates of the longevity and intensity of past wetter climates. Copyright 2003 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleman, S.E.
This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.
Warnaby, Catherine E; Sleigh, Jamie W; Hight, Darren; Jbabdi, Saad; Tracey, Irene
2017-10-01
Previously, we showed experimentally that saturation of slow-wave activity provides a potentially individualized neurophysiologic endpoint for perception loss during anesthesia. Furthermore, it is clear that induction and emergence from anesthesia are not symmetrically reversible processes. The observed hysteresis is potentially underpinned by a neural inertia mechanism as proposed in animal studies. In an advanced secondary analysis of 393 individual electroencephalographic data sets, we used slow-wave activity dose-response relationships to parameterize slow-wave activity saturation during induction and emergence from surgical anesthesia. We determined whether neural inertia exists in humans by comparing slow-wave activity dose responses on induction and emergence. Slow-wave activity saturation occurs for different anesthetics and when opioids and muscle relaxants are used during surgery. There was wide interpatient variability in the hypnotic concentrations required to achieve slow-wave activity saturation. Age negatively correlated with power at slow-wave activity saturation. On emergence, we observed abrupt decreases in slow-wave activity dose responses coincident with recovery of behavioral responsiveness in ~33% individuals. These patients are more likely to have lower power at slow-wave activity saturation, be older, and suffer from short-term confusion on emergence. Slow-wave activity saturation during surgical anesthesia implies that large variability in dosing is required to achieve a targeted potential loss of perception in individual patients. A signature for neural inertia in humans is the maintenance of slow-wave activity even in the presence of very-low hypnotic concentrations during emergence from anesthesia.
How to find what you don't know: Visualising variability in 3D geological models
NASA Astrophysics Data System (ADS)
Lindsay, Mark; Wellmann, Florian; Jessell, Mark; Ailleres, Laurent
2014-05-01
Uncertainties in input data can have compounding effects on the predictive reliability of three-dimensional (3D) geological models. Resource exploration, tectonic studies and environmental modelling can be compromised by using 3D models that misrepresent the target geology, and drilling campaigns that attempt to intersect particular geological units guided by 3D models are at risk of failure if the exploration geologist is unaware of inherent uncertainties. In addition, the visual inspection of 3D models is often the first contact decision makers have with the geology, thus visually communicating the presence and magnitude of uncertainties contained within geological 3D models is critical. Unless uncertainties are presented early in the relationship between decision maker and model, the model will be considered more truthful than the uncertainties allow with each subsequent viewing. We present a selection of visualisation techniques that provide the viewer with an insight to the location and amount of uncertainty contained within a model, and the geological characteristics which are most affected. A model of the Gippsland Basin, southeastern Australia is used as a case study to demonstrate the concepts of information entropy, stratigraphic variability and geodiversity. Central to the techniques shown here is the creation of a model suite, performed by creating similar (but not the same) version of the original model through perturbation of the input data. Specifically, structural data in the form of strike and dip measurements is perturbed in the creation of the model suite. The visualisation techniques presented are: (i) information entropy; (ii) stratigraphic variability and (iii) geodiversity. Information entropy is used to analyse uncertainty in a spatial context, combining the empirical probability distributions of multiple outcomes with a single quantitative measure. Stratigraphic variability displays the number of possible lithologies that may exist at a given point within the model volume. Geodiversity analyses various model characteristics (or 'geodiveristy metrics'), including the depth, volume of unit, the curvature of an interface, the geological complexity of a contact and the contact relationships units have with each other. Principal component analysis, a multivariate statistical technique, is used to simultaneously examine each of the geodiveristy metrics to determine the boundaries of model space, and identify which metrics contribute most to model uncertainty. The combination of information entropy, stratigraphic variability and geodiversity analysis provides a descriptive and thorough representation of uncertainty with effective visualisation techniques that clearly communicate the geological uncertainty contained within the geological model.
CAOS: the nested catchment soil-vegetation-atmosphere observation platform
NASA Astrophysics Data System (ADS)
Weiler, Markus; Blume, Theresa
2016-04-01
Most catchment based observations linking hydrometeorology, ecohydrology, soil hydrology and hydrogeology are typically not integrated with each other and lack a consistent and appropriate spatial-temporal resolution. Within the research network CAOS (Catchments As Organized Systems), we have initiated and developed a novel and integrated observation platform in several catchments in Luxembourg. In 20 nested catchments covering three distinct geologies the subscale processes at the bedrock-soil-vegetation-atmosphere interface are being monitored at 46 sensor cluster locations. Each sensor cluster is designed to observe a variety of different fluxes and state variables above and below ground, in the saturated and unsaturated zone. The numbers of sensors are chosen to capture the spatial variability as well the average dynamics. At each of these sensor clusters three soil moisture profiles with sensors at different depths, four soil temperature profiles as well as matric potential, air temperature, relative humidity, global radiation, rainfall/throughfall, sapflow and shallow groundwater and stream water levels are measured continuously. In addition, most sensors also measure temperature (water, soil, atmosphere) and electrical conductivity. This setup allows us to determine the local water and energy balance at each of these sites. The discharge gauging sites in the nested catchments are also equipped with automatic water samplers to monitor water quality and water stable isotopes continuously. Furthermore, water temperature and electrical conductivity observations are extended to over 120 locations distributed across the entire stream network to capture the energy exchange between the groundwater, stream water and atmosphere. The measurements at the sensor clusters are complemented by hydrometeorological observations (rain radar, network of distrometers and dense network of precipitation gauges) and linked with high resolution meteorological models. In this presentation, we will highlight the potential of this integrated observation platform to estimate energy and water exchange between the terrestrial and aquatic systems and the atmosphere, to trace water flow pathways in the unsaturated and saturated zone, and to understand the organization of processes and fluxes and thus runoff generation at different temporal and spatial scales.
Phase-field modeling of fracture in variably saturated porous media
NASA Astrophysics Data System (ADS)
Cajuhi, T.; Sanavia, L.; De Lorenzis, L.
2018-03-01
We propose a mechanical and computational model to describe the coupled problem of poromechanics and cracking in variably saturated porous media. A classical poromechanical formulation is adopted and coupled with a phase-field formulation for the fracture problem. The latter has the advantage of being able to reproduce arbitrarily complex crack paths without introducing discontinuities on a fixed mesh. The obtained simulation results show good qualitative agreement with desiccation experiments on soils from the literature.
NASA Astrophysics Data System (ADS)
Osman, Yassin Z.; Bruen, Michael P.
2002-07-01
Seepage from a stream, which partially penetrates an unconfined alluvial aquifer, is studied for the case when the water table falls below the streambed level. Inadequacies are identified in current modelling approaches to this situation. A simple and improved method of incorporating such seepage into groundwater models is presented. This considers the effect on seepage flow of suction in the unsaturated part of the aquifer below a disconnected stream and allows for the variation of seepage with water table fluctuations. The suggested technique is incorporated into the saturated code MODFLOW and is tested by comparing its predictions with those of a widely used variably saturated model, SWMS_2D simulating water flow and solute transport in two-dimensional variably saturated media. Comparisons are made of both seepage flows and local mounding of the water table. The suggested technique compares very well with the results of variably saturated model simulations. Most currently used approaches are shown to underestimate the seepage and associated local water table mounding, sometimes substantially. The proposed method is simple, easy to implement and requires only a small amount of additional data about the aquifer hydraulic properties.
Barton, James C; Barton, Ellen H; Acton, Ronald T
2006-01-01
Background In age-matched cohorts of screening study participants recruited from primary care clinics, mean serum transferrin saturation values were significantly lower and mean serum ferritin concentrations were significantly higher in Native Americans than in whites. Twenty-eight percent of 80 Alabama white hemochromatosis probands with HFE C282Y homozygosity previously reported having Native American ancestry, but the possible effect of this ancestry on hemochromatosis phenotypes was unknown. Methods We compiled observations in these 80 probands and used univariate and multivariate methods to analyze associations of age, sex, Native American ancestry (as a dichotomous variable), report of ethanol consumption (as a dichotomous variable), percentage transferrin saturation and loge serum ferritin concentration at diagnosis, quantities of iron removed by phlebotomy to achieve iron depletion, and quantities of excess iron removed by phlebotomy. Results In a univariate analysis in which probands were grouped by sex, there were no significant differences in reports of ethanol consumption, transferrin saturation, loge serum ferritin concentration, quantities of iron removed to achieve iron depletion, and quantities of excess iron removed by phlebotomy in probands who reported Native American ancestry than in those who did not. In multivariate analyses, transferrin saturation (as a dependent variable) was not significantly associated with any of the available variables, including reports of Native American ancestry and ethanol consumption. The independent variable quantities of excess iron removed by phlebotomy was significantly associated with loge serum ferritin used as a dependent variable (p < 0.0001), but not with reports of Native American ancestry or reports of ethanol consumption. Loge serum ferritin was the only independent variable significantly associated with quantities of excess iron removed by phlebotomy used as a dependent variable (p < 0.0001) (p < 0.0001; ANOVA of regression). Conclusion We conclude that the iron-related phenotypes of hemochromatosis probands with HFE C282Y homozygosity are similar in those with and without Native American ancestry reports. PMID:16533407
Brown, R.D.
1990-01-01
The geologic limitations for building sites of some areas can be overcome, in part, by skilled engineering and expensive construction practices. But the costs can be prohibitively high, and the solutions are not always completely effective. In "earthquake country," history has shown that costs are highest and risk factors most uncertain in a few easily recognized settings: unstable hill sloped, land at the edge of rapidly eroding sea cliffs, lowlands underlain by saturated estuarine mud of ill, and areas near faults capable of producing magnitude 7 or greater earthquakes. Safety immediately after an earthquake is also a concern in these places, for extreme damage and ground distortion may impede or prevent timely access by emergency equipment.
Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution
NASA Astrophysics Data System (ADS)
Qin, Hao; Kumar, Rupesh; Alléaume, Romain
2016-07-01
We identify and study a security loophole in continuous-variable quantum key distribution (CVQKD) implementations, related to the imperfect linearity of the homodyne detector. By exploiting this loophole, we propose an active side-channel attack on the Gaussian-modulated coherent-state CVQKD protocol combining an intercept-resend attack with an induced saturation of the homodyne detection on the receiver side (Bob). We show that an attacker can bias the excess noise estimation by displacing the quadratures of the coherent states received by Bob. We propose a saturation model that matches experimental measurements on the homodyne detection and use this model to study the impact of the saturation attack on parameter estimation in CVQKD. We demonstrate that this attack can bias the excess noise estimation beyond the null key threshold for any system parameter, thus leading to a full security break. If we consider an additional criterion imposing that the channel transmission estimation should not be affected by the attack, then the saturation attack can only be launched if the attenuation on the quantum channel is sufficient, corresponding to attenuations larger than approximately 6 dB. We moreover discuss the possible countermeasures against the saturation attack and propose a countermeasure based on Gaussian postselection that can be implemented by classical postprocessing and may allow one to distill the secret key when the raw measurement data are partly saturated.
Xu, Jiadi; Yadav, Nirbhay N.; Bar-Shir, Amnon; Jones, Craig K.; Chan, Kannie W. Y.; Zhang, Jiangyang; Walczak, P.; McMahon, Michael T.; van Zijl, Peter C. M.
2013-01-01
Purpose Chemical exchange saturation transfer (CEST) imaging is a new MRI technology allowing the detection of low concentration endogenous cellular proteins and metabolites indirectly through their exchangeable protons. A new technique, variable delay multi-pulse CEST (VDMP-CEST), is proposed to eliminate the need for recording full Z-spectra and performing asymmetry analysis to obtain CEST contrast. Methods The VDMP-CEST scheme involves acquiring images with two (or more) delays between radiofrequency saturation pulses in pulsed CEST, producing a series of CEST images sensitive to the speed of saturation transfer. Subtracting two images or fitting a time series produces CEST and relayed-nuclear Overhauser enhancement CEST maps without effects of direct water saturation and, when using low radiofrequency power, minimal magnetization transfer contrast interference. Results When applied to several model systems (bovine serum albumin, crosslinked bovine serum albumin, l-glutamic acid) and in vivo on healthy rat brain, VDMP-CEST showed sensitivity to slow to intermediate range magnetization transfer processes (rate < 100–150 Hz), such as amide proton transfer and relayed nuclear Overhauser enhancement-CEST. Images for these contrasts could be acquired in short scan times by using a single radiofrequency frequency. Conclusions VDMP-CEST provides an approach to detect CEST effect by sensitizing saturation experiments to slower exchange processes without interference of direct water saturation and without need to acquire Z-spectra and perform asymmetry analysis. PMID:23813483
Brouyère, Serge; Dassargues, Alain; Hallet, Vincent
2004-08-01
This paper presents the results of a detailed field investigation that was performed for studying groundwater recharge processes and solute downward migration mechanisms prevailing in the unsaturated zone overlying a chalk aquifer in Belgium. Various laboratory measurements were performed on core samples collected during the drilling of boreholes in the experimental site. In the field, experiments consisted of well logging, infiltration tests in the unsaturated zone, pumping tests in the saturated zone and tracer tests in both the saturated and unsaturated zones. Results show that gravitational flows govern groundwater recharge and solute migration mechanisms in the unsaturated zone. In the variably saturated chalk, the migration and retardation of solutes is strongly influenced by recharge conditions. Under intense injection conditions, solutes migrate at high speed along the partially saturated fissures, downward to the saturated zone. At the same time, they are temporarily retarded in the almost immobile water located in the chalk matrix. Under normal recharge conditions, fissures are inactive and solutes migrate slowly through the chalk matrix. Results also show that concentration dynamics in the saturated zone are related to fluctuations of groundwater levels in the aquifer. A conceptual model is proposed to explain the hydrodispersive behaviour of the variably saturated chalk. Finally, the vulnerability of the chalk to contamination issues occurring at the land surface is discussed.
Test-retest reliability of retinal oxygen saturation measurement.
O'Connell, Rachael A; Anderson, Andrew J; Hosking, Sarah L; Batcha, Abrez H; Bui, Bang V
2014-06-01
To determine intrasession and intersession repeatability of retinal vessel oxygen saturation from the Oxymap Retinal Oximeter using a whole image-based analysis technique and so determine optimal analysis parameters to reduce variability. Ten fundus oximetry images were acquired through dilated pupils from 18 healthy participants (aged 22 to 38) using the Oxymap Retinal Oximeter T1. A further 10 images were obtained 1 to 2 weeks later from each individual. Analysis was undertaken for subsets of images to determine the number of images needed to return a stable coefficient of variation (CoV). Intrasession and intersession variability were quantified by evaluating the CoV and establishing the 95% limits of agreement using Bland and Altman analysis. Retinal oxygenation was derived from the distribution of oxygenation values from all vessels of a given width in an image or set of images, as described by Paul et al. in 2013. Grouped in 10-μm-wide bins, oxygen saturation varied significantly for both arteries and veins (p < 0.01). Between 110 and 150 μm, arteries had the least variability between individuals, with average CoVs less than 5% whose confidence intervals did not overlap with the greater than 10% average CoVs for veins across the same range. Bland and Altman analysis showed that there was no bias within or between recording sessions and that the 95% limits of agreement were generally lower in arteries. Retinal vessel oxygen saturation measurements show variability within and between clinical sessions when the whole image is used, which we believe more accurately reflects the true variability in Oxymap images than previous studies on select image segments. Averaging data from vessels 100 to 150 μm in width may help to minimize such variability.
NASA Astrophysics Data System (ADS)
Sirota, Ido; enzel, Yehouda; Lensky, Nadav G.
2017-04-01
Layered halite sequences deposited in deep basins throughout the geological record. However, analogues of such sequences are commonly studied in sallow environments. Here we study active precipitation of halite layers from the only modern analog for deep, halite-precipitating basin, the hypersaline Dead Sea. In situ observations in the Dead Sea link seasonal thermohaline stratification, halite saturation, and the characteristics of the actively forming halite layers. The spatiotemporal evolution of halite precipitation in the Dead Sea was characterized by means of monthly observations of the i) lake thermohaline stratification (temperature, salinity, and density), ii) degree of halite saturation, and iii) textural evolution of the active halite deposits. We present the observed relationships between textural characteristics of layered halite deposits (i.e. grain size, consolidation, and roughness) and the degree of saturation, which in turn reflected the limnology and hydro-climatology. The lakefloor is divided into two principle environments: A deep, hypolimnetic and a shallow, epilimnetic lakefloor. In the deeper hypolimnetic lakefloor halite continuously precipitates with seasonal variations: (a) during summer, consolidated coarse halite crystals form rough surfaces under slight super-saturation. (b) During winter, unconsolidated, fine halite crystals form smooth seafloor deposits under high supersaturation. The observations also emphasize the thought regarding seasonal alternation of halite crystallization mechanism. The shallow epilimnetic lake floor is highly influenced by the seasonal temperature variations, and by intensive summer dissolution of part of the previous year's halite deposit which results in thin sequences with annual unconformities. This emphasizes the control of temperature seasonality on the precipitated halite layers characteristics. In addition, precipitation of halite in the hypolimnetic floor, on the expense of the dissolution of the epilimnetic floor, results in lateral focusing and thickening of halite deposit in the deeper part of the basin and thinning of the deposits in shallow marginal basins.
Field-scale water transport in unsaturated crystalline rock
NASA Astrophysics Data System (ADS)
Gimmi, T.; Schneebeli, M.; Flühler, H.; Wydler, H.; Baer, T.
1997-04-01
Safe disposal of toxic wastes in geologic formations requires minimal water and gas movement in the vicinity of storage areas. Ventilation of repository tunnels or caverns built in solid rock can desaturate the near field up to a distance of meters from the rock surface, even when the surrounding geological formation is saturated and under hydrostatic pressures. A tunnel segment at the Grimsel test site located in the Aare granite of the Bernese Alps (central Switzerland) has been subjected to a resaturation and, subsequently, to a controlled desaturation. Using thermocouple psychrometers (TP) and time domain reflectometry (TDR), the water potentials ψ and water contents θ were measured within the unsaturated granodiorite matrix near the tunnel wall at depths between 0 and 160 cm. During the resaturation the water potentials in the first 30 cm from the rock surface changed within weeks from values of less than -1.5 MPa to near saturation. They returned to the negative initial values during desaturation. The dynamics of this saturation-desaturation regime could be monitored very sensitively using the thermocouple psychrometers. The TDR measurements indicated that water contents changed close to the surface, but at deeper installation depths the observed changes were within the experimental noise. The field-measured data of the desaturation cycle were used to test the predictive capabilities of the hydraulic parameter functions that were derived from the water retention characteristics ψ(θ) determined in the laboratory. A depth-invariant saturated hydraulic conductivity ks = 3.0 × 10-11m s-1 was estimated from the ψ(t) data at all measurement depths, using the one-dimensional, unsaturated water flow and transport model HYDRUS [Vogel et al., 1996]. For individual measurement depths, the estimated ks varied between 9.8 × 10-12 and 6.1 × 10-11 m s-1. The fitted ks values fell within the range of previously estimated s for this location and led to a satisfactory description of the data, even though the model did not include transport of water vapor.
NASA Astrophysics Data System (ADS)
Uchida, T.; Waseda, A.; Namikawa, T.
2004-12-01
Gas hydrates are ice-like solids made of water molecules containing various gas molecules. The geological evaluations have suggested worldwide methane contents of gas hydrate beneath deep sea floors as well as permafrost-related zones to about twice the total reserves of conventional and unconventional hydrocarbon. Scientific and economic interests are increasing in gas hydrate as a new energy resource and a potential greenhouse gas. In 1998 and 2002 Mallik wells were drilled in the Canadian Arctic that clarified the characteristics of gas hydrate-dominant layers at depths from 890 to 1110 m beneath the permafrost zone. Continuous downhole well log data, anomalies of chloride contents in pore waters, core temperature depression as well as visible gas hydrates have confirmed the highly saturated pore-space hydrate as intergranular pore filling within sandy layers, whose saturations are higher than 70% in pore volume. Muddy sediments scarcely contain gas hydrate. The Nankai Trough runs along the Japanese Island, where forearc basins and accretionary prisms developed extensively and BSRs (bottom simulating reflectors) have been recognized widely. The METI Nankai Trough wells in 2000 also revealed the presence of pore-space hydrate filling intergranular pore of sandy layers. It is remarked that there are many similar features in appearance and characteristics between the Mallik and Nankai Trough areas with observations of well-interconnected and highly saturated pore-space hydrate. It is necessary for evaluating subsurface fluid flow behaviors to know both porosity and permeability of gas hydrate-bearing sandy sediments, and measurements of water permeability for them indicate that highly saturated sands may have permeability of a few millidarcies. Subsequent analyses in sedimentology and geochemistry performed on gas hydrate-bearing sands revealed important geologic and sedimentologic controls on the formation and concentration of gas hydrate. It is suggested that the distribution of a porous and coarser-grained sandy sediments is one of the most important factors to control the occurrence of gas hydrates, as well as physicochemical conditions.
NASA Astrophysics Data System (ADS)
Liang, Bo; Clarens, Andres F.
2018-01-01
Gas leakage from geologic carbon storage sites could undermine the long-term goal of reducing emissions to the atmosphere and negatively impact groundwater resources. Despite this, there remain uncertainties associated with the transport processes that would govern this leakage. These stem from the complex interaction between governing forces (e.g., gravitational, viscous, and capillary), the heterogeneous nature of the porous media, and the characteristic length scales of these leakage events, all of which impact the CO2 fluid flow processes. Here we assessed how sub-basin-scale horizons in porous media could impact the migration and trapping of a CO2 plume. A high-pressure column packed with two layers of sand with different properties (e.g., grain size and wettability) was used to create a low-contrast stratigraphic horizon. CO2 in supercritical or liquid phase was injected into the bottom of the column under various conditions (e.g., temperature, pressure, and capillary number) and the transport of the resulting plume was recorded using electrical resistivity. The results show that CO2 trapping was most strongly impacted by shifting the wettability balance to mixed-wet conditions, particularly for residual saturation. A 16% increase in the cosine of the contact angle for a mixed-wet sand resulted in nearly twice as much residual trapping. Permeability contrast, pressure, and temperature also impacted the residual saturation but to a lesser extent. Flow rate affected the dynamics of saturation profile development, but the effect is transient, suggesting that the other effects observed here could apply to a broad range of leakage conditions.
LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, M; Blink, J A; Halsey, W G
2011-03-02
This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for minedmore » geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.« less
NASA Astrophysics Data System (ADS)
Martin, C.
2017-12-01
Topography can be used to delineate streams and quantify the topographic control on hydrological processes of a watershed because geomorphologic processes have shaped the topography and streams of a catchment over time. Topographic Wetness index (TWI) is a common index used for delineating stream networks by predicting location of saturation excess overland flow, but is also used for other physical attributes of a watershed such as soil moisture, groundwater level, and vegetation patterns. This study evaluates how well TWI works across an elevation gradient and the relationships between the active drainage network of four headwater watersheds at various elevations in the Colorado Front Range to topography, geology, climate, soils, elevation, and vegetation in attempt to determine the controls on streamflow location and duration. The results suggest that streams prefer to flow along a path of least resistance which including faults and permeable lithology. Permeable lithologies created more connectivity of stream networks during higher flows but during lower flows dried up. Streams flowing over impermeable lithologies had longer flow duration. Upslope soil hydraulic conductivity played a role on stream location, where soils with low hydraulic conductivity had longer flow duration than soils with higher hydraulic conductivity.Finally TWI thresholds ranged from 5.95 - 10.3 due to changes in stream length and to factors such as geology and soil. TWI had low accuracy for the lowest elevation site due to the greatest change of stream length. In conclusion, structural geology, upslope soil texture, and the permeability of the underlying lithology influenced where the stream was flowing and for how long. Elevation determines climate which influences the hydrologic processes occurring at the watersheds and therefore affects the duration and timing of streams at different elevations. TWI is an adequate tool for delineating streams because results suggest topography has a primary control on the stream locations, but because intermittent streams change throughout the year a algorithm needs to be created to correspond to snow melt and rain events. Also geology indices and soil indices need be considered in addition to topography to have the most accurate derived stream network.
NASA Astrophysics Data System (ADS)
Bause, Markus
2008-02-01
In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.
Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Fletcher, Tim D; Hatt, Belinda E; Deletic, Ana
2014-01-01
The use of biofilters to remove nitrogen and other pollutants from urban stormwater runoff has demonstrated varied success across laboratory and field studies. Design variables including plant species and use of a saturated zone have large impacts upon performance. A laboratory column study of 22 plant species and designs with varied outlet configuration was conducted across a 1.5-year period to further investigate the mechanisms and influences driving biofilter nitrogen processing. This paper presents outflow concentrations of total nitrogen from two sampling events across both 'wet' and 'dry' frequency dosing, and from sampling across two points in the outflow hydrograph. All plant species were effective under conditions of frequent dosing, but extended drying increased variation between species and highlighted the importance of a saturated zone in maintaining biofilter function. The saturated zone also effectively treated the volume of stormwater stored between inflow events, but this extended detention provided no additional benefit alongside the rapid processing of the highest performing species. Hence, the saturated zone reduced performance differences between plant species, and potentially acts as an 'insurance policy' against poor sub-optimal plant selection. The study shows the importance of biodiversity and inclusion of a saturated zone in protecting against climate variability.
Uyuşur, Burcu; Snee, Preston T.; Li, Chunyan; ...
2016-01-01
Knowledge of the fate and transport of nanoparticles in the subsurface environment is limited, as techniques to monitor and visualize the transport and distribution of nanoparticles in porous media and measure their in situ concentrations are lacking. To address these issues, we have developed a light transmission and fluorescence method to visualize and measure in situ concentrations of quantum dot (QD) nanoparticles in variably saturated environments. Calibration cells filled with sand as porous medium and various known water saturation levels and QD concentrations were prepared. By measuring the intensity of the light transmitted through porous media exposed to fluorescent lightmore » and by measuring the hue of the light emitted by the QDs under UV light exposure, we obtained simultaneously in situ measurements of water saturation and QD nanoparticle concentrations with high spatial and temporal resolutions. Water saturation was directly proportional to the light intensity. A linear relationship was observed between hue-intensity ratio values and QD concentrations for constant water saturation levels. Lastly, the advantages and limitations of the light transmission and fluorescence method as well as its implications for visualizing and measuring in situ concentrations of QDs nanoparticles in the subsurface environment are discussed.« less
Wilkinson, P L
1979-06-01
Assessing and modifying oxygen transport are major parts of ICU patient management. Determination of base excess, blood oxygen saturation and content, dead space ventilation, and P50 helps in this management. A program is described for determining these variables using a T1 59 programmable calculator and PC 100A printer. Each variable can be independently calculated without running the whole program. The calculator-printer's small size, low cost, and hard copy printout make it a valuable and versatile tool for calculating physiological variables. The program is easily entered by an stored on magnetic card, and prompts the user to enter the appropriate variables, making is easy to run by untrained personnel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drover, Damion, Ryan
2011-12-01
One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would thereforemore » be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a laser altimetry remote sensing method, obtained from the USDA Forest Service at Savannah River Site. The specific DEM resolutions were chosen because they are common grid cell sizes (10m, 30m, and 50m) used in mapping for management applications and in research. The finer resolutions (2m and 5m) were chosen for the purpose of determining how finer resolutions performed compared with coarser resolutions at predicting wetness and related soil attributes. The wetness indices were compared across DEMs and with each other in terms of quantile and distribution differences, then in terms of how well they each correlated with measured soil attributes. Spatial and non-spatial analyses were performed, and predictions using regression and geostatistics were examined for efficacy relative to each DEM resolution. Trends in the raw data and analysis results were also revealed.« less
NASA Astrophysics Data System (ADS)
Crossman, J.; Futter, M. N.; Whitehead, P. G.; Stainsby, E.; Baulch, H. M.; Jin, L.; Oni, S. K.; Wilby, R. L.; Dillon, P. J.
2014-07-01
Hydrological processes determine the transport of nutrients and passage of diffuse pollution. Consequently, catchments are likely to exhibit individual hydrochemical responses (sensitivities) to climate change, which is expected to alter the timing and amount of runoff, and to impact in-stream water quality. In developing robust catchment management strategies and quantifying plausible future hydrochemical conditions it is therefore equally important to consider the potential for spatial variability in, and causal factors of, catchment sensitivity, as to explore future changes in climatic pressures. This study seeks to identify those factors which influence hydrochemical sensitivity to climate change. A perturbed physics ensemble (PPE), derived from a series of Global Climate Model (GCM) variants with specific climate sensitivities was used to project future climate change and uncertainty. Using the Integrated Catchment Model of Phosphorus Dynamics (INCA-P), we quantified potential hydrochemical responses in four neighbouring catchments (with similar land use but varying topographic and geological characteristics) in southern Ontario, Canada. Responses were assessed by comparing a 30 year baseline (1968-1997) to two future periods: 2020-2049 and 2060-2089. Although projected climate change and uncertainties were similar across these catchments, hydrochemical responses (sensitivity) were highly varied. Sensitivity was governed by soil type (influencing flow pathways) and nutrient transport mechanisms. Clay-rich catchments were most sensitive, with total phosphorus (TP) being rapidly transported to rivers via overland flow. In these catchments large annual reductions in TP loads were projected. Sensitivity in the other two catchments, dominated by sandy-loams, was lower due to a larger proportion of soil matrix flow, longer soil water residence times and seasonal variability in soil-P saturation. Here smaller changes in TP loads, predominantly increases, were projected. These results suggest that the clay content of soils could be a good indicator of the sensitivity of catchments to climatic input, and reinforces calls for catchment-specific management plans.
The universal function in color dipole model
NASA Astrophysics Data System (ADS)
Jalilian, Z.; Boroun, G. R.
2017-10-01
In this work we review color dipole model and recall properties of the saturation and geometrical scaling in this model. Our primary aim is determining the exact universal function in terms of the introduced scaling variable in different distance than the saturation radius. With inserting the mass in calculation we compute numerically the contribution of heavy productions in small x from the total structure function by the fraction of universal functions and show the geometrical scaling is established due to our scaling variable in this study.
Origin of salt giants in abyssal serpentinite systems
NASA Astrophysics Data System (ADS)
Scribano, Vittorio; Carbone, Serafina; Manuella, Fabio C.; Hovland, Martin; Rueslåtten, Håkon; Johnsen, Hans-K.
2017-10-01
Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding `country' rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.
Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin
2014-06-01
Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.
2009-01-01
Generali- zed cap model for geological materials. J. Geotech . Eng. Div. ASME, 1976, 102(GT7), 638–699. 25 Sandler, I. S. and Rubin, D. An algorithm and a...under high strain rate loading. J. Geotech . Geoenviron. Eng., 2007, 133(2), 206–214. 27 Wong, J. R. and Reece, A. R. Prediction of rigid wheel
Collett, T.S.; Wendlandt, R.F.
2000-01-01
The analyses of downhole log data from Ocean Drilling Program (ODP) boreholes on the Blake Ridge at Sites 994, 995, and 997 indicate that the Schlumberger geochemical logging tool (GLT) may yield useful gas hydrate reservoir data. In neutron spectroscopy downhole logging, each element has a characteristic gamma ray that is emitted from a given neutron-element interaction. Specific elements can be identified by their characteristic gamma-ray signature, with the intensity of emission related to the atomic elemental concentration. By combining elemental yields from neutron spectroscopy logs, reservoir parameters including porosities, lithologies, formation fluid salinities, and hydrocarbon saturations (including gas hydrate) can be calculated. Carbon and oxygen elemental data from the GLT was used to determine gas hydrate saturations at all three sites (Sites 994, 995, and 997) drilled on the Blake Ridge during Leg 164. Detailed analyses of the carbon and oxygen content of various sediments and formation fluids were used to construct specialized carbon/oxygen ratio (COR) fan charts for a series of hypothetical gas hydrate accumulations. For more complex geologic systems, a modified version of the standard three-component COR hydrocarbon saturation equation was developed and used to calculate gas hydrate saturations on the Blake Ridge. The COR-calculated gas hydrate saturations (ranging from about 2% to 14% bulk volume gas hydrate) from the Blake Ridge compare favorably to the gas hydrate saturations derived from electrical resistivity log measurements.
NASA Astrophysics Data System (ADS)
Verma, A.; Pruess, K.
1988-02-01
Evaluation of the thermohydrological conditions near high-level nuclear waste packages is needed for the design of the waste canister and for overall repository design and performance assessment. Most available studies in this area have assumed that the hydrologic properties of the host rock are not changed in response to the thermal, mechanical, or chemical effects caused by waste emplacement. However, the ramifications of this simplifying assumption have not been substantiated. We have studied dissolution and precipitation of silica in liquid-saturated hydrothermal flow systems, including changes in formation porosity and permeability. Using numerical simulation, we compare predictions of thermohydrological conditions with and without inclusion of silica redistribution effects. Two cases were studied, namely, a canister-scale problem, and a repository-wide thermal convection problem and different pore models were employed for the permeable medium (fractures with uniform or nonuniform cross sections). We find that silica redistribution in water-saturated conditions does not have a sizeable effect on host rock and canister temperatures, pore pressures, or flow velocities.
Souza, W.R.
1987-01-01
This report documents a graphical display program for the U. S. Geological Survey finite-element groundwater flow and solute transport model. Graphic features of the program, SUTRA-PLOT (SUTRA-PLOT = saturated/unsaturated transport), include: (1) plots of the finite-element mesh, (2) velocity vector plots, (3) contour plots of pressure, solute concentration, temperature, or saturation, and (4) a finite-element interpolator for gridding data prior to contouring. SUTRA-PLOT is written in FORTRAN 77 on a PRIME 750 computer system, and requires Version 9.0 or higher of the DISSPLA graphics library. The program requires two input files: the SUTRA input data list and the SUTRA simulation output listing. The program is menu driven and specifications for individual types of plots are entered and may be edited interactively. Installation instruction, a source code listing, and a description of the computer code are given. Six examples of plotting applications are used to demonstrate various features of the plotting program. (Author 's abstract)
Bacterial interactions and transport in geological formation of alumino-silica clays.
Vu, Kien; Yang, Guang; Wang, Boya; Tawfiq, Kamal; Chen, Gang
2015-01-01
Bacterial transport in the subsurface is controlled by their interactions with the surrounding environment, which are determined by the surface properties of the geological formation and bacterial surfaces. In this research, surface thermodynamic properties of Escherichia coli and the geological formation of alumino-silica clays were characterized based on contact angle measurements, which were utilized to quantify the distance-dependent interactions between E. coli and the geological formation according to the traditional and extended Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. E. coli attachment to alumino-silica clays was evaluated in laboratory columns under saturated and steady-state flow conditions. E. coli deposition coefficient and desorption coefficient were simulated using convection-dispersion transport models against E. coli breakthrough curves, which were then linked to interactions between E. coli and the geological formation. It was discovered that E. coli deposition was controlled by the long-ranged electrostatic interaction and E. coli desorption was attributed to the short-ranged Lifshitz-van der Waals and Lewis acid-base interactions. E. coli transport in three layers of different alumino-silica clays was further examined and the breakthrough curve was simulated using E. coli deposition coefficient and desorption coefficient obtained from their individual column experiments. The well-fitted simulation confirmed that E. coli transport observations were interaction-dependent phenomena between E. coli and the geological formation. Published by Elsevier B.V.
QA/QC requirements for physical properties sampling and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innis, B.E.
1993-07-21
This report presents results of an assessment of the available information concerning US Environmental Protection Agency (EPA) quality assurance/quality control (QA/QC) requirements and guidance applicable to sampling, handling, and analyzing physical parameter samples at Comprehensive Environmental Restoration, Compensation, and Liability Act (CERCLA) investigation sites. Geotechnical testing laboratories measure the following physical properties of soil and sediment samples collected during CERCLA remedial investigations (RI) at the Hanford Site: moisture content, grain size by sieve, grain size by hydrometer, specific gravity, bulk density/porosity, saturated hydraulic conductivity, moisture retention, unsaturated hydraulic conductivity, and permeability of rocks by flowing air. Geotechnical testing laboratories alsomore » measure the following chemical parameters of soil and sediment samples collected during Hanford Site CERCLA RI: calcium carbonate and saturated column leach testing. Physical parameter data are used for (1) characterization of vadose and saturated zone geology and hydrogeology, (2) selection of monitoring well screen sizes, (3) to support modeling and analysis of the vadose and saturated zones, and (4) for engineering design. The objectives of this report are to determine the QA/QC levels accepted in the EPA Region 10 for the sampling, handling, and analysis of soil samples for physical parameters during CERCLA RI.« less
NASA Astrophysics Data System (ADS)
Mishra, Phoolendra Kumar; Neuman, Shlomo P.
2010-07-01
We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.
NASA Astrophysics Data System (ADS)
Lauinger, Norbert
1994-10-01
In photopic vision, two physical variables (luminance and wavelength) are transformed into three psychological variables (brightness, hue, and saturation). Following on from 3D grating optical explanations of aperture effects (Stiles-Crawford effects SCE I and II), all three variables can be explained via a single 3D chip effect. The 3D grating optical calculations are carried out using the classical von Laue equation and demonstrated using the example of two experimentally confirmed observations in human vision: saturation effects for monochromatic test lights between 485 and 510 nm in the SCE II and the fact that many test lights reverse their hue shift in the SCE II when changing from moderate to high luminances compared with that on changing from low to medium luminances. At the same time, information is obtained on the transition from the trichromatic color system in the retina to the opponent color system.
Improved Geologic Interpretation of Non-invasive Electrical Resistivity Imaging from In-situ Samples
NASA Astrophysics Data System (ADS)
Mucelli, A.; Aborn, L.; Jacob, R.; Malusis, M.; Evans, J.
2016-12-01
Non-invasive geophysical techniques are useful in characterizing the subsurface geology without disturbing the environment, however, the ability to interpret the subsurface is enhanced by invasive work. Since geologic materials have electrical resistivity values it allows for a geologic interpretation to be made based on variations of electrical resistivity measured by electrical resistivity imaging (ERI). This study focuses on the pre-characterization of the geologic subsurface from ERI collected adjacent to the Montandon Marsh, a wetland located near Lewisburg, PA within the West Branch of the Susquehanna River watershed. The previous invasive data, boreholes, indicate that the subsurface consists of limestone and shale bedrock overlain with sand and gravel deposits from glacial outwash and aeolian processes. The objective is to improve our understanding of the subsurface at this long-term hydrologic research site by using excavation results, specifically observed variations in geologic materials and electrical resistivity laboratory testing of subsurface samples. The pre-excavation ERI indicated that the shallow-most geologic material had a resistivity value of 100-500 ohm-m. In comparison, the laboratory testing indicated the shallow-most material had the same range of electrical resistivity values depending on saturation levels. The ERI also showed that there was an electrically conductive material, 7 to 70 ohm-m, that was interpreted to be clay and agreed with borehole data, however, the excavation revealed that at this depth range the geologic material varied from stratified clay to clay with cobbles to weathered residual clay. Excavation revealed that the subtle variations in the electrical conductive material corresponded well with the variations in the geologic material. We will use these results to reinterpret previously collected ERI data from the entire long-term research site.
LTP saturation and spatial learning disruption: effects of task variables and saturation levels.
Barnes, C A; Jung, M W; McNaughton, B L; Korol, D L; Andreasson, K; Worley, P F
1994-10-01
The prediction that "saturation" of LTP/LTE at hippocampal synapses should impair spatial learning was reinvestigated in the light of a more specific consideration of the theory of Hebbian associative networks, which predicts a nonlinear relationship between LTP "saturation" and memory impairment. This nonlinearity may explain the variable results of studies that have addressed the effects of LTP "saturation" on behavior. The extent of LTP "saturation" in fascia dentata produced by the standard chronic LTP stimulation protocol was assessed both electrophysiologically and through the use of an anatomical marker (activation of the immediate-early gene zif268). Both methods point to the conclusion that the standard protocols used to induce LTP do not "saturate" the process at any dorsoventral level, and leave the ventral half of the hippocampus virtually unaffected. LTP-inducing, bilateral perforant path stimulation led to a significant deficit in the reversal of a well-learned spatial response on the Barnes circular platform task as reported previously, yet in the same animals produced no deficit in learning the Morris water task (for which previous results have been conflicting). The behavioral deficit was not a consequence of any after-discharge in the hippocampal EEG. In contrast, administration of maximal electroconvulsive shock led to robust zif268 activation throughout the hippocampus, enhancement of synaptic responses, occlusion of LTP produced by discrete high-frequency stimulation, and spatial learning deficits in the water task. These data provide further support for the involvement of LTP-like synaptic enhancement in spatial learning.
Microbial facies distribution and its geological and geochemical controls at the Hanford 300 area
NASA Astrophysics Data System (ADS)
Hou, Z.; Nelson, W.; Stegen, J.; Murray, C. J.; Arntzen, E.
2015-12-01
Efforts have been made by various scientific disciplines to study hyporheic zones and characterize their associated processes. One way to approach the study of the hyporheic zone is to define facies, which are elements of a (hydrobio) geologic classification scheme that groups components of a complex system with high variability into a manageable set of discrete classes. In this study, we try to classify the hyporheic zone based on the geology, geochemistry, microbiology, and understand their interactive influences on the integrated biogeochemical distributions and processes. A number of measurements have been taken for 21 freeze core samples along the Columbia River bank in the Hanford 300 Area, and unique datasets have been obtained on biomass, pH, number of microbial taxa, percentage of N/C/H/S, microbial activity parameters, as well as microbial community attributes/modules. In order to gain a complete understanding of the geological control on these variables and processes, the explanatory variables are set to include quantitative gravel/sand/mud/silt/clay percentages, statistical moments of grain size distributions, as well as geological (e.g., Folk-Wentworth) and statistical (e.g., hierarchical) clusters. The dominant factors for major microbial and geochemical variables are identified and summarized using exploratory data analysis approaches (e.g., principal component analysis, hierarchical clustering, factor analysis, multivariate analysis of variance). The feasibility of extending the facies definition and its control of microbial and geochemical properties to larger scales is discussed.
Key subsurface data help to refine Trinity aquifer hydrostratigraphic units, south-central Texas
Blome, Charles D.; Clark, Allan K.
2014-01-01
The geologic framework and hydrologic characteristics of aquifers are important components for studying the nation’s subsurface heterogeneity and predicting its hydraulic budgets. Detailed study of an aquifer’s subsurface hydrostratigraphy is needed to understand both its geologic and hydrologic frameworks. Surface hydrostratigraphic mapping can also help characterize the spatial distribution and hydraulic connectivity of an aquifer’s permeable zones. Advances in three-dimensional (3-D) mapping and modeling have also enabled geoscientists to visualize the spatial relations between the saturated and unsaturated lithologies. This detailed study of two borehole cores, collected in 2001 on the Camp Stanley Storage Activity (CSSA) area, provided the foundation for revising a number of hydrostratigraphic units representing the middle zone of the Trinity aquifer. The CSSA area is a restricted military facility that encompasses approximately 4,000 acres and is located in Boerne, Texas, northwest of the city of San Antonio. Studying both the surface and subsurface geology of the CSSA area are integral parts of a U.S. Geological Survey project funded through the National Cooperative Geologic Mapping Program. This modification of hydrostratigraphic units is being applied to all subsurface data used to construct a proposed 3-D EarthVision model of the CSSA area and areas to the south and west.
Modeling: The Right Tool for the Job.
ERIC Educational Resources Information Center
Gavanasen, Varut; Hussain, S. Tariq
1993-01-01
Reviews the different types of models that can be used in groundwater modeling. Discusses the flow and contaminant transport models in the saturated zone, flow and contaminant transport in variably saturated flow regime, vapor transport, biotransformation models, multiphase models, optimization algorithms, and potentials pitfalls of using these…
Color images of Kansas subsurface geology from well logs
Collins, D.R.; Doveton, J.H.
1986-01-01
Modern wireline log combinations give highly diagnostic information that goes beyond the basic shale content, pore volume, and fluid saturation of older logs. Pattern recognition of geology from logs is made conventionally through either the examination of log overlays or log crossplots. Both methods can be combined through the use of color as a medium of information by setting the three color primaries of blue, green, and red light as axes of three dimensional color space. Multiple log readings of zones are rendered as composite color mixtures which, when plotted sequentially with depth, show lithological successions in a striking manner. The method is extremely simple to program and display on a color monitor. Illustrative examples are described from the Kansas subsurface. ?? 1986.
NASA Astrophysics Data System (ADS)
Lowrey, J. D.; Haas, D.
2013-12-01
Underground nuclear explosions (UNEs) produce anthropogenic isotopes that can potentially be used in the verification component of the Comprehensive Nuclear-Test-Ban Treaty. Several isotopes of radioactive xenon gas have been identified as radionuclides of interest within the International Monitoring System (IMS) and in an On-Site Inspection (OSI). Substantial research has been previously undertaken to characterize the geologic and atmospheric mechanisms that can drive the movement of radionuclide gas from a well-contained UNE, considering both sensitivities on gas arrival time and signature variability of xenon due to the nature of subsurface transport. This work further considers sensitivities of radioxenon gas arrival time and signatures to large variability in geologic stratification and generalized explosion cavity characteristics, as well as compares this influence to variability in the shallow surface.
White, Katherine M; Terry, Deborah J; Troup, Carolyn; Rempel, Lynn A; Norman, Paul
2010-10-01
The present study tested the utility of an extended version of the theory of planned behaviour that included a measure of planning, in the prediction of eating foods low in saturated fats among adults diagnosed with Type 2 diabetes and/or cardiovascular disease. Participants (N=184) completed questionnaires assessing standard theory of planned behaviour measures (attitude, subjective norm, and perceived behavioural control) and the additional volitional variable of planning in relation to eating foods low in saturated fats. Self-report consumption of foods low insaturated fats was assessed 1 month later. In partial support of the theory of planned behaviour, results indicated that attitude and subjective norm predicted intentions to eat foods low in saturated fats and intentions and perceived behavioural control predicted the consumption of foods low in saturated fats. As an additional variable, planning predicted the consumption of foods low in saturated fats directly and also mediated the intention-behaviour and perceived behavioural control-behaviour relationships, suggesting an important role for planning as a post-intentional construct determining healthy eating choices. Suggestions are offered for interventions designed to improve adherence to healthy eating recommendations for people diagnosed with these chronic conditions with a specific emphasis on the steps and activities that are required to promote a healthier lifestyle.
Assessing species saturation: conceptual and methodological challenges.
Olivares, Ingrid; Karger, Dirk N; Kessler, Michael
2018-05-07
Is there a maximum number of species that can coexist? Intuitively, we assume an upper limit to the number of species in a given assemblage, or that a lineage can produce, but defining and testing this limit has proven problematic. Herein, we first outline seven general challenges of studies on species saturation, most of which are independent of the actual method used to assess saturation. Among these are the challenge of defining saturation conceptually and operationally, the importance of setting an appropriate referential system, and the need to discriminate among patterns, processes and mechanisms. Second, we list and discuss the methodological approaches that have been used to study species saturation. These approaches vary in time and spatial scales, and in the variables and assumptions needed to assess saturation. We argue that assessing species saturation is possible, but that many studies conducted to date have conceptual and methodological flaws that prevent us from currently attaining a good idea of the occurrence of species saturation. © 2018 Cambridge Philosophical Society.
CO2 outgassing in a combined fracture and conduit karst aquifer near lititz spring, Pennsylvania
Toran, L.; Roman, E.
2006-01-01
Lititz Spring in southeastern Pennsylvania and a nearby domestic well were sampled for 9 months. Although both locations are connected to conduits (as evidenced by a tracer test), most of the year they were saturated with respect to calcite, which is more typical of matrix flow. Geochemical modeling (PHREEQC) was used to explain this apparent paradox and to infer changes in matrix and conduit contribution to flow. The saturation index varied from 0.5 to 0 most of the year, with a few samples in springtime dropping below saturation. The log PCO2 value varied from -2.5 to -1.7. Lower log PCO2 values (closer to the atmospheric value of -3.5) were observed when the solutions were at or above saturation with respect to calcite. In contrast, samples collected in the springtime had high PCO2, low saturation indices, and high water levels. Geochemical modeling showed that when outgassing occurs from a water with initially high PCO2, the saturation index of calcite increases. In the Lititz Spring area, the recharge water travels through the soil zone, where it picks up CO2 from soil gas, and excess CO 2 subsequently is outgassed when this recharge water reaches the conduit. At times of high water level (pipe full), recharge with excess CO 2 enters the system but the outgassing does not occur. Instead the recharge causes dilution, reducing the calcite saturation index. Understanding the temporal and spatial variation in matrix and conduit flow in karst aquifers benefited here by geochemical modeling and calculation of PCO2 values. ?? 2006 Geological Society of America.
Yang, Yu; Saiers, James E; Xu, Na; Minasian, Stefan G; Tyliszczak, Tolek; Kozimor, Stosh A; Shuh, David K; Barnett, Mark O
2012-06-05
The risk stemming from human exposure to actinides via the groundwater track has motivated numerous studies on the transport of radionuclides within geologic environments; however, the effects of waterborne organic matter on radionuclide mobility are still poorly understood. In this study, we compared the abilities of three humic acids (HAs) (obtained through sequential extraction of a peat soil) to cotransport hexavalent uranium (U) within water-saturated sand columns. Relative breakthrough concentrations of U measured upon elution of 18 pore volumes increased from undetectable levels (<0.001) in an experiment without HAs to 0.17 to 0.55 in experiments with HAs. The strength of the HA effect on U mobility was positively correlated with the hydrophobicity of organic matter and NMR-detected content of alkyl carbon, which indicates the possible importance of hydrophobic organic matter in facilitating U transport. Carbon and uranium elemental maps collected with a scanning transmission X-ray microscope (STXM) revealed uneven microscale distribution of U. Such molecular- and column-scale data provide evidence for a critical role of hydrophobic organic matter in the association and cotransport of U by HAs. Therefore, evaluations of radionuclide transport within subsurface environments should consider the chemical characteristics of waterborne organic substances, especially hydrophobic organic matter.
Cronkite-Ratcliff, C.; Phelps, G.A.; Boucher, A.
2012-01-01
This report provides a proof-of-concept to demonstrate the potential application of multiple-point geostatistics for characterizing geologic heterogeneity and its effect on flow and transport simulation. The study presented in this report is the result of collaboration between the U.S. Geological Survey (USGS) and Stanford University. This collaboration focused on improving the characterization of alluvial deposits by incorporating prior knowledge of geologic structure and estimating the uncertainty of the modeled geologic units. In this study, geologic heterogeneity of alluvial units is characterized as a set of stochastic realizations, and uncertainty is indicated by variability in the results of flow and transport simulations for this set of realizations. This approach is tested on a hypothetical geologic scenario developed using data from the alluvial deposits in Yucca Flat, Nevada. Yucca Flat was chosen as a data source for this test case because it includes both complex geologic and hydrologic characteristics and also contains a substantial amount of both surface and subsurface geologic data. Multiple-point geostatistics is used to model geologic heterogeneity in the subsurface. A three-dimensional (3D) model of spatial variability is developed by integrating alluvial units mapped at the surface with vertical drill-hole data. The SNESIM (Single Normal Equation Simulation) algorithm is used to represent geologic heterogeneity stochastically by generating 20 realizations, each of which represents an equally probable geologic scenario. A 3D numerical model is used to simulate groundwater flow and contaminant transport for each realization, producing a distribution of flow and transport responses to the geologic heterogeneity. From this distribution of flow and transport responses, the frequency of exceeding a given contaminant concentration threshold can be used as an indicator of uncertainty about the location of the contaminant plume boundary.
Pore-scale modeling of wettability effects on CO2-brine displacement during geological storage
NASA Astrophysics Data System (ADS)
Basirat, Farzad; Yang, Zhibing; Niemi, Auli
2017-11-01
Wetting properties of reservoir rocks and caprocks can vary significantly, and they strongly influence geological storage of carbon dioxide in deep saline aquifers, during which CO2 is supposed to displace the resident brine and to become permanently trapped. Fundamental understanding of the effect of wettability on CO2-brine displacement is thus important for improving storage efficiency and security. In this study, we investigate the influence of wetting properties on two-phase flow of CO2 and brine at the pore scale. A numerical model based on the phase field method is implemented to simulate the two-phase flow of CO2-brine in a realistic pore geometry. Our focus is to study the pore-scale fluid-fluid displacement mechanisms under different wetting conditions and to quantify the effect of wettability on macroscopic parameters such as residual brine saturation, capillary pressure, relative permeability, and specific interfacial area. Our simulation results confirm that both the trapped wetting phase saturation and the normalized interfacial area increase with decreasing contact angle. However, the wetting condition does not appear to influence the CO2 breakthrough time and saturation. We also show that the macroscopic capillary pressures based on the pressure difference between inlet and outlet can differ significantly from the phase averaging capillary pressures for all contact angles when the capillary number is high (log Ca > -5). This indicates that the inlet-outlet pressure difference may not be a good measure of the continuum-scale capillary pressure. In addition, the results show that the relative permeability of CO2 can be significantly lower in strongly water-wet conditions than in the intermediate-wet conditions.
Assessing Gas-Hydrate Prospects on the North Slope of Alaska - Theoretical Considerations
Lee, Myung W.; Collett, Timothy S.; Agena, Warren F.
2008-01-01
Gas-hydrate resource assessment on the Alaska North Slope using 3-D and 2-D seismic data involved six important steps: (1) determining the top and base of the gas-hydrate stability zone, (2) 'tying' well log information to seismic data through synthetic seismograms, (3) differentiating ice from gas hydrate in the permafrost interval, (4) developing an acoustic model for the reservoir and seal, (5) developing a method to estimate gas-hydrate saturation and thickness from seismic attributes, and (6) assessing the potential gas-hydrate prospects from seismic data based on potential migration pathways, source, reservoir quality, and other relevant geological information. This report describes the first five steps in detail using well logs and provides theoretical backgrounds for resource assessments carried out by the U.S. Geological Survey. Measured and predicted P-wave velocities enabled us to tie synthetic seismograms to the seismic data. The calculated gas-hydrate stability zone from subsurface wellbore temperature data enabled us to focus our effort on the most promising depth intervals in the seismic data. A typical reservoir in this area is characterized by the P-wave velocity of 1.88 km/s, porosity of 42 percent, and clay volume content of 5 percent, whereas seal sediments encasing the reservoir are characterized by the P-wave velocity of 2.2 km/s, porosity of 32 percent, and clay volume content of 20 percent. Because the impedance of a reservoir without gas hydrate is less than that of the seal, a complex amplitude variation with respect to gas-hydrate saturation is predicted, namely polarity change, amplitude blanking, and high seismic amplitude (a bright spot). This amplitude variation with gas-hydrate saturation is the physical basis for the method used to quantify the resource potential of gas hydrates in this assessment.
Pharmaceuticals' sorptions relative to properties of thirteen different soils.
Kodešová, Radka; Grabic, Roman; Kočárek, Martin; Klement, Aleš; Golovko, Oksana; Fér, Miroslav; Nikodem, Antonín; Jakšík, Ondřej
2015-04-01
Transport of human and veterinary pharmaceuticals in soils and consequent ground-water contamination are influenced by many factors, including compound sorption on soil particles. Here we evaluate the sorption isotherms for 7 pharmaceuticals on 13 soils, described by Freundlich equations, and assess the impact of soil properties on various pharmaceuticals' sorption on soils. Sorption of ionizable pharmaceuticals was, in many cases, highly affected by soil pH. The sorption coefficient of sulfamethoxazole was negatively correlated to soil pH, and thus positively related to hydrolytic acidity and exchangeable acidity. Sorption coefficients for clindamycin and clarithromycin were positively related to soil pH and thus negatively related to hydrolytic acidity and exchangeable acidity, and positively related to base cation saturation. The sorption coefficients for the remaining pharmaceuticals (trimethoprim, metoprolol, atenolol, and carbamazepine) were also positively correlated with the base cation saturation and cation exchange capacity. Positive correlations between sorption coefficients and clay content were found for clindamycin, clarithromycin, atenolol, and metoprolol. Positive correlations between sorption coefficients and organic carbon content were obtained for trimethoprim and carbamazepine. Pedotransfer rules for predicting sorption coefficients of various pharmaceuticals included hydrolytic acidity (sulfamethoxazole), organic carbon content (trimethoprimand carbamazepine), base cation saturation (atenolol and metoprolol), exchangeable acidity and clay content (clindamycin), and soil active pH and clay content (clarithromycin). Pedotransfer rules, predicting the Freundlich sorption coefficients, could be applied for prediction of pharmaceutical mobility in soils with similar soil properties. Predicted sorption coefficients together with pharmaceutical half-lives and other imputes (e.g., soil-hydraulic, geological, hydro-geological, climatic) may be used for assessing potential ground-water contamination. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari
2017-04-01
Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.
Use of PRD1 bacteriophage in groundwater viral transport, inactivation, and attachment studies
Harvey, R.W.; Ryan, J.N.
2004-01-01
PRD1, an icosahedra-shaped, 62 nm (diameter), double-stranded DNA bacteriophage with an internal membrane, has emerged as an important model virus for studying the manner in which microorganisms are transported through a variety of groundwater environments. The popularity of this phage for use in transport studies involving geologic media is due, in part, to its relative stability over a range of temperatures and low degree of attachment in aquifer sediments. Laboratory and field investigations employing PRD1 are leading to a better understanding of viral attachment and transport behaviors in saturated geologic media and to improved methods for describing mathematically subsurface microbial transport at environmentally significant field scales. Radioisotopic labeling of PRD1 is facilitating additional information about the nature of viral interactions with solid surfaces in geologic media, the importance of iron oxide surfaces, and allowing differentiation between inactivation and attachment in field-scale tracer tests. ?? 2004 Published by Elsevier B.V. on behalf of the Federation of European Microbiological Societies.
The Effect of Boiling on Seismic Properties of Water-Saturated Fractured Rock
NASA Astrophysics Data System (ADS)
Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Deuber, Claudia; Maurer, Hansruedi; Greenhalgh, Stewart
2017-11-01
Seismic campaigns for exploring geothermal systems aim at detecting permeable formations in the subsurface and evaluating the energy state of the pore fluids. High-enthalpy geothermal resources are known to contain fluids ranging from liquid water up to liquid-vapor mixtures in regions where boiling occurs and, ultimately, to vapor-dominated fluids, for instance, if hot parts of the reservoir get depressurized during production. In this study, we implement the properties of single- and two-phase fluids into a numerical poroelastic model to compute frequency-dependent seismic velocities and attenuation factors of a fractured rock as a function of fluid state. Fluid properties are computed while considering that thermodynamic interaction between the fluid phases takes place. This leads to frequency-dependent fluid properties and fluid internal attenuation. As shown in a first example, if the fluid contains very small amounts of vapor, fluid internal attenuation is of similar magnitude as attenuation in fractured rock due to other mechanisms. In a second example, seismic properties of a fractured geothermal reservoir with spatially varying fluid properties are calculated. Using the resulting seismic properties as an input model, the seismic response of the reservoir is then computed while the hydrothermal structure is assumed to vary over time. The resulting seismograms demonstrate that anomalies in the seismic response due to fluid state variability are small compared to variations caused by geological background heterogeneity. However, the hydrothermal structure in the reservoir can be delineated from amplitude anomalies when the variations due to geology can be ruled out such as in time-lapse experiments.
The Sounds of Desaturation: A Survey of Commercial Pulse Oximeter Sonifications.
Loeb, Robert G; Brecknell, Birgit; Sanderson, Penelope M
2016-05-01
The pulse oximeter has been a standard of care medical monitor for >25 years. Most manufacturers include a variable-pitch pulse tone in their pulse oximeters. Research has shown that the acoustic properties of variable-pitch tones are not standardized. In this study, we surveyed the properties of pulse tones from 21 pulse oximeters, consisting of 1 to 4 instruments of 11 different models and 8 brands. Our goals were to fully document the sounds over saturation values 0% to 100%, test whether tones become quieter at low saturation values, and create a public repository of pulse oximeter recordings for future use. A convenience sample of commercial pulse oximeters in use at one hospital was studied. Audiovisual recordings of each pulse oximeter's display and sounds were taken while it monitored a simulator starting at a saturation of 100% and slowly decreasing in 1% steps until the saturation reached 0%. Recorded pulse tones were analyzed for spectral frequency and total power. Audio files for each pulse oximeter containing 100 pulse tones, one at every saturation value, were created for inclusion in the repository. Recordings containing 509 to 1053 pulse tones were made from the 21 pulse oximeters. Fundamental frequencies at 100% saturation ranged from 479 to 921 Hz, and fundamental frequencies at 1% saturation ranged from 38 to 404 Hz. The pulse tones from all but one model pulse oximeter contained harmonics. Pulse tone step sizes were linear in 6 models and logarithmic in 6 models. Only 6 pulse oximeter models decreased the pulse tone pitch at every decrease in saturation; all others decreased the pitch at only select saturation thresholds. Five pulse oximeter models stopped decreasing pitch altogether once the saturation reached a certain lower threshold. Pulse tone power (perceived as loudness) changed with saturation level for all pulse oximeters, increasing above baseline as saturation decreased from 100% and decreasing to levels below baseline at low saturation values. Current pulse oximeters use different techniques to address the competing goals of (1) using pitch steps that are large enough to be readily perceived, and (2) conveying saturation values from 0 to 100 within a limited range of sound frequencies. From a clinical perspective, 2 techniques for increasing perceivability (increasing the frequency range and using ratio step sizes) have no drawback, but 2 techniques (not changing pitch at every saturation change and using a lower saturation cutoff) do have potential clinical drawbacks. On the basis of our findings, we have made suggestions for clinicians and manufacturers.
Humidity: A review and primer on atmospheric moisture and human health.
Davis, Robert E; McGregor, Glenn R; Enfield, Kyle B
2016-01-01
Research examining associations between weather and human health frequently includes the effects of atmospheric humidity. A large number of humidity variables have been developed for numerous purposes, but little guidance is available to health researchers regarding appropriate variable selection. We examine a suite of commonly used humidity variables and summarize both the medical and biometeorological literature on associations between humidity and human health. As an example of the importance of humidity variable selection, we correlate numerous hourly humidity variables to daily respiratory syncytial virus isolates in Singapore from 1992 to 1994. Most water-vapor mass based variables (specific humidity, absolute humidity, mixing ratio, dewpoint temperature, vapor pressure) exhibit comparable correlations. Variables that include a thermal component (relative humidity, dewpoint depression, saturation vapor pressure) exhibit strong diurnality and seasonality. Humidity variable selection must be dictated by the underlying research question. Despite being the most commonly used humidity variable, relative humidity should be used sparingly and avoided in cases when the proximity to saturation is not medically relevant. Care must be taken in averaging certain humidity variables daily or seasonally to avoid statistical biasing associated with variables that are inherently diurnal through their relationship to temperature. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, J.; Yan, E.; Yeh, T. C. J.
2015-12-01
Pore-water pressure in a hillslope is a critical control of its stability. The main objective of this paper is to introduce a first-order moment analysis to investigate the pressure head variability within a hypothetical hillslope, induced by steady rainfall infiltration. This approach accounts for the uncertainties and spatial variation of the hydraulic conductivity, and is based on a first-order Taylor approximation of pressure perturbations calculated by a variably saturated, finite element flow model. Using this approach, the effects of variance (σ2lnKs) and spatial structure anisotropy (λh/λv) of natural logarithm of saturated hydraulic conductivity, and normalized vertical infiltration flux (q/ks) on the hillslope pore-water pressure are evaluated. We found that the responses of pressure head variability (σ2p) are quite different between unsaturated region and saturated region divided by the phreatic surface. Above the phreatic surface, a higher variability in pressure head is obtained from a higher σ2lnKs, a higher λh/λv and a smaller q/ks; while below the phreatic surface, a higher σ2lnKs, a lower λh/λv or a larger q/ks would lead to a higher variability in pressure head, and greater range of fluctuation of the phreatic surface within the hillslope. σ2lnKs has greatest impact on σ2p within the slope and λh/λv has smallest impact. All three variables have greater influence on maximum σ2p within the saturated region below the phreatic surface than that within the unsaturated region above the phreatic surface. The results obtained from this study are useful to understand the influence of hydraulic conductivity variations on slope seepage and stability under different slope conditions and material spatial distributions.
Posttest analysis of a laboratory-cast monolith of salt-saturated concrete. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakeley, L.D.; Poole, T.S.
A salt-saturated concrete was formulated for laboratory testing of cementitious mixtures with potential for use in disposal of radioactive wastes in a geologic repository in halite rock. Cores were taken from a laboratory-cast concrete monolith on completion of tests of permeability, strain, and stress. The cores were analyzed for physical and chemical evidence of brine migration through the concrete, and other features with potential impact on installation of crete plugs at the Waste Isolation Pilot Plant (WIPP) in New Mexico. The posttest analyses of the cores provided evidence of brine movement along the interface between concrete and pipe, and littlemore » indication of permeability through the monolith itself. There may also have been diffusion of chloride into the monolith without actual brine flow.« less
Electrical geophysical study over the Norman Landfill, near Norman, Oklahoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisdorf, R.J.
In 1995 and 1996 the US Geological Survey made 40 Schlumberger dc electrical resistivity soundings at the Norman Landfill, near Norman, Oklahoma. Interpretation of the resistivity data indicates that high resistivities (>300 ohm-m) are related to dry sand, intermediate resistivities (45-300 ohm-m) are related to freshwater saturated sand, and low resistivities (<45 ohm-m) are related to fine-grained materials or materials saturated with the conductive fluids. Interpreted resistivity maps show a low resistivity anomaly that extends from under the landfill to just past a nearby slough. This anomaly corresponds to known areas of ground water contamination. A resistivity cross section, constructedmore » from interpreted Schlumberger soundings, shows that this low resistivity anomaly is about 5 m deep and up to 9 m thick.« less
Mirus, Benjamin B.; Perkins, Kim S.; Nimmo, John R.
2011-01-01
Waste byproducts associated with operations at the Idaho Nuclear Technology and Engineering Center (INTEC) have the potential to contaminate the eastern Snake River Plain (ESRP) aquifer. Recharge to the ESRP aquifer is controlled largely by the alternating stratigraphy of fractured volcanic rocks and sedimentary interbeds within the overlying vadose zone and by the availability of water at the surface. Beneath the INTEC facilities, localized zones of saturation perched on the sedimentary interbeds are of particular concern because they may facilitate accelerated transport of contaminants. The sources and timing of natural and anthropogenic recharge to the perched zones are poorly understood. Simple approaches for quantitative characterization of this complex, variably saturated flow system are needed to assess potential scenarios for contaminant transport under alternative remediation strategies. During 2009-2011, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, employed data analysis and numerical simulations with a recently developed model of preferential flow to evaluate the sources and quantity of recharge to the perched zones. Piezometer, tensiometer, temperature, precipitation, and stream-discharge data were analyzed, with particular focus on the possibility of contributions to the perched zones from snowmelt and flow in the neighboring Big Lost River (BLR). Analysis of the timing and magnitude of subsurface dynamics indicate that streamflow provides local recharge to the shallow, intermediate, and deep perched saturated zones within 150 m of the BLR; at greater distances from the BLR the influence of streamflow on recharge is unclear. Perched water-level dynamics in most wells analyzed are consistent with findings from previous geochemical analyses, which suggest that a combination of annual snowmelt and anthropogenic sources (for example, leaky pipes and drainage ditches) contribute to recharge of shallow and intermediate perched zones throughout much of INTEC. The source-responsive fluxes model was parameterized to simulate recharge via preferential flow associated with intermittent episodes of streamflow in the BLR. The simulations correspond reasonably well to the observed hydrologic response within the shallow perched zone. Good model performance indicates that source-responsive flow through a limited number of connected fractures contributes substantially to the perched-zone dynamics. The agreement between simulated and observed perched-zone dynamics suggest that the source-responsive fluxes model can provide a valuable tool for quantifying rapid preferential flow processes that may result from different land management scenarios.
NASA Astrophysics Data System (ADS)
Messier, K. P.; Serre, M. L.
2015-12-01
Radon (222Rn) is a naturally occurring chemically inert, colorless, and odorless radioactive gas produced from the decay of uranium (238U), which is ubiquitous in rocks and soils worldwide. Exposure to 222Rn is likely the second leading cause of lung cancer after cigarette smoking via inhalation; however, exposure through untreated groundwater is also a contributing factor to both inhalation and ingestion routes. A land use regression (LUR) model for groundwater 222Rn with anisotropic geological and 238U based explanatory variables is developed, which helps elucidate the factors contributing to elevated 222Rn across North Carolina. Geological and uranium based variables are constructed in elliptical buffers surrounding each observation such that they capture the lateral geometric anisotropy present in groundwater 222Rn. Moreover, geological features are defined at three different geological spatial scales to allow the model to distinguish between large area and small area effects of geology on groundwater 222Rn. The LUR is also integrated into the Bayesian Maximum Entropy (BME) geostatistical framework to increase accuracy and produce a point-level LUR-BME model of groundwater 222Rn across North Carolina including prediction uncertainty. The LUR-BME model of groundwater 222Rn results in a leave-one out cross-validation of 0.46 (Pearson correlation coefficient= 0.68), effectively predicting within the spatial covariance range. Modeled results of 222Rn concentrations show variability among Intrusive Felsic geological formations likely due to average bedrock 238U defined on the basis of overlying stream-sediment 238U concentrations that is a widely distributed consistently analyzed point-source data.
40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Sequestration of Carbon Dioxide § 98.448 Geologic sequestration monitoring, reporting, and verification (MRV... use to calculate site-specific variables for the mass balance equation. This includes, but is not...
40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Sequestration of Carbon Dioxide § 98.448 Geologic sequestration monitoring, reporting, and verification (MRV... use to calculate site-specific variables for the mass balance equation. This includes, but is not...
Zoning method for environmental engineering geological patterns in underground coal mining areas.
Liu, Shiliang; Li, Wenping; Wang, Qiqing
2018-09-01
Environmental engineering geological patterns (EEGPs) are used to express the trend and intensity of eco-geological environment caused by mining in underground coal mining areas, a complex process controlled by multiple factors. A new zoning method for EEGPs was developed based on the variable-weight theory (VWT), where the weights of factors vary with their value. The method was applied to the Yushenfu mining area, Shaanxi, China. First, the mechanism of the EEGPs caused by mining was elucidated, and four types of EEGPs were proposed. Subsequently, 13 key control factors were selected from mining conditions, lithosphere, hydrosphere, ecosphere, and climatic conditions; their thematic maps were constructed using ArcGIS software and remote-sensing technologies. Then, a stimulation-punishment variable-weight model derived from the partition of basic evaluation unit of study area, construction of partition state-variable-weight vector, and determination of variable-weight interval was built to calculate the variable weights of each factor. On this basis, a zoning mathematical model of EEGPs was established, and the zoning results were analyzed. For comparison, the traditional constant-weight theory (CWT) was also applied to divide the EEGPs. Finally, the zoning results obtained using VWT and CWT were compared. The verification of field investigation indicates that VWT is more accurate and reliable than CWT. The zoning results are consistent with the actual situations and the key of planning design for the rational development of coal resources and protection of eco-geological environment. Copyright © 2018 Elsevier B.V. All rights reserved.
Ad hoc committee on global climate issues: Annual report
Gerhard, L.C.; Hanson, B.M.B.
2000-01-01
The AAPG Ad Hoc Committee on Global Climate Issues has studied the supposition of human-induced climate change since the committee's inception in January 1998. This paper details the progress and findings of the committee through June 1999. At that time there had been essentially no geologic input into the global climate change debate. The following statements reflect the current state of climate knowledge from the geologic perspective as interpreted by the majority of the committee membership. The committee recognizes that new data could change its conclusions. The earth's climate is constantly changing owing to natural variability in earth processes. Natural climate variability over recent geological time is greater than reasonable estimates of potential human-induced greenhouse gas changes. Because no tool is available to test the supposition of human-induced climate change and the range of natural variability is so great, there is no discernible human influence on global climate at this time.
Doctor, Daniel H.; Doctor, Katarina Z.
2012-01-01
In this study the influence of geologic features related to sinkhole susceptibility was analyzed and the results were mapped for the region of Jefferson County, West Virginia. A model of sinkhole density was constructed using Geographically Weighted Regression (GWR) that estimated the relations among discrete geologic or hydrologic features and sinkhole density at each sinkhole location. Nine conditioning factors on sinkhole occurrence were considered as independent variables: distance to faults, fold axes, fracture traces oriented along bedrock strike, fracture traces oriented across bedrock strike, ponds, streams, springs, quarries, and interpolated depth to groundwater. GWR model parameter estimates for each variable were evaluated for significance, and the results were mapped. The results provide visual insight into the influence of these variables on localized sinkhole density, and can be used to provide an objective means of weighting conditioning factors in models of sinkhole susceptibility or hazard risk.
Importance of Wetlands to Streamflow Generation
E. S. Verry; R. K. Kolka
2003-01-01
Hewlett (1961) proposed the variable-source-area concept of streamflow origin in the mountains of North Carolina suggesting streamflow was produced from water leaving saturated areas near the channel. Dunne and Black confirmed this concept on the Sleepers River watershed in Vermont (1970). Areas near the river were saturated by subsurface or interflow from adjacent...
PHT3D-UZF: A reactive transport model for variably-saturated porous media
Wu, Ming Zhi; Post, Vincent E. A.; Salmon, S. Ursula; Morway, Eric D.; Prommer, H.
2016-01-01
A modified version of the MODFLOW/MT3DMS-based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably-saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D-UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated-zone flow (UZF1) package. A volume-averaged approach similar to the method used in UZF-MT3DMS was adopted. The PHREEQC-based computation of chemical processes within PHT3D-UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional-scale applications, UZF1 simulates downward-only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably-saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, N.; Kaya, B.S.; Godt, J.W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Magoba, Moses; Opuwari, Mimonitu
2017-04-01
This paper embodies a study carried out to assess the Petrophysical evaluation of upper shallow marine sandstone reservoir of 10 selected wells in the Bredasdorp basin, offshore, South Africa. The studied wells were selected randomly across the upper shallow marine formation with the purpose of conducting a regional study to assess the difference in reservoir properties across the formation. The data sets used in this study were geophysical wireline logs, Conventional core analysis and geological well completion report. The physical rock properties, for example, lithology, fluid type, and hydrocarbon bearing zone were qualitatively characterized while different parameters such as volume of clay, porosity, permeability, water saturation ,hydrocarbon saturation, storage and flow capacity were quantitatively estimated. The quantitative results were calibrated with the core data. The upper shallow marine reservoirs were penetrated at different depth ranging from shallow depth of about 2442m to 3715m. The average volume of clay, average effective porosity, average water saturation, hydrocarbon saturation and permeability range from 8.6%- 43%, 9%- 16%, 12%- 68% , 32%- 87.8% and 0.093mD -151.8mD respectively. The estimated rock properties indicate a good reservoir quality. Storage and flow capacity results presented a fair to good distribution of hydrocarbon flow.
Krivec, Bojan; Voga, Gorazd; Podbregar, Matej
2004-05-31
Patients with massive pulmonary embolism and obstructive shock usually require hemodynamic stabilization and thrombolysis. Little is known about the optimal and proper use of volume infusion and vasoactive drugs, or about the titration of thrombolytic agents in patients with relative contraindication for such treatment. The aim of the study was to find the most rapidly changing hemodynamic variable to monitor and optimize the treatment of patients with obstructive shock following massive pulmonary embolism. Ten consecutive patients hospitalized in the medical intensive care unit in the community General Hospital with obstructive shock following massive pulmonary embolism were included in the prospective observational study. Heart rate, systolic arterial pressure, central venous pressure, mean pulmonary-artery pressure, cardiac index, total pulmonary vascular-resistance index, mixed venous oxygen saturation, and urine output were measured on admission and at 1, 2, 3, 4, 8, 12, and 16 hours. Patients were treated with urokinase through the distal port of a pulmonary-artery catheter. At 1 hour, mixed venous oxygen saturation, systolic arterial pressure and cardiac index were higher than their admission values (31+/-10 vs. 49+/-12%, p<0.0001; 86+/-12 vs. 105+/-17 mmHg, p<0.01; 1.5+/-0.4 vs. 1.9+/-0.7 L/min/m2, p<0.05; respectively), whereas heart rate, central venous pressure, mean pulmonary-artery pressure and urine output remained unchanged. Total pulmonary vascular-resistance index was lower than at admission (29+/-10 vs. 21+/-12 mmHg/L/min/m2, p<0.05). The relative change of mixed venous oxygen saturation at hour 1 was higher than the relative changes of all other studied variables (p<0.05). Serum lactate on admission and at 12 hours correlated to mixed venous oxygen saturation (r=-0.855, p<0.001). In obstructive shock after massive pulmonary embolism, mixed venous oxygen saturation changes more rapidly than other standard hemodynamic variables.
Hetcher, Kari K.; Miller, Todd S.; Garry, James D.; Reynolds, Richard J.
2003-01-01
This set of maps and geohydrologic sections depicts the geology and hydrology of aquifers in the 21.9-square-mile reach of the Chenango River valley between Brisben and North Norwich, N.Y. This report depicts the principal geographic features of the study area; locations of domestic, commercial, and municipal wells from which data were obtained to construct water-table and saturated-thickness maps and five geohydrologic sections; surficial geology; water-table altitude; generalized saturated thickness of the unconfined (water-table) aquifer; generalized thickness of the discontinuous series of confined aquifers; and five geohydrologic sections, all of which are in the northern part of the study area.The unconsolidated material in the Chenango River valley consists primarily of three types of deposits: (1) glaciofluvial material consisting of stratified coarse-grained sediment (sand and gravel) that was deposited by meltwater streams flowing above, below, or next to a glacier; (2) glaciolacustrine material consisting of stratified fine-grained sediment (very fine sand, silt, and clay) that was deposited in lakes that formed at the front of a glacier; and (3) recent alluvial material consisting of stratified fine-to-medium grained sediment (fine-to-medium sand and silt) that was deposited on flood plains.The water-table map was compiled from water-level data obtained from wells completed in the unconfined aquifer, and from altitudes of stream and river surfaces indicated on 1:24,000-scale topographic maps. Depth to the water table ranged from less than 5 feet below land surface near major streams to more than 75 feet on some of the kame terraces along the valley walls. Saturated thickness of the unconfined aquifer ranged from less than 1 foot near Norwich to more than 200 feet at a kame delta north of Oxford.A discontinuous series of confined aquifers is present throughout much of the Chenango River valley north of Oxford. These aquifers consist of kame deposits, eskers, and subglacial outwash sand and gravel deposits that are overlain and confined by lacustrine fine sand, silt, and clay. The saturated thickness of these aquifers is as much as 150 feet near North Norwich.
NASA Astrophysics Data System (ADS)
Uchida, T.; Waseda, A.; Namikawa, T.
2005-12-01
In 1998 and 2002 Mallik wells were drilled at Mackenzie Delta in the Canadian Arctic that clarified the characteristics of gas hydrate-dominant sandy layers at depths from 890 to 1110 m beneath the permafrost zone. Continuous downhole well log data as well as visible gas hydrates have confirmed pore-space hydrate as intergranular pore filling within sandy layers whose saturations are up to 80% in pore volume, but muddy sediments scarcely contain. Plenty of gas hydrate-bearing sand core samples have been obtained from the Mallik wells. According to grain size distributions pore-space hydrate is dominant in medium- to very fine-grained sandy strata. Methane gas accumulation and original pore space large enough to occur within host sediments may be required for forming highly saturated gas hydrate in pore system. The distribution of a porous and coarser-grained host rock should be one of the important factors to control the occurrence of gas hydrate, as well as physicochemical conditions. Subsequent analyses in sedimentology and geochemistry performed on gas hydrate-bearing sandy core samples also revealed important geologic and sedimentological controls on the formation and concentration of natural gas hydrate. This appears to be a similar mode for conventional oil and gas accumulations. It is necessary for investigating subsurface fluid flow behaviors to evaluate both porosity and permeability of gas hydrate-bearing sandy sediments, and the measurements of water permeability for them indicate that highly saturated sands may have permeability of a few millidarcies. The isotopic data of methane show that hydrocarbon gas contained in gas hydrate is generated by thermogenic decomposition of kerogen in deep mature sediments. Based on geochemical and geological data, methane is inferred to migrate upward closely associated with pore water hundreds of meters into and through the hydrate stability zone partly up to the permafrost zone and the surface along faults and permeable sandy pathways. It should be remarked that there are many similar features in appearance and characteristics between the terrestrial and deep marine areas such as Nankai Trough with observations of well-interconnected and highly saturated pore-space hydrate.
NASA Astrophysics Data System (ADS)
Taneja, Ankur; Higdon, Jonathan
2018-01-01
A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.
Basin centered gas systems of the U.S.
Popov, Marin A.; Nuccio, Vito F.; Dyman, Thaddeus S.; Gognat, Timothy A.; Johnson, Ronald C.; Schmoker, James W.; Wilson, Michael S.; Bartberger, Charles E.
2001-01-01
Basin-center accumulations, a type of continuous accumulation, have spatial dimensions equal to or exceeding those of conventional oil and gas accumulations, but unlike conventional fields, cannot be represented in terms of discrete, countable units delineated by downdip hydrocarbon-water contacts. Common geologic and production characteristics of continuous accumulations include their occurrence downdip from water-saturated rocks, lack of traditional trap or seal, relatively low matrix permeability, abnormal pressures (high or low), local interbedded source rocks, large in-place hydrocarbon volumes, and low recovery factors. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, West Virginia, is currently re-evaluating the resource potential of basin-center gas accumulations in the U.S. in light of changing geologic perceptions about these accumulations (such as the role of subtle structures to produce sweet spots), and the availability of new data. Better geologic understanding of basin-center gas accumulations could result in new plays or revised plays relative to those of the U.S. Geological Survey 1995 National Assessment (Gautier and others, 1995). For this study, 33 potential basin-center gas accumulations throughout the U.S. were identified and characterized based on data from the published literature and from well and reservoir databases (Figure 1). However, well-known or established basin-center accumulations such as the Green River Basin, the Uinta Basin, and the Piceance Basin are not addressed in this study.
Aging of D-limonene-cleaned assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somer, T.A.
1994-04-01
The performance of 2000 electronic circuit variables was monitored throughout a 5000-hour exposure to + 160{degrees}F. the 2000 variables involve 36 electronic assemblies, cleaned with various solvents, including d-limonene, as a replacement for TCE. The assemblies were divided into four groups, including a TCE-cleaned control group at room temperature. Of the three groups exposed at + 160{degrees}F, one was cleaned in TCE, one was cleaned in d-limonene, and one was kept in a saturated d-limonene atmosphere. No performance degradation was observed with any of the groups, including the worst case exposure in a saturated d-limonene atmosphere.
Benchmarking variable-density flow in saturated and unsaturated porous media
NASA Astrophysics Data System (ADS)
Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas
2015-04-01
In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.
Long-term behavior of water content and density in an earthen liner
Frank, T.E.; Krapac, I.G.; Stark, T.D.; Strack, G.D.
2005-01-01
An extensively instrumented compacted earthen liner was constructed at the Illinois State Geological Survey facility in Champaign, III. in 1987. A pond of water 0.31 m deep was maintained on top of the 7.3 m ?? 14.6 m ?? 0.9 m thick liner for 14 years. One of the goals of the project was to evaluate the long-term performance of a compacted earthen liner by monitoring the long-term changes in water content and density. The water content of the earthen liner showed no trend with depth or time. The liner density remained essentially constant from construction through excavation in 2002. The liner did not become fully saturated. Upon excavation of the liner, the degree of saturation was 80.0??6.3% after 14 years of ponding under a hydraulic head of 0.31 m. The results imply that properly designed and constructed earthen liners may reduce the possibility of pollutants leaching from municipal solid waste containment facilities by remaining partially saturated for years and maintaining the placement density. Journal of Geotechnical and Geoenvironmental Engineering ?? ASCE.
Toward direct pore-scale modeling of three-phase displacements
NASA Astrophysics Data System (ADS)
Mohammadmoradi, Peyman; Kantzas, Apostolos
2017-12-01
A stable spreading film between water and gas can extract a significant amount of bypassed non-aqueous phase liquid (NAPL) through immiscible three-phase gas/water injection cycles. In this study, the pore-scale displacement mechanisms by which NAPL is mobilized are incorporated into a three-dimensional pore morphology-based model under water-wet and capillary equilibrium conditions. The approach is pixel-based and the sequence of invasions is determined by the fluids' connectivity and the threshold capillary pressure of the advancing interfaces. In addition to the determination of three-phase spatial saturation profiles, residuals, and capillary pressure curves, dynamic finite element simulations are utilized to predict the effective permeabilities of the rock microtomographic images as reasonable representations of the geological formations under study. All the influential features during immiscible fluid flow in pore-level domains including wetting and spreading films, saturation hysteresis, capillary trapping, connectivity, and interface development strategies are taken into account. The capabilities of the model are demonstrated by the successful prediction of saturation functions for Berea sandstone and the accurate reconstruction of three-phase fluid occupancies through a micromodel.
NASA Astrophysics Data System (ADS)
Mesbah, Hany S.; Morsy, Essam A.; Soliman, Mamdouh M.; Kabeel, Khamis
2017-06-01
This paper presents the results of the application of the Geoelectrical Resistivity Sounding (GRS) and Ground Penetrating Radar (GPR) for outlining and investigating of surface springing out (flow) of groundwater to the base of an service building site, and determining the reason(s) for the zone of maximum degree of saturation; in addition to provide stratigraphic information for this site. The studied economic building is constructed lower than the ground surface by about 7 m. A Vertical Electrical Sounding (VES) survey was performed at 12 points around the studied building in order to investigate the vertical and lateral extent of the subsurface sequence, three VES's were conducted at each side of the building at discrete distances. And a total of 9 GPR profiles with 100- and 200-MHz antennae were conducted, with the objective of evaluating the depth and the degree of saturation of the subsurface layers. The qualitative and quantitative interpretation of the acquired VES's showed easily the levels of saturations close to and around the studied building. From the interpretation of GPR profiles, it was possible to locate and determine the saturated layers. The radar signals are penetrated and enabled the identification of the subsurface reflectors. The results of GPR and VES showed a good agreement and the integrated interpretations were supported by local geology. Finally, the new constructed geoelectrical resistivity cross-sections (in contoured-form), are easily clarifying the direction of groundwater flow toward the studied building.
Hydrological and Geological Features Contributing to a Seepage Event at Yucca Mountain
NASA Astrophysics Data System (ADS)
Fedors, R. W.; Smart, K. J.; Parrott, J. D.
2006-05-01
The occurrence of an unusual seepage event in the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain (YM) in 2005 provides an opportunity to further understand the hydrological system associated with flow in fractured rocks and seepage into tunnels. Understanding the contributing factors for this seepage occurrence in the ventilated tunnel will assist U.S. Nuclear Regulatory Commission in its assessment of Department of Energy flow models. The seepage event begin in the later portion of an El Nino winter (February 2005) predominantly along a 40-m [130-ft] section of the south ramp of the ESF tunnel. The stratigraphic section at this location is comprised of a portion of the Tiva Canyon Tuff, which is a rhyolitic ignimbrite. The effect of El Nino conditions in the semi-arid climate of southern Nevada near YM is greatly increased winter precipitation. Based on the ~50 years of record at a nearby meteorological station, the winter of 2004-2005 was the wettest winter on record. The previous largest winter precipitation amounts were recorded in the El Nino years of 1992-1993 and 1997-1998. During the 1997 El Nino year, a monitored set of boreholes in nearby Pagany Wash indicated that a saturated front traversed the entire Tiva Canyon Tuff section during a single event (Le Cain and Kurmack, 2002, USGS Water Resources Investigations Report 02-4035). It is unclear if the fracture system in the south ramp location was saturated in the February 2005 event; no data were available to estimate the saturated state of the fracture system. With heavy precipitation occurring throughout the winter, however, the matrix and fracture systems were likely primed (i.e., saturation levels were likely significantly higher than normal) for a significant percolation event. Ponding caused by focusing of runoff at the ground surface above seepage location in the south ramp of the ESF tunnel likely did not occur based on topographical and catchment considerations (no significant depressions or gullies). Analyses of the geological characteristics associated with the seepage location suggest the contributing factors that constrained seepage to this particular portion of the tunnel include (i) distance to the surface (i.e., ~60 m [200 ft]), (ii) gently dipping strata with distinct lithological contacts that may have laterally diverted water, (iii) faults and fractures, and (iv) downslope capping by rock units with different hydrological characteristics. This is an independent product of the CNWRA and does not necessarily reflect the views of regulatory positions of the NRC. The NRC staff views expressed herein are preliminary and do not constitute a final judgment or determination of the matters addressed or of the acceptability of a license application for a geologic repository at Yucca Mountain.
Ohlmacher, G.C.; Davis, J.C.
2003-01-01
Landslides in the hilly terrain along the Kansas and Missouri rivers in northeastern Kansas have caused millions of dollars in property damage during the last decade. To address this problem, a statistical method called multiple logistic regression has been used to create a landslide-hazard map for Atchison, Kansas, and surrounding areas. Data included digitized geology, slopes, and landslides, manipulated using ArcView GIS. Logistic regression relates predictor variables to the occurrence or nonoccurrence of landslides within geographic cells and uses the relationship to produce a map showing the probability of future landslides, given local slopes and geologic units. Results indicated that slope is the most important variable for estimating landslide hazard in the study area. Geologic units consisting mostly of shale, siltstone, and sandstone were most susceptible to landslides. Soil type and aspect ratio were considered but excluded from the final analysis because these variables did not significantly add to the predictive power of the logistic regression. Soil types were highly correlated with the geologic units, and no significant relationships existed between landslides and slope aspect. ?? 2003 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Koshigai, Masaru; Marui, Atsunao
Water table provides important information for the evaluation of groundwater resource. Recently, the estimation of water table in wide area is required for effective evaluation of groundwater resources. However, evaluation process is met with difficulties due to technical and economic constraints. Regression analysis for the prediction of groundwater levels based on geomorphologic and geologic conditions is considered as a reliable tool for the estimation of water table of wide area. Data of groundwater levels were extracted from the public database of geotechnical information. It was observed that changes in groundwater level depend on climate conditions. It was also observed and confirmed that there exist variations of groundwater levels according to geomorphologic and geologic conditions. The objective variable of the regression analysis was groundwater level. And the explanatory variables were elevation and the dummy variable consisting of group number. The constructed regression formula was significant according to the determination coefficients and analysis of the variance. Therefore, combining the regression formula and mesh map, the statistical method to estimate the water table based on geomorphologic and geologic condition for the whole country could be established.
Application of thermal model for pan evaporation to the hydrology of a defined medium, the sponge
NASA Technical Reports Server (NTRS)
Trenchard, M. H.; Artley, J. A. (Principal Investigator)
1981-01-01
A technique is presented which estimates pan evaporation from the commonly observed values of daily maximum and minimum air temperatures. These two variables are transformed to saturation vapor pressure equivalents which are used in a simple linear regression model. The model provides reasonably accurate estimates of pan evaporation rates over a large geographic area. The derived evaporation algorithm is combined with precipitation to obtain a simple moisture variable. A hypothetical medium with a capacity of 8 inches of water is initialized at 4 inches. The medium behaves like a sponge: it absorbs all incident precipitation, with runoff or drainage occurring only after it is saturated. Water is lost from this simple system through evaporation just as from a Class A pan, but at a rate proportional to its degree of saturation. The contents of the sponge is a moisture index calculated from only the maximum and minium temperatures and precipitation.
Saturation-state sensitivity of marine bivalve larvae to ocean acidification
NASA Astrophysics Data System (ADS)
Waldbusser, George G.; Hales, Burke; Langdon, Chris J.; Haley, Brian A.; Schrader, Paul; Brunner, Elizabeth L.; Gray, Matthew W.; Miller, Cale A.; Gimenez, Iria
2015-03-01
Ocean acidification results in co-varying inorganic carbon system variables. Of these, an explicit focus on pH and organismal acid-base regulation has failed to distinguish the mechanism of failure in highly sensitive bivalve larvae. With unique chemical manipulations of seawater we show definitively that larval shell development and growth are dependent on seawater saturation state, and not on carbon dioxide partial pressure or pH. Although other physiological processes are affected by pH, mineral saturation state thresholds will be crossed decades to centuries ahead of pH thresholds owing to nonlinear changes in the carbonate system variables as carbon dioxide is added. Our findings were repeatable for two species of bivalve larvae could resolve discrepancies in experimental results, are consistent with a previous model of ocean acidification impacts due to rapid calcification in bivalve larvae, and suggest a fundamental ocean acidification bottleneck at early life-history for some marine keystone species.
Seismoelectric field measurements in unconsolidated sediments
NASA Astrophysics Data System (ADS)
Rabbel, Wolfgang; Iwanowski-Strahser, Katja; Strahser, Matthias; Dzieran, Laura; Thorwart, Martin
2017-04-01
Seismoelectric (SE) prospecting has the potential of determining hydraulic permeability in situ. However, the SE response of geological interfaces (IR) is influenced also by porosity, saturation and salinity. We present examples of SE surveys of near-surface unconsolidated sediments showing clear IR arrivals from the shallow groundwater table and laterally consistent IR arrivals from interfaces inside the vadoze zone. Theses measurements are complemented by seismic, GPR and geoelectric surveys for constraining bulk porosity, water saturation and salinity. They show that porosity and water content change at the interfaces generating IR arrivals. The combination of these methods enables us to estimate permeability contrast associated with major IR arrivals via numerical modeling of SE waveform amplitudes. In case of the analyzed field example this contrast is estimated to be of the order of 10 within the vadoze zone and of 100 at the aquifer-aquitard interface.
Injection and Monitoring at the Wallula Basalt Pilot Project
McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; ...
2014-01-01
Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show thatmore » mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity and additional geologic sequestration options in regions of these countries where conventional storage options are limited.« less
NASA Astrophysics Data System (ADS)
Namhata, A.; Dilmore, R. M.; Oladyshkin, S.; Zhang, L.; Nakles, D. V.
2015-12-01
Carbon dioxide (CO2) storage into geological formations has significant potential for mitigating anthropogenic CO2 emissions. An increasing emphasis on the commercialization and implementation of this approach to store CO2 has led to the investigation of the physical processes involved and to the development of system-wide mathematical models for the evaluation of potential geologic storage sites and the risk associated with them. The sub-system components under investigation include the storage reservoir, caprock seals, and the above zone monitoring interval, or AZMI, to name a few. Diffusive leakage of CO2 through the caprock seal to overlying formations may occur due to its intrinsic permeability and/or the presence of natural/induced fractures. This results in a potential risk to environmental receptors such as underground sources of drinking water. In some instances, leaking CO2 also has the potential to reach the ground surface and result in atmospheric impacts. In this work, fluid (i.e., CO2 and brine) flow above the caprock, in the region designated as the AZMI, is modeled for a leakage event of a typical geologic storage system with different possible boundary scenarios. An analytical and approximate solution for radial migration of fluids in the AZMI with continuous inflow of fluids from the reservoir through the caprock has been developed. In its present form, the AZMI model predicts the spatial changes in pressure - gas saturations over time in a layer immediately above the caprock. The modeling is performed for a benchmark case and the data-driven approach of arbitrary Polynomial Chaos (aPC) Expansion is used to quantify the uncertainty of the model outputs based on the uncertainty of model input parameters such as porosity, permeability, formation thickness, and residual brine saturation. The recently developed aPC approach performs stochastic model reduction and approximates the models by a polynomial-based response surface. Finally, a global sensitivity analysis was performed with Sobol indices based on the aPC technique to determine the relative importance of these input parameters on the model output space.
NASA Astrophysics Data System (ADS)
Dueker, M.; Clauson, K.; Yang, Q.; Umemoto, K.; Seltzer, A. M.; Zakharova, N. V.; Matter, J. M.; Stute, M.; Takahashi, T.; Goldberg, D.; O'Mullan, G. D.
2012-12-01
Despite growing appreciation for the importance of microbes in altering geochemical reactions in the subsurface, the microbial response to geological carbon sequestration injections and the role of microbes in altering metal mobilization following leakage scenarios in shallow aquifers remain poorly constrained. A Newark Basin test well was utilized in field experiments to investigate patterns of microbial succession following injection of CO2 saturated water into isolated aquifer intervals. Additionally, laboratory mesocosm experiments, including microbially-active and inactive (autoclave sterilized) treatments, were used to constrain the microbial role in mineral dissolution, trace metal release, and gas production (e.g. hydrogen and methane). Hydrogen production was detected in both sterilized and unsterilized laboratory mesocosm treatments, indicating abiotic hydrogen production may occur following CO2 leakage, and methane production was detected in unsterilized, microbially active mesocosms. In field experiments, a decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), the production of hydrogen gas, and increased bacterial cell concentrations. 16S ribosomal RNA clone libraries, from samples collected before and after the test well injection, were compared in an attempt to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injection, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia, Acidobacteria and other microbes associated with iron reducing and syntrophic metabolism. The concurrence of increased microbial cell concentration, and rapid microbial community succession, with increased concentrations of hydrogen gas suggests that abiotically produced hydrogen may serve as an ecologically-relevant energy source stimulating changes in aquifer microbial communities immediately following CO2 leakage.
Discussion of pore pressure transmission under rain infiltration in a soil layer
NASA Astrophysics Data System (ADS)
Yang, S. Y.; Jan, C. D.
2017-12-01
The vadose zone (or unsaturated zone) denotes the geologic media between ground surface and the water table in situ where the openings, or pores, in the soil (rock) layers are partially filled with water and air. In this landscape, rainwater infiltrates into soils advancing through this vadose zone and could generates a shallow saturation zone at soil bedrock boundary due to permeability contrast. This saturation zone leads to downslope shallow subsurface storm runoff that contributes to a part of saturation overland flow, dominating water reaching river channels. Hence, unsaturated processes (e.g., rain infiltration) is an important issue that can determine the timing and magnitude of positive pore pressure and discharge peaks, and the characteristics of runoff, water chemistry, hillslope stability is also tie to the processes. In this study, we investigated the transmission of pore pressure evolution in the vadose zone for diverse soil materials based on poroelasticity theory. Commonly, a traditional way is to utilize the Richard's equation to predict pore pressure evolution under unsaturated rain infiltration, ignoring the inertial effect on the process. Here we relax this limitation and propose two reference time tk and tep that can represent the arriving time at a certain depth of wave propagation and dissipation, respectively. Form ground surface to a depth of 1 m, tk has significant differences under nearly unsaturated conditions for diverse soil properties; however, no evident variations in tk can be observed under nearly saturated conditions. Values of tep for loose, cohesionless soils are much greater but decreases to the smallest one (within 1 day) than those for other soil properties under a nearly saturated condition. Results indicate that transient pore pressure transmission is mainly dominated by dynamic wave propagation but the effect of dissipation could become more important with increase in water saturation.
NASA Astrophysics Data System (ADS)
Ba, Jing; Xu, Wenhao; Fu, Li-Yun; Carcione, José M.; Zhang, Lin
2017-03-01
Heterogeneity of rock's fabric can induce heterogeneous distribution of immiscible fluids in natural reservoirs, since the lithological variations (mainly permeability) may affect fluid migration in geological time scales, resulting in patchy saturation of fluids. Therefore, fabric and saturation inhomogeneities both affect wave propagation. To model the wave effects (attenuation and velocity dispersion), we introduce a double double-porosity model, where pores saturated with two different fluids overlap with pores having dissimilar compressibilities. The governing equations are derived by using Hamilton's principle based on the potential energy, kinetic energy, and dissipation functions, and the stiffness coefficients are determined by gedanken experiments, yielding one fast P wave and four slow Biot waves. Three examples are given, namely, muddy siltstones, clean dolomites, and tight sandstones, where fabric heterogeneities at three different spatial scales are analyzed in comparison with experimental data. In muddy siltstones, where intrapore clay and intergranular pores constitute a submicroscopic double-porosity structure, wave anelasticity mainly occurs in the frequency range (104-107 Hz), while in pure dolomites with microscopic heterogeneity of grain contacts and tight sandstones with mesoscopic heterogeneity of less consolidated sands, it occurs at 103-107 Hz and 101-103 Hz (seismic band), respectively. The predicted maximum quality factor of the fast compressional wave for the sandstone is the lowest (approximately 8), and that of the dolomite is the highest. The results of the diffusive slow waves are affected by the strong friction effects between solids and fluids. The model describes wave propagation in patchy-saturated rocks with fabric heterogeneity at different scales, and the relevant theoretical predictions agree well with the experimental data in fully and partially saturated rocks.
NASA Astrophysics Data System (ADS)
Hu, R.; Wan, J.; Chen, Y.
2016-12-01
Wettability is a factor controlling the fluid-fluid displacement pattern in porous media and significantly affects the flow and transport of supercritical (sc) CO2 in geologic carbon sequestration. Using a high-pressure micromodel-microscopy system, we performed drainage experiments of scCO2 invasion into brine-saturated water-wet and intermediate-wet micromodels; we visualized the scCO2 invasion morphology at pore-scale under reservoir conditions. We also performed pore-scale numerical simulations of the Navier-Stokes equations to obtain 3D details of fluid-fluid displacement processes. Simulation results are qualitatively consistent with the experiments, showing wider scCO2 fingering, higher percentage of scCO2 and more compact displacement pattern in intermediate-wet micromodel. Through quantitative analysis based on pore-scale simulation, we found that the reduced wettability reduces the displacement front velocity, promotes the pore-filling events in the longitudinal direction, delays the breakthrough time of invading fluid, and then increases the displacement efficiency. Simulated results also show that the fluid-fluid interface area follows a unified power-law relation with scCO2 saturation, and show smaller interface area in intermediate-wet case which suppresses the mass transfer between the phases. These pore-scale results provide insights for the wettability effects on CO2 - brine immiscible displacement in geologic carbon sequestration.
NASA Astrophysics Data System (ADS)
Kwiatkowski, L.
2016-02-01
Ongoing emissions of carbon dioxide (CO2) and invasion of part of this CO2 into the oceans are projected to lower the calcium carbonate saturation state. As a result, the ability of many marine organisms to calcify may be compromised, with significant impacts on ocean ecosystems throughout the 21st Century. In laboratory manipulations, calcifying organisms have exhibited reduced calcification under elevated pCO2 conditions. Consequently, in situ observations of the sensitivity of calcifying communities to natural saturation state variability are increasingly valued as they incorporate complex species interactions, and capture the carbonate chemistry conditions to which communities are acclimatized. Using intensive seawater sampling techniques we assess the community level sensitivity of calcification rates to natural temporal variability in the aragonite saturation state (Ωarag) at both a tropical coral reef and temperate intertidal study site. Both sites experiences large daily variation in Ωarag during low tide due to photosynthesis, respiration, and the time at which the sites are isolated from the open ocean. On hourly timescales, we find that community level rates of calcification have only a weak dependence on variability in Ωarag at the tropical study site. At the temperate study site, although limited Ωarag sensitivity is observed during the day, nighttime community calcification rates are found to be strongly influenced by variability in Ωarag, with greater dissolution rates at lower Ωarag levels. If the short-term sensitivity of community calcification to Ωarag described here is representative of the long-term sensitivity of marine ecosystems to ocean acidification, then one would expect temperate intertidal calcifying communities to be more vulnerable than tropical coral reef calcifying communities. In particular, reductions in net community calcification, in the temperate intertidal zone may be predominately due to the nocturnal impact of ocean acidification.
Effect of current on the maximum possible reward.
Gallistel, C R; Leon, M; Waraczynski, M; Hanau, M S
1991-12-01
Using a 2-lever choice paradigm with concurrent variable interval schedules of reward, it was found that when pulse frequency is increased, the preference-determining rewarding effect of 0.5-s trains of brief cathodal pulses delivered to the medial forebrain bundle of the rat saturates (stops increasing) at values ranging from 200 to 631 pulses/s (pps). Raising the current lowered the saturation frequency, which confirms earlier, more extensive findings showing that the rewarding effect of short trains saturates at pulse frequencies that vary from less than 100 pps to more than 800 pps, depending on the current. It was also found that the maximum possible reward--the magnitude of the reward at or beyond the saturation pulse frequency--increases with increasing current. Thus, increasing the current reduces the saturation frequency but increases the subjective magnitude of the maximum possible reward.
NASA Astrophysics Data System (ADS)
Sarac, Abdulhamit; Kysar, Jeffrey W.
2018-02-01
We present a new methodology for experimental validation of single crystal plasticity constitutive relationships based upon spatially resolved measurements of the direction of the Net Burgers Density Vector, which we refer to as the β-field. The β-variable contains information about the active slip systems as well as the ratios of the Geometrically Necessary Dislocation (GND) densities on the active slip systems. We demonstrate the methodology by comparing single crystal plasticity finite element simulations of plane strain wedge indentations into face-centered cubic nickel to detailed experimental measurements of the β-field. We employ the classical Peirce-Asaro-Needleman (PAN) hardening model in this study due to the straightforward physical interpretation of its constitutive parameters that include latent hardening ratio, initial hardening modulus and the saturation stress. The saturation stress and the initial hardening modulus have relatively large influence on the β-variable compared to the latent hardening ratio. A change in the initial hardening modulus leads to a shift in the boundaries of plastic slip sectors with the plastically deforming region. As the saturation strength varies, both the magnitude of the β-variable and the boundaries of the plastic slip sectors change. We thus demonstrate that the β-variable is sensitive to changes in the constitutive parameters making the variable suitable for validation purposes. We identify a set of constitutive parameters that are consistent with the β-field obtained from the experiment.
Examining Parallelism of Sets of Psychometric Measures Using Latent Variable Modeling
ERIC Educational Resources Information Center
Raykov, Tenko; Patelis, Thanos; Marcoulides, George A.
2011-01-01
A latent variable modeling approach that can be used to examine whether several psychometric tests are parallel is discussed. The method consists of sequentially testing the properties of parallel measures via a corresponding relaxation of parameter constraints in a saturated model or an appropriately constructed latent variable model. The…
Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu
2014-05-19
County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran's I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors.
The Intrinsic Variability in the Water Vapor Saturation Ratio due to Turbulence
NASA Astrophysics Data System (ADS)
Anderson, J. C.; Cantrell, W. H.; Chandrakar, K. K.; Kostinski, A. B.; Niedermeier, D.; Shaw, R. A.
2017-12-01
In the atmosphere, the concentration of water vapor plays an important role in Earth's weather and climate. The mean concentration of water vapor is key to its efficiency as a greenhouse gas; the fluctuations about the mean are important for heat fluxes near the surface of earth. In boundary layer clouds, fluctuations in the water vapor concentration are linked to turbulence. Conditions representative of boundary layer clouds are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the ∏ chamber, where the boundary conditions are controlled and repeatable. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh-Bénard convection. As expected, the distributions for temperature and water vapor concentration broaden as the turbulence becomes more vigorous. From these two measurements the saturation ratio can be calculated. The fluctuations in the water vapor concentration are more important to the variability in the saturation ratio than fluctuations in temperature. In a cloud, these fluctuations in the saturation ratio can result in some cloud droplets experiencing much higher supersaturations. Those "lucky" droplets grow by condensation at a faster rate than other cloud droplets. The difference in the droplet growth rate could contribute to a broadened droplet distribution, which leads to the onset of collision-coalescence. With more intense turbulence these effect will become more pronounced as the fluctuations about the mean saturation ratio become more pronounced.
Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, J P; Johnson, S M
2008-03-26
An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDECmore » now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltanian, Mohamad Reza; Sun, Alexander; Dai, Zhenxue
Yucca Mountain, Nevada, had been extensively investigated as a potential deep geologic repository for storing high-level nuclear wastes. Previous field investigations of stratified alluvial aquifer downstream of the site revealed that there is a hierarchy of sedimentary facies types. There is a corresponding log conductivity and reactive surface area subpopulations within each facies at each scale of sedimentary architecture. Here in this paper, we use a Lagrangian-based transport model in order to analyze radionuclide dispersion in the saturated alluvium of Fortymile Wash, Nevada. First, we validate the Lagrangian model using high-resolution flow and reactive transport simulations. Then, we used themore » validated model to investigate how each scale of sedimentary architecture may affect long-term radionuclide transport at Yucca Mountain. Results show that the reactive solute dispersion developed by the Lagrangian model matches the ensemble average of numerical simulations well. The link between the alluvium spatial variability and reactive solute dispersion at different spatiotemporal scales is demonstrated using the Lagrangian model. Finally, the longitudinal dispersivity of the reactive plume can be on the order of hundreds to thousands of meters, and it may not reach its asymptotic value even after 10,000 years of travel time and 2–3 km of travel distance.« less
USDA-ARS?s Scientific Manuscript database
Hydroxyapatite nanoparticles (nHAP) are increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP in water-saturated granular media were investigated. Experiments were conducted over a range of ionic ...
The Intrinsic Variability in the Water Vapor Saturation Ratio Due to Turbulence
NASA Astrophysics Data System (ADS)
Anderson, Jesse Charles
The water vapor concentration plays an important role for many atmospheric processes. The mean concentration is key to understand water vapor's effect on the climate as a greenhouse gas. The fluctuations about the mean are important to understand heat fluxes between Earth's surface and the boundary layer. These fluctuations are linked to turbulence that is present in the boundary layer. Turbulent conditions are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the pi chamber. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh- Benard convection at several turbulent intensities. These were used to calculate the saturation ratio, often referred to as the relative humidity. The fluctuations in the water vapor concentration were found to be the more important than the temperature for the variability of the saturation ratio. The fluctuations in the saturation ratio result in some cloud droplets experiencing a higher supersaturation than other cloud droplets, causing those "lucky" droplets to grow at a faster rate than other droplets. This difference in growth rates could contribute to a broadening of the size distribution of cloud droplets, resulting in the enhancement of collision-coalescence. These fluctuations become more pronounced with more intense turbulence.
Aging of d-Limonene-cleaned assemblies. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somer, T.A.
1995-08-01
The performance of 1600 electronic circuit variables was monitored throughout an 8000-hour exposure to +160{degrees}F. The variables involve 36 electronic assemblies, cleaned with various solvents, including d-Limonene, as a replacement for trichloroethylene (TCE). The assemblies were divided into four groups, including a TCE-cleaned control group at room temperature. Of the three groups exposed at +160{degrees}F, one was cleaned in TCE, one was cleaned in d-Limonene, and one was kept in a saturated d-Limonene atmosphere. No performance degradation was observed with any of the groups, including the worst-case exposure in a saturated d-Limonene atmosphere.
NASA Astrophysics Data System (ADS)
Hockaday, W. C.; Kane, E. S.; Ohlson, M.; Huang, R.; Von Bargen, J.; Davis, R.
2014-12-01
Efforts have been made by various scientific disciplines to study hyporheic zones and characterize their associated processes. One way to approach the study of the hyporheic zone is to define facies, which are elements of a (hydrobio) geologic classification scheme that groups components of a complex system with high variability into a manageable set of discrete classes. In this study, we try to classify the hyporheic zone based on the geology, geochemistry, microbiology, and understand their interactive influences on the integrated biogeochemical distributions and processes. A number of measurements have been taken for 21 freeze core samples along the Columbia River bank in the Hanford 300 Area, and unique datasets have been obtained on biomass, pH, number of microbial taxa, percentage of N/C/H/S, microbial activity parameters, as well as microbial community attributes/modules. In order to gain a complete understanding of the geological control on these variables and processes, the explanatory variables are set to include quantitative gravel/sand/mud/silt/clay percentages, statistical moments of grain size distributions, as well as geological (e.g., Folk-Wentworth) and statistical (e.g., hierarchical) clusters. The dominant factors for major microbial and geochemical variables are identified and summarized using exploratory data analysis approaches (e.g., principal component analysis, hierarchical clustering, factor analysis, multivariate analysis of variance). The feasibility of extending the facies definition and its control of microbial and geochemical properties to larger scales is discussed.
NASA Astrophysics Data System (ADS)
Qu, W.; Bogena, H. R.; Huisman, J. A.; Martinez, G.; Pachepsky, Y. A.; Vereecken, H.
2013-12-01
Soil water content is a key variable in the soil, vegetation and atmosphere continuum with high spatial and temporal variability. Temporal stability of soil water content (SWC) has been observed in multiple monitoring studies and the quantification of controls on soil moisture variability and temporal stability presents substantial interest. The objective of this work was to assess the effect of soil hydraulic parameters on the temporal stability. The inverse modeling based on large observed time series SWC with in-situ sensor network was used to estimate the van Genuchten-Mualem (VGM) soil hydraulic parameters in a small grassland catchment located in western Germany. For the inverse modeling, the shuffled complex evaluation (SCE) optimization algorithm was coupled with the HYDRUS 1D code. We considered two cases: without and with prior information about the correlation between VGM parameters. The temporal stability of observed SWC was well pronounced at all observation depths. Both the spatial variability of SWC and the robustness of temporal stability increased with depth. Calibrated models both with and without prior information provided reasonable correspondence between simulated and measured time series of SWC. Furthermore, we found a linear relationship between the mean relative difference (MRD) of SWC and the saturated SWC (θs). Also, the logarithm of saturated hydraulic conductivity (Ks), the VGM parameter n and logarithm of α were strongly correlated with the MRD of saturation degree for the prior information case, but no correlation was found for the non-prior information case except at the 50cm depth. Based on these results we propose that establishing relationships between temporal stability and spatial variability of soil properties presents a promising research avenue for a better understanding of the controls on soil moisture variability. Correlation between Mean Relative Difference of soil water content (or saturation degree) and inversely estimated soil hydraulic parameters (log10(Ks), log10(α), n, and θs) at 5-cm, 20-cm and 50-cm depths. Solid circles represent parameters estimated by using prior information; open circles represent parameters estimated without using prior information.
Terziotti, Silvia; Hoos, Anne B.; Harned, Douglas; Garcia, Ana Maria
2010-01-01
As part of the southeastern United States SPARROW (SPAtially Referenced Regressions On Watershed attributes) water-quality model implementation, the U.S. Geological Survey created a dataset to characterize the contribution of phosphorus to streams from weathering and erosion of surficial geologic materials. SPARROW provides estimates of total nitrogen and phosphorus loads in surface waters from point and nonpoint sources. The characterization of the contribution of phosphorus from geologic materials is important to help separate the effects of natural or background sources of phosphorus from anthropogenic sources of phosphorus, such as municipal wastewater or agricultural practices. The potential of a watershed to contribute phosphorus from naturally occurring geologic materials to streams was characterized by using geochemical data from bed-sediment samples collected from first-order streams in relatively undisturbed watersheds as part of the multiyear U.S. Geological Survey National Geochemical Survey. The spatial pattern of bed-sediment phosphorus concentration is offered as a tool to represent the best available information at the regional scale. One issue may weaken the use of bed-sediment phosphorus concentration as a surrogate for the potential for geologic materials in the watershed to contribute to instream levels of phosphorus-an unknown part of the variability in bed-sediment phosphorus concentration may be due to the rates of net deposition and processing of phosphorus in the streambed rather than to variability in the potential of the watershed's geologic materials to contribute phosphorus to the stream. Two additional datasets were created to represent the potential of a watershed to contribute phosphorus from geologic materials disturbed by mining activities from active mines and inactive mines.
NASA Astrophysics Data System (ADS)
Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik
2016-04-01
Nuclear magnetic resonance (NMR) downhole data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). NMR logging is a powerful tool to study geological reservoir formations. The measurements are based on interactions between the magnetic moments of protons in geological formation water and an external magnetic field. Inversion of the measured raw data provides so-called transverse relaxation time (T2) distribution curves or spectra. Different parts of the T2 curve are related with distinct pore radii and corresponding fluid components. A common practice in the analysis of T2 distribution curves is to extract single-valued parameters such as apparent total porosity. Moreover, the derived total NMR apparent porosity and the gamma-gamma density log apparent porosity can be combined to estimate gas hydrate saturation in hydrate-bearing sediments. To avoid potential loss of information, in our new approach we analyze the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. The approach is applied to NMR data measured in gas hydrate research well Mallik 5L-38. We use self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR T2 distribution curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, photo-electric factor, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal amplitudes for all relaxation times. Highly concentrated methane hydrates occur in sand and shaly sand. Most importantly, two subtypes of hydrate-bearing sands and shaly sands were identified. They show distinct NMR signals and differ in hydrate saturation and gamma ray values. An inverse linear relationship between hydrate saturation and clay content was concluded. Finally, we infer that the gas hydrate is not grain coating, but rather, pore filling with matrix support is the preferred growth habit model for the studied formation.
Continuous resistivity profiling data from the Corsica River Estuary, Maryland
Cross, V.A.; Bratton, J.F.; Worley, C.R.; Crusius, John; Kroeger, K.D.
2011-01-01
Submarine groundwater discharge (SGD) into Maryland's Corsica River Estuary was investigated as part of a larger study to determine its importance in nutrient delivery to the Chesapeake Bay. The Corsica River Estuary represents a coastal lowland setting typical of much of the eastern bay. An interdisciplinary U.S. Geological Survey (USGS) science team conducted field operations in the lower estuary in April and May 2007. Resource managers are concerned about nutrients that are entering the estuary via SGD that may be contributing to eutrophication, harmful algal blooms, and fish kills. Techniques employed in the study included continuous resistivity profiling (CRP), piezometer sampling of submarine groundwater, and collection of a time series of radon tracer activity in surface water. A CRP system measures electrical resistivity of saturated subestuarine sediments to distinguish those bearing fresh water (high resistivity) from those with saline or brackish pore water (low resistivity). This report describes the collection and processing of CRP data and summarizes the results. Based on a grid of 67.6 kilometers of CRP data, low-salinity (high-resistivity) groundwater extended approximately 50-400 meters offshore from estuary shorelines at depths of 5 to >12 meters below the sediment surface, likely beneath a confining unit. A band of low-resistivity sediment detected along the axis of the estuary indicated the presence of a filled paleochannel containing brackish groundwater. The meandering paleochannel likely incised through the confining unit during periods of lower sea level, allowing the low-salinity groundwater plumes originating from land to mix with brackish subestuarine groundwater along the channel margins and to discharge. A better understanding of the spatial variability and geological controls of submarine groundwater flow beneath the Corsica River Estuary could lead to improved models and mitigation strategies for nutrient over-enrichment in the estuary and in other similar settings.
NASA Astrophysics Data System (ADS)
Rautman, C. A.; Treadway, A. H.
1991-11-01
Regulatory geologists are concerned with predicting the performance of sites proposed for waste disposal or for remediation of existing pollution problems. Geologic modeling of these sites requires large-scale expansion of knowledge obtained from very limited sampling. This expansion induces considerable uncertainty into the geologic models of rock properties that are required for modeling the predicted performance of the site. One method for assessing this uncertainty is through nonparametric geostatistical simulation. Simulation can produce a series of equiprobable models of a rock property of interest. Each model honors measured values at sampled locations, and each can be constructed to emulate both the univariate histogram and the spatial covariance structure of the measured data. Computing a performance model for a number of geologic simulations allows evaluation of the effects of geologic uncertainty. A site may be judged acceptable if the number of failures to meet a particular performance criterion produced by these computations is sufficiently low. A site that produces too many failures may be either unacceptable or simply inadequately described. The simulation approach to addressing geologic uncertainty is being applied to the potential high-level nuclear waste repository site at Yucca Mountain, Nevada, U.S.A. Preliminary geologic models of unsaturated permeability have been created that reproduce observed statistical properties reasonably well. A spread of unsaturated groundwater travel times has been computed that reflects the variability of those geologic models. Regions within the simulated models exhibiting the greatest variability among multiple runs are candidates for obtaining the greatest reduction in uncertainty through additional site characterization.
Geologic distributions of US oil and gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-07-31
This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists` Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail thanmore » has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study.« less
Geologic distributions of US oil and gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-07-31
This publication presents nonproprietary field size distributions that encompass most domestic oil and gas fields at year-end 1989. These data are organized by geologic provinces as defined by the American Association of Petroleum Geologists' Committee on Statistics of Drilling (AAPG/CSD), by regional geographic aggregates of the AAPG/CSD provinces, and Nationally. The report also provides partial volumetric distributions of petroleum liquid and natural gas ultimate recoveries for three macro-geologic variables: principal lithology of the reservoir rock, principal trapping condition and geologic age of the reservoir rock, The former two variables are presented Nationally and by geographic region, in more detail thanmore » has heretofore been available. The latter variable is provided Nationally at the same level of detail previously available. Eighteen tables and 66 figures present original data on domestic oil and gas occurrence. Unfortunately, volumetric data inadequacy dictated exclusion of Appalachian region oil and gas fields from the study. All other areas of the United States known to be productive of crude oil or natural gas through year-end 1989, onshore and offshore, were included. It should be noted that none of the results and conclusions would be expected to substantively differ had data for the Appalachian region been available for inclusion in the study.« less
Quantitative assessment of mineral resources with an application to petroleum geology
Harff, Jan; Davis, J.C.; Olea, R.A.
1992-01-01
The probability of occurrence of natural resources, such as petroleum deposits, can be assessed by a combination of multivariate statistical and geostatistical techniques. The area of study is partitioned into regions that are as homogeneous as possible internally while simultaneously as distinct as possible. Fisher's discriminant criterion is used to select geological variables that best distinguish productive from nonproductive localities, based on a sample of previously drilled exploratory wells. On the basis of these geological variables, each wildcat well is assigned to the production class (dry or producer in the two-class case) for which the Mahalanobis' distance from the observation to the class centroid is a minimum. Universal kriging is used to interpolate values of the Mahalanobis' distances to all locations not yet drilled. The probability that an undrilled locality belongs to the productive class can be found, using the kriging estimation variances to assess the probability of misclassification. Finally, Bayes' relationship can be used to determine the probability that an undrilled location will be a discovery, regardless of the production class in which it is placed. The method is illustrated with a study of oil prospects in the Lansing/Kansas City interval of western Kansas, using geological variables derived from well logs. ?? 1992 Oxford University Press.
Correlation Between Fracture Network Properties and Stress Variability in Geological Media
NASA Astrophysics Data System (ADS)
Lei, Qinghua; Gao, Ke
2018-05-01
We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.
Capillary Imbibition of Hydraulic Fracturing Fluids into Partially Saturated Shale
NASA Astrophysics Data System (ADS)
Birdsell, D.; Rajaram, H.; Lackey, G.
2015-12-01
Understanding the migration of hydraulic fracturing fluids injected into unconventional reservoirs is important to assess the risk of aquifer contamination and to optimize oil and gas production. Capillary imbibition causes fracturing fluids to flow from fractures into the rock matrix where the fluids are sequestered for geologically long periods of time. Imbibition could explain the low amount of flowback water observed in the field (5-50% of the injected volume) and reduce the chance of fracturing fluid migrating out of formation towards overlying aquifers. We present calculations of spontaneous capillary imbibition in the form of an "imbibition rate parameter" (A) based on the only known exact analytical solution for spontaneous capillary imbibition. A depends on the hydraulic and capillary properties of the reservoir rock, the initial water saturation, and the viscosities of the wetting and nonwetting fluids. Imbibed volumes can be large for a high permeability shale gas reservoir (up to 95% of the injected volume) or quite small for a low permeability shale oil reservoir (as low as 3% of the injected volume). We also present a nondimensionalization of the imbibition rate parameter, which facilitates the calculation of A and clarifies the relation of A to initial saturation, porous medium properties, and fluid properties. Over the range of initial water saturations reported for the Marcellus shale (0.05-0.6), A varies by less than factors of ~1.8 and ~3.4 for gas and oil nonwetting phases respectively. However, A decreases significantly for larger initial water saturations. A is most sensitive to the intrinsic permeability of the reservoir rock and the viscosity of the fluids.
NASA Astrophysics Data System (ADS)
Gran, M.; Zahasky, C.; Garing, C.; Pollyea, R. M.; Benson, S. M.
2017-12-01
One way to reduce CO2 emissions is to capture CO2 generated in power plants and other industrial sources to inject it into a geological formation. Sedimentary basins are the ones traditionally used to store CO2 but the emission sources are not always close to these type of basins. In this case, basalt rocks present a good storage alternative due their extent and also their potential for mineral trapping. Flow through basaltic rocks is governed by the permeable paths provided by rock fractures. Hence, knowing the behavior of the multiphase flow in these fractures becomes crucial. With the aim to describe how aperture and liquid-gas interface changes in the fracture affect relative permeability and what are the implications of permeability stress dependency, a series of core experiments were conducted. To calculate fracture apertures and fluid saturations, core flooding experiments combined with medical X-Ray CT scanner and micro-PET imaging (Micro Positron Emission Tomography) were performed. Capillary pressure and relative permeability drainage curves were simultaneously measured in a fractured basalt core under typical storage reservoir pressures and temperatures. The X-Ray scanner allows fracture apertures to be measured quite accurately even for fractures as small as 30 µ, but obtaining fluid saturations is not straightforward. The micro-PET imaging provides dynamic measurements of tracer distributions which can be used to calculate saturation. Here new experimental data is presented and the challenges associated with measuring fluid saturations using both X-Rays and micro-PET are discussed.
Analytical model for screening potential CO2 repositories
Okwen, R.T.; Stewart, M.T.; Cunningham, J.A.
2011-01-01
Assessing potential repositories for geologic sequestration of carbon dioxide using numerical models can be complicated, costly, and time-consuming, especially when faced with the challenge of selecting a repository from a multitude of potential repositories. This paper presents a set of simple analytical equations (model), based on the work of previous researchers, that could be used to evaluate the suitability of candidate repositories for subsurface sequestration of carbon dioxide. We considered the injection of carbon dioxide at a constant rate into a confined saline aquifer via a fully perforated vertical injection well. The validity of the analytical model was assessed via comparison with the TOUGH2 numerical model. The metrics used in comparing the two models include (1) spatial variations in formation pressure and (2) vertically integrated brine saturation profile. The analytical model and TOUGH2 show excellent agreement in their results when similar input conditions and assumptions are applied in both. The analytical model neglects capillary pressure and the pressure dependence of fluid properties. However, simulations in TOUGH2 indicate that little error is introduced by these simplifications. Sensitivity studies indicate that the agreement between the analytical model and TOUGH2 depends strongly on (1) the residual brine saturation, (2) the difference in density between carbon dioxide and resident brine (buoyancy), and (3) the relationship between relative permeability and brine saturation. The results achieved suggest that the analytical model is valid when the relationship between relative permeability and brine saturation is linear or quasi-linear and when the irreducible saturation of brine is zero or very small. ?? 2011 Springer Science+Business Media B.V.
Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.
2002-01-01
Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.
Porosity determination from 2-D resistivity method in studying the slope failures
NASA Astrophysics Data System (ADS)
Maslinda, Umi; Nordiana, M. M.; Bery, A. A.
2017-07-01
Slope failures have become the main focus for infrastructures development on hilly areas in Malaysia especially the development of tourism and residential. Lack of understanding and information of the subsoil conditions and geotechnical issues are the main cause of the slope failures. The failures happened are due to a combination of few factors such as topography, climate, geology and land use. 2-D resistivity method was conducted at the collapsed area in Selangor. The 2-D resistivity was done to study the instability of the area. The collapsed occurred because of the subsurface materials was unstable. Pole-dipole array was used with 5 m minimum electrode spacing for the 2-D resistivity method. The data was processed using Res2Dinv software and the porosity was calculated using Archie's law equation. The results show that the saturated zone (1-100 Ωm), alluvium or highly weathered rock (100-1000 Ωm), boulders (1600-7000 Ωm) and granitic bedrock (>7000 Ωm). Generally, the slope failures or landslides occur during the wet season or after rainfall. It is because of the water infiltrate to the slope and cause the saturation of the slope which can lead to landslides. Then, the porosity of saturated zone is usually high because of the water content. The area of alluvium or highly weathered rock and saturated zone have high porosity (>20%) and the high porosity also dominated at almost all the collapsed area which means that the materials with porosity >20% is potential to be saturated, unstable and might trigger slope failures.
NASA Astrophysics Data System (ADS)
Paganelli, F.; Schubert, G.; Lopes, R. M. C.; Malaska, M.; Le Gall, A. A.; Kirk, R. L.
2016-12-01
The current SAR data coverage on Titan encompasses several areas in which multiple radar passes are present and overlapping, providing additional information to aid the interpretation of geological and structural features. We exploit the different combinations of look direction and variable incidence angle to examine Cassini Synthetic Aperture RADAR (SAR) data using the Principal Component Analysis (PCA) technique and high-resolution radiometry, as a tool to aid in the interpretation of geological and structural features. Look direction and variable incidence angle is of particular importance in the analysis of variance in the images, which aid in the perception and identification of geological and structural features, as extensively demonstrated in Earth and planetary examples. The PCA enhancement technique uses projected non-ortho-rectified SAR imagery in order to maintain the inherent differences in scattering and geometric properties due to the different look directions, while enhancing the geometry of surface features. The PC2 component provides a stereo view of the areas in which complex surface features and structural patterns can be enhanced and outlined. We focus on several areas of interest, in older and recently acquired flybys, in which evidence of geological and structural features can be enhanced and outlined in the PC1 and PC2 components. Results of this technique provide enhanced geometry and insights into the interpretation of the observed geological and structural features, thus allowing a better understanding towards the geology and tectonics on Titan.
An Evaluation of the Effects of Variable Sampling on Component, Image, and Factor Analysis.
ERIC Educational Resources Information Center
Velicer, Wayne F.; Fava, Joseph L.
1987-01-01
Principal component analysis, image component analysis, and maximum likelihood factor analysis were compared to assess the effects of variable sampling. Results with respect to degree of saturation and average number of variables per factor were clear and dramatic. Differential effects on boundary cases and nonconvergence problems were also found.…
Solid-solution aqueous-solution equilibria: thermodynamic theory and representation
Glynn, P.D.; Reardon, E.J.
1990-01-01
Thorstenson and Plummer's (1977) "stoichiometric saturation' model is reviewed, and a general relation between stoichiometric saturation Kss constants and excess free energies of mixing is derived for a binary solid-solution B1-xCxA: GE = RT[ln Kss - xln(xKCA) - (l-x)ln((l-x)KBA)]. This equation allows a suitable excess free energy function, such as Guggenheim's (1937) sub-regular function, to be fitted from experimentally determined Kss constants. Solid-phase free energies and component activity-coefficients can then be determined from one or two fitted parameters and from the endmember solubility products KBA and KCA. A general form of Lippmann's (1977,1980) "solutus equation is derived from an examination of Lippmann's (1977,1980) "total solubility product' model. Lippmann's ??II or "total solubility product' variable is used to represent graphically not only thermodynamic equilibrium states and primary saturation states but also stoichiometric saturation and pure phase saturation states. -from Authors
Kestay, Laszlo P.; Grundy, Will; Stansberry, John; Sivaramakrishnan, Anand; Thatte, Deepashri; Gudipati, Murthy; Tsang, Constantine; Greenbaum, Alexandra; McGruder, Chima
2016-01-01
The James Webb Space Telescope (JWST) will allow observations with a unique combination of spectral, spatial, and temporal resolution for the study of outer planet satellites within our Solar System. We highlight the infrared spectroscopy of icy moons and temporal changes on geologically active satellites as two particularly valuable avenues of scientific inquiry. While some care must be taken to avoid saturation issues, JWST has observation modes that should provide excellent infrared data for such studies.
1DTempPro V2: new features for inferring groundwater/surface-water exchange
Koch, Franklin W.; Voytek, Emily B.; Day-Lewis, Frederick D.; Healy, Richard W.; Briggs, Martin A.; Lane, John W.; Werkema, Dale D.
2016-01-01
A new version of the computer program 1DTempPro extends the original code to include new capabilities for (1) automated parameter estimation, (2) layer heterogeneity, and (3) time-varying specific discharge. The code serves as an interface to the U.S. Geological Survey model VS2DH and supports analysis of vertical one-dimensional temperature profiles under saturated flow conditions to assess groundwater/surface-water exchange and estimate hydraulic conductivity for cases where hydraulic head is known.
Computational Modeling of Seismic Wave Propagation Velocity-Saturation Effects in Porous Rocks
NASA Astrophysics Data System (ADS)
Deeks, J.; Lumley, D. E.
2011-12-01
Compressional and shear velocities of seismic waves propagating in porous rocks vary as a function of the fluid mixture and its distribution in pore space. Although it has been possible to place theoretical upper and lower bounds on the velocity variation with fluid saturation, predicting the actual velocity response of a given rock with fluid type and saturation remains an unsolved problem. In particular, we are interested in predicting the velocity-saturation response to various mixtures of fluids with pressure and temperature, as a function of the spatial distribution of the fluid mixture and the seismic wavelength. This effect is often termed "patchy saturation' in the rock physics community. The ability to accurately predict seismic velocities for various fluid mixtures and spatial distributions in the pore space of a rock is useful for fluid detection, hydrocarbon exploration and recovery, CO2 sequestration and monitoring of many subsurface fluid-flow processes. We create digital rock models with various fluid mixtures, saturations and spatial distributions. We use finite difference modeling to propagate elastic waves of varying frequency content through these digital rock and fluid models to simulate a given lab or field experiment. The resulting waveforms can be analyzed to determine seismic traveltimes, velocities, amplitudes, attenuation and other wave phenomena for variable rock models of fluid saturation and spatial fluid distribution, and variable wavefield spectral content. We show that we can reproduce most of the published effects of velocity-saturation variation, including validating the Voigt and Reuss theoretical bounds, as well as the Hill "patchy saturation" curve. We also reproduce what has been previously identified as Biot dispersion, but in fact in our models is often seen to be wave multi-pathing and broadband spectral effects. Furthermore, we find that in addition to the dominant seismic wavelength and average fluid patch size, the smoothness of the fluid patches are a critical factor in determining the velocity-saturation response; this is a result that we have not seen discussed in the literature. Most importantly, we can reproduce all of these effects using full elastic wavefield scattering, without the need to resort to more complicated squirt-flow or poroelastic models. This is important because the physical properties and parameters we need to model full elastic wave scattering, and predict a velocity-saturation curve, are often readily available for projects we undertake; this is not the case for poroelastic or squirt-flow models. We can predict this velocity saturation curve for a specific rock type, fluid mixture distribution and wavefield spectrum.
NASA Astrophysics Data System (ADS)
Ballesteros, Daniel; Malard, Arnauld; Jeannin, Pierre-Yves; Jiménez-Sánchez, Montserrat; García-Sansegundo, Joaquín; Meléndez, Mónica; Sendra, Gemma
2013-04-01
Research applied to karst aquifers linked to a homogeneous limestone in high mountain areas affected by several tectonic events is a hard task, due to methodological constraints and the uncertainties of the geological data. The KARSYS approach (Jeannin et al. 2012) is based on the combination of existing geological data and basic principles of karst hydraulic, allowing for characterizing the geometry of an aquifer considering a smaller amount of data than other methods. The Picos de Europa (North Spain) is an alpine karst massif with a surface area of 700 km2, peaks up to 2,648 m and fluvial gorges up to 2,000 m deep, including about 270 km of cave passage. The bedrock is mainly composed of Ordovician quartzite covered by massive Carboniferous limestone and is affected by two systems of thrusts and other faults. The most of the geological structures are from Variscan orogeny (Carboniferous in age), some of them could be originated or modified during the Permian-Mesozoic extensional episode, and the others were originated or reactivated during the Alpine Orogeny. Therefore, the Picos de Europa can be considered as a complex geological environment in which usual hydrogeological methods are difficult to use. The aim of this study is to characterize the geometry of the Picos de Europa aquifers applying the KARSYS approach. The approach includes: 1) the identification of aquifer and aquiclude formations; 2) the inventory of the main springs; 3) the establishment of a 3D geological model, focused on the aquifer boundaries; 4) the implementation of the hydraulic features within the 3D model and the delineation of the karst system. The main aquifer of the Picos de Europa is developed within the Carboniferous limestone and displays a complex geometry generally limited and divided into several unconfined groundwater bodies by Ordovician to Carboniferous rocks related to the thrusts. The lowest limit of the aquifer is marked by the N-dipping detachment level of the thrusts and the top of the Ordovician rocks, pushing the underground flow paths towards the northern part of the massif. Some boundaries of the saturated part of the groundwater bodies are unknown, although they could be associated to some rocks not considered in the geological model. The main karst springs supply 10 to 5,000 l/s, being located at altitudes ranging from 167 to 1,246 m (western area), and 178 to 440 m (central area) and at 600 m (eastern area). Their elevation is progressively decreasing toward the North, conditioning the regional circulation of karst groundwater. These results suggest that the geometry of the saturated part presents several compartments, resulting from the position of the out-of-sequence thrusts, with a relative elevation descending to the North. The results evidenced by the KARSYS approach provide first outlook of the geometry of the karst aquifers of the Picos de Europa, even if deep geological data are not precise or are scarce. The method has also revealed the main targets for future geological and hydrogeological research in this complex karstic environment. Jeannin et al. 2012. Environmental Earth Sciences DOI10.1007/s12665-012-1983-6.
NASA Astrophysics Data System (ADS)
Jiang, T.; Yue, Y.
2017-12-01
It is well known that the mono-frequency directional seismic wave technology can concentrate seismic waves into a beam. However, little work on the method and effect of variable frequency directional seismic wave under complex geological conditions have been done .We studied the variable frequency directional wave theory in several aspects. Firstly, we studied the relation between directional parameters and the direction of the main beam. Secondly, we analyzed the parameters that affect the beam width of main beam significantly, such as spacing of vibrator, wavelet dominant frequency, and number of vibrator. In addition, we will study different characteristics of variable frequency directional seismic wave in typical velocity models. In order to examine the propagation characteristics of directional seismic wave, we designed appropriate parameters according to the character of direction parameters, which is capable to enhance the energy of the main beam direction. Further study on directional seismic wave was discussed in the viewpoint of power spectral. The results indicate that the energy intensity of main beam direction increased 2 to 6 times for a multi-ore body velocity model. It showed us that the variable frequency directional seismic technology provided an effective way to strengthen the target signals under complex geological conditions. For concave interface model, we introduced complicated directional seismic technology which supports multiple main beams to obtain high quality data. Finally, we applied the 9-element variable frequency directional seismic wave technology to process the raw data acquired in a oil-shale exploration area. The results show that the depth of exploration increased 4 times with directional seismic wave method. Based on the above analysis, we draw the conclusion that the variable frequency directional seismic wave technology can improve the target signals of different geologic conditions and increase exploration depth with little cost. Due to inconvenience of hydraulic vibrators in complicated surface area, we suggest that the combination of high frequency portable vibrator and variable frequency directional seismic wave method is an alternative technology to increase depth of exploration or prospecting.
Variation and correlation of hydrologic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.S.Y.
1991-06-01
Hydrological properties vary within a given geological formation and even more so among different soil and rock media. The variance of the saturated permeability is shown to be related to the variance of the pore-size distribution index of a given medium by a simple equation. This relationship is deduced by comparison of the data from Yucca Mountain, Nevada (Peters et al., 1984), Las Cruces, New Mexico (Wierenga et al., 1989), and Apache Leap, Arizona (Rasmussen et al., 1990). These and other studies in different soils and rocks also support the Poiseuille-Carmen relationship between the mean value of saturated permeability andmore » the mean value of capillary radius. Correlations of the mean values and variances between permeability and pore-geometry parameters can lead us to better quantification of heterogeneous flow fields and better understanding of the scaling laws of hydrological properties.« less
Islam, Akand; Sun, Alexander Y.; Yang, Changbing
2016-04-20
We study the convection and mixing of CO 2 in a brine aquifer, where the spread of dissolved CO 2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO 2 saturation volume of the storage formation. Our results suggestmore » that the density increase of resident species causes significant enhancement in CO 2 dissolution, although no significant porosity and permeability alterations are observed. Furthermore, early saturation of the reservoir can have negative impact on CO 2 sequestration.« less
Islam, Akand; Sun, Alexander Y; Yang, Changbing
2016-04-20
We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Early saturation of the reservoir can have negative impact on CO2 sequestration.
Modifications made to ModelMuse to add support for the Saturated-Unsaturated Transport model (SUTRA)
Winston, Richard B.
2014-01-01
This report (1) describes modifications to ModelMuse,as described in U.S. Geological Survey (USGS) Techniques and Methods (TM) 6–A29 (Winston, 2009), to add support for the Saturated-Unsaturated Transport model (SUTRA) (Voss and Provost, 2002; version of September 22, 2010) and (2) supplements USGS TM 6–A29. Modifications include changes to the main ModelMuse window where the model is designed, addition of methods for generating a finite-element mesh suitable for SUTRA, defining how some functions shouldapply when using a finite-element mesh rather than a finite-difference grid (as originally programmed in ModelMuse), and applying spatial interpolation to angles. In addition, the report describes ways of handling objects on the front view of the model and displaying data. A tabulation contains a summary of the new or modified dialog boxes.
Frank S. Gilliam; Nikki L. Lyttle; Ashley Thomas; Mary Beth Adams
2005-01-01
Some N-saturated watersheds of the Fernow Experimental Forest (FEF), West Virginia, exhibit a high degree of spatial heterogeneity in soil N processing. We used soils from four sites at FEF representing a gradient in net N mineralization and nitrification to consider the causes and consequences of such spatial heterogeneity. We collected soils with extremely high vs....
Short-term and seasonal pH,pCO2and saturation state variability in a coral-reef ecosystem
NASA Astrophysics Data System (ADS)
Gray, Sarah E. C.; Degrandpre, Michael D.; Langdon, Chris; Corredor, Jorge E.
2012-09-01
Coral reefs are predicted to be one of the ecosystems most sensitive to ocean acidification. To improve predictions of coral reef response to acidification, we need to better characterize the natural range of variability of pH, partial pressure of carbon dioxide (pCO2) and calcium carbonate saturation states (Ω). In this study, autonomous sensors for pH and pCO2 were deployed on Media Luna reef, Puerto Rico over three seasons from 2007 to 2008. High temporal resolution CaCO3 saturation states were calculated from the in situ data, giving a much more detailed characterization of reef saturation states than previously possible. Reef pH, pCO2 and aragonite saturation (ΩAr) ranged from 7.89 to 8.17 pH units, 176-613 μatm and 2.7-4.7, respectively, in the range characteristic of most other previously studied reef ecosystems. The diel pH, pCO2 and Ω cycles were also large, encompassing about half of the seasonal range of variability. Warming explained about 50% of the seasonal supersaturation in mean pCO2, with the remaining supersaturation primarily due to net heterotrophy and net CaCO3 production. Net heterotrophy was likely driven by remineralization of mangrove derived organic carbon which continued into the fall, sustaining high pCO2 levels until early winter when the pCO2 returned to offshore values. As a consequence, the reef was a source of CO2 to the atmosphere during the summer and fall and a sink during winter, resulting in a net annual source of 0.73 ± 1.7 mol m-2 year-1. These results show that reefs are exposed to a wide range of saturation states in their natural environment. Mean ΩAr levels will drop to 3.0 when atmospheric CO2 increases to 500 μatm and ΩAr will be less than 3.0 for greater than 70% of the time in the summer. Long duration exposure to these low ΩAr levels are expected to significantly decrease calcification rates on the reef.
Goldberg, M S; Giannetti, N; Burnett, R T; Mayo, N E; Valois, M-F; Brophy, J M
2008-10-01
Recent studies suggest that persons with congestive heart failure (CHF) may be at higher risk for short-term effects of air pollution. This daily diary panel study in Montreal, Quebec, was carried out to determine whether oxygen saturation and pulse rate were associated with selected personal factors, weather conditions and air pollution. Thirty-one subjects with CHF participated in this study in 2002 and 2003. Over a 2-month period, the investigators measured their oxygen saturation, pulse rate, weight and temperature each morning and recorded these and other data in a daily diary. Air pollution and weather conditions were obtained from fixed-site monitoring stations. The study made use of mixed regression models, adjusting for within-subject serial correlation and temporal trends, to determine the association between oxygen saturation and pulse rate and personal and environmental variables. Depending on the model, we accounted for the effects of a variety of personal variables (eg, body temperature, salt consumption) as well as nitrogen dioxide (NO2), ozone, maximum temperature and change in barometric pressure at 8:00 from the previous day. In multivariable analyses, the study found that oxygen saturation was reduced when subjects reported that they were ill, consumed salt, or drank liquids on the previous day and had higher body temperatures on the concurrent day (only the latter was statistically significant). Relative humidity and decreased atmospheric pressure from the previous day were associated with oxygen saturation. In univariate analyses, there was negative associations with concentrations of fine particulates, ozone, and sulphur dioxide (SO2), but only SO2 was significant after adjustment for the effects of weather. For pulse rate, no associations were found for the personal variables and in univariate analyses the study found positive associations with NO(2), fine particulates (aerodynamic diameter of 2.5 microm or under, PM(2.5)), SO2, and maximum temperature, although only the latter two were significant after adjustment for environmental effects. The findings from the present investigation suggest that personal and environmental conditions affect intermediate physiological parameters that may affect the health of CHF patients.
Modelling reactive transport in a phosphogypsum dump, Venezia, Italia
NASA Astrophysics Data System (ADS)
Calcara, Massimo; Borgia, Andrea; Cattaneo, Laura; Bartolo, Sergio; Clemente, Gianni; Glauco Amoroso, Carlo; Lo Re, Fabio; Tozzato, Elena
2013-04-01
We develop a reactive-transport porous media flow model for a phosphogypsum dump located on the intertidal deposits of the Venetian Lagoon: 1. we construct a complex conceptual and geologic model from field data using the GMS™ graphical user interface; 2. the geological model is mapped onto a rectangular MODFLOW grid; 3. using the TMT2 FORTRAN90 code we translate this grid into the MESH, INCON and GENER input files for the TOUGH2 series of codes; 4. we run TOUGH-REACT to model flow and reactive transport in the dump and the sediments below it. The model includes 3 different dump materials (phosphogypsum, bituminous and hazardous wastes) with the pores saturated by specific fluids. The sediments below the dump are formed by an intertidal sequence of calcareous sands and silts, in addition to clays and organic deposits, all of which are initially saturated with lagoon salty waters. The recharge rain-water dilutes the dump fluids. In turn, the percolates from the dump react with the underlying sediments and the sea water that saturates them. Simulation results have been compared with chemical sampled analyses. In fact, in spite of the simplicity of our model we are able to show how the pH becomes neutral at a short distance below the dump, a fact observed during aquifer monitoring. The spatial and temporal evolution of dissolution and precipitation reactions occur in our model much alike reality. Mobility of some elements, such as divalent iron, are reduced by specific and concurrent conditions of pH from near-neutrality to moderately high values and positive redox potential; opposite conditions favour mobility of potentially toxic metals such as Cr, As Cd and Pb. Vertical movement are predominant. Trend should be therefore heavily influenced by pH and Eh values. If conditions are favourable to mobility, concentration of these substances in the bottom strata could be high. However, simulation suggest that the sediments tend to reduce the transport potential of contaminants.
Vertically Integrated Models for Carbon Storage Modeling in Heterogeneous Domains
NASA Astrophysics Data System (ADS)
Bandilla, K.; Celia, M. A.
2017-12-01
Numerical modeling is an essential tool for studying the impacts of geologic carbon storage (GCS). Injection of carbon dioxide (CO2) into deep saline aquifers leads to multi-phase flow (injected CO2 and resident brine), which can be described by a set of three-dimensional governing equations, including mass-balance equation, volumetric flux equations (modified Darcy), and constitutive equations. This is the modeling approach on which commonly used reservoir simulators such as TOUGH2 are based. Due to the large density difference between CO2 and brine, GCS models can often be simplified by assuming buoyant segregation and integrating the three-dimensional governing equations in the vertical direction. The integration leads to a set of two-dimensional equations coupled with reconstruction operators for vertical profiles of saturation and pressure. Vertically-integrated approaches have been shown to give results of comparable quality as three-dimensional reservoir simulators when applied to realistic CO2 injection sites such as the upper sand wedge at the Sleipner site. However, vertically-integrated approaches usually rely on homogeneous properties over the thickness of a geologic layer. Here, we investigate the impact of general (vertical and horizontal) heterogeneity in intrinsic permeability, relative permeability functions, and capillary pressure functions. We consider formations involving complex fluvial deposition environments and compare the performance of vertically-integrated models to full three-dimensional models for a set of hypothetical test cases consisting of high permeability channels (streams) embedded in a low permeability background (floodplains). The domains are randomly generated assuming that stream channels can be represented by sinusoidal waves in the plan-view and by parabolas for the streams' cross-sections. Stream parameters such as width, thickness and wavelength are based on values found at the Ketzin site in Germany. Results from the vertically-integrated approach are compared to results using TOUGH2, both in terms of depth-averaged saturation and vertical saturation profiles.
NASA Astrophysics Data System (ADS)
Larson, T.; Sathaye, K.
2014-12-01
A dramatic expansion of hydraulic fracturing and horizontal drilling for natural gas in unconventional reserves is underway. This expansion is fueling considerable public concern, however, that extracted natural gas, reservoir brines and associated fracking fluids may infiltrate to and contaminate shallower (< 500m depth) groundwater reservoirs, thereby posing a health threat. Attributing methane found in shallow groundwater to either deep thermogenic 'fracking' operations or locally-derived shallow microbial sources utilizes geochemical methods including alkane wetness and stable carbon and hydrogen isotope ratios of short chain (C1-C5) hydrocarbons. Compared to shallow microbial gas, thermogenic gas is wetter and falls within a different range of δ13C and δD values. What is not clear, however, is how the transport of natural gas through water saturated geological media may affect its compositional and stable isotope values. What is needed is a means to differentiate potential flow paths of natural gas including 'fast paths' along preexisting fractures and drill casings vs. 'slow paths' through low permeability rocks. In this study we attempt quantify transport-related effects using experimental 1-dimensional two-phase column experiments and analytical solutions to multi-phase gas injection equations. Two-phase experimental results for an injection of natural gas into a water saturated column packed with crushed illite show that the natural gas becomes enriched in methane compared to ethane and propane during transport. Carbon isotope measurements are ongoing. Results from the multi-phase gas injection equations that include methane isotopologue solubility and diffusion effects predict the development of a 'bank' of methane depleted in 13C relative to 12C at the front of a plume of fugitive natural gas. These results, therefore, suggest that transport of natural gas through water saturated geological media may complicate attribution methods needed to distinguish thermogenic and microbial methane.
Optimal savings and the value of population.
Arrow, Kenneth J; Bensoussan, Alain; Feng, Qi; Sethi, Suresh P
2007-11-20
We study a model of economic growth in which an exogenously changing population enters in the objective function under total utilitarianism and into the state dynamics as the labor input to the production function. We consider an arbitrary population growth until it reaches a critical level (resp. saturation level) at which point it starts growing exponentially (resp. it stops growing altogether). This requires population as well as capital as state variables. By letting the population variable serve as the surrogate of time, we are still able to depict the optimal path and its convergence to the long-run equilibrium on a two-dimensional phase diagram. The phase diagram consists of a transient curve that reaches the classical curve associated with a positive exponential growth at the time the population reaches the critical level. In the case of an asymptotic population saturation, we expect the transient curve to approach the equilibrium as the population approaches its saturation level. Finally, we characterize the approaches to the classical curve and to the equilibrium.
Optimal savings and the value of population
Arrow, Kenneth J.; Bensoussan, Alain; Feng, Qi; Sethi, Suresh P.
2007-01-01
We study a model of economic growth in which an exogenously changing population enters in the objective function under total utilitarianism and into the state dynamics as the labor input to the production function. We consider an arbitrary population growth until it reaches a critical level (resp. saturation level) at which point it starts growing exponentially (resp. it stops growing altogether). This requires population as well as capital as state variables. By letting the population variable serve as the surrogate of time, we are still able to depict the optimal path and its convergence to the long-run equilibrium on a two-dimensional phase diagram. The phase diagram consists of a transient curve that reaches the classical curve associated with a positive exponential growth at the time the population reaches the critical level. In the case of an asymptotic population saturation, we expect the transient curve to approach the equilibrium as the population approaches its saturation level. Finally, we characterize the approaches to the classical curve and to the equilibrium. PMID:17984059
Modelling wetland-groundwater interactions in the boreal Kälväsvaara esker, Northern Finland
NASA Astrophysics Data System (ADS)
Jaros, Anna; Rossi, Pekka; Ronkanen, Anna-Kaisa; Kløve, Bjørn
2016-04-01
Many types of boreal peatland ecosystems such as alkaline fens, aapa mires and Fennoscandia spring fens rely on the presence of groundwater. In these ecosystems groundwater creates unique conditions for flora and fauna by providing water, nutrients and constant water temperature enriching local biodiversity. The groundwater-peatland interactions and their dynamics are not, however, in many cases fully understood and their measurement and quantification is difficult due to highly heterogeneous structure of peatlands and large spatial extend of these ecosystems. Understanding of these interactions and their changes due to anthropogenic impact on groundwater resources would benefit the protection of the groundwater dependent peatlands. The groundwater-peatland interactions were investigated using the fully-integrated physically-based groundwater-surface water code HydroGeoSphere in a case study of the Kälväsvaara esker aquifer, Northern Finland. The Kälväsvaara is a geologically complex esker and it is surrounded by vast aapa mire system including alkaline and springs fens. In addition, numerous small springs occur in the discharge zone of the esker. In order to quantify groundwater-peatland interactions a simple steady-state model was built and results were evaluated using expected trends and field measurements. The employed model reproduced relatively well spatially distributed hydrological variables such as soil water content, water depths and groundwater-surface water exchange fluxes within the wetland and esker areas. The wetlands emerged in simulations as a result of geological and topographical conditions. They could be identified by high saturation levels at ground surface and by presence of shallow ponded water over some areas. The model outputs exhibited also strong surface water-groundwater interactions in some parts of the aapa system. These areas were noted to be regions of substantial diffusive groundwater discharge by the earlier studies. In contrast, the simulations were not able to capture small scale point groundwater discharge i.e. springs. This reflects that modelling small scale groundwater input to wetland ecosystems can be challenging without detailed information on the aquifer and wetland geology. Overall, the good consistency between simulations and observations demonstrated that wetland-groundwater interactions can be studied using fully-integrated physically-based groundwater-surface water models.
Locally driven interannual variability of near-surface pH and ΩA in the Strait of Georgia
NASA Astrophysics Data System (ADS)
Moore-Maley, Ben L.; Allen, Susan E.; Ianson, Debby
2016-03-01
Declines in mean ocean pH and aragonite saturation state (ΩA) driven by anthropogenic CO2 emissions have raised concerns regarding the trends of pH and ΩA in estuaries. Low pH and ΩA can be harmful to a variety of marine organisms, especially those with calcium carbonate shells, and so may threaten the productive ecosystems and commercial fisheries found in many estuarine environments. The Strait of Georgia is a large, temperate, productive estuarine system with numerous wild and aquaculture shellfish and finfish populations. We determine the seasonality and variability of near-surface pH and ΩA in the Strait using a one-dimensional, biophysical, mixing layer model. We further evaluate the sensitivity of these quantities to local wind, freshwater, and cloud forcing by running the model over a wide range of scenarios using 12 years of observations. Near-surface pH and ΩA demonstrate strong seasonal cycles characterized by low pH, aragonite-undersaturated waters in winter and high pH, aragonite-supersaturated waters in summer. The aragonite saturation horizon generally lies at ˜20 m depth except in winter and during strong Fraser River freshets when it shoals to the surface. Periods of strong interannual variability in pH and aragonite saturation horizon depth arise in spring and summer. We determine that at different times of year, each of wind speed, freshwater flux, and cloud fraction are the dominant drivers of this variability. These results establish the mechanisms behind the emerging observations of highly variable near-surface carbonate chemistry in the Strait.
Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu
2014-01-01
County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran’s I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors. PMID:24852390
Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring
NASA Astrophysics Data System (ADS)
Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel
2018-03-01
Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip discharge spots traditionally monitored in caves and aims to support modelling approaches of karst hydrological processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest; Hadgu, Teklu; Greenberg, Harris
This report is one follow-on to a study of reference geologic disposal design concepts (Hardin et al. 2011a). Based on an analysis of maximum temperatures, that study concluded that certain disposal concepts would require extended decay storage prior to emplacement, or the use of small waste packages, or both. The study used nominal values for thermal properties of host geologic media and engineered materials, demonstrating the need for uncertainty analysis to support the conclusions. This report is a first step that identifies the input parameters of the maximum temperature calculation, surveys published data on measured values, uses an analytical approachmore » to determine which parameters are most important, and performs an example sensitivity analysis. Using results from this first step, temperature calculations planned for FY12 can focus on only the important parameters, and can use the uncertainty ranges reported here. The survey of published information on thermal properties of geologic media and engineered materials, is intended to be sufficient for use in generic calculations to evaluate the feasibility of reference disposal concepts. A full compendium of literature data is beyond the scope of this report. The term “uncertainty” is used here to represent both measurement uncertainty and spatial variability, or variability across host geologic units. For the most important parameters (e.g., buffer thermal conductivity) the extent of literature data surveyed samples these different forms of uncertainty and variability. Finally, this report is intended to be one chapter or section of a larger FY12 deliverable summarizing all the work on design concepts and thermal load management for geologic disposal (M3FT-12SN0804032, due 15Aug2012).« less
Scholl, Martha; Christenson, Scott; Cozzarelli, Isabelle; Ferree, Dale; Jaeshke, Jeanne
2005-01-01
Analyses of stable isotope profiles (d2H and d18O) in the saturated zone, combined with water-table fluctuations, gave a comprehensive picture of recharge processes in an alluvial aquifer riparian zone. At the Norman Landfill U.S. Geological Survey Toxic Substances Hydrology research site in Norman, Oklahoma, recharge to the aquifer appears to drive biodegradation, contributing fresh supplies of electron acceptors for the attenuation of leachate compounds from the landfill. Quantifying recharge is a first step in studying this process in detail. Both chemical and physical methods were used to estimate recharge. Chemical methods included measuring the increase in recharge water in the saturated zone, as defined by isotopic signature, specific conductance or chloride measurements; and infiltration rate estimates using storm event isotopic signatures. Physical methods included measurement of water-table rise after individual rain events and on an approximately monthly time scale. Evapotranspiration rates were estimated using diurnal watertable fluctuations; outflux of water from the alluvial aquifer during the growing season had a large effect on net recharge at the site. Evaporation and methanogenesis gave unique isotopic signatures to different sources of water at the site, allowing the distinction of recharge using the offset of the isotopic signature from the local meteoric water line. The downward movement of water from large, isotopically depleted rain events in the saturated zone yielded recharge rate estimates (2.2 - 3.3 mm/day), and rates also were determined by observing changes in thickness of the layer of infiltrated recharge water at the top of the saturated zone (1.5 - 1.6 mm/day). Recharge measured over 2 years (1998-2000) in two locations at the site averaged 37 percent of rainfall, however, part of this water had only a short residence time in the aquifer. Isotopes showed recharge water entering the ground-water system in winter and spring, then being removed during the growing season by phreatophyte transpiration. Recharge timing was variable over the course of the study; July and August were the only months that had no recharge in both years. Recharge to the aquifer from the slough (wetland pond) was estimated at one location using the isotopic signature of water affected by evaporation. Recharge was correlated with the rainfall amount over the period of estimation, suggesting that recharge from the slough to the downgradient aquifer was an episodic process, corresponding to elevated water levels in the slough after large rain events.
Basiri, Marjan Ghane; Sotoudeh, Gity; Alvandi, Ehsan; Djalali, Mahmood; Eshraghian, Mohammad Reza; Noorshahi, Neda; Koohdani, Fariba
2015-05-01
Recent studies have established the interaction between APOA2 -256T>C polymorphism and dietary saturated fatty acids intake in relation to obesity on healthy individuals. In the current study, we investigate the effects of this interaction on anthropometric variables and serum levels of leptin and ghrelin in patients with type 2 diabetes. In this cross-sectional study, 737 patients with type 2 diabetes mellitus (290 males and 447 females) were recruited from diabetes clinics in Tehran. The usual dietary intake of all participants during the last year was obtained by validated semiquantitative food frequency questionnaire. APOA2 genotyping was performed by real-time PCR on genomic DNA. No significant relation was obtained by univariate analysis between anthropometric variables and APOA2 genotypes. However, after adjusting for age, gender, physical activity and total energy intake, we identified a significant interaction between APOA2-saturated fatty acids intake and body mass index (BMI). After adjusting for potential confounders, serum levels of ghrelin in CC genotype patients were significantly higher than T allele carriers (p = 0.03), whereas the case with leptin did not reveal a significant difference. The result of this study confirmed the interaction between APOA2 -256T>C polymorphism and SFAs intake with BMI in type 2 diabetic patients. In fact, homozygous patients for the C allele with high saturated fatty acids intake had higher BMI. The APOA2 -256T>C polymorphism was associated with elevated levels of serum ghrelin.
Optimization techniques for integrating spatial data
Herzfeld, U.C.; Merriam, D.F.
1995-01-01
Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.
Reservoir Models for Gas Hydrate Numerical Simulation
NASA Astrophysics Data System (ADS)
Boswell, R.
2016-12-01
Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple/linear way. Significant progress has also occurred in recent years with regard to the geologic characterization of reservoir boundaries. Vertical boundaries with overlying clay-rich "seals" are now widely-appreciated to have non-zero permeability, and lateral boundaries are sources of potential lateral fluid flow.
Ambulatory vital signs in the workup of pulmonary embolism using a standardized 3-minute walk test.
Amin, Qamar; Perry, Jeffrey J; Stiell, Ian G; Mohapatra, Subhra; Alsadoon, Abdulaziz; Rodger, Marc
2015-05-01
Diagnosing pulmonary embolism can be difficult given its highly variable clinical presentation. Our objective was to determine whether a decrease in oxygen saturation or an increase in heart rate while ambulating could be used as an objective tool in the diagnosis of pulmonary embolism. This was a two-site tertiary-care-centre prospective cohort study that enrolled adult emergency department or thrombosis clinic patients with suspected or newly confirmed pulmonary embolism. Patients were asked to participate in a standardized 3-minute walk test, which assessed ambulatory heart rate and ambulatory oxygen saturation. The primary outcome was pulmonary embolism. We enrolled 114 patients, including 30 with pulmonary embolism (26.3%). A ≥2% absolute decrease in ambulatory oxygen saturation and an ambulatory change in heart rate >10 beats per minute (BPM) were significantly associated with pulmonary embolism. An ambulatory heart rate change of >10 BPM had a sensitivity of 96.6% (95% confidence interval [CI] 83.3 to 99.4) and a specificity of 31.0% (95% CI 22.1 to 45.0) for pulmonary embolism. A ≥2% absolute decrease ambulatory oxygen saturation had a sensitivity of 80.2% (95% CI 62.7 to 90.5) and a specificity of 39.3% (95% CI 29.5 to 50.0) for pulmonary embolism. The combination of both variables yielded a sensitivity of 100.0% (95% CI 87.0 to 100.0) and a specificity of 11.0% (95% CI 6.6 to 21.0). In summary, our study found that an ambulatory heart rate change of >10 BPM or a ≥2% absolute decrease in ambulatory oxygen saturation from baseline during a standardized 3-minute walk test are highly correlated with pulmonary embolism. Although the findings appear promising, neither of these variables can currently be recommended as a screening tool for pulmonary embolism until larger prospective studies examine their performance either alone or with pre-existing rules.
Robbins, Lisa L.; Knorr, Paul O.; Daly, Kendra L.; Barrera, Kira E.
2014-01-01
As part of the U.S. Geological Survey (USGS) Coastal and Marine Geology Program project "Response of Florida Shelf Ecosystems to Climate Change" and in partnership with Kendra Daly, University of South Florida (USF), data on surface ocean carbonate chemistry were collected on five cruises along transects on the shallow inner west Florida shelf and northern Gulf of Mexico in 2012. Data from the 2011 cruises were also published (Robbins and others., 2013). The data collected allows the USGS, National Oceanic and Atmospheric Administration (NOAA), and USF scientists to map variations in ocean chemistry including carbonate saturation states along designated tracks. The USGS also partners with NOAA and the National Aeronautics and Space Administration (NASA) to model air-sea flux as part of a Gulf of Mexico Carbon Synthesis project led by NASA.
Spangler, L.H.; Dobeck, L.M.; Repasky, K.S.; Nehrir, A.R.; Humphries, S.D.; Keith, C.J.; Shaw, J.A.; Rouse, J.H.; Cunningham, A.B.; Benson, S.M.; Oldenburg, C.M.; Lewicki, J.L.; Wells, A.W.; Diehl, J.R.; Strazisar, B.R.; Fessenden, J.E.; Rahn, T.A.; Amonette, J.E.; Barr, J.L.; Pickles, W.L.; Jacobson, J.D.; Silver, E.A.; Male, E.J.; Rauch, H.W.; Gullickson, K.S.; Trautz, R.; Kharaka, Y.; Birkholzer, J.; Wielopolski, L.
2010-01-01
A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U.S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented. ?? 2009 The Author(s).
Zhang, M.; Takahashi, M.; Morin, R.H.; Endo, H.; Esaki, T.; ,
2002-01-01
The accurate hydraulic characterization of low-permeability subsurface environments has important practical significance. In order to examine this issue from the perspective of laboratory-based approaches, we review some recent advancements in the theoretical analyses of three different laboratory techniques specifically applied to low-permeability geologic materials: constant-head, constant flow-rate and transient-pulse permeability tests. Some potential strategies for effectively decreasing the time required to confidently estimate the permeability of these materials are presented. In addition, a new and versatile laboratory system is introduced that can implement any of these three test methods while simultaneously subjecting a specimen to high confining pressures and pore pressures, thereby simulating in situ conditions at great depths. The capabilities and advantages of this innovative system are demonstrated using experimental data derived from Shirahama sandstone and Inada granite, two rock types widely encountered in Japan.
NASA Astrophysics Data System (ADS)
Yang, C.; Zhang, Y. K.; Liang, X.
2014-12-01
Damping effect of an unsaturated-saturated system on tempospatialvariations of pressurehead and specificflux was investigated. The variance and covariance of both pressure head and specific flux in such a system due to a white noise infiltration were obtained by solving the moment equations of water flow in the system and verified with Monte Carlo simulations. It was found that both the pressure head and specific flux in this case are temporally non-stationary. The variance is zero at early time due to a deterministic initial condition used, then increases with time, and approaches anasymptotic limit at late time.Both pressure head and specific flux arealso non-stationary in space since the variance decreases from source to sink. The unsaturated-saturated systembehavesasa noise filterand it damps both the pressure head and specific flux, i.e., reduces their variations and enhances their correlation. The effect is stronger in upper unsaturated zone than in lower unsaturated zone and saturated zone. As a noise filter, the unsaturated-saturated system is mainly a low pass filter, filtering out the high frequency components in the time series of hydrological variables. The damping effect is much stronger in the saturated zone than in the saturated zone.
Salt Content Determination for Bentonite Mine Spoil: Saturation Extracts Versus 1:5 Extracts
Marguerite E. Voorhees; Daniel W. Uresk
2004-01-01
The reliability of estimating salt content in saturated extracts from 1:5 (1spoil:5water) extract levels for bentonite mine spoil was examined by regression analyses. Nine chemical variables were examined that included pH, EC, Ca++, Mg++, Na+, K+, HCO3-, SO4-, and Cl-. Ion concentrations from 1:5 extracts were estimated with high predictability for Ca++, Mg++, Na+, SO4...
[Design of a pulse oximeter used to low perfusion and low oxygen saturation].
Tan, Shuangping; Ai, Zhiguang; Yang, Yuxing; Xie, Qingguo
2013-05-01
This paper presents a new pulse oximeter used to low perfusion at 0.125% and wide oxygen saturation range from 35% to 100%. In order to acquire the best PPG signals, the variable gain amplifier(VGA) is adopted in hardware. The self-developed auto-correlation modeling method is adopted in software and it can extract pulse wave from low perfusion signals and remove motion artifacts partly.
Colloid-facilitated transport of cesium in variably saturated Hanford sediments.
Chen, Gang; Flury, Markus; Harsh, James B; Lichtner, Peter C
2005-05-15
Radioactive 137Cs has leaked from underground waste tanks into the vadose zone at the Hanford Reservation in south-central Washington State. There is concern that 137Cs, currently located in the vadose zone, can reach the groundwater. In this study, we investigated whether, and to what extent, colloidal particles can facilitate the transport of 137Cs at Hanford. We used colloidal materials isolated from Hanford sediments. Transport experiments were conducted under variably saturated, steady-state flow conditions in repacked, 20 cm long Hanford sediment columns, with effective water saturations ranging from 0.2 to 1.0. Cesium, pre-associated with colloids, was stripped off during transport through the sediments. The higher the flow rates, the less Cs was stripped off, indicating in part that Cs desorption from carrying colloids was a residence-time-dependent process. Depending on the flow rate, up to 70% of the initially sorbed Cs desorbed from colloidal carriers and was captured in the stationary sediments. Less Cs was stripped off colloids under unsaturated than under saturated flow conditions at similar flow rates. This phenomenon was likely due to the reduced availability of sorption sites for Cs on the sediments as the water content decreased and water flow was divided between mobile and immobile regions.
Effects of the May 5-6, 1973, storm in the Greater Denver area, Colorado
Hansen, Wallace R.
1973-01-01
Rain began falling on the Greater Denver area the evening of Saturday, May 5, 1973, and continued through most of Sunday, May 6. Below about 7,000 feet altitude, the precipitation was mostly rain; above that altitude, it was mostly snow. Although the rate of fall was moderate, at least 4 inches of rain or as much as 4 feet of snow accumulated in some places. Sustained precipitation falling at a moderate rate thoroughly saturated the ground and by midday Sunday sent most of the smaller streams into flood stage. The South Platte River and its major tributaries began to flood by late Sunday evening and early Monday morning. Geologic and hydrologic processes activated by the May 5-6 storm caused extensive damage to lands and to manmade structures in the Greater Denver area. Damage was generally most intense in areas where man had modified the landscape--by channel constrictions, paving, stripping of vegetation and topsoil, and oversteepening of hillslopes. Roads, bridges, culverts, dams, canals, and the like were damaged or destroyed by erosion and sedimentation. Streambanks and structures along them were scoured. Thousands of acres of croplands, pasture, and developed urban lands were coated with mud and sand. Flooding was intensified by inadequate storm sewers, blocked drains, and obstructed drainage courses. Saturation of hillslopes along the Front Range caused rockfalls, landslides, and mudflows as far west as Berthoud Pass. Greater attention to geologic conditions in land-use planning, design, and construction would minimize storm damage in the future.
Lappala, E.G.; Healy, R.W.; Weeks, E.P.
1987-01-01
This report documents FORTRAN computer code for solving problems involving variably saturated single-phase flow in porous media. The flow equation is written with total hydraulic potential as the dependent variable, which allows straightforward treatment of both saturated and unsaturated conditions. The spatial derivatives in the flow equation are approximated by central differences, and time derivatives are approximated either by a fully implicit backward or by a centered-difference scheme. Nonlinear conductance and storage terms may be linearized using either an explicit method or an implicit Newton-Raphson method. Relative hydraulic conductivity is evaluated at cell boundaries by using either full upstream weighting, the arithmetic mean, or the geometric mean of values from adjacent cells. Nonlinear boundary conditions treated by the code include infiltration, evaporation, and seepage faces. Extraction by plant roots that is caused by atmospheric demand is included as a nonlinear sink term. These nonlinear boundary and sink terms are linearized implicitly. The code has been verified for several one-dimensional linear problems for which analytical solutions exist and against two nonlinear problems that have been simulated with other numerical models. A complete listing of data-entry requirements and data entry and results for three example problems are provided. (USGS)
Heilweil, Victor M.; Benoit, Jerome; Healy, Richard W.
2015-01-01
Spreading-basin methods have resulted in more than 130 million cubic meters of recharge to the unconfined Navajo Sandstone of southern Utah in the past decade, but infiltration rates have slowed in recent years because of reduced hydraulic gradients and clogging. Trench infiltration is a promising alternative technique for increasing recharge and minimizing evaporation. This paper uses a variably saturated flow model to further investigate the relative importance of the following variables on rates of trench infiltration to unconfined aquifers: saturated hydraulic conductivity, trench spacing and dimensions, initial water-table depth, alternate wet/dry periods, and number of parallel trenches. Modeling results showed (1) increased infiltration with higher hydraulic conductivity, deeper initial water tables, and larger spacing between parallel trenches, (2) deeper or wider trenches do not substantially increase infiltration, (3) alternating wet/dry periods result in less overall infiltration than keeping the trenches continuously full, and (4) larger numbers of parallel trenches within a fixed area increases infiltration but with a diminishing effect as trench spacing becomes tighter. An empirical equation for estimating expected trench infiltration rates as a function of hydraulic conductivity and initial water-table depth was derived and can be used for evaluating feasibility of trench infiltration in other hydrogeologic settings
On the primary variable switching technique for simulating unsaturated-saturated flows
NASA Astrophysics Data System (ADS)
Diersch, H.-J. G.; Perrochet, P.
Primary variable switching appears as a promising numerical technique for variably saturated flows. While the standard pressure-based form of the Richards equation can suffer from poor mass balance accuracy, the mixed form with its improved conservative properties can possess convergence difficulties for dry initial conditions. On the other hand, variable switching can overcome most of the stated numerical problems. The paper deals with variable switching for finite elements in two and three dimensions. The technique is incorporated in both an adaptive error-controlled predictor-corrector one-step Newton (PCOSN) iteration strategy and a target-based full Newton (TBFN) iteration scheme. Both schemes provide different behaviors with respect to accuracy and solution effort. Additionally, a simplified upstream weighting technique is used. Compared with conventional approaches the primary variable switching technique represents a fast and robust strategy for unsaturated problems with dry initial conditions. The impact of the primary variable switching technique is studied over a wide range of mostly 2D and partly difficult-to-solve problems (infiltration, drainage, perched water table, capillary barrier), where comparable results are available. It is shown that the TBFN iteration is an effective but error-prone procedure. TBFN sacrifices temporal accuracy in favor of accelerated convergence if aggressive time step sizes are chosen.
NASA Astrophysics Data System (ADS)
Kwiatkowski, Lester; Caldeira, Ken
2015-04-01
Anthropogenic emissions of CO2 and invasion of part of this CO2 into the oceans results in a decrease in seawater pH and a lowering of the calcium carbonate saturation state. The historic and projected decrease of the calcium carbonate saturation state of seawater has the potential to compromise the ability of many marine calcifying organisms to form their calcium carbonate shells or skeletons and is likely to have significant ocean ecosystem impacts over the 21st Century. In laboratory manipulations temperate calcifying organisms have been shown to exhibit reduced calcification as a result of CO2 addition. However, very few experiments have observed how calcification in temperate systems responds to natural variations in seawater carbonate chemistry. We assess the community level sensitivity of Californian tidal pool calcification rates to variability in the calcium carbonate saturation state. Our tidal pool study sites at Bodega Bay in Northern California experience extreme variation in low tide carbonate saturation state due to photosynthetic activity and the time at which the pools are isolated from the open ocean. During our study period, we observed aragonite saturation levels ranging from 0.5 to 9. Photosynthetic activity is largely dependent on temperature and photosynthetic active radiation which vary on a diurnal timescale whereas the time at which pools are isolated from open seawater, and thus the amount by which tide pool carbonate chemistry differs from that of open ocean waters, is largely a consequence of tidal period which varies on a lunar cycle. Because there are substantial uncorrelated components of light, temperature, and seawater carbonate chemistry in our data, one can separate the influence of carbonate saturation state on calcification from the influence of temperature and PAR. This provides an opportunity to characterise the short-timescale sensitivity of tidal pool calcification rates to changes in carbonate saturation state. We show that on such timescales community level rates of daytime calcification are not strongly influenced by variability in carbonate saturation state. This suggests that these intertidal communities may be more resilient to projected ocean acidification than previously thought, although extending this work to consider longer timescales would be required to more firmly support this hypothesis.
NASA Astrophysics Data System (ADS)
Wang, Qian; Xue, Anke
2018-06-01
This paper has proposed a robust control for the spacecraft rendezvous system by considering the parameter uncertainties and actuator unsymmetrical saturation based on the discrete gain scheduling approach. By changing of variables, we transform the actuator unsymmetrical saturation control problem into a symmetrical one. The main advantage of the proposed method is improving the dynamic performance of the closed-loop system with a region of attraction as large as possible. By the Lyapunov approach and the scheduling technology, the existence conditions for the admissible controller are formulated in the form of linear matrix inequalities. The numerical simulation illustrates the effectiveness of the proposed method.
Dudek Ronan, Anne; Prudic, David E.; Thodal, Carl E.; Constantz, Jim
1998-01-01
Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Streamflow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon Streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased Streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured Streamflow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data, only relatively inexpensive temperature monitoring can later yield infiltration rates that are within the correct order of magnitude.
Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams
NASA Astrophysics Data System (ADS)
Smith, Rose M.; Kaushal, Sujay S.; Beaulieu, Jake J.; Pennino, Michael J.; Welty, Claire
2017-06-01
Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) globally, and watershed management can alter greenhouse gas (GHG) emissions from streams. We hypothesized that urban infrastructure significantly alters downstream water quality and contributes to variability in GHG saturation and emissions. We measured gas saturation and estimated emission rates in headwaters of two urban stream networks (Red Run and Dead Run) of the Baltimore Ecosystem Study Long-Term Ecological Research project. We identified four combinations of stormwater and sanitary infrastructure present in these watersheds, including: (1) stream burial, (2) inline stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. We selected two first-order catchments in each of these categories and measured GHG concentrations, emissions, and dissolved inorganic and organic carbon (DIC and DOC) and nutrient concentrations biweekly for 1 year. From a water quality perspective, the DOC : NO3- ratio of streamwater was significantly different across infrastructure categories. Multiple linear regressions including DOC : NO3- and other variables (dissolved oxygen, DO; total dissolved nitrogen, TDN; and temperature) explained much of the statistical variation in nitrous oxide (N2O, r2 = 0.78), carbon dioxide (CO2, r2 = 0.78), and methane (CH4, r2 = 0.50) saturation in stream water. We measured N2O saturation ratios, which were among the highest reported in the literature for streams, ranging from 1.1 to 47 across all sites and dates. N2O saturation ratios were highest in streams draining watersheds with septic systems and strongly correlated with TDN. The CO2 saturation ratio was highly correlated with the N2O saturation ratio across all sites and dates, and the CO2 saturation ratio ranged from 1.1 to 73. CH4 was always supersaturated, with saturation ratios ranging from 3.0 to 2157. Longitudinal surveys extending form headwaters to third-order outlets of Red Run and Dead Run took place in spring and fall. Linear regressions of these data yielded significant negative relationships between each gas with increasing watershed size as well as consistent relationships between solutes (TDN or DOC, and DOC : TDN ratio) and gas saturation. Despite a decline in gas saturation between the headwaters and stream outlet, streams remained saturated with GHGs throughout the drainage network, suggesting that urban streams are continuous sources of CO2, CH4, and N2O. Our results suggest that infrastructure decisions can have significant effects on downstream water quality and greenhouse gases, and watershed management strategies may need to consider coupled impacts on urban water and air quality.
NASA Astrophysics Data System (ADS)
Eder, Stefan; Poscher, Gerhard; Sedlacek, Christoph
The new railway line in the lower Inn-valley is part of the Brenner railway axis from Munich to Verona (feeder north). The first section between the villages of Kundl and Radfeld, west of Wörgl, and the village of Baumkirchen, east of Innsbruck, will become one of the biggest infrastructure projects ever built in Austria, with a length of approx. 43 km and an underground portion of approx. 80%. The article gives an overview of the various geologic formations - hard rock sections in the valley slopes, different water-saturated gravel and sand formations in the valley floor and geotechnically difficult conditions in sediments of Quaternary terraces. It also describes the methodology of the soil reconnaissance using groundwater models for hydrogeologic estimations, core drillings for evaluating geologic models and describes the experiences gained from the five approx. 7.5 km long reconnaissance tunnels for geotechnical and hydrogeological testing. The results of the soil reconnaissance were used to plan different construction methods, such as excavation in soft rock under a jet grouting roof and compressed-air, as well as mechanised shield with fluid support.
Water-quality data from an earthen dam site in southern Westchester County, New York, 2015
Chu, Anthony; Noll, Michael L.
2017-10-11
The U.S. Geological Survey, in cooperation with the New York City Department of Environmental Protection, sampled 37 sites in the reservoir area for nutrients, major ions, metals, pesticides and their degradates, volatile organic compounds, temperature, pH, and specific conductance during fall 2015. Data collection was done to characterize the local groundwater-flow system and identify potential sources of seeps from the southern embankment at the Hillview Reservoir. Water-quality samples were collected in accordance with standard U.S. Geological Survey methods at 37 sites in and adjacent to Hillview Reservoir. These 37 sites were sampled to determine (1) baseline water-quality conditions of the saturated, low-permeability sediments that compose the earthen embankment that surrounds the reservoir, (2) water-quality conditions in the southwestern part of the study area in relation to the seeps on the embankment, and (3) temporal variation of water-quality conditions between 2006 and 2015 (not included in this report). The physical parameters and the results of the water-quality analysis from the 37 sites are included in this report and can be downloaded from the U.S. Geological Survey National Water Information System website.
Effects of spatial variability of soil hydraulic properties on water dynamics
NASA Astrophysics Data System (ADS)
Gumiere, Silvio Jose; Caron, Jean; Périard, Yann; Lafond, Jonathan
2013-04-01
Soil hydraulic properties may present spatial variability and dependence at the scale of watersheds or fields even in man-made single soil structures, such as cranberry fields. The saturated hydraulic conductivity (Ksat) and soil moisture curves were measured at two depths for three cranberry fields (about 2 ha) at three different sites near Québec city, Canada. Two of the three studied fields indicate strong spatial dependence for Ksat values and soil moisture curves both in horizontal and vertical directions. In the summer of 2012, the three fields were equipped with 55 tensiometers installed at a depth of 0.10 m in a regular grid. About 20 mm of irrigation water were applied uniformly by aspersion to the fields, raising soil water content to near saturation condition. Soil water tension was measured once every hour during seven days. Geostatistical techniques such as co-kriging and cross-correlograms estimations were used to investigate the spatial dependence between variables. The results show that soil tension varied faster in high Ksat zones than in low Ksatones in the cranberry fields. These results indicate that soil water dynamic is strongly affected by the variability of saturated soil hydraulic conductivity, even in a supposed homogenous anthropogenic soil. This information may have a strong impact in irrigation management and subsurface drainage efficiency as well as other water conservation issues. Future work will involve 3D numerical modeling of the field water dynamics with HYDRUS software. The anticipated outcome will provide valuable information for the understanding of the effect of spatial variability of soil hydraulic properties on soil water dynamics and its relationship with crop production and water conservation.
NASA Technical Reports Server (NTRS)
Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)
1982-01-01
Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.
Geologic and Site Survey Setting for JIP Gulf of Mexico Gas Hydrate Drilling
NASA Astrophysics Data System (ADS)
Hutchinson, D. R.; Snyder, F.; Hart, P. E.; Ruppel, C. D.; Pohlman, J.; Wood, W. T.; Coffin, R. B.; Edwards, K. M.
2005-12-01
The JIP Gulf of Mexico drilling program targeted two contrasting geologic settings to understand natural gas hydrates: a salt-withdrawal minibasin and a mound/seep site, both at mid-slope water depths of about 1300 m. The minibasin site (lease block Keathley Canyon 151) contains a Bottom Simulating Reflection (BSR) that deepens from 260 m below the sea floor near the edge of the basin to 500 mbsf towards the center of the basin. Drilling was conducted at a site in which the BSR is about 415 mbsf. Seismic stratigraphy of the minibasin consists of continuous laminated sequences of variable thicknesses alternating with more massive units of discontinuous reflections. These sequences represent uniform hemipelagic deposition, which drapes the basin, and turbidite deposition, which pinches out along the basin edges. The BSR crosses several of these sequences. A map of amplitude values at the BSR shows a strong banding pattern indicative of the layering, with the highest amplitudes interpreted to be trapped gas in the coarser-grained units. Prior to drilling, piston-core data indicated extensive shallow mass wasting near the edges of the minibasin. Heat flow data indicated thermal gradients that in general predicted a BSR deeper than observed in the seismic data. Full-waveform inversion of 3D multichannel data indicated a probable thick zone of low-saturation hydrate immediately above the BSR. There is little coherent seismic stratigraphy at the mound/seep site in the Mississippi Canyon (lease blocks Atwater Valley 13/14), as the canyon fill is dominated by a complex mix of turbidite and mass-wasting deposits. Hints of a possible BSR that is warped upwards beneath the mound can be seen in both 3D and 2D multichannel seismic data, but it cannot be traced laterally away from the mound with any certainty. A seismic pull-down pseudo-structure beneath the mound suggests the presence of a free-gas low-velocity zone at shallow depths. Pore-water analyses from shallow piston cores and closely-spaced heat-flow data indicate the mound is a site of probable fluid venting. A transect of bottom photographs crosses a possible mud flow and numerous bacterial mats, consistent with features seen in fluid venting at other sites in the Gulf. Prestack inversion of the multichannel data did not predict significant gas hydrate at the site on the edge of the mound. However, at the control site off the mound, predictions were more favorable for low hydrate saturations in the deeper part of the drill hole.
nZVI injection into variably saturated soils: Field and modeling study
NASA Astrophysics Data System (ADS)
Chowdhury, Ahmed I. A.; Krol, Magdalena M.; Kocur, Christopher M.; Boparai, Hardiljeet K.; Weber, Kela P.; Sleep, Brent E.; O'Carroll, Denis M.
2015-12-01
Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI field-scale mobility. In this study, a field test was combined with numerical modeling to examine nZVI reactivity along with transport properties in variably saturated soils. The field test consisted of 142 L of carboxymethyle cellulose (CMC) stabilized monometallic nZVI synthesized onsite and injected into a variably saturated zone. Periodic groundwater samples were collected from the injection well, as well as, from two monitoring wells to analyze for chlorinated solvents and other geochemistry indicators. This study showed that CMC stabilized monometallic nZVI was able to decrease tricholorethene (TCE) concentrations in groundwater by more than 99% from the historical TCE concentrations. A three dimensional, three phase, finite difference numerical simulator, (CompSim) was used to further investigate nZVI and polymer transport at the variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the mass of nZVI delivered to the saturated and unsaturated zones and distinguished the nZVI phase (i.e. aqueous or attached). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity and viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher nZVI volume delivered more iron particles at a given distance; however, the travel distance was not proportional to the increase in volume. Moreover, simulation results showed that using a 1D transport equation to simulate nZVI migration in the subsurface may overestimate the travel distance. This is because the 1D transport equation assumes a constant velocity while pore water velocity radially decreases from the well during injection. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and that a numerical simulator can be a valuable tool for optimal design of nZVI field applications.
Dynamic of aragonite saturation horizon in waters of Baja California, Mexico
NASA Astrophysics Data System (ADS)
Valencia Gasti, J. A.; Oliva, N. L.; Martin Hernandez-Ayon, J. M.; Durazo, R.; Santamaria-del-Angel, E.; Alin, S. R.; Feely, R. A.
2016-02-01
The status of the ocean acidification can be estimated by hydrographic calibrated data with carbon system variables. Recently empirical models for the coast of southern California and northern Baja California were developed. These models can be applied mainly in places where hydrographic data exist but also with measurements of the carbon system available for calibrations. The aim of this study was to analyze the hydrographic data of a transect in front of Ensenada's coast, corresponding to the line 100 of IMECOCAL's program during the period 1998-2014. Such data was used to apply an empirical model to estimate the aragonite saturation state (Ωa) in order to identify oceanographic conditions that could influence the variability of the depth of saturation horizon that might be in the last 17 years in habitats of shellfish and oyster production areas adjacent to the coast of Ensenada. It was found that the temperature, salinity, oxygen, pH, dissolved inorganic carbon and Ωa showed a seasonal variation with different oceanographic scenarios: (a) during spring-summer the California Current flow to the Ecuador and upwelling events are presented; (b) in autumn-winter the influence the Southern California Bight Eddy can transport water from the subarctic to Ecuador in the oceanic portion of the transect and towards the pole at the coastal side. These oceanographic characteristics encourage that coastal stations present seasonal variability, reflected in the depth of the horizon Ωa shallower ( 66m + 21m) in spring and deeper into the winter ( 122m + 35). It has been reported that the upwelling off the coast of BC transport water from a depth between 80 and 90m in spring and summer; therefore under saturated water (Ωa <1) may be transported to the platform upwelling off the coast of BC
NASA Astrophysics Data System (ADS)
Volk, Elazar; Iden, Sascha C.; Furman, Alex; Durner, Wolfgang; Rosenzweig, Ravid
2016-08-01
Understanding the influence of attached microbial biomass on water flow in variably saturated soils is crucial for many engineered flow systems. So far, the investigation of the effects of microbial biomass has been mainly limited to water-saturated systems. We have assessed the influence of biofilms on the soil hydraulic properties under variably saturated conditions. A sandy soil was incubated with Pseudomonas Putida and the hydraulic properties of the incubated soil were determined by a combination of methods. Our results show a stronger soil water retention in the inoculated soil as compared to the control. The increase in volumetric water content reaches approximately 0.015 cm3 cm-3 but is only moderately correlated with the carbon deficit, a proxy for biofilm quantity, and less with the cell viable counts. The presence of biofilm reduced the saturated hydraulic conductivity of the soil by up to one order of magnitude. Under unsaturated conditions, the hydraulic conductivity was only reduced by a factor of four. This means that relative water conductance in biofilm-affected soils is higher compared to the clean soil at low water contents, and that the unsaturated hydraulic conductivity curve of biofilm-affected soil cannot be predicted by simply scaling the saturated hydraulic conductivity. A flexible parameterization of the soil hydraulic functions accounting for capillary and noncapillary flow was needed to adequately describe the observed properties over the entire wetness range. More research is needed to address the exact flow mechanisms in biofilm-affected, unsaturated soil and how they are related to effective system properties.
NASA Astrophysics Data System (ADS)
Christ, John A.; Lemke, Lawrence D.; Abriola, Linda M.
2005-01-01
The influence of reduced dimensionality (two-dimensional (2-D) versus 3-D) on predictions of dense nonaqueous phase liquid (DNAPL) infiltration and entrapment in statistically homogeneous, nonuniform permeability fields was investigated using the University of Texas Chemical Compositional Simulator (UTCHEM), a 3-D numerical multiphase simulator. Hysteretic capillary pressure-saturation and relative permeability relationships implemented in UTCHEM were benchmarked against those of another lab-tested simulator, the Michigan-Vertical and Lateral Organic Redistribution (M-VALOR). Simulation of a tetrachloroethene spill in 16 field-scale aquifer realizations generated DNAPL saturation distributions with approximately equivalent distribution metrics in two and three dimensions, with 2-D simulations generally resulting in slightly higher maximum saturations and increased vertical spreading. Variability in 2-D and 3-D distribution metrics across the set of realizations was shown to be correlated at a significance level of 95-99%. Neither spill volume nor release rate appeared to affect these conclusions. Variability in the permeability field did affect spreading metrics by increasing the horizontal spreading in 3-D more than in 2-D in more heterogeneous media simulations. The assumption of isotropic horizontal spatial statistics resulted, on average, in symmetric 3-D saturation distribution metrics in the horizontal directions. The practical implication of this study is that for statistically homogeneous, nonuniform aquifers, 2-D simulations of saturation distributions are good approximations to those obtained in 3-D. However, additional work will be needed to explore the influence of dimensionality on simulated DNAPL dissolution.
NASA Astrophysics Data System (ADS)
Krysa, Zbigniew; Pactwa, Katarzyna; Wozniak, Justyna; Dudek, Michal
2017-12-01
Geological variability is one of the main factors that has an influence on the viability of mining investment projects and on the technical risk of geology projects. In the current scenario, analyses of economic viability of new extraction fields have been performed for the KGHM Polska Miedź S.A. underground copper mine at Fore Sudetic Monocline with the assumption of constant averaged content of useful elements. Research presented in this article is aimed at verifying the value of production from copper and silver ore for the same economic background with the use of variable cash flows resulting from the local variability of useful elements. Furthermore, the ore economic model is investigated for a significant difference in model value estimated with the use of linear correlation between useful elements content and the height of mine face, and the approach in which model parameters correlation is based upon the copula best matched information capacity criterion. The use of copula allows the simulation to take into account the multi variable dependencies at the same time, thereby giving a better reflection of the dependency structure, which linear correlation does not take into account. Calculation results of the economic model used for deposit value estimation indicate that the correlation between copper and silver estimated with the use of copula generates higher variation of possible project value, as compared to modelling correlation based upon linear correlation. Average deposit value remains unchanged.
El-Kadi, A. I.; Torikai, J.D.
2001-01-01
The objective of this paper is to identify water-flow patterns in part of an active landslide, through the use of numerical simulations and data obtained during a field study. The approaches adopted include measuring rainfall events and pore-pressure responses in both saturated and unsaturated soils at the site. To account for soil variability, the Richards equation is solved within deterministic and stochastic frameworks. The deterministic simulations considered average water-retention data, adjusted retention data to account for stones or cobbles, retention functions for a heterogeneous pore structure, and continuous retention functions for preferential flow. The stochastic simulations applied the Monte Carlo approach which considers statistical distribution and autocorrelation of the saturated conductivity and its cross correlation with the retention function. Although none of the models is capable of accurately predicting field measurements, appreciable improvement in accuracy was attained using stochastic, preferential flow, and heterogeneous pore-structure models. For the current study, continuum-flow models provide reasonable accuracy for practical purposes, although they are expected to be less accurate than multi-domain preferential flow models.
NASA Astrophysics Data System (ADS)
DeJong, H. B.; Dunbar, R. B.; Mucciarone, D. A.; Koweek, D.
2016-02-01
Predicting when surface waters of the Ross Sea and Southern Ocean will become undersaturated with respect to biogenic carbonate minerals is challenging in part due to the lack of baseline high resolution carbon system data. Here we present 1700 surface total alkalinity measurements from the Ross Sea and along a transect between the Ross Sea and southern Chile from the austral autumn (February-March 2013). We calculate the saturation state of aragonite (ΩAr) and calcite (ΩCa) using measured total alkalinity and pCO2. In the Ross Sea and south of the Polar Front, variability in carbonate saturation state (Ω) is mainly driven by algal photosynthesis. Freshwater dilution and calcification have minimal influence on Ω variability. We estimate an early spring surface water ΩAr value of 1.2 for the Ross Sea using a total alkalinity-salinity relationship and historical pCO2 measurements. Our results suggest that the Ross Sea is not likely to become undersaturated with respect to aragonite until the year 2070.
DFN Modeling for the Safety Case of the Final Disposal of Spent Nuclear Fuel in Olkiluoto, Finland
NASA Astrophysics Data System (ADS)
Vanhanarkaus, O.
2017-12-01
Olkiluoto Island is a site in SW Finland chosen to host a deep geological repository for high-level nuclear waste generated by nuclear power plants of power companies TVO and Fortum. Posiva, a nuclear waste management organization, submitted a construction license application for the Olkiluoto repository to the Finnish government in 2012. A key component of the license application was an integrated geological, hydrological and biological description of the Olkiluoto site. After the safety case was reviewed in 2015 by the Radiation and Nuclear Safety Authority in Finland, Posiva was granted a construction license. Posiva is now preparing an updated safety case for the operating license application to be submitted in 2022, and an update of the discrete fracture network (DFN) model used for site characterization is part of that. The first step describing and modelling the network of fractures in the Olkiluoto bedrock was DFN model version 1 (2009), which presented an initial understanding of the relationships between rock fracturing and geology at the site and identified the important primary controls on fracturing. DFN model version 2 (2012) utilized new subsurface data from additional drillholes, tunnels and excavated underground facilities in ONKALO to better understand spatial variability of the geological controls on geological and hydrogeological fracture properties. DFN version 2 connected fracture geometric and hydraulic properties to distinct tectonic domains and to larger-scale hydraulically conductive fault zones. In the version 2 DFN model, geological and hydrogeological models were developed along separate parallel tracks. The version 3 (2017) DFN model for the Olkiluoto site integrates geological and hydrogeological elements into a single consistent model used for geological, rock mechanical, hydrogeological and hydrogeochemical studies. New elements in the version 3 DFN model include a stochastic description of fractures within Brittle Fault Zones (BFZ), integration of geological and hydrostructural interpretations of BFZ, greater use of 3D geological models to better constrain the spatial variability of fracturing and fractures using hydromechanical principles to account for material behavior and in-situ stresses.
Reactive transport in the complex heterogeneous alluvial aquifer of Fortymile Wash, Nevada
Soltanian, Mohamad Reza; Sun, Alexander; Dai, Zhenxue
2017-04-02
Yucca Mountain, Nevada, had been extensively investigated as a potential deep geologic repository for storing high-level nuclear wastes. Previous field investigations of stratified alluvial aquifer downstream of the site revealed that there is a hierarchy of sedimentary facies types. There is a corresponding log conductivity and reactive surface area subpopulations within each facies at each scale of sedimentary architecture. Here in this paper, we use a Lagrangian-based transport model in order to analyze radionuclide dispersion in the saturated alluvium of Fortymile Wash, Nevada. First, we validate the Lagrangian model using high-resolution flow and reactive transport simulations. Then, we used themore » validated model to investigate how each scale of sedimentary architecture may affect long-term radionuclide transport at Yucca Mountain. Results show that the reactive solute dispersion developed by the Lagrangian model matches the ensemble average of numerical simulations well. The link between the alluvium spatial variability and reactive solute dispersion at different spatiotemporal scales is demonstrated using the Lagrangian model. Finally, the longitudinal dispersivity of the reactive plume can be on the order of hundreds to thousands of meters, and it may not reach its asymptotic value even after 10,000 years of travel time and 2–3 km of travel distance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, G.T.
1987-08-01
The 3DFEMWATER model is designed to treat heterogeneous and anisotropic media consisting of as many geologic formations as desired, consider both distributed and point sources/sinks that are spatially and temporally dependent, accept the prescribed initial conditions or obtain them by simulating a steady state version of the system under consideration, deal with a transient head distributed over the Dirichlet boundary, handle time-dependent fluxes due to pressure gradient varying along the Neumann boundary, treat time-dependent total fluxes distributed over the Cauchy boundary, automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface, include the off-diagonal hydraulic conductivitymore » components in the modified Richards equation for dealing with cases when the coordinate system does not coincide with the principal directions of the hydraulic conductivity tensor, give three options for estimating the nonlinear matrix, include two options (successive subregion block iterations and successive point interactions) for solving the linearized matrix equations, automatically reset time step size when boundary conditions or source/sinks change abruptly, and check the mass balance computation over the entire region for every time step. The model is verified with analytical solutions or other numerical models for three examples.« less
Sensitivity of high-elevation streams in the Southern Blue Ridge Province to acidic deposition
Winger, P.V.; Lasier, P.J.; Hudy, M.; Fowler, D.; Van Den Avyle, M.J.
1987-01-01
The Southern Blue Ridge Province, which encompasses parts of northern Georgia, eastern Tennessee, and western North Carolina, has been predicted to be sensitive to impacts from acidic deposition, owing to the chemical composition of the bedrock geology and soils. This study confirms the predicted potential sensitivity, quantifies the level of total alkalinity and describes the chemical characteristics of 30 headwater streams of this area. Water chemistry was measured five times between April 1983 and June 1984 at first and third order reaches of each stream during baseflow conditions. Sensitivity based on total alkalinity and the Calcite Saturation Index indicates that the headwater streams of the Province are vulnerable to acidification. Total alkalinity and p11 were generally higher in third order reaches (mean, 72 ?eq/? and 6.7) than in first order reaches (64 ?eq/? and 6.4). Ionic concentrations were low, averaging 310 and 340 ?eq/? in first and third order reaches, respectively. A single sampling appears adequate for evaluating sensitivity based on total alkalinity, but large temporal variability requires multiple sampling for the detection of changes in pH and alkalinity over time. Monitoring of stream water should continue in order to detect any subtle effects of acidic deposition on these unique resource systems.
Estimate of the Reliability in Geological Forecasts for Tunnels: Toward a Structured Approach
NASA Astrophysics Data System (ADS)
Perello, Paolo
2011-11-01
In tunnelling, a reliable geological model often allows providing an effective design and facing the construction phase without unpleasant surprises. A geological model can be considered reliable when it is a valid support to correctly foresee the rock mass behaviour, therefore preventing unexpected events during the excavation. The higher the model reliability, the lower the probability of unforeseen rock mass behaviour. Unfortunately, owing to different reasons, geological models are affected by uncertainties and a fully reliable knowledge of the rock mass is, in most cases, impossible. Therefore, estimating to which degree a geological model is reliable, becomes a primary requirement in order to save time and money and to adopt the appropriate construction strategy. The definition of the geological model reliability is often achieved by engineering geologists through an unstructured analytical process and variable criteria. This paper focusses on geological models for projects of linear underground structures and represents an effort to analyse and include in a conceptual framework the factors influencing such models. An empirical parametric procedure is then developed with the aim of obtaining an index called "geological model rating (GMR)", which can be used to provide a more standardised definition of a geological model reliability.
NASA Astrophysics Data System (ADS)
Kissinger, Alexander; Noack, Vera; Knopf, Stefan; Konrad, Wilfried; Scheer, Dirk; Class, Holger
2017-06-01
Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the hazards associated with the geological storage of CO2. Thus, in a site-specific risk assessment, models for predicting the fate of the displaced brine are required. Practical simulation of brine displacement involves decisions regarding the complexity of the model. The choice of an appropriate level of model complexity depends on multiple criteria: the target variable of interest, the relevant physical processes, the computational demand, the availability of data, and the data uncertainty. In this study, we set up a regional-scale geological model for a realistic (but not real) onshore site in the North German Basin with characteristic geological features for that region. A major aim of this work is to identify the relevant parameters controlling saltwater intrusion in a complex structural setting and to test the applicability of different model simplifications. The model that is used to identify relevant parameters fully couples flow in shallow freshwater aquifers and deep saline aquifers. This model also includes variable-density transport of salt and realistically incorporates surface boundary conditions with groundwater recharge. The complexity of this model is then reduced in several steps, by neglecting physical processes (two-phase flow near the injection well, variable-density flow) and by simplifying the complex geometry of the geological model. The results indicate that the initial salt distribution prior to the injection of CO2 is one of the key parameters controlling shallow aquifer salinization. However, determining the initial salt distribution involves large uncertainties in the regional-scale hydrogeological parameterization and requires complex and computationally demanding models (regional-scale variable-density salt transport). In order to evaluate strategies for minimizing leakage into shallow aquifers, other target variables can be considered, such as the volumetric leakage rate into shallow aquifers or the pressure buildup in the injection horizon. Our results show that simplified models, which neglect variable-density salt transport, can reach an acceptable agreement with more complex models.
Elastic anisotropy of Opalinus Clay under variable saturation and triaxial stress
NASA Astrophysics Data System (ADS)
Sarout, Joel; Esteban, Lionel; Delle Piane, Claudio; Maney, Bruce; Dewhurst, David N.
2014-09-01
A novel experimental method is introduced to estimate the Thomsen's elastic anisotropy parameters ɛ and δ of a transversely isotropic shale under variable stress and saturation conditions. The method consists in recording P-wave velocities along numerous paths on a cylindrical specimen using miniature ultrasonic transducers. Such an overdetermined set of measurements is specifically designed to reduce the uncertainty associated with the determination of Thomsen's δ parameter compared to the classical method for which a single off-axis measurement is used (usually at 45° to the specimen's axis). This method is applied to a specimen of Opalinus Clay recovered from the Mont-Terri Underground Research Laboratory in Switzerland. The specimen is first saturated with brine at low effective pressure and then subjected to an effective pressure cycle up to 40 MPa, followed by a triaxial loading up to failure. During saturation and deformation, the evolution of P-wave velocities along a maximum of 240 ray paths is monitored and Thomsen's parameters α, ɛ and δ are computed by fitting Thomsen's weak anisotropy model to the data. The values of ɛ and δ obtained at the highest confining pressures reached during the experiment are comparable with those predicted from X-ray diffraction texture analysis and modelling for Opalinus Clay reported in the literature. These models neglect the effect of soft-porosity on elastic properties, but become relevant when soft porosity is closed at high effective pressure.
Geomorphological control on variably saturated hillslope hydrology and slope instability
Giuseppe, Formetta; Simoni, Silvia; Godt, Jonathan W.; Lu, Ning; Rigon, Riccardo
2016-01-01
In steep topography, the processes governing variably saturated subsurface hydrologic response and the interparticle stresses leading to shallow landslide initiation are physically linked. However, these processes are usually analyzed separately. Here, we take a combined approach, simultaneously analyzing the influence of topography on both hillslope hydrology and the effective stress fields within the hillslope itself. Clearly, runoff and saturated groundwater flow are dominated by gravity and, ultimately, by topography. Less clear is how landscape morphology influences flows in the vadose zone, where transient fluxes are usually taken to be vertical. We aim to assess and quantify the impact of topography on both saturated and unsaturated hillslope hydrology and its effects on shallow slope stability. Three real hillslope morphologies (concave, convex, and planar) are analyzed using a 3-D, physically based, distributed model coupled with a module for computation of the probability of failure, based on the infinite slope assumption. The results of the analyses, which included parameter uncertainty analysis of the results themselves, show that convex and planar slopes are more stable than concave slopes. Specifically, under the same initial, boundary, and infiltration conditions, the percentage of unstable areas ranges from 1.3% for the planar hillslope, 21% for convex, to a maximum value of 33% for the concave morphology. The results are supported by a sensitivity analysis carried out to examine the effect of initial conditions and rainfall intensity.
Comparison of structural and least-squares lines for estimating geologic relations
Williams, G.P.; Troutman, B.M.
1990-01-01
Two different goals in fitting straight lines to data are to estimate a "true" linear relation (physical law) and to predict values of the dependent variable with the smallest possible error. Regarding the first goal, a Monte Carlo study indicated that the structural-analysis (SA) method of fitting straight lines to data is superior to the ordinary least-squares (OLS) method for estimating "true" straight-line relations. Number of data points, slope and intercept of the true relation, and variances of the errors associated with the independent (X) and dependent (Y) variables influence the degree of agreement. For example, differences between the two line-fitting methods decrease as error in X becomes small relative to error in Y. Regarding the second goal-predicting the dependent variable-OLS is better than SA. Again, the difference diminishes as X takes on less error relative to Y. With respect to estimation of slope and intercept and prediction of Y, agreement between Monte Carlo results and large-sample theory was very good for sample sizes of 100, and fair to good for sample sizes of 20. The procedures and error measures are illustrated with two geologic examples. ?? 1990 International Association for Mathematical Geology.
Reactivity of dissolved- vs. supercritical-CO2 phase toward muscovite basal surfaces
NASA Astrophysics Data System (ADS)
Wan, J.; Tokunaga, T. K.; Kim, Y.; Wang, S.; Altoe, M. V. P.; Ashby, P. D.; DePaolo, D.
2015-12-01
The current understanding of geochemical reactions in reservoirs for geological carbon sequestration (GCS) is largely based on aqueous chemistry (CO2 dissolves in reservoir brine and brine reacts with rocks). However, only a portion of the injected supercritical (sc) CO2 dissolves before the buoyant plume contacts caprock, where it is expected to reside for a long time. Although numerous studies have addressed scCO2-mineral reactions occurring within adsorbed aqueous films, possible reactions resulting from direct CO2-rock contact remain less understood. Does CO2 as a supercritical phase react with reservoir rocks? Do mineral react differently with scCO2 than with dissolved CO2? We selected muscovite, one of the more stable and common rock-forming silicate minerals, to react with scCO2 phase (both water-saturated and water-free) and compared with CO2-saturated-brine. The reacted basal surfaces were analyzed using atomic force microscopy and X-ray photoelectron spectroscopy for examining the changes in surface morphology and chemistry. The results show that scCO2 (regardless of its water content) altered muscovite considerably more than CO2-saturated brine; suggest CO2 diffusion into mica interlayers and localized mica dissolution into scCO2 phase. The mechanisms underlying these observations and their implications for GCS need further exploration.
NASA Astrophysics Data System (ADS)
Cihan, A.; Illangasekare, T. H.; Zhou, Q.; Birkholzer, J. T.; Rodriguez, D.
2010-12-01
The capillary and dissolution trapping processes are believed to be major trapping mechanisms during CO2 injection and post-injection in heterogeneous subsurface environments. These processes are important at relatively shorter time periods compared to mineralization and have a strong impact on storage capacity and leakage risks, and they are suitable to investigate at reasonable times in the laboratory. The objectives of the research presented is to investigate the effect of the texture transitions and variability in heterogeneous field formations on the effective capillary and dissolution trapping at the field scale through multistage analysis comprising of experimental and modeling studies. A series of controlled experiments in intermediate-scale test tanks are proposed to investigate the key processes involving (1) viscous fingering of free-phase CO2 along high-permeability (or high-K) fast flow pathways, (2) dynamic intrusion of CO2 from high-K zones into low-K zones by capillarity (as well as buoyancy), (3) diffusive transport of dissolved CO2 into low-K zones across large interface areas, and (4) density-driven convective mass transfer into CO2-free regions. The test tanks contain liquid sampling ports to measure spatial and temporal changes in concentration of dissolved fluid as the injected fluid migrates. In addition to visualization and capturing images through digital photography, X-ray and gamma attenuation methods are used to measure phase saturations. Heterogeneous packing configurations are created with tightly packed sands ranging from very fine to medium fine to mimic sedimentary rocks at potential storage formations. Effect of formation type, injection pressure and injection rate on trapped fluid fraction are quantified. Macroscopic variables such as saturation, pressure and concentration that are measured will be used for testing the existing macroscopic models. The applicability of multiphase flow theories will be evaluated by comparing with the experimental data. Existing upscaling methodologies will be tested using experimental data for accurately estimating parameters of the large-scale heterogeneous porous media. This paper presents preliminary results from the initial-stage experiments and the modeling analysis. In the future, we will design and conduct a comprehensive set of experiments for improving the fundamental understanding of the processes, and refine and calibrate the models simulating the effective capillary and dissolution trapping with an ultimate goal to design efficient and safe storage schemes.
NASA Astrophysics Data System (ADS)
Saenger, Casey; Wang, Zhengrong
2014-04-01
Geochemical variations in marine biogenic carbonates that are preserved in the geological record serve as proxies of past environmental change. However, interpreting most proxies is complicated by biologically-mediated vital effects, highlighting the need to develop new tools for reconstructing paleoenvironmental change. Recently, magnesium (Mg) isotope variability in carbonates has been explored extensively to determine its utility as a paleoenvironmental proxy. We review the results of these works, which have yielded valuable information on the factors affecting Mg isotope fractionation between carbonates and solution (Δ26Mgcarb-sol) in biogenic and abiogenic carbonate minerals. Strong evidence exists for a mineralogical control on Δ26Mgcarb-sol, with the negative offset from 0‰ following the sequence aragonite < dolomite < magnesite < calcite. Abiogenic carbonates precipitated from solutions with relatively high Mg/Ca ratios (>˜3 mol/mol) and saturation states (Ω >˜3) that are similar to seawater suggest that Δ26Mgcarb-sol has a temperature dependence of ˜0.01‰ °C-1 and is insensitive to precipitation rate. In contrast, a significant precipitation rate dependence is observed in calcites precipitated from solutions with relatively low Mg/Ca ratios (<˜3 mol/mol) and saturation states (Ω <˜3). This difference likely reflects varying mineral growth mechanisms and we discuss the degree to which Δ26Mgcarb-sol may be affected by factors such as fluid inclusions, amorphous calcium carbonate precursors, ion attachment/detachment kinetics, surface entrapment and Mg speciation. High-Mg calcite organisms, which likely precipitate from relatively unmodified seawater, also exhibit a temperature dependence of ˜0.01‰ °C-1, albeit sometimes with a systematic offset toward smaller fractionations. In contrast, strong vital effects in low-Mg calcite organisms, which exclude Mg from their calcifying fluids, lead to Δ26Mgcarb-sol values that exhibit no clear temperature dependence and are offset from abiogenic experiments. The majority of biogenic aragonites have Δ26Mgcarb-sol values that are slightly more positive than those in abiogenic experiments, but bivalves and one sclerosponge species can exhibit significantly larger fractionations. Although vital effects and analytical uncertainties will limit Δ26Mgcarb-sol paleotemperature reconstructions to anomalies of at least ±10 °C, Mg isotope variability in biogenic carbonates may be a useful proxy for the Mg isotope composition of seawater, which reflects continental weathering, dolomitization and hydrothermal activity.
Iterative refinement of implicit boundary models for improved geological feature reproduction
NASA Astrophysics Data System (ADS)
Martin, Ryan; Boisvert, Jeff B.
2017-12-01
Geological domains contain non-stationary features that cannot be described by a single direction of continuity. Non-stationary estimation frameworks generate more realistic curvilinear interpretations of subsurface geometries. A radial basis function (RBF) based implicit modeling framework using domain decomposition is developed that permits introduction of locally varying orientations and magnitudes of anisotropy for boundary models to better account for the local variability of complex geological deposits. The interpolation framework is paired with a method to automatically infer the locally predominant orientations, which results in a rapid and robust iterative non-stationary boundary modeling technique that can refine locally anisotropic geological shapes automatically from the sample data. The method also permits quantification of the volumetric uncertainty associated with the boundary modeling. The methodology is demonstrated on a porphyry dataset and shows improved local geological features.
Relations between Vegetation and Geologic Framework in Barrier Island
NASA Astrophysics Data System (ADS)
Smart, N. H.; Ferguson, J. B.; Lehner, J. D.; Taylor, D.; Tuttle, L. F., II; Wernette, P. A.
2017-12-01
Barrier islands provide valuable ecosystems and protective services to coastal communities. The longevity of barrier islands is threatened by sea-level rise, human impacts, and extreme storms. The purpose of this research is to evaluate how vegetation dynamics interact with the subsurface and offshore framework geology to influence the beach and dune morphology. Beach and dune morphology can be viewed as free and/or forced behavior, where free systems are stochastic and the morphology is dependent on variations in the storm surge run-up, aeolian sediment supply and transport potential, and vegetation dynamics and persistence. Forced systems are those where patterns in the coastal morphology are determined by some other structural control, such as the underlying and offshore framework geology. Previous studies have documented the effects of geologic framework or vegetation dynamics on the beach and dunes, although none have examined possible control by vegetation dynamics in context of the geologic framework (i.e. combined free and forced behavior). Padre Island National Seashore (PAIS) was used to examine the interaction of free and forced morphology because the subsurface framework geology and surface beach and dune morphology are variable along the island. Vegetation dynamics were assessed by classifying geographically referenced historical aerial imagery into areas with vegetation and areas without vegetation, as well as LiDAR data to verify this imagery. The subsurface geologic structure was assessed using a combination of geophysical surveys (i.e. electromagnetic induction, ground-penetrating radar, and offshore seismic surveys). Comparison of the observed vegetation patterns and geologic framework leads to a series of questions surrounding how mechanistically these two drivers of coastal morphology are related. Upcoming coring and geophysical surveys will enable us to validate new and existing geophysical data. Results of this paper will help us better understand how barrier islands have responded to environmental change in the past should be integrated into current models of barrier island evolution in order to more accurately predict how the island will change over time in response to continued climatic variability.
Geoelectrical Methods and Monitoring for Dam Safety Assessment, Republic of Korea
NASA Astrophysics Data System (ADS)
Lim, S. K.; Oldenburg, D.; Kang, S.; Song, S. H.
2016-12-01
Geoelectrical methods and monitoring to detect the seepage and internal erosion are essential for the safety assessment of earth dams. This work aims to develop improved methodologies to analyze the observed data and to monitor changes in seepage flow using direct current (DC) and self-potential (SP) methods. The seasonal variation of water level at dams causes a change in seepage and water saturation and hence alters the resistivity of the dam material. DC data are sensitive to water saturation and hence changes in saturation can be obtained by repeatedly measuring DC data. However, a more diagnostic parameter for safety assessment is fluid flow, and resistivity is only weakly coupled to that. Fortunately SP signals are directly related to fluid flow, and thus an SP survey has the potential to characterize fluid flow through the earth matrix. In Korea, the safety assessment of earth fill dams has been dealt by Korea Rural Community Corporation (KRC). Most of the dams are relatively old ( >50 years), hence assessing deterioration and corresponding seepage of those dams are crucial. In order to evaluate the engineering geological properties of the soil at earth dams in Korea, two boreholes in each dam were drilled to a bedrock depth that exceeds the height of the dam. A large set of field tests, including standard penetration tests (SPT) and in-situ permeability tests, were carried out along the boreholes. However, seepage paths in the dam is complex hence those limited measurements at a few points is not sufficient to delineate the zone of preferential seepage flow. For this, KRC developed permanent DC monitoring systems at a number of agricultural dams in Korea. The data were automatically collected every 6 hours. During the monitoring, the measurements of the water level at two boreholes were gathered at the same time. In this presentation we select an agricultural dam and delineate an anomalous leakage zone by inverting and interpreting time-lapse DC resistivity data acquired under conditions of variable water level. We use these results to simulate SP signals and investigate their potential in monitoring seepage. Our results lay the foundation for developing an automated analysis of DC and SP data to recognize normal and abnormal conditions and to provide an alert when variations beyond a specified threshold are detected.
Modelling unsaturated/saturated flow in weathered profiles
NASA Astrophysics Data System (ADS)
Ireson, A. M.; Ali, M. A.; Van Der Kamp, G.
2016-12-01
Vertical weathering profiles are a common feature of many geological materials, where the fracture or macropore porosity decreases progressively below the ground surface. The weathered near surface zone (WNSZ) has an enhanced storage and permeability. When the water table is deep, the WNSZ can act to buffer recharge. When the water table is shallow, intersecting the WNSZ, transmissivity and lateral saturated flow, increase with increasing water table elevation. Such a situation exists in the glacial till dominated landscapes of the Canadian prairies, effectively resulting in dynamic patterns of subsurface connectivity. Using dual permeability hydraulic properties with vertically scaled macroporosity, we show how the WNSZ can be represented in models. The resulting model can be more parsimonious than an equivalent model with two or more discrete layers, and more physically realistic. We implement our model in PARFLOW-CLM, and apply the model to a field site in the Canadian prairies. We are able to convincingly simulate shallow groundwater dynamics, and spatio-temporal patterns of groundwater connectivity.
Ramanan, B; Holmes, W M; Sloan, W T; Phoenix, V R
2012-01-03
Quantifying nanoparticle (NP) transport inside saturated porous geological media is imperative for understanding their fate in a range of natural and engineered water systems. While most studies focus upon finer grained systems representative of soils and aquifers, very few examine coarse-grained systems representative of riverbeds and gravel based sustainable urban drainage systems. In this study, we investigated the potential of magnetic resonance imaging (MRI) to image transport behaviors of nanoparticles (NPs) through a saturated coarse-grained system. MRI successfully imaged the transport of superparamagnetic NPs, inside a porous column composed of quartz gravel using T(2)-weighted images. A calibration protocol was then used to convert T(2)-weighted images into spatially resolved quantitative concentration maps of NPs at different time intervals. Averaged concentration profiles of NPs clearly illustrates that transport of a positively charged amine-functionalized NP within the column was slower compared to that of a negatively charged carboxyl-functionalized NP, due to electrostatic attraction between positively charged NP and negatively charged quartz grains. Concentration profiles of NPs were then compared with those of a convection-dispersion model to estimate coefficients of dispersivity and retardation. For the amine functionalized NPs (which exhibited inhibited transport), a better model fit was obtained when permanent attachment (deposition) was incorporated into the model as opposed to nonpermanent attachment (retardation). This technology can be used to further explore transport processes of NPs inside coarse-grained porous media, either by using the wide range of commercially available (super)paramagnetically tagged NPs or by using custom-made tagged NPs.
Variable resistance constant tension and lubrication device. [using oil-saturated leather wiper
NASA Technical Reports Server (NTRS)
Smith, H. J. (Inventor)
1974-01-01
A variable resistance device is described which includes a cylindrical housing having elongated resistance wires. A movable arm having a supporting block carried on the outer end is rotatably carried by the cylindrical housing. An arcuate steel spring member is pivotally supported by the movable arm. A leather wiper member is carried adjacent to one end of the spring steel member, and an electrically conductive surface is carried adjacent to the other end. The supporting block maintains the spring steel member in compression so that a constant pressure is applied to the conductive end of the spring steel member and the leather wiper. The leather wiper is saturated with a lubricating oil for maintaining the resistance wire clean as the movable arm is manipulated.
Empirical algorithms to predict aragonite saturation state
NASA Astrophysics Data System (ADS)
Turk, Daniela; Dowd, Michael
2017-04-01
Novel sensor packages deployed on autonomous platforms (Profiling Floats, Gliders, Moorings, SeaCycler) and biogeochemical models have a potential to increase the coverage of a key water chemistry variable, aragonite saturation state (ΩAr) in time and space, in particular in the under sampled regions of global ocean. However, these do not provide the set of inorganic carbon measurements commonly used to derive ΩAr. There is therefore a need to develop regional predictive models to determine ΩAr from measurements of commonly observed or/and non carbonate oceanic variables. Here, we investigate predictive skill of several commonly observed oceanographic variables (temperature, salinity, oxygen, nitrate, phosphate and silicate) in determining ΩAr using climatology and shipboard data. This will allow us to assess potential for autonomous sensors and biogeochemical models to monitor ΩAr regionally and globally. We apply the regression models to several time series data sets and discuss regional differences and their implications for global estimates of ΩAr.
NASA Astrophysics Data System (ADS)
Plampin, M. R.; Lassen, R. N.; Sakaki, T.; Pawar, R.; Jensen, K.; Illangasekare, T. H.
2013-12-01
A concern for geologic carbon sequestration is the potential for CO2 stored in deep geologic formations to leak upward into shallow freshwater aquifers where it can have potentially detrimental impacts to the environment and human health. Understanding the mechanisms of CO2 exsolution, migration and accumulation (collectively referred to as 'gas evolution') in the shallow subsurface is critical to predict and mitigate the environmental impacts. During leakage, CO2 can move either as free-phase or as a dissolved component of formation brine. CO2 dissolved in brine may travel upward into shallow freshwater systems, and the gas may be released from solution. In the shallow aquifer, the exsolved gas may accumulate near interfaces between soil types, and/or create flow paths that allow the gas to escape through the vadose zone to the atmosphere. The process of gas evolution in the shallow subsurface is controlled by various factors, including temperature, dissolved CO2 concentration, water pressure, background water flow rate, and geologic heterogeneity. However, the conditions under which heterogeneity controls gas phase evolution have not yet been precisely defined and can therefore not yet be incorporated into models used for environmental risk assessment. The primary goal of this study is to conduct controlled laboratory experiments to help fill this knowledge gap. With this as a goal, a series of intermediate-scale laboratory experiments were conducted to observe CO2 gas evolution in porous media at multiple scales. Deionized water was saturated with dissolved CO2 gas under a specified pressure (the saturation pressure) before being injected at a constant volumetric flow rate into the bottom of a 1.7 meter-tall by 5.7 centimeter-diameter column or a 2.4 meter-tall by 40 centimeter-wide column that were both filled with sand in various heterogeneous packing configurations. Both test systems were initially saturated with fresh water and instrumented with soil moisture sensors to monitor the evolution of gas phase through time by measuring the average water content in small sampling volumes of soil. Tensiometers allowed for observation of water pressure through space and time in the test systems, and a computer-interfaced electronic scale continuously monitored the outflow of water from the top of the two test columns. Several packing configurations with five different types of sands were used in order to test the effects of various pore size contrasts and interface shapes on the evolution of the gas phase near soil texture transitions in the heterogeneous packings. Results indicate that: (1) heterogeneity affects gas phase evolution patterns within a predictable range of conditions quantified by the newly introduced term 'oversaturation,' (2) soil transition interfaces where less permeable material overlies more permeable material have a much more pronounced effect on gas evolution than interfaces with opposite orientations, and (3) anticlines (or stratigraphic traps) cause significantly greater gas accumulation than horizontal interfaces. Further work is underway to apply these findings to more realistic, two-dimensional scenarios, and to assess how well existing numerical models can capture these processes.
Bultman, Mark W.; Page, William R.
2016-10-31
The upper Santa Cruz Basin is an important groundwater basin containing the regional aquifer for the city of Nogales, Arizona. This report provides data and interpretations of data aimed at better understanding the bedrock morphology and structure of the upper Santa Cruz Basin study area which encompasses the Rio Rico and Nogales 1:24,000-scale U.S. Geological Survey quadrangles. Data used in this report include the Arizona Aeromagnetic and Gravity Maps and Data referred to here as the 1996 Patagonia Aeromagnetic survey, Bouguer gravity anomaly data, and conductivity-depth transforms (CDTs) from the 1998 Santa Cruz transient electromagnetic survey (whose data are included in appendixes 1 and 2 of this report).Analyses based on magnetic gradients worked well to identify the range-front faults along the Mt. Benedict horst block, the location of possibly fault-controlled canyons to the west of Mt. Benedict, the edges of buried lava flows, and numerous other concealed faults and contacts. Applying the 1996 Patagonia aeromagnetic survey data using the horizontal gradient method produced results that were most closely correlated with the observed geology.The 1996 Patagonia aeromagnetic survey was used to estimate depth to bedrock in the upper Santa Cruz Basin study area. Three different depth estimation methods were applied to the data: Euler deconvolution, horizontal gradient magnitude, and analytic signal. The final depth to bedrock map was produced by choosing the maximum depth from each of the three methods at a given location and combining all maximum depths. In locations of rocks with a known reversed natural remanent magnetic field, gravity based depth estimates from Gettings and Houser (1997) were used.The depth to bedrock map was supported by modeling aeromagnetic anomaly data along six profiles. These cross sectional models demonstrated that by using the depth to bedrock map generated in this study, known and concealed faults, measured and estimated magnetic susceptibilities of rocks found in the study area, and estimated natural remanent magnetic intensities and directions, reasonable geologic models can be built. This indicates that the depth to bedrock map is reason-able and geologically possible.Finally, CDTs derived from the 1998 Santa Cruz Basin transient electromagnetic survey were used to help identify basin structure and some physical properties of the basin fill in the study area. The CDTs also helped to confirm depth to bedrock estimates in the Santa Cruz Basin, in particular a region of elevated bedrock in the area of Potrero Canyon, and a deep basin in the location of the Arizona State Highway 82 microbasin. The CDTs identified many concealed faults in the study area and possibly indicate deep water-saturated clay-rich sediments in the west-central portion of the study area. These sediments grade to more sand-rich saturated sediments to the south with relatively thick, possibly unsaturated, sediments at the surface. Also, the CDTs may indicate deep saturated clay-rich sediments in the Highway 82 microbasin and in the Mount Benedict horst block from Proto Canyon south to the international border.
Wang, X.; Wu, S.; Lee, M.; Guo, Y.; Yang, S.; Liang, J.
2011-01-01
During the China's first gas hydrate drilling expedition -1 (GMGS-1), gas hydrate was discovered in layers ranging from 10 to 25 m above the base of gas hydrate stability zone in the Shenhu area, South China Sea. Water chemistry, electrical resistivity logs, and acoustic impedance were used to estimate gas hydrate saturations. Gas hydrate saturations estimated from the chloride concentrations range from 0 to 43% of the pore space. The higher gas hydrate saturations were present in the depth from 152 to 177 m at site SH7 and from 190 to 225 m at site SH2, respectively. Gas hydrate saturations estimated from the resistivity using Archie equation have similar trends to those from chloride concentrations. To examine the variability of gas hydrate saturations away from the wells, acoustic impedances calculated from the 3 D seismic data using constrained sparse inversion method were used. Well logs acquired at site SH7 were incorporated into the inversion by establishing a relation between the water-filled porosity, calculated using gas hydrate saturations estimated from the resistivity logs, and the acoustic impedance, calculated from density and velocity logs. Gas hydrate saturations estimated from acoustic impedance of seismic data are ???10-23% of the pore space and are comparable to those estimated from the well logs. The uncertainties in estimated gas hydrate saturations from seismic acoustic impedances were mainly from uncertainties associated with inverted acoustic impedance, the empirical relation between the water-filled porosities and acoustic impedances, and assumed background resistivity. ?? 2011 Elsevier Ltd.
Transient Seepage for Levee Engineering Analyses
NASA Astrophysics Data System (ADS)
Tracy, F. T.
2017-12-01
Historically, steady-state seepage analyses have been a key tool for designing levees by practicing engineers. However, with the advances in computer modeling, transient seepage analysis has become a potentially viable tool. A complication is that the levees usually have partially saturated flow, and this is significantly more complicated in transient flow. This poster illustrates four elements of our research in partially saturated flow relating to the use of transient seepage for levee design: (1) a comparison of results from SEEP2D, SEEP/W, and SLIDE for a generic levee cross section common to the southeastern United States; (2) the results of a sensitivity study of varying saturated hydraulic conductivity, the volumetric water content function (as represented by van Genuchten), and volumetric compressibility; (3) a comparison of when soils do and do not exhibit hysteresis, and (4) a description of proper and improper use of transient seepage in levee design. The variables considered for the sensitivity and hysteresis studies are pore pressure beneath the confining layer at the toe, the flow rate through the levee system, and a levee saturation coefficient varying between 0 and 1. Getting results for SEEP2D, SEEP/W, and SLIDE to match proved more difficult than expected. After some effort, the results matched reasonably well. Differences in results were caused by various factors, including bugs, different finite element meshes, different numerical formulations of the system of nonlinear equations to be solved, and differences in convergence criteria. Varying volumetric compressibility affected the above test variables the most. The levee saturation coefficient was most affected by the use of hysteresis. The improper use of pore pressures from a transient finite element seepage solution imported into a slope stability computation was found to be the most grievous mistake in using transient seepage in the design of levees.
Mashayekhian, Mohammad; Hassanian-Moghaddam, Hossein; Rahimi, Mitra; Zamani, Nasim; Aghabiklooei, Abbas; Shadnia, Shahin
2016-09-01
In pulse CO-oximetry of aluminium phosphide (ALP)-poisoned patients, we discovered that carboxyhaemoglobin (CO-Hb) level was elevated. We aimed to determine whether a higher CO level was detected in patients with severe ALP poisoning and if this could be used as a prognostic factor in these patients. In a prospective case-control study, 96 suspected cases of ALP poisoning were evaluated. In the ALP-poisoned group, demographic characteristics, gastric and exhalation silver nitrate test results, average CO-Hb saturation, methaemoglobin saturation, and blood pressure and blood gas analysis until death/discharge were recorded. Severely poisoned patients were defined as those with systolic blood pressure ≤80 mmHg, pH ≤7.2, or HCO3 ≤15 meq/L or those who died, while patients with minor poisoning were those without any of these signs/symptoms. A control group (37 patients) was taken from other medically ill patients to detect probable effects of hypotension and metabolic acidosis on CO-Hb and methaemoglobin saturations. Of 96 patients, 27 died and 37 fulfilled the criteria for severe poisoning. All patients with carbon monoxide saturation >18% met the criteria to be included in the severe poisoning group and all with a SpCO >25% died. Concerning all significant variables in univariate analysis of severe ALP toxicity, the only significant variable which could independently predict death was carbon monoxide saturation. Due to high mortality rate and need for intensive care support, early prediction of outcome is vital for choosing an appropriate setting (ICU or ordinary ward). CO-oximetry is a good diagnostic and prognostic factor in patients with ALP poisoning even before any clinical evidence of toxicity will develop. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
O’Mullan, Gregory; Dueker, M. Elias; Clauson, Kale; Yang, Qiang; Umemoto, Kelsey; Zakharova, Natalia; Matter, Juerg; Stute, Martin; Takahashi, Taro; Goldberg, David
2015-01-01
In addition to efforts aimed at reducing anthropogenic production of greenhouse gases, geological storage of CO2 is being explored as a strategy to reduce atmospheric greenhouse gas emission and mitigate climate change. Previous studies of the deep subsurface in North America have not fully considered the potential negative effects of CO2 leakage into shallow drinking water aquifers, especially from a microbiological perspective. A test well in the Newark Rift Basin was utilized in two field experiments to investigate patterns of microbial succession following injection of CO2-saturated water into an isolated aquifer interval, simulating a CO2 leakage scenario. A decrease in pH following injection of CO2 saturated aquifer water was accompanied by mobilization of trace elements (e.g. Fe and Mn), and increased bacterial cell concentrations in the recovered water. 16S ribosomal RNA gene sequence libraries from samples collected before and after the test well injection were compared to link variability in geochemistry to changes in aquifer microbiology. Significant changes in microbial composition, compared to background conditions, were found following the test well injections, including a decrease in Proteobacteria, and an increased presence of Firmicutes, Verrucomicrobia and microbial taxa often noted to be associated with iron and sulfate reduction. The concurrence of increased microbial cell concentrations and rapid microbial community succession indicate significant changes in aquifer microbial communities immediately following the experimental CO2 leakage event. Samples collected one year post-injection were similar in cell number to the original background condition and community composition, although not identical, began to revert toward the pre-injection condition, indicating microbial resilience following a leakage disturbance. This study provides a first glimpse into the in situ successional response of microbial communities to CO2 leakage after subsurface injection in the Newark Basin and the potential microbiological impact of CO2 leakage on drinking water resources. PMID:25635675
NASA Astrophysics Data System (ADS)
Feely, R. A.; Alin, S. R.; Hales, B. R.; Juranek, L.; Greeley, D.
2012-12-01
The Washington-Oregon continental shelf region is exposed to conditions of low aragonite saturation state during the late spring/early summer upwelling season. However, the extent of its evolution in late summer/early fall has been largely unknown. Along this continental margin, ocean acidification, upwelling, biological productivity, and respiration processes in subsurface waters are major contributors to the variability in dissolved inorganic carbon (DIC), pH and aragonite saturation state. The persistence of water with aragonite saturation state <1 on the continental shelf off Washington and Oregon has been previously identified and could have profound ecological consequences for benthic and pelagic calcifying organisms such as mussels, oysters, abalone, echinoderms, and pteropods. In the late summer of 2012 we studied the extent of acidification conditions employing shipboard cruises and profiling gliders. We conducted several large-scale chemical and hydrographic surveys of the region in order to better understand the interrelationships between these natural and human-induced processes and their effects on aragonite saturation. We will compare the results of these new surveys with our previous work in 2011 and 2007.
Use of vertical temperature gradients for prediction of tidal flat sediment characteristics
Miselis, Jennifer L.; Holland, K. Todd; Reed, Allen H.; Abelev, Andrei
2012-01-01
Sediment characteristics largely govern tidal flat morphologic evolution; however, conventional methods of investigating spatial variability in lithology on tidal flats are difficult to employ in these highly dynamic regions. In response, a series of laboratory experiments was designed to investigate the use of temperature diffusion toward sediment characterization. A vertical thermistor array was used to quantify temperature gradients in simulated tidal flat sediments of varying compositions. Thermal conductivity estimates derived from these arrays were similar to measurements from a standard heated needle probe, which substantiates the thermistor methodology. While the thermal diffusivities of dry homogeneous sediments were similar, diffusivities for saturated homogeneous sediments ranged approximately one order of magnitude. The thermal diffusivity of saturated sand was five times the thermal diffusivity of saturated kaolin and more than eight times the thermal diffusivity of saturated bentonite. This suggests that vertical temperature gradients can be used for distinguishing homogeneous saturated sands from homogeneous saturated clays and perhaps even between homogeneous saturated clay types. However, experiments with more realistic tidal flat mixtures were less discriminating. Relationships between thermal diffusivity and percent fines for saturated mixtures varied depending upon clay composition, indicating that clay hydration and/or water content controls thermal gradients. Furthermore, existing models for the bulk conductivity of sediment mixtures were improved only through the use of calibrated estimates of homogeneous end-member conductivity and water content values. Our findings suggest that remotely sensed observations of water content and thermal diffusivity could only be used to qualitatively estimate tidal flat sediment characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zhufeng; Hou, Zhangshuan; Lin, Guang
2014-04-01
This study examined the impacts of reservoir properties on CO2 migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as saturation distribution. The injection reservoir was assumed to be located 1400-1500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of themore » domain, which extended up to 8000 m from the injection well. The CO2 migration was simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). We adopted a nonlinear parameter estimation and optimization modeling software package, PEST, for automated reservoir parameter estimation. We explored the effects of data quality, data worth, and data redundancy on the detectability of reservoir parameters using CO2 saturation monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 saturation monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy.« less
NASA Astrophysics Data System (ADS)
Podgorski, Joel E.; Green, Alan G.; Kalscheuer, Thomas; Kinzelbach, Wolfgang K. H.; Horstmeyer, Heinrich; Maurer, Hansruedi; Rabenstein, Lasse; Doetsch, Joseph; Auken, Esben; Ngwisanyi, Tiyapo; Tshoso, Gomotsang; Jaba, Bashali Charles; Ntibinyane, Onkgopotse; Laletsang, Kebabonye
2015-03-01
Integration of information from the following sources has been used to produce a much better constrained and more complete four-unit geological/hydrological model of the Okavango Delta than previously available: (i) a 3D resistivity model determined from helicopter time-domain electromagnetic (HTEM) data recorded across most of the delta, (ii) 2D models and images derived from ground-based electrical resistance tomographic, transient electromagnetic, and high resolution seismic reflection/refraction tomographic data acquired at four selected sites in western and north-central regions of the delta, and (iii) geological details extracted from boreholes in northeastern and southeastern parts of the delta. The upper heterogeneous unit is the modern delta, which comprises extensive dry and freshwater-saturated sand and lesser amounts of clay and salt. It is characterized by moderate to high electrical resistivities and very low to low P-wave velocities. Except for images of several buried abandoned river channels, it is non-reflective. The laterally extensive underlying unit of low resistivities, low P-wave velocity, and subhorizontal reflectors very likely contains saline-water-saturated sands and clays deposited in the huge Paleo Lake Makgadikgadi (PLM), which once covered a 90,000 km2 area that encompassed the delta, Lake Ngami, the Mababe Depression, and the Makgadikgadi Basin. Examples of PLM sediments are intersected in many boreholes. Low permeability clay within the PLM unit seems to be a barrier to the downward flow of the saline water. Below the PLM unit, freshwater-saturated sand of the Paleo Okavango Megafan (POM) unit is distinguished by moderate to high resistivities, low P-wave velocity, and numerous subhorizontal reflectors. The POM unit is interpreted to be the remnants of a megafan based on the arcuate nature of its front and the semi-conical shape of its upper surface in the HTEM resistivity model. Moderate to high resistivity subhorizontal layers are consistent with this interpretation. The deepest unit is the basement with very high resistivity, high P-wave velocity, and low or complex reflectivity. The interface between the POM unit and basement is a prominent seismic reflector.
NASA Astrophysics Data System (ADS)
Azizi, S.; Torres, L. A. B.; Palhares, R. M.
2018-01-01
The regional robust stabilisation by means of linear time-invariant state feedback control for a class of uncertain MIMO nonlinear systems with parametric uncertainties and control input saturation is investigated. The nonlinear systems are described in a differential algebraic representation and the regional stability is handled considering the largest ellipsoidal domain-of-attraction (DOA) inside a given polytopic region in the state space. A novel set of sufficient Linear Matrix Inequality (LMI) conditions with new auxiliary decision variables are developed aiming to design less conservative linear state feedback controllers with corresponding larger DOAs, by considering the polytopic description of the saturated inputs. A few examples are presented showing favourable comparisons with recently published similar control design methodologies.
NASA Astrophysics Data System (ADS)
Arora, B.. R.; Choubey, V. M.; Barbosa, S. M.
2009-04-01
Wadia Institute of Himalayan Geology (WIHG) has recently established the first Indian Multi-Parametric Geophysical Observatory (MPGO) at Ghuttu (30.53 N, 78.74 E) in Garhwal Himalayas (Uttarakhand), India to study the earthquake precursors in integrated manner. Given the rationale and significance of this inter-disciplinary approach, the paper with the help of recorded radon time series shall illustrate the complex time variability that needs to be quantified in terms of influencing environmental factors before residual field can be used to search anticipated earthquake precursory signals. Monitoring of 222radon (Rn) is carried out using a gamma ray radon monitoring probe based on 1.5" x 1.5" NaI scintillation. Measurement of radon concentration at 15 min interval has been done at 10m depth in air column above the variable water level in a 68m deep borehole together with simultaneous recordings of ground water level and environmental variables such as atmospheric pressure, temperature, rain fall etc. Apart from strong seasonal cycle in Rn concentration, with high values in summer (July to September) and low values in the winter months (January to March), the most obvious feature in the time series is the distinct nature of daily variation pattern. Four types of daily variations observed are a) positive peaks, b) negative peaks and c) sinusoidal peaks and d) long intervals when daily variations are conspicuously absent, particularly in winter and rainy season. Examination and correlation with environmental factors has revealed that when surface atmospheric temperature is well below the water temperature in borehole (later is constant around 19oC in all seasons) temperature gradients are not conducive to set up the convection currents for the emanation of radon to surface, thus explaining the absence of daily variation in radon concentration in winter. During the rainy season, following continuous rainfalls, once the soil/rocks are saturated with water radon concentrations show fair stability. Long pauses in rainfall give jerky variability during rainy season with no clear pattern of daily variation. During rest of the seasons when surface temperature are always higher that water temperature, the nature of observed pattern can be reconciled in terms of the form and amplitude of daily progression in temperature gradient. An accurate description of the effect of environmental variables is essential if we to wish decipher information related to stress/strain accumulation.
NASA Astrophysics Data System (ADS)
Jiang, M.; Pan, C.; Barbero, L.; Hu, C.; Reed, J.; Salisbury, J.; Wanninkhof, R. H.
2016-02-01
Abundant and diverse cold-water corals and associated fish communities can be found in the deep waters of the Florida Straits. Preliminary evidence suggests that corals in these deep coral habitats are living under sub-optimal conditions with the ambient aragonite saturation state (Ω) being only marginally above 1. Yet little is known regarding the temporal variability of carbonate chemistry parameters and their dynamic drivers in these critical habitats. In this presentation, we addressed this issue by using a recently developed circulation model and in situ data collected during two research cruises: the second Florida Shelf Edge Exploration Expedition (FloSEE2) in September 2011 and the second Gulf of Mexico East Coast Carbon Cruise (GOMECC2) in July 2012, both supported by NOAA. A numerical simulation was carried out for 2011-2012. In particular, we focused on two contrasting habitats: Pourtalès Terrace (200-450m) and Miami Terrace (270-600m) in the Florida Straits. The results suggest that there is strong weekly to seasonal variability in the bottom water properties including temperature, salinity, total CO2 and total alkalinity on the upper slope of the Straits. In particular, the minimum saturation state over Pourtalès Terrace can be as low as 1.5 whereas even at the top of Miami Terrace, Ω can be very close to 1. Further analysis suggests that the variability of water properties in the upper slope is largely driven by the large-scale transport, and upwelling of cold and CO2-rich deep waters due to meandering of Florida Current, and/or associated meso-scale eddies. In contrast, the water properties at the bottom of the slope are very stable but with much lower aragonite saturation state. The roles of local biochemical processes including the potentially elevated productivity and export driven by meso-scale eddies are yet to be explored. We further project that the aragonite saturation state in deep waters of the Florida Straits may be further decreased to around or below 1 in 2050 under the IPCC RCP 8.5 scenario.
Maximum rates of climate change are systematically underestimated in the geological record.
Kemp, David B; Eichenseer, Kilian; Kiessling, Wolfgang
2015-11-10
Recently observed rates of environmental change are typically much higher than those inferred for the geological past. At the same time, the magnitudes of ancient changes were often substantially greater than those established in recent history. The most pertinent disparity, however, between recent and geological rates is the timespan over which the rates are measured, which typically differ by several orders of magnitude. Here we show that rates of marked temperature changes inferred from proxy data in Earth history scale with measurement timespan as an approximate power law across nearly six orders of magnitude (10(2) to >10(7) years). This scaling reveals how climate signals measured in the geological record alias transient variability, even during the most pronounced climatic perturbations of the Phanerozoic. Our findings indicate that the true attainable pace of climate change on timescales of greatest societal relevance is underestimated in geological archives.
Reynolds, Richard J.; Calef, F.J.
2011-01-01
The hydrogeology of the stratified-drift aquifer in the Sprout Creek and Fishkill Creek valleys in southern Dutchess County, New York, previously investigated by the U.S. Geological Survey (USGS) in 1982, was updated through the use of new well data made available through the New York State Department of Environmental Conservation's Water Well Program. Additional well data related to U.S. Environmental Protection Agency (USEPA) remedial investigations of two groundwater contamination sites near the villages of Hopewell Junction and Shenandoah, New York, were also used in this study. The boundary of the stratified-drift aquifer described in a previous USGS report was extended slightly eastward and southward to include adjacent tributary valleys and the USEPA groundwater contamination site at Shenandoah, New York. The updated report consists of maps showing well locations, surficial geology, altitude of the water table, and saturated thickness of the aquifer. Geographic information system coverages of these four maps were created as part of the update process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, D.K.; Sharp, M.K.; Sjostrom, K.J.
1996-10-01
Seismic refraction, electrical resistivity, and transient electromagnetic surveys were conducted at a portion of Cluster 13, Edgewood Area of Aberdeen Proving Ground, Maryland. Seismic refraction cross sections map the topsoil layer and the water table (saturated zone). The water table elevations from the seismic surveys correlate closely with water table elevations in nearby monitoring wells. Electrical resistivity cross sections reveal a very complicated distribution of sandy and clayey facies in the upper 10 - 15 m of the subsurface. A continuous surficial (topsoil) layer correlates with the surficial layer of the seismic section and nearby boring logs. The complexity andmore » details of the electrical resistivity cross section correlate well with boring and geophysical logs from nearby wells. The transient electromagnetic surveys map the Pleistocene-Cretaceous boundary, the saprolite, and the top of the Precambrian crystalline rocks. Conducting the transient electromagnetic surveys on a grid pattern allows the construction of a three-dimensional representation of subsurface geology (as represented by variations of electrical resistivity). Thickness and depth of the saprolitic layer and depth to top of the Precambrian rocks are consistent with generalized geologic cross sections for the Edgewood Area and depths projected from reported depths at the Aberdeen Proving Ground NW boundary using regional dips.« less
A Noachian/Hesperian Hiatus and Erosive Reactivation of Martian Valley Networks
NASA Technical Reports Server (NTRS)
Irwin, R. P., III.; Maxwell, T. A.; Howard, A. D.; Craddock, R. A.; Moore, J. M.
2005-01-01
Despite new evidence for persistent flow and sedimentation on early Mars, it remains unclear whether valley networks were active over long geologic timescales (10(exp 5)-10(exp 8) yr), or if flows were persistent only during multiple discrete episodes of moderate (approx. 10(exp 4) yr) to short (<10 yr) duration. Understanding the long-term stability/variability of valley network hydrology would provide an important control on paleoclimate and groundwater models. Here we describe geologic evidence for a hiatus in highland valley network activity while the fretted terrain formed, followed by a discrete reactivation of persistent (but possibly variable) erosive flows. Additional information is included in the original extended abstract.
NASA Astrophysics Data System (ADS)
Mundhra, A.; Sain, K.; Shankar, U.
2012-12-01
The Indian National Gas Hydrate Program Expedition (NGHP) 01 discovered gas hydrate in unconsolidated sediments at several drilling sites along the continental margins of Krishna-Godavari Basin, India. Presence of gas hydrate reduces the attenuation of travelling seismic waves which can be measured by estimation of seismic quality factor (Dasgupta and Clark, 1998). Here, we use log spectral ratio method (Sain et al, 2009) to compute quality factor at three locations, among which two have strong and one has no bottom simulating reflector (BSR), along seismic cross-line near one of the drilling site. Interval quality factor for three submarine sedimentary layers bounded by seafloor, BSR, one reflector above and another reflector below the BSR has been measured. To compute quality factor, unprocessed pre-stack seismic data has been used to avoid any influence of processing sequence. We have estimated that interval quality factor lies within 200-220 in the interval having BSR while it varies within 90-100 in other intervals. Thereby, high interval quality factor ascertains that observed BSR is due to presence of gas hydrates. We have performed rock physics modelling by using isotropic and anisotropic models, to quantitatively estimate gas hydrate saturation at one of the location where an interval has high quality factor. Abruptly high measured resistivity and high P-wave velocity in the interval, leads to towering hydrate saturation (Archie,1942 and Helegrud et al, 1999) in comparison to lower gas hydrate saturations estimated by pressure core and chlorinity measurements. Overestimation of saturation is attributed to presence of near vertical fractures that are identified from logging-while-drilling resistivity images. We have carried out anisotropic modeling (Kennedy and Herrick, 2004 and Lee,2009) by incorporating fracture volume and fracture porosity to estimate hydrate saturation and have observed that modeled gas hydrate saturations agree with the lower gas hydrate saturations obtained from pressure core and chlorinity measurements. Therefore, we find that 1) quality factor is significantly higher in the interval bearing gas hydrates and is a useful tool to discover hydrate deposits, 2) anisotropy due to presence of near vertical hydrate filled fractures translates into elevated saturation because of high measured resistivity and velocity and 3) anisotropic model greatly corrects the saturation estimates in fractured medium. References: Archie, G.E., 1942. Petroleum Transactions of AIME, 146, 54-62. Dasgupta, R., Clark, R.A., 1998. Geophysics 63, 2120-2128. Kennedy, W.D., Herrick, D.C., 2004. Petrophysics 45, 38-58. Lee, M.W., 2009. U.S. Geological Survey Scientific Investigations Report 2009-5141, 13. Sain, K., Singh, A.K., Thakur, N.K., Khanna, R.K., 2009.Marine Geophysical Researches 30, 137-145.
nZVI injection into variably saturated soils: Field and modeling study.
Chowdhury, Ahmed I A; Krol, Magdalena M; Kocur, Christopher M; Boparai, Hardiljeet K; Weber, Kela P; Sleep, Brent E; O'Carroll, Denis M
2015-12-01
Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI field-scale mobility. In this study, a field test was combined with numerical modeling to examine nZVI reactivity along with transport properties in variably saturated soils. The field test consisted of 142L of carboxymethyle cellulose (CMC) stabilized monometallic nZVI synthesized onsite and injected into a variably saturated zone. Periodic groundwater samples were collected from the injection well, as well as, from two monitoring wells to analyze for chlorinated solvents and other geochemistry indicators. This study showed that CMC stabilized monometallic nZVI was able to decrease tricholorethene (TCE) concentrations in groundwater by more than 99% from the historical TCE concentrations. A three dimensional, three phase, finite difference numerical simulator, (CompSim) was used to further investigate nZVI and polymer transport at the variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the mass of nZVI delivered to the saturated and unsaturated zones and distinguished the nZVI phase (i.e. aqueous or attached). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity and viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher nZVI volume delivered more iron particles at a given distance; however, the travel distance was not proportional to the increase in volume. Moreover, simulation results showed that using a 1D transport equation to simulate nZVI migration in the subsurface may overestimate the travel distance. This is because the 1D transport equation assumes a constant velocity while pore water velocity radially decreases from the well during injection. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and that a numerical simulator can be a valuable tool for optimal design of nZVI field applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Barkley, K E; Fields, B; Dilger, A C; Boler, D D
2018-06-07
The objective was to determine the effect of machine, anatomical location and replication (multiple readings) on instrumental color and to characterize the amount of variation each factor contributed to overall color. Instrumental color was measured 3 times on the anterior and 3 times on the posterior end of 250 pork loins with 2 different Minolta CR-400 Chroma meter devices. Each Minolta was programed to use a D65 illuminant, 2º observer with an 8 mm aperture, and calibrated with white tiles specific to each machine. Therefore, a total of 12 instrumental color measurements were collected on each loin. The VARCOMP procedure in SAS was used to estimate the proportion of variation contributed by each factor to CIE L*, a*, b*, chroma and hue. Based on previous research, the average untrained consumer is able to distinguish between 3-L* units, 0.4-a* units, and 0.9-hue angle units. Loins evaluated with machine 1 were 0.71 L* units darker (P < 0.01), 1.09 b* units more yellow (P < 0.01), 0.47 chroma units more saturated (P < 0.01), and had a hue angle 5.12 units greater (P < 0.01) than when evaluated with machine 2 but did not differ (P = 0.24) in redness. The anterior portion of the loin was lighter, less red, more yellow, more saturated and had a greater hue angle than the posterior end (P < 0.01). All color trait values decreased (P < 0.01) as replication number increased. Inherent color differences among loins contributed the greatest proportion of variability for lightness (58%), redness (57%), yellowness (70%), saturation (70%) and hue angle (49%). Machine contributed 1% variability to lightness 3% to saturation, 23% to yellowness and 31% to hue angle (31%) but did not contribute to variability for redness. Anatomical location contributed 41% to lightness, 43% to redness, 7% to yellowness, 27% to saturation and 31% to hue angle. Replication did not contribute to total variation for any color traits, even though it did differ among measurements. Overall, there were differences in instrumental color values between the two machines tested but those differences were likely less than the threshold for detection by a consumer. Even so, inherent color differences between loins were a greater contributor to total variability than the differences between the 2 machines. Therefore, it is more important to define the location of measurements than replication or machine when using a Minolta CR-400 when performing color evaluations, assuming the settings are the same.
NASA Astrophysics Data System (ADS)
Vannier, Olivier; Braud, Isabelle; Anquetin, Sandrine
2013-04-01
The estimation of catchment-scale soil properties, such as water storage capacity and hydraulic conductivity, is of primary interest for the implementation of distributed hydrological models at the regional scale. This estimation is generally done on the basis of information provided by soil databases. However, such databases are often established for agronomic uses and generally do not document deep weathered rock horizons (i.e. pedologic horizons of type C and deeper), which can play a major role in water transfer and storages. Here we define the Drainable Storage Capacity Index (DSCI), an indicator that relies on the comparison of cumulated streamflow and precipitation to assess catchment-scale storage capacities. The DSCI is found to be reliable to detect underestimation of soil storage capacities in soil databases. We also use the streamflow recession analysis methodology defined by Brutsaert and Nieber (Water Resources Research 13(3), 1977) to estimate water storage capacities and lateral saturated hydraulic conductivities of the non-documented deep horizons. The analysis is applied to a sample of twenty-three catchments (0.2 km² - 291 km²) located in the Cévennes-Vivarais region (south of France). In a regionalisation purpose, the obtained results are compared to the dominant catchments geology. This highlights a clear hierarchy between the different geologies present in the area. Hard crystalline rocks are found to be associated to the thickest and less conductive deep soil horizons. Schist rocks present intermediate values of thickness and of saturated hydraulic conductivity, whereas sedimentary rocks and alluvium are found to be the less thick and the most conductive. Consequently, deep soil layers with thicknesses and hydraulic conductivities differing with the geology were added to a distributed hydrological model implemented over the Cévennes-Vivarais region. Preliminary simulations show a major improvement in terms of simulated discharge when compared to simulations done without deep soil layers. KEY WORDS: hydraulic soil properties, streamflow recession, deep soil horizons, soil databases, Boussinesq equation, storage capacity, regionalisation
Reynolds, Richard J.
2002-01-01
The hydrogeology of a 135-square-mile area centered at Waverly, N.Y. and Sayre, Pa. is summarized in a set of five maps and a sheet of geologic sections, all at 1:24,000 scale, that depict locations of wells and test holes (sheet 1), surficial geology (sheet 2), altitude of the water table (sheet 3), saturated thickness of the surficial aquifer (sheet 4), thickness of the lacustrine confining unit (sheet 5), and geologic sections (sheet 6). The valley-fill deposits that form the aquifer system in the Waverly-Sayre area occupy an area of approximately 30 square miles, within the valleys of the Susquehanna River, Chemung River, and Cayuta Creek.The saturated thickness of the surficial aquifer, which consists of alluvium, valley-train outwash, and underlying ice-contact deposits, ranges from zero to 90 feet and is greatest in areas where (1) the outwash is underlain by ice-contact sand and gravel or (2) the outwash is overlain by alluvium and alluvial fans. Estimated transmissivity of the surficial aquifer ranges from 5,600 to 100,270 feet squared per day, and estimated hydraulic conductivity ranges from 50 feet per day for ice-contact deposits to 1,300 feet per day for well-sorted, valley-train outwash.The surficial aquifer is underlain by deposits of lacustrine sand, silt, and clay in the main valleys; these deposits reach thicknesses of as much as 150 ft and form a thick confining unit. Beneath the lacustrine silt and clay confining unit is a thin, discontinuous sand and gravel aquifer whose thickness averages 5 feet but may be as much as 30 feet locally. This confined aquifer supplies many domestic well in the area; yields average about 22 gallons per minute for 6-inch-diameter, open-ended wells. Average annual recharge to the aquifer system is estimated to be approximately 52.5 Mgal/d (million gallons per day), of which 29.7 Mgal/d is from direct precipitation, 7.6 Mgal/d is from unchanneled upland runoff that infiltrates the stratified drift along the valley wall, and 15.2 Mgal/d is from infiltration from tributary streams on the valley floor.
Influence of dietary intake during gestation on postpartum weight retention.
Martins, Ana Paula Bortoletto; Benicio, Maria Helena D'Aquino
2011-10-01
To evaluate the influence of dietary intake during gestation on postpartum weight retention. A total of 82 healthy pregnant women who began prenatal care at public healthcare services in the Municipality of São Paulo (Southeastern Brazil) between April and June 2005 were followed up. Weight and height were measured in the first interview (up to 16 weeks of gestation) and the weight measure was repeated during a household visit 15 days after delivery. The 24-Hour Dietary Recall method was employed to evaluate dietary intake at the three trimesters of gestation. The mean ingestion of saturated fat, fibers, added sugar, soft drinks, processed foods, fruits and vegetables, as well as the dietary energy density were calculated. Weight retention was estimated by the difference between the measure of the postpartum weight and the first measured weight. The influence of dietary intake on postpartum weight retention was assessed by multiple linear regression analysis and the linear trend test was performed. The variables used to adjust the model were: body mass index at the beginning of gestation, height, per capita family income, smoking, age, and level of schooling. The mean body mass index at the beginning of gestation was 24 kg/m² and the mean weight retention was 1.9 kg. The increase in saturated fat intake (p=0.005) and processed foods ingestion (p=0.014) significantly increased postpartum weight retention, after adjustment by the control variables. The other dietary intake variables did not present a significant relationship to the outcome variable. The increased intake of unhealthy food, such as processed foods, and of saturated fat influences the increment of postpartum weight retention.
Friedel, Michael J.
2001-01-01
This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water-heat-solute transport. The first three problems considered in model verification were compared to either analytical or numerical solutions, whereas the coupled problem was compared to measured laboratory results for which no known analytic solutions or numerical models are available. The test results indicate the model is accurate and applicable for a wide range of conditions, including when water (liquid and vapor), heat (sensible and latent), and solute are coupled in ground-water systems. The cumulative residual errors for the coupled problem tested was less than 10-8 cubic centimeter per cubic centimeter, 10-5 moles per kilogram, and 102 calories per cubic meter for liquid water content, solute concentration and heat content, respectively. This model should be useful to hydrologists, engineers, and researchers interested in studying coupled processes associated with variably saturated transport in ground-water systems.
NASA Astrophysics Data System (ADS)
Regnery, Julia; Lee, Jonghyun; Drumheller, Zachary W.; Drewes, Jörg E.; Illangasekare, Tissa H.; Kitanidis, Peter K.; McCray, John E.; Smits, Kathleen M.
2017-05-01
Meaningful model-based predictions of water quality and quantity are imperative for the designed footprint of managed aquifer recharge installations. A two-dimensional (2D) synthetic MAR system equipped with automated sensors (temperature, water pressure, conductivity, soil moisture, oxidation-reduction potential) and embedded water sampling ports was used to test and model fundamental subsurface processes during surface spreading managed aquifer recharge operations under controlled flow and redox conditions at the meso-scale. The fate and transport of contaminants in the variably saturated synthetic aquifer were simulated using the finite element analysis model, FEFLOW. In general, the model concurred with travel times derived from contaminant breakthrough curves at individual sensor locations throughout the 2D tank. However, discrepancies between measured and simulated trace organic chemical concentrations (i.e., carbamazepine, sulfamethoxazole, tris (2-chloroethyl) phosphate, trimethoprim) were observed. While the FEFLOW simulation of breakthrough curves captured overall shapes of trace organic chemical concentrations well, the model struggled with matching individual data points, although compound-specific attenuation parameters were used. Interestingly, despite steady-state operation, oxidation-reduction potential measurements indicated temporal disturbances in hydraulic properties in the saturated zone of the 2D tank that affected water quality.
Water Flow in Karst Aquifer Considering Dynamically Variable Saturation Conduit
NASA Astrophysics Data System (ADS)
Tan, Chaoqun; Hu, Bill X.
2017-04-01
The karst system is generally conceptualized as dual-porosity system, which is characterized by low conductivity and high storage continuum matrix and high conductivity and quick flow conduit networks. And so far, a common numerical model for simulating flow in karst aquifer is MODFLOW2005-CFP, which is released by USGS in 2008. However, the steady-state approach for conduit flow in CFP is physically impractical when simulating very dynamic hydraulics with variable saturation conduit. So, we adopt the method proposed by Reimann et al. (2011) to improve current model, in which Saint-Venant equations are used to model the flow in conduit. Considering the actual background that the conduit is very big and varies along flow path and the Dirichlet boundary varies with rainfall in our study area in Southwest China, we further investigate the influence of conduit diameter and outflow boundary on numerical model. And we also analyze the hydraulic process in multi-precipitation events. We find that the numerical model here corresponds well with CFP for saturated conduit, and it could depict the interaction between matrix and conduit during very dynamic hydraulics pretty well compare with CFP.
NASA Astrophysics Data System (ADS)
Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.
2017-12-01
Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.
Paillet, Frederick L.; Haynes, F.M.; Buretz, O.M.
2001-01-01
The massive Paleocene oil sands of the Balder Field are overlain by several thinly bedded Eocene sand-prone packages of variable facies and reservoir quality. Although these sands have been penetrated by numerous exploration and development wells, uncertainty remains as to their extent, distribution, and ultimate effect on reservoir performance. The section is geologically complex (thin beds, injected sands, shale clasts and laminae, and faulting), and also contains a field-wide primary gas cap. With a depletion plan involving both gas and water injection, geologic/reservoir characterization of the Eocene is critical for prudent resource management during depletion. With this goal, resistivity modeling and core-based thin bed reservoir description from the first phase of development drilling have been integrated with seismic attribute mapping. Detailed core description, core permeability and grain size distribution data delineate six facies and help in distinguishing laterally continuous massive and laminated sands from potentially non-connected injection sands and non-reservoir quality siltstones and tuffs. Volumetric assessment of the thin sand resource has been enhanced by I-D forward modeling of induction log response using a commercial resistivity modeling program, R,BAN. After defining beds and facies with core and high resolution log data, the AHF60 array induction curve response was approximated using the 6FF40 response. Because many of the beds were thinner than 6FF40 resolution, the modeling is considered to provide a lower bound on R,. However, for most beds this model-based R, is significantly higher than that provided by one-foot vertical resolution shallow resistivity data, and is thought to be the best available estimate of true formation resistivity. Sensitivities in STOOIP were assessed with multiple R, earth models which can later be tested against production results. In addition, water saturation height functions, developed in vertical wells and thick beds, can be validated in deviated wells with thin beds. Sand thickness models constrained by this logand core-based petrophysical analysis were used to build impedance seismic synthetic sections from which seismic attributes could be extracted and calibrated. The model-based attribute calibration was then applied to the seismic impedance 3-D cube permitting sand thickness to be mapped and reservoir geology to be modeled with significantly more detail than previously possible. These results will guide the field''s reservoir management and assist in the delineation of new targets.
NASA Astrophysics Data System (ADS)
Wang, Xinyu; Wang, Shifeng; Wang, Chao; Tang, Wenkun
2018-05-01
Large volumes of Permo-Triassic granitoids are exposed along the Northern Lancangjiang zone, eastern Tibet, and these rocks provide insights into the tectonic evolution of the Paleo-Tethys Ocean. We conducted detailed geological fieldwork and geochemical analysis of the Xiaochangdu and Kagong plutons that crop out along the Northern Lancangjiang magmatic belt. Zircon U-Pb data constrain the emplacement of the Xiaochangdu quartz diotites to between 263 and 257 Ma, and the Kagong granites and diorites to between 234 and 232 Ma. The Xiaochangdu quartz diorites are enriched in light rare earth (LREE) and large ion lithophile elements (LILE), depleted in high field strength elements (HFSE), have low (87Sr/86Sr)i ratios, and near-positive εNd(t) (-0.26 to 1.58) and εHf(t) (0.68-8.83) values, similar to typical subduction- related mantle-derived arc magmas. They are also characterized by high Al2O3 concentrations and low Nb/U (3.48-7.59) and Ce/Pb (3.22-4.86) ratios, indicating that their mantle source was modified by subducted pelagic sediments; Coeval granites and diorites from the Kagong pluton exhibit low A/CNK values, high LREE/HREE (heavy rare earth element) ratios, enrichment in LILE, and depletion in HFSE, also characteristic of typical arc magmas. Their variable SiO2 contents (57%- 75%), (87Sr/86Sr)i ratios, and εNd(t) (1.02-4.49) and εHf(t) (2.52-6.93) values, and relatively high zircon saturation temperatures (721-827 °C), suggest underplating of mantle-derived mafic melts beneath the lower crust. Their magmatic evolution can be explained using a MASH model. In combination with regional geological studies, our geochemical and geochronological results suggest that the late Permian Xiaochangdu and Late Triassic Kagong arc-like granitoids represent a section of a Permo-Triassic magmatic arc that was associated with the eastward subduction of the Paleo-Tethys oceanic slab beneath the Northern Qiangtang-Changdu terrane. Combined with other geological evidence, the 263-232 Ma arc-like granitoids clearly indicate that final closure of the Paleo-Tethys ocean have not occurred until the end of the Triassic.
Single-cell measurement of red blood cell oxygen affinity.
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan
2015-08-11
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.
Single-cell measurement of red blood cell oxygen affinity
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan
2015-01-01
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973
NASA Astrophysics Data System (ADS)
Frampton, Andrew
2017-04-01
There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic carbon releases. Further model development challenges are also highlighted and discussed, including coupling between subsurface and surface runoff, soil deformations, as well as site applications and larger system scales.
How to Recharge a Confined Alluvial Aquifer System
NASA Astrophysics Data System (ADS)
Maples, S.; Fogg, G. E.; Liu, Y.
2016-12-01
Greater water storage capacity is needed to offset future decreases in snowpack-water storage in California. Managed aquifer recharge (MAR) in California's Central Valley aquifer system is a promising alternative to new surface reservoir storage because it has the potential to both reduce overdraft conditions observed in many Central Valley groundwater basins and offset continued decreases in snowpack storage. MAR to the Central Valley's productive confined-aquifer system remains a challenge because, like most alluvial aquifer systems, it is composed mostly of silt and clay sediments that form nearly ubiquitous, multiple confining layers that inhibit direct recharge of the interconnected sand and gravel body networks. Several studies have mapped surficial soil types in the Central Valley that are conducive to MAR, but few studies have evaluated how subsurface geologic heterogeneity controls recharge to the confined aquifer system. Here, we use a transition probability Markov-chain geostatistical model conditioned with 1200 well logs to create a physically-realistic representation of the subsurface geologic heterogeneity in the American and Cosumnes River watersheds on the east side of the Sacramento Valley, CA, where studies have shown the presence of massive, interconnected, highly-permeable gravel deposits that are potentially conducive to considerably higher rates of regional recharge than would be possible over the rest of the landscape. Such localized stratigraphic features to support accelerated recharge occur throughout the Central Valley, but are mostly still undiscovered. A variably-saturated, fully-integrated, groundwater/surface-water code, ParFlow, was used to simulate MAR dynamics in this system. Results show the potential for (1) accelerated, high-volume recharge through interconnected gravels where they outcrop at land surface, and (2) regional repressurization of the deeper confined aquifer system. These findings provide insight into the critical role of subsurface heterogeneity on MAR dynamics in alluvial aquifer systems and highlight the potential for MAR in California and elsewhere.
Physical and chemical constraints limit the habitat window for an endangered mussel
Campbell, Cara; Prestegaard, Karen L.
2016-01-01
Development of effective conservation and restoration strategies for freshwater pearly mussels requires identification of environmental constraints on the distributions of individual mussel species. We examined whether the spatial distribution of the endangered Alasmidonta heterodon in Flat Brook, a tributary of the upper Delaware River, was constrained by water chemistry (i.e., calcium availability), bed mobility, or both. Alasmidonta heterodon populations were bracketed between upstream reaches that were under-saturated with respect to aragonite and downstream reaches that were saturated for aragonite during summer baseflow but had steep channels with high bed mobility. Variability in bed mobility and water chemistry along the length of Flat Brook create a “habitat window” for A. heterodon defined by bed stability (mobility index ≤1) and aragonite saturation (saturation index ≥1). We suggest the species may exist in a narrow biogeochemical window that is seasonally near saturation. Alasmidonta heterodon populations may be susceptible to climate change or anthropogenic disturbances that increase discharge, decrease groundwater inflow or chemistry, and thus affect either bed mobility or aragonite saturation. Identifying the biogeochemical microhabitats and requirements of individual mussel species and incorporating this knowledge into management decisions should enhance the conservation and restoration of endangered mussel species.
[Fluoride in drinking water in Cuba and its association with geological and geographical variables].
Luna, Liliam Cuéllar; Melián, Maricel García
2003-11-01
To determine the association between different concentrations of the fluoride ion in drinking water and some geological and geographical variables in Cuba, by using a geographic information system. From November 1998 to October 1999 we studied the fluoride concentration in the sources of drinking water for 753 Cuban localities that had at least 1 000 inhabitants. For the information analysis we utilized the MapInfo Professional version 5.5 geographic information system, using the overlaying method. The study variables were the concentration of the fluoride ion in the water sources, the geological characteristics of the area, the alignments (geological characteristics that were found together), the types of water sources, and whether an area was a plain or mountainous. The results were grouped by locality and municipality. In 83.1% of the localities, the water samples were collected from wells and springs, and the remaining 16.9% came from dams and rivers. Of the 753 localities studied, 675 of them (89.6%) had low or medium fluoride concentrations (under 0.7 mg/L). The eastern region of the country was the one most affected by high fluoride concentrations in the waters, followed by the central region of the country. The majority of the localities with high natural fluoride concentrations were in areas located on Cretaceous volcanic arc rocks. The presence of fluoride in the drinking waters was related to the alignments with the earth's crust, in rock complexes of volcanic-sedimentary origin and of intrusive origin and also in carbonate rocks. However, the highest fluoride concentrations generally coincided with rock complexes of volcanic-sedimentary origin and of intrusive origin. All the localities with high fluoride concentrations in the water were associated with wells. The fluoride concentration is low or medium in the drinking water sources for 89.6% of the Cuban localities with at least 1 000 inhabitants. Geological and geographical characteristics can help identify areas with optimal or high concentrations of the fluoride ion in the drinking water.
NASA Astrophysics Data System (ADS)
McGroddy, M. E.; Baisden, W. T.; Hedin, L. O.
2008-03-01
Hydrologic losses can play a key role in regulating ecosystem nutrient balances, particularly in regions where baseline nutrient cycles are not augmented by industrial deposition. We used first-order streams to integrate hydrologic losses at the watershed scale across unpolluted old-growth forests in New Zealand. We employed a matrix approach to resolve how stream water concentrations of dissolved organic carbon (DOC), organic and inorganic nitrogen (DON and DIN), and organic and inorganic phosphorus (DOP and DIP) varied as a function of landscape differences in climate and geology. We found stream water total dissolved nitrogen (TDN) to be dominated by organic forms (medians for DON, 81.3%, nitrate-N, 12.6%, and ammonium-N, 3.9%). The median stream water DOC:TDN:TDP molar ratio of 1050:21:1 favored C slightly over N and P when compared to typical temperate forest foliage ratios. Using the full set of variables in a multiple regression approach explained approximately half of the variability in DON, DOC, and TDP concentrations. Building on this approach we combined a simplified set of variables with a simple water balance model in a regression designed to predict DON export at larger spatial scales. Incorporating the effects of climate and geologic variables on nutrient exports will greatly aid the development of integrated Earth-climate biogeochemical models which are able to take into account multiple element dynamics and complex natural landscapes.
APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER
Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requ...
Variable speed wind turbine control by discrete-time sliding mode approach.
Torchani, Borhen; Sellami, Anis; Garcia, Germain
2016-05-01
The aim of this paper is to propose a new design variable speed wind turbine control by discrete-time sliding mode approach. This methodology is designed for linear saturated system. The saturation constraint is reported on inputs vector. To this end, the back stepping design procedure is followed to construct a suitable sliding manifold that guarantees the attainment of a stabilization control objective. It is well known that the mechanisms are investigated in term of the most proposed assumptions to deal with the damping, shaft stiffness and inertia effect of the gear. The objectives are to synthesize robust controllers that maximize the energy extracted from wind, while reducing mechanical loads and rotor speed tracking combined with an electromagnetic torque. Simulation results of the proposed scheme are presented. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Physically-Based Assessment of Intrinsic Groundwater Resource Vulnerability in AN Urban Catchment
NASA Astrophysics Data System (ADS)
Graf, T.; Therrien, R.; Lemieux, J.; Molson, J. W.
2013-12-01
Several methods exist to assess intrinsic groundwater (re)source vulnerability for the purpose of sustainable groundwater management and protection. However, several methods are empirical and limited in their application to specific types of hydrogeological systems. Recent studies suggest that a physically-based approach could be better suited to provide a general, conceptual and operational basis for groundwater vulnerability assessment. A novel method for physically-based assessment of intrinsic aquifer vulnerability is currently under development and tested to explore the potential of an integrated modelling approach, combining groundwater travel time probability and future scenario modelling in conjunction with the fully integrated HydroGeoSphere model. To determine the intrinsic groundwater resource vulnerability, a fully coupled 2D surface water and 3D variably-saturated groundwater flow model in conjunction with a 3D geological model (GoCAD) has been developed for a case study of the Rivière Saint-Charles (Québec/Canada) regional scale, urban watershed. The model has been calibrated under transient flow conditions for the hydrogeological, variably-saturated subsurface system, coupled with the overland flow zone by taking into account monthly recharge variation and evapotranspiration. To better determine the intrinsic groundwater vulnerability, two independent approaches are considered and subsequently combined in a simple, holistic multi-criteria-decision analyse. Most data for the model comes from an extensive hydrogeological database for the watershed, whereas data gaps have been complemented via field tests and literature review. The subsurface is composed of nine hydrofacies, ranging from unconsolidated fluvioglacial sediments to low permeability bedrock. The overland flow zone is divided into five major zones (Urban, Rural, Forest, River and Lake) to simulate the differences in landuse, whereas the unsaturated zone is represented via the model integrated Van-Genuchten function. The model setup and optimisation turn out to be the most challenging part because of the non-trivial nature (due to the highly non-linear PDEs) of the coupling procedure between the surface and subsurface domain, while keeping realistic parameter ranges and obtaining realistic simulation results in both domains. The model calibration is based on water level monitoring as well as daily mean river discharge measurement at different gauge stations within the catchment. It is intended to create multiple model outcomes for the numerical modelling of the groundwater vulnerability to take into account uncertainty due to the model input data. The next step of the overall vulnerability assessment consists in modelling future vulnerability scenario(s), applying realistic changes to the model by using PEST with SENSAN for subsequent sensitivity analysis. The PEST model could also potentially be used for a model recalibration as a function of the model parameters sensitivity (simple perturbation method). Preliminary results showing a good fit between the observed and simulated water levels and hydrographs. However the simulated water depth at the overland flow domain as well as the simulated saturation distribution in the porous media domain are still showing room for improvement of the numerical model.
NASA Astrophysics Data System (ADS)
Mirus, B. B.; Baum, R. L.; Stark, B.; Smith, J. B.; Michel, A.
2015-12-01
Previous USGS research on landslide potential in hillside areas and coastal bluffs around Puget Sound, WA, has identified rainfall thresholds and antecedent moisture conditions that correlate with heightened probability of shallow landslides. However, physically based assessments of temporal and spatial variability in landslide potential require improved quantitative characterization of the hydrologic controls on landslide initiation in heterogeneous geologic materials. Here we present preliminary steps towards integrating monitoring of hydrologic response with physically based numerical modeling to inform the development of a landslide warning system for a railway corridor along the eastern shore of Puget Sound. We instrumented two sites along the steep coastal bluffs - one active landslide and one currently stable slope with the potential for failure - to monitor rainfall, soil-moisture, and pore-pressure dynamics in near-real time. We applied a distributed model of variably saturated subsurface flow for each site, with heterogeneous hydraulic-property distributions based on our detailed site characterization of the surficial colluvium and the underlying glacial-lacustrine deposits that form the bluffs. We calibrated the model with observed volumetric water content and matric potential time series, then used simulated pore pressures from the calibrated model to calculate the suction stress and the corresponding distribution of the factor of safety against landsliding with the infinite slope approximation. Although the utility of the model is limited by uncertainty in the deeper groundwater flow system, the continuous simulation of near-surface hydrologic response can help to quantify the temporal variations in the potential for shallow slope failures at the two sites. Thus the integration of near-real time monitoring and physically based modeling contributes a useful tool towards mitigating hazards along the Puget Sound railway corridor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Y.; Tong, C.; Trainor-Guitten, W. J.
The risk of CO 2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO 2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO 2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO 2/brine saturation are connected to the fault-leakage model as amore » boundary condition. CO 2 and brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO 2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO 2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less
Predicting the spatial extent of liquefaction from geospatial and earthquake specific parameters
Zhu, Jing; Baise, Laurie G.; Thompson, Eric M.; Wald, David J.; Knudsen, Keith L.; Deodatis, George; Ellingwood, Bruce R.; Frangopol, Dan M.
2014-01-01
The spatially extensive damage from the 2010-2011 Christchurch, New Zealand earthquake events are a reminder of the need for liquefaction hazard maps for anticipating damage from future earthquakes. Liquefaction hazard mapping as traditionally relied on detailed geologic mapping and expensive site studies. These traditional techniques are difficult to apply globally for rapid response or loss estimation. We have developed a logistic regression model to predict the probability of liquefaction occurrence in coastal sedimentary areas as a function of simple and globally available geospatial features (e.g., derived from digital elevation models) and standard earthquake-specific intensity data (e.g., peak ground acceleration). Some of the geospatial explanatory variables that we consider are taken from the hydrology community, which has a long tradition of using remotely sensed data as proxies for subsurface parameters. As a result of using high resolution, remotely-sensed, and spatially continuous data as a proxy for important subsurface parameters such as soil density and soil saturation, and by using a probabilistic modeling framework, our liquefaction model inherently includes the natural spatial variability of liquefaction occurrence and provides an estimate of spatial extent of liquefaction for a given earthquake. To provide a quantitative check on how the predicted probabilities relate to spatial extent of liquefaction, we report the frequency of observed liquefaction features within a range of predicted probabilities. The percentage of liquefaction is the areal extent of observed liquefaction within a given probability contour. The regional model and the results show that there is a strong relationship between the predicted probability and the observed percentage of liquefaction. Visual inspection of the probability contours for each event also indicates that the pattern of liquefaction is well represented by the model.
Concentration and saturation effects of tethered polymer chains on adsorbing surfaces
NASA Astrophysics Data System (ADS)
Descas, Radu; Sommer, Jens-Uwe; Blumen, Alexander
2006-12-01
We consider end-grafted chains at an adsorbing surface under good solvent conditions using Monte Carlo simulations and scaling arguments. Grafting of chains allows us to fix the surface concentration and to study a wide range of surface concentrations from the undersaturated state of the surface up to the brushlike regime. The average extension of single chains in the direction parallel and perpendicular to the surface is analyzed using scaling arguments for the two-dimensional semidilute surface state according to Bouchaud and Daoud [J. Phys. (Paris) 48, 1991 (1987)]. We find good agreement with the scaling predictions for the scaling in the direction parallel to the surface and for surface concentrations much below the saturation concentration (dense packing of adsorption blobs). Increasing the grafting density we study the saturation effects and the oversaturation of the adsorption layer. In order to account for the effect of excluded volume on the adsorption free energy we introduce a new scaling variable related with the saturation concentration of the adsorption layer (saturation scaling). We show that the decrease of the single chain order parameter (the fraction of adsorbed monomers on the surface) with increasing concentration, being constant in the ideal semidilute surface state, is properly described by saturation scaling only. Furthermore, the simulation results for the chains' extension from higher surface concentrations up to the oversaturated state support the new scaling approach. The oversaturated state can be understood using a geometrical model which assumes a brushlike layer on top of a saturated adsorption layer. We provide evidence that adsorbed polymer layers are very sensitive to saturation effects, which start to influence the semidilute surface scaling even much below the saturation threshold.
Hilberg, Sylke; Brandstätter, Jennifer; Glück, Daniel
2013-04-01
Mountainous regions such as the Central European Alps host considerable karstified or fractured groundwater bodies, which meet many of the demands concerning drinking water supply, hydropower or agriculture. Alpine hydrogeologists are required to describe the dynamics in fractured aquifers in order to assess potential impacts of human activities on water budget and quality. Delineation of catchment areas by means of stable isotopes and hydrochemical data is a well established method in alpine hydrogeology. To achieve reliable results, time series of (at least) one year and spatial and temporal close-meshed data are necessary. In reality, test sites in mountainous regions are often inaccessible due to the danger of avalanches in winter. The aim of our work was to assess a method based on the processes within the carbonic acid system to delineate infiltration areas by means of single datasets consisting of the main hydrochemical parameters of each spring. In three geologically different mountainous environments we managed to classify the investigated springs into four groups. (1) High PCO2 combined with slight super-saturation in calcite, indicating relatively low infiltration areas. (2) Low PCO2 near atmospheric conditions in combination with calcite saturation, which is indicative of relatively high infiltration areas and a fractured aquifer which is not covered by topsoil layers. (3) High PCO2 in combination with sub-saturation in calcite, representing a shallow aquifer with a significant influence of the topsoil layer. (4) The fourth group of waters is characterized by low PCO2 and sub-saturation in calcite, which is interpreted as evidence for a shallow aquifer without significant influence of any hard rock aquifer or topsoil layer. This study shows that CO2-partial pressure can be an ideal natural tracer to estimate the elevation of infiltration areas, especially in non-karstified fractured groundwater bodies.
Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts
Lent, R.M.; Waldron, M.C.; Rader, J.C.
1998-01-01
A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.
NASA Astrophysics Data System (ADS)
Hopp, L.; Ivanov, V. Y.
2010-12-01
There is still a debate in rainfall-runoff modeling over the advantage of using three-dimensional models based on partial differential equations describing variably saturated flow vs. models with simpler infiltration and flow routing algorithms. Fully explicit 3D models are computationally demanding but allow the representation of spatially complex domains, heterogeneous soils, conditions of ponded infiltration, and solute transport, among others. Models with simpler infiltration and flow routing algorithms provide faster run times and are likely to be more versatile in the treatment of extreme conditions such as soil drying but suffer from underlying assumptions and ad-hoc parameterizations. In this numerical study, we explore the question of whether these two model strategies are competing approaches or if they complement each other. As a 3D physics-based model we use HYDRUS-3D, a finite element model that numerically solves the Richards equation for variably-saturated water flow. As an example of a simpler model, we use tRIBS+VEGGIE that solves the 1D Richards equation for vertical flow and applies Dupuit-Forchheimer approximation for saturated lateral exchange and gravity-driven flow for unsaturated lateral exchange. The flow can be routed using either the D-8 (steepest descent) or D-infinity flow routing algorithms. We study lateral subsurface stormflow and moisture dynamics at the hillslope-scale, using a zero-order basin topography, as a function of storm size, antecedent moisture conditions and slope angle. The domain and soil characteristics are representative of a forested hillslope with conductive soils in a humid environment, where the major runoff generating process is lateral subsurface stormflow. We compare spatially integrated lateral subsurface flow at the downslope boundary as well as spatial patterns of soil moisture. We illustrate situations where both model approaches perform equally well and identify conditions under which the application of a fully-explicit 3D model may be required for a realistic description of the hydrologic response.
A Bézier-Spline-based Model for the Simulation of Hysteresis in Variably Saturated Soil
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Peche, Aaron; Thiele, Luisa-Bianca; Graf, Thomas; Neuweiler, Insa
2017-04-01
Most transient variably saturated flow models neglect hysteresis in the p_c-S-relationship (Beven, 2012). Such models tend to inadequately represent matrix potential and saturation distribution. Thereby, when simulating flow and transport processes, fluid and solute fluxes might be overestimated (Russo et al., 1989). In this study, we present a simple, computationally efficient and easily applicable model that enables to adequately describe hysteresis in the p_c-S-relationship for variably saturated flow. This model can be seen as an extension to the existing play-type model (Beliaev and Hassanizadeh, 2001), where scanning curves are simplified as vertical lines between main imbibition and main drainage curve. In our model, we use continuous linear and Bézier-Spline-based functions. We show the successful validation of the model by numerically reproducing a physical experiment by Gillham, Klute and Heermann (1976) describing primary drainage and imbibition in a vertical soil column. With a deviation of 3%, the simple Bézier-Spline-based model performs significantly better that the play-type approach, which deviates by 30% from the experimental results. Finally, we discuss the realization of physical experiments in order to extend the model to secondary scanning curves and in order to determine scanning curve steepness. {Literature} Beven, K.J. (2012). Rainfall-Runoff-Modelling: The Primer. John Wiley and Sons. Russo, D., Jury, W. A., & Butters, G. L. (1989). Numerical analysis of solute transport during transient irrigation: 1. The effect of hysteresis and profile heterogeneity. Water Resources Research, 25(10), 2109-2118. https://doi.org/10.1029/WR025i010p02109. Beliaev, A.Y. & Hassanizadeh, S.M. (2001). A Theoretical Model of Hysteresis and Dynamic Effects in the Capillary Relation for Two-phase Flow in Porous Media. Transport in Porous Media 43: 487. doi:10.1023/A:1010736108256. Gillham, R., Klute, A., & Heermann, D. (1976). Hydraulic properties of a porous medium: Measurement and empirical representation. Soil Science Society of America Journal, 40(2), 203-207.
Molybdenite saturation in silicic magmas: Occurrence and petrological implications
Audetat, A.; Dolejs, D.; Lowenstern, J. B.
2011-01-01
We identified molybdenite (MoS2) as an accessory magmatic phase in 13 out of 27 felsic magma systems examined worldwide. The molybdenite occurs as small (<20 ??m) triangular or hexagonal platelets included in quartz phenocrysts. Laser-ablation inductively coupled plasma mass spectrometry analyses of melt inclusions in molybdenite-saturated samples reveal 1-13 ppm Mo in the melt and geochemical signatures that imply a strong link to continental rift basalt-rhyolite associations. In contrast, arc-associated rhyolites are rarely molybdenite-saturated, despite similar Mo concentrations. This systematic dependence on tectonic setting seems to reflect the higher oxidation state of arc magmas compared with within-plate magmas. A thermodynamic model devised to investigate the effects of T, f O2 and f S2 on molybdenite solubility reliably predicts measured Mo concentrations in molybdenite-saturated samples if the magmas are assumed to have been saturated also in pyrrhotite. Whereas pyrrhotite microphenocrysts have been observed in some of these samples, they have not been observed from other molybdenite-bearing magmas. Based on the strong influence of f S2 on molybdenite solubility we calculate that also these latter magmas must have been at (or very close to) pyrrhotite saturation. In this case the Mo concentration of molybdenite-saturated melts can be used to constrain both magmatic f O2 and f S2 if temperature is known independently (e.g. by zircon saturation thermometry). Our model thus permits evaluation of magmatic f S2, which is an important variable but is difficult to estimate otherwise, particularly in slowly cooled rocks. ?? The Author 2011. Published by Oxford University Press. All rights reserved.
Lee, M.W.; Collett, T.S.
2009-01-01
During the Indian National Gas Hydrate Program Expedition 01 (NGHP-Ol), one of the richest marine gas hydrate accumulations was discovered at Site NGHP-01-10 in the Krishna-Godavari Basin. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Assuming the resistivity of gas hydratebearing sediments is isotropic, th?? conventional Archie analysis using the logging while drilling resistivity log yields gas hydrate saturations greater than 50% (as high as ???80%) of the pore space for the depth interval between ???25 and ???160 m below seafloor. On the other hand, gas hydrate saturations estimated from pressure cores from nearby wells were less than ???26% of the pore space. Although intrasite variability may contribute to the difference, the primary cause of the saturation difference is attributed to the anisotropic nature of the reservoir due to gas hydrate in high-angle fractures. Archie's law can be used to estimate gas hydrate saturations in anisotropic reservoir, with additional information such as elastic velocities to constrain Archie cementation parameters m and the saturation exponent n. Theory indicates that m and n depend on the direction of the measurement relative to fracture orientation, as well as depending on gas hydrate saturation. By using higher values of m and n in the resistivity analysis for fractured reservoirs, the difference between saturation estimates is significantly reduced, although a sizable difference remains. To better understand the nature of fractured reservoirs, wireline P and S wave velocities were also incorporated into the analysis.
Seasonal Variability in European Radon Measurements
NASA Astrophysics Data System (ADS)
Groves-Kirkby, C. J.; Denman, A. R.; Phillips, P. S.; Crockett, R. G. M.; Sinclair, J. M.
2009-04-01
In temperate climates, domestic radon concentration levels are generally seasonally dependent, the level in the home reflecting the convolution of two time-dependent functions. These are the source soil-gas radon concentration itself, and the principal force driving radon into the building from the soil, namely the pressure-difference between interior and exterior environment. While the meteorological influence can be regarded as relatively uniform on a European scale, its variability being defined largely by the influence of North-Atlantic weather systems, soil-gas radon is generally more variable as it is essentially geologically dependent. Seasonal variability of domestic radon concentration can therefore be expected to exhibit geographical variability, as is indeed the case. To compensate for the variability of domestic radon levels when assessing the long term radon health risks, the results of individual short-term measurements are generally converted to equivalent mean annual levels by application of a Seasonal Correction Factor (SCF). This is a multiplying factor, typically derived from measurements of a large number of homes, applied to the measured short-term radon concentration to provide a meaningful annual mean concentration for dose-estimation purposes. Following concern as to the universal applicability of a single SCF set, detailed studies in both the UK and France have reported location-specific SCF sets for different regions of each country. Further results indicate that SCFs applicable to the UK differ significantly from those applicable elsewhere in Europe and North America in both amplitude and phase, supporting the thesis that seasonal variability in indoor radon concentration cannot realistically be compensated for by a single national or international SCF scheme. Published data characterising the seasonal variability of European national domestic radon concentrations, has been collated and analysed, with the objective of identifying correlations between published datasets and local geographic/geological conditions. Available data included regional SCF figures from the United Kingdom and from France, together with nationally-consolidated results from a number of other European countries. Analysis of this data shows significant variability between different countries and from region to region within those countries where regional data is available. Overall, radon-rich sedimentary geologies, particularly high porosity limestones etc., exhibit high seasonal variation, while radon-rich igneous geologies demonstrate relatively constant, albeit somewhat higher, radon concentration levels. Examples of the former can be found in the Pennines and South Downs in England, Languedoc and Brittany in France. Greatest variability is found in Switzerland, still subject to the ongoing Alpine orogeny, where the inhabited part of the country is largely overlain with recently-deposited light, porous sediments. Low-variability high-radon regions include the granite-rich Cornwall/Devon peninsular in England, and Auvergne and the Ardennes in France, all components of the Devonian-Carboniferous Hercynian belt, which extends from the Iberian peninsular through South-West Ireland and South-West England to France and Germany.
NASA Astrophysics Data System (ADS)
Bodor, Petra; Eröss, Anita; Kovács, József; Mádl-Szönyi, Judit
2016-04-01
The subsurface part of the hydrologic cycle, the saturated groundwater flow can be mostly studied in regional discharge areas. In these regions the water has already spent geologically long time under the surface, therefore the upwelling water reflect the effect of the geometry and boundary conditions of the whole flow field, its geology and chemical processes. According to these conditions, the discharging waters can be characterized with different values and variability of physicochemical parameters (temperature, total dissolved solids, cations, anions, gas content etc.). This question has special interest in carbonate systems where the concept of regional groundwater flow was only introduced in the last few years. Hydrographs and chemographs are frequently used in karst studies to demonstrate the effect of variability of the system and to derive information for the nature of flow inside the karst (channel, fracture or matrix). Usually these graphs show abrupt changes after precipitation events, but this is typical for epigenic karsts. However, discharge areas, where hypogenic karsts developed, can behave differently due to their feeding flow systems. These systems and their effects are not so well studied yet. In this study we examined hydrographs and chemographs of the regional discharge area of a deep and thick carbonate range of Buda Thermal Karst and tried to understand those mechanisms which determine the hydrological and hydrochemical behaviour of the region. Here cold, lukewarm and also thermal waters discharge along the River Danube. The variability of physicochemical parameters (temperature, electric conductivity, pH, volume discharge, water level, dissolved CO2 and 222Rn, δ18O, δD) of the discharging water was studied to understand influencing mechanisms. We tried to understand the effect of precipitation (short and long term) and the effect of River Danube with geomathematical methods for the lukewarm components of the discharging water. Based on the results, it was found that the hydrological and hydrochemical parameters of the regional discharge zone are only slightly variable compared to the other parts of the system. The local effect of precipitation is not detectable at the area, and it has only buffered influence in the recharge zone based on comparison with integrated precipitation. However, this buffered effect is eliminated at the discharge zone. It means that these regional discharge zones of carbonates are less sensitive to the change in short and long term climatic conditions. This can be explained easily by their position in the gravity-driven flow systems. However, the transient effect of the river influences the discharge conditions, therefore the hydrological and hydrochemical conditions. These findings display the quasi permanent flow conditions regarding the regional discharge areas of carbonates with the superimposed transient effect of the river. The research was supported by the NK 101356 OTKA research grant.
Landsat-7 long-term acquisition plan radiometry - evolution over time
Markham, Brian L; Goward, Samuel; Arvidson, Terry; Barsi, Julia A.; Scaramuzza, Pat
2006-01-01
The Landsat-7 Enhanced Thematic Mapper Plus instrument has two selectable gains for each spectral band. In the acquisition plan, the gains were initially set to maximize the entropy in each scene. One unintended consequence of this strategy was that, at times, dense vegetation saturated band 4 and deserts saturated all bands. A revised strategy, based on a land-cover classification and sun angle thresholds, reduced saturation, but resulted in gain changes occurring within the same scene on multiple overpasses. As the gain changes cause some loss of data and difficulties for some ground processing systems, a procedure was devised to shift the gain changes to the nearest predicted cloudy scenes. The results are still not totally satisfactory as gain changes still impact some scenes and saturation still occurs, particularly in ephemerally snow-covered regions. A primary conclusion of our experience with variable gain on Landsat-7 is that such an approach should not be employed on future global monitoring missions.
Food Sources of Saturated Fat and the Association With Mortality: A Meta-Analysis
O’Sullivan, Therese A.; Mitrou, Francis; Lawrence, David
2013-01-01
We summarized the data related to foods high in saturated fat and risk of mortality. We searched Cochrane Library, MEDLINE, EMBASE, and ProQuest for studies from January 1952 to May 2012. We identified 26 publications with individual dietary data and all-cause, total cancer, or cardiovascular mortality as endpoints. Pooled relative risk estimates demonstrated that high intakes of milk, cheese, yogurt, and butter were not associated with a significantly increased risk of mortality compared with low intakes. High intakes of meat and processed meat were significantly associated with an increased risk of mortality but were associated with a decreased risk in a subanalysis of Asian studies. The overall quality of studies was variable. Associations varied by food group and population. This may be because of factors outside saturated fat content of individual foods. There is an ongoing need for improvement in assessment tools and methods that investigate food sources of saturated fat and mortality to inform dietary guidelines. PMID:23865702
De Landro, Grazia; Serlenga, Vincenzo; Russo, Guido; Amoroso, Ortensia; Festa, Gaetano; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo
2017-06-13
Seismic tomography can be used to image the spatial variation of rock properties within complex geological media such as volcanoes. Solfatara is a volcano located within the Campi Flegrei, a still active caldera, so it is of major importance to characterize its level of activity and potential danger. In this light, a 3D tomographic high-resolution P-wave velocity image of the shallow central part of Solfatara crater is obtained using first arrival times and a multiscale approach. The retrieved images, integrated with the resistivity section and temperature and the CO 2 flux measurements, define the following characteristics: 1. A depth-dependent P-wave velocity layer down to 14 m, with V p < 700 m/s typical of poorly-consolidated tephra and affected by CO 2 degassing; 2. An intermediate layer, deepening towards the mineralized liquid-saturated area (Fangaia), interpreted as permeable deposits saturated with condensed water; 3. A deep, confined high velocity anomaly associated with a CO 2 reservoir. These features are expression of an area located between the Fangaia, water saturated and replenished from deep aquifers, and the main fumaroles, superficial relief of the deep rising CO 2 flux. Therefore, the changes in the outgassing rate greatly affect the shallow hydrothermal system, which can be used as a "mirror" of fluid migration processes occurring at depth.
NASA Astrophysics Data System (ADS)
Watanabe, N.; Bilke, L.; Fischer, T.; Kalbacher, T.; Nagel, T.; Naumov, D.; Rink, K.; Shao, H.; Wang, W.; Kolditz, O.
2014-12-01
The current understanding of geochemical reactions in reservoirs for geological carbon sequestration (GCS) is largely based on aqueous chemistry (CO2 dissolves in reservoir brine and brine reacts with rocks). However, only a portion of the injected supercritical (sc) CO2 dissolves before the buoyant plume contacts caprock, where it is expected to reside for a long time. Although numerous studies have addressed scCO2-mineral reactions occurring within adsorbed aqueous films, possible reactions resulting from direct CO2-rock contact remain less understood. Does CO2 as a supercritical phase react with reservoir rocks? Do mineral react differently with scCO2 than with dissolved CO2? We selected muscovite, one of the more stable and common rock-forming silicate minerals, to react with scCO2 phase (both water-saturated and water-free) and compared with CO2-saturated-brine. The reacted basal surfaces were analyzed using atomic force microscopy and X-ray photoelectron spectroscopy for examining the changes in surface morphology and chemistry. The results show that scCO2 (regardless of its water content) altered muscovite considerably more than CO2-saturated brine; suggest CO2 diffusion into mica interlayers and localized mica dissolution into scCO2 phase. The mechanisms underlying these observations and their implications for GCS need further exploration.
In Situ Infrared Spectroscopic Study of Forsterite Carbonation in Wet Supercritical CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, John S.; Thompson, Christopher J.; Wang, Zheming
2011-07-19
Carbonation reactions are central to the prospect of CO2 trapping by mineralization in geologic reservoirs. In contrast to the relevant aqueous-mediated reactions, little is known about the propensity for carbonation in the long-term partner fluid: water-containing supercritical carbon dioxide (‘wet’ scCO2). We employed in situ mid-infrared spectroscopy to follow the reaction of a model silicate mineral (forsterite, Mg2SiO4) for 24 hr with wet scCO2 at 50°C and 180 atm, using water concentrations corresponding to 0%, 55%, 95%, and 136% saturation. Results show a dramatic dependence of reactivity on water concentration and the presence of liquid water on the forsterite particles.more » Exposure to neat scCO2 showed no detectable carbonation reaction. At 55% and 95% water saturation, a liquid-like thin water film was detected on the forsterite particles; less than 1% of the forsterite transformed, mostly within the first 3 hours of exposure to the fluid. At 136% saturation, where an (excess) liquid water film approximately several nanometers thick was intentionally condensed on the forsterite, the carbonation reaction proceeded continuously for 24 hr with 10% to 15% transformation. Our collective results suggest constitutive links between water concentration, water film formation, reaction rate and extent, and reaction products in wet scCO2.« less
NASA Astrophysics Data System (ADS)
Burton-Johnson, A.; Halpin, J.; Whittaker, J. M.; Graham, F. S.; Watson, S. J.
2017-12-01
We present recently published findings (Burton-Johnson et al., 2017) on the variability of Antarctic sub-glacial heat flux and the impact from upper crustal geology. Our new method reveals that the upper crust contributes up to 70% of the Antarctic Peninsula's subglacial heat flux, and that heat flux values are more variable at smaller spatial resolutions than geophysical methods can resolve. Results indicate a higher heat flux on the east and south of the Peninsula (mean 81 mWm-2) where silicic rocks predominate, than on the west and north (mean 67 mWm-2) where volcanic arc and quartzose sediments are dominant. Whilst the data supports the contribution of HPE-enriched granitic rocks to high heat flux values, sedimentary rocks can be of comparative importance dependent on their provenance and petrography. Models of subglacial heat flux must utilize a heterogeneous upper crust with variable radioactive heat production if they are to accurately predict basal conditions of the ice sheet. Our new methodology and dataset facilitate improved numerical model simulations of ice sheet dynamics. The most significant challenge faced remains accurate determination of crustal structure, particularly the depths of the HPE-enriched sedimentary basins and the sub-glacial geology away from exposed outcrops. Continuing research (particularly detailed geophysical interpretation) will better constrain these unknowns and the effect of upper crustal geology on the Antarctic ice sheet. Burton-Johnson, A., Halpin, J.A., Whittaker, J.M., Graham, F.S., and Watson, S.J., 2017, A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production: Geophysical Research Letters, v. 44, doi: 10.1002/2017GL073596.
Importance of geology to fisheries management: Examples from the northeastern Gulf of Mexico
Scanlon, Kathryn M.; Koenig, C.C.; Coleman, F.C.; Miller, M.
2003-01-01
Seafloor mapping of shelf-edge habitats in the northeastern Gulf of Mexico demonstrates how sidescan-sonar imagery, seismic-reflection profiling, video data, geologic mapping, sediment sampling, and understanding the regional geologic history can enhance, support, and guide traditional fisheries research and management. New data from the Madison Swanson and Steamboat Lumps Marine Reserves reveal complex benthic habitats consisting of high-relief calcareous pinnacles, low-relief karstic hardbottom, rocky outcrops several kilometers in length, and variable thickness of fine-grained and apparently mobile coarse-grained sediments. Our data also show that certain fish alter the landscape by clearing sediment from hardbottom areas (e.g., red grouper Epinephelus morio) and by burrowing extensively in fine-grained sediment (e.g., tilefish Lopholatilus chamaeleonticeps). The seafloor imagery and geologic maps show that (a) sea level fluctuations played a dominant role in the development of the present-day regional geology, and (b) habitats (and benthic communities) are tied closely to geologic character. Understanding the geologic setting allowed for efficient and representative sampling of the biology. The geologic data can be used to set meaningful boundaries for fishery reserves and to help predict habitats in areas that are not well mapped. This interdisciplinary work added value to traditional research disciplines by providing management with integrated tools to make better decisions.
Thamke, Joanna N.; Reynolds, Mitchell W.
2000-01-01
The Generalized Bedrock Geologic Map of the Helena Area, West-Central Montana (plate 1 in the report) provides an intermediate-scale overview of bedrock in the Helena area. The geologic map has been compiled at a scale of 1:100,000 from the most widely available sources of geologic map information (see index to geologic mapping on pl. 1). That information has been updated by M.W. Reynolds for this report with more recent geologic mapping and field revision of published maps. All well locations and all bedrock units penetrated during drilling have been confirmed on geologic maps at the largest scale available. Source geologic maps are all at scales larger than 1:100,000 scale. Care has been taken to ensure accurate representation of the original geology at the compilation scale. However, positional accuracy of some features might be somewhat diminished at the smaller scale of the base map when compared with the original data source. Also, line thicknesses for contacts and faults necessarily assume a greater width, relative to the real geologic feature, at the scale of the generalized map than on any original map. The map is not intended for large-scale, site-specific detailed planning. Bedrock units throughout the Helena area are generally covered by young surficial deposits such as alluvium, colluvium, glacial debris, or windblown sediment. Thickness of such deposits varies from veneers through which the underlying bedrock is clearly discernible to major thicknesses that conceal all underlying bedrock and structure. Boundaries of major accumulations of surficial deposits are attributed separately from bedrock contacts. These boundaries should not be considered precise at the map scale or at larger scales. Boundaries shown may be less accurate positionally than bedrock contacts and faults because (1) surficial deposits commonly thin to a knife edge; (2) different mappers will interpret the edge differently when drawing a boundary; or (3) the original geologic map maker was concerned principally with bedrock units and structure and thus overlooked, or did not originally map as consistently, some surficial deposits. Veneers of surficial sediment, when saturated, can be local sources of recharge to underlying bedrock. Use of the generalized map to define their distribution does not substitute for site specific mapping of such deposits. Specific knowledge is needed to determine the water-bearing properties of the geologic units at and surrounding a site because the units, including the igneous and metamorphic rocks, have internal differences in stratigraphy, composition, mineralogy and grain size or crystallinity. These differences, together with structural imprints such as faults, folds, and the spacing, orientation, degree of openness of fractures, and extent and type of mineral filling in fractures and faults, all affect the ability of rocks to store and transmit water.
Sowers, Janet M.; Noller, Jay S.; Lettis, William R.
1998-01-01
Earthquake-induced ground failures such as liquefaction have historically brought loss of life and damage to property and infrastructure. Observations of the effects of historical large-magnitude earthquakes show that the distribution of liquefaction phenomena is not random. Liquefaction is restricted to areas underlain by loose, cohesionless sands and silts that are saturated with water. These areas can be delineated on the basis of thorough geologic, geomorphic, and hydrologic mapping and map analysis (Tinsley and Holzer, 1990; Youd and Perkins, 1987). Once potential liquefaction zones are delineated, appropriate public and private agencies can prepare for and mitigate seismic hazard in these zones. In this study, we create a liquefaction susceptibility map of the Napa 1:100,000 quadrangle using Quaternary geologic mapping, analysis of historical liquefaction information, groundwater data, and data from other studies. The study is atterned after state-of-the-art studies by Youd (1973) Dupre and Tinsley (1980) and Dupre (1990) in the Monterey-Santa Cruz area, Tinsley and others (1985) in the Los Angeles area, and Youd and Perkins (1987) in San Mateo County, California. The study area comprises the northern San Francisco Metropolitan Area, including the cities of Santa Rosa, Vallejo, Napa, Novato, Martinez, and Fairfield (Figure 1). Holocene estuarine deposits, Holocene stream deposits, eolian sands, and artificial fill are widely present in the region (Helley and Lajoie, 1979) and are the geologic materials of greatest concern. Six major faults capable of producing large earthquakes cross the study area, including the San Andreas, Rodgers Creek, Hayward, West Napa, Concord, and Green Valley faults (Figure 1).
NASA Astrophysics Data System (ADS)
Park, Gyuryeong; Wang, Sookyun; Lee, Minhee; Um, Jeong-Gi; Kim, Seon-Ok
2017-04-01
The storage of CO2 in underground geological formation such as deep saline aquifers or depleted oil and gas reservoirs is one of the most promising technologies for reducing the atmospheric CO2 release. The processes in geological CO2 storage involves injection of supercritical CO2 (scCO2) into porous formations saturated with brine and initiates CO2 flooding with immiscible displacement. The CO2 migration and porewater displacement within geological formations, and , consequentially, the storage efficiency are governed by the interaction of fluid and rock properties and are affected by the interfacial tension, capillarity, and wettability in supercritical CO2-brine-mineral systems. This study aims to observe the displacement pattern and estimate storage efficiency by using micromodels. This study aims to conduct scCO2 injection experiments for visualization of distribution of injected scCO2 and residual porewater in transparent pore networks on microfluidic chips under high pressure and high temperature conditions. In order to quantitatively analyze the porewater displacement by scCO2 injection under geological CO2 storage conditions, the images of invasion patterns and distribution of CO2 in the pore network are acquired through a imaging system with a microscope. The results from image analysis were applied in quantitatively investigating the effects of major environmental factors and scCO2 injection methods on porewater displacement process by scCO2 and storage efficiency. The experimental observation results could provide important fundamental information on capillary characteristics of reservoirs and improve our understanding of CO2 sequestration progress.
Collett, Timothy S.; Lee, Myung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.
2012-01-01
One of the objectives of the Gulf of MexicoGasHydrateJointIndustryProjectLegII (GOM JIP LegII) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gashydrates under various geologic conditions and to understand the geologic controls on the occurrence of gashydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gashydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gashydrate in nature: From using electrical resistivity and acoustic logs to identify gashydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gashydrate reservoirs and the distribution and concentration of gashydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gashydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gashydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP LegII effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voltolini, Marco; Kwon, Tae-Hyuk; Ajo-Franklin, Jonathan
Pore-scale distribution of supercritical CO 2 (scCO 2) exerts significant control on a variety of key hydrologic as well as geochemical processes, including residual trapping and dissolution. Despite such importance, only a small number of experiments have directly characterized the three-dimensional distribution of scCO 2 in geologic materials during the invasion (drainage) process. Here, we present a study which couples dynamic high-resolution synchrotron X-ray micro-computed tomography imaging of a scCO 2/brine system at in situ pressure/temperature conditions with quantitative pore-scale modeling to allow direct validation of a pore-scale description of scCO2 distribution. The experiment combines high-speed synchrotron radiography with tomographymore » to characterize the brine saturated sample, the scCO 2 breakthrough process, and the partially saturated state of a sandstone sample from the Domengine Formation, a regionally extensive unit within the Sacramento Basin (California, USA). The availability of a 3D dataset allowed us to examine correlations between grains and pores morphometric parameters and the actual distribution of scCO 2 in the sample, including the examination of the role of small-scale sedimentary structure on CO2 distribution. The segmented scCO 2/brine volume was also used to validate a simple computational model based on the local thickness concept, able to accurately simulate the distribution of scCO 2 after drainage. The same method was also used to simulate Hg capillary pressure curves with satisfactory results when compared to the measured ones. Finally, this predictive approach, requiring only a tomographic scan of the dry sample, proved to be an effective route for studying processes related to CO 2 invasion structure in geological samples at the pore scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah
The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; ...
2016-12-27
The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less
Voltolini, Marco; Kwon, Tae-Hyuk; Ajo-Franklin, Jonathan
2017-10-21
Pore-scale distribution of supercritical CO 2 (scCO 2) exerts significant control on a variety of key hydrologic as well as geochemical processes, including residual trapping and dissolution. Despite such importance, only a small number of experiments have directly characterized the three-dimensional distribution of scCO 2 in geologic materials during the invasion (drainage) process. Here, we present a study which couples dynamic high-resolution synchrotron X-ray micro-computed tomography imaging of a scCO 2/brine system at in situ pressure/temperature conditions with quantitative pore-scale modeling to allow direct validation of a pore-scale description of scCO2 distribution. The experiment combines high-speed synchrotron radiography with tomographymore » to characterize the brine saturated sample, the scCO 2 breakthrough process, and the partially saturated state of a sandstone sample from the Domengine Formation, a regionally extensive unit within the Sacramento Basin (California, USA). The availability of a 3D dataset allowed us to examine correlations between grains and pores morphometric parameters and the actual distribution of scCO 2 in the sample, including the examination of the role of small-scale sedimentary structure on CO2 distribution. The segmented scCO 2/brine volume was also used to validate a simple computational model based on the local thickness concept, able to accurately simulate the distribution of scCO 2 after drainage. The same method was also used to simulate Hg capillary pressure curves with satisfactory results when compared to the measured ones. Finally, this predictive approach, requiring only a tomographic scan of the dry sample, proved to be an effective route for studying processes related to CO 2 invasion structure in geological samples at the pore scale.« less
NASA Astrophysics Data System (ADS)
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; González-Nicolás, Ana; Illangasekare, Tissa H.
2017-01-01
The role of capillary forces during buoyant migration of CO2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44 m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2-surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. While these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1-10 m).
NASA Astrophysics Data System (ADS)
Jones, Brendon R.; Brouwers, Luke B.; Dippenaar, Matthys A.
2018-05-01
Fractures are both rough and irregular but can be expressed by a simple model concept of two smooth parallel plates and the associated cubic law governing discharge through saturated fractures. However, in natural conditions and in the intermediate vadose zone, these assumptions are likely violated. This paper presents a qualitative experimental study investigating the cubic law under variable saturation in initially dry free-draining discrete fractures. The study comprised flow visualisation experiments conducted on transparent replicas of smooth parallel plates with inlet conditions of constant pressure and differing flow rates over both vertical and horizontal inclination. Flow conditions were altered to investigate the influence of intermittent and continuous influx scenarios. Findings from this research proved, for instance, that saturated laminar flow is not likely achieved, especially in nonhorizontal fractures. In vertical fractures, preferential flow occupies the minority of cross-sectional area despite the water supply. Movement of water through the fractured vadose zone therefore becomes a matter of the continuity principle, whereby water should theoretically be transported downward at significantly higher flow rates given the very low degree of water saturation. Current techniques that aim to quantify discrete fracture flow, notably at partial saturation, are questionable. Inspired by the results of this study, it is therefore hypothetically improbable to achieve saturation in vertical fractures under free-draining wetting conditions. It does become possible under extremely excessive water inflows or when not free-draining; however, the converse is not true, as a wet vertical fracture can be drained.
Reconfigurable wearable to monitor physiological variables and movement
NASA Astrophysics Data System (ADS)
Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnación; García, Antonio; Tahmassebi, Amirhessam; Meyer-Baese, Anke
2017-05-01
This article presents a preliminary prototype of a wearable instrument for oxygen saturation and ECG monitoring. The proposed measuring system is based on the light reflection variability of a LED emission on the subject temple. Besides, the system has the capacity to incorporate electrodes to obtain ECG measurements. All measurements are stored and transmitted to a mobile device (tablet or smartphone) through a Bluetooth link.
Klett, T.R.; Schmoker, James W.
2007-01-01
Geologic, production, and exploration/discovery-history data are used by the U.S. Geological Survey to aid in the assessment of petroleum resources. These data, as well as the broad knowledge and experience of the assessing geologists, are synthesized to provide, for each assessment unit, geologic and exploration models upon which estimates are made of the number and sizes of undiscovered accumulations for conventional assessment units or number and total recoverable volumes of untested cells for continuous assessment units (input data for resource calculations). Quantified geologic information and trends in production and exploration/discovery-history data with respect to time and exploration effort provide guides for the estimating parameters of variables recorded on the input-data forms (input data) used to calculate petroleum resources. An Assessment Review Team reviews proposed geologic and exploration models and input data for each assessment unit in formal assessment meetings. The Assessment Review Team maintains the accuracy and consistency of the assessment procedure during the formal assessment meetings.
The Effect of Live Spontaneous Harp Music on Patients in the Intensive Care Unit
Chiasson, Ann Marie; Linda Baldwin, Ann; Mclaughlin, Carrol; Cook, Paula; Sethi, Gulshan
2013-01-01
This study was performed to investigate the effect of live, spontaneous harp music on individual patients in an intensive care unit (ICU), either pre- or postoperatively. The purpose was to determine whether this intervention would serve as a relaxation or healing modality, as evidenced by the effect on patient's pain, heart rate, respiratory rate, blood pressure, oxygen saturation, and heart rate variability. Each consenting patient was randomly assigned to receive either a live 10-minute concert of spontaneous music played by an expert harpist or a 10-minute rest period. Spontaneous harp music significantly decreased patient perception of pain by 27% but did not significantly affect heart rate, respiratory rate, oxygen saturation, blood pressure, or heart rate variability. Trends emerged, although being not statistically significant, that systolic blood pressure increased while heart rate variability decreased. These findings may invoke patient engagement, as opposed to relaxation, as the underlying mechanism of the decrease in the patients' pain and of the healing benefit that arises from the relationship between healer, healing modality, and patient. PMID:24371459
Validating modelled variable surface saturation in the riparian zone with thermal infrared images
NASA Astrophysics Data System (ADS)
Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa
2015-04-01
Variable contributing areas and hydrological connectivity have become prominent new concepts for hydrologic process understanding in recent years. The dynamic connectivity within the hillslope-riparian-stream (HRS) system is known to have a first order control on discharge generation and especially the riparian zone functions as runoff buffering or producing zone. However, despite their importance, the highly dynamic processes of contraction and extension of saturation within the riparian zone and its impact on runoff generation still remain not fully understood. In this study, we analysed the potential of a distributed, fully coupled and physically based model (HydroGeoSphere) to represent the spatial and temporal water flux dynamics of a forested headwater HRS system (6 ha) in western Luxembourg. The model was set up and parameterised under consideration of experimentally-derived knowledge of catchment structure and was run for a period of four years (October 2010 to August 2014). For model evaluation, we especially focused on the temporally varying spatial patterns of surface saturation. We used ground-based thermal infrared (TIR) imagery to map surface saturation with a high spatial and temporal resolution and collected 20 panoramic snapshots of the riparian zone (ca. 10 by 20 m) under different hydrologic conditions. These TIR panoramas were used in addition to several classical discharge and soil moisture time series for a spatially-distributed model validation. In a manual calibration process we optimised model parameters (e.g. porosity, saturated hydraulic conductivity, evaporation depth) to achieve a better agreement between observed and modelled discharges and soil moistures. The subsequent validation of surface saturation patterns by a visual comparison of processed TIR panoramas and corresponding model output panoramas revealed an overall good accordance for all but one region that was always too dry in the model. However, quantitative comparisons of modelled and observed saturated pixel percentages and of their modelled and measured relationships to concurrent discharges revealed remarkable similarities. During the calibration process we observed that surface saturation patterns were mostly affected by changing the soil properties of the topsoil in the riparian zone, but that the discharge behaviour did not change substantially at the same time. This effect of various spatial patterns occurring concomitant to a nearly unchanged integrated response demonstrates the importance of spatially distributed validation data. Our study clearly benefited from using different kinds of data - spatially integrated and distributed, temporally continuous and discrete - for the model evaluation procedure.
NASA Astrophysics Data System (ADS)
Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas
2015-04-01
The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine and coarse textured soils and smaller in medium textured soils. Completely different predictors were important for appraising K10, where the soil macropore system is air-filled and therefore inactive. Here, the average annual temperature and precipitation where most important. The reasons for this are unclear and require further research. The clay content and the organic matter content were also important predictors of K10. We suggest that a larger and more complete database may help to improve the prediction of K10, whereas it may be more fruitful to estimate Ks statistics of sampling sites instead of individual values since the Ks is highly variable over very short distances.
Two-Phase Flow Simulations through Experimentally Studied Porous Media Analogies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, D.M.; Ahmadi, G.; Smith, D.H.
2007-07-01
The amount of CO2 that can be sequestered in deep brine reservoirs is dependant on fluid-fluid-solid interactions within heterogeneous porous media. Displacement of an in-place fluid by a less viscous invading fluid does not displace 100% of the defending fluid, due to capillary and viscous fingering. This has been studied experimentally and numerically with the use of pore-throat flow cells and pore-level models, respectively, in the last two decades. This current work solves the full Navier-Stokes and continuity equations in a random pore-throat geometry using the Volume of Fluid (VOF) method. To verify that the VOF model can be accuratelymore » applied within narrow apertures, qualitative agreement with the well-documented phenomenon of viscous fingering in a Hele-Shaw cell is first presented. While this motion is similar to the fingering observed in geological media, the random structure of rock restricts flow patterns not captured by flow in Hele-Shaw cells. To mimic this heterogeneous natural geometry, a novel experimental flowcell was created. Experiments of constant-rate injection of air into the water saturated model are described. This situation, where a non-wetting, invading fluid displaces a surface-wetting, more-viscous fluid, is known as drainage. As the injection flow rate was increased, a change from stable displacement fronts to dendritic fingering structures was observed, with a corresponding decrease in the fractal dimension of the interface and a decrease in the final saturation of invading air. Predictions of the VOF computational modeling within the same flowcell geometry are then shown to be in good agreement with the experimental results. Percent saturation and the fractal dimension of the invading fluid were calculated from the numerical model and shown to be similar to the experimental findings for air invasion of a watersaturated domain. The fluid properties (viscosity and density) were than varied and the viscosity ratio and capillary number of the fluids were shown to affect the percent of displaced fluid, with lower capillary number and higher viscosity ratio displacing a greater amount of the wetting fluid. Displacement of a non-wetting, in-place fluid by a less viscous, wetting fluid (the case of imbibition; contact angle > 90°) is then studied with the numerical model. The invading fluid is shown to preferentially move into small throats and displace a larger percent of the in-place fluid than observed in the drainage case. The interface was also observed to have a higher fractal dimension, closer to 2. These results highlight the potential for greater fundamental understanding of liquid-gas-solid interactions in heterogeneous, porous media that can be obtained from computational fluid dynamics (CFD). Situations, which are difficult to experimentally study, can be examined with CFD in a manner that more accurately accounts for the geological conditions relevant to CO2 sequestration. This allows for greater accuracy in the prediction of storage capacity within known geological structures. This study shows that as the contact angle between the invading fluid and the defending fluid increase, a greater portion of the porous medium is invaded. Thus, a greater portion of CO2 can be sequestered in reservoirs that are not strongly water wet. Low flow rates are shown to increase the final percent saturation of the invading fluid as well, regardless of wetting conditions.« less
NASA Astrophysics Data System (ADS)
Yang, Z.; He, T.
2017-12-01
To more accurately explain geophysical exploration data of natural gas hydrate reservoir and to better assess the formation stability for geological or engineering hazards, it is important to comprehensively understand the geophysical and mechanical properties of hydrate-bearing unconsolidated marine sediments, which are significantly different from sea-water saturated ones. Compared to hard-to-control in-situ measurement, laboratory methods are important and feasible to investigate the parameter effects. With the new designed experimental apparatus, we measured ultrasonic velocity, resistivity and stress-strain relation of methane hydrate-bearing unconsolidated sediments. The experimental mineral mixture is prepared as the composition of sample HY-3 of core SH-7 from Shenhu area, South China Sea. It composed of 0.4 wt. % kaolinite, 23.5 wt. % silt (4 - 63 μm), 32.1 wt. % fine sand (63 - 250 μm), 29.2 wt. % medium sand (250 - 500 μm) and 14.8 wt. % coarse sand (500 - 2000 μm). The pure methane enters into the brine (NaCl salinity of 3.5%) saturated sample all around to synthesis methane hydrate. The methane hydrate saturation was calculated by methane consumption amount, which was in turn calculated by gas state equation using the measured methane pressure drop in high pressure reactor. The ultrasonic velocities and resistivity were measured frequently during methane hydrate saturation increasing to examine the velocity varying pattern, especially for S-wave velocities, which may reflect different hydrate occurrence states in sediment pores: load-bearing or not. The stress - strain curves of methane hydrate - bearing sediments showed typical elastic - plastic characteristics and were used to obtain Young's modulus, Poisson's ratio, failure strength and other mechanical parameters. With these results, we can know better about the hydrate reservoir at Shenhu area.
Two-phase convective CO 2 dissolution in saline aquifers
Martinez, Mario J.; Hesse, Marc A.
2016-01-30
Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO 2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO 2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO 2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have eithermore » ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO 2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO 2 more than 3 times above the rate assuming single-phase conditions.« less
Ultrasonic laboratory measurements of the seismic velocity changes due to CO2 injection
NASA Astrophysics Data System (ADS)
Park, K. G.; Choi, H.; Park, Y. C.; Hwang, S.
2009-04-01
Monitoring the behavior and movement of carbon dioxide (CO2) in the subsurface is a quite important in sequestration of CO2 in geological formation because such information provides a basis for demonstrating the safety of CO2 sequestration. Recent several applications in many commercial and pilot scale projects and researches show that 4D surface or borehole seismic methods are among the most promising techniques for this purpose. However, such information interpreted from the seismic velocity changes can be quite subjective and qualitative without petrophysical characterization for the effect of CO2 saturation on the seismic changes since seismic wave velocity depends on various factors and parameters like mineralogical composition, hydrogeological factors, in-situ conditions. In this respect, we have developed an ultrasonic laboratory measurement system and have carried out measurements for a porous sandstone sample to characterize the effects of CO2 injection to seismic velocity and amplitude. Measurements are done by ultrasonic piezoelectric transducer mounted on both ends of cylindrical core sample under various pressure, temperature, and saturation conditions. According to our fundamental experiments, injected CO2 introduces the decrease of seismic velocity and amplitude. We identified that the velocity decreases about 6% or more until fully saturated by CO2, but the attenuation of seismic amplitude is more drastically than the velocity decrease. We also identified that Vs/Vp or elastic modulus is more sensitive to CO2 saturation. We note that this means seismic amplitude and elastic modulus change can be an alternative target anomaly of seismic techniques in CO2 sequestration monitoring. Thus, we expect that we can estimate more quantitative petrophysical relationships between the changes of seismic attributes and CO2 concentration, which can provide basic relation for the quantitative assessment of CO2 sequestration by further researches.
NASA Astrophysics Data System (ADS)
Blanc, A.; Bernard-Griffiths, J.; Caby, R.; Caruba, C.; Caruba, R.; Dars, R.; Fourcade, S.; Peucat, J. J.
1992-04-01
In the West African fold belt of Mauritania, high-grade metamorphic series, similar to those of Amsaga (Reguibat shield-West African Craton), are exposed in a window. At Bou Naga-Mauritania (19° N, 13° 15' W) in the South of this window, an alkaline ring complex has intruded the metamorphic country rocks. This complex consists of two geological formations: the Eastern formation is mainly composed of red rhyolite sills, whereas the Western formation is made up of several kinds of alkaline rocks both saturated and under-saturated which cross cut the earlier saturated units. Three U-Pb zircon age measurements have been made on the alkaline complex, and one on an orthogneiss from the metamorphic country rocks. The syenite and the alkaline granite of the Western block are 676 ± 8 and 687 ± 5 Ma old. The orthogneiss is Archaean with an age of 2709 ± 136 Ma, but the lower intercept of discordia on concordia, shows an age of 756 ± 25 Ma linked with the genesis of the alkaline complex. A major crustal contribution is recorded by Nd and O isotopes in the SiO 2-saturated rocks. These results provide evidence for the correlation of the metamorphic country rocks with the Reguibat Archaean basement and for an early Pan-African continental rifting phase in this area before the tectonometamorphic events in the Mauritanide belt. Furthermore, with regards with previous geodynamic works of the West African Craton, our results leads us to suggest a significant diachronism between late Proterozoic crustal evolution to the West and to the East of the West African Craton. This is a further evidence for modern-type plate tectonics at this time.
Schulz, W.H.; Lidke, D.J.; Godt, J.W.
2008-01-01
Landslides in partially saturated colluvium on Seattle, WA, hillslopes have resulted in property damage and human casualties. We developed statistical models of colluvium and shallow-groundwater distributions to aid landslide hazard assessments. The models were developed using a geographic information system, digital geologic maps, digital topography, subsurface exploration results, the groundwater flow modeling software VS2DI and regression analyses. Input to the colluvium model includes slope, distance to a hillslope-crest escarpment, and escarpment slope and height. We developed different statistical relations for thickness of colluvium on four landforms. Groundwater model input includes colluvium basal slope and distance from the Fraser aquifer. This distance was used to estimate hydraulic conductivity based on the assumption that addition of finer-grained material from down-section would result in lower conductivity. Colluvial groundwater is perched so we estimated its saturated thickness. We used VS2DI to establish relations between saturated thickness and the hydraulic conductivity and basal slope of the colluvium. We developed different statistical relations for three groundwater flow regimes. All model results were validated using observational data that were excluded from calibration. Eighty percent of colluvium thickness predictions were within 25% of observed values and 88% of saturated thickness predictions were within 20% of observed values. The models are based on conditions common to many areas, so our method can provide accurate results for similar regions; relations in our statistical models require calibration for new regions. Our results suggest that Seattle landslides occur in native deposits and colluvium, ultimately in response to surface-water erosion of hillstope toes. Regional groundwater conditions do not appear to strongly affect the general distribution of Seattle landslides; historical landslides were equally dispersed within and outside of the area potentially affected by regional groundwater conditions.
Temporal and spatial variability in North Carolina piedmont stream temperature
J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer
2009-01-01
Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...
Spatio-temporal error growth in the multi-scale Lorenz'96 model
NASA Astrophysics Data System (ADS)
Herrera, S.; Fernández, J.; Rodríguez, M. A.; Gutiérrez, J. M.
2010-07-01
The influence of multiple spatio-temporal scales on the error growth and predictability of atmospheric flows is analyzed throughout the paper. To this aim, we consider the two-scale Lorenz'96 model and study the interplay of the slow and fast variables on the error growth dynamics. It is shown that when the coupling between slow and fast variables is weak the slow variables dominate the evolution of fluctuations whereas in the case of strong coupling the fast variables impose a non-trivial complex error growth pattern on the slow variables with two different regimes, before and after saturation of fast variables. This complex behavior is analyzed using the recently introduced Mean-Variance Logarithmic (MVL) diagram.
Yield of bedrock wells in the Nashoba terrane, central and eastern Massachusetts
DeSimone, Leslie A.; Barbaro, Jeffrey R.
2012-01-01
The yield of bedrock wells in the fractured-bedrock aquifers of the Nashoba terrane and surrounding area, central and eastern Massachusetts, was investigated with analyses of existing data. Reported well yield was compiled for 7,287 wells from Massachusetts Department of Environmental Protection and U.S. Geological Survey databases. Yield of these wells ranged from 0.04 to 625 gallons per minute. In a comparison with data from 103 supply wells, yield and specific capacity from aquifer tests were well correlated, indicating that reported well yield was a reasonable measure of aquifer characteristics in the study area. Statistically significant relations were determined between well yield and a number of cultural and hydrogeologic factors. Cultural variables included intended water use, well depth, year of construction, and method of yield measurement. Bedrock geology, topography, surficial geology, and proximity to surface waters were statistically significant hydrogeologic factors. Yield of wells was higher in areas of granites, mafic intrusive rocks, and amphibolites than in areas of schists and gneisses or pelitic rocks; higher in valleys and low-slope areas than on hills, ridges, or high slopes; higher in areas overlain by stratified glacial deposits than in areas overlain by till; and higher in close proximity to streams, ponds, and wetlands than at greater distances from these surface-water features. Proximity to mapped faults and to lineaments from aerial photographs also were related to well yield by some measures in three quadrangles in the study area. Although the statistical significance of these relations was high, their predictive power was low, and these relations explained little of the variability in the well-yield data. Similar results were determined from a multivariate regression analysis. Multivariate regression models for the Nashoba terrane and for a three-quadrangle subarea included, as significant variables, many of the cultural and hydrogeologic factors that were individually related to well yield, in ways that are consistent with conceptual understanding of their effects, but the models explained only 21 percent (regional model for the entire terrane) and 30 percent (quadrangle model) of the overall variance in yield. Moreover, most of the explained variance was due to well characteristics rather than hydrogeologic factors. Hydrogeologic factors such as topography and geology are likely important. However, the overall high variability in the well-yield data, which results from the high variability in aquifer hydraulic properties as well as from limitations of the dataset, would make it difficult to use hydrogeologic factors to predict well yield in the study area. Geostatistical analysis (variograms), on the other hand, indicated that, although highly variable, the well-yield data are spatially correlated. The spatial continuity appears greater in the northeast-southwest direction and less in the southeast-northwest direction, directions that are parallel and perpendicular, respectively, to the regional geologic structural trends. Geostatistical analysis (kriging), used to estimate yield values throughout the study area, identified regional-scale areas of higher and lower yield that may be related to regional structural features—in particular, to a northeast-southwest trending regional fault zone within the Nashoba terrane. It also would be difficult to use kriging to predict yield at specific locations, however, because of the spatial variability in yield, particularly at small scales. The regional-scale analyses in this study, both with hydrogeologic variables and geostatistics, provide a context for understanding the variability in well yield, rather a basis for precise predictions, and site-specific information would be needed to understand local conditions.
NASA Astrophysics Data System (ADS)
Possinger, A. R.; Inagaki, T.; Bailey, S. W.; Kogel-Knabner, I.; Lehmann, J.
2017-12-01
Soil carbon (C) interaction with minerals and metals through surface adsorption and co-precipitation processes is important for soil organic C (SOC) stabilization. Co-precipitation (i.e., the incorporation of C as an "impurity" in metal precipitates as they form) may increase the potential quantity of mineral-associated C per unit mineral surface compared to surface adsorption: a potentially important and as yet unaccounted for mechanism of C stabilization in soil. However, chemical, physical, and biological characterization of co-precipitated SOM as such in natural soils is limited, and the relative persistence of co-precipitated C is unknown, particularly under dynamic environmental conditions. To better understand the relationships between SOM stabilization via organometallic co-precipitation and environmental variables, this study compares mineral-SOM characteristics across a forest soil (Spodosol) hydrological gradient with expected differences in co-precipitation of SOM with iron (Fe) and aluminum (Al) due to variable saturation frequency. Soils were collected from a steep, well-drained forest soil transect with low, medium, and high frequency of water table intrusion into surface soils (Hubbard Brook Experimental Forest, Woodstock, NH). Lower saturation frequency soils generally had higher C content, C/Fe, C/Al, and other indicators of co-precipitation interactions resulting from SOM complexation, transport, and precipitation, an important process of Spodosol formation. Preliminary Fe X-ray Absorption Spectroscopic (XAS) characterization of SOM and metal chemistry in low frequency profiles suggest co-precipitation of SOM in the fine fraction (<20 µm). Short-term (10d) aerobic incubation of high and low saturation frequency soils showed greater SOC mineralization per unit soil C for low saturation frequency (i.e., higher co-precipitation) soils; however, increased mineralization may be attributed to non-mineral associated fractions of SOM. Further work to identify the component of SOM contributing to rapid mineralization using 13C-labeled substrates will link the observed chemical characteristics (13C-NMR, C K-edge XANES, and Fe XAS) of mineral-organic associations resulting from varying saturation frequency with mechanisms driving mineralization processes.
Hu, Wenping; Boerman, Jacquelyn P.; Aldrich, James M.
2017-01-01
Objective A meta-analysis was conducted to evaluate the effects of supplemental fat containing saturated free fatty acids (FA) on milk performance of Holstein dairy cows. Methods A database was developed from 21 studies published between 1991 and 2016 that included 502 dairy cows and a total of 29 to 30 comparisons between dietary treatment and control without fat supplementation. Only saturated free FA (>80% of total FA) was considered as the supplemental fat. Concentration of the supplemental fat was not higher than 3.5% of diet dry matter (DM). Dairy cows were offered total mixed ration, and fed individually. Statistical analysis was conducted using random- or mixed-effects models with Metafor package in R. Results Sub-group analysis showed that there were no differences in studies between randomized block design and Latin square/crossover design for dry matter intake (DMI) and milk production responses to the supplemental fat (all response variables, p≥0.344). The supplemental fat across all studies improved milk yield, milk fat concentration and yield, and milk protein yield by 1.684 kg/d (p<0.001), 0.095 percent unit (p = 0.003), 0.072 kg/d (p<0.001), and 0.036 kg/d (p<0.001), respectively, but tended to decrease milk protein concentration (mean difference = −0.022 percent unit; p = 0.063) while DMI (mean difference = 0.061 kg/d; p = 0.768) remained unchanged. The assessment of heterogeneity suggested that no substantial heterogeneity occurred among all studies for DMI and milk production responses to the supplemental fat (all response variables, I2≤24.1%; p≥0.166). Conclusion The effects of saturated free FA were quantitatively evaluated. Higher milk production and yields of milk fat and protein, with DMI remaining unchanged, indicated that saturated free FA, supplemented at ≤3.5% dietary DM from commercially available fat sources, likely improved the efficiency of milk production. Nevertheless, more studies are needed to assess the variation of production responses to different saturated free FA, either C16:0 or C18:0 alone, or in combination with potentially optimal ratio, when supplemented in dairy cow diets. PMID:28183166
ARTS III Computer Systems Performance Measurement Prototype Implementation
DOT National Transportation Integrated Search
1974-04-01
Direct measurement of computer systems is of vital importance in: a) developing an intelligent grasp of the variables which affect overall performance; b)tuning the systsem for optimum benefit; c)determining under what conditions saturation threshold...
NASA Astrophysics Data System (ADS)
Halassa, Younes; Zeddouri, Aziez; Mouhamadou, Ould Babasy; Kechiched, Rabah; Benhamida, Abdeldjebbar Slimane
2018-05-01
The aquifer system in The Algero-Tunisian border and Chotts region is mainly composed of two aquifers: The first is the Complex Terminal (CT) and the second is the Intercalary aquifer (CI). This study aims the identification and spatial evolution of factors that controlling the water quality in the Complex Terminal aquifer (CT) in the Chotts region (Oued Souf region - Southeastern of Algeria). The concentration of major elements, temperature, pH and salinity were monitored during 2015 in 34 wells from the CT aquifer. The geological, geophysical, hydrogeological and hydrochemical methods were applied in order to carried out a model for the investigated aquifer system and to characterize the hydrogeological and the geochemical behavior, as well as the geometrical and the lithological configuration. Multivariate statistical analyses such as Principal Component Analysis (PCA) were also used for the treatment of several data. Results show that the salinity follows the same regional distribution of Chloride, Sodium, Magnesium, Sulfate and Calcium. Note that the salinity shows low contents in the upstream part of investigated region suggesting restricted dissolution of salts. Hydro-chemical study and saturation indexes highlight the dominance of the dissolution and the precipitation of calcite, dolomite, anhydrite, gypsum and halite. The PCA analysis indicates that Na+, Cl-, Ca2+, Mg2+, SO42- and K+ variables that influence the water mineralization.
Technique for predicting ground-water discharge to surface coal mines and resulting changes in head
Weiss, L.S.; Galloway, D.L.; Ishii, Audrey L.
1986-01-01
Changes in seepage flux and head (groundwater level) from groundwater drainage into a surface coal mine can be predicted by a technique that considers drainage from the unsaturated zone. The user applies site-specific data to precalculated head and seepage-flux profiles. Groundwater flow through hypothetical aquifer cross sections was simulated using the U.S. Geological Survey finite-difference model, VS2D, which considers variably saturated two-dimensional flow. Conceptual models considered were (1) drainage to a first cut, and (2) drainage to multiple cuts, which includes drainage effects of an area surface mine. Dimensionless head and seepage flux profiles from 246 simulations are presented. Step-by-step instructions and examples are presented. Users are required to know aquifer characteristics and to estimate size and timing of the mine operation at a proposed site. Calculated groundwater drainage to the mine is from one excavated face only. First cut considers confined and unconfined aquifers of a wide range of permeabilities; multiple cuts considers unconfined aquifers of higher permeabilities only. The technique, developed for Illinois coal-mining regions that use area surface mining and evaluated with an actual field example, will be useful in assessing potential hydrologic impacts of mining. Application is limited to hydrogeologic settings and mine operations similar to those considered. Fracture flow, recharge, and leakage are nor considered. (USGS)
Teh, Su Yean; Turtora, Michael; DeAngelis, Donald L.; Jiang Jiang,; Pearlstine, Leonard G.; Smith, Thomas; Koh, Hock Lye
2015-01-01
Global climate change poses challenges to areas such as low-lying coastal zones, where sea level rise (SLR) and storm-surge overwash events can have long-term effects on vegetation and on soil and groundwater salinities, posing risks of habitat loss critical to native species. An early warning system is urgently needed to predict and prepare for the consequences of these climate-related impacts on both the short-term dynamics of salinity in the soil and groundwater and the long-term effects on vegetation. For this purpose, the U.S. Geological Survey’s spatially explicit model of vegetation community dynamics along coastal salinity gradients (MANHAM) is integrated into the USGS groundwater model (SUTRA) to create a coupled hydrology–salinity–vegetation model, MANTRA. In MANTRA, the uptake of water by plants is modeled as a fluid mass sink term. Groundwater salinity, water saturation and vegetation biomass determine the water available for plant transpiration. Formulations and assumptions used in the coupled model are presented. MANTRA is calibrated with salinity data and vegetation pattern for a coastal area of Florida Everglades vulnerable to storm surges. A possible regime shift at that site is investigated by simulating the vegetation responses to climate variability and disturbances, including SLR and storm surges based on empirical information.
Stochastic modeling of macrodispersion in unsaturated heterogeneous porous media. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, T.C.J.
1995-02-01
Spatial heterogeneity of geologic media leads to uncertainty in predicting both flow and transport in the vadose zone. In this work an efficient and flexible, combined analytical-numerical Monte Carlo approach is developed for the analysis of steady-state flow and transient transport processes in highly heterogeneous, variably saturated porous media. The approach is also used for the investigation of the validity of linear, first order analytical stochastic models. With the Monte Carlo analysis accurate estimates of the ensemble conductivity, head, velocity, and concentration mean and covariance are obtained; the statistical moments describing displacement of solute plumes, solute breakthrough at a compliancemore » surface, and time of first exceedance of a given solute flux level are analyzed; and the cumulative probability density functions for solute flux across a compliance surface are investigated. The results of the Monte Carlo analysis show that for very heterogeneous flow fields, and particularly in anisotropic soils, the linearized, analytical predictions of soil water tension and soil moisture flux become erroneous. Analytical, linearized Lagrangian transport models also overestimate both the longitudinal and the transverse spreading of the mean solute plume in very heterogeneous soils and in dry soils. A combined analytical-numerical conditional simulation algorithm is also developed to estimate the impact of in-situ soil hydraulic measurements on reducing the uncertainty of concentration and solute flux predictions.« less
Effect of initial bulk density on high-solids anaerobic digestion of MSW: General mechanism.
Caicedo, Luis M; Wang, Hongtao; Lu, Wenjing; De Clercq, Djavan; Liu, Yanjun; Xu, Sai; Ni, Zhe
2017-06-01
Initial bulk density (IBD) is an important variable in anaerobic digestion since it defines and optimizes the treatment capacity of a system. This study reveals the mechanism on how IBD might affect anaerobic digestion of waste. Four different IBD values: D 1 (500-700kgm -3 ), D 2 (900-1000kgm -3 ), D 3 (1100-1200kgm -3 ) and D 4 (1200-1400kgm -3 ) were set and tested over a period of 90days in simulated landfill reactors. The main variables affected by the IBD are the methane generation, saturation degree, extraction of organic matter, and the total population of methanogens. The study identified that IBD >1000kgm -3 may have significant effect on methane generation, either prolonging the lag time or completely inhibiting the process. This study provides a new understanding of the anaerobic digestion process in saturated high-solids systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil
NASA Astrophysics Data System (ADS)
Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa
2017-12-01
In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.
Meteorological Influences on the Seasonality of Lyme Disease in the United States
Moore, Sean M.; Eisen, Rebecca J.; Monaghan, Andrew; Mead, Paul
2014-01-01
Lyme disease (Borrelia burgdorferi infection) is the most common vector-transmitted disease in the United States. The majority of human Lyme disease (LD) cases occur in the summer months, but the timing of the peak occurrence varies geographically and from year to year. We calculated the beginning, peak, end, and duration of the main LD season in 12 highly endemic states from 1992 to 2007 and then examined the association between the timing of these seasonal variables and several meteorological variables. An earlier beginning to the LD season was positively associated with higher cumulative growing degree days through Week 20, lower cumulative precipitation, a lower saturation deficit, and proximity to the Atlantic coast. The timing of the peak and duration of the LD season were also associated with cumulative growing degree days, saturation deficit, and cumulative precipitation, but no meteorological predictors adequately explained the timing of the end of the LD season. PMID:24470565
Schmoker, James W.; Klett, T.R.
2007-01-01
Conventional petroleum accumulations are discrete fields or pools localized in structural or stratigraphic traps by the buoyancy of oil or gas in water; they float, bubble-like, in water. This report describes the fundamental concepts supporting the U.S. Geological Survey “Seventh Approximation” model for resource assessments of conventional accumulations. The Seventh Approximation provides a strategy for estimating volumes of undiscovered petroleum (oil, gas, and coproducts) having the potential to be added to reserves in a 30-year forecast span. The assessment of an area requires (1) choice of a minimum accumulation size, (2) assignment of geologic and access risk, and (3) estimation of the number and sizes of undiscovered accumulations in the assessment area. The combination of these variables yields probability distributions for potential additions to reserves. Assessment results are controlled by geology-based input parameters supplied by knowledgeable geologists, as opposed to projections of historical trends.
Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30)
NASA Technical Reports Server (NTRS)
Mest, S. C.; Berman, D. C.; Petro, N. E.
2010-01-01
In this study we use recent image, spectral and topographic data to map the geology of the lunar South Pole quadrangle (LQ-30) at 1:2.5M scale [1-7]. The overall objective of this research is to constrain the geologic evolution of LQ-30 (60 -90 S, 0 - 180 ) with specific emphasis on evaluation of a) the regional effects of impact basin formation, and b) the spatial distribution of ejecta, in particular resulting from formation of the South Pole-Aitken (SPA) basin and other large basins. Key scientific objectives include: 1) Determining the geologic history of LQ-30 and examining the spatial and temporal variability of geologic processes within the map area. 2) Constraining the distribution of impact-generated materials, and determining the timing and effects of major basin-forming impacts on crustal structure and stratigraphy in the map area. And 3) assessing the distribution of potential resources (e.g., H, Fe, Th) and their relationships with surface materials.
Utilization of Integrated Assessment Modeling for determining geologic CO2 storage security
NASA Astrophysics Data System (ADS)
Pawar, R.
2017-12-01
Geologic storage of carbon dioxide (CO2) has been extensively studied as a potential technology to mitigate atmospheric concentration of CO2. Multiple international research & development efforts, large-scale demonstration and commercial projects are helping advance the technology. One of the critical areas of active investigation is prediction of long-term CO2 storage security and risks. A quantitative methodology for predicting a storage site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale projects where projects will require quantitative assessments of potential long-term liabilities. These predictions are challenging given that they require simulating CO2 and in-situ fluid movements as well as interactions through the primary storage reservoir, potential leakage pathways (such as wellbores, faults, etc.) and shallow resources such as groundwater aquifers. They need to take into account the inherent variability and uncertainties at geologic sites. This talk will provide an overview of an approach based on integrated assessment modeling (IAM) to predict long-term performance of a geologic storage site including, storage reservoir, potential leakage pathways and shallow groundwater aquifers. The approach utilizes reduced order models (ROMs) to capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. Applicability of the approach will be demonstrated through examples that are focused on key storage security questions such as what is the probability of leakage of CO2 from a storage reservoir? how does storage security vary for different geologic environments and operational conditions? how site parameter variability and uncertainties affect storage security, etc.
CRIB; the mineral resources data bank of the U.S. Geological Survey
Calkins, James Alfred; Kays, Olaf; Keefer, Eleanor K.
1973-01-01
The recently established Computerized Resources Information Bank (CRIB) of the U.S. Geological Survey is expected to play an increasingly important role in the study of United States' mineral resources. CRIB provides a rapid means for organizing and summarizing information on mineral resources and for displaying the results. CRIB consists of a set of variable-length records containing the basic information needed to characterize one or more mineral commodities, a mineral deposit, or several related deposits. The information consists of text, numeric data, and codes. Some topics covered are: name, location, commodity information, geology, production, reserves, potential resources, and references. The data are processed by the GIPSY program, which performs all the processing tasks needed to build, operate, and maintain the CRIB file. The sophisticated retrieval program allows the user to make highly selective searches of the files for words, parts of words, phrases, numeric data, word ranges, numeric ranges, and others, and to interrelate variables by logic statements to any degree of refinement desired. Three print options are available, or the retrieved data can be passed to another program for further processing.
Estimating Water Fluxes Across the Sediment-Water Interface in the Lower Merced River, California
Zamora, Celia
2008-01-01
The lower Merced River Basin was chosen by the U.S. Geological Survey?s (USGS) National Water Quality Assessment Program (NAWQA) to be included in a national study on how hydrological processes and agricultural practices interact to affect the transport and fate of agricultural chemicals. As part of this effort, surface-water?ground-water (sw?gw) interactions were studied in an instrumented 100-m reach on the lower Merced River. This study focused on estimating vertical rates of exchange across the sediment?water interface by direct measurement using seepage meters and by using temperature as a tracer coupled with numerical modeling. Temperature loggers and pressure transducers were placed in monitoring wells within the streambed and in the river to continuously monitor temperature and hydraulic head every 15 minutes from March 2004 to October 2005. One-dimensional modeling of heat and water flow was used to interpret the temperature and head observations and deduce the sw?gw fluxes using the USGS numerical model, VS2DH, which simulates variably saturated water flow and solves the energy transport equation. Results of the modeling effort indicate that the Merced River at the study reach is generally a slightly gaining stream with small head differences (cm) between the surface water and ground water, with flow reversals occurring during high streamflow events. The average vertical flux across the sediment?water interface was 0.4?2.2 cm/day, and the range of hydraulic conductivities was 1?10 m/day. Seepage meters generally failed to provide accurate data in this high-energy system because of slow seepage rates and a moving streambed resulting in scour or burial of the seepage meters. Estimates of streambed hydraulic conductivity were also made using grain-size analysis and slug tests. Estimated hydraulic conductivity for the upstream transect determined using slug tests ranged from 40 to 250 m/day, whereas the downstream transect ranged from 10 to 100 m/day. The range in variability was a result of position along each transect. A relative percent difference was used to describe the variability in estimates of hydraulic conductivity by grain-size analysis and slug test. Variability in applied methods at the upstream transect ranged from 0 to 9 percent, whereas the downstream transect showed greater variability, with a range of 80 to 133 percent.
Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution
Dillard, Leslie A.; Essaid, Hedeff I.; Herkelrath, William N.
1997-01-01
Fluid saturation, particle-size distribution, and porosity measurements were obtained from 269 core samples collected from six boreholes along a 90-m transect at a subregion of a crude-oil spill site, the north pool, near Bemidji, Minnesota. The oil saturation data, collected 11 years after the spill, showed an irregularly shaped oil body that appeared to be affected by sediment spatial variability. The particle-size distribution data were used to estimate the permeability (k) and retention curves for each sample. An additional 344 k estimates were obtained from samples previously collected at the north pool. The 613 k estimates were distributed bimodal lognormally with the two population distributions corresponding to the two predominant lithologies: a coarse glacial outwash deposit and fine-grained interbedded lenses. A two-step geostatistical approach was used to generate a conditioned realization of k representing the bimodal heterogeneity. A cross-sectional multiphase flow model was used to simulate the flow of oil and water in the presence of air along the north pool transect for an 11-year period. The inclusion of a representation of the bimodal aquifer heterogeneity was crucial for reproduction of general features of the observed oil body. If the bimodal heterogeneity was characterized, hysteresis did not have to be incorporated into the model because a hysteretic effect was produced by the sediment spatial variability. By revising the relative permeability functional relation, an improved reproduction of the observed oil saturation distribution was achieved. The inclusion of water table fluctuations in the model did not significantly affect the simulated oil saturation distribution.
Seulimeum segment characteristic indicated by 2-D resistivity imaging method
NASA Astrophysics Data System (ADS)
Syukri, M.; Saad, R.
2017-06-01
The study conducted at Aceh (Indonesia) within Krueng Raya and Ie Seu Um vicinity with the same geology setting (Lam Teuba volcanic), to study Seulimeum Segment characteristic using 2-D resistivity imaging method. The 2-D resistivity survey applied Pole-dipole array with minimum electrode spacing of 2 and 5 m for Ie Seu Um study area, while 10 m for Krueng Raya area. Resistivity value of Ie Seu Um study area has been correlated and validated with existing outcrops and hot springs which the value used to identify overburden, saturated area and bedrock of Krueng Raya area. The resistivity value of overburden in Krueng Raya area was identify as <30 Ohm.m, bedrock is >30 Ohm.m and saturated zone is <9 Ohm.m. The imaging results used to identify the Seulimeum segment system, where the depth is increasing from southern part (20-50 m) to northern part (50-200 m) when approaching the Andaman Sea and breaks into two sections to produce horst and graben system which indicate that it produced from the moving plat.
On-orbit performance of the Landsat 8 Operational Land Imager
Micijevic, Esad; Vanderwerff, Kelly; Scaramuzza, Pat; Morfitt, Ron; Barsi, Julia A.; Levy, Raviv
2014-01-01
The Landsat 8 satellite was launched on February 11, 2013, to systematically collect multispectral images for detection and quantitative analysis of changes on the Earth’s surface. The collected data are stored at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and continue the longest archive of medium resolution Earth images. There are two imaging instruments onboard the satellite: the Operational Land Imager (OLI) and the Thermal InfraRed Sensor (TIRS). This paper summarizes radiometric performance of the OLI including the bias stability, the system noise, saturation and other artifacts observed in its data during the first 1.5 years on orbit. Detector noise levels remain low and Signal-To-Noise Ratio high, largely exceeding the requirements. Impulse noise and saturation are present in imagery, but have negligible effect on Landsat 8 products. Oversaturation happens occasionally, but the affected detectors quickly restore their nominal responsivity. Overall, the OLI performs very well on orbit and provides high quality products to the user community. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Foraminiferal calcification and CO2
NASA Astrophysics Data System (ADS)
Nooijer, L. D.; Toyofuku, T.; Reichart, G. J.
2017-12-01
Ongoing burning of fossil fuels increases atmospheric CO2, elevates marine dissolved CO2 and decreases pH and the saturation state with respect to calcium carbonate. Intuitively this should decrease the ability of CaCO3-producing organisms to build their skeletons and shells. Whereas on geological time scales weathering and carbonate deposition removes carbon from the geo-biosphere, on time scales up to thousands of years, carbonate precipitation increases pCO2 because of the associated shift in seawater carbon speciation. Hence reduced calcification provides a potentially important negative feedback on increased pCO2 levels. Here we show that foraminifera form their calcium carbonate by active proton pumping. This elevates the internal pH and acidifies the direct foraminiferal surrounding. This also creates a strong pCO2 gradient and facilitates the uptake of DIC in the form of carbon dioxide. This finding uncouples saturation state from calcification and predicts that the added carbon due to ocean acidification will promote calcification by these organisms. This unknown effect could add substantially to atmospheric pCO2 levels, and might need to be accounted for in future mitigation strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, J.T.
1997-03-01
A sinkhole formed over the former salt mine used for crude oil storage by the U.S. Strategic Petroleum Reserve at Weeks Island, Louisiana. This created a dilemma because in-mine grouting was not possible, and external grouting, although possible, was impractical. However, environmental protection during oil withdrawal and facility decommissioning was considered critical and alternative solutions were essential. Mitigation of, the sinkhole growth over the salt mine was accomplished by injecting saturated brine directly into the sinkhole throat, and by constructing a cylindrical freeze curtain around and into the dissolution orifice at the top of the salt dome. These measures vastlymore » reduced the threat of major surface collapse around the sinkhole during oil transfer and subsequent brine backfill. The greater bulk of the crude oil was removed from the mine during 1995-6. Final skimming operations will remove residual oil trapped in low spots, concurrent with initiating backfill of the mine with saturated brine. Environmental monitoring during 1995-9 will assure that environmental surety is achieved.« less
Monitoring long-term evolution of engineered barrier systems using magnets: Magnetic response.
Rigonat, N; Isnard, O; Harley, S L; Butler, I B
2018-01-05
Remote and non-destructive monitoring of the stability and performance of Engineered Barrier Systems for Geological Disposal Facility of is gaining considerable importance in establishing the safety cases for Higher Activity Wastes disposal. This study offers an innovative use of mineral magnetism for monitoring groundwater saturation of the barrier. Four mixtures of permanent magnets (Nd-Fe-B, coated and uncoated; SmCo and AlNiCo) and bentonite were reacted for 4, 8 and 12 months with mildly-saline, high-pH leachates, representing the fluids saturating a time-evolved engineered barrier. Coupled hysteresis and thermomagnetic analyses demonstrate how Nd-Fe-B feature a time-dependent transition from square-like ferromagnetic to superparamagnetic loop via pot-bellied and wasp-waist loops, whereas SmCo and AlNiCo do not show so extensive corrosion-related variations of the intrinsic and extrinsic magnetic properties. This study allowed to identify magnetic materials suitable for shorter- (Nd-Fe-B) and longer-term (SmCo and AlNiCo) monitoring purposes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Alonso-Carné, J; García-Martín, A; Estrada-Peña, A
2015-01-01
Ticks are sensitive to changes in relative humidity and saturation deficit at the microclimate scale. Trends and changes in rainfall are commonly used as descriptors of field observations of tick populations, to capture the climate niche of ticks or to predict the climate suitability for ticks under future climate scenarios. We evaluated daily and monthly relationships between rainfall, relative humidity and saturation deficit over different ecosystems in Europe using daily climate values from 177 stations over a period of 10 years. We demonstrate that rainfall is poorly correlated with both relative humidity and saturation deficit in any of the ecological domains studied. We conclude that the amount of rainfall recorded in 1 day does not correlate with the values of humidity or saturation deficit recorded 24 h later: rainfall is not an adequate surrogate for evaluating the physiological processes of ticks at regional scales. We compared the Normalized Difference Vegetation Index (NDVI), a descriptor of photosynthetic activity, at a spatial resolution of 0.05°, with monthly averages of relative humidity and saturation deficit and also determined a lack of significant correlation. With the limitations of spatial scale and habitat coverage of this study, we suggest that the rainfall or NDVI cannot replace relative humidity or saturation deficit as descriptors of tick processes.
Isaza-Restrepo, Andres; Moreno-Mejia, Jose F; Martin-Saavedra, Juan S; Ibañez-Pinilla, Milciades
2017-01-01
There is a well known relationship between hypoperfusion and postoperative complications like anastomotic leak. No studies have been done addressing this relationship in the context of abdominal trauma surgery. Central venous oxygen saturation is an important hypoperfusion marker of potential use in abdominal trauma surgery for identifying the risk of anastomotic leak development. The purpose of this study was to identify the relationship between low values of central venous oxygen saturation and anastomotic leak of gastrointestinal sutures in the postoperative period in abdominal trauma surgery. A cross-sectional prospective study was performed. Patients over 14 years old who required surgical gastrointestinal repair secondary to abdominal trauma were included. Anastomotic leak diagnosis was confirmed through clinical manifestations and diagnostic images or secondary surgery when needed. Central venous oxygen blood saturation was measured at the beginning of surgery through a central catheter. Demographic data, trauma mechanism, anatomic site of trauma, hemoglobin levels, abdominal trauma index, and comorbidities were assessed as secondary variables. Patients who developed anastomotic leak showed lower mean central venous oxygen saturation levels (60.0% ± 2.94%) than those who did not (69.89% ± 7.21%) ( p = 0.010). Central venous oxygen saturation <65% was associated with the development of gastrointestinal leak during postoperative time of patients who underwent surgery secondary to abdominal trauma.
Unsaturated hydraulic properties of Sphagnum moss and peat reveal trimodal pore-size distributions
NASA Astrophysics Data System (ADS)
Weber, Tobias K. D.; Iden, Sascha C.; Durner, Wolfgang
2017-01-01
In ombrotrophic peatlands, the moisture content of the vadose zone (acrotelm) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Whether peatlands act as sinks or sources of atmospheric carbon thus relies on variably saturated flow processes. The Richards equation is the standard model for water flow in soils, but it is not clear whether it can be applied to simulate water flow in live Sphagnum moss. Transient laboratory evaporation experiments were conducted to observe evaporative water fluxes in the acrotelm, containing living Sphagnum moss, and a deeper layer containing decomposed moss peat. The experimental data were evaluated by inverse modeling using the Richards equation as process model for variably-saturated flow. It was tested whether water fluxes and time series of measured pressure heads during evaporation could be simulated. The results showed that the measurements could be matched very well providing the hydraulic properties are represented by a suitable model. For this, a trimodal parametrization of the underlying pore-size distribution was necessary which reflects three distinct pore systems of the Sphagnum constituted by inter-, intra-, and inner-plant water. While the traditional van Genuchten-Mualem model led to great discrepancies, the physically more comprehensive Peters-Durner-Iden model which accounts for capillary and noncapillary flow, led to a more consistent description of the observations. We conclude that the Richards equation is a valid process description for variably saturated moisture fluxes over a wide pressure range in peatlands supporting the conceptualization of the live moss as part of the vadose zone.
Geochemical processes during managed aquifer recharge with desalinated seawater
NASA Astrophysics Data System (ADS)
Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.
2017-12-01
In this work we study the geochemical processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW) to an infiltration pond at the Menashe site, located above the Israeli coastal aquifer. The DSW is post-treated by calcite dissolution (remineralization) in order to meet the Israeli desalinated water quality criteria. Suction cups and monitoring wells inside the pond were used to monitor water quality during two MAR events on 2015 and 2016. Results show that cation exchange is dominant, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the composition of the shallow groundwater is similar to the recharged DSW, but with enrichment of Mg2+, Na+, Ca2+ and HCO3-. A calibrated variably-saturated reactive transport model was used to predict the geochemical evolution during 50 years of MAR with two water quality scenarios: post-treated DSW and soft DSW (without post-treatment). The latter scenario was aimed to test soil-aquifer-treatment as an alternative post-treatment technique. In terms of water quality, the results of the two scenarios were found within the range of the desalinated water criteria. Mg2+ enrichment was stable ( 2.5 mg L-1), higher than the zero concentration found in the Israeli DSW. Calcite content reduction was low (<1%) along the variably-saturated profile, after 50 years of MAR. This suggests that using soil-aquifer-treatment as a remineralization technique for DSW is potentially a sustainable practice, which is limited only by the current hydraulic capacity of the Menashe MAR site.
Domagalski, Joseph L.; Saleh, Dina
2015-01-01
The SPARROW (SPAtially Referenced Regression on Watershed attributes) model was used to simulate annual phosphorus loads and concentrations in unmonitored stream reaches in California, U.S., and portions of Nevada and Oregon. The model was calibrated using de-trended streamflow and phosphorus concentration data at 80 locations. The model explained 91% of the variability in loads and 51% of the variability in yields for a base year of 2002. Point sources, geological background, and cultivated land were significant sources. Variables used to explain delivery of phosphorus from land to water were precipitation and soil clay content. Aquatic loss of phosphorus was significant in streams of all sizes, with the greatest decay predicted in small- and intermediate-sized streams. Geological sources, including volcanic rocks and shales, were the principal control on concentrations and loads in many regions. Some localized formations such as the Monterey shale of southern California are important sources of phosphorus and may contribute to elevated stream concentrations. Many of the larger point source facilities were located in downstream areas, near the ocean, and do not affect inland streams except for a few locations. Large areas of cultivated land result in phosphorus load increases, but do not necessarily increase the loads above those of geological background in some cases because of local hydrology, which limits the potential of phosphorus transport from land to streams.
NASA Astrophysics Data System (ADS)
Tune, A. K.; Druhan, J. L.; Wang, J.; Cargill, S.; Murphy, C.; Rempe, D. M.
2017-12-01
A principle challenge in quantifying feedbacks between continental weathering and atmospheric CO2 is to improve understanding of how biogeochemical processes in the critical zone influence the distribution and mobility of organic and inorganic carbon. In particular, in landscapes characterized by thin soils and heterogeneous weathered and fractured bedrock, little data exist to inform and constrain predictive models for carbon dynamics. Here, we present the results of an intensive water and gas sampling campaign across an 18 m thick, variably saturated argillite weathering profile in the Eel River CZO. We monitor water content in situ and regularly collect samples of freely-draining water, tightly-held water, and gas through wet and dry seasons using a novel Vadose-zone Monitoring System (VMS) consisting of sensors and samplers distributed across a 20 m long inclined borehole. This novel approach facilitates the interception of gas and water during transport across the entire variably saturated weathering profile. The data demonstrate that seasonal changes in saturation control the vertical distribution and mobility of carbon in the fractured critical zone. Concentrations of gaseous CO2, O2, and dissolved organic and inorganic carbon fluctuate significantly and repeatably with seasonal additions of water infiltrating the weathered bedrock. A persistent vertical structure in the concentrations of dissolved phases and gas concentrations broadly corresponds to depths associated with unsaturated, seasonally saturated, and chronically saturated zones. Associated variations in the vertical structure of mineralogy and elemental composition, including solid phase organic carbon content, are observed in core obtained during drilling. Together, our observations indicate significant respiration of organic carbon at depths greater than the base of the soil, and thus motivate further investigation of the role of heterogeneous weathered, bedrock environments, which are needed to improve quantitative models for feedbacks between terrestrial and atmospheric CO2.
Estimating the Response of Mid-latitude Orographic Precipitation to Global Warming
NASA Astrophysics Data System (ADS)
Shi, Xiaoming
The possible change in orographic precipitation in response to global warming is a rising concern under climate change, which could potentially cause significant societal impact. A general circulation model was employed to simulate the climate on an aquaplanet which has idealized mountains at its mid-latitudes. It was found that orographic precipitation at northern mid-latitudes could increase by rates faster than the Clausius-Clapeyron scaling, ˜7%/K of surface warming, in doubling CO2 simulations, while at southern mid-latitudes orographic precipitation decreased. The frequency of extreme events increased at all latitudes of the idealized mountains. Through a simple diagnostic model it was revealed that the changes in the climatological means of orographic precipitation rates were mostly determined by the changes in three variables: the speed of the wind component perpendicular to a mountain, the vertical displacement of saturated parcels, and the moist adiabatic lapse rate of saturation specific humidity. The last variable had relatively uniform contribution to the total changes in orographic precipitation across different latitudes, about 4 -- 5%/K. But contributions from the changes in wind speed and saturated vertical displacement were found to have strong north-south asymmetry, which were linked to the poleward shift of storm tracks. The changes in wind speed had positive contributions in general, with larger contributions at higher mid-latitudes. While the changes in saturated vertical displacement had negative contributions at all latitudes, but larger negative contributions were located at lower mid-latitudes. Although the poleward shift of storm tracks greatly affects regional precipitation, following the poleward shift of storm tracks the cumulative distribution function (CDF) of precipitation at the latitudes of maximum precipitation in the control simulation is very similar to that in the warm climate simulation, except that precipitation intensity was positively shifted by a constant factor --- mainly due to changes in the moist adiabatic lapse rate of saturation specific humidity.
Computer system performance measurement techniques for ARTS III computer systems.
DOT National Transportation Integrated Search
1973-12-01
Direct measurement of computer systems is of vital importance in: a) developing an intelligent grasp of the variables which affect overall performance; b)tuning the system for optimum benefit; c)determining under what conditions saturation thresholds...
APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER (EPA/600/R-98/058)
Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requi...
APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER (EPA/600/SR-98/058)
Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requi...
NASA Astrophysics Data System (ADS)
Nguyen, H. L.; de Fouquet, C.; Courbet, C.; Simonucci, C. A.
2016-12-01
The effects of spatial variability of hydraulic parameters and initial groundwater plume localization on the possible extent of groundwater pollution plumes have already been broadly studied. However, only a few studies, such as Kjeldsen et al. (1995), take into account the effect of source term spatial variability. We explore this question with the 90Sr migration modeling from a shallow waste burial located in the Chernobyl Exclusion Zone to the underlying sand aquifer. Our work is based upon groundwater sampled once or twice a year since 1995 until 2015 from about 60 piezometers and more than 3,000 137Cs soil activity measurements. These measurements were taken in 1999 from one of the trenches dug after the explosion of the Chernobyl nuclear power plant, the so-called "T22 Trench", where radioactive waste was buried in 1987. The geostatistical analysis of 137Cs activity data in soils from Bugai et al. (2005) is first reconsidered to delimit the trench borders using georadar data as a covariable and to perform geostatistical simulations in order to evaluate the uncertainties of this inventory. 90Sr activity in soils is derived from 137Cs/154Eu and 90Sr/154Eu activity ratios in Chernobyl hot fuel particles (Bugai et al., 2003). Meanwhile, a coupled 1D non saturated/3D saturated transient transport model is constructed under the MELODIE software (IRSN, 2009). The previous 90Sr transport model developed by Bugai et al. (2012) did not take into account the effect of water table fluctuations highlighted by Van Meir et al. (2007) which may cause some discrepancies between model predictions and field observations. They are thus reproduced on a 1D vertical non saturated model. The equiprobable radionuclide localization maps produced by the geostatistical simulations are selected to illustrate different heterogeneities in the radionuclide inventory and are implemented in the 1D model. The obtained activity fluxes from all the 1D vertical models are then injected in a 3D saturated transient model to assess the extent of the radionuclide plume in the groundwater and its most likely evolution over time by taking into account uncertainties associated with the source term spatial variability.
NASA Technical Reports Server (NTRS)
Lahav, N.; White, D.; Chang, S.
1978-01-01
As geologically relevant models of prebiotic environments, systems consisting of clay, water, and amino acids were subjected to cyclic variations in temperature and water content. Fluctuations of both variables produced longer oligopeptides in higher yields than were produced by temperature fluctuations alone. The results suggest that fluctuating environments provided a favorable geological setting in which the rate and extent of chemical evolution would have been determined by the number and frequency of cycles.
Charpentier, Ronald R.; Moore, Thomas E.; Gautier, D.L.
2017-11-15
The methodological procedures used in the geologic assessments of the 2008 Circum-Arctic Resource Appraisal (CARA) were based largely on the methodology developed for the 2000 U.S. Geological Survey World Petroleum Assessment. The main variables were probability distributions for numbers and sizes of undiscovered accumulations with an associated risk of occurrence. The CARA methodology expanded on the previous methodology in providing additional tools and procedures more applicable to the many Arctic basins that have little or no exploration history. Most importantly, geologic analogs from a database constructed for this study were used in many of the assessments to constrain numbers and sizes of undiscovered oil and gas accumulations.
NASA Astrophysics Data System (ADS)
Perevertailo, T.; Nedolivko, N.; Prisyazhnyuk, O.; Dolgaya, T.
2015-11-01
The complex structure of the Lower-Cretaceous formation by the example of the reservoir BC101 in Western Ust - Balykh Oil Field (Khanty-Mansiysk Autonomous District) has been studied. Reservoir range relationships have been identified. 3D geologic- mathematical modeling technique considering the heterogeneity and variability of a natural reservoir structure has been suggested. To improve the deposit geological structure integrity methods of mathematical statistics were applied, which, in its turn, made it possible to obtain equal probability models with similar input data and to consider the formation conditions of reservoir rocks and cap rocks.
Bartberger, Charles E.; Dyman, Thaddeus S.; Condon, Steven M.
2002-01-01
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is reevaluating the resource potential of selected domestic basin-centered gas accumulations. Basin-centered gas accumulations are characterized by presence of gas in extensive low-permeability (tight) reservoirs in which conventional seals and trapping mechanisms are absent, abnormally high or low reservoir pressures exist, and gas-water contacts are absent. In 1995, the USGS assessed one basin-centered gas play and two conventional plays within the trend of Jurassic and Cretaceous Cotton Valley Group fl uvial-deltaic and barrierisland/ strandplain sandstones across the onshore northern Gulf of Mexico Basin. Detailed evaluation of geologic and production data provides new insights into these Cotton Valley plays. Two Cotton Valley sandstone trends are identifi ed based on reservoir properties and gas-production characteristics. Transgressive blanket sandstones across northern Louisiana have relatively high porosity and permeability and do not require fracture stimulation to produce gas at commercial rates. South of this trend, and extending westward into eastern Texas, massive sandstones of the Cotton Valley trend exhibit low porosity and permeability and require fracture stimulation. The high permeability of Cotton Valley blanket sandstones is not conducive to the presence of basin-centered gas, but lowpermeability massive sandstones provide the type of reservoir in which basin-centered gas accumulations commonly occur. Data on source rocks, including burial and thermal history, are consistent with the interpretation of potential basincentered gas within Cotton Valley sandstones. However, pressure gradients throughout most of the blanket- and massivesandstone trends are normal or nearly normal, which is not characteristic of basin-centered gas accumulations. The presence of gas-water contacts in at least seven fi elds across the blanket-sandstone trend together with relatively high permeabilities and high gas-production rates without fracture stimulation indicate that fi elds in this trend are conventional. Within the tight massive-sandstone trend, permeability is suffi ciently low that gas-water transition zones are vertically extensive and gas-water contacts either have not been encountered or are poorly defi ned. With increasing depth through these transition zones, gas saturation decreases and water saturation increases until eventually gas saturations become suffi ciently low that, in terms of ultimate cumulative production, wells are noncommercial. Such progressive increase in water saturation with depth suggests that poorly defi ned gas-water contacts probably are present below the depth at which wells become noncommercial. The interpreted presence of gas-water contacts within the tight, Cotton Valley massive-sandstone trend suggests that gas accumulations in this trend, too, are conventional, and that a basin-centered gas accumulation does not exist within Cotton Valley sandstones in the northern Gulf Basin.
Ayotte, Joseph D.; Toppin, Kenneth W.
1995-01-01
The U.S. Geological Survey, in cooperation with the State of New Hampshire, Department of Environmental Services, Water Resources Division has assessed the geohydrology and water quality of stratified-drift aquifers in the middle Merrimack River basin in south-central New Hampshire. The middle Merrimack River basin drains 469 square miles; 98 square miles is underlain by stratified-drift aquifers. Saturated thickness of stratified drift within the study area is generally less than 40 feet but locally greater than 100 feet. Transmissivity of stratified-drift aquifers is generally less than 2,000 feet squared per day but locally exceeds 6, 000 feet squared per day. At present (1990), ground-water withdrawals from stratified drift for public supply are about 0.4 million gallons per day within the basin. Many of the stratified-drift aquifers within the study area are not developed to their fullest potential. The geohydrology of stratified-drift aquifers was investigated by focusing on basic aquifer properties, including aquifer boundaries; recharge, discharge, and direction of ground-water flow; saturated thickness and storage; and transmissivity. Surficial geologic mapping assisted in the determination of aquifer boundaries. Data from 757 wells and test borings were used to produce maps of water-table altitude, saturated thickness, and transmissivity of stratified drift. More than 10 miles of seismic-refraction profiling and 14 miles of seismic-reflection profiling were also used to construct the water table and saturated-thickness maps. Stratified-drift aquifers in the southern, western, and central parts of the study area are typically small and discontinuous, whereas aquifers in the eastern part along the Merrimack River valley are continuous. The Merrimack River valley aquifers formed in glacial Lakes Merrimack and Hooksett. Many other smaller discontinuous aquifers formed in small temporary ponds during deglaciation. A stratified-drift aquifer in Goffstown was analyzed for aquifer yield by use of a two-dimensional, finite-difference ground-water-flow model. Yield of the Goffstown aquifer was estimated to be 2.5 million gallons per day. Sensitivity analysis showed that the estimate of aquifer yield was most sensitive to changes in hydraulic conductivity. The amount of water induced into the aquifer from the Piscataquog River was most affected by changes in estimates of streambed conductance. Results of analysis of water samples from 10 test wells indicate that, with some exceptions, water in the stratified-drift aquifers generally meets U.S. Environmental Protection Agency primary and secondary drinking-water regulations. Water from two wells had elevated sodium concentrations, waterfront two wells had elevated concentrations of dissolved iron, and waterfront seven wells had elevated concentrations of manganese. Known areas of contamination were avoided during water-quality sampling.
NpNn scheme and the saturation of collectivity in the A~=170 and 230 regions
NASA Astrophysics Data System (ADS)
Saha, M.; Sen, S.
1993-02-01
It is shown that the well known phenomenon of the saturation in the B(E20+1-->2+1), as well as the E+21 values near midshell in the even rare-earth and actinide nuclei, can be reproduced in the NpNn scheme through a very simple parametrization in terms of the maximum number of valence protons and neutrons available in the major shells under consideration. This parametrization leads to a product (NpNn)eff which is found to have a more universal character as a structure variable than the usual NpNn.
Stuckless, John S.; Levich, Robert A.
2012-01-01
This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a repository site.
Stuckless, John S.; Levich, Robert A.
2012-01-01
This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a repository site.
NASA Astrophysics Data System (ADS)
Khayat, Saed; Möller, Peter; Geyer, Stefan; Marei, Amer; Siebert, Christian; Hilo, Fayez Abu
2009-06-01
The spatial and temporal changes of the composition of the groundwater from the springs along the Wadi Qilt stream running from the Jerusalem-Ramallah Mountains towards the Jericho Plain is studied during the hydrological year 2006/2007. The residence time and the intensity of recharge play an important role in controlling the chemical composition of spring water which mainly depends on distance from the main recharge area. A very important factor is the oxidation of organics derived from sewage and garbage resulting in variable dissolved CO2 and associated HCO3 - concentration. High CO2 yields lower pH values and thus under-saturation with respect to calcite and dolomite. Low CO2 concentrations result in over-saturation. Only at the beginning and at the end of the rainy season calcite saturation is achieved. The degradation of dissolved organic matter is a major source for increasing water hardness. Besides dissolution of carbonates dissolved species such as nitrate, chloride, and sulfate are leached from soil and aquifer rocks together with only small amounts of Mg. Mg not only originates from carbonates but also from Mg-Cl waters are leached from aquifer rocks. Leaching of Mg-Cl brines is particularly high at the beginning of the winter season and lowest at its end. Two zones of recharge are distinguishable. Zone 1 represented by Ein Fara and Ein Qilt is fed directly through the infiltration of meteoric water and surface runoff from the mountains along the eastern mountain slopes with little groundwater residence time and high flow rate. The second zone is near the western border of Jericho at the foothills, which is mainly fed by the under-groundwater flow from the eastern slopes with low surface infiltration rate. This zone shows higher groundwater residence time and slower flow rate than zone 1. Groundwater residence time and the flow rate within the aquifer systems are controlled by the geological structure of the aquifer, the amount of active recharge to the aquifer, and the recharge mechanism. The results of this study may be useful in increasing the efficiency of freshwater exploitation in the region. Some precautions, however, should be taken in future plans of artificial recharge of the aquifers or surface-water harvesting in the Wadi. Because of evaporation and associated groundwater deterioration, the runoff water should be artificially infiltrated in zones of Wadis with high storage capacity of aquifers. Natural infiltration along the Wadis lead to evaporation losses and less quality of groundwater.
NASA Astrophysics Data System (ADS)
Zhang, Wei
2013-06-01
It is well known that during CO2 geological storage, density-driven convective activity can significantly accelerate the dissolution of injected CO2 into water. This action could limit the escape of supercritical CO2 from the storage formation through vertical pathways such as fractures, faults and abandoned wells, consequently increasing permanence and security of storage. First, we investigated the effect of numerical perturbation caused by time and grid resolution and the convergence criteria on the dissolution-diffusion-convection (DDC) process. Then, using the model with appropriate spatial and temporal resolution, some uncertainty parameters investigated in our previous paper such as initial gas saturation and model boundaries, and other factors such as relative liquid permeability and porosity modification were used to examine their effects on the DDC process. Finally, we compared the effect of 2D and 3D models on the simulation of the DDC process. The above modeling results should contribute to clear understanding and accurate simulation of the DDC process, especially the onset of convective activity, and the CO2 dissolution rate during the convection-dominated stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy, C.A.; Looney, B.B.; Dougherty, J.M.
1991-05-01
The Savannah River Site is the location of an Integrated Demonstration Project designed to evaluate innovative remediation technologies for environmental restoration at sites contaminated with volatile organic contaminants. This demonstration utilizes directionally drilled horizontal wells to deliver gases and extract contaminants from the subsurface. Phase I of the Integrated Demonstration focused on the application and development of in-situ air stripping technologies to remediate soils and sediments above and below the water table as well as groundwater contaminated with volatile organic contaminants. The objective of this report is to provide baseline information on the geology, geochemistry, hydrology, and microbiology of themore » demonstration site prior to the test. The distribution of contaminants in soils and sediments in the saturated zone and groundwater is emphasized. These data will be combined with data collected after the demonstration in order to evaluate the effectiveness of in-situ air stripping. New technologies for environmental characterization that were evaluated include depth discrete groundwater sampling (HydroPunch) and three-dimensional modeling of contaminant data.« less
Andraski, Brian J.; Stonestrom, David A.; Nicholson, T.J.; Arlt, H.D.
2011-01-01
In 1976 the U.S. Geological Survey (USGS) began studies of unsaturated zone hydrology next to the Nation’s first commercial disposal facility for low-level radioactive waste (LLRW) near Beatty, NV. Recognizing the need for long-term data collection, the USGS in 1983 established research management areas in the vicinity of the waste-burial facility through agreements with the Bureau of Land Management and the State of Nevada. Within this framework, the Amargosa Desert Research Site (ADRS; http://nevada.usgs.gov/adrs/) is serving as a field laboratory for the sustained study of water-, gas-, and contaminant-transport processes, and the development of models and methods to characterize flow and transport. The research is built on multiple lines of data that include: micrometeorology; evapotranspiration; plant metrics; soil and sediment properties; unsaturated-zone moisture, temperature, and gas composition; geology and geophysics; and groundwater. Contaminant data include tritium, radiocarbon, volatile-organic compounds (VOCs), and elemental mercury. Presented here is a summary of monitoring tools and techniques that are being applied in studies of waste isolation and contaminant migration.
Indoor radon, geogenic radon surrogates and geology - Investigations on their correlation.
Friedmann, H; Baumgartner, A; Bernreiter, M; Gräser, J; Gruber, V; Kabrt, F; Kaineder, H; Maringer, F J; Ringer, W; Seidel, C; Wurm, G
2017-01-01
The indoor radon concentration was measured in most houses in a couple of municipalities in Austria. At the same time the activity concentration of radium in soil, the soil gas radon concentration, the permeability of the ground and the ambient dose equivalent rate were also measured and the geological situations (geological units) were recorded too. From the indoor radon concentration and different house and living parameters a radon potential (Austrian radon potential) was derived which should represent the radon concentration in a standard room. Another radon potential (Neznal radon potential) was calculated from the soil gas radon concentration and the permeability. The aim of the investigation was to correlate all the different variables and to test if the use of surrogate data (e.g. geological information, ambient dose equivalent rate, etc.) can be used to judge the radon risk for an area without performing numerous indoor measurements. Copyright © 2016 Elsevier Ltd. All rights reserved.
Factors related to well yield in the fractured-bedrock aquifer of New Hampshire
Moore, Richard Bridge; Schwartz, Gregory E.; Clark, Stewart F.; Walsh, Gregory J.; Degnan, James R.
2002-01-01
The New Hampshire Bedrock Aquifer Assessment was designed to provide information that can be used by communities, industry, professional consultants, and other interests to evaluate the ground-water development potential of the fractured-bedrock aquifer in the State. The assessment was done at statewide, regional, and well field scales to identify relations that potentially could increase the success in locating high-yield water supplies in the fractured-bedrock aquifer. statewide, data were collected for well construction and yield information, bedrock lithology, surficial geology, lineaments, topography, and various derivatives of these basic data sets. Regionally, geologic, fracture, and lineament data were collected for the Pinardville and Windham quadrangles in New Hampshire. The regional scale of the study examined the degree to which predictive well-yield relations, developed as part of the statewide reconnaissance investigation, could be improved by use of quadrangle-scale geologic mapping. Beginning in 1984, water-well contractors in the State were required to report detailed information on newly constructed wells to the New Hampshire Department of Environmental Services (NHDES). The reports contain basic data on well construction, including six characteristics used in this study?well yield, well depth, well use, method of construction, date drilled, and depth to bedrock (or length of casing). The NHDES has determined accurate georeferenced locations for more than 20,000 wells reported since 1984. The availability of this large data set provided an opportunity for a statistical analysis of bedrock-well yields. Well yields in the database ranged from zero to greater than 500 gallons per minute (gal/min). Multivariate regression was used as the primary statistical method of analysis because it is the most efficient tool for predicting a single variable with many potentially independent variables. The dependent variable that was explored in this study was the natural logarithm (ln) of the reported well yield. One complication with using well yield as a dependent variable is that yield also is a function of demand. An innovative statistical technique that involves the use of instrumental variables was implemented to compensate for the effect of demand on well yield. Results of the multivariate-regression model show that a variety of factors are either positively or negatively related to well yields. Using instrumental variables, well depth is positively related to total well yield. Other factors that were found to be positively related to well yield include (1) distance to the nearest waterbody; (2) size of the drainage area upgradient of a well; (3) well location in swales or valley bottoms in the Massabesic Gneiss Complex and Breakfast Hill Granite; (4) well proximity to lineaments, identified using high-altitude (1:80,000-scale) aerial photography, which are correlated with the primary fracture direction (regional analysis); (5) use of a cable tool rig for well drilling; and (6) wells drilled for commercial or public supply. Factors negatively related to well yields include sites underlain by foliated plutons, sites on steep slopes sites at high elevations, and sites on hilltops. Additionally, seven detailed geologic map units, identified during the detailed geologic mapping of the Pinardville and Windham quadrangles, were found to be positively or negatively related to well yields. Twenty-four geologic map units, depicted on the Bedrock Geologic Map of New Hampshire, also were found to be positively or negatively related to well yields. Maps or geographic information system (GIS) data sets identifying areas of various yield probabilities clearly display model results. Probability criteria developed in this investigation can be used to select areas where other techniques, such as geophysical techniques, can be applied to more closely identify potential drilling sites for high-yielding
NASA Astrophysics Data System (ADS)
Kopacz, Michał
2017-09-01
The paper attempts to assess the impact of variability of selected geological (deposit) parameters on the value and risks of projects in the hard coal mining industry. The study was based on simulated discounted cash flow analysis, while the results were verified for three existing bituminous coal seams. The Monte Carlo simulation was based on nonparametric bootstrap method, while correlations between individual deposit parameters were replicated with use of an empirical copula. The calculations take into account the uncertainty towards the parameters of empirical distributions of the deposit variables. The Net Present Value (NPV) and the Internal Rate of Return (IRR) were selected as the main measures of value and risk, respectively. The impact of volatility and correlation of deposit parameters were analyzed in two aspects, by identifying the overall effect of the correlated variability of the parameters and the indywidual impact of the correlation on the NPV and IRR. For this purpose, a differential approach, allowing determining the value of the possible errors in calculation of these measures in numerical terms, has been used. Based on the study it can be concluded that the mean value of the overall effect of the variability does not exceed 11.8% of NPV and 2.4 percentage points of IRR. Neglecting the correlations results in overestimating the NPV and the IRR by up to 4.4%, and 0.4 percentage point respectively. It should be noted, however, that the differences in NPV and IRR values can vary significantly, while their interpretation depends on the likelihood of implementation. Generalizing the obtained results, based on the average values, the maximum value of the risk premium in the given calculation conditions of the "X" deposit, and the correspondingly large datasets (greater than 2500), should not be higher than 2.4 percentage points. The impact of the analyzed geological parameters on the NPV and IRR depends primarily on their co-existence, which can be measured by the strength of correlation. In the analyzed case, the correlations result in limiting the range of variation of the geological parameters and economics results (the empirical copula reduces the NPV and IRR in probabilistic approach). However, this is due to the adjustment of the calculation under conditions similar to those prevailing in the deposit.
Co-optimization of CO 2 -EOR and Storage Processes under Geological Uncertainty
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ampomah, William; Balch, Robert; Will, Robert
This paper presents an integrated numerical framework to co-optimize EOR and CO 2 storage performance in the Farnsworth field unit (FWU), Ochiltree County, Texas. The framework includes a field-scale compositional reservoir flow model, an uncertainty quantification model and a neural network optimization process. The reservoir flow model has been constructed based on the field geophysical, geological, and engineering data. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). A history match of primary and secondary recovery processes was conducted to estimate the reservoir and multiphase flow parametersmore » as the baseline case for analyzing the effect of recycling produced gas, infill drilling and water alternating gas (WAG) cycles on oil recovery and CO 2 storage. A multi-objective optimization model was defined for maximizing both oil recovery and CO 2 storage. The uncertainty quantification model comprising the Latin Hypercube sampling, Monte Carlo simulation, and sensitivity analysis, was used to study the effects of uncertain variables on the defined objective functions. Uncertain variables such as bottom hole injection pressure, WAG cycle, injection and production group rates, and gas-oil ratio among others were selected. The most significant variables were selected as control variables to be used for the optimization process. A neural network optimization algorithm was utilized to optimize the objective function both with and without geological uncertainty. The vertical permeability anisotropy (Kv/Kh) was selected as one of the uncertain parameters in the optimization process. The simulation results were compared to a scenario baseline case that predicted CO 2 storage of 74%. The results showed an improved approach for optimizing oil recovery and CO 2 storage in the FWU. The optimization process predicted more than 94% of CO 2 storage and most importantly about 28% of incremental oil recovery. The sensitivity analysis reduced the number of control variables to decrease computational time. A risk aversion factor was used to represent results at various confidence levels to assist management in the decision-making process. The defined objective functions were proved to be a robust approach to co-optimize oil recovery and CO 2 storage. The Farnsworth CO 2 project will serve as a benchmark for future CO 2–EOR or CCUS projects in the Anadarko basin or geologically similar basins throughout the world.« less
Co-optimization of CO 2 -EOR and Storage Processes under Geological Uncertainty
Ampomah, William; Balch, Robert; Will, Robert; ...
2017-07-01
This paper presents an integrated numerical framework to co-optimize EOR and CO 2 storage performance in the Farnsworth field unit (FWU), Ochiltree County, Texas. The framework includes a field-scale compositional reservoir flow model, an uncertainty quantification model and a neural network optimization process. The reservoir flow model has been constructed based on the field geophysical, geological, and engineering data. A laboratory fluid analysis was tuned to an equation of state and subsequently used to predict the thermodynamic minimum miscible pressure (MMP). A history match of primary and secondary recovery processes was conducted to estimate the reservoir and multiphase flow parametersmore » as the baseline case for analyzing the effect of recycling produced gas, infill drilling and water alternating gas (WAG) cycles on oil recovery and CO 2 storage. A multi-objective optimization model was defined for maximizing both oil recovery and CO 2 storage. The uncertainty quantification model comprising the Latin Hypercube sampling, Monte Carlo simulation, and sensitivity analysis, was used to study the effects of uncertain variables on the defined objective functions. Uncertain variables such as bottom hole injection pressure, WAG cycle, injection and production group rates, and gas-oil ratio among others were selected. The most significant variables were selected as control variables to be used for the optimization process. A neural network optimization algorithm was utilized to optimize the objective function both with and without geological uncertainty. The vertical permeability anisotropy (Kv/Kh) was selected as one of the uncertain parameters in the optimization process. The simulation results were compared to a scenario baseline case that predicted CO 2 storage of 74%. The results showed an improved approach for optimizing oil recovery and CO 2 storage in the FWU. The optimization process predicted more than 94% of CO 2 storage and most importantly about 28% of incremental oil recovery. The sensitivity analysis reduced the number of control variables to decrease computational time. A risk aversion factor was used to represent results at various confidence levels to assist management in the decision-making process. The defined objective functions were proved to be a robust approach to co-optimize oil recovery and CO 2 storage. The Farnsworth CO 2 project will serve as a benchmark for future CO 2–EOR or CCUS projects in the Anadarko basin or geologically similar basins throughout the world.« less
Geologic interpretation and multibeam bathymetry of the sea floor in southeastern Long Island Sound
Poppe, Lawrence J.; Ackerman, Seth D.; Doran, Elizabeth F.; Moser, Marc S.; Stewart, Helen F.; Forfinski, Nicholas A.; Gardner, Uther L.; Keene, Jennifer A.
2006-01-01
Digital terrain models (DTMs) produced from multibeam echosounder (MBES) bathymetric data provide valuable base maps for marine geological interpretations (e.g. Todd and others, 1999; Mosher and Thomson, 2002; ten Brink and others, 2004; Poppe and others, 2006a,b). These maps help define the geological variability of the sea floor (one of the primary controls of benthic habitat diversity); improve our understanding of the processes that control the distribution and transport of bottom sediments, the distribution of benthic habitats and associated infaunal community structures; and provide a detailed framework for future research, monitoring, and management activities. The bathymetric survey interpreted herein (National Oceanic and Atmospheric Administration (NOAA) survey H11255) covers roughly 95 km? of sea floor in southeastern Long Island Sound (fig. 1). This bathymetry has been examined in relation to seismic reflection data collected concurrently, as well as archived seismic profiles acquired as part of a long-standing geologic mapping partnership between the State of Connecticut and the U.S. Geological Survey (USGS). The objective of this work was to use these geophysical data sets to interpret geomorphological attributes of the sea floor in terms of the Quaternary geologic history and modern sedimentary processes within Long Island Sound.
NASA Astrophysics Data System (ADS)
Finn, C. A.; Deszcz-Pan, M.; Horton, R.; Breit, G.; John, D.
2007-12-01
High resolution helicopter-borne magnetic and electromagnetic (EM) data flown over the rugged, ice-covered, highly magnetic and mostly resistive volcanoes of Mount Rainier, Mount Adams and Mount Baker, along with rock property measurements, reveal the distribution of alteration, water and hydrothermal fluids that are essential to evaluating volcanic landslide hazards and understanding hydrothermal systems. Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Intense hydrothermal alteration significantly reduces the magnetization and resistivity of volcanic rock resulting in clear recognition of altered rock by helicopter magnetic and EM measurements. Magnetic and EM data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region, in the central core of Mount Adams north of the summit, and in much of the central cone of Mount Baker. We identify the Sunset Amphitheater region and steep cliffs at the western edge of the central altered zone at Mount Adams as likely sources for future debris flows. In addition, the EM data identified water-saturated rocks in the upper 100-200 m of the three volcanoes. The water-saturated zone could extend deeper, but is beyond the detection limits of the EM data. Water in hydrothermal fluids reacts with the volcanic rock to produce clay minerals. The formation of clay minerals and presence of free water reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore, knowing the distribution of water is also important for hazard assessments. Finally, modeling requires extremely low resistivities (< 20 ohm-m) that laboratory electrical resistivity measurements indicate are most easily explained by sulfuric acid solutions permeating altered rocks. The acid is the result of oxidation of magmatic H2S to sulfuric acid and highlights the continued alteration of volcanoes during periods of relative quiescence. Our results demonstrate that high resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock and shallow pore water and hydrothermal fluids within active stratovolcanoes.
Lynch, E.A.; Huffman, G.C.
1996-01-01
A leaking underground storage tank was removed from the Michigan Department of Transportation maintenance garage area in Kalamazoo County., Mich., in 1985. The tank had been leaking unleaded gasoline. Although a remediation system was operational at the site for several years after the tank was removed, ground-water samples collected from monitoring wells in the area consistently showed high concentrations of benzene, toluene. ethylbenzene, and xylenes--indicators of the presence of gasoline. The U.S. Geological Survey did a study in cooperation with the Michigan Department of Transportation, to define the geology, hydrology, and occurrence of gasoline contamination in the maintenance garage area. The aquifer affected by gasoline contamination is an unconfined glaci'a.l sand and gravel aquifer. The average depth to water in the study area is about 74.7 feet. Water-level fluctuations are small; maximum fluctuation was slightly more than 1 foot during August 1993-August 1994. Hydraulic conductivities based on aquifer-test data collected for the study and estimated by use of the Cooper-Jacob method of solution ranged from 130 to 144 feet per day. Ground water is moving in an east-southeasterly direction at a rate of about I foot per day. Leakage from perforated pipes leading from the underground storage tanks to the pump station was identified as a second source of gasoline contamination to saturated and unsaturated zones. The existence of this previously unknown second source is part of the reason that previous remediation efforts were ineffective. Residual contaminants in the unsaturated zone are expected to continue to move to the water table with recharge, except in a small area covered by asphalt at the land surface. The gasoline plume from the perforated pipe source has merged with that from the leaking underground storage tank, and the combined plume in the saturated zone is estimated to cover an area of 30,000 square feet. The combined plume is in the upper 20 feet of the saturated zone. The relative distribution of benzene, toluene, ethylbenzene, and xylenes indicate that factors such as sorption, solubility, and susceptibility to microbial degradation are affecting the movement of the combined plume. Given these factors, the plume is expected to move at a rate of less than 1 foot per day.
NASA Astrophysics Data System (ADS)
Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo
2016-04-01
Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features of the shallow subsurface (i.e., chemical-physical characteristics of rocks and fluids of the first 100 m below the ground) are appropriately constrained.
Conserving the Stage: Climate Change and the Geophysical Underpinnings of Species Diversity
Anderson, Mark G.; Ferree, Charles E.
2010-01-01
Conservationists have proposed methods for adapting to climate change that assume species distributions are primarily explained by climate variables. The key idea is to use the understanding of species-climate relationships to map corridors and to identify regions of faunal stability or high species turnover. An alternative approach is to adopt an evolutionary timescale and ask ultimately what factors control total diversity, so that over the long run the major drivers of total species richness can be protected. Within a single climatic region, the temperate area encompassing all of the Northeastern U.S. and Maritime Canada, we hypothesized that geologic factors may take precedence over climate in explaining diversity patterns. If geophysical diversity does drive regional diversity, then conserving geophysical settings may offer an approach to conservation that protects diversity under both current and future climates. Here we tested how well geology predicts the species diversity of 14 US states and three Canadian provinces, using a comprehensive new spatial dataset. Results of linear regressions of species diversity on all possible combinations of 23 geophysical and climatic variables indicated that four geophysical factors; the number of geological classes, latitude, elevation range and the amount of calcareous bedrock, predicted species diversity with certainty (adj. R2 = 0.94). To confirm the species-geology relationships we ran an independent test using 18,700 location points for 885 rare species and found that 40% of the species were restricted to a single geology. Moreover, each geology class supported 5–95 endemic species and chi-square tests confirmed that calcareous bedrock and extreme elevations had significantly more rare species than expected by chance (P<0.0001), strongly corroborating the regression model. Our results suggest that protecting geophysical settings will conserve the stage for current and future biodiversity and may be a robust alternative to species-level predictions. PMID:20644646
NASA Astrophysics Data System (ADS)
Banz, B.; Bohling, G.; Doveton, J.
2008-12-01
Traditional programs of geological education continue to be focused primarily on the evaluation of surface or near-surface geology accessed at outcrops and shallow boreholes. However, most students who graduate to careers in geology work almost entirely on subsurface problems, interpreting drilling records and petrophysical logs from exploration and production wells. Thus, college graduates commonly find themselves ill-prepared when they enter the petroleum industry and require specialized training in drilling and petrophysical log interpretation. To aid in this training process, we are developing an environment for interactive instruction in the geological aspects of petroleum reservoir characterization employing a virtual subsurface closely reflecting the geology of the US mid-continent, in the fictional setting of Small County, Kansas. Stochastic simulation techniques are used to generate the subsurface characteristics, including the overall geological structure, distributions of facies, porosity, and fluid saturations, and petrophysical logs. The student then explores this subsurface by siting exploratory wells and examining drilling and petrophysical log records obtained from those wells. We are developing the application using the Eclipse Rich Client Platform, which allows for the rapid development of a platform-agnostic application while providing an immersive graphical interface. The application provides an array of views to enable relevant data display and student interaction. One such view is an interactive map of the county allowing the student to view the locations of existing well bores and select pertinent data overlays such as a contour map of the elevation of an interesting interval. Additionally, from this view a student may choose the site of a new well. Another view emulates a drilling log, complete with drilling rate plot and iconic representation of examined drill cuttings. From here, students are directed to stipulate subsurface lithology and interval tops as they progress through the drilling operation. Once the interpretation process is complete, the student is guided through an exercise emulating a drill stem test and then is prompted to decide on perforation intervals. The application provides a graphical framework by which the student is guided through well site selection, drilling data interpretation, and well completion or dry-hole abandonment, creating a tight feedback loop by which the student gains an over-arching view of drilling logistics and the subsurface data evaluation process.
NASA Astrophysics Data System (ADS)
Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.
2013-12-01
The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or other reserves) and improve oil field management (e.g. perforating, drilling, EOR and reserves estimation)
NASA Astrophysics Data System (ADS)
Shi, X.; Zhang, G.
2013-12-01
Because of the extensive computational burden, parametric uncertainty analyses are rarely conducted for geological carbon sequestration (GCS) process based multi-phase models. The difficulty of predictive uncertainty analysis for the CO2 plume migration in realistic GCS models is not only due to the spatial distribution of the caprock and reservoir (i.e. heterogeneous model parameters), but also because the GCS optimization estimation problem has multiple local minima due to the complex nonlinear multi-phase (gas and aqueous), and multi-component (water, CO2, salt) transport equations. The geological model built by Doughty and Pruess (2004) for the Frio pilot site (Texas) was selected and assumed to represent the 'true' system, which was composed of seven different facies (geological units) distributed among 10 layers. We chose to calibrate the permeabilities of these facies. Pressure and gas saturation values from this true model were then extracted and used as observations for subsequent model calibration. Random noise was added to the observations to approximate realistic field conditions. Each simulation of the model lasts about 2 hours. In this study, we develop a new approach that improves computational efficiency of Bayesian inference by constructing a surrogate system based on an adaptive sparse-grid stochastic collocation method. This surrogate response surface global optimization algorithm is firstly used to calibrate the model parameters, then prediction uncertainty of the CO2 plume position is quantified due to the propagation from parametric uncertainty in the numerical experiments, which is also compared to the actual plume from the 'true' model. Results prove that the approach is computationally efficient for multi-modal optimization and prediction uncertainty quantification for computationally expensive simulation models. Both our inverse methodology and findings can be broadly applicable to GCS in heterogeneous storage formations.
Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy
2010-01-01
Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.
NASA Astrophysics Data System (ADS)
Huang, Wei-Hsing
2017-04-01
Clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation behavior of clay barrier, with emphasis on the coupling effects of heat and moisture of buffer material in the near-field of a repository during groundwater intrusion processes. A locally available clay named "Zhisin clay" and a standard bentotine material were adopted in the laboratory program. Water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the buffer material. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. The finite element program ABAQUS was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on Zhisin clay. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. It was found that, due to the variation in suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.
Souza, W.R.
1999-01-01
This report documents a graphical display post-processor (SutraPlot) for the U.S. Geological Survey Saturated-Unsaturated flow and solute or energy TRAnsport simulation model SUTRA, Version 2D3D.1. This version of SutraPlot is an upgrade to SutraPlot for the 2D-only SUTRA model (Souza, 1987). It has been modified to add 3D functionality, a graphical user interface (GUI), and enhanced graphic output options. Graphical options for 2D SUTRA (2-dimension) simulations include: drawing the 2D finite-element mesh, mesh boundary, and velocity vectors; plots of contours for pressure, saturation, concentration, and temperature within the model region; 2D finite-element based gridding and interpolation; and 2D gridded data export files. Graphical options for 3D SUTRA (3-dimension) simulations include: drawing the 3D finite-element mesh; plots of contours for pressure, saturation, concentration, and temperature in 2D sections of the 3D model region; 3D finite-element based gridding and interpolation; drawing selected regions of velocity vectors (projected on principal coordinate planes); and 3D gridded data export files. Installation instructions and a description of all graphic options are presented. A sample SUTRA problem is described and three step-by-step SutraPlot applications are provided. In addition, the methodology and numerical algorithms for the 2D and 3D finite-element based gridding and interpolation, developed for SutraPlot, are described. 1
Bryan A. Black; Daniel Griffin; Peter van der Sleen; Alan D. Wanamaker; James H. Speer; David C. Frank; David W. Stahle; Neil Pederson; Carolyn A. Copenheaver; Valerie Trouet; Shelly Griffin; Bronwyn M. Gillanders
2016-01-01
High-resolution biogenic and geologic proxies in which one increment or layer is formed per year are crucial to describing natural ranges of environmental variability in Earth's physical and biological systems. However, dating controls are necessary to ensure temporal precision and accuracy; simple counts cannot ensure that all layers are placed correctly in time...
NASA Astrophysics Data System (ADS)
Avery, G. B., Jr.; Shimizu, M. S.; Willey, J. D.; Mead, R. N.; Skrabal, S. A.; Kieber, R. J.; Lathrop, T. E.; Felix, J. D. D.
2017-12-01
The use of ethanol as a transportation fuel has increased significantly during the past decade in the US. Some ethanol escapes the combustion process in internal combustion engines resulting in its release to the atmosphere. Ethanol can be oxidized photochemically to acetaldehyde and then converted to peroxyacetyl nitrate contributing to air pollution. Therefore it is important to determine the fate ethanol released to the atmosphere. Because of its high water solubility the oceans may act as a sink for ethanol depending on its state of saturation with respect to the gas phase. The purpose of the current study was to determine the relative saturation of oceanic surface waters by making simultaneous measurements of gas phase and surface water concentrations. Data were obtained from four separate cruises ranging from estuarine to open ocean locations in the coast of North Carolina, USA. The majority of estuarine sites were under saturated in ethanol with respect to the gas phase (11-50% saturated) representing a potential sink. Coastal surface waters tended to be supersaturated (135 - 317%) representing a net flux of ethanol to the atmosphere. Open ocean samples were generally at saturation or slightly below saturation (76-99%) indicating equilibrium between the gas and aqueous phases. The results of this study underscore to variable role the oceans play in mitigating the increases in atmospheric ethanol from increased biofuel usage and their impact on air quality.
Stress and Dilatancy Relation of Methane Hydrate Bearing Sand with Various Fines Content
NASA Astrophysics Data System (ADS)
Hyodo, M.
2016-12-01
This study presents an experimental and numerical study on the shear behaviour of methane hydrate bearing sand with variable confining pressures and methane hydrate saturations. A representative grading curve of Nankai Trough is selected as the grain size distribution of host sand to artificially produce the methane hydrate bearing sand. A shear strength estimation equation for methane hydrate bearing sand from test results is established. A simple constitutive model has been proposed to predict the stress-strain response of methane hydrate bearing sand based on a few well-known relationships. Experimental results indicate that the inclination of stress-dilatancy curve becomes steeper with a rise in methane hydrate saturation. A revised stress-dilatancy equation has been integrated with this simple model to consider the variance in the inclination of stress-dilatancy curve. The mean stress Pcr at critical state when the peak stress ratio reduces to the residual stress ratio increases with the level of methane hydrate saturation. The dilatancy parameter a tends to increase with the methane hydrate saturation. The shear deformability parameter A exhibits a decreasing tendency with the rise in methane hydrate saturation at each confining pressure. This model is capable of reasonably predicting the strength and stiffness enhancement and the dilation behaviour as methane hydrate saturation increases. The volumetric variation from contraction to expansion of MH bearing sand at a lower confining pressure and only pure volumetric contraction a higher confining pressure can be represented by this simple model.
Gross, Eliza L.; Low, Dennis J.
2013-01-01
Logistic regression models were created to predict and map the probability of elevated arsenic concentrations in groundwater statewide in Pennsylvania and in three intrastate regions to further improve predictions for those three regions (glacial aquifer system, Gettysburg Basin, Newark Basin). Although the Pennsylvania and regional predictive models retained some different variables, they have common characteristics that can be grouped by (1) geologic and soils variables describing arsenic sources and mobilizers, (2) geochemical variables describing the geochemical environment of the groundwater, and (3) locally specific variables that are unique to each of the three regions studied and not applicable to statewide analysis. Maps of Pennsylvania and the three intrastate regions were produced that illustrate that areas most at risk are those with geology and soils capable of functioning as an arsenic source or mobilizer and geochemical groundwater conditions able to facilitate redox reactions. The models have limitations because they may not characterize areas that have localized controls on arsenic mobility. The probability maps associated with this report are intended for regional-scale use and may not be accurate for use at the field scale or when considering individual wells.
Selvaraj, P; Sakthivel, R; Kwon, O M
2018-06-07
This paper addresses the problem of finite-time synchronization of stochastic coupled neural networks (SCNNs) subject to Markovian switching, mixed time delay, and actuator saturation. In addition, coupling strengths of the SCNNs are characterized by mutually independent random variables. By utilizing a simple linear transformation, the problem of stochastic finite-time synchronization of SCNNs is converted into a mean-square finite-time stabilization problem of an error system. By choosing a suitable mode dependent switched Lyapunov-Krasovskii functional, a new set of sufficient conditions is derived to guarantee the finite-time stability of the error system. Subsequently, with the help of anti-windup control scheme, the actuator saturation risks could be mitigated. Moreover, the derived conditions help to optimize estimation of the domain of attraction by enlarging the contractively invariant set. Furthermore, simulations are conducted to exhibit the efficiency of proposed control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rigby, S. E.; Fay, S. D.; Tyas, A.; Clarke, S. D.; Reay, J. J.; Warren, J. A.; Gant, M.; Elgy, I.
2018-05-01
The spatial and temporal distribution of pressure and impulse from explosives buried in saturated cohesive and cohesionless soils has been measured experimentally for the first time. Ten experiments have been conducted at quarter-scale, where localised pressure loading was measured using an array of 17 Hopkinson pressure bars. The blast pressure measurements are used in conjunction with high-speed video filmed at 140,000 fps to investigate in detail the physical processes occurring at the loaded face. Two coarse cohesionless soils and one fine cohesive soil were tested: a relatively uniform sand, a well-graded sandy gravel, and a fine-grained clay. The results show that there is a single fundamental loading mechanism when explosives are detonated in saturated soil, invariant of particle size and soil cohesion. It is also shown that variability in localised loading is intrinsically linked to the particle size distribution of the surrounding soil.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Yu, Qingchun
2018-01-01
The behavior of CO2 that coexists with CH4 and the effect of CH4 on the CO2 stream need to be deeply analyzed and studied, especially in the presence of water. Our previous studies investigated the breakthrough pressure and permeability of pure CO2 in five partially saturated low-permeability sandstone core samples from the Ordos Basin, and we concluded that rocks with a small pore size and low permeability show considerable sealing capacity even under unsaturated conditions. In this paper, we selected three of these samples for CO2-CH4 gas-mixture breakthrough experiments under various degrees of water saturation. The breakthrough experiments were performed by increasing the gas pressure step by step until breakthrough occurred. Then, the effluent gas mixture was collected for chromatographic partitioning analysis. The results indicate that CH4 significantly affects the breakthrough pressure and permeability of CO2. The presence of CH4 in the gas mixture increases the interfacial tension and, thus, the breakthrough pressure. Therefore, the injected gas mixture that contains the highest (lowest) mole fraction of CH4 results in the largest (smallest) breakthrough pressure. The permeability of the gas mixture is greater than that for pure CO2 because of CH4, and the effective permeability decreases with increased breakthrough pressure. Chromatographic partitioning of the effluent mixture gases indicates that CH4 breaks through ahead of CO2 as a result of its weaker solubility in water. Correlations are established between (1) the breakthrough pressure and water saturation, (2) the effective permeability and water saturation, (3) the breakthrough pressure and effective permeability, and (4) the mole fraction of CO2/CH4 in the effluent mixture gases and water saturation. These results deepen our understanding of the multi-phase flow behavior in the porous media under unsaturated conditions, which have implications for formulating emergency response plans for gas leakage into unsaturated zones. Finally, knowing the flow characteristic of gas mixture can guide CO2 storage, CO2-EOR and CO2-ECBM projects. Future studies should pay attention to the effects of saline water with different salt types and concentrations on the multi-phase flow behavior with applications to geological CO2 storage and energy storage using CH4.
NASA Astrophysics Data System (ADS)
Andersson, A. J.; Bates, N. R.; dePutron, S.; Collins, A.; Neely, K.; Best, M.; Noyes, T.
2011-12-01
To accurately predict future consequences of ocean acidification on coastal environments and ecosystems, it is critical to understand present conditions and variability. As part of the Bermuda ocean acidification and coral reef investigation (BEACON), significant efforts have been dedicated to characterize the complete surface seawater carbonic-acid system at different temporal and spatial scales on the Bermuda coral reef platform to understand current levels and variability in seawater CO2 parameters, reef metabolism, and future potential changes arising from ocean acidification. A four years monthly time-series of seawater carbonic-acid parameters at eight different locations on the Bermuda coral reef platform reveals strong seasonal patterns in dissolved inorganic carbon (DIC), total alkalinity (TA), pH, pCO2, and [HCO3-], and somewhat weaker trends in [CO32-] and saturation state with respect to CaCO3 minerals. Strong spatial gradients are also observed in DIC and TA during summertime owing to reef metabolism, but no or weak spatial gradients of these parameters are observed in the wintertime. Interestingly, maximum pH-sws (~8.15) is observed during wintertime when minimum aragonite saturation state (<3.0) is observed. In contrast, minimum pH-sws (~7.95) is observed in the summertime when maximum aragonite saturation state (>3.70) is observed. The observed trends and gradients point to complex relationships and interactions between seawater chemistry, biology and physics that need to be considered in the context of ocean acidification and in making future predictions on the effects of this perturbation on coral reefs and coastal ecosystems.
NASA Astrophysics Data System (ADS)
Stockton, M.; Rojas, C.; Regan, J. M.; Saia, S. M.; Buda, A. R.; Carrick, H. J.; Walter, M. T.
2016-12-01
Excessive application of phosphorus-containing fertilizer along with incomplete knowledge about the factors affecting phosphorus transport and mobility has allowed for a growing number of cases of eutrophication in water bodies. Previous research on enhanced biological phosphorus removal (EBPR) systems used in wastewater treatment plants (WWTPs) has identified polyphosphate-accumulating organisms (PAOs) that are known to accumulate and release phosphorus depending on aerobic/anaerobic conditions. Under anaerobic conditions, intracellular polyphosphate (poly-P) bodies are hydrolyzed releasing phosphate, while under aerobic conditions phosphate is taken up and poly-P inclusions are reformed. The presence of PAOs outside of WWTPs has been shown, but their potential impact on phosphorus mobility in other contexts is not as well known. To study that potential impact, sand columns were subjected to alternating cycles of saturation and unsaturation to mimic variably saturated soils and the resultant anaerobic and aerobic conditions that select for PAOs in a WWTP. Pore water samples collected from sterile control columns and columns inoculated with PAOs from a WWTP were compared during each cycle to monitor changes in dissolved inorganic phosphate and total phosphorus concentrations. In addition, continuous redox data were collected to confirm reducing conditions developed during periods of saturation. Sand particles will be subjected to FISH and DAPI staining to visualize PAOs using probes developed for PAOs in EBPR processes and to determine if changes in intracellular poly-P are detectable between the two cycles in the inoculated columns. Studying the effects of PAOs on phosphorus mobility in these controlled column experiments can contribute to understanding phosphorus retention and release by naturally occurring PAOs in terrestrial system, which ultimately can improve the development of management practices that mitigate phosphorus pollution of water bodies.
Fast history matching of time-lapse seismic and production data for high resolution models
NASA Astrophysics Data System (ADS)
Jimenez Arismendi, Eduardo Antonio
Integrated reservoir modeling has become an important part of day-to-day decision analysis in oil and gas management practices. A very attractive and promising technology is the use of time-lapse or 4D seismic as an essential component in subsurface modeling. Today, 4D seismic is enabling oil companies to optimize production and increase recovery through monitoring fluid movements throughout the reservoir. 4D seismic advances are also being driven by an increased need by the petroleum engineering community to become more quantitative and accurate in our ability to monitor reservoir processes. Qualitative interpretations of time-lapse anomalies are being replaced by quantitative inversions of 4D seismic data to produce accurate maps of fluid saturations, pore pressure, temperature, among others. Within all steps involved in this subsurface modeling process, the most demanding one is integrating the geologic model with dynamic field data, including 4Dseismic when available. The validation of the geologic model with observed dynamic data is accomplished through a "history matching" (HM) process typically carried out with well-based measurements. Due to low resolution of production data, the validation process is severely limited in its reservoir areal coverage, compromising the quality of the model and any subsequent predictive exercise. This research will aim to provide a novel history matching approach that can use information from high-resolution seismic data to supplement the areally sparse production data. The proposed approach will utilize streamline-derived sensitivities as means of relating the forward model performance with the prior geologic model. The essential ideas underlying this approach are similar to those used for high-frequency approximations in seismic wave propagation. In both cases, this leads to solutions that are defined along "streamlines" (fluid flow), or "rays" (seismic wave propagation). Synthetic and field data examples will be used extensively to demonstrate the value and contribution of this work. Our results show that the problem of non-uniqueness in this complex history matching problem is greatly reduced when constraints in the form of saturation maps from spatially closely sampled seismic data are included. Further on, our methodology can be used to quickly identify discrepancies between static and dynamic modeling. Reducing this gap will ensure robust and reliable models leading to accurate predictions and ultimately an optimum hydrocarbon extraction.
Relations between macropore network characteristics and the degree of preferential solute transport
NASA Astrophysics Data System (ADS)
Larsbo, M.; Koestel, J.; Jarvis, N.
2014-12-01
The characteristics of the soil macropore network determine the potential for fast transport of agrochemicals and contaminants through the soil. The objective of this study was to examine the relationships between macropore network characteristics, hydraulic properties and state variables and measures of preferential transport. Experiments were carried out under near-saturated conditions on undisturbed columns sampled from four agricultural topsoils of contrasting texture and structure. Macropore network characteristics were computed from 3-D X-ray tomography images of the soil pore system. Non-reactive solute transport experiments were carried out at five steady-state water flow rates from 2 to 12 mm h-1. The degree of preferential transport was evaluated by the normalised 5% solute arrival time and the apparent dispersivity calculated from the resulting breakthrough curves. Near-saturated hydraulic conductivities were measured on the same samples using a tension disc infiltrometer placed on top of the columns. Results showed that many of the macropore network characteristics were inter-correlated. For example, large macroporosities were associated with larger specific macropore surface areas and better local connectivity of the macropore network. Generally, an increased flow rate resulted in earlier solute breakthrough and a shifting of the arrival of peak concentration towards smaller drained volumes. Columns with smaller macroporosities, poorer local connectivity of the macropore network and smaller near-saturated hydraulic conductivities exhibited a greater degree of preferential transport. This can be explained by the fact that, with only two exceptions, global (i.e. sample scale) continuity of the macropore network was still preserved at low macroporosities. Thus, for any given flow rate, pores of larger diameter were actively conducting solute in soils of smaller near-saturated hydraulic conductivity. This was associated with larger local transport velocities and, hence, less time for equilibration between the macropores and the surrounding matrix which made the transport more preferential. Conversely, the large specific macropore surface area and well-connected macropore networks associated with columns with large macroporosities limit the degree of preferential transport because they increase the diffusive flux between macropores and the soil matrix and they increase the near-saturated hydraulic conductivity. The normalised 5% arrival times were most strongly correlated with the estimated hydraulic state variables (e.g. with the degree of saturation in the macropores R2 = 0.589), since these combine into one measure the effects of irrigation rate and the near-saturated hydraulic conductivity function, which in turn implicitly depends on the volume, size distribution, global continuity, local connectivity and tortuosity of the macropore network.
U.S. Geological Survey (USGS) Western Region: Alaska Coastal and Ocean Science
Holland-Bartels, Leslie
2009-01-01
The U.S. Geological Survey (USGS), a bureau of the Department of the Interior (DOI), is the Nation's largest water, earth, and biological science and mapping agency. The bureau's science strategy 'Facing Tomorrow's Challenges - U.S. Geological Survey Science in the Decade 2007-2017' describes the USGS vision for its science in six integrated areas of societal concern: Understanding Ecosystems and Predicting Ecosystem Change; Climate Variability and Change; Energy and Minerals; Hazards, Risk, and Resilience; Environment and Wildlife in Human Health; and Water Census of the United States. USGS has three Regions that encompass nine geographic Areas. This fact sheet describes examples of USGS science conducted in coastal, nearshore terrestrial, and ocean environments in the Alaska Area.
NASA Technical Reports Server (NTRS)
Senske, D. A.; Schaber, G. G.; Stofan, E. R.
1992-01-01
Magellan images are used to assess regional stratigraphic relationships in an attempt to establish the evolutionary history and characterize the styles of volcanism at Western Eistla Regio. The regional geologic characteristics of Beta Regio and Atla Regio, imaged by Magellan during the latter part of its first mapping cycle, are also assessed and compared to those of Western Eistla Regio so as to determine if all three of these areas evolved in a similar manner. The detailed characteristics of each region show them to be quite variable in the presence and distribution of coronae and tessera, suggesting that the detailed characteristics of the individual highlands are linked to the local geologic environment.
Inter- and Intra-method Variability of VS Profiles and VS30 at ARRA-funded Sites
NASA Astrophysics Data System (ADS)
Yong, A.; Boatwright, J.; Martin, A. J.
2015-12-01
The 2009 American Recovery and Reinvestment Act (ARRA) funded geophysical site characterizations at 191 seismographic stations in California and in the central and eastern United States. Shallow boreholes were considered cost- and environmentally-prohibitive, thus non-invasive methods (passive and active surface- and body-wave techniques) were used at these stations. The drawback, however, is that these techniques measure seismic properties indirectly and introduce more uncertainty than borehole methods. The principal methods applied were Array Microtremor (AM), Multi-channel Analysis of Surface Waves (MASW; Rayleigh and Love waves), Spectral Analysis of Surface Waves (SASW), Refraction Microtremor (ReMi), and P- and S-wave refraction tomography. Depending on the apparent geologic or seismic complexity of the site, field crews applied one or a combination of these methods to estimate the shear-wave velocity (VS) profile and calculate VS30, the time-averaged VS to a depth of 30 meters. We study the inter- and intra-method variability of VS and VS30 at each seismographic station where combinations of techniques were applied. For each site, we find both types of variability in VS30 remain insignificant (5-10% difference) despite substantial variability observed in the VS profiles. We also find that reliable VS profiles are best developed using a combination of techniques, e.g., surface-wave VS profiles correlated against P-wave tomography to constrain variables (Poisson's ratio and density) that are key depth-dependent parameters used in modeling VS profiles. The most reliable results are based on surface- or body-wave profiles correlated against independent observations such as material properties inferred from outcropping geology nearby. For example, mapped geology describes station CI.LJR as a hard rock site (VS30 > 760 m/s). However, decomposed rock outcrops were found nearby and support the estimated VS30 of 303 m/s derived from the MASW (Love wave) profile.
Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; ...
2016-02-18
The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less
Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.
2016-01-01
The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks provide the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. Testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald
The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less
Abriata, Luciano A; Bovigny, Christophe; Dal Peraro, Matteo
2016-06-17
Protein variability can now be studied by measuring high-resolution tolerance-to-substitution maps and fitness landscapes in saturated mutational libraries. But these rich and expensive datasets are typically interpreted coarsely, restricting detailed analyses to positions of extremely high or low variability or dubbed important beforehand based on existing knowledge about active sites, interaction surfaces, (de)stabilizing mutations, etc. Our new webserver PsychoProt (freely available without registration at http://psychoprot.epfl.ch or at http://lucianoabriata.altervista.org/psychoprot/index.html ) helps to detect, quantify, and sequence/structure map the biophysical and biochemical traits that shape amino acid preferences throughout a protein as determined by deep-sequencing of saturated mutational libraries or from large alignments of naturally occurring variants. We exemplify how PsychoProt helps to (i) unveil protein structure-function relationships from experiments and from alignments that are consistent with structures according to coevolution analysis, (ii) recall global information about structural and functional features and identify hitherto unknown constraints to variation in alignments, and (iii) point at different sources of variation among related experimental datasets or between experimental and alignment-based data. Remarkably, metabolic costs of the amino acids pose strong constraints to variability at protein surfaces in nature but not in the laboratory. This and other differences call for caution when extrapolating results from in vitro experiments to natural scenarios in, for example, studies of protein evolution. We show through examples how PsychoProt can be a useful tool for the broad communities of structural biology and molecular evolution, particularly for studies about protein modeling, evolution and design.
Bumgarner, Johnathan R; McCray, John E
2007-06-01
During operation of an onsite wastewater treatment system, a low-permeability biozone develops at the infiltrative surface (IS) during application of wastewater to soil. Inverse numerical-model simulations were used to estimate the biozone saturated hydraulic conductivity (K(biozone)) under variably saturated conditions for 29 wastewater infiltration test cells installed in a sandy loam field soil. Test cells employed two loading rates (4 and 8cm/day) and 3 IS designs: open chamber, gravel, and synthetic bundles. The ratio of K(biozone) to the saturated hydraulic conductivity of the natural soil (K(s)) was used to quantify the reductions in the IS hydraulic conductivity. A smaller value of K(biozone)/K(s,) reflects a greater reduction in hydraulic conductivity. The IS hydraulic conductivity was reduced by 1-3 orders of magnitude. The reduction in IS hydraulic conductivity was primarily influenced by wastewater loading rate and IS type and not by the K(s) of the native soil. The higher loading rate yielded greater reductions in IS hydraulic conductivity than the lower loading rate for bundle and gravel cells, but the difference was not statistically significant for chamber cells. Bundle and gravel cells exhibited a greater reduction in IS hydraulic conductivity than chamber cells at the higher loading rates, while the difference between gravel and bundle systems was not statistically significant. At the lower rate, bundle cells exhibited generally lower K(biozone)/K(s) values, but not at a statistically significant level, while gravel and chamber cells were statistically similar. Gravel cells exhibited the greatest variability in measured values, which may complicate design efforts based on K(biozone) evaluations for these systems. These results suggest that chamber systems may provide for a more robust design, particularly for high or variable wastewater infiltration rates.
Seasonal variability of light availability and utilization in the Sargasso Sea
NASA Technical Reports Server (NTRS)
Siegel, David A.; Michaels, Anthony F.; Sorensen, Jens C.; O'Brein, Margaret C.; Hammer, Melodie A.
1995-01-01
A 2 year time series of optical, biogeochemical, and physical parameters, taken near the island of Bermuda, is used to evaluate the sources of temporal variability in light avaliability and utilization in the Sargasso Sea. Integrated assessments of light availability are made by examining the depth of constant percent incident photosynthetically available radiation (% PAR) isolumes. To first order, changes in the depth %PAR isolumes were caused by physical processes: deep convection mixing in the winter which led to the spring bloom and concurrent shallowing of %PAR depths and the occurrence of anomalous thermohaline water masses during the summer and fall seasons. Spectral light availability variations are assessed using determinations of diffuse attenuation coefficient spectra which illustrates a significant seasonal cycle in colored detrital particulate and/or dissolved materials that is unrelated to changes in chlorophyll pigment concentrations. Temporal variations in the photosynthetic light utilization index Psi are used to assess vertically intergrated light utilization variations. Values of Psi are highly variable and show no apparent seasonal pattern which indicates that Psi is not simply a 'biogeochemical constant.' Determinations of in situ primary production rates and daily mean PAR fluxes are used to diagnose the relative role of light limitation in determining vertically integrated rates of primary production integral PP. The mean depth of the light-saturated zone (the vertical region where the daily mean PAR flux was greater than or equal to the saturation irradiance) is only approximately 40 m, although more than one half of interal PP occurred within this zone. Production model results illustrate that accurate predictions of integral PP are dependent upon rates of light-saturated production rather than upon indices of light limitation. It seems unlikely that significant improvements in simple primary production models will come from the partitioning of the Earth's seas into biogeochemical provinces.
Holmberg, Michael J.
2017-05-15
The U.S. Geological Survey in cooperation with the Lower Arkansas Valley Water Conservancy District measures groundwater levels periodically in about 100 wells completed in the alluvial material of the Arkansas River Valley in Pueblo, Crowley, Otero, Bent, and Prowers Counties in southeastern Colorado, of which 95 are used for the analysis in this report. The purpose of this report is to provide information to water-resource administrators, managers, planners, and users about groundwater characteristics in the alluvium of the lower Arkansas Valley extending roughly 150 miles between Pueblo Reservoir and the Colorado-Kansas State line. This report includes three map sheets showing (1) bedrock altitude at the base of the alluvium of the lower Arkansas Valley; (2) estimated spring-to-spring and fall-to-fall changes in water-table altitude between 2002, 2008, and 2015; and (3) estimated saturated thickness in the alluvium during spring and fall of 2002, 2008, and 2015, and thickness of the alluvium in the lower Arkansas Valley. Water-level changes were analyzed by geospatial interpolation methods.Available data included all water-level measurements made between January 1, 2001, and December 31, 2015; however, only data from fall and spring of 2002, 2008, and 2015 are mapped in this report. To account for the effect of John Martin Reservoir in Bent County, Colorado, lake levels at the reservoir were assigned to points along the approximate shoreline and were included in the water-level dataset. After combining the water-level measurements and lake levels, inverse distance weighting was used to interpolate between points and calculate the altitude of the water table for fall and spring of each year for comparisons. Saturated thickness was calculated by subtracting the bedrock surface from the water-table surface. Thickness of the alluvium was calculated by subtracting the bedrock surface from land surface using a digital elevation model.In order to analyze the response of the alluvium to varying environmental and anthropogenic conditions, the percentage of area of the lower Arkansas Valley showing an absolute change of 3 feet or less was calculated for each of the six water-table altitude change maps. For fall water-table altitude change maps, the periods between 2002 and 2008, 2008 and 2015, and 2002 and 2015 showed that 86.5 percent, 85.2 percent, and 66.3 percent of the study area, respectively, showed a net change of 3 feet or less. In the spring water-table altitude change maps these periods showed a net change of 3 feet or less in 94.4 percent, 96.1 percent, and 90.2 percent of the study area, respectively. While the estimated change in water-table altitude was slightly greater and more variable in fall-to-fall comparisons, these high percentages of area with relatively small net changes indicated that, at least in comparisons of the years presented, there was not a large amount of fluctuation in the altitude of the water table.The saturated thickness in the lower Arkansas Valley was between 25 and 50 feet in 34.4 to 35.9 percent of the study area, depending on the season and year. Between 30.2 and 35.6 percent of the area showed saturated thicknesses between 0 and 25 feet. Less than 1 percent of the area showed a saturated thickness greater than 200 feet in all mapped seasons and years.